1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 30 #define BITMAP_GRANULARITY 65536 31 #if BITMAP_GRANULARITY < PAGE_SIZE 32 #undef BITMAP_GRANULARITY 33 #define BITMAP_GRANULARITY PAGE_SIZE 34 #endif 35 36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 37 #define DM_WRITECACHE_HAS_PMEM 38 #endif 39 40 #ifdef DM_WRITECACHE_HAS_PMEM 41 #define pmem_assign(dest, src) \ 42 do { \ 43 typeof(dest) uniq = (src); \ 44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 45 } while (0) 46 #else 47 #define pmem_assign(dest, src) ((dest) = (src)) 48 #endif 49 50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 52 #endif 53 54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 55 #define MEMORY_SUPERBLOCK_VERSION 1 56 57 struct wc_memory_entry { 58 __le64 original_sector; 59 __le64 seq_count; 60 }; 61 62 struct wc_memory_superblock { 63 union { 64 struct { 65 __le32 magic; 66 __le32 version; 67 __le32 block_size; 68 __le32 pad; 69 __le64 n_blocks; 70 __le64 seq_count; 71 }; 72 __le64 padding[8]; 73 }; 74 struct wc_memory_entry entries[0]; 75 }; 76 77 struct wc_entry { 78 struct rb_node rb_node; 79 struct list_head lru; 80 unsigned short wc_list_contiguous; 81 bool write_in_progress 82 #if BITS_PER_LONG == 64 83 :1 84 #endif 85 ; 86 unsigned long index 87 #if BITS_PER_LONG == 64 88 :47 89 #endif 90 ; 91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 92 uint64_t original_sector; 93 uint64_t seq_count; 94 #endif 95 }; 96 97 #ifdef DM_WRITECACHE_HAS_PMEM 98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 100 #else 101 #define WC_MODE_PMEM(wc) false 102 #define WC_MODE_FUA(wc) false 103 #endif 104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 105 106 struct dm_writecache { 107 struct mutex lock; 108 struct list_head lru; 109 union { 110 struct list_head freelist; 111 struct { 112 struct rb_root freetree; 113 struct wc_entry *current_free; 114 }; 115 }; 116 struct rb_root tree; 117 118 size_t freelist_size; 119 size_t writeback_size; 120 size_t freelist_high_watermark; 121 size_t freelist_low_watermark; 122 123 unsigned uncommitted_blocks; 124 unsigned autocommit_blocks; 125 unsigned max_writeback_jobs; 126 127 int error; 128 129 unsigned long autocommit_jiffies; 130 struct timer_list autocommit_timer; 131 struct wait_queue_head freelist_wait; 132 133 atomic_t bio_in_progress[2]; 134 struct wait_queue_head bio_in_progress_wait[2]; 135 136 struct dm_target *ti; 137 struct dm_dev *dev; 138 struct dm_dev *ssd_dev; 139 void *memory_map; 140 uint64_t memory_map_size; 141 size_t metadata_sectors; 142 size_t n_blocks; 143 uint64_t seq_count; 144 void *block_start; 145 struct wc_entry *entries; 146 unsigned block_size; 147 unsigned char block_size_bits; 148 149 bool pmem_mode:1; 150 bool writeback_fua:1; 151 152 bool overwrote_committed:1; 153 bool memory_vmapped:1; 154 155 bool high_wm_percent_set:1; 156 bool low_wm_percent_set:1; 157 bool max_writeback_jobs_set:1; 158 bool autocommit_blocks_set:1; 159 bool autocommit_time_set:1; 160 bool writeback_fua_set:1; 161 bool flush_on_suspend:1; 162 163 unsigned writeback_all; 164 struct workqueue_struct *writeback_wq; 165 struct work_struct writeback_work; 166 struct work_struct flush_work; 167 168 struct dm_io_client *dm_io; 169 170 raw_spinlock_t endio_list_lock; 171 struct list_head endio_list; 172 struct task_struct *endio_thread; 173 174 struct task_struct *flush_thread; 175 struct bio_list flush_list; 176 177 struct dm_kcopyd_client *dm_kcopyd; 178 unsigned long *dirty_bitmap; 179 unsigned dirty_bitmap_size; 180 181 struct bio_set bio_set; 182 mempool_t copy_pool; 183 }; 184 185 #define WB_LIST_INLINE 16 186 187 struct writeback_struct { 188 struct list_head endio_entry; 189 struct dm_writecache *wc; 190 struct wc_entry **wc_list; 191 unsigned wc_list_n; 192 unsigned page_offset; 193 struct page *page; 194 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 195 struct bio bio; 196 }; 197 198 struct copy_struct { 199 struct list_head endio_entry; 200 struct dm_writecache *wc; 201 struct wc_entry *e; 202 unsigned n_entries; 203 int error; 204 }; 205 206 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 207 "A percentage of time allocated for data copying"); 208 209 static void wc_lock(struct dm_writecache *wc) 210 { 211 mutex_lock(&wc->lock); 212 } 213 214 static void wc_unlock(struct dm_writecache *wc) 215 { 216 mutex_unlock(&wc->lock); 217 } 218 219 #ifdef DM_WRITECACHE_HAS_PMEM 220 static int persistent_memory_claim(struct dm_writecache *wc) 221 { 222 int r; 223 loff_t s; 224 long p, da; 225 pfn_t pfn; 226 int id; 227 struct page **pages; 228 229 wc->memory_vmapped = false; 230 231 if (!wc->ssd_dev->dax_dev) { 232 r = -EOPNOTSUPP; 233 goto err1; 234 } 235 s = wc->memory_map_size; 236 p = s >> PAGE_SHIFT; 237 if (!p) { 238 r = -EINVAL; 239 goto err1; 240 } 241 if (p != s >> PAGE_SHIFT) { 242 r = -EOVERFLOW; 243 goto err1; 244 } 245 246 id = dax_read_lock(); 247 248 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 249 if (da < 0) { 250 wc->memory_map = NULL; 251 r = da; 252 goto err2; 253 } 254 if (!pfn_t_has_page(pfn)) { 255 wc->memory_map = NULL; 256 r = -EOPNOTSUPP; 257 goto err2; 258 } 259 if (da != p) { 260 long i; 261 wc->memory_map = NULL; 262 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 263 if (!pages) { 264 r = -ENOMEM; 265 goto err2; 266 } 267 i = 0; 268 do { 269 long daa; 270 void *dummy_addr; 271 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 272 &dummy_addr, &pfn); 273 if (daa <= 0) { 274 r = daa ? daa : -EINVAL; 275 goto err3; 276 } 277 if (!pfn_t_has_page(pfn)) { 278 r = -EOPNOTSUPP; 279 goto err3; 280 } 281 while (daa-- && i < p) { 282 pages[i++] = pfn_t_to_page(pfn); 283 pfn.val++; 284 } 285 } while (i < p); 286 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 287 if (!wc->memory_map) { 288 r = -ENOMEM; 289 goto err3; 290 } 291 kvfree(pages); 292 wc->memory_vmapped = true; 293 } 294 295 dax_read_unlock(id); 296 return 0; 297 err3: 298 kvfree(pages); 299 err2: 300 dax_read_unlock(id); 301 err1: 302 return r; 303 } 304 #else 305 static int persistent_memory_claim(struct dm_writecache *wc) 306 { 307 BUG(); 308 } 309 #endif 310 311 static void persistent_memory_release(struct dm_writecache *wc) 312 { 313 if (wc->memory_vmapped) 314 vunmap(wc->memory_map); 315 } 316 317 static struct page *persistent_memory_page(void *addr) 318 { 319 if (is_vmalloc_addr(addr)) 320 return vmalloc_to_page(addr); 321 else 322 return virt_to_page(addr); 323 } 324 325 static unsigned persistent_memory_page_offset(void *addr) 326 { 327 return (unsigned long)addr & (PAGE_SIZE - 1); 328 } 329 330 static void persistent_memory_flush_cache(void *ptr, size_t size) 331 { 332 if (is_vmalloc_addr(ptr)) 333 flush_kernel_vmap_range(ptr, size); 334 } 335 336 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 337 { 338 if (is_vmalloc_addr(ptr)) 339 invalidate_kernel_vmap_range(ptr, size); 340 } 341 342 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 343 { 344 return wc->memory_map; 345 } 346 347 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 348 { 349 if (is_power_of_2(sizeof(struct wc_entry)) && 0) 350 return &sb(wc)->entries[e - wc->entries]; 351 else 352 return &sb(wc)->entries[e->index]; 353 } 354 355 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 356 { 357 return (char *)wc->block_start + (e->index << wc->block_size_bits); 358 } 359 360 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 361 { 362 return wc->metadata_sectors + 363 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 364 } 365 366 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 367 { 368 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 369 return e->original_sector; 370 #else 371 return le64_to_cpu(memory_entry(wc, e)->original_sector); 372 #endif 373 } 374 375 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 376 { 377 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 378 return e->seq_count; 379 #else 380 return le64_to_cpu(memory_entry(wc, e)->seq_count); 381 #endif 382 } 383 384 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 385 { 386 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 387 e->seq_count = -1; 388 #endif 389 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 390 } 391 392 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 393 uint64_t original_sector, uint64_t seq_count) 394 { 395 struct wc_memory_entry me; 396 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 397 e->original_sector = original_sector; 398 e->seq_count = seq_count; 399 #endif 400 me.original_sector = cpu_to_le64(original_sector); 401 me.seq_count = cpu_to_le64(seq_count); 402 pmem_assign(*memory_entry(wc, e), me); 403 } 404 405 #define writecache_error(wc, err, msg, arg...) \ 406 do { \ 407 if (!cmpxchg(&(wc)->error, 0, err)) \ 408 DMERR(msg, ##arg); \ 409 wake_up(&(wc)->freelist_wait); \ 410 } while (0) 411 412 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 413 414 static void writecache_flush_all_metadata(struct dm_writecache *wc) 415 { 416 if (!WC_MODE_PMEM(wc)) 417 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 418 } 419 420 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 421 { 422 if (!WC_MODE_PMEM(wc)) 423 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 424 wc->dirty_bitmap); 425 } 426 427 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 428 429 struct io_notify { 430 struct dm_writecache *wc; 431 struct completion c; 432 atomic_t count; 433 }; 434 435 static void writecache_notify_io(unsigned long error, void *context) 436 { 437 struct io_notify *endio = context; 438 439 if (unlikely(error != 0)) 440 writecache_error(endio->wc, -EIO, "error writing metadata"); 441 BUG_ON(atomic_read(&endio->count) <= 0); 442 if (atomic_dec_and_test(&endio->count)) 443 complete(&endio->c); 444 } 445 446 static void ssd_commit_flushed(struct dm_writecache *wc) 447 { 448 struct dm_io_region region; 449 struct dm_io_request req; 450 struct io_notify endio = { 451 wc, 452 COMPLETION_INITIALIZER_ONSTACK(endio.c), 453 ATOMIC_INIT(1), 454 }; 455 unsigned bitmap_bits = wc->dirty_bitmap_size * BITS_PER_LONG; 456 unsigned i = 0; 457 458 while (1) { 459 unsigned j; 460 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 461 if (unlikely(i == bitmap_bits)) 462 break; 463 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 464 465 region.bdev = wc->ssd_dev->bdev; 466 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 467 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 468 469 if (unlikely(region.sector >= wc->metadata_sectors)) 470 break; 471 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 472 region.count = wc->metadata_sectors - region.sector; 473 474 atomic_inc(&endio.count); 475 req.bi_op = REQ_OP_WRITE; 476 req.bi_op_flags = REQ_SYNC; 477 req.mem.type = DM_IO_VMA; 478 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 479 req.client = wc->dm_io; 480 req.notify.fn = writecache_notify_io; 481 req.notify.context = &endio; 482 483 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 484 (void) dm_io(&req, 1, ®ion, NULL); 485 i = j; 486 } 487 488 writecache_notify_io(0, &endio); 489 wait_for_completion_io(&endio.c); 490 491 writecache_disk_flush(wc, wc->ssd_dev); 492 493 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 494 } 495 496 static void writecache_commit_flushed(struct dm_writecache *wc) 497 { 498 if (WC_MODE_PMEM(wc)) 499 wmb(); 500 else 501 ssd_commit_flushed(wc); 502 } 503 504 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 505 { 506 int r; 507 struct dm_io_region region; 508 struct dm_io_request req; 509 510 region.bdev = dev->bdev; 511 region.sector = 0; 512 region.count = 0; 513 req.bi_op = REQ_OP_WRITE; 514 req.bi_op_flags = REQ_PREFLUSH; 515 req.mem.type = DM_IO_KMEM; 516 req.mem.ptr.addr = NULL; 517 req.client = wc->dm_io; 518 req.notify.fn = NULL; 519 520 r = dm_io(&req, 1, ®ion, NULL); 521 if (unlikely(r)) 522 writecache_error(wc, r, "error flushing metadata: %d", r); 523 } 524 525 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 526 { 527 wait_event(wc->bio_in_progress_wait[direction], 528 !atomic_read(&wc->bio_in_progress[direction])); 529 } 530 531 #define WFE_RETURN_FOLLOWING 1 532 #define WFE_LOWEST_SEQ 2 533 534 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 535 uint64_t block, int flags) 536 { 537 struct wc_entry *e; 538 struct rb_node *node = wc->tree.rb_node; 539 540 if (unlikely(!node)) 541 return NULL; 542 543 while (1) { 544 e = container_of(node, struct wc_entry, rb_node); 545 if (read_original_sector(wc, e) == block) 546 break; 547 node = (read_original_sector(wc, e) >= block ? 548 e->rb_node.rb_left : e->rb_node.rb_right); 549 if (unlikely(!node)) { 550 if (!(flags & WFE_RETURN_FOLLOWING)) { 551 return NULL; 552 } 553 if (read_original_sector(wc, e) >= block) { 554 break; 555 } else { 556 node = rb_next(&e->rb_node); 557 if (unlikely(!node)) { 558 return NULL; 559 } 560 e = container_of(node, struct wc_entry, rb_node); 561 break; 562 } 563 } 564 } 565 566 while (1) { 567 struct wc_entry *e2; 568 if (flags & WFE_LOWEST_SEQ) 569 node = rb_prev(&e->rb_node); 570 else 571 node = rb_next(&e->rb_node); 572 if (!node) 573 return e; 574 e2 = container_of(node, struct wc_entry, rb_node); 575 if (read_original_sector(wc, e2) != block) 576 return e; 577 e = e2; 578 } 579 } 580 581 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 582 { 583 struct wc_entry *e; 584 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 585 586 while (*node) { 587 e = container_of(*node, struct wc_entry, rb_node); 588 parent = &e->rb_node; 589 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 590 node = &parent->rb_left; 591 else 592 node = &parent->rb_right; 593 } 594 rb_link_node(&ins->rb_node, parent, node); 595 rb_insert_color(&ins->rb_node, &wc->tree); 596 list_add(&ins->lru, &wc->lru); 597 } 598 599 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 600 { 601 list_del(&e->lru); 602 rb_erase(&e->rb_node, &wc->tree); 603 } 604 605 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 606 { 607 if (WC_MODE_SORT_FREELIST(wc)) { 608 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 609 if (unlikely(!