xref: /openbmc/linux/drivers/md/dm-writecache.c (revision 88f4ede4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 #define MAX_AGE_DIV			16
30 #define MAX_AGE_UNSPECIFIED		-1UL
31 
32 #define BITMAP_GRANULARITY	65536
33 #if BITMAP_GRANULARITY < PAGE_SIZE
34 #undef BITMAP_GRANULARITY
35 #define BITMAP_GRANULARITY	PAGE_SIZE
36 #endif
37 
38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39 #define DM_WRITECACHE_HAS_PMEM
40 #endif
41 
42 #ifdef DM_WRITECACHE_HAS_PMEM
43 #define pmem_assign(dest, src)					\
44 do {								\
45 	typeof(dest) uniq = (src);				\
46 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
47 } while (0)
48 #else
49 #define pmem_assign(dest, src)	((dest) = (src))
50 #endif
51 
52 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #endif
55 
56 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
57 #define MEMORY_SUPERBLOCK_VERSION	1
58 
59 struct wc_memory_entry {
60 	__le64 original_sector;
61 	__le64 seq_count;
62 };
63 
64 struct wc_memory_superblock {
65 	union {
66 		struct {
67 			__le32 magic;
68 			__le32 version;
69 			__le32 block_size;
70 			__le32 pad;
71 			__le64 n_blocks;
72 			__le64 seq_count;
73 		};
74 		__le64 padding[8];
75 	};
76 	struct wc_memory_entry entries[0];
77 };
78 
79 struct wc_entry {
80 	struct rb_node rb_node;
81 	struct list_head lru;
82 	unsigned short wc_list_contiguous;
83 	bool write_in_progress
84 #if BITS_PER_LONG == 64
85 		:1
86 #endif
87 	;
88 	unsigned long index
89 #if BITS_PER_LONG == 64
90 		:47
91 #endif
92 	;
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 
127 	unsigned uncommitted_blocks;
128 	unsigned autocommit_blocks;
129 	unsigned max_writeback_jobs;
130 
131 	int error;
132 
133 	unsigned long autocommit_jiffies;
134 	struct timer_list autocommit_timer;
135 	struct wait_queue_head freelist_wait;
136 
137 	struct timer_list max_age_timer;
138 
139 	atomic_t bio_in_progress[2];
140 	struct wait_queue_head bio_in_progress_wait[2];
141 
142 	struct dm_target *ti;
143 	struct dm_dev *dev;
144 	struct dm_dev *ssd_dev;
145 	sector_t start_sector;
146 	void *memory_map;
147 	uint64_t memory_map_size;
148 	size_t metadata_sectors;
149 	size_t n_blocks;
150 	uint64_t seq_count;
151 	void *block_start;
152 	struct wc_entry *entries;
153 	unsigned block_size;
154 	unsigned char block_size_bits;
155 
156 	bool pmem_mode:1;
157 	bool writeback_fua:1;
158 
159 	bool overwrote_committed:1;
160 	bool memory_vmapped:1;
161 
162 	bool high_wm_percent_set:1;
163 	bool low_wm_percent_set:1;
164 	bool max_writeback_jobs_set:1;
165 	bool autocommit_blocks_set:1;
166 	bool autocommit_time_set:1;
167 	bool writeback_fua_set:1;
168 	bool flush_on_suspend:1;
169 	bool cleaner:1;
170 
171 	unsigned writeback_all;
172 	struct workqueue_struct *writeback_wq;
173 	struct work_struct writeback_work;
174 	struct work_struct flush_work;
175 
176 	struct dm_io_client *dm_io;
177 
178 	raw_spinlock_t endio_list_lock;
179 	struct list_head endio_list;
180 	struct task_struct *endio_thread;
181 
182 	struct task_struct *flush_thread;
183 	struct bio_list flush_list;
184 
185 	struct dm_kcopyd_client *dm_kcopyd;
186 	unsigned long *dirty_bitmap;
187 	unsigned dirty_bitmap_size;
188 
189 	struct bio_set bio_set;
190 	mempool_t copy_pool;
191 };
192 
193 #define WB_LIST_INLINE		16
194 
195 struct writeback_struct {
196 	struct list_head endio_entry;
197 	struct dm_writecache *wc;
198 	struct wc_entry **wc_list;
199 	unsigned wc_list_n;
200 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
201 	struct bio bio;
202 };
203 
204 struct copy_struct {
205 	struct list_head endio_entry;
206 	struct dm_writecache *wc;
207 	struct wc_entry *e;
208 	unsigned n_entries;
209 	int error;
210 };
211 
212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
213 					    "A percentage of time allocated for data copying");
214 
215 static void wc_lock(struct dm_writecache *wc)
216 {
217 	mutex_lock(&wc->lock);
218 }
219 
220 static void wc_unlock(struct dm_writecache *wc)
221 {
222 	mutex_unlock(&wc->lock);
223 }
224 
225 #ifdef DM_WRITECACHE_HAS_PMEM
226 static int persistent_memory_claim(struct dm_writecache *wc)
227 {
228 	int r;
229 	loff_t s;
230 	long p, da;
231 	pfn_t pfn;
232 	int id;
233 	struct page **pages;
234 	sector_t offset;
235 
236 	wc->memory_vmapped = false;
