1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 30 #define BITMAP_GRANULARITY 65536 31 #if BITMAP_GRANULARITY < PAGE_SIZE 32 #undef BITMAP_GRANULARITY 33 #define BITMAP_GRANULARITY PAGE_SIZE 34 #endif 35 36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 37 #define DM_WRITECACHE_HAS_PMEM 38 #endif 39 40 #ifdef DM_WRITECACHE_HAS_PMEM 41 #define pmem_assign(dest, src) \ 42 do { \ 43 typeof(dest) uniq = (src); \ 44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 45 } while (0) 46 #else 47 #define pmem_assign(dest, src) ((dest) = (src)) 48 #endif 49 50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 52 #endif 53 54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 55 #define MEMORY_SUPERBLOCK_VERSION 1 56 57 struct wc_memory_entry { 58 __le64 original_sector; 59 __le64 seq_count; 60 }; 61 62 struct wc_memory_superblock { 63 union { 64 struct { 65 __le32 magic; 66 __le32 version; 67 __le32 block_size; 68 __le32 pad; 69 __le64 n_blocks; 70 __le64 seq_count; 71 }; 72 __le64 padding[8]; 73 }; 74 struct wc_memory_entry entries[0]; 75 }; 76 77 struct wc_entry { 78 struct rb_node rb_node; 79 struct list_head lru; 80 unsigned short wc_list_contiguous; 81 bool write_in_progress 82 #if BITS_PER_LONG == 64 83 :1 84 #endif 85 ; 86 unsigned long index 87 #if BITS_PER_LONG == 64 88 :47 89 #endif 90 ; 91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 92 uint64_t original_sector; 93 uint64_t seq_count; 94 #endif 95 }; 96 97 #ifdef DM_WRITECACHE_HAS_PMEM 98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 100 #else 101 #define WC_MODE_PMEM(wc) false 102 #define WC_MODE_FUA(wc) false 103 #endif 104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 105 106 struct dm_writecache { 107 struct mutex lock; 108 struct list_head lru; 109 union { 110 struct list_head freelist; 111 struct { 112 struct rb_root freetree; 113 struct wc_entry *current_free; 114 }; 115 }; 116 struct rb_root tree; 117 118 size_t freelist_size; 119 size_t writeback_size; 120 size_t freelist_high_watermark; 121 size_t freelist_low_watermark; 122 123 unsigned uncommitted_blocks; 124 unsigned autocommit_blocks; 125 unsigned max_writeback_jobs; 126 127 int error; 128 129 unsigned long autocommit_jiffies; 130 struct timer_list autocommit_timer; 131 struct wait_queue_head freelist_wait; 132 133 atomic_t bio_in_progress[2]; 134 struct wait_queue_head bio_in_progress_wait[2]; 135 136 struct dm_target *ti; 137 struct dm_dev *dev; 138 struct dm_dev *ssd_dev; 139 sector_t start_sector; 140 void *memory_map; 141 uint64_t memory_map_size; 142 size_t metadata_sectors; 143 size_t n_blocks; 144 uint64_t seq_count; 145 void *block_start; 146 struct wc_entry *entries; 147 unsigned block_size; 148 unsigned char block_size_bits; 149 150 bool pmem_mode:1; 151 bool writeback_fua:1; 152 153 bool overwrote_committed:1; 154 bool memory_vmapped:1; 155 156 bool high_wm_percent_set:1; 157 bool low_wm_percent_set:1; 158 bool max_writeback_jobs_set:1; 159 bool autocommit_blocks_set:1; 160 bool autocommit_time_set:1; 161 bool writeback_fua_set:1; 162 bool flush_on_suspend:1; 163 164 unsigned writeback_all; 165 struct workqueue_struct *writeback_wq; 166 struct work_struct writeback_work; 167 struct work_struct flush_work; 168 169 struct dm_io_client *dm_io; 170 171 raw_spinlock_t endio_list_lock; 172 struct list_head endio_list; 173 struct task_struct *endio_thread; 174 175 struct task_struct *flush_thread; 176 struct bio_list flush_list; 177 178 struct dm_kcopyd_client *dm_kcopyd; 179 unsigned long *dirty_bitmap; 180 unsigned dirty_bitmap_size; 181 182 struct bio_set bio_set; 183 mempool_t copy_pool; 184 }; 185 186 #define WB_LIST_INLINE 16 187 188 struct writeback_struct { 189 struct list_head endio_entry; 190 struct dm_writecache *wc; 191 struct wc_entry **wc_list; 192 unsigned wc_list_n; 193 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 194 struct bio bio; 195 }; 196 197 struct copy_struct { 198 struct list_head endio_entry; 199 struct dm_writecache *wc; 200 struct wc_entry *e; 201 unsigned n_entries; 202 int error; 203 }; 204 205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 206 "A percentage of time allocated for data copying"); 207 208 static void wc_lock(struct dm_writecache *wc) 209 { 210 mutex_lock(&wc->lock); 211 } 212 213 static void wc_unlock(struct dm_writecache *wc) 214 { 215 mutex_unlock(&wc->lock); 216 } 217 218 #ifdef DM_WRITECACHE_HAS_PMEM 219 static int persistent_memory_claim(struct dm_writecache *wc) 220 { 221 int r; 222 loff_t s; 223 long p, da; 224 pfn_t pfn; 225 int id; 226 struct page **pages; 227 228 wc->memory_vmapped = false; 229 230 if (!wc->ssd_dev->dax_dev) { 231 r = -EOPNOTSUPP; 232 goto err1; 233 } 234 s = wc->memory_map_size; 235 p = s >> PAGE_SHIFT; 236 if (!p) { 237 r = -EINVAL; 238 goto err1; 239 } 240 if (p != s >> PAGE_SHIFT) { 241 r = -EOVERFLOW; 242 goto err1; 243 } 244 245 id = dax_read_lock(); 246 247 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 248 if (da < 0) { 249 wc->memory_map = NULL; 250 r = da; 251 goto err2; 252 } 253 if (!pfn_t_has_page(pfn)) { 254 wc->memory_map = NULL; 255 r = -EOPNOTSUPP; 256 goto err2; 257 } 258 if (da != p) { 259 long i; 260 wc->memory_map = NULL; 261 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 262 if (!pages) { 263 r = -ENOMEM; 264 goto err2; 265 } 266 i = 0; 267 do { 268 long daa; 269 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 270 NULL, &pfn); 271 if (daa <= 0) { 272 r = daa ? daa : -EINVAL; 273 goto err3; 274 } 275 if (!pfn_t_has_page(pfn)) { 276 r = -EOPNOTSUPP; 277 goto err3; 278 } 279 while (daa-- && i < p) { 280 pages[i++] = pfn_t_to_page(pfn); 281 pfn.val++; 282 } 283 } while (i < p); 284 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 285 if (!wc->memory_map) { 286 r = -ENOMEM; 287 goto err3; 288 } 289 kvfree(pages); 290 wc->memory_vmapped = true; 291 } 292 293 dax_read_unlock(id); 294 295 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 296 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 297 298 return 0; 299 err3: 300 kvfree(pages); 301 err2: 302 dax_read_unlock(id); 303 err1: 304 return r; 305 } 306 #else 307 static int persistent_memory_claim(struct dm_writecache *wc) 308 { 309 BUG(); 310 } 311 #endif 312 313 static void persistent_memory_release(struct dm_writecache *wc) 314 { 315 if (wc->memory_vmapped) 316 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 317 } 318 319 static struct page *persistent_memory_page(void *addr) 320 { 321 if (is_vmalloc_addr(addr)) 322 return vmalloc_to_page(addr); 323 else 324 return virt_to_page(addr); 325 } 326 327 static unsigned persistent_memory_page_offset(void *addr) 328 { 329 return (unsigned long)addr & (PAGE_SIZE - 1); 330 } 331 332 static void persistent_memory_flush_cache(void *ptr, size_t size) 333 { 334 if (is_vmalloc_addr(ptr)) 335 flush_kernel_vmap_range(ptr, size); 336 } 337 338 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 339 { 340 if (is_vmalloc_addr(ptr)) 341 invalidate_kernel_vmap_range(ptr, size); 342 } 343 344 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 345 { 346 return wc->memory_map; 347 } 348 349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 350 { 351 return &sb(wc)->entries[e->index]; 352 } 353 354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 355 { 356 return (char *)wc->block_start + (e->index << wc->block_size_bits); 357 } 358 359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 360 { 361 return wc->start_sector + wc->metadata_sectors + 362 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 363 } 364 365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 366 { 367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 