*node)) 610 wc->current_free = e; 611 while (*node) { 612 parent = *node; 613 if (&e->rb_node < *node) 614 node = &parent->rb_left; 615 else 616 node = &parent->rb_right; 617 } 618 rb_link_node(&e->rb_node, parent, node); 619 rb_insert_color(&e->rb_node, &wc->freetree); 620 } else { 621 list_add_tail(&e->lru, &wc->freelist); 622 } 623 wc->freelist_size++; 624 } 625 626 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc) 627 { 628 struct wc_entry *e; 629 630 if (WC_MODE_SORT_FREELIST(wc)) { 631 struct rb_node *next; 632 if (unlikely(!wc->current_free)) 633 return NULL; 634 e = wc->current_free; 635 next = rb_next(&e->rb_node); 636 rb_erase(&e->rb_node, &wc->freetree); 637 if (unlikely(!next)) 638 next = rb_first(&wc->freetree); 639 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 640 } else { 641 if (unlikely(list_empty(&wc->freelist))) 642 return NULL; 643 e = container_of(wc->freelist.next, struct wc_entry, lru); 644 list_del(&e->lru); 645 } 646 wc->freelist_size--; 647 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 648 queue_work(wc->writeback_wq, &wc->writeback_work); 649 650 return e; 651 } 652 653 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 654 { 655 writecache_unlink(wc, e); 656 writecache_add_to_freelist(wc, e); 657 clear_seq_count(wc, e); 658 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 659 if (unlikely(waitqueue_active(&wc->freelist_wait))) 660 wake_up(&wc->freelist_wait); 661 } 662 663 static void writecache_wait_on_freelist(struct dm_writecache *wc) 664 { 665 DEFINE_WAIT(wait); 666 667 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 668 wc_unlock(wc); 669 io_schedule(); 670 finish_wait(&wc->freelist_wait, &wait); 671 wc_lock(wc); 672 } 673 674 static void writecache_poison_lists(struct dm_writecache *wc) 675 { 676 /* 677 * Catch incorrect access to these values while the device is suspended. 678 */ 679 memset(&wc->tree, -1, sizeof wc->tree); 680 wc->lru.next = LIST_POISON1; 681 wc->lru.prev = LIST_POISON2; 682 wc->freelist.next = LIST_POISON1; 683 wc->freelist.prev = LIST_POISON2; 684 } 685 686 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 687 { 688 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 689 if (WC_MODE_PMEM(wc)) 690 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 691 } 692 693 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 694 { 695 return read_seq_count(wc, e) < wc->seq_count; 696 } 697 698 static void writecache_flush(struct dm_writecache *wc) 699 { 700 struct wc_entry *e, *e2; 701 bool need_flush_after_free; 702 703 wc->uncommitted_blocks = 0; 704 del_timer(&wc->autocommit_timer); 705 706 if (list_empty(&wc->lru)) 707 return; 708 709 e = container_of(wc->lru.next, struct wc_entry, lru); 710 if (writecache_entry_is_committed(wc, e)) { 711 if (wc->overwrote_committed) { 712 writecache_wait_for_ios(wc, WRITE); 713 writecache_disk_flush(wc, wc->ssd_dev); 714 wc->overwrote_committed = false; 715 } 716 return; 717 } 718 while (1) { 719 writecache_flush_entry(wc, e); 720 if (unlikely(e->lru.next == &wc->lru)) 721 break; 722 e2 = container_of(e->lru.next, struct wc_entry, lru); 723 if (writecache_entry_is_committed(wc, e2)) 724 break; 725 e = e2; 726 cond_resched(); 727 } 728 writecache_commit_flushed(wc); 729 730 writecache_wait_for_ios(wc, WRITE); 731 732 wc->seq_count++; 733 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 734 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); 735 writecache_commit_flushed(wc); 736 737 wc->overwrote_committed = false; 738 739 need_flush_after_free = false; 740 while (1) { 741 /* Free another committed entry with lower seq-count */ 742 struct rb_node *rb_node = rb_prev(&e->rb_node); 743 744 if (rb_node) { 745 e2 = container_of(rb_node, struct wc_entry, rb_node); 746 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 747 likely(!e2->write_in_progress)) { 748 writecache_free_entry(wc, e2); 749 need_flush_after_free = true; 750 } 751 } 752 if (unlikely(e->lru.prev == &wc->lru)) 753 break; 754 e = container_of(e->lru.prev, struct wc_entry, lru); 755 cond_resched(); 756 } 757 758 if (need_flush_after_free) 759 writecache_commit_flushed(wc); 760 } 761 762 static void writecache_flush_work(struct work_struct *work) 763 { 764 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 765 766 wc_lock(wc); 767 writecache_flush(wc); 768 wc_unlock(wc); 769 } 770 771 static void writecache_autocommit_timer(struct timer_list *t) 772 { 773 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 774 if (!writecache_has_error(wc)) 775 queue_work(wc->writeback_wq, &wc->flush_work); 776 } 777 778 static void writecache_schedule_autocommit(struct dm_writecache *wc) 779 { 780 if (!timer_pending(&wc->autocommit_timer)) 781 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 782 } 783 784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 785 { 786 struct wc_entry *e; 787 bool discarded_something = false; 788 789 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 790 if (unlikely(!e)) 791 return; 792 793 while (read_original_sector(wc, e) < end) { 794 struct rb_node *node = rb_next(&e->rb_node); 795 796 if (likely(!e->write_in_progress)) { 797 if (!discarded_something) { 798 writecache_wait_for_ios(wc, READ); 799 writecache_wait_for_ios(wc, WRITE); 800 discarded_something = true; 801 } 802 writecache_free_entry(wc, e); 803 } 804 805 if (!node) 806 break; 807 808 e = container_of(node, struct wc_entry, rb_node); 809 } 810 811 if (discarded_something) 812 writecache_commit_flushed(wc); 813 } 814 815 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 816 { 817 if (wc->writeback_size) { 818 writecache_wait_on_freelist(wc); 819 return true; 820 } 821 return false; 822 } 823 824 static void writecache_suspend(struct dm_target *ti) 825 { 826 struct dm_writecache *wc = ti->private; 827 bool flush_on_suspend; 828 829 del_timer_sync(&wc->autocommit_timer); 830 831 wc_lock(wc); 832 writecache_flush(wc); 833 flush_on_suspend = wc->flush_on_suspend; 834 if (flush_on_suspend) { 835 wc->flush_on_suspend = false; 836 wc->writeback_all++; 837 queue_work(wc->writeback_wq, &wc->writeback_work); 838 } 839 wc_unlock(wc); 840 841 flush_workqueue(wc->writeback_wq); 842 843 wc_lock(wc); 844 if (flush_on_suspend) 845 wc->writeback_all--; 846 while (writecache_wait_for_writeback(wc)); 847 848 if (WC_MODE_PMEM(wc)) 849 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 850 851 writecache_poison_lists(wc); 852 853 wc_unlock(wc); 854 } 855 856 static int writecache_alloc_entries(struct dm_writecache *wc) 857 { 858 size_t b; 859 860 if (wc->entries) 861 return 0; 862 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 863 if (!wc->entries) 864 return -ENOMEM; 865 for (b = 0; b < wc->n_blocks; b++) { 866 struct wc_entry *e = &wc->entries[b]; 867 e->index = b; 868 e->write_in_progress = false; 869 } 870 871 return 0; 872 } 873 874 static void writecache_resume(struct dm_target *ti) 875 { 876 struct dm_writecache *wc = ti->private; 877 size_t b; 878 bool need_flush = false; 879 __le64 sb_seq_count; 880 int r; 881 882 wc_lock(wc); 883 884 if (WC_MODE_PMEM(wc)) 885 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 886 887 wc->tree = RB_ROOT; 888 INIT_LIST_HEAD(&wc->lru); 889 if (WC_MODE_SORT_FREELIST(wc)) { 890 wc->freetree = RB_ROOT; 891 wc->current_free = NULL; 892 } else { 893 INIT_LIST_HEAD(&wc->freelist); 894 } 895 wc->freelist_size = 0; 896 897 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 898 if (r) { 899 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 900 sb_seq_count = cpu_to_le64(0); 901 } 902 wc->seq_count = le64_to_cpu(sb_seq_count); 903 904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 905 for (b = 0; b < wc->n_blocks; b++) { 906 struct wc_entry *e = &wc->entries[b]; 907 struct wc_memory_entry wme; 908 if (writecache_has_error(wc)) { 909 e->original_sector = -1; 910 e->seq_count = -1; 911 continue; 912 } 913 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 914 if (r) { 915 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 916 (unsigned long)b, r); 917 e->original_sector = -1; 918 e->seq_count = -1; 919 } else { 920 e->original_sector = le64_to_cpu(wme.original_sector); 921 e->seq_count = le64_to_cpu(wme.seq_count); 922 } 923 } 924 #endif 925 for (b = 0; b < wc->n_blocks; b++) { 926 struct wc_entry *e = &wc->entries[b]; 927 if (!writecache_entry_is_committed(wc, e)) { 928 if (read_seq_count(wc, e) != -1) { 929 erase_this: 930 clear_seq_count(wc, e); 931 need_flush = true; 