xref: /openbmc/linux/drivers/md/dm-writecache.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 
30 #define BITMAP_GRANULARITY	65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY	PAGE_SIZE
34 #endif
35 
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
38 #endif
39 
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src)					\
42 do {								\
43 	typeof(dest) uniq = (src);				\
44 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
45 } while (0)
46 #else
47 #define pmem_assign(dest, src)	((dest) = (src))
48 #endif
49 
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
52 #endif
53 
54 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION	1
56 
57 struct wc_memory_entry {
58 	__le64 original_sector;
59 	__le64 seq_count;
60 };
61 
62 struct wc_memory_superblock {
63 	union {
64 		struct {
65 			__le32 magic;
66 			__le32 version;
67 			__le32 block_size;
68 			__le32 pad;
69 			__le64 n_blocks;
70 			__le64 seq_count;
71 		};
72 		__le64 padding[8];
73 	};
74 	struct wc_memory_entry entries[0];
75 };
76 
77 struct wc_entry {
78 	struct rb_node rb_node;
79 	struct list_head lru;
80 	unsigned short wc_list_contiguous;
81 	bool write_in_progress
82 #if BITS_PER_LONG == 64
83 		:1
84 #endif
85 	;
86 	unsigned long index
87 #if BITS_PER_LONG == 64
88 		:47
89 #endif
90 	;
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92 	uint64_t original_sector;
93 	uint64_t seq_count;
94 #endif
95 };
96 
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
100 #else
101 #define WC_MODE_PMEM(wc)			false
102 #define WC_MODE_FUA(wc)				false
103 #endif
104 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
105 
106 struct dm_writecache {
107 	struct mutex lock;
108 	struct list_head lru;
109 	union {
110 		struct list_head freelist;
111 		struct {
112 			struct rb_root freetree;
113 			struct wc_entry *current_free;
114 		};
115 	};
116 	struct rb_root tree;
117 
118 	size_t freelist_size;
119 	size_t writeback_size;
120 	size_t freelist_high_watermark;
121 	size_t freelist_low_watermark;
122 
123 	unsigned uncommitted_blocks;
124 	unsigned autocommit_blocks;
125 	unsigned max_writeback_jobs;
126 
127 	int error;
128 
129 	unsigned long autocommit_jiffies;
130 	struct timer_list autocommit_timer;
131 	struct wait_queue_head freelist_wait;
132 
133 	atomic_t bio_in_progress[2];
134 	struct wait_queue_head bio_in_progress_wait[2];
135 
136 	struct dm_target *ti;
137 	struct dm_dev *dev;
138 	struct dm_dev *ssd_dev;
139 	sector_t start_sector;
140 	void *memory_map;
141 	uint64_t memory_map_size;
142 	size_t metadata_sectors;
143 	size_t n_blocks;
144 	uint64_t seq_count;
145 	void *block_start;
146 	struct wc_entry *entries;
147 	unsigned block_size;
148 	unsigned char block_size_bits;
149 
150 	bool pmem_mode:1;
151 	bool writeback_fua:1;
152 
153 	bool overwrote_committed:1;
154 	bool memory_vmapped:1;
155 
156 	bool high_wm_percent_set:1;
157 	bool low_wm_percent_set:1;
158 	bool max_writeback_jobs_set:1;
159 	bool autocommit_blocks_set:1;
160 	bool autocommit_time_set:1;
161 	bool writeback_fua_set:1;
162 	bool flush_on_suspend:1;
163 
164 	unsigned writeback_all;
165 	struct workqueue_struct *writeback_wq;
166 	struct work_struct writeback_work;
167 	struct work_struct flush_work;
168 
169 	struct dm_io_client *dm_io;
170 
171 	raw_spinlock_t endio_list_lock;
172 	struct list_head endio_list;
173 	struct task_struct *endio_thread;
174 
175 	struct task_struct *flush_thread;
176 	struct bio_list flush_list;
177 
178 	struct dm_kcopyd_client *dm_kcopyd;
179 	unsigned long *dirty_bitmap;
180 	unsigned dirty_bitmap_size;
181 
182 	struct bio_set bio_set;
183 	mempool_t copy_pool;
184 };
185 
186 #define WB_LIST_INLINE		16
187 
188 struct writeback_struct {
189 	struct list_head endio_entry;
190 	struct dm_writecache *wc;
191 	struct wc_entry **wc_list;
192 	unsigned wc_list_n;
193 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
194 	struct bio bio;
195 };
196 
197 struct copy_struct {
198 	struct list_head endio_entry;
199 	struct dm_writecache *wc;
200 	struct wc_entry *e;
201 	unsigned n_entries;
202 	int error;
203 };
204 
205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
206 					    "A percentage of time allocated for data copying");
207 
208 static void wc_lock(struct dm_writecache *wc)
209 {
210 	mutex_lock(&wc->lock);
211 }
212 
213 static void wc_unlock(struct dm_writecache *wc)
214 {
215 	mutex_unlock(&wc->lock);
216 }
217 
218 #ifdef DM_WRITECACHE_HAS_PMEM
219 static int persistent_memory_claim(struct dm_writecache *wc)
220 {
221 	int r;
222 	loff_t s;
223 	long p, da;
224 	pfn_t pfn;
225 	int id;
226 	struct page **pages;
227 
228 	wc->memory_vmapped = false;
229 
230 	if (!wc->ssd_dev->dax_dev) {
231 		r = -EOPNOTSUPP;
232 		goto err1;
233 	}
234 	s = wc->memory_map_size;
235 	p = s >> PAGE_SHIFT;
236 	if (!p) {
237 		r = -EINVAL;
238 		goto err1;
239 	}
240 	if (p != s >> PAGE_SHIFT) {
241 		r = -EOVERFLOW;
242 		goto err1;
243 	}
244 
245 	id = dax_read_lock();
246 
247 	da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
248 	if (da < 0) {
249 		wc->memory_map = NULL;
250 		r = da;
251 		goto err2;
252 	}
253 	if (!pfn_t_has_page(pfn)) {
254 		wc->memory_map = NULL;
255 		r = -EOPNOTSUPP;
256 		goto err2;
257 	}
258 	if (da != p) {
259 		long i;
260 		wc->memory_map = NULL;
261 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
262 		if (!pages) {
263 			r = -ENOMEM;
264 			goto err2;
265 		}
266 		i = 0;
267 		do {
268 			long daa;
269 			daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
270 						NULL, &pfn);
271 			if (daa <= 0) {
272 				r = daa ? daa : -EINVAL;
273 				goto err3;
274 			}
275 			if (!pfn_t_has_page(pfn)) {
276 				r = -EOPNOTSUPP;
277 				goto err3;
278 			}
279 			while (daa-- && i < p) {
280 				pages[i++] = pfn_t_to_page(pfn);
281 				pfn.val++;
282 			}
283 		} while (i < p);
284 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
285 		if (!wc->memory_map) {
286 			r = -ENOMEM;
287 			goto err3;
288 		}
289 		kvfree(pages);
290 		wc->memory_vmapped = true;
291 	}
292 
293 	dax_read_unlock(id);
294 
295 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
296 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
297 
298 	return 0;
299 err3:
300 	kvfree(pages);
301 err2:
302 	dax_read_unlock(id);
303 err1:
304 	return r;
305 }
306 #else
307 static int persistent_memory_claim(struct dm_writecache *wc)
308 {
309 	BUG();
310 }
311 #endif
312 
313 static void persistent_memory_release(struct dm_writecache *wc)
314 {
315 	if (wc->memory_vmapped)
316 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
317 }
318 
319 static struct page *persistent_memory_page(void *addr)
320 {
321 	if (is_vmalloc_addr(addr))
322 		return vmalloc_to_page(addr);
323 	else
324 		return virt_to_page(addr);
325 }
326 
327 static unsigned persistent_memory_page_offset(void *addr)
328 {
329 	return (unsigned long)addr & (PAGE_SIZE - 1);
330 }
331 
332 static void persistent_memory_flush_cache(void *ptr, size_t size)
333 {
334 	if (is_vmalloc_addr(ptr))
335 		flush_kernel_vmap_range(ptr, size);
336 }
337 
338 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
339 {
340 	if (is_vmalloc_addr(ptr))
341 		invalidate_kernel_vmap_range(ptr, size);
342 }
343 
344 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
345 {
346 	return wc->memory_map;
347 }
348 
349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
350 {
351 	return &sb(wc)->entries[e->index];
352 }
353 
354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
355 {
356 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
357 }
358 
359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
360 {
361 	return wc->start_sector + wc->metadata_sectors +
362 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
363 }
364 
365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
366 {
367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
368 	return e->original_sector;
369 #else
370 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
371 #endif
372 }
373 
374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
375 {
376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
377 	return e->seq_count;
378 #else
379 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
380 #endif
381 }
382 
383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
384 {