368 return e->original_sector; 369 #else 370 return le64_to_cpu(memory_entry(wc, e)->original_sector); 371 #endif 372 } 373 374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 375 { 376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 377 return e->seq_count; 378 #else 379 return le64_to_cpu(memory_entry(wc, e)->seq_count); 380 #endif 381 } 382 383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 384 { 385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 386 e->seq_count = -1; 387 #endif 388 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 389 } 390 391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 392 uint64_t original_sector, uint64_t seq_count) 393 { 394 struct wc_memory_entry me; 395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 396 e->original_sector = original_sector; 397 e->seq_count = seq_count; 398 #endif 399 me.original_sector = cpu_to_le64(original_sector); 400 me.seq_count = cpu_to_le64(seq_count); 401 pmem_assign(*memory_entry(wc, e), me); 402 } 403 404 #define writecache_error(wc, err, msg, arg...) \ 405 do { \ 406 if (!cmpxchg(&(wc)->error, 0, err)) \ 407 DMERR(msg, ##arg); \ 408 wake_up(&(wc)->freelist_wait); \ 409 } while (0) 410 411 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 412 413 static void writecache_flush_all_metadata(struct dm_writecache *wc) 414 { 415 if (!WC_MODE_PMEM(wc)) 416 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 417 } 418 419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 420 { 421 if (!WC_MODE_PMEM(wc)) 422 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 423 wc->dirty_bitmap); 424 } 425 426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 427 428 struct io_notify { 429 struct dm_writecache *wc; 430 struct completion c; 431 atomic_t count; 432 }; 433 434 static void writecache_notify_io(unsigned long error, void *context) 435 { 436 struct io_notify *endio = context; 437 438 if (unlikely(error != 0)) 439 writecache_error(endio->wc, -EIO, "error writing metadata"); 440 BUG_ON(atomic_read(&endio->count) <= 0); 441 if (atomic_dec_and_test(&endio->count)) 442 complete(&endio->c); 443 } 444 445 static void ssd_commit_flushed(struct dm_writecache *wc) 446 { 447 struct dm_io_region region; 448 struct dm_io_request req; 449 struct io_notify endio = { 450 wc, 451 COMPLETION_INITIALIZER_ONSTACK(endio.c), 452 ATOMIC_INIT(1), 453 }; 454 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 455 unsigned i = 0; 456 457 while (1) { 458 unsigned j; 459 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 460 if (unlikely(i == bitmap_bits)) 461 break; 462 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 463 464 region.bdev = wc->ssd_dev->bdev; 465 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 466 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 467 468 if (unlikely(region.sector >= wc->metadata_sectors)) 469 break; 470 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 471 region.count = wc->metadata_sectors - region.sector; 472 473 region.sector += wc->start_sector; 474 atomic_inc(&endio.count); 475 req.bi_op = REQ_OP_WRITE; 476 req.bi_op_flags = REQ_SYNC; 477 req.mem.type = DM_IO_VMA; 478 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 479 req.client = wc->dm_io; 480 req.notify.fn = writecache_notify_io; 481 req.notify.context = &endio; 482 483 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 484 (void) dm_io(&req, 1, ®ion, NULL); 485 i = j; 486 } 487 488 writecache_notify_io(0, &endio); 489 wait_for_completion_io(&endio.c); 490 491 writecache_disk_flush(wc, wc->ssd_dev); 492 493 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 494 } 495 496 static void writecache_commit_flushed(struct dm_writecache *wc) 497 { 498 if (WC_MODE_PMEM(wc)) 499 wmb(); 500 else 501 ssd_commit_flushed(wc); 502 } 503 504 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 505 { 506 int r; 507 struct dm_io_region region; 508 struct dm_io_request req; 509 510 region.bdev = dev->bdev; 511 region.sector = 0; 512 region.count = 0; 513 req.bi_op = REQ_OP_WRITE; 514 req.bi_op_flags = REQ_PREFLUSH; 515 req.mem.type = DM_IO_KMEM; 516 req.mem.ptr.addr = NULL; 517 req.client = wc->dm_io; 518 req.notify.fn = NULL; 519 520 r = dm_io(&req, 1, ®ion, NULL); 521 if (unlikely(r)) 522 writecache_error(wc, r, "error flushing metadata: %d", r); 523 } 524 525 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 526 { 527 wait_event(wc->bio_in_progress_wait[direction], 528 !atomic_read(&wc->bio_in_progress[direction])); 529 } 530 531 #define WFE_RETURN_FOLLOWING 1 532 #define WFE_LOWEST_SEQ 2 533 534 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 535 uint64_t block, int flags) 536 { 537 struct wc_entry *e; 538 struct rb_node *node = wc->tree.rb_node; 539 540 if (unlikely(!node)) 541 return NULL; 542 543 while (1) { 544 e = container_of(node, struct wc_entry, rb_node); 545 if (read_original_sector(wc, e) == block) 546 break; 547 548 node = (read_original_sector(wc, e) >= block ? 549 e->rb_node.rb_left : e->rb_node.rb_right); 550 if (unlikely(!node)) { 551 if (!(flags & WFE_RETURN_FOLLOWING)) 552 return NULL; 553 if (read_original_sector(wc, e) >= block) { 554 return e; 555 } else { 556 node = rb_next(&e->rb_node); 557 if (unlikely(!node)) 558 return NULL; 559 e = container_of(node, struct wc_entry, rb_node); 560 return e; 561 } 562 } 563 } 564 565 while (1) { 566 struct wc_entry *e2; 567 if (flags & WFE_LOWEST_SEQ) 568 node = rb_prev(&e->rb_node); 569 else 570 node = rb_next(&e->rb_node); 571 if (unlikely(!node)) 572 return e; 573 e2 = container_of(node, struct wc_entry, rb_node); 574 if (read_original_sector(wc, e2) != block) 575 return e; 576 e = e2; 577 } 578 } 579 580 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 581 { 582 struct wc_entry *e; 583 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 584 585 while (*node) { 586 e = container_of(*node, struct wc_entry, rb_node); 587 parent = &e->rb_node; 588 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 589 node = &parent->rb_left; 590 else 591 node = &parent->rb_right; 592 } 593 rb_link_node(&ins->rb_node, parent, node); 594 rb_insert_color(&ins->rb_node, &wc->tree); 595 list_add(&ins->lru, &wc->lru); 596 } 597 598 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 599 { 600 list_del(&e->lru); 601 rb_erase(&e->rb_node, &wc->tree); 602 } 603 604 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 605 { 606 if (WC_MODE_SORT_FREELIST(wc)) { 607 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 608 if (unlikely(!*node)) 609 wc->current_free = e; 610 while (*node) { 611 parent = *node; 612 if (&e->rb_node < *node) 613 node = &parent->rb_left; 614 else 615 node = &parent->rb_right; 616 } 617 rb_link_node(&e->rb_node, parent, node); 618 rb_insert_color(&e->rb_node, &wc->freetree); 619 } else { 620 list_add_tail(&e->lru, &wc->freelist); 621 } 622 wc->freelist_size++; 623 } 624 625 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc) 626 { 627 struct wc_entry *e; 628 629 if (WC_MODE_SORT_FREELIST(wc)) { 630 struct rb_node *next; 631 if (unlikely(!wc->current_free)) 632 return NULL; 633 e = wc->current_free; 634 next = rb_next(&e->rb_node); 635 rb_erase(&e->rb_node, &wc->freetree); 636 if (unlikely(!next)) 637 next = rb_first(&wc->freetree); 638 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 639 } else { 640 if (unlikely(list_empty(&wc->freelist))) 641 return NULL; 642 e = container_of(wc->freelist.next, struct wc_entry, lru); 643 list_del(&e->lru); 644 } 645 wc->freelist_size--; 646 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 647 queue_work(wc->writeback_wq, &wc->writeback_work); 648 649 return e; 650 } 651 652 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 653 { 654 writecache_unlink(wc, e); 655 writecache_add_to_freelist(wc, e); 656 clear_seq_count(wc, e); 657 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 658 if (unlikely(waitqueue_active(&wc->freelist_wait))) 659 wake_up(&wc->freelist_wait); 660 } 661 662 static void writecache_wait_on_freelist(struct dm_writecache *wc) 663 { 664 DEFINE_WAIT(wait); 665 666 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 667 wc_unlock(wc); 668 io_schedule(); 669 finish_wait(&wc->freelist_wait, &wait); 670 wc_lock(wc); 671 } 672 673 static void writecache_poison_lists(struct dm_writecache *wc) 674 { 675 /* 676 * Catch incorrect access to these values while the device is suspended. 