932 } 933 writecache_add_to_freelist(wc, e); 934 } else { 935 struct wc_entry *old; 936 937 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 938 if (!old) { 939 writecache_insert_entry(wc, e); 940 } else { 941 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 942 writecache_error(wc, -EINVAL, 943 "two identical entries, position %llu, sector %llu, sequence %llu", 944 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 945 (unsigned long long)read_seq_count(wc, e)); 946 } 947 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 948 goto erase_this; 949 } else { 950 writecache_free_entry(wc, old); 951 writecache_insert_entry(wc, e); 952 need_flush = true; 953 } 954 } 955 } 956 cond_resched(); 957 } 958 959 if (need_flush) { 960 writecache_flush_all_metadata(wc); 961 writecache_commit_flushed(wc); 962 } 963 964 wc_unlock(wc); 965 } 966 967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 968 { 969 if (argc != 1) 970 return -EINVAL; 971 972 wc_lock(wc); 973 if (dm_suspended(wc->ti)) { 974 wc_unlock(wc); 975 return -EBUSY; 976 } 977 if (writecache_has_error(wc)) { 978 wc_unlock(wc); 979 return -EIO; 980 } 981 982 writecache_flush(wc); 983 wc->writeback_all++; 984 queue_work(wc->writeback_wq, &wc->writeback_work); 985 wc_unlock(wc); 986 987 flush_workqueue(wc->writeback_wq); 988 989 wc_lock(wc); 990 wc->writeback_all--; 991 if (writecache_has_error(wc)) { 992 wc_unlock(wc); 993 return -EIO; 994 } 995 wc_unlock(wc); 996 997 return 0; 998 } 999 1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1001 { 1002 if (argc != 1) 1003 return -EINVAL; 1004 1005 wc_lock(wc); 1006 wc->flush_on_suspend = true; 1007 wc_unlock(wc); 1008 1009 return 0; 1010 } 1011 1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1013 char *result, unsigned maxlen) 1014 { 1015 int r = -EINVAL; 1016 struct dm_writecache *wc = ti->private; 1017 1018 if (!strcasecmp(argv[0], "flush")) 1019 r = process_flush_mesg(argc, argv, wc); 1020 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1021 r = process_flush_on_suspend_mesg(argc, argv, wc); 1022 else 1023 DMERR("unrecognised message received: %s", argv[0]); 1024 1025 return r; 1026 } 1027 1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1029 { 1030 void *buf; 1031 unsigned long flags; 1032 unsigned size; 1033 int rw = bio_data_dir(bio); 1034 unsigned remaining_size = wc->block_size; 1035 1036 do { 1037 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1038 buf = bvec_kmap_irq(&bv, &flags); 1039 size = bv.bv_len; 1040 if (unlikely(size > remaining_size)) 1041 size = remaining_size; 1042 1043 if (rw == READ) { 1044 int r; 1045 r = memcpy_mcsafe(buf, data, size); 1046 flush_dcache_page(bio_page(bio)); 1047 if (unlikely(r)) { 1048 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1049 bio->bi_status = BLK_STS_IOERR; 1050 } 1051 } else { 1052 flush_dcache_page(bio_page(bio)); 1053 memcpy_flushcache(data, buf, size); 1054 } 1055 1056 bvec_kunmap_irq(buf, &flags); 1057 1058 data = (char *)data + size; 1059 remaining_size -= size; 1060 bio_advance(bio, size); 1061 } while (unlikely(remaining_size)); 1062 } 1063 1064 static int writecache_flush_thread(void *data) 1065 { 1066 struct dm_writecache *wc = data; 1067 1068 while (1) { 1069 struct bio *bio; 1070 1071 wc_lock(wc); 1072 bio = bio_list_pop(&wc->flush_list); 1073 if (!bio) { 1074 set_current_state(TASK_INTERRUPTIBLE); 1075 wc_unlock(wc); 1076 1077 if (unlikely(kthread_should_stop())) { 1078 set_current_state(TASK_RUNNING); 1079 break; 1080 } 1081 1082 schedule(); 1083 continue; 1084 } 1085 1086 if (bio_op(bio) == REQ_OP_DISCARD) { 1087 writecache_discard(wc, bio->bi_iter.bi_sector, 1088 bio_end_sector(bio)); 1089 wc_unlock(wc); 1090 bio_set_dev(bio, wc->dev->bdev); 1091 generic_make_request(bio); 1092 } else { 1093 writecache_flush(wc); 1094 wc_unlock(wc); 1095 if (writecache_has_error(wc)) 1096 bio->bi_status = BLK_STS_IOERR; 1097 bio_endio(bio); 1098 } 1099 } 1100 1101 return 0; 1102 } 1103 1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1105 { 1106 if (bio_list_empty(&wc->flush_list)) 1107 wake_up_process(wc->flush_thread); 1108 bio_list_add(&wc->flush_list, bio); 1109 } 1110 1111 static int writecache_map(struct dm_target *ti, struct bio *bio) 1112 { 1113 struct wc_entry *e; 1114 struct dm_writecache *wc = ti->private; 1115 1116 bio->bi_private = NULL; 1117 1118 wc_lock(wc); 1119 1120 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1121 if (writecache_has_error(wc)) 1122 goto unlock_error; 1123 if (WC_MODE_PMEM(wc)) { 1124 writecache_flush(wc); 1125 if (writecache_has_error(wc)) 1126 goto unlock_error; 1127 goto unlock_submit; 1128 } else { 1129 writecache_offload_bio(wc, bio); 1130 goto unlock_return; 1131 } 1132 } 1133 1134 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1135 1136 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1137 (wc->block_size / 512 - 1)) != 0)) { 1138 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1139 (unsigned long long)bio->bi_iter.bi_sector, 1140 bio->bi_iter.bi_size, wc->block_size); 1141 goto unlock_error; 1142 } 1143 1144 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1145 if (writecache_has_error(wc)) 1146 goto unlock_error; 1147 if (WC_MODE_PMEM(wc)) { 1148 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1149 goto unlock_remap_origin; 1150 } else { 1151 writecache_offload_bio(wc, bio); 1152 goto unlock_return; 1153 } 1154 } 1155 1156 if (bio_data_dir(bio) == READ) { 1157 read_next_block: 1158 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1159 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1160 if (WC_MODE_PMEM(wc)) { 1161 bio_copy_block(wc, bio, memory_data(wc, e)); 1162 if (bio->bi_iter.bi_size) 1163 goto read_next_block; 1164 goto unlock_submit; 1165 } else { 1166 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1167 bio_set_dev(bio, wc->ssd_dev->bdev); 1168 bio->bi_iter.bi_sector = cache_sector(wc, e); 1169 if (!writecache_entry_is_committed(wc, e)) 1170 writecache_wait_for_ios(wc, WRITE); 1171 goto unlock_remap; 1172 } 1173 } else { 1174 if (e) { 1175 sector_t next_boundary = 1176 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1177 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1178 dm_accept_partial_bio(bio, next_boundary); 1179 } 1180 } 1181 goto unlock_remap_origin; 1182 } 1183 } else { 1184 do { 1185 if (writecache_has_error(wc)) 1186 goto unlock_error; 1187 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1188 if (e) { 1189 if (!writecache_entry_is_committed(wc, e)) 1190 goto bio_copy; 1191 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1192 wc->overwrote_committed = true; 1193 goto bio_copy; 1194 } 1195 } 1196 e = writecache_pop_from_freelist(wc); 1197 if (unlikely(!e)) { 1198 writecache_wait_on_freelist(wc); 1199 continue; 1200 } 1201 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1202 writecache_insert_entry(wc, e); 1203 wc->uncommitted_blocks++; 1204 bio_copy: 1205 if (WC_MODE_PMEM(wc)) { 1206 bio_copy_block(wc, bio, memory_data(wc, e)); 1207 } else { 1208 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1209 bio_set_dev(bio, wc->ssd_dev->bdev); 1210 bio->bi_iter.bi_sector = cache_sector(wc, e); 1211 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1212 wc->uncommitted_blocks = 0; 1213 queue_work(wc->writeback_wq, &wc->flush_work); 1214 } else { 1215 writecache_schedule_autocommit(wc); 1216 } 1217 goto unlock_remap; 1218 } 1219 } while (bio->bi_iter.bi_size); 1220 1221 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) 1222 writecache_flush(wc); 1223 