385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
386 	e->seq_count = -1;
387 #endif
388 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
389 }
390 
391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
392 					    uint64_t original_sector, uint64_t seq_count)
393 {
394 	struct wc_memory_entry me;
395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
396 	e->original_sector = original_sector;
397 	e->seq_count = seq_count;
398 #endif
399 	me.original_sector = cpu_to_le64(original_sector);
400 	me.seq_count = cpu_to_le64(seq_count);
401 	pmem_assign(*memory_entry(wc, e), me);
402 }
403 
404 #define writecache_error(wc, err, msg, arg...)				\
405 do {									\
406 	if (!cmpxchg(&(wc)->error, 0, err))				\
407 		DMERR(msg, ##arg);					\
408 	wake_up(&(wc)->freelist_wait);					\
409 } while (0)
410 
411 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
412 
413 static void writecache_flush_all_metadata(struct dm_writecache *wc)
414 {
415 	if (!WC_MODE_PMEM(wc))
416 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
417 }
418 
419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
420 {
421 	if (!WC_MODE_PMEM(wc))
422 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
423 			  wc->dirty_bitmap);
424 }
425 
426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
427 
428 struct io_notify {
429 	struct dm_writecache *wc;
430 	struct completion c;
431 	atomic_t count;
432 };
433 
434 static void writecache_notify_io(unsigned long error, void *context)
435 {
436 	struct io_notify *endio = context;
437 
438 	if (unlikely(error != 0))
439 		writecache_error(endio->wc, -EIO, "error writing metadata");
440 	BUG_ON(atomic_read(&endio->count) <= 0);
441 	if (atomic_dec_and_test(&endio->count))
442 		complete(&endio->c);
443 }
444 
445 static void ssd_commit_flushed(struct dm_writecache *wc)
446 {
447 	struct dm_io_region region;
448 	struct dm_io_request req;
449 	struct io_notify endio = {
450 		wc,
451 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
452 		ATOMIC_INIT(1),
453 	};
454 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
455 	unsigned i = 0;
456 
457 	while (1) {
458 		unsigned j;
459 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
460 		if (unlikely(i == bitmap_bits))
461 			break;
462 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
463 
464 		region.bdev = wc->ssd_dev->bdev;
465 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
466 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
467 
468 		if (unlikely(region.sector >= wc->metadata_sectors))
469 			break;
470 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
471 			region.count = wc->metadata_sectors - region.sector;
472 
473 		region.sector += wc->start_sector;
474 		atomic_inc(&endio.count);
475 		req.bi_op = REQ_OP_WRITE;
476 		req.bi_op_flags = REQ_SYNC;
477 		req.mem.type = DM_IO_VMA;
478 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
479 		req.client = wc->dm_io;
480 		req.notify.fn = writecache_notify_io;
481 		req.notify.context = &endio;
482 
483 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
484 	        (void) dm_io(&req, 1, &region, NULL);
485 		i = j;
486 	}
487 
488 	writecache_notify_io(0, &endio);
489 	wait_for_completion_io(&endio.c);
490 
491 	writecache_disk_flush(wc, wc->ssd_dev);
492 
493 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
494 }
495 
496 static void writecache_commit_flushed(struct dm_writecache *wc)
497 {
498 	if (WC_MODE_PMEM(wc))
499 		wmb();
500 	else
501 		ssd_commit_flushed(wc);
502 }
503 
504 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
505 {
506 	int r;
507 	struct dm_io_region region;
508 	struct dm_io_request req;
509 
510 	region.bdev = dev->bdev;
511 	region.sector = 0;
512 	region.count = 0;
513 	req.bi_op = REQ_OP_WRITE;
514 	req.bi_op_flags = REQ_PREFLUSH;
515 	req.mem.type = DM_IO_KMEM;
516 	req.mem.ptr.addr = NULL;
517 	req.client = wc->dm_io;
518 	req.notify.fn = NULL;
519 
520 	r = dm_io(&req, 1, &region, NULL);
521 	if (unlikely(r))
522 		writecache_error(wc, r, "error flushing metadata: %d", r);
523 }
524 
525 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
526 {
527 	wait_event(wc->bio_in_progress_wait[direction],
528 		   !atomic_read(&wc->bio_in_progress[direction]));
529 }
530 
531 #define WFE_RETURN_FOLLOWING	1
532 #define WFE_LOWEST_SEQ		2
533 
534 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
535 					      uint64_t block, int flags)
536 {
537 	struct wc_entry *e;
538 	struct rb_node *node = wc->tree.rb_node;
539 
540 	if (unlikely(!node))
541 		return NULL;
542 
543 	while (1) {
544 		e = container_of(node, struct wc_entry, rb_node);
545 		if (read_original_sector(wc, e) == block)
546 			break;
547 
548 		node = (read_original_sector(wc, e) >= block ?
549 			e->rb_node.rb_left : e->rb_node.rb_right);
550 		if (unlikely(!node)) {
551 			if (!(flags & WFE_RETURN_FOLLOWING))
552 				return NULL;
553 			if (read_original_sector(wc, e) >= block) {
554 				return e;
555 			} else {
556 				node = rb_next(&e->rb_node);
557 				if (unlikely(!node))
558 					return NULL;
559 				e = container_of(node, struct wc_entry, rb_node);
560 				return e;
561 			}
562 		}
563 	}
564 
565 	while (1) {
566 		struct wc_entry *e2;
567 		if (flags & WFE_LOWEST_SEQ)
568 			node = rb_prev(&e->rb_node);
569 		else
570 			node = rb_next(&e->rb_node);
571 		if (unlikely(!node))
572 			return e;
573 		e2 = container_of(node, struct wc_entry, rb_node);
574 		if (read_original_sector(wc, e2) != block)
575 			return e;
576 		e = e2;
577 	}
578 }
579 
580 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
581 {
582 	struct wc_entry *e;
583 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
584 
585 	while (*node) {
586 		e = container_of(*node, struct wc_entry, rb_node);
587 		parent = &e->rb_node;
588 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
589 			node = &parent->rb_left;
590 		else
591 			node = &parent->rb_right;
592 	}
593 	rb_link_node(&ins->rb_node, parent, node);
594 	rb_insert_color(&ins->rb_node, &wc->tree);
595 	list_add(&ins->lru, &wc->lru);
596 }
597 
598 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
599 {
600 	list_del(&e->lru);
601 	rb_erase(&e->rb_node, &wc->tree);
602 }
603 
604 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
605 {
606 	if (WC_MODE_SORT_FREELIST(wc)) {
607 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
608 		if (unlikely(!*node))
609 			wc->current_free = e;
610 		while (*node) {
611 			parent = *node;
612 			if (&e->rb_node < *node)
613 				node = &parent->rb_left;
614 			else
615 				node = &parent->rb_right;
616 		}
617 		rb_link_node(&e->rb_node, parent, node);
618 		rb_insert_color(&e->rb_node, &wc->freetree);
619 	} else {
620 		list_add_tail(&e->lru, &wc->freelist);
621 	}
622 	wc->freelist_size++;
623 }
624 
625 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
626 {
627 	struct wc_entry *e;
628 
629 	if (WC_MODE_SORT_FREELIST(wc)) {
630 		struct rb_node *next;
631 		if (unlikely(!wc->current_free))
632 			return NULL;
633 		e = wc->current_free;
634 		next = rb_next(&e->rb_node);
635 		rb_erase(&e->rb_node, &wc->freetree);
636 		if (unlikely(!next))
637 			next = rb_first(&wc->freetree);
638 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
639 	} else {
640 		if (unlikely(list_empty(&wc->freelist)))
641 			return NULL;
642 		e = container_of(wc->freelist.next, struct wc_entry, lru);
643 		list_del(&e->lru);
644 	}
645 	wc->freelist_size--;
646 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
647 		queue_work(wc->writeback_wq, &wc->writeback_work);
648 
649 	return e;
650 }
651 
652 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
653 {
654 	writecache_unlink(wc, e);
655 	writecache_add_to_freelist(wc, e);
656 	clear_seq_count(wc, e);
657 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
658 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
659 		wake_up(&wc->freelist_wait);
660 }
661 
662 static void writecache_wait_on_freelist(struct dm_writecache *wc)
663 {
664 	DEFINE_WAIT(wait);
665 
666 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
667 	wc_unlock(wc);
668 	io_schedule();
669 	finish_wait(&wc->freelist_wait, &wait);
670 	wc_lock(wc);
671 }
672 
673 static void writecache_poison_lists(struct dm_writecache *wc)
674 {
675 	/*
676 	 * Catch incorrect access to these values while the device is suspended.