677 */ 678 memset(&wc->tree, -1, sizeof wc->tree); 679 wc->lru.next = LIST_POISON1; 680 wc->lru.prev = LIST_POISON2; 681 wc->freelist.next = LIST_POISON1; 682 wc->freelist.prev = LIST_POISON2; 683 } 684 685 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 686 { 687 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 688 if (WC_MODE_PMEM(wc)) 689 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 690 } 691 692 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 693 { 694 return read_seq_count(wc, e) < wc->seq_count; 695 } 696 697 static void writecache_flush(struct dm_writecache *wc) 698 { 699 struct wc_entry *e, *e2; 700 bool need_flush_after_free; 701 702 wc->uncommitted_blocks = 0; 703 del_timer(&wc->autocommit_timer); 704 705 if (list_empty(&wc->lru)) 706 return; 707 708 e = container_of(wc->lru.next, struct wc_entry, lru); 709 if (writecache_entry_is_committed(wc, e)) { 710 if (wc->overwrote_committed) { 711 writecache_wait_for_ios(wc, WRITE); 712 writecache_disk_flush(wc, wc->ssd_dev); 713 wc->overwrote_committed = false; 714 } 715 return; 716 } 717 while (1) { 718 writecache_flush_entry(wc, e); 719 if (unlikely(e->lru.next == &wc->lru)) 720 break; 721 e2 = container_of(e->lru.next, struct wc_entry, lru); 722 if (writecache_entry_is_committed(wc, e2)) 723 break; 724 e = e2; 725 cond_resched(); 726 } 727 writecache_commit_flushed(wc); 728 729 if (!WC_MODE_PMEM(wc)) 730 writecache_wait_for_ios(wc, WRITE); 731 732 wc->seq_count++; 733 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 734 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); 735 writecache_commit_flushed(wc); 736 737 wc->overwrote_committed = false; 738 739 need_flush_after_free = false; 740 while (1) { 741 /* Free another committed entry with lower seq-count */ 742 struct rb_node *rb_node = rb_prev(&e->rb_node); 743 744 if (rb_node) { 745 e2 = container_of(rb_node, struct wc_entry, rb_node); 746 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 747 likely(!e2->write_in_progress)) { 748 writecache_free_entry(wc, e2); 749 need_flush_after_free = true; 750 } 751 } 752 if (unlikely(e->lru.prev == &wc->lru)) 753 break; 754 e = container_of(e->lru.prev, struct wc_entry, lru); 755 cond_resched(); 756 } 757 758 if (need_flush_after_free) 759 writecache_commit_flushed(wc); 760 } 761 762 static void writecache_flush_work(struct work_struct *work) 763 { 764 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 765 766 wc_lock(wc); 767 writecache_flush(wc); 768 wc_unlock(wc); 769 } 770 771 static void writecache_autocommit_timer(struct timer_list *t) 772 { 773 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 774 if (!writecache_has_error(wc)) 775 queue_work(wc->writeback_wq, &wc->flush_work); 776 } 777 778 static void writecache_schedule_autocommit(struct dm_writecache *wc) 779 { 780 if (!timer_pending(&wc->autocommit_timer)) 781 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 782 } 783 784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 785 { 786 struct wc_entry *e; 787 bool discarded_something = false; 788 789 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 790 if (unlikely(!e)) 791 return; 792 793 while (read_original_sector(wc, e) < end) { 794 struct rb_node *node = rb_next(&e->rb_node); 795 796 if (likely(!e->write_in_progress)) { 797 if (!discarded_something) { 798 writecache_wait_for_ios(wc, READ); 799 writecache_wait_for_ios(wc, WRITE); 800 discarded_something = true; 801 } 802 writecache_free_entry(wc, e); 803 } 804 805 if (unlikely(!node)) 806 break; 807 808 e = container_of(node, struct wc_entry, rb_node); 809 } 810 811 if (discarded_something) 812 writecache_commit_flushed(wc); 813 } 814 815 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 816 { 817 if (wc->writeback_size) { 818 writecache_wait_on_freelist(wc); 819 return true; 820 } 821 return false; 822 } 823 824 static void writecache_suspend(struct dm_target *ti) 825 { 826 struct dm_writecache *wc = ti->private; 827 bool flush_on_suspend; 828 829 del_timer_sync(&wc->autocommit_timer); 830 831 wc_lock(wc); 832 writecache_flush(wc); 833 flush_on_suspend = wc->flush_on_suspend; 834 if (flush_on_suspend) { 835 wc->flush_on_suspend = false; 836 wc->writeback_all++; 837 queue_work(wc->writeback_wq, &wc->writeback_work); 838 } 839 wc_unlock(wc); 840 841 flush_workqueue(wc->writeback_wq); 842 843 wc_lock(wc); 844 if (flush_on_suspend) 845 wc->writeback_all--; 846 while (writecache_wait_for_writeback(wc)); 847 848 if (WC_MODE_PMEM(wc)) 849 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 850 851 writecache_poison_lists(wc); 852 853 wc_unlock(wc); 854 } 855 856 static int writecache_alloc_entries(struct dm_writecache *wc) 857 { 858 size_t b; 859 860 if (wc->entries) 861 return 0; 862 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 863 if (!wc->entries) 864 return -ENOMEM; 865 for (b = 0; b < wc->n_blocks; b++) { 866 struct wc_entry *e = &wc->entries[b]; 867 e->index = b; 868 e->write_in_progress = false; 869 } 870 871 return 0; 872 } 873 874 static void writecache_resume(struct dm_target *ti) 875 { 876 struct dm_writecache *wc = ti->private; 877 size_t b; 878 bool need_flush = false; 879 __le64 sb_seq_count; 880 int r; 881 882 wc_lock(wc); 883 884 if (WC_MODE_PMEM(wc)) 885 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 886 887 wc->tree = RB_ROOT; 888 INIT_LIST_HEAD(&wc->lru); 889 if (WC_MODE_SORT_FREELIST(wc)) { 890 wc->freetree = RB_ROOT; 891 wc->current_free = NULL; 892 } else { 893 INIT_LIST_HEAD(&wc->freelist); 894 } 895 wc->freelist_size = 0; 896 897 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 898 if (r) { 899 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 900 sb_seq_count = cpu_to_le64(0); 901 } 902 wc->seq_count = le64_to_cpu(sb_seq_count); 903 904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 905 for (b = 0; b < wc->n_blocks; b++) { 906 struct wc_entry *e = &wc->entries[b]; 907 struct wc_memory_entry wme; 908 if (writecache_has_error(wc)) { 909 e->original_sector = -1; 910 e->seq_count = -1; 911 continue; 912 } 913 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 914 if (r) { 915 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 916 (unsigned long)b, r); 917 e->original_sector = -1; 918 e->seq_count = -1; 919 } else { 920 e->original_sector = le64_to_cpu(wme.original_sector); 921 e->seq_count = le64_to_cpu(wme.seq_count); 922 } 923 } 924 #endif 925 for (b = 0; b < wc->n_blocks; b++) { 926 struct wc_entry *e = &wc->entries[b]; 927 if (!writecache_entry_is_committed(wc, e)) { 928 if (read_seq_count(wc, e) != -1) { 929 erase_this: 930 clear_seq_count(wc, e); 931 need_flush = true; 932 } 933 writecache_add_to_freelist(wc, e); 934 } else { 935 struct wc_entry *old; 936 937 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 938 if (!old) { 939 writecache_insert_entry(wc, e); 940 } else { 941 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 942 