else 1224 writecache_schedule_autocommit(wc); 1225 goto unlock_submit; 1226 } 1227 1228 unlock_remap_origin: 1229 bio_set_dev(bio, wc->dev->bdev); 1230 wc_unlock(wc); 1231 return DM_MAPIO_REMAPPED; 1232 1233 unlock_remap: 1234 /* make sure that writecache_end_io decrements bio_in_progress: */ 1235 bio->bi_private = (void *)1; 1236 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1237 wc_unlock(wc); 1238 return DM_MAPIO_REMAPPED; 1239 1240 unlock_submit: 1241 wc_unlock(wc); 1242 bio_endio(bio); 1243 return DM_MAPIO_SUBMITTED; 1244 1245 unlock_return: 1246 wc_unlock(wc); 1247 return DM_MAPIO_SUBMITTED; 1248 1249 unlock_error: 1250 wc_unlock(wc); 1251 bio_io_error(bio); 1252 return DM_MAPIO_SUBMITTED; 1253 } 1254 1255 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1256 { 1257 struct dm_writecache *wc = ti->private; 1258 1259 if (bio->bi_private != NULL) { 1260 int dir = bio_data_dir(bio); 1261 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1262 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1263 wake_up(&wc->bio_in_progress_wait[dir]); 1264 } 1265 return 0; 1266 } 1267 1268 static int writecache_iterate_devices(struct dm_target *ti, 1269 iterate_devices_callout_fn fn, void *data) 1270 { 1271 struct dm_writecache *wc = ti->private; 1272 1273 return fn(ti, wc->dev, 0, ti->len, data); 1274 } 1275 1276 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1277 { 1278 struct dm_writecache *wc = ti->private; 1279 1280 if (limits->logical_block_size < wc->block_size) 1281 limits->logical_block_size = wc->block_size; 1282 1283 if (limits->physical_block_size < wc->block_size) 1284 limits->physical_block_size = wc->block_size; 1285 1286 if (limits->io_min < wc->block_size) 1287 limits->io_min = wc->block_size; 1288 } 1289 1290 1291 static void writecache_writeback_endio(struct bio *bio) 1292 { 1293 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1294 struct dm_writecache *wc = wb->wc; 1295 unsigned long flags; 1296 1297 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1298 if (unlikely(list_empty(&wc->endio_list))) 1299 wake_up_process(wc->endio_thread); 1300 list_add_tail(&wb->endio_entry, &wc->endio_list); 1301 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1302 } 1303 1304 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1305 { 1306 struct copy_struct *c = ptr; 1307 struct dm_writecache *wc = c->wc; 1308 1309 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1310 1311 raw_spin_lock_irq(&wc->endio_list_lock); 1312 if (unlikely(list_empty(&wc->endio_list))) 1313 wake_up_process(wc->endio_thread); 1314 list_add_tail(&c->endio_entry, &wc->endio_list); 1315 raw_spin_unlock_irq(&wc->endio_list_lock); 1316 } 1317 1318 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1319 { 1320 unsigned i; 1321 struct writeback_struct *wb; 1322 struct wc_entry *e; 1323 unsigned long n_walked = 0; 1324 1325 do { 1326 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1327 list_del(&wb->endio_entry); 1328 1329 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1330 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1331 "write error %d", wb->bio.bi_status); 1332 i = 0; 1333 do { 1334 e = wb->wc_list[i]; 1335 BUG_ON(!e->write_in_progress); 1336 e->write_in_progress = false; 1337 INIT_LIST_HEAD(&e->lru); 1338 if (!writecache_has_error(wc)) 1339 writecache_free_entry(wc, e); 1340 BUG_ON(!wc->writeback_size); 1341 wc->writeback_size--; 1342 n_walked++; 1343 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1344 writecache_commit_flushed(wc); 1345 wc_unlock(wc); 1346 wc_lock(wc); 1347 n_walked = 0; 1348 } 1349 } while (++i < wb->wc_list_n); 1350 1351 if (wb->wc_list != wb->wc_list_inline) 1352 kfree(wb->wc_list); 1353 bio_put(&wb->bio); 1354 } while (!list_empty(list)); 1355 } 1356 1357 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1358 { 1359 struct copy_struct *c; 1360 struct wc_entry *e; 1361 1362 do { 1363 c = list_entry(list->next, struct copy_struct, endio_entry); 1364 list_del(&c->endio_entry); 1365 1366 if (unlikely(c->error)) 1367 writecache_error(wc, c->error, "copy error"); 1368 1369 e = c->e; 1370 do { 1371 BUG_ON(!e->write_in_progress); 1372 e->write_in_progress = false; 1373 INIT_LIST_HEAD(&e->lru); 1374 if (!writecache_has_error(wc)) 1375 writecache_free_entry(wc, e); 1376 1377 BUG_ON(!wc->writeback_size); 1378 wc->writeback_size--; 1379 e++; 1380 } while (--c->n_entries); 1381 mempool_free(c, &wc->copy_pool); 1382 } while (!list_empty(list)); 1383 } 1384 1385 static int writecache_endio_thread(void *data) 1386 { 1387 struct dm_writecache *wc = data; 1388 1389 while (1) { 1390 struct list_head list; 1391 1392 raw_spin_lock_irq(&wc->endio_list_lock); 1393 if (!list_empty(&wc->endio_list)) 1394 goto pop_from_list; 1395 set_current_state(TASK_INTERRUPTIBLE); 1396 raw_spin_unlock_irq(&wc->endio_list_lock); 1397 1398 if (unlikely(kthread_should_stop())) { 1399 set_current_state(TASK_RUNNING); 1400 break; 1401 } 1402 1403 schedule(); 1404 1405 continue; 1406 1407 pop_from_list: 1408 list = wc->endio_list; 1409 list.next->prev = list.prev->next = &list; 1410 INIT_LIST_HEAD(&wc->endio_list); 1411 raw_spin_unlock_irq(&wc->endio_list_lock); 1412 1413 if (!WC_MODE_FUA(wc)) 1414 writecache_disk_flush(wc, wc->dev); 1415 1416 wc_lock(wc); 1417 1418 if (WC_MODE_PMEM(wc)) { 1419 __writecache_endio_pmem(wc, &list); 1420 } else { 1421 __writecache_endio_ssd(wc, &list); 1422 writecache_wait_for_ios(wc, READ); 1423 } 1424 1425 writecache_commit_flushed(wc); 1426 1427 wc_unlock(wc); 1428 } 1429 1430 return 0; 1431 } 1432 1433 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1434 { 1435 struct dm_writecache *wc = wb->wc; 1436 unsigned block_size = wc->block_size; 1437 void *address = memory_data(wc, e); 1438 1439 persistent_memory_flush_cache(address, block_size); 1440 return bio_add_page(&wb->bio, persistent_memory_page(address), 1441 block_size, persistent_memory_page_offset(address)) != 0; 1442 } 1443 1444 struct writeback_list { 1445 struct list_head list; 1446 size_t size; 1447 }; 1448 1449 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1450 { 1451 if (unlikely(wc->max_writeback_jobs)) { 1452 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1453 wc_lock(wc); 1454 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1455 writecache_wait_on_freelist(wc); 1456 wc_unlock(wc); 1457 } 1458 } 1459 cond_resched(); 1460 } 1461 1462 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1463 { 1464 struct wc_entry *e, *f; 1465 struct bio *bio; 1466 struct writeback_struct *wb; 1467 unsigned max_pages; 1468 1469 while (wbl->size) { 1470 wbl->size--; 1471 e = container_of(wbl->list.prev, struct wc_entry, lru); 1472 list_del(&e->lru); 1473 1474 max_pages = e->wc_list_contiguous; 1475 1476 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1477 wb = container_of(bio, struct writeback_struct, bio); 1478 wb->wc = wc; 1479 wb->bio.bi_end_io = writecache_writeback_endio; 1480 bio_set_dev(&wb->bio, wc->dev->bdev); 1481 wb->bio.bi_iter.bi_sector = read_original_sector(wc, e); 1482 wb->page_offset = PAGE_SIZE; 1483 if (max_pages <= WB_LIST_INLINE || 1484 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1485 GFP_NOIO | __GFP_NORETRY | 1486 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1487 wb->wc_list = wb->wc_list_inline; 1488 max_pages = WB_LIST_INLINE; 1489 } 1490 1491 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1492 1493 wb->wc_list[0] = e; 1494 wb->wc_list_n = 1; 1495 1496 while (wbl->size && wb->wc_list_n < max_pages) { 1497 f = container_of(wbl->list.prev, struct