677 	 */
678 	memset(&wc->tree, -1, sizeof wc->tree);
679 	wc->lru.next = LIST_POISON1;
680 	wc->lru.prev = LIST_POISON2;
681 	wc->freelist.next = LIST_POISON1;
682 	wc->freelist.prev = LIST_POISON2;
683 }
684 
685 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
686 {
687 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
688 	if (WC_MODE_PMEM(wc))
689 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
690 }
691 
692 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
693 {
694 	return read_seq_count(wc, e) < wc->seq_count;
695 }
696 
697 static void writecache_flush(struct dm_writecache *wc)
698 {
699 	struct wc_entry *e, *e2;
700 	bool need_flush_after_free;
701 
702 	wc->uncommitted_blocks = 0;
703 	del_timer(&wc->autocommit_timer);
704 
705 	if (list_empty(&wc->lru))
706 		return;
707 
708 	e = container_of(wc->lru.next, struct wc_entry, lru);
709 	if (writecache_entry_is_committed(wc, e)) {
710 		if (wc->overwrote_committed) {
711 			writecache_wait_for_ios(wc, WRITE);
712 			writecache_disk_flush(wc, wc->ssd_dev);
713 			wc->overwrote_committed = false;
714 		}
715 		return;
716 	}
717 	while (1) {
718 		writecache_flush_entry(wc, e);
719 		if (unlikely(e->lru.next == &wc->lru))
720 			break;
721 		e2 = container_of(e->lru.next, struct wc_entry, lru);
722 		if (writecache_entry_is_committed(wc, e2))
723 			break;
724 		e = e2;
725 		cond_resched();
726 	}
727 	writecache_commit_flushed(wc);
728 
729 	if (!WC_MODE_PMEM(wc))
730 		writecache_wait_for_ios(wc, WRITE);
731 
732 	wc->seq_count++;
733 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
734 	writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
735 	writecache_commit_flushed(wc);
736 
737 	wc->overwrote_committed = false;
738 
739 	need_flush_after_free = false;
740 	while (1) {
741 		/* Free another committed entry with lower seq-count */
742 		struct rb_node *rb_node = rb_prev(&e->rb_node);
743 
744 		if (rb_node) {
745 			e2 = container_of(rb_node, struct wc_entry, rb_node);
746 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
747 			    likely(!e2->write_in_progress)) {
748 				writecache_free_entry(wc, e2);
749 				need_flush_after_free = true;
750 			}
751 		}
752 		if (unlikely(e->lru.prev == &wc->lru))
753 			break;
754 		e = container_of(e->lru.prev, struct wc_entry, lru);
755 		cond_resched();
756 	}
757 
758 	if (need_flush_after_free)
759 		writecache_commit_flushed(wc);
760 }
761 
762 static void writecache_flush_work(struct work_struct *work)
763 {
764 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
765 
766 	wc_lock(wc);
767 	writecache_flush(wc);
768 	wc_unlock(wc);
769 }
770 
771 static void writecache_autocommit_timer(struct timer_list *t)
772 {
773 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
774 	if (!writecache_has_error(wc))
775 		queue_work(wc->writeback_wq, &wc->flush_work);
776 }
777 
778 static void writecache_schedule_autocommit(struct dm_writecache *wc)
779 {
780 	if (!timer_pending(&wc->autocommit_timer))
781 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
782 }
783 
784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
785 {
786 	struct wc_entry *e;
787 	bool discarded_something = false;
788 
789 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
790 	if (unlikely(!e))
791 		return;
792 
793 	while (read_original_sector(wc, e) < end) {
794 		struct rb_node *node = rb_next(&e->rb_node);
795 
796 		if (likely(!e->write_in_progress)) {
797 			if (!discarded_something) {
798 				writecache_wait_for_ios(wc, READ);
799 				writecache_wait_for_ios(wc, WRITE);
800 				discarded_something = true;
801 			}
802 			writecache_free_entry(wc, e);
803 		}
804 
805 		if (unlikely(!node))
806 			break;
807 
808 		e = container_of(node, struct wc_entry, rb_node);
809 	}
810 
811 	if (discarded_something)
812 		writecache_commit_flushed(wc);
813 }
814 
815 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
816 {
817 	if (wc->writeback_size) {
818 		writecache_wait_on_freelist(wc);
819 		return true;
820 	}
821 	return false;
822 }
823 
824 static void writecache_suspend(struct dm_target *ti)
825 {
826 	struct dm_writecache *wc = ti->private;
827 	bool flush_on_suspend;
828 
829 	del_timer_sync(&wc->autocommit_timer);
830 
831 	wc_lock(wc);
832 	writecache_flush(wc);
833 	flush_on_suspend = wc->flush_on_suspend;
834 	if (flush_on_suspend) {
835 		wc->flush_on_suspend = false;
836 		wc->writeback_all++;
837 		queue_work(wc->writeback_wq, &wc->writeback_work);
838 	}
839 	wc_unlock(wc);
840 
841 	flush_workqueue(wc->writeback_wq);
842 
843 	wc_lock(wc);
844 	if (flush_on_suspend)
845 		wc->writeback_all--;
846 	while (writecache_wait_for_writeback(wc));
847 
848 	if (WC_MODE_PMEM(wc))
849 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
850 
851 	writecache_poison_lists(wc);
852 
853 	wc_unlock(wc);
854 }
855 
856 static int writecache_alloc_entries(struct dm_writecache *wc)
857 {
858 	size_t b;
859 
860 	if (wc->entries)
861 		return 0;
862 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
863 	if (!wc->entries)
864 		return -ENOMEM;
865 	for (b = 0; b < wc->n_blocks; b++) {
866 		struct wc_entry *e = &wc->entries[b];
867 		e->index = b;
868 		e->write_in_progress = false;
869 	}
870 
871 	return 0;
872 }
873 
874 static void writecache_resume(struct dm_target *ti)
875 {
876 	struct dm_writecache *wc = ti->private;
877 	size_t b;
878 	bool need_flush = false;
879 	__le64 sb_seq_count;
880 	int r;
881 
882 	wc_lock(wc);
883 
884 	if (WC_MODE_PMEM(wc))
885 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
886 
887 	wc->tree = RB_ROOT;
888 	INIT_LIST_HEAD(&wc->lru);
889 	if (WC_MODE_SORT_FREELIST(wc)) {
890 		wc->freetree = RB_ROOT;
891 		wc->current_free = NULL;
892 	} else {
893 		INIT_LIST_HEAD(&wc->freelist);
894 	}
895 	wc->freelist_size = 0;
896 
897 	r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
898 	if (r) {
899 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
900 		sb_seq_count = cpu_to_le64(0);
901 	}
902 	wc->seq_count = le64_to_cpu(sb_seq_count);
903 
904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
905 	for (b = 0; b < wc->n_blocks; b++) {
906 		struct wc_entry *e = &wc->entries[b];
907 		struct wc_memory_entry wme;
908 		if (writecache_has_error(wc)) {
909 			e->original_sector = -1;
910 			e->seq_count = -1;
911 			continue;
912 		}
913 		r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
914 		if (r) {
915 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
916 					 (unsigned long)b, r);
917 			e->original_sector = -1;
918 			e->seq_count = -1;
919 		} else {
920 			e->original_sector = le64_to_cpu(wme.original_sector);
921 			e->seq_count = le64_to_cpu(wme.seq_count);
922 		}
923 	}
924 #endif
925 	for (b = 0; b < wc->n_blocks; b++) {
926 		struct wc_entry *e = &wc->entries[b];
927 		if (!writecache_entry_is_committed(wc, e)) {
928 			if (read_seq_count(wc, e) != -1) {
929 erase_this:
930 				clear_seq_count(wc, e);
931 				need_flush = true;
932 			}
933 			writecache_add_to_freelist(wc, e);
934 		} else {
935 			struct wc_entry *old;
936 
937 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
938 			if (!old) {
939 				writecache_insert_entry(wc, e);
940 			} else {
941 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
942 					writecache_error(wc, -EINVAL,
943 						 "two identical entries, position %llu, sector %llu, sequence %llu",
944 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
945 						 (unsigned long long)read_seq_count(wc, e));
946 				}
947 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
948 					goto erase_this;
949 				} else {
950 					writecache_free_entry(wc, old);
951 					writecache_insert_entry(wc, e);
952 					need_flush = true;
953 				}
954 			}
955 		}
956 		cond_resched();
957 	}
958 
959 	if (need_flush) {
960 		writecache_flush_all_metadata(wc);
961 		writecache_commit_flushed(wc);
962 	}
963 
964 	wc_unlock(wc);
965 }
966 