writecache_error(wc, -EINVAL, 943 "two identical entries, position %llu, sector %llu, sequence %llu", 944 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 945 (unsigned long long)read_seq_count(wc, e)); 946 } 947 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 948 goto erase_this; 949 } else { 950 writecache_free_entry(wc, old); 951 writecache_insert_entry(wc, e); 952 need_flush = true; 953 } 954 } 955 } 956 cond_resched(); 957 } 958 959 if (need_flush) { 960 writecache_flush_all_metadata(wc); 961 writecache_commit_flushed(wc); 962 } 963 964 wc_unlock(wc); 965 } 966 967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 968 { 969 if (argc != 1) 970 return -EINVAL; 971 972 wc_lock(wc); 973 if (dm_suspended(wc->ti)) { 974 wc_unlock(wc); 975 return -EBUSY; 976 } 977 if (writecache_has_error(wc)) { 978 wc_unlock(wc); 979 return -EIO; 980 } 981 982 writecache_flush(wc); 983 wc->writeback_all++; 984 queue_work(wc->writeback_wq, &wc->writeback_work); 985 wc_unlock(wc); 986 987 flush_workqueue(wc->writeback_wq); 988 989 wc_lock(wc); 990 wc->writeback_all--; 991 if (writecache_has_error(wc)) { 992 wc_unlock(wc); 993 return -EIO; 994 } 995 wc_unlock(wc); 996 997 return 0; 998 } 999 1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1001 { 1002 if (argc != 1) 1003 return -EINVAL; 1004 1005 wc_lock(wc); 1006 wc->flush_on_suspend = true; 1007 wc_unlock(wc); 1008 1009 return 0; 1010 } 1011 1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1013 char *result, unsigned maxlen) 1014 { 1015 int r = -EINVAL; 1016 struct dm_writecache *wc = ti->private; 1017 1018 if (!strcasecmp(argv[0], "flush")) 1019 r = process_flush_mesg(argc, argv, wc); 1020 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1021 r = process_flush_on_suspend_mesg(argc, argv, wc); 1022 else 1023 DMERR("unrecognised message received: %s", argv[0]); 1024 1025 return r; 1026 } 1027 1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1029 { 1030 void *buf; 1031 unsigned long flags; 1032 unsigned size; 1033 int rw = bio_data_dir(bio); 1034 unsigned remaining_size = wc->block_size; 1035 1036 do { 1037 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1038 buf = bvec_kmap_irq(&bv, &flags); 1039 size = bv.bv_len; 1040 if (unlikely(size > remaining_size)) 1041 size = remaining_size; 1042 1043 if (rw == READ) { 1044 int r; 1045 r = memcpy_mcsafe(buf, data, size); 1046 flush_dcache_page(bio_page(bio)); 1047 if (unlikely(r)) { 1048 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1049 bio->bi_status = BLK_STS_IOERR; 1050 } 1051 } else { 1052 flush_dcache_page(bio_page(bio)); 1053 memcpy_flushcache(data, buf, size); 1054 } 1055 1056 bvec_kunmap_irq(buf, &flags); 1057 1058 data = (char *)data + size; 1059 remaining_size -= size; 1060 bio_advance(bio, size); 1061 } while (unlikely(remaining_size)); 1062 } 1063 1064 static int writecache_flush_thread(void *data) 1065 { 1066 struct dm_writecache *wc = data; 1067 1068 while (1) { 1069 struct bio *bio; 1070 1071 wc_lock(wc); 1072 bio = bio_list_pop(&wc->flush_list); 1073 if (!bio) { 1074 set_current_state(TASK_INTERRUPTIBLE); 1075 wc_unlock(wc); 1076 1077 if (unlikely(kthread_should_stop())) { 1078 set_current_state(TASK_RUNNING); 1079 break; 1080 } 1081 1082 schedule(); 1083 continue; 1084 } 1085 1086 if (bio_op(bio) == REQ_OP_DISCARD) { 1087 writecache_discard(wc, bio->bi_iter.bi_sector, 1088 bio_end_sector(bio)); 1089 wc_unlock(wc); 1090 bio_set_dev(bio, wc->dev->bdev); 1091 generic_make_request(bio); 1092 } else { 1093 writecache_flush(wc); 1094 wc_unlock(wc); 1095 if (writecache_has_error(wc)) 1096 bio->bi_status = BLK_STS_IOERR; 1097 bio_endio(bio); 1098 } 1099 } 1100 1101 return 0; 1102 } 1103 1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1105 { 1106 if (bio_list_empty(&wc->flush_list)) 1107 wake_up_process(wc->flush_thread); 1108 bio_list_add(&wc->flush_list, bio); 1109 } 1110 1111 static int writecache_map(struct dm_target *ti, struct bio *bio) 1112 { 1113 struct wc_entry *e; 1114 struct dm_writecache *wc = ti->private; 1115 1116 bio->bi_private = NULL; 1117 1118 wc_lock(wc); 1119 1120 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1121 if (writecache_has_error(wc)) 1122 goto unlock_error; 1123 if (WC_MODE_PMEM(wc)) { 1124 writecache_flush(wc); 1125 if (writecache_has_error(wc)) 1126 goto unlock_error; 1127 goto unlock_submit; 1128 } else { 1129 writecache_offload_bio(wc, bio); 1130 goto unlock_return; 1131 } 1132 } 1133 1134 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1135 1136 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1137 (wc->block_size / 512 - 1)) != 0)) { 1138 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1139 (unsigned long long)bio->bi_iter.bi_sector, 1140 bio->bi_iter.bi_size, wc->block_size); 1141 goto unlock_error; 1142 } 1143 1144 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1145 if (writecache_has_error(wc)) 1146 goto unlock_error; 1147 if (WC_MODE_PMEM(wc)) { 1148 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1149 goto unlock_remap_origin; 1150 } else { 1151 writecache_offload_bio(wc, bio); 1152 goto unlock_return; 1153 } 1154 } 1155 1156 if (bio_data_dir(bio) == READ) { 1157 read_next_block: 1158 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1159 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1160 if (WC_MODE_PMEM(wc)) { 1161 bio_copy_block(wc, bio, memory_data(wc, e)); 1162 if (bio->bi_iter.bi_size) 1163 goto read_next_block; 1164 goto unlock_submit; 1165 } else { 1166 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1167 bio_set_dev(bio, wc->ssd_dev->bdev); 1168 bio->bi_iter.bi_sector = cache_sector(wc, e); 1169 if (!writecache_entry_is_committed(wc, e)) 1170 writecache_wait_for_ios(wc, WRITE); 1171 goto unlock_remap; 1172 } 1173 } else { 1174 if (e) { 1175 sector_t next_boundary = 1176 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1177 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1178 dm_accept_partial_bio(bio, next_boundary); 1179 } 1180 } 1181 goto unlock_remap_origin; 1182 } 1183 } else { 1184 do { 1185 if (writecache_has_error(wc)) 1186 goto unlock_error; 1187 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1188 if (e) { 1189 if (!writecache_entry_is_committed(wc, e)) 1190 goto bio_copy; 1191 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1192 wc->overwrote_committed = true; 1193 goto bio_copy; 1194 } 1195 } 1196 e = writecache_pop_from_freelist(wc); 1197 if (unlikely(!e)) { 1198 writecache_wait_on_freelist(wc); 1199 continue; 1200 } 1201 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1202 writecache_insert_entry(wc, e); 1203 wc->uncommitted_blocks++; 1204 bio_copy: 1205 if (WC_MODE_PMEM(wc)) { 1206 bio_copy_block(wc, bio, memory_data(wc, e)); 1207 } else { 1208 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1209 bio_set_dev(bio, wc->ssd_dev->bdev); 1210 bio->bi_iter.bi_sector = cache_sector(wc, e); 1211 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1212 wc->uncommitted_blocks = 0; 1213 queue_work(wc->writeback_wq, &wc->flush_work); 1214 } else { 1215 writecache_schedule_autocommit(wc); 1216 } 1217 goto unlock_remap; 1218 } 1219 } while (bio->bi_iter.bi_size); 1220 1221 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) 1222 writecache_flush(wc); 1223 else 1224 writecache_schedule_autocommit(wc); 1225 goto unlock_submit; 1226 } 1227 1228 unlock_remap_origin: 1229 bio_set_dev(bio, wc->dev->bdev); 1230 wc_unlock(wc); 1231 return DM_MAPIO_REMAPPED; 1232 1233 unlock_remap: 1234 /* make sure that writecache_end_io decrements bio_in_progress: */ 1235 bio->bi_private = (void *)1; 1236 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1237 wc_unlock(wc); 