wc_entry, lru); 1498 if (read_original_sector(wc, f) != 1499 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1500 break; 1501 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1502 break; 1503 wbl->size--; 1504 list_del(&f->lru); 1505 wb->wc_list[wb->wc_list_n++] = f; 1506 e = f; 1507 } 1508 bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1509 if (writecache_has_error(wc)) { 1510 bio->bi_status = BLK_STS_IOERR; 1511 bio_endio(&wb->bio); 1512 } else { 1513 submit_bio(&wb->bio); 1514 } 1515 1516 __writeback_throttle(wc, wbl); 1517 } 1518 } 1519 1520 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1521 { 1522 struct wc_entry *e, *f; 1523 struct dm_io_region from, to; 1524 struct copy_struct *c; 1525 1526 while (wbl->size) { 1527 unsigned n_sectors; 1528 1529 wbl->size--; 1530 e = container_of(wbl->list.prev, struct wc_entry, lru); 1531 list_del(&e->lru); 1532 1533 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1534 1535 from.bdev = wc->ssd_dev->bdev; 1536 from.sector = cache_sector(wc, e); 1537 from.count = n_sectors; 1538 to.bdev = wc->dev->bdev; 1539 to.sector = read_original_sector(wc, e); 1540 to.count = n_sectors; 1541 1542 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1543 c->wc = wc; 1544 c->e = e; 1545 c->n_entries = e->wc_list_contiguous; 1546 1547 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1548 wbl->size--; 1549 f = container_of(wbl->list.prev, struct wc_entry, lru); 1550 BUG_ON(f != e + 1); 1551 list_del(&f->lru); 1552 e = f; 1553 } 1554 1555 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1556 1557 __writeback_throttle(wc, wbl); 1558 } 1559 } 1560 1561 static void writecache_writeback(struct work_struct *work) 1562 { 1563 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1564 struct blk_plug plug; 1565 struct wc_entry *e, *f, *g; 1566 struct rb_node *node, *next_node; 1567 struct list_head skipped; 1568 struct writeback_list wbl; 1569 unsigned long n_walked; 1570 1571 wc_lock(wc); 1572 restart: 1573 if (writecache_has_error(wc)) { 1574 wc_unlock(wc); 1575 return; 1576 } 1577 1578 if (unlikely(wc->writeback_all)) { 1579 if (writecache_wait_for_writeback(wc)) 1580 goto restart; 1581 } 1582 1583 if (wc->overwrote_committed) { 1584 writecache_wait_for_ios(wc, WRITE); 1585 } 1586 1587 n_walked = 0; 1588 INIT_LIST_HEAD(&skipped); 1589 INIT_LIST_HEAD(&wbl.list); 1590 wbl.size = 0; 1591 while (!list_empty(&wc->lru) && 1592 (wc->writeback_all || 1593 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { 1594 1595 n_walked++; 1596 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1597 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1598 queue_work(wc->writeback_wq, &wc->writeback_work); 1599 break; 1600 } 1601 1602 e = container_of(wc->lru.prev, struct wc_entry, lru); 1603 BUG_ON(e->write_in_progress); 1604 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1605 writecache_flush(wc); 1606 } 1607 node = rb_prev(&e->rb_node); 1608 if (node) { 1609 f = container_of(node, struct wc_entry, rb_node); 1610 if (unlikely(read_original_sector(wc, f) == 1611 read_original_sector(wc, e))) { 1612 BUG_ON(!f->write_in_progress); 1613 list_del(&e->lru); 1614 list_add(&e->lru, &skipped); 1615 cond_resched(); 1616 continue; 1617 } 1618 } 1619 wc->writeback_size++; 1620 list_del(&e->lru); 1621 list_add(&e->lru, &wbl.list); 1622 wbl.size++; 1623 e->write_in_progress = true; 1624 e->wc_list_contiguous = 1; 1625 1626 f = e; 1627 1628 while (1) { 1629 next_node = rb_next(&f->rb_node); 1630 if (unlikely(!next_node)) 1631 break; 1632 g = container_of(next_node, struct wc_entry, rb_node); 1633 if (read_original_sector(wc, g) == 1634 read_original_sector(wc, f)) { 1635 f = g; 1636 continue; 1637 } 1638 if (read_original_sector(wc, g) != 1639 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1640 break; 1641 if (unlikely(g->write_in_progress)) 1642 break; 1643 if (unlikely(!writecache_entry_is_committed(wc, g))) 1644 break; 1645 1646 if (!WC_MODE_PMEM(wc)) { 1647 if (g != f + 1) 1648 break; 1649 } 1650 1651 n_walked++; 1652 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1653 // break; 1654 1655 wc->writeback_size++; 1656 list_del(&g->lru); 1657 list_add(&g->lru, &wbl.list); 1658 wbl.size++; 1659 g->write_in_progress = true; 1660 g->wc_list_contiguous = BIO_MAX_PAGES; 1661 f = g; 1662 e->wc_list_contiguous++; 1663 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) 1664 break; 1665 } 1666 cond_resched(); 1667 } 1668 1669 if (!list_empty(&skipped)) { 1670 list_splice_tail(&skipped, &wc->lru); 1671 /* 1672 * If we didn't do any progress, we must wait until some 1673 * writeback finishes to avoid burning CPU in a loop 1674 */ 1675 if (unlikely(!wbl.size)) 1676 writecache_wait_for_writeback(wc); 1677 } 1678 1679 wc_unlock(wc); 1680 1681 blk_start_plug(&plug); 1682 1683 if (WC_MODE_PMEM(wc)) 1684 __writecache_writeback_pmem(wc, &wbl); 1685 else 1686 __writecache_writeback_ssd(wc, &wbl); 1687 1688 blk_finish_plug(&plug); 1689 1690 if (unlikely(wc->writeback_all)) { 1691 wc_lock(wc); 1692 while (writecache_wait_for_writeback(wc)); 1693 wc_unlock(wc); 1694 } 1695 } 1696 1697 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1698 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1699 { 1700 uint64_t n_blocks, offset; 1701 struct wc_entry e; 1702 1703 n_blocks = device_size; 1704 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1705 1706 while (1) { 1707 if (!n_blocks) 1708 return -ENOSPC; 1709 /* Verify the following entries[n_blocks] won't overflow */ 1710 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1711 sizeof(struct wc_memory_entry))) 1712 return -EFBIG; 1713 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1714 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1715 if (offset + n_blocks * block_size <= device_size) 1716 break; 1717 n_blocks--; 1718 } 1719 1720 /* check if the bit field overflows */ 1721 e.index = n_blocks; 1722 if (e.index != n_blocks) 1723 return -EFBIG; 1724 1725 if (n_blocks_p) 1726 *n_blocks_p = n_blocks; 1727 if (n_metadata_blocks_p) 1728 *n_metadata_blocks_p = offset >> __ffs(block_size); 1729 return 0; 1730 } 1731 1732 static int init_memory(struct dm_writecache *wc) 1733 { 1734 size_t b; 1735 int r; 1736 1737 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1738 if (r) 1739 return r; 1740 1741 r = writecache_alloc_entries(wc); 1742 if (r) 1743 return r; 1744 1745 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1746 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1747 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1748 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1749 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1750 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1751 1752 for (b = 0; b < wc->n_blocks; b++) 1753 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1754 1755 writecache_flush_all_metadata(wc); 1756 writecache_commit_flushed(wc); 1757 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1758 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1759 writecache_commit_flushed(wc); 1760 1761 return 0; 1762 } 1763 1764 static void writecache_dtr(struct dm_target *ti) 1765 { 1766 struct dm_writecache *wc = ti->private; 1767 1768 if (!wc) 1769 return; 1770 1771 if (wc->endio_thread) 1772 kthread_stop(wc->endio_thread); 1773 1774 if (wc->flush_thread) 1775 kthread_stop(wc->flush_thread); 1776 1777 bioset_exit(&wc->bio_set); 1778 1779 mempool_exit(&wc->copy_pool); 1780 1781 if (wc->writeback_wq) 1782 destroy_workqueue(wc->writeback_wq); 