967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
968 {
969 	if (argc != 1)
970 		return -EINVAL;
971 
972 	wc_lock(wc);
973 	if (dm_suspended(wc->ti)) {
974 		wc_unlock(wc);
975 		return -EBUSY;
976 	}
977 	if (writecache_has_error(wc)) {
978 		wc_unlock(wc);
979 		return -EIO;
980 	}
981 
982 	writecache_flush(wc);
983 	wc->writeback_all++;
984 	queue_work(wc->writeback_wq, &wc->writeback_work);
985 	wc_unlock(wc);
986 
987 	flush_workqueue(wc->writeback_wq);
988 
989 	wc_lock(wc);
990 	wc->writeback_all--;
991 	if (writecache_has_error(wc)) {
992 		wc_unlock(wc);
993 		return -EIO;
994 	}
995 	wc_unlock(wc);
996 
997 	return 0;
998 }
999 
1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1001 {
1002 	if (argc != 1)
1003 		return -EINVAL;
1004 
1005 	wc_lock(wc);
1006 	wc->flush_on_suspend = true;
1007 	wc_unlock(wc);
1008 
1009 	return 0;
1010 }
1011 
1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013 			      char *result, unsigned maxlen)
1014 {
1015 	int r = -EINVAL;
1016 	struct dm_writecache *wc = ti->private;
1017 
1018 	if (!strcasecmp(argv[0], "flush"))
1019 		r = process_flush_mesg(argc, argv, wc);
1020 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1022 	else
1023 		DMERR("unrecognised message received: %s", argv[0]);
1024 
1025 	return r;
1026 }
1027 
1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1029 {
1030 	void *buf;
1031 	unsigned long flags;
1032 	unsigned size;
1033 	int rw = bio_data_dir(bio);
1034 	unsigned remaining_size = wc->block_size;
1035 
1036 	do {
1037 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038 		buf = bvec_kmap_irq(&bv, &flags);
1039 		size = bv.bv_len;
1040 		if (unlikely(size > remaining_size))
1041 			size = remaining_size;
1042 
1043 		if (rw == READ) {
1044 			int r;
1045 			r = memcpy_mcsafe(buf, data, size);
1046 			flush_dcache_page(bio_page(bio));
1047 			if (unlikely(r)) {
1048 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049 				bio->bi_status = BLK_STS_IOERR;
1050 			}
1051 		} else {
1052 			flush_dcache_page(bio_page(bio));
1053 			memcpy_flushcache(data, buf, size);
1054 		}
1055 
1056 		bvec_kunmap_irq(buf, &flags);
1057 
1058 		data = (char *)data + size;
1059 		remaining_size -= size;
1060 		bio_advance(bio, size);
1061 	} while (unlikely(remaining_size));
1062 }
1063 
1064 static int writecache_flush_thread(void *data)
1065 {
1066 	struct dm_writecache *wc = data;
1067 
1068 	while (1) {
1069 		struct bio *bio;
1070 
1071 		wc_lock(wc);
1072 		bio = bio_list_pop(&wc->flush_list);
1073 		if (!bio) {
1074 			set_current_state(TASK_INTERRUPTIBLE);
1075 			wc_unlock(wc);
1076 
1077 			if (unlikely(kthread_should_stop())) {
1078 				set_current_state(TASK_RUNNING);
1079 				break;
1080 			}
1081 
1082 			schedule();
1083 			continue;
1084 		}
1085 
1086 		if (bio_op(bio) == REQ_OP_DISCARD) {
1087 			writecache_discard(wc, bio->bi_iter.bi_sector,
1088 					   bio_end_sector(bio));
1089 			wc_unlock(wc);
1090 			bio_set_dev(bio, wc->dev->bdev);
1091 			generic_make_request(bio);
1092 		} else {
1093 			writecache_flush(wc);
1094 			wc_unlock(wc);
1095 			if (writecache_has_error(wc))
1096 				bio->bi_status = BLK_STS_IOERR;
1097 			bio_endio(bio);
1098 		}
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1105 {
1106 	if (bio_list_empty(&wc->flush_list))
1107 		wake_up_process(wc->flush_thread);
1108 	bio_list_add(&wc->flush_list, bio);
1109 }
1110 
1111 static int writecache_map(struct dm_target *ti, struct bio *bio)
1112 {
1113 	struct wc_entry *e;
1114 	struct dm_writecache *wc = ti->private;
1115 
1116 	bio->bi_private = NULL;
1117 
1118 	wc_lock(wc);
1119 
1120 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121 		if (writecache_has_error(wc))
1122 			goto unlock_error;
1123 		if (WC_MODE_PMEM(wc)) {
1124 			writecache_flush(wc);
1125 			if (writecache_has_error(wc))
1126 				goto unlock_error;
1127 			goto unlock_submit;
1128 		} else {
1129 			writecache_offload_bio(wc, bio);
1130 			goto unlock_return;
1131 		}
1132 	}
1133 
1134 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1135 
1136 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137 				(wc->block_size / 512 - 1)) != 0)) {
1138 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139 		      (unsigned long long)bio->bi_iter.bi_sector,
1140 		      bio->bi_iter.bi_size, wc->block_size);
1141 		goto unlock_error;
1142 	}
1143 
1144 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145 		if (writecache_has_error(wc))
1146 			goto unlock_error;
1147 		if (WC_MODE_PMEM(wc)) {
1148 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149 			goto unlock_remap_origin;
1150 		} else {
1151 			writecache_offload_bio(wc, bio);
1152 			goto unlock_return;
1153 		}
1154 	}
1155 
1156 	if (bio_data_dir(bio) == READ) {
1157 read_next_block:
1158 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160 			if (WC_MODE_PMEM(wc)) {
1161 				bio_copy_block(wc, bio, memory_data(wc, e));
1162 				if (bio->bi_iter.bi_size)
1163 					goto read_next_block;
1164 				goto unlock_submit;
1165 			} else {
1166 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167 				bio_set_dev(bio, wc->ssd_dev->bdev);
1168 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1169 				if (!writecache_entry_is_committed(wc, e))
1170 					writecache_wait_for_ios(wc, WRITE);
1171 				goto unlock_remap;
1172 			}
1173 		} else {
1174 			if (e) {
1175 				sector_t next_boundary =
1176 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178 					dm_accept_partial_bio(bio, next_boundary);
1179 				}
1180 			}
1181 			goto unlock_remap_origin;
1182 		}
1183 	} else {
1184 		do {
1185 			if (writecache_has_error(wc))
1186 				goto unlock_error;
1187 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1188 			if (e) {
1189 				if (!writecache_entry_is_committed(wc, e))
1190 					goto bio_copy;
1191 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192 					wc->overwrote_committed = true;
1193 					goto bio_copy;
1194 				}
1195 			}
1196 			e = writecache_pop_from_freelist(wc);
1197 			if (unlikely(!e)) {
1198 				writecache_wait_on_freelist(wc);
1199 				continue;
1200 			}
1201 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202 			writecache_insert_entry(wc, e);
1203 			wc->uncommitted_blocks++;
1204 bio_copy:
1205 			if (WC_MODE_PMEM(wc)) {
1206 				bio_copy_block(wc, bio, memory_data(wc, e));
1207 			} else {
1208 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209 				bio_set_dev(bio, wc->ssd_dev->bdev);
1210 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1211 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212 					wc->uncommitted_blocks = 0;
1213 					queue_work(wc->writeback_wq, &wc->flush_work);
1214 				} else {
1215 					writecache_schedule_autocommit(wc);
1216 				}
1217 				goto unlock_remap;
1218 			}
1219 		} while (bio->bi_iter.bi_size);
1220 
1221 		if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
1222 			writecache_flush(wc);
1223 		else
1224 			writecache_schedule_autocommit(wc);
1225 		goto unlock_submit;
1226 	}
1227 
1228 unlock_remap_origin:
1229 	bio_set_dev(bio, wc->dev->bdev);
1230 	wc_unlock(wc);
1231 	return DM_MAPIO_REMAPPED;
1232 
1233 unlock_remap:
1234 	/* make sure that writecache_end_io decrements bio_in_progress: */
1235 	bio->bi_private = (void *)1;
1236 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1237 	wc_unlock(wc);
1238 	return DM_MAPIO_REMAPPED;
1239 
1240 unlock_submit:
1241 	wc_unlock(wc);
1242 	bio_endio(bio);
1243 	return DM_MAPIO_SUBMITTED;
1244 
1245 unlock_return:
1246 	wc_unlock(wc);
1247 	return DM_MAPIO_SUBMITTED;
1248 
1249 unlock_error:
1250 	wc_unlock(wc);
1251 	bio_io_error(bio);
1252 	return DM_MAPIO_SUBMITTED;
1253 }
1254 
1255 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1256 {
1257 	struct dm_writecache *wc = ti->private;
1258 
1259 	if (bio->bi_private != NULL) {
1260 		int dir = bio_data_dir(bio);