1238 return DM_MAPIO_REMAPPED; 1239 1240 unlock_submit: 1241 wc_unlock(wc); 1242 bio_endio(bio); 1243 return DM_MAPIO_SUBMITTED; 1244 1245 unlock_return: 1246 wc_unlock(wc); 1247 return DM_MAPIO_SUBMITTED; 1248 1249 unlock_error: 1250 wc_unlock(wc); 1251 bio_io_error(bio); 1252 return DM_MAPIO_SUBMITTED; 1253 } 1254 1255 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1256 { 1257 struct dm_writecache *wc = ti->private; 1258 1259 if (bio->bi_private != NULL) { 1260 int dir = bio_data_dir(bio); 1261 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1262 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1263 wake_up(&wc->bio_in_progress_wait[dir]); 1264 } 1265 return 0; 1266 } 1267 1268 static int writecache_iterate_devices(struct dm_target *ti, 1269 iterate_devices_callout_fn fn, void *data) 1270 { 1271 struct dm_writecache *wc = ti->private; 1272 1273 return fn(ti, wc->dev, 0, ti->len, data); 1274 } 1275 1276 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1277 { 1278 struct dm_writecache *wc = ti->private; 1279 1280 if (limits->logical_block_size < wc->block_size) 1281 limits->logical_block_size = wc->block_size; 1282 1283 if (limits->physical_block_size < wc->block_size) 1284 limits->physical_block_size = wc->block_size; 1285 1286 if (limits->io_min < wc->block_size) 1287 limits->io_min = wc->block_size; 1288 } 1289 1290 1291 static void writecache_writeback_endio(struct bio *bio) 1292 { 1293 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1294 struct dm_writecache *wc = wb->wc; 1295 unsigned long flags; 1296 1297 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1298 if (unlikely(list_empty(&wc->endio_list))) 1299 wake_up_process(wc->endio_thread); 1300 list_add_tail(&wb->endio_entry, &wc->endio_list); 1301 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1302 } 1303 1304 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1305 { 1306 struct copy_struct *c = ptr; 1307 struct dm_writecache *wc = c->wc; 1308 1309 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1310 1311 raw_spin_lock_irq(&wc->endio_list_lock); 1312 if (unlikely(list_empty(&wc->endio_list))) 1313 wake_up_process(wc->endio_thread); 1314 list_add_tail(&c->endio_entry, &wc->endio_list); 1315 raw_spin_unlock_irq(&wc->endio_list_lock); 1316 } 1317 1318 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1319 { 1320 unsigned i; 1321 struct writeback_struct *wb; 1322 struct wc_entry *e; 1323 unsigned long n_walked = 0; 1324 1325 do { 1326 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1327 list_del(&wb->endio_entry); 1328 1329 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1330 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1331 "write error %d", wb->bio.bi_status); 1332 i = 0; 1333 do { 1334 e = wb->wc_list[i]; 1335 BUG_ON(!e->write_in_progress); 1336 e->write_in_progress = false; 1337 INIT_LIST_HEAD(&e->lru); 1338 if (!writecache_has_error(wc)) 1339 writecache_free_entry(wc, e); 1340 BUG_ON(!wc->writeback_size); 1341 wc->writeback_size--; 1342 n_walked++; 1343 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1344 writecache_commit_flushed(wc); 1345 wc_unlock(wc); 1346 wc_lock(wc); 1347 n_walked = 0; 1348 } 1349 } while (++i < wb->wc_list_n); 1350 1351 if (wb->wc_list != wb->wc_list_inline) 1352 kfree(wb->wc_list); 1353 bio_put(&wb->bio); 1354 } while (!list_empty(list)); 1355 } 1356 1357 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1358 { 1359 struct copy_struct *c; 1360 struct wc_entry *e; 1361 1362 do { 1363 c = list_entry(list->next, struct copy_struct, endio_entry); 1364 list_del(&c->endio_entry); 1365 1366 if (unlikely(c->error)) 1367 writecache_error(wc, c->error, "copy error"); 1368 1369 e = c->e; 1370 do { 1371 BUG_ON(!e->write_in_progress); 1372 e->write_in_progress = false; 1373 INIT_LIST_HEAD(&e->lru); 1374 if (!writecache_has_error(wc)) 1375 writecache_free_entry(wc, e); 1376 1377 BUG_ON(!wc->writeback_size); 1378 wc->writeback_size--; 1379 e++; 1380 } while (--c->n_entries); 1381 mempool_free(c, &wc->copy_pool); 1382 } while (!list_empty(list)); 1383 } 1384 1385 static int writecache_endio_thread(void *data) 1386 { 1387 struct dm_writecache *wc = data; 1388 1389 while (1) { 1390 struct list_head list; 1391 1392 raw_spin_lock_irq(&wc->endio_list_lock); 1393 if (!list_empty(&wc->endio_list)) 1394 goto pop_from_list; 1395 set_current_state(TASK_INTERRUPTIBLE); 1396 raw_spin_unlock_irq(&wc->endio_list_lock); 1397 1398 if (unlikely(kthread_should_stop())) { 1399 set_current_state(TASK_RUNNING); 1400 break; 1401 } 1402 1403 schedule(); 1404 1405 continue; 1406 1407 pop_from_list: 1408 list = wc->endio_list; 1409 list.next->prev = list.prev->next = &list; 1410 INIT_LIST_HEAD(&wc->endio_list); 1411 raw_spin_unlock_irq(&wc->endio_list_lock); 1412 1413 if (!WC_MODE_FUA(wc)) 1414 writecache_disk_flush(wc, wc->dev); 1415 1416 wc_lock(wc); 1417 1418 if (WC_MODE_PMEM(wc)) { 1419 __writecache_endio_pmem(wc, &list); 1420 } else { 1421 __writecache_endio_ssd(wc, &list); 1422 writecache_wait_for_ios(wc, READ); 1423 } 1424 1425 writecache_commit_flushed(wc); 1426 1427 wc_unlock(wc); 1428 } 1429 1430 return 0; 1431 } 1432 1433 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1434 { 1435 struct dm_writecache *wc = wb->wc; 1436 unsigned block_size = wc->block_size; 1437 void *address = memory_data(wc, e); 1438 1439 persistent_memory_flush_cache(address, block_size); 1440 return bio_add_page(&wb->bio, persistent_memory_page(address), 1441 block_size, persistent_memory_page_offset(address)) != 0; 1442 } 1443 1444 struct writeback_list { 1445 struct list_head list; 1446 size_t size; 1447 }; 1448 1449 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1450 { 1451 if (unlikely(wc->max_writeback_jobs)) { 1452 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1453 wc_lock(wc); 1454 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1455 writecache_wait_on_freelist(wc); 1456 wc_unlock(wc); 1457 } 1458 } 1459 cond_resched(); 1460 } 1461 1462 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1463 { 1464 struct wc_entry *e, *f; 1465 struct bio *bio; 1466 struct writeback_struct *wb; 1467 unsigned max_pages; 1468 1469 while (wbl->size) { 1470 wbl->size--; 1471 e = container_of(wbl->list.prev, struct wc_entry, lru); 1472 list_del(&e->lru); 1473 1474 max_pages = e->wc_list_contiguous; 1475 1476 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1477 wb = container_of(bio, struct writeback_struct, bio); 1478 wb->wc = wc; 1479 bio->bi_end_io = writecache_writeback_endio; 1480 bio_set_dev(bio, wc->dev->bdev); 1481 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1482 if (max_pages <= WB_LIST_INLINE || 1483 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1484 GFP_NOIO | __GFP_NORETRY | 1485 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1486 wb->wc_list = wb->wc_list_inline; 1487 max_pages = WB_LIST_INLINE; 1488 } 1489 1490 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1491 1492 wb->wc_list[0] = e; 1493 wb->wc_list_n = 1; 1494 1495 while (wbl->size && wb->wc_list_n < max_pages) { 1496 f = container_of(wbl->list.prev, struct wc_entry, lru); 1497 if (read_original_sector(wc, f) != 1498 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1499 break; 1500 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1501 break; 1502 wbl->size--; 1503 list_del(&f->lru); 1504 wb->wc_list[wb->wc_list_n++] = f; 1505 e = f; 1506 } 1507 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1508 if (writecache_has_error(wc)) { 1509 bio->bi_status = BLK_STS_IOERR; 1510 bio_endio(bio); 1511 } else { 1512 submit_bio(bio); 1513 } 1514 1515 __writeback_throttle(wc, wbl); 1516 } 1517 } 1518 