1783 1784 if (wc->dev) 1785 dm_put_device(ti, wc->dev); 1786 1787 if (wc->ssd_dev) 1788 dm_put_device(ti, wc->ssd_dev); 1789 1790 if (wc->entries) 1791 vfree(wc->entries); 1792 1793 if (wc->memory_map) { 1794 if (WC_MODE_PMEM(wc)) 1795 persistent_memory_release(wc); 1796 else 1797 vfree(wc->memory_map); 1798 } 1799 1800 if (wc->dm_kcopyd) 1801 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1802 1803 if (wc->dm_io) 1804 dm_io_client_destroy(wc->dm_io); 1805 1806 if (wc->dirty_bitmap) 1807 vfree(wc->dirty_bitmap); 1808 1809 kfree(wc); 1810 } 1811 1812 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1813 { 1814 struct dm_writecache *wc; 1815 struct dm_arg_set as; 1816 const char *string; 1817 unsigned opt_params; 1818 size_t offset, data_size; 1819 int i, r; 1820 char dummy; 1821 int high_wm_percent = HIGH_WATERMARK; 1822 int low_wm_percent = LOW_WATERMARK; 1823 uint64_t x; 1824 struct wc_memory_superblock s; 1825 1826 static struct dm_arg _args[] = { 1827 {0, 10, "Invalid number of feature args"}, 1828 }; 1829 1830 as.argc = argc; 1831 as.argv = argv; 1832 1833 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1834 if (!wc) { 1835 ti->error = "Cannot allocate writecache structure"; 1836 r = -ENOMEM; 1837 goto bad; 1838 } 1839 ti->private = wc; 1840 wc->ti = ti; 1841 1842 mutex_init(&wc->lock); 1843 writecache_poison_lists(wc); 1844 init_waitqueue_head(&wc->freelist_wait); 1845 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1846 1847 for (i = 0; i < 2; i++) { 1848 atomic_set(&wc->bio_in_progress[i], 0); 1849 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1850 } 1851 1852 wc->dm_io = dm_io_client_create(); 1853 if (IS_ERR(wc->dm_io)) { 1854 r = PTR_ERR(wc->dm_io); 1855 ti->error = "Unable to allocate dm-io client"; 1856 wc->dm_io = NULL; 1857 goto bad; 1858 } 1859 1860 wc->writeback_wq = alloc_workqueue("writecache-writeabck", WQ_MEM_RECLAIM, 1); 1861 if (!wc->writeback_wq) { 1862 r = -ENOMEM; 1863 ti->error = "Could not allocate writeback workqueue"; 1864 goto bad; 1865 } 1866 INIT_WORK(&wc->writeback_work, writecache_writeback); 1867 INIT_WORK(&wc->flush_work, writecache_flush_work); 1868 1869 raw_spin_lock_init(&wc->endio_list_lock); 1870 INIT_LIST_HEAD(&wc->endio_list); 1871 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 1872 if (IS_ERR(wc->endio_thread)) { 1873 r = PTR_ERR(wc->endio_thread); 1874 wc->endio_thread = NULL; 1875 ti->error = "Couldn't spawn endio thread"; 1876 goto bad; 1877 } 1878 wake_up_process(wc->endio_thread); 1879 1880 /* 1881 * Parse the mode (pmem or ssd) 1882 */ 1883 string = dm_shift_arg(&as); 1884 if (!string) 1885 goto bad_arguments; 1886 1887 if (!strcasecmp(string, "s")) { 1888 wc->pmem_mode = false; 1889 } else if (!strcasecmp(string, "p")) { 1890 #ifdef DM_WRITECACHE_HAS_PMEM 1891 wc->pmem_mode = true; 1892 wc->writeback_fua = true; 1893 #else 1894 /* 1895 * If the architecture doesn't support persistent memory or 1896 * the kernel doesn't support any DAX drivers, this driver can 1897 * only be used in SSD-only mode. 1898 */ 1899 r = -EOPNOTSUPP; 1900 ti->error = "Persistent memory or DAX not supported on this system"; 1901 goto bad; 1902 #endif 1903 } else { 1904 goto bad_arguments; 1905 } 1906 1907 if (WC_MODE_PMEM(wc)) { 1908 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 1909 offsetof(struct writeback_struct, bio), 1910 BIOSET_NEED_BVECS); 1911 if (r) { 1912 ti->error = "Could not allocate bio set"; 1913 goto bad; 1914 } 1915 } else { 1916 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 1917 if (r) { 1918 ti->error = "Could not allocate mempool"; 1919 goto bad; 1920 } 1921 } 1922 1923 /* 1924 * Parse the origin data device 1925 */ 1926 string = dm_shift_arg(&as); 1927 if (!string) 1928 goto bad_arguments; 1929 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 1930 if (r) { 1931 ti->error = "Origin data device lookup failed"; 1932 goto bad; 1933 } 1934 1935 /* 1936 * Parse cache data device (be it pmem or ssd) 1937 */ 1938 string = dm_shift_arg(&as); 1939 if (!string) 1940 goto bad_arguments; 1941 1942 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 1943 if (r) { 1944 ti->error = "Cache data device lookup failed"; 1945 goto bad; 1946 } 1947 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 1948 1949 if (WC_MODE_PMEM(wc)) { 1950 r = persistent_memory_claim(wc); 1951 if (r) { 1952 ti->error = "Unable to map persistent memory for cache"; 1953 goto bad; 1954 } 1955 } 1956 1957 /* 1958 * Parse the cache block size 1959 */ 1960 string = dm_shift_arg(&as); 1961 if (!string) 1962 goto bad_arguments; 1963 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 1964 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 1965 (wc->block_size & (wc->block_size - 1))) { 1966 r = -EINVAL; 1967 ti->error = "Invalid block size"; 1968 goto bad; 1969 } 1970 wc->block_size_bits = __ffs(wc->block_size); 1971 1972 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 1973 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 1974 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 1975 1976 /* 1977 * Parse optional arguments 1978 */ 1979 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1980 if (r) 1981 goto bad; 1982 1983 while (opt_params) { 1984 string = dm_shift_arg(&as), opt_params--; 1985 if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 1986 string = dm_shift_arg(&as), opt_params--; 1987 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 1988 goto invalid_optional; 1989 if (high_wm_percent < 0 || high_wm_percent > 100) 1990 goto invalid_optional; 1991 wc->high_wm_percent_set = true; 1992 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 1993 string = dm_shift_arg(&as), opt_params--; 1994 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 1995 goto invalid_optional; 1996 if (low_wm_percent < 0 || low_wm_percent > 100) 1997 goto invalid_optional; 1998 wc->low_wm_percent_set = true; 1999 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2000 string = dm_shift_arg(&as), opt_params--; 2001 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2002 goto invalid_optional; 2003 wc->max_writeback_jobs_set = true; 2004 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2005 string = dm_shift_arg(&as), opt_params--; 2006 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2007 goto invalid_optional; 2008 wc->autocommit_blocks_set = true; 2009 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2010 unsigned autocommit_msecs; 2011 string = dm_shift_arg(&as), opt_params--; 2012 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2013 goto invalid_optional; 2014 if (autocommit_msecs > 3600000) 2015 goto invalid_optional; 2016 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2017 wc->autocommit_time_set = true; 2018 } else if (!strcasecmp(string, "fua")) { 2019 if (WC_MODE_PMEM(wc)) { 2020 wc->writeback_fua = true; 2021 wc->writeback_fua_set = true; 2022 } else goto invalid_optional; 2023 } else if (!strcasecmp(string, "nofua")) { 2024 if (WC_MODE_PMEM(wc)) { 2025 wc->writeback_fua = false; 2026 wc->writeback_fua_set = true; 2027 } else goto invalid_optional; 2028 } else { 2029 invalid_optional: 2030 r = -EINVAL; 2031 ti->error = "Invalid optional argument"; 2032 goto bad; 2033 } 2034 } 2035 2036 if (high_wm_percent < low_wm_percent) { 2037 r = -EINVAL; 2038 ti->error = "High watermark must be greater than or equal to low watermark"; 2039 goto bad; 2040 } 2041 2042 if (!WC_MODE_PMEM(wc)) { 2043 struct dm_io_region region; 2044 struct dm_io_request req; 2045 size_t n_blocks, n_metadata_blocks; 