1261 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1262 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1263 				wake_up(&wc->bio_in_progress_wait[dir]);
1264 	}
1265 	return 0;
1266 }
1267 
1268 static int writecache_iterate_devices(struct dm_target *ti,
1269 				      iterate_devices_callout_fn fn, void *data)
1270 {
1271 	struct dm_writecache *wc = ti->private;
1272 
1273 	return fn(ti, wc->dev, 0, ti->len, data);
1274 }
1275 
1276 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1277 {
1278 	struct dm_writecache *wc = ti->private;
1279 
1280 	if (limits->logical_block_size < wc->block_size)
1281 		limits->logical_block_size = wc->block_size;
1282 
1283 	if (limits->physical_block_size < wc->block_size)
1284 		limits->physical_block_size = wc->block_size;
1285 
1286 	if (limits->io_min < wc->block_size)
1287 		limits->io_min = wc->block_size;
1288 }
1289 
1290 
1291 static void writecache_writeback_endio(struct bio *bio)
1292 {
1293 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1294 	struct dm_writecache *wc = wb->wc;
1295 	unsigned long flags;
1296 
1297 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1298 	if (unlikely(list_empty(&wc->endio_list)))
1299 		wake_up_process(wc->endio_thread);
1300 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1301 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1302 }
1303 
1304 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1305 {
1306 	struct copy_struct *c = ptr;
1307 	struct dm_writecache *wc = c->wc;
1308 
1309 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1310 
1311 	raw_spin_lock_irq(&wc->endio_list_lock);
1312 	if (unlikely(list_empty(&wc->endio_list)))
1313 		wake_up_process(wc->endio_thread);
1314 	list_add_tail(&c->endio_entry, &wc->endio_list);
1315 	raw_spin_unlock_irq(&wc->endio_list_lock);
1316 }
1317 
1318 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1319 {
1320 	unsigned i;
1321 	struct writeback_struct *wb;
1322 	struct wc_entry *e;
1323 	unsigned long n_walked = 0;
1324 
1325 	do {
1326 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1327 		list_del(&wb->endio_entry);
1328 
1329 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1330 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1331 					"write error %d", wb->bio.bi_status);
1332 		i = 0;
1333 		do {
1334 			e = wb->wc_list[i];
1335 			BUG_ON(!e->write_in_progress);
1336 			e->write_in_progress = false;
1337 			INIT_LIST_HEAD(&e->lru);
1338 			if (!writecache_has_error(wc))
1339 				writecache_free_entry(wc, e);
1340 			BUG_ON(!wc->writeback_size);
1341 			wc->writeback_size--;
1342 			n_walked++;
1343 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1344 				writecache_commit_flushed(wc);
1345 				wc_unlock(wc);
1346 				wc_lock(wc);
1347 				n_walked = 0;
1348 			}
1349 		} while (++i < wb->wc_list_n);
1350 
1351 		if (wb->wc_list != wb->wc_list_inline)
1352 			kfree(wb->wc_list);
1353 		bio_put(&wb->bio);
1354 	} while (!list_empty(list));
1355 }
1356 
1357 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1358 {
1359 	struct copy_struct *c;
1360 	struct wc_entry *e;
1361 
1362 	do {
1363 		c = list_entry(list->next, struct copy_struct, endio_entry);
1364 		list_del(&c->endio_entry);
1365 
1366 		if (unlikely(c->error))
1367 			writecache_error(wc, c->error, "copy error");
1368 
1369 		e = c->e;
1370 		do {
1371 			BUG_ON(!e->write_in_progress);
1372 			e->write_in_progress = false;
1373 			INIT_LIST_HEAD(&e->lru);
1374 			if (!writecache_has_error(wc))
1375 				writecache_free_entry(wc, e);
1376 
1377 			BUG_ON(!wc->writeback_size);
1378 			wc->writeback_size--;
1379 			e++;
1380 		} while (--c->n_entries);
1381 		mempool_free(c, &wc->copy_pool);
1382 	} while (!list_empty(list));
1383 }
1384 
1385 static int writecache_endio_thread(void *data)
1386 {
1387 	struct dm_writecache *wc = data;
1388 
1389 	while (1) {
1390 		struct list_head list;
1391 
1392 		raw_spin_lock_irq(&wc->endio_list_lock);
1393 		if (!list_empty(&wc->endio_list))
1394 			goto pop_from_list;
1395 		set_current_state(TASK_INTERRUPTIBLE);
1396 		raw_spin_unlock_irq(&wc->endio_list_lock);
1397 
1398 		if (unlikely(kthread_should_stop())) {
1399 			set_current_state(TASK_RUNNING);
1400 			break;
1401 		}
1402 
1403 		schedule();
1404 
1405 		continue;
1406 
1407 pop_from_list:
1408 		list = wc->endio_list;
1409 		list.next->prev = list.prev->next = &list;
1410 		INIT_LIST_HEAD(&wc->endio_list);
1411 		raw_spin_unlock_irq(&wc->endio_list_lock);
1412 
1413 		if (!WC_MODE_FUA(wc))
1414 			writecache_disk_flush(wc, wc->dev);
1415 
1416 		wc_lock(wc);
1417 
1418 		if (WC_MODE_PMEM(wc)) {
1419 			__writecache_endio_pmem(wc, &list);
1420 		} else {
1421 			__writecache_endio_ssd(wc, &list);
1422 			writecache_wait_for_ios(wc, READ);
1423 		}
1424 
1425 		writecache_commit_flushed(wc);
1426 
1427 		wc_unlock(wc);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1434 {
1435 	struct dm_writecache *wc = wb->wc;
1436 	unsigned block_size = wc->block_size;
1437 	void *address = memory_data(wc, e);
1438 
1439 	persistent_memory_flush_cache(address, block_size);
1440 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1441 			    block_size, persistent_memory_page_offset(address)) != 0;
1442 }
1443 
1444 struct writeback_list {
1445 	struct list_head list;
1446 	size_t size;
1447 };
1448 
1449 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1450 {
1451 	if (unlikely(wc->max_writeback_jobs)) {
1452 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1453 			wc_lock(wc);
1454 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1455 				writecache_wait_on_freelist(wc);
1456 			wc_unlock(wc);
1457 		}
1458 	}
1459 	cond_resched();
1460 }
1461 
1462 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1463 {
1464 	struct wc_entry *e, *f;
1465 	struct bio *bio;
1466 	struct writeback_struct *wb;
1467 	unsigned max_pages;
1468 
1469 	while (wbl->size) {
1470 		wbl->size--;
1471 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1472 		list_del(&e->lru);
1473 
1474 		max_pages = e->wc_list_contiguous;
1475 
1476 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1477 		wb = container_of(bio, struct writeback_struct, bio);
1478 		wb->wc = wc;
1479 		bio->bi_end_io = writecache_writeback_endio;
1480 		bio_set_dev(bio, wc->dev->bdev);
1481 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1482 		if (max_pages <= WB_LIST_INLINE ||
1483 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1484 							   GFP_NOIO | __GFP_NORETRY |
1485 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1486 			wb->wc_list = wb->wc_list_inline;
1487 			max_pages = WB_LIST_INLINE;
1488 		}
1489 
1490 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1491 
1492 		wb->wc_list[0] = e;
1493 		wb->wc_list_n = 1;
1494 
1495 		while (wbl->size && wb->wc_list_n < max_pages) {
1496 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1497 			if (read_original_sector(wc, f) !=
1498 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1499 				break;
1500 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1501 				break;
1502 			wbl->size--;
1503 			list_del(&f->lru);
1504 			wb->wc_list[wb->wc_list_n++] = f;
1505 			e = f;
1506 		}
1507 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1508 		if (writecache_has_error(wc)) {
1509 			bio->bi_status = BLK_STS_IOERR;
1510 			bio_endio(bio);
1511 		} else {
1512 			submit_bio(bio);
1513 		}
1514 
1515 		__writeback_throttle(wc, wbl);
1516 	}
1517 }
1518 
1519 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1520 {
1521 	struct wc_entry *e, *f;
1522 	struct dm_io_region from, to;
1523 	struct copy_struct *c;
1524 
1525 	while (wbl->size) {
1526 		unsigned n_sectors;
1527 
1528 		wbl->size--;
1529 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1530 		list_del(&e->lru);
1531 
1532 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1533 
1534 		from.bdev = wc->ssd_dev->bdev;
1535 		from.sector = cache_sector(wc, e);
1536 		from.count = n_sectors;