1519 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1520 { 1521 struct wc_entry *e, *f; 1522 struct dm_io_region from, to; 1523 struct copy_struct *c; 1524 1525 while (wbl->size) { 1526 unsigned n_sectors; 1527 1528 wbl->size--; 1529 e = container_of(wbl->list.prev, struct wc_entry, lru); 1530 list_del(&e->lru); 1531 1532 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1533 1534 from.bdev = wc->ssd_dev->bdev; 1535 from.sector = cache_sector(wc, e); 1536 from.count = n_sectors; 1537 to.bdev = wc->dev->bdev; 1538 to.sector = read_original_sector(wc, e); 1539 to.count = n_sectors; 1540 1541 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1542 c->wc = wc; 1543 c->e = e; 1544 c->n_entries = e->wc_list_contiguous; 1545 1546 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1547 wbl->size--; 1548 f = container_of(wbl->list.prev, struct wc_entry, lru); 1549 BUG_ON(f != e + 1); 1550 list_del(&f->lru); 1551 e = f; 1552 } 1553 1554 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1555 1556 __writeback_throttle(wc, wbl); 1557 } 1558 } 1559 1560 static void writecache_writeback(struct work_struct *work) 1561 { 1562 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1563 struct blk_plug plug; 1564 struct wc_entry *f, *g, *e = NULL; 1565 struct rb_node *node, *next_node; 1566 struct list_head skipped; 1567 struct writeback_list wbl; 1568 unsigned long n_walked; 1569 1570 wc_lock(wc); 1571 restart: 1572 if (writecache_has_error(wc)) { 1573 wc_unlock(wc); 1574 return; 1575 } 1576 1577 if (unlikely(wc->writeback_all)) { 1578 if (writecache_wait_for_writeback(wc)) 1579 goto restart; 1580 } 1581 1582 if (wc->overwrote_committed) { 1583 writecache_wait_for_ios(wc, WRITE); 1584 } 1585 1586 n_walked = 0; 1587 INIT_LIST_HEAD(&skipped); 1588 INIT_LIST_HEAD(&wbl.list); 1589 wbl.size = 0; 1590 while (!list_empty(&wc->lru) && 1591 (wc->writeback_all || 1592 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { 1593 1594 n_walked++; 1595 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1596 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1597 queue_work(wc->writeback_wq, &wc->writeback_work); 1598 break; 1599 } 1600 1601 if (unlikely(wc->writeback_all)) { 1602 if (unlikely(!e)) { 1603 writecache_flush(wc); 1604 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1605 } else 1606 e = g; 1607 } else 1608 e = container_of(wc->lru.prev, struct wc_entry, lru); 1609 BUG_ON(e->write_in_progress); 1610 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1611 writecache_flush(wc); 1612 } 1613 node = rb_prev(&e->rb_node); 1614 if (node) { 1615 f = container_of(node, struct wc_entry, rb_node); 1616 if (unlikely(read_original_sector(wc, f) == 1617 read_original_sector(wc, e))) { 1618 BUG_ON(!f->write_in_progress); 1619 list_del(&e->lru); 1620 list_add(&e->lru, &skipped); 1621 cond_resched(); 1622 continue; 1623 } 1624 } 1625 wc->writeback_size++; 1626 list_del(&e->lru); 1627 list_add(&e->lru, &wbl.list); 1628 wbl.size++; 1629 e->write_in_progress = true; 1630 e->wc_list_contiguous = 1; 1631 1632 f = e; 1633 1634 while (1) { 1635 next_node = rb_next(&f->rb_node); 1636 if (unlikely(!next_node)) 1637 break; 1638 g = container_of(next_node, struct wc_entry, rb_node); 1639 if (unlikely(read_original_sector(wc, g) == 1640 read_original_sector(wc, f))) { 1641 f = g; 1642 continue; 1643 } 1644 if (read_original_sector(wc, g) != 1645 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1646 break; 1647 if (unlikely(g->write_in_progress)) 1648 break; 1649 if (unlikely(!writecache_entry_is_committed(wc, g))) 1650 break; 1651 1652 if (!WC_MODE_PMEM(wc)) { 1653 if (g != f + 1) 1654 break; 1655 } 1656 1657 n_walked++; 1658 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1659 // break; 1660 1661 wc->writeback_size++; 1662 list_del(&g->lru); 1663 list_add(&g->lru, &wbl.list); 1664 wbl.size++; 1665 g->write_in_progress = true; 1666 g->wc_list_contiguous = BIO_MAX_PAGES; 1667 f = g; 1668 e->wc_list_contiguous++; 1669 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1670 if (unlikely(wc->writeback_all)) { 1671 next_node = rb_next(&f->rb_node); 1672 if (likely(next_node)) 1673 g = container_of(next_node, struct wc_entry, rb_node); 1674 } 1675 break; 1676 } 1677 } 1678 cond_resched(); 1679 } 1680 1681 if (!list_empty(&skipped)) { 1682 list_splice_tail(&skipped, &wc->lru); 1683 /* 1684 * If we didn't do any progress, we must wait until some 1685 * writeback finishes to avoid burning CPU in a loop 1686 */ 1687 if (unlikely(!wbl.size)) 1688 writecache_wait_for_writeback(wc); 1689 } 1690 1691 wc_unlock(wc); 1692 1693 blk_start_plug(&plug); 1694 1695 if (WC_MODE_PMEM(wc)) 1696 __writecache_writeback_pmem(wc, &wbl); 1697 else 1698 __writecache_writeback_ssd(wc, &wbl); 1699 1700 blk_finish_plug(&plug); 1701 1702 if (unlikely(wc->writeback_all)) { 1703 wc_lock(wc); 1704 while (writecache_wait_for_writeback(wc)); 1705 wc_unlock(wc); 1706 } 1707 } 1708 1709 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1710 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1711 { 1712 uint64_t n_blocks, offset; 1713 struct wc_entry e; 1714 1715 n_blocks = device_size; 1716 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1717 1718 while (1) { 1719 if (!n_blocks) 1720 return -ENOSPC; 1721 /* Verify the following entries[n_blocks] won't overflow */ 1722 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1723 sizeof(struct wc_memory_entry))) 1724 return -EFBIG; 1725 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1726 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1727 if (offset + n_blocks * block_size <= device_size) 1728 break; 1729 n_blocks--; 1730 } 1731 1732 /* check if the bit field overflows */ 1733 e.index = n_blocks; 1734 if (e.index != n_blocks) 1735 return -EFBIG; 1736 1737 if (n_blocks_p) 1738 *n_blocks_p = n_blocks; 1739 if (n_metadata_blocks_p) 1740 *n_metadata_blocks_p = offset >> __ffs(block_size); 1741 return 0; 1742 } 1743 1744 static int init_memory(struct dm_writecache *wc) 1745 { 1746 size_t b; 1747 int r; 1748 1749 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1750 if (r) 1751 return r; 1752 1753 r = writecache_alloc_entries(wc); 1754 if (r) 1755 return r; 1756 1757 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1758 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1759 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1760 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1761 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1762 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1763 1764 for (b = 0; b < wc->n_blocks; b++) 1765 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1766 1767 writecache_flush_all_metadata(wc); 1768 writecache_commit_flushed(wc); 1769 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1770 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1771 writecache_commit_flushed(wc); 1772 1773 return 0; 1774 } 1775 1776 static void writecache_dtr(struct dm_target *ti) 1777 { 1778 struct dm_writecache *wc = ti->private; 1779 1780 if (!wc) 1781 return; 1782 1783 if (wc->endio_thread) 1784 kthread_stop(wc->endio_thread); 1785 1786 if (wc->flush_thread) 1787 kthread_stop(wc->flush_thread); 1788 1789 bioset_exit(&wc->bio_set); 1790 1791 mempool_exit(&wc->copy_pool); 1792 1793 if (wc->writeback_wq) 1794 destroy_workqueue(wc->writeback_wq); 1795 1796 if (wc->dev) 1797 dm_put_device(ti, wc->dev); 1798 1799 if (wc->ssd_dev) 1800 dm_put_device(ti, wc->ssd_dev); 1801 1802 if (wc->entries) 1803 vfree(wc->entries); 1804 1805 if (wc->memory_map) { 1806 if (WC_MODE_PMEM(wc)) 1807 persistent_memory_release(wc); 1808 else 1809 vfree(wc->memory_map); 1810 } 1811 