2046 uint64_t n_bitmap_bits; 2047 2048 bio_list_init(&wc->flush_list); 2049 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2050 if (IS_ERR(wc->flush_thread)) { 2051 r = PTR_ERR(wc->flush_thread); 2052 wc->flush_thread = NULL; 2053 ti->error = "Couldn't spawn endio thread"; 2054 goto bad; 2055 } 2056 wake_up_process(wc->flush_thread); 2057 2058 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2059 &n_blocks, &n_metadata_blocks); 2060 if (r) { 2061 ti->error = "Invalid device size"; 2062 goto bad; 2063 } 2064 2065 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2066 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2067 /* this is limitation of test_bit functions */ 2068 if (n_bitmap_bits > 1U << 31) { 2069 r = -EFBIG; 2070 ti->error = "Invalid device size"; 2071 goto bad; 2072 } 2073 2074 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2075 if (!wc->memory_map) { 2076 r = -ENOMEM; 2077 ti->error = "Unable to allocate memory for metadata"; 2078 goto bad; 2079 } 2080 2081 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2082 if (IS_ERR(wc->dm_kcopyd)) { 2083 r = PTR_ERR(wc->dm_kcopyd); 2084 ti->error = "Unable to allocate dm-kcopyd client"; 2085 wc->dm_kcopyd = NULL; 2086 goto bad; 2087 } 2088 2089 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2090 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2091 BITS_PER_LONG * sizeof(unsigned long); 2092 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2093 if (!wc->dirty_bitmap) { 2094 r = -ENOMEM; 2095 ti->error = "Unable to allocate dirty bitmap"; 2096 goto bad; 2097 } 2098 2099 region.bdev = wc->ssd_dev->bdev; 2100 region.sector = 0; 2101 region.count = wc->metadata_sectors; 2102 req.bi_op = REQ_OP_READ; 2103 req.bi_op_flags = REQ_SYNC; 2104 req.mem.type = DM_IO_VMA; 2105 req.mem.ptr.vma = (char *)wc->memory_map; 2106 req.client = wc->dm_io; 2107 req.notify.fn = NULL; 2108 2109 r = dm_io(&req, 1, ®ion, NULL); 2110 if (r) { 2111 ti->error = "Unable to read metadata"; 2112 goto bad; 2113 } 2114 } 2115 2116 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2117 if (r) { 2118 ti->error = "Hardware memory error when reading superblock"; 2119 goto bad; 2120 } 2121 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2122 r = init_memory(wc); 2123 if (r) { 2124 ti->error = "Unable to initialize device"; 2125 goto bad; 2126 } 2127 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2128 if (r) { 2129 ti->error = "Hardware memory error when reading superblock"; 2130 goto bad; 2131 } 2132 } 2133 2134 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2135 ti->error = "Invalid magic in the superblock"; 2136 r = -EINVAL; 2137 goto bad; 2138 } 2139 2140 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2141 ti->error = "Invalid version in the superblock"; 2142 r = -EINVAL; 2143 goto bad; 2144 } 2145 2146 if (le32_to_cpu(s.block_size) != wc->block_size) { 2147 ti->error = "Block size does not match superblock"; 2148 r = -EINVAL; 2149 goto bad; 2150 } 2151 2152 wc->n_blocks = le64_to_cpu(s.n_blocks); 2153 2154 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2155 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2156 overflow: 2157 ti->error = "Overflow in size calculation"; 2158 r = -EINVAL; 2159 goto bad; 2160 } 2161 offset += sizeof(struct wc_memory_superblock); 2162 if (offset < sizeof(struct wc_memory_superblock)) 2163 goto overflow; 2164 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2165 data_size = wc->n_blocks * (size_t)wc->block_size; 2166 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2167 (offset + data_size < offset)) 2168 goto overflow; 2169 if (offset + data_size > wc->memory_map_size) { 2170 ti->error = "Memory area is too small"; 2171 r = -EINVAL; 2172 goto bad; 2173 } 2174 2175 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2176 wc->block_start = (char *)sb(wc) + offset; 2177 2178 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2179 x += 50; 2180 do_div(x, 100); 2181 wc->freelist_high_watermark = x; 2182 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2183 x += 50; 2184 do_div(x, 100); 2185 wc->freelist_low_watermark = x; 2186 2187 r = writecache_alloc_entries(wc); 2188 if (r) { 2189 ti->error = "Cannot allocate memory"; 2190 goto bad; 2191 } 2192 2193 ti->num_flush_bios = 1; 2194 ti->flush_supported = true; 2195 ti->num_discard_bios = 1; 2196 2197 if (WC_MODE_PMEM(wc)) 2198 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2199 2200 return 0; 2201 2202 bad_arguments: 2203 r = -EINVAL; 2204 ti->error = "Bad arguments"; 2205 bad: 2206 writecache_dtr(ti); 2207 return r; 2208 } 2209 2210 static void writecache_status(struct dm_target *ti, status_type_t type, 2211 unsigned status_flags, char *result, unsigned maxlen) 2212 { 2213 struct dm_writecache *wc = ti->private; 2214 unsigned extra_args; 2215 unsigned sz = 0; 2216 uint64_t x; 2217 2218 switch (type) { 2219 case STATUSTYPE_INFO: 2220 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2221 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2222 (unsigned long long)wc->writeback_size); 2223 break; 2224 case STATUSTYPE_TABLE: 2225 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2226 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2227 extra_args = 0; 2228 if (wc->high_wm_percent_set) 2229 extra_args += 2; 2230 if (wc->low_wm_percent_set) 2231 extra_args += 2; 2232 if (wc->max_writeback_jobs_set) 2233 extra_args += 2; 2234 if (wc->autocommit_blocks_set) 2235 extra_args += 2; 2236 if (wc->autocommit_time_set) 2237 extra_args += 2; 2238 if (wc->writeback_fua_set) 2239 extra_args++; 2240 2241 DMEMIT("%u", extra_args); 2242 if (wc->high_wm_percent_set) { 2243 x = (uint64_t)wc->freelist_high_watermark * 100; 2244 x += wc->n_blocks / 2; 2245 do_div(x, (size_t)wc->n_blocks); 2246 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2247 } 2248 if (wc->low_wm_percent_set) { 2249 x = (uint64_t)wc->freelist_low_watermark * 100; 2250 x += wc->n_blocks / 2; 2251 do_div(x, (size_t)wc->n_blocks); 2252 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2253 } 2254 if (wc->max_writeback_jobs_set) 2255 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2256 if (wc->autocommit_blocks_set) 2257 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2258 if (wc->autocommit_time_set) 2259 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2260 if (wc->writeback_fua_set) 2261 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2262 break; 2263 } 2264 } 2265 2266 static struct target_type writecache_target = { 2267 .name = "writecache", 2268 .version = {1, 0, 0}, 2269 .module = THIS_MODULE, 2270 .ctr = writecache_ctr, 2271 .dtr = writecache_dtr, 2272 .status = writecache_status, 2273 .postsuspend = writecache_suspend, 2274 .resume = writecache_resume, 2275 .message = writecache_message, 2276 .map = writecache_map, 2277 .end_io = writecache_end_io, 2278 .iterate_devices = writecache_iterate_devices, 2279 .io_hints = writecache_io_hints, 2280 }; 2281 2282 static int __init dm_writecache_init(void) 2283 { 2284 int r; 2285 2286 r = dm_register_target(&writecache_target); 2287 if (r < 0) { 2288 DMERR("register failed %d", r); 2289 return r; 2290 } 2291 2292 return 0; 2293 } 2294 2295 static void __exit dm_writecache_exit(void) 2296 { 2297 dm_unregister_target(&writecache_target); 2298 } 2299 2300 module_init(dm_writecache_init); 2301 module_exit(dm_writecache_exit); 2302 2303 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2304 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2305 MODULE_LICENSE("GPL"); 2306