1537 		to.bdev = wc->dev->bdev;
1538 		to.sector = read_original_sector(wc, e);
1539 		to.count = n_sectors;
1540 
1541 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1542 		c->wc = wc;
1543 		c->e = e;
1544 		c->n_entries = e->wc_list_contiguous;
1545 
1546 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1547 			wbl->size--;
1548 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1549 			BUG_ON(f != e + 1);
1550 			list_del(&f->lru);
1551 			e = f;
1552 		}
1553 
1554 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1555 
1556 		__writeback_throttle(wc, wbl);
1557 	}
1558 }
1559 
1560 static void writecache_writeback(struct work_struct *work)
1561 {
1562 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1563 	struct blk_plug plug;
1564 	struct wc_entry *f, *g, *e = NULL;
1565 	struct rb_node *node, *next_node;
1566 	struct list_head skipped;
1567 	struct writeback_list wbl;
1568 	unsigned long n_walked;
1569 
1570 	wc_lock(wc);
1571 restart:
1572 	if (writecache_has_error(wc)) {
1573 		wc_unlock(wc);
1574 		return;
1575 	}
1576 
1577 	if (unlikely(wc->writeback_all)) {
1578 		if (writecache_wait_for_writeback(wc))
1579 			goto restart;
1580 	}
1581 
1582 	if (wc->overwrote_committed) {
1583 		writecache_wait_for_ios(wc, WRITE);
1584 	}
1585 
1586 	n_walked = 0;
1587 	INIT_LIST_HEAD(&skipped);
1588 	INIT_LIST_HEAD(&wbl.list);
1589 	wbl.size = 0;
1590 	while (!list_empty(&wc->lru) &&
1591 	       (wc->writeback_all ||
1592 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1593 
1594 		n_walked++;
1595 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1596 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1597 			queue_work(wc->writeback_wq, &wc->writeback_work);
1598 			break;
1599 		}
1600 
1601 		if (unlikely(wc->writeback_all)) {
1602 			if (unlikely(!e)) {
1603 				writecache_flush(wc);
1604 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1605 			} else
1606 				e = g;
1607 		} else
1608 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1609 		BUG_ON(e->write_in_progress);
1610 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1611 			writecache_flush(wc);
1612 		}
1613 		node = rb_prev(&e->rb_node);
1614 		if (node) {
1615 			f = container_of(node, struct wc_entry, rb_node);
1616 			if (unlikely(read_original_sector(wc, f) ==
1617 				     read_original_sector(wc, e))) {
1618 				BUG_ON(!f->write_in_progress);
1619 				list_del(&e->lru);
1620 				list_add(&e->lru, &skipped);
1621 				cond_resched();
1622 				continue;
1623 			}
1624 		}
1625 		wc->writeback_size++;
1626 		list_del(&e->lru);
1627 		list_add(&e->lru, &wbl.list);
1628 		wbl.size++;
1629 		e->write_in_progress = true;
1630 		e->wc_list_contiguous = 1;
1631 
1632 		f = e;
1633 
1634 		while (1) {
1635 			next_node = rb_next(&f->rb_node);
1636 			if (unlikely(!next_node))
1637 				break;
1638 			g = container_of(next_node, struct wc_entry, rb_node);
1639 			if (unlikely(read_original_sector(wc, g) ==
1640 			    read_original_sector(wc, f))) {
1641 				f = g;
1642 				continue;
1643 			}
1644 			if (read_original_sector(wc, g) !=
1645 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1646 				break;
1647 			if (unlikely(g->write_in_progress))
1648 				break;
1649 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1650 				break;
1651 
1652 			if (!WC_MODE_PMEM(wc)) {
1653 				if (g != f + 1)
1654 					break;
1655 			}
1656 
1657 			n_walked++;
1658 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1659 			//	break;
1660 
1661 			wc->writeback_size++;
1662 			list_del(&g->lru);
1663 			list_add(&g->lru, &wbl.list);
1664 			wbl.size++;
1665 			g->write_in_progress = true;
1666 			g->wc_list_contiguous = BIO_MAX_PAGES;
1667 			f = g;
1668 			e->wc_list_contiguous++;
1669 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1670 				if (unlikely(wc->writeback_all)) {
1671 					next_node = rb_next(&f->rb_node);
1672 					if (likely(next_node))
1673 						g = container_of(next_node, struct wc_entry, rb_node);
1674 				}
1675 				break;
1676 			}
1677 		}
1678 		cond_resched();
1679 	}
1680 
1681 	if (!list_empty(&skipped)) {
1682 		list_splice_tail(&skipped, &wc->lru);
1683 		/*
1684 		 * If we didn't do any progress, we must wait until some
1685 		 * writeback finishes to avoid burning CPU in a loop
1686 		 */
1687 		if (unlikely(!wbl.size))
1688 			writecache_wait_for_writeback(wc);
1689 	}
1690 
1691 	wc_unlock(wc);
1692 
1693 	blk_start_plug(&plug);
1694 
1695 	if (WC_MODE_PMEM(wc))
1696 		__writecache_writeback_pmem(wc, &wbl);
1697 	else
1698 		__writecache_writeback_ssd(wc, &wbl);
1699 
1700 	blk_finish_plug(&plug);
1701 
1702 	if (unlikely(wc->writeback_all)) {
1703 		wc_lock(wc);
1704 		while (writecache_wait_for_writeback(wc));
1705 		wc_unlock(wc);
1706 	}
1707 }
1708 
1709 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1710 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1711 {
1712 	uint64_t n_blocks, offset;
1713 	struct wc_entry e;
1714 
1715 	n_blocks = device_size;
1716 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1717 
1718 	while (1) {
1719 		if (!n_blocks)
1720 			return -ENOSPC;
1721 		/* Verify the following entries[n_blocks] won't overflow */
1722 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1723 				 sizeof(struct wc_memory_entry)))
1724 			return -EFBIG;
1725 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1726 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1727 		if (offset + n_blocks * block_size <= device_size)
1728 			break;
1729 		n_blocks--;
1730 	}
1731 
1732 	/* check if the bit field overflows */
1733 	e.index = n_blocks;
1734 	if (e.index != n_blocks)
1735 		return -EFBIG;
1736 
1737 	if (n_blocks_p)
1738 		*n_blocks_p = n_blocks;
1739 	if (n_metadata_blocks_p)
1740 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1741 	return 0;
1742 }
1743 
1744 static int init_memory(struct dm_writecache *wc)
1745 {
1746 	size_t b;
1747 	int r;
1748 
1749 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1750 	if (r)
1751 		return r;
1752 
1753 	r = writecache_alloc_entries(wc);
1754 	if (r)
1755 		return r;
1756 
1757 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1758 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1759 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1760 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1761 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1762 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1763 
1764 	for (b = 0; b < wc->n_blocks; b++)
1765 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1766 
1767 	writecache_flush_all_metadata(wc);
1768 	writecache_commit_flushed(wc);
1769 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1770 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1771 	writecache_commit_flushed(wc);
1772 
1773 	return 0;
1774 }
1775 
1776 static void writecache_dtr(struct dm_target *ti)
1777 {
1778 	struct dm_writecache *wc = ti->private;
1779 
1780 	if (!wc)
1781 		return;
1782 
1783 	if (wc->endio_thread)
1784 		kthread_stop(wc->endio_thread);
1785 
1786 	if (wc->flush_thread)
1787 		kthread_stop(wc->flush_thread);
1788 
1789 	bioset_exit(&wc->bio_set);
1790 
1791 	mempool_exit(&wc->copy_pool);
1792 
1793 	if (wc->writeback_wq)
1794 		destroy_workqueue(wc->writeback_wq);
1795 
1796 	if (wc->dev)
1797 		dm_put_device(ti, wc->dev);
1798 
1799 	if (wc->ssd_dev)
1800 		dm_put_device(ti, wc->ssd_dev);
1801 
1802 	if (wc->entries)
1803 		vfree(wc->entries);
1804 
1805 	if (wc->memory_map) {
1806 		if (WC_MODE_PMEM(wc))
1807 			persistent_memory_release(wc);
1808 		else
1809 			vfree(wc->memory_map);
1810 	}
1811 
1812 	if (wc->dm_kcopyd)
1813 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
1814 
1815 	if (wc->dm_io)
1816 		dm_io_client_destroy(wc->dm_io);
1817 
1818 	if (wc->dirty_bitmap)
1819 		vfree(wc->dirty_bitmap);
1820 
1821 	kfree(wc);
1822 }
1823 
1824 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1825 {