1812 if (wc->dm_kcopyd) 1813 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1814 1815 if (wc->dm_io) 1816 dm_io_client_destroy(wc->dm_io); 1817 1818 if (wc->dirty_bitmap) 1819 vfree(wc->dirty_bitmap); 1820 1821 kfree(wc); 1822 } 1823 1824 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1825 { 1826 struct dm_writecache *wc; 1827 struct dm_arg_set as; 1828 const char *string; 1829 unsigned opt_params; 1830 size_t offset, data_size; 1831 int i, r; 1832 char dummy; 1833 int high_wm_percent = HIGH_WATERMARK; 1834 int low_wm_percent = LOW_WATERMARK; 1835 uint64_t x; 1836 struct wc_memory_superblock s; 1837 1838 static struct dm_arg _args[] = { 1839 {0, 10, "Invalid number of feature args"}, 1840 }; 1841 1842 as.argc = argc; 1843 as.argv = argv; 1844 1845 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1846 if (!wc) { 1847 ti->error = "Cannot allocate writecache structure"; 1848 r = -ENOMEM; 1849 goto bad; 1850 } 1851 ti->private = wc; 1852 wc->ti = ti; 1853 1854 mutex_init(&wc->lock); 1855 writecache_poison_lists(wc); 1856 init_waitqueue_head(&wc->freelist_wait); 1857 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1858 1859 for (i = 0; i < 2; i++) { 1860 atomic_set(&wc->bio_in_progress[i], 0); 1861 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1862 } 1863 1864 wc->dm_io = dm_io_client_create(); 1865 if (IS_ERR(wc->dm_io)) { 1866 r = PTR_ERR(wc->dm_io); 1867 ti->error = "Unable to allocate dm-io client"; 1868 wc->dm_io = NULL; 1869 goto bad; 1870 } 1871 1872 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 1873 if (!wc->writeback_wq) { 1874 r = -ENOMEM; 1875 ti->error = "Could not allocate writeback workqueue"; 1876 goto bad; 1877 } 1878 INIT_WORK(&wc->writeback_work, writecache_writeback); 1879 INIT_WORK(&wc->flush_work, writecache_flush_work); 1880 1881 raw_spin_lock_init(&wc->endio_list_lock); 1882 INIT_LIST_HEAD(&wc->endio_list); 1883 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 1884 if (IS_ERR(wc->endio_thread)) { 1885 r = PTR_ERR(wc->endio_thread); 1886 wc->endio_thread = NULL; 1887 ti->error = "Couldn't spawn endio thread"; 1888 goto bad; 1889 } 1890 wake_up_process(wc->endio_thread); 1891 1892 /* 1893 * Parse the mode (pmem or ssd) 1894 */ 1895 string = dm_shift_arg(&as); 1896 if (!string) 1897 goto bad_arguments; 1898 1899 if (!strcasecmp(string, "s")) { 1900 wc->pmem_mode = false; 1901 } else if (!strcasecmp(string, "p")) { 1902 #ifdef DM_WRITECACHE_HAS_PMEM 1903 wc->pmem_mode = true; 1904 wc->writeback_fua = true; 1905 #else 1906 /* 1907 * If the architecture doesn't support persistent memory or 1908 * the kernel doesn't support any DAX drivers, this driver can 1909 * only be used in SSD-only mode. 1910 */ 1911 r = -EOPNOTSUPP; 1912 ti->error = "Persistent memory or DAX not supported on this system"; 1913 goto bad; 1914 #endif 1915 } else { 1916 goto bad_arguments; 1917 } 1918 1919 if (WC_MODE_PMEM(wc)) { 1920 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 1921 offsetof(struct writeback_struct, bio), 1922 BIOSET_NEED_BVECS); 1923 if (r) { 1924 ti->error = "Could not allocate bio set"; 1925 goto bad; 1926 } 1927 } else { 1928 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 1929 if (r) { 1930 ti->error = "Could not allocate mempool"; 1931 goto bad; 1932 } 1933 } 1934 1935 /* 1936 * Parse the origin data device 1937 */ 1938 string = dm_shift_arg(&as); 1939 if (!string) 1940 goto bad_arguments; 1941 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 1942 if (r) { 1943 ti->error = "Origin data device lookup failed"; 1944 goto bad; 1945 } 1946 1947 /* 1948 * Parse cache data device (be it pmem or ssd) 1949 */ 1950 string = dm_shift_arg(&as); 1951 if (!string) 1952 goto bad_arguments; 1953 1954 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 1955 if (r) { 1956 ti->error = "Cache data device lookup failed"; 1957 goto bad; 1958 } 1959 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 1960 1961 /* 1962 * Parse the cache block size 1963 */ 1964 string = dm_shift_arg(&as); 1965 if (!string) 1966 goto bad_arguments; 1967 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 1968 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 1969 (wc->block_size & (wc->block_size - 1))) { 1970 r = -EINVAL; 1971 ti->error = "Invalid block size"; 1972 goto bad; 1973 } 1974 wc->block_size_bits = __ffs(wc->block_size); 1975 1976 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 1977 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 1978 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 1979 1980 /* 1981 * Parse optional arguments 1982 */ 1983 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1984 if (r) 1985 goto bad; 1986 1987 while (opt_params) { 1988 string = dm_shift_arg(&as), opt_params--; 1989 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 1990 unsigned long long start_sector; 1991 string = dm_shift_arg(&as), opt_params--; 1992 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 1993 goto invalid_optional; 1994 wc->start_sector = start_sector; 1995 if (wc->start_sector != start_sector || 1996 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 1997 goto invalid_optional; 1998 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 1999 string = dm_shift_arg(&as), opt_params--; 2000 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2001 goto invalid_optional; 2002 if (high_wm_percent < 0 || high_wm_percent > 100) 2003 goto invalid_optional; 2004 wc->high_wm_percent_set = true; 2005 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2006 string = dm_shift_arg(&as), opt_params--; 2007 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2008 goto invalid_optional; 2009 if (low_wm_percent < 0 || low_wm_percent > 100) 2010 goto invalid_optional; 2011 wc->low_wm_percent_set = true; 2012 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2013 string = dm_shift_arg(&as), opt_params--; 2014 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2015 goto invalid_optional; 2016 wc->max_writeback_jobs_set = true; 2017 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2018 string = dm_shift_arg(&as), opt_params--; 2019 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2020 goto invalid_optional; 2021 wc->autocommit_blocks_set = true; 2022 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2023 unsigned autocommit_msecs; 2024 string = dm_shift_arg(&as), opt_params--; 2025 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2026 goto invalid_optional; 2027 if (autocommit_msecs > 3600000) 2028 goto invalid_optional; 2029 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2030 wc->autocommit_time_set = true; 2031 } else if (!strcasecmp(string, "fua")) { 2032 if (WC_MODE_PMEM(wc)) { 2033 wc->writeback_fua = true; 2034 wc->writeback_fua_set = true; 2035 } else goto invalid_optional; 2036 } else if (!strcasecmp(string, "nofua")) { 2037 if (WC_MODE_PMEM(wc)) { 2038 wc->writeback_fua = false; 2039 wc->writeback_fua_set = true; 2040 } else goto invalid_optional; 2041 } else { 2042 invalid_optional: 2043 r = -EINVAL; 2044 ti->error = "Invalid optional argument"; 2045 goto bad; 2046 } 2047 } 2048 2049 if (high_wm_percent < low_wm_percent) { 2050 r = -EINVAL; 2051 ti->error = "High watermark must be greater than or equal to low watermark"; 2052 goto bad; 2053 } 2054 2055 if (WC_MODE_PMEM(wc)) { 2056 r = persistent_memory_claim(wc); 2057 if (r) { 2058 ti->error = "Unable to map persistent memory for cache"; 2059 goto bad; 2060 } 2061 } else { 2062 struct dm_io_region region; 2063 struct dm_io_request req; 2064 size_t n_blocks, n_metadata_blocks; 2065 uint64_t n_bitmap_bits; 2066 2067 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2068 