1826 	struct dm_writecache *wc;
1827 	struct dm_arg_set as;
1828 	const char *string;
1829 	unsigned opt_params;
1830 	size_t offset, data_size;
1831 	int i, r;
1832 	char dummy;
1833 	int high_wm_percent = HIGH_WATERMARK;
1834 	int low_wm_percent = LOW_WATERMARK;
1835 	uint64_t x;
1836 	struct wc_memory_superblock s;
1837 
1838 	static struct dm_arg _args[] = {
1839 		{0, 10, "Invalid number of feature args"},
1840 	};
1841 
1842 	as.argc = argc;
1843 	as.argv = argv;
1844 
1845 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1846 	if (!wc) {
1847 		ti->error = "Cannot allocate writecache structure";
1848 		r = -ENOMEM;
1849 		goto bad;
1850 	}
1851 	ti->private = wc;
1852 	wc->ti = ti;
1853 
1854 	mutex_init(&wc->lock);
1855 	writecache_poison_lists(wc);
1856 	init_waitqueue_head(&wc->freelist_wait);
1857 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1858 
1859 	for (i = 0; i < 2; i++) {
1860 		atomic_set(&wc->bio_in_progress[i], 0);
1861 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1862 	}
1863 
1864 	wc->dm_io = dm_io_client_create();
1865 	if (IS_ERR(wc->dm_io)) {
1866 		r = PTR_ERR(wc->dm_io);
1867 		ti->error = "Unable to allocate dm-io client";
1868 		wc->dm_io = NULL;
1869 		goto bad;
1870 	}
1871 
1872 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1873 	if (!wc->writeback_wq) {
1874 		r = -ENOMEM;
1875 		ti->error = "Could not allocate writeback workqueue";
1876 		goto bad;
1877 	}
1878 	INIT_WORK(&wc->writeback_work, writecache_writeback);
1879 	INIT_WORK(&wc->flush_work, writecache_flush_work);
1880 
1881 	raw_spin_lock_init(&wc->endio_list_lock);
1882 	INIT_LIST_HEAD(&wc->endio_list);
1883 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1884 	if (IS_ERR(wc->endio_thread)) {
1885 		r = PTR_ERR(wc->endio_thread);
1886 		wc->endio_thread = NULL;
1887 		ti->error = "Couldn't spawn endio thread";
1888 		goto bad;
1889 	}
1890 	wake_up_process(wc->endio_thread);
1891 
1892 	/*
1893 	 * Parse the mode (pmem or ssd)
1894 	 */
1895 	string = dm_shift_arg(&as);
1896 	if (!string)
1897 		goto bad_arguments;
1898 
1899 	if (!strcasecmp(string, "s")) {
1900 		wc->pmem_mode = false;
1901 	} else if (!strcasecmp(string, "p")) {
1902 #ifdef DM_WRITECACHE_HAS_PMEM
1903 		wc->pmem_mode = true;
1904 		wc->writeback_fua = true;
1905 #else
1906 		/*
1907 		 * If the architecture doesn't support persistent memory or
1908 		 * the kernel doesn't support any DAX drivers, this driver can
1909 		 * only be used in SSD-only mode.
1910 		 */
1911 		r = -EOPNOTSUPP;
1912 		ti->error = "Persistent memory or DAX not supported on this system";
1913 		goto bad;
1914 #endif
1915 	} else {
1916 		goto bad_arguments;
1917 	}
1918 
1919 	if (WC_MODE_PMEM(wc)) {
1920 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1921 				offsetof(struct writeback_struct, bio),
1922 				BIOSET_NEED_BVECS);
1923 		if (r) {
1924 			ti->error = "Could not allocate bio set";
1925 			goto bad;
1926 		}
1927 	} else {
1928 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1929 		if (r) {
1930 			ti->error = "Could not allocate mempool";
1931 			goto bad;
1932 		}
1933 	}
1934 
1935 	/*
1936 	 * Parse the origin data device
1937 	 */
1938 	string = dm_shift_arg(&as);
1939 	if (!string)
1940 		goto bad_arguments;
1941 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1942 	if (r) {
1943 		ti->error = "Origin data device lookup failed";
1944 		goto bad;
1945 	}
1946 
1947 	/*
1948 	 * Parse cache data device (be it pmem or ssd)
1949 	 */
1950 	string = dm_shift_arg(&as);
1951 	if (!string)
1952 		goto bad_arguments;
1953 
1954 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1955 	if (r) {
1956 		ti->error = "Cache data device lookup failed";
1957 		goto bad;
1958 	}
1959 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1960 
1961 	/*
1962 	 * Parse the cache block size
1963 	 */
1964 	string = dm_shift_arg(&as);
1965 	if (!string)
1966 		goto bad_arguments;
1967 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1968 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1969 	    (wc->block_size & (wc->block_size - 1))) {
1970 		r = -EINVAL;
1971 		ti->error = "Invalid block size";
1972 		goto bad;
1973 	}
1974 	wc->block_size_bits = __ffs(wc->block_size);
1975 
1976 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1977 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1978 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1979 
1980 	/*
1981 	 * Parse optional arguments
1982 	 */
1983 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1984 	if (r)
1985 		goto bad;
1986 
1987 	while (opt_params) {
1988 		string = dm_shift_arg(&as), opt_params--;
1989 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1990 			unsigned long long start_sector;
1991 			string = dm_shift_arg(&as), opt_params--;
1992 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1993 				goto invalid_optional;
1994 			wc->start_sector = start_sector;
1995 			if (wc->start_sector != start_sector ||
1996 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1997 				goto invalid_optional;
1998 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
1999 			string = dm_shift_arg(&as), opt_params--;
2000 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2001 				goto invalid_optional;
2002 			if (high_wm_percent < 0 || high_wm_percent > 100)
2003 				goto invalid_optional;
2004 			wc->high_wm_percent_set = true;
2005 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2006 			string = dm_shift_arg(&as), opt_params--;
2007 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2008 				goto invalid_optional;
2009 			if (low_wm_percent < 0 || low_wm_percent > 100)
2010 				goto invalid_optional;
2011 			wc->low_wm_percent_set = true;
2012 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2013 			string = dm_shift_arg(&as), opt_params--;
2014 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2015 				goto invalid_optional;
2016 			wc->max_writeback_jobs_set = true;
2017 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2018 			string = dm_shift_arg(&as), opt_params--;
2019 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2020 				goto invalid_optional;
2021 			wc->autocommit_blocks_set = true;
2022 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2023 			unsigned autocommit_msecs;
2024 			string = dm_shift_arg(&as), opt_params--;
2025 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2026 				goto invalid_optional;
2027 			if (autocommit_msecs > 3600000)
2028 				goto invalid_optional;
2029 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2030 			wc->autocommit_time_set = true;
2031 		} else if (!strcasecmp(string, "fua")) {
2032 			if (WC_MODE_PMEM(wc)) {
2033 				wc->writeback_fua = true;
2034 				wc->writeback_fua_set = true;
2035 			} else goto invalid_optional;
2036 		} else if (!strcasecmp(string, "nofua")) {
2037 			if (WC_MODE_PMEM(wc)) {
2038 				wc->writeback_fua = false;
2039 				wc->writeback_fua_set = true;
2040 			} else goto invalid_optional;
2041 		} else {
2042 invalid_optional:
2043 			r = -EINVAL;
2044 			ti->error = "Invalid optional argument";
2045 			goto bad;
2046 		}
2047 	}
2048 
2049 	if (high_wm_percent < low_wm_percent) {
2050 		r = -EINVAL;
2051 		ti->error = "High watermark must be greater than or equal to low watermark";
2052 		goto bad;
2053 	}
2054 
2055 	if (WC_MODE_PMEM(wc)) {
2056 		r = persistent_memory_claim(wc);
2057 		if (r) {
2058 			ti->error = "Unable to map persistent memory for cache";
2059 			goto bad;
2060 		}
2061 	} else {
2062 		struct dm_io_region region;
2063 		struct dm_io_request req;
2064 		size_t n_blocks, n_metadata_blocks;
2065 		uint64_t n_bitmap_bits;
2066 
2067 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2068 
2069 		bio_list_init(&wc->flush_list);
2070 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2071 		if (IS_ERR(wc->flush_thread)) {
2072 			r = PTR_ERR(wc->flush_thread);
2073 			wc->flush_thread = NULL;
2074 			ti->error = "Couldn't spawn flush thread";
2075 			goto bad;
2076 		}
2077 		wake_up_process(wc->flush_thread);
2078 
2079 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2080 					  &n_blocks, &n_metadata_blocks);
2081 		if (r) {
2082 			ti->error = "Invalid device size";
2083 			goto bad;
2084 		}
2085 
2086 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2087 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2088 		/* this is limitation of test_bit functions */
2089 		if (n_bitmap_bits > 1U << 31) {
2090 			r = -EFBIG;
2091 			ti->error = "Invalid device size";
2092 			goto bad;
2093 		}
2094 
2095 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2096 		if (!wc->memory_map) {
2097 			r = -ENOMEM;
2098 			ti->error = "Unable to allocate memory for metadata";
2099 			goto bad;
2100 		}
2101 
2102 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2103 		if (IS_ERR(wc->dm_kcopyd)) {
2104 			r = PTR_ERR(wc->dm_kcopyd);
2105 			ti->error = "Unable to allocate dm-kcopyd client";
2106 			wc->dm_kcopyd = NULL;
2107 			goto bad;
2108 		}
2109 
2110 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2111 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2112 			BITS_PER_LONG * sizeof(unsigned long);
2113 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2114 		if (!wc->dirty_bitmap) {
2115 			r = -ENOMEM;
2116 			ti->error = "Unable to allocate dirty bitmap";
2117 			goto bad;
2118 		}
2119 
2120 		region.bdev = wc->ssd_dev->bdev;
2121 		region.sector = wc->start_sector;
2122 		region.count = wc->metadata_sectors;
2123 		req.bi_op = REQ_OP_READ;
2124 		req.bi_op_flags = REQ_SYNC;
2125 		req.mem.type = DM_IO_VMA;
2126 		req.mem.ptr.vma = (char *)wc->memory_map;
2127 		req.client = wc->dm_io;
2128 		req.notify.fn = NULL;
2129 
2130 		r = dm_io(&req, 1, &region, NULL);
2131 		if (r) {
2132 			ti->error = "Unable to read metadata";
2133 			goto bad;
2134 		}
2135 	}
2136 
2137 	r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2138 	if (r) {
2139 		ti->error = "Hardware memory error when reading superblock";
2140 		goto bad;
2141 	}
2142 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2143 		r = init_memory(wc);
2144 		if (r) {
2145 			ti->error = "Unable to initialize device";
2146 			goto bad;
2147 		}
2148 		r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2149 		if (r) {
2150 			ti->error = "Hardware memory error when reading superblock";
2151 			goto bad;
2152 		}
2153 	}
2154 
2155 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2156 		ti->error = "Invalid magic in the superblock";
2157 		r = -EINVAL;
2158 		goto bad;
2159 	}
2160 
2161 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2162 		ti->error = "Invalid version in the superblock";
2163 		r = -EINVAL;
2164 		goto bad;
2165 	}
2166 
2167 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2168 		ti->error = "Block size does not match superblock";
2169 		r = -EINVAL;
2170 		goto bad;
2171 	}
2172 
2173 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2174 
2175 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2176 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2177 overflow:
2178 		ti->error = "Overflow in size calculation";
2179 		r = -EINVAL;
2180 		goto bad;
2181 	}
2182 	offset += sizeof(struct wc_memory_superblock);
2183 	if (offset < sizeof(struct wc_memory_superblock))
2184 		goto overflow;
2185 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2186 	data_size = wc->n_blocks * (size_t)wc->block_size;
2187 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2188 	    (offset + data_size < offset))
2189 		goto overflow;
2190 	if (offset + data_size > wc->memory_map_size) {
2191 		ti->error = "Memory area is too small";
2192 		r = -EINVAL;
2193 		goto bad;
2194 	}
2195 
2196 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2197 	wc->block_start = (char *)sb(wc) + offset;
2198 
2199 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2200 	x += 50;
2201 	do_div(x, 100);
2202 	wc->freelist_high_watermark = x;
2203 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2204 	x += 50;
2205 	do_div(x, 100);
2206 	wc->freelist_low_watermark = x;
2207 
2208 	r = writecache_alloc_entries(wc);
2209 	if (r) {
2210 		ti->error = "Cannot allocate memory";
2211 		goto bad;
2212 	}
2213 
2214 	ti->num_flush_bios = 1;
2215 	ti->flush_supported = true;
2216 	ti->num_discard_bios = 1;
2217 
2218 	if (WC_MODE_PMEM(wc))
2219 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2220 
2221 	return 0;
2222 
2223 bad_arguments:
2224 	r = -EINVAL;
2225 	ti->error = "Bad arguments";
2226 bad:
2227 	writecache_dtr(ti);
2228 	return r;
2229 }
2230 
2231 static void writecache_status(struct dm_target *ti, status_type_t type,
2232 			      unsigned status_flags, char *result, unsigned maxlen)
2233 {
2234 	struct dm_writecache *wc = ti->private;
2235 	unsigned extra_args;
2236 	unsigned sz = 0;
2237 	uint64_t x;
2238 
2239 	switch (type) {
2240 	case STATUSTYPE_INFO:
2241 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2242 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2243 		       (unsigned long long)wc->writeback_size);
2244 		break;
2245 	case STATUSTYPE_TABLE:
2246 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2247 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2248 		extra_args = 0;
2249 		if (wc->start_sector)
2250 			extra_args += 2;
2251 		if (wc->high_wm_percent_set)
2252 			extra_args += 2;
2253 		if (wc->low_wm_percent_set)
2254 			extra_args += 2;
2255 		if (wc->max_writeback_jobs_set)
2256 			extra_args += 2;
2257 		if (wc->autocommit_blocks_set)
2258 			extra_args += 2;
2259 		if (wc->autocommit_time_set)
2260 			extra_args += 2;
2261 		if (wc->writeback_fua_set)
2262 			extra_args++;
2263 
2264 		DMEMIT("%u", extra_args);
2265 		if (wc->start_sector)
2266 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2267 		if (wc->high_wm_percent_set) {
2268 			x = (uint64_t)wc->freelist_high_watermark * 100;
2269 			x += wc->n_blocks / 2;
2270 			do_div(x, (size_t)wc->n_blocks);
2271 			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2272 		}
2273 		if (wc->low_wm_percent_set) {
2274 			x = (uint64_t)wc->freelist_low_watermark * 100;
2275 			x += wc->n_blocks / 2;
2276 			do_div(x, (size_t)wc->n_blocks);
2277 			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2278 		}
2279 		if (wc->max_writeback_jobs_set)
2280 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2281 		if (wc->autocommit_blocks_set)
2282 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2283 		if (wc->autocommit_time_set)
2284 			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2285 		if (wc->writeback_fua_set)
2286 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2287 		break;
2288 	}
2289 }
2290 
2291 static struct target_type writecache_target = {
2292 	.name			= "writecache",
2293 	.version		= {1, 1, 1},
2294 	.module			= THIS_MODULE,
2295 	.ctr			= writecache_ctr,
2296 	.dtr			= writecache_dtr,
2297 	.status			= writecache_status,
2298 	.postsuspend		= writecache_suspend,
2299 	.resume			= writecache_resume,
2300 	.message		= writecache_message,
2301 	.map			= writecache_map,
2302 	.end_io			= writecache_end_io,
2303 	.iterate_devices	= writecache_iterate_devices,
2304 	.io_hints		= writecache_io_hints,
2305 };
2306 
2307 static int __init dm_writecache_init(void)
2308 {
2309 	int r;
2310 
2311 	r = dm_register_target(&writecache_target);
2312 	if (r < 0) {
2313 		DMERR("register failed %d", r);
2314 		return r;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 static void __exit dm_writecache_exit(void)
2321 {
2322 	dm_unregister_target(&writecache_target);
2323 }
2324 
2325 module_init(dm_writecache_init);
2326 module_exit(dm_writecache_exit);
2327 
2328 MODULE_DESCRIPTION(DM_NAME " writecache target");
2329 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2330 MODULE_LICENSE("GPL");
2331