2069 bio_list_init(&wc->flush_list); 2070 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2071 if (IS_ERR(wc->flush_thread)) { 2072 r = PTR_ERR(wc->flush_thread); 2073 wc->flush_thread = NULL; 2074 ti->error = "Couldn't spawn flush thread"; 2075 goto bad; 2076 } 2077 wake_up_process(wc->flush_thread); 2078 2079 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2080 &n_blocks, &n_metadata_blocks); 2081 if (r) { 2082 ti->error = "Invalid device size"; 2083 goto bad; 2084 } 2085 2086 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2087 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2088 /* this is limitation of test_bit functions */ 2089 if (n_bitmap_bits > 1U << 31) { 2090 r = -EFBIG; 2091 ti->error = "Invalid device size"; 2092 goto bad; 2093 } 2094 2095 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2096 if (!wc->memory_map) { 2097 r = -ENOMEM; 2098 ti->error = "Unable to allocate memory for metadata"; 2099 goto bad; 2100 } 2101 2102 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2103 if (IS_ERR(wc->dm_kcopyd)) { 2104 r = PTR_ERR(wc->dm_kcopyd); 2105 ti->error = "Unable to allocate dm-kcopyd client"; 2106 wc->dm_kcopyd = NULL; 2107 goto bad; 2108 } 2109 2110 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2111 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2112 BITS_PER_LONG * sizeof(unsigned long); 2113 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2114 if (!wc->dirty_bitmap) { 2115 r = -ENOMEM; 2116 ti->error = "Unable to allocate dirty bitmap"; 2117 goto bad; 2118 } 2119 2120 region.bdev = wc->ssd_dev->bdev; 2121 region.sector = wc->start_sector; 2122 region.count = wc->metadata_sectors; 2123 req.bi_op = REQ_OP_READ; 2124 req.bi_op_flags = REQ_SYNC; 2125 req.mem.type = DM_IO_VMA; 2126 req.mem.ptr.vma = (char *)wc->memory_map; 2127 req.client = wc->dm_io; 2128 req.notify.fn = NULL; 2129 2130 r = dm_io(&req, 1, ®ion, NULL); 2131 if (r) { 2132 ti->error = "Unable to read metadata"; 2133 goto bad; 2134 } 2135 } 2136 2137 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2138 if (r) { 2139 ti->error = "Hardware memory error when reading superblock"; 2140 goto bad; 2141 } 2142 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2143 r = init_memory(wc); 2144 if (r) { 2145 ti->error = "Unable to initialize device"; 2146 goto bad; 2147 } 2148 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2149 if (r) { 2150 ti->error = "Hardware memory error when reading superblock"; 2151 goto bad; 2152 } 2153 } 2154 2155 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2156 ti->error = "Invalid magic in the superblock"; 2157 r = -EINVAL; 2158 goto bad; 2159 } 2160 2161 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2162 ti->error = "Invalid version in the superblock"; 2163 r = -EINVAL; 2164 goto bad; 2165 } 2166 2167 if (le32_to_cpu(s.block_size) != wc->block_size) { 2168 ti->error = "Block size does not match superblock"; 2169 r = -EINVAL; 2170 goto bad; 2171 } 2172 2173 wc->n_blocks = le64_to_cpu(s.n_blocks); 2174 2175 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2176 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2177 overflow: 2178 ti->error = "Overflow in size calculation"; 2179 r = -EINVAL; 2180 goto bad; 2181 } 2182 offset += sizeof(struct wc_memory_superblock); 2183 if (offset < sizeof(struct wc_memory_superblock)) 2184 goto overflow; 2185 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2186 data_size = wc->n_blocks * (size_t)wc->block_size; 2187 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2188 (offset + data_size < offset)) 2189 goto overflow; 2190 if (offset + data_size > wc->memory_map_size) { 2191 ti->error = "Memory area is too small"; 2192 r = -EINVAL; 2193 goto bad; 2194 } 2195 2196 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2197 wc->block_start = (char *)sb(wc) + offset; 2198 2199 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2200 x += 50; 2201 do_div(x, 100); 2202 wc->freelist_high_watermark = x; 2203 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2204 x += 50; 2205 do_div(x, 100); 2206 wc->freelist_low_watermark = x; 2207 2208 r = writecache_alloc_entries(wc); 2209 if (r) { 2210 ti->error = "Cannot allocate memory"; 2211 goto bad; 2212 } 2213 2214 ti->num_flush_bios = 1; 2215 ti->flush_supported = true; 2216 ti->num_discard_bios = 1; 2217 2218 if (WC_MODE_PMEM(wc)) 2219 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2220 2221 return 0; 2222 2223 bad_arguments: 2224 r = -EINVAL; 2225 ti->error = "Bad arguments"; 2226 bad: 2227 writecache_dtr(ti); 2228 return r; 2229 } 2230 2231 static void writecache_status(struct dm_target *ti, status_type_t type, 2232 unsigned status_flags, char *result, unsigned maxlen) 2233 { 2234 struct dm_writecache *wc = ti->private; 2235 unsigned extra_args; 2236 unsigned sz = 0; 2237 uint64_t x; 2238 2239 switch (type) { 2240 case STATUSTYPE_INFO: 2241 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2242 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2243 (unsigned long long)wc->writeback_size); 2244 break; 2245 case STATUSTYPE_TABLE: 2246 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2247 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2248 extra_args = 0; 2249 if (wc->start_sector) 2250 extra_args += 2; 2251 if (wc->high_wm_percent_set) 2252 extra_args += 2; 2253 if (wc->low_wm_percent_set) 2254 extra_args += 2; 2255 if (wc->max_writeback_jobs_set) 2256 extra_args += 2; 2257 if (wc->autocommit_blocks_set) 2258 extra_args += 2; 2259 if (wc->autocommit_time_set) 2260 extra_args += 2; 2261 if (wc->writeback_fua_set) 2262 extra_args++; 2263 2264 DMEMIT("%u", extra_args); 2265 if (wc->start_sector) 2266 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2267 if (wc->high_wm_percent_set) { 2268 x = (uint64_t)wc->freelist_high_watermark * 100; 2269 x += wc->n_blocks / 2; 2270 do_div(x, (size_t)wc->n_blocks); 2271 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2272 } 2273 if (wc->low_wm_percent_set) { 2274 x = (uint64_t)wc->freelist_low_watermark * 100; 2275 x += wc->n_blocks / 2; 2276 do_div(x, (size_t)wc->n_blocks); 2277 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2278 } 2279 if (wc->max_writeback_jobs_set) 2280 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2281 if (wc->autocommit_blocks_set) 2282 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2283 if (wc->autocommit_time_set) 2284 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2285 if (wc->writeback_fua_set) 2286 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2287 break; 2288 } 2289 } 2290 2291 static struct target_type writecache_target = { 2292 .name = "writecache", 2293 .version = {1, 1, 1}, 2294 .module = THIS_MODULE, 2295 .ctr = writecache_ctr, 2296 .dtr = writecache_dtr, 2297 .status = writecache_status, 2298 .postsuspend = writecache_suspend, 2299 .resume = writecache_resume, 2300 .message = writecache_message, 2301 .map = writecache_map, 2302 .end_io = writecache_end_io, 2303 .iterate_devices = writecache_iterate_devices, 2304 .io_hints = writecache_io_hints, 2305 }; 2306 2307 static int __init dm_writecache_init(void) 2308 { 2309 int r; 2310 2311 r = dm_register_target(&writecache_target); 2312 if (r < 0) { 2313 DMERR("register failed %d", r); 2314 return r; 2315 } 2316 2317 return 0; 2318 } 2319 2320 static void __exit dm_writecache_exit(void) 2321 { 2322 dm_unregister_target(&writecache_target); 2323 } 2324 2325 module_init(dm_writecache_init); 2326 module_exit(dm_writecache_exit); 2327 2328 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2329 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2330 MODULE_LICENSE("GPL"); 2331