237 
238 	s = wc->memory_map_size;
239 	p = s >> PAGE_SHIFT;
240 	if (!p) {
241 		r = -EINVAL;
242 		goto err1;
243 	}
244 	if (p != s >> PAGE_SHIFT) {
245 		r = -EOVERFLOW;
246 		goto err1;
247 	}
248 
249 	offset = get_start_sect(wc->ssd_dev->bdev);
250 	if (offset & (PAGE_SIZE / 512 - 1)) {
251 		r = -EINVAL;
252 		goto err1;
253 	}
254 	offset >>= PAGE_SHIFT - 9;
255 
256 	id = dax_read_lock();
257 
258 	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
259 	if (da < 0) {
260 		wc->memory_map = NULL;
261 		r = da;
262 		goto err2;
263 	}
264 	if (!pfn_t_has_page(pfn)) {
265 		wc->memory_map = NULL;
266 		r = -EOPNOTSUPP;
267 		goto err2;
268 	}
269 	if (da != p) {
270 		long i;
271 		wc->memory_map = NULL;
272 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
273 		if (!pages) {
274 			r = -ENOMEM;
275 			goto err2;
276 		}
277 		i = 0;
278 		do {
279 			long daa;
280 			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
281 						NULL, &pfn);
282 			if (daa <= 0) {
283 				r = daa ? daa : -EINVAL;
284 				goto err3;
285 			}
286 			if (!pfn_t_has_page(pfn)) {
287 				r = -EOPNOTSUPP;
288 				goto err3;
289 			}
290 			while (daa-- && i < p) {
291 				pages[i++] = pfn_t_to_page(pfn);
292 				pfn.val++;
293 				if (!(i & 15))
294 					cond_resched();
295 			}
296 		} while (i < p);
297 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
298 		if (!wc->memory_map) {
299 			r = -ENOMEM;
300 			goto err3;
301 		}
302 		kvfree(pages);
303 		wc->memory_vmapped = true;
304 	}
305 
306 	dax_read_unlock(id);
307 
308 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
309 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
310 
311 	return 0;
312 err3:
313 	kvfree(pages);
314 err2:
315 	dax_read_unlock(id);
316 err1:
317 	return r;
318 }
319 #else
320 static int persistent_memory_claim(struct dm_writecache *wc)
321 {
322 	return -EOPNOTSUPP;
323 }
324 #endif
325 
326 static void persistent_memory_release(struct dm_writecache *wc)
327 {
328 	if (wc->memory_vmapped)
329 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
330 }
331 
332 static struct page *persistent_memory_page(void *addr)
333 {
334 	if (is_vmalloc_addr(addr))
335 		return vmalloc_to_page(addr);
336 	else
337 		return virt_to_page(addr);
338 }
339 
340 static unsigned persistent_memory_page_offset(void *addr)
341 {
342 	return (unsigned long)addr & (PAGE_SIZE - 1);
343 }
344 
345 static void persistent_memory_flush_cache(void *ptr, size_t size)
346 {
347 	if (is_vmalloc_addr(ptr))
348 		flush_kernel_vmap_range(ptr, size);
349 }
350 
351 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
352 {
353 	if (is_vmalloc_addr(ptr))
354 		invalidate_kernel_vmap_range(ptr, size);
355 }
356 
357 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
358 {
359 	return wc->memory_map;
360 }
361 
362 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
363 {
364 	return &sb(wc)->entries[e->index];
365 }
366 
367 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
368 {
369 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
370 }
371 
372 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
373 {
374 	return wc->start_sector + wc->metadata_sectors +
375 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
376 }
377 
378 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
379 {
380 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
381 	return e->original_sector;
382 #else
383 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
384 #endif
385 }
386 
387 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
388 {
389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
390 	return e->seq_count;
391 #else
392 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
393 #endif
394 }
395 
396 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
397 {
398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
399 	e->seq_count = -1;
400 #endif
401 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
402 }
403 
404 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
405 					    uint64_t original_sector, uint64_t seq_count)
406 {
407 	struct wc_memory_entry me;
408 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
409 	e->original_sector = original_sector;
410 	e->seq_count = seq_count;
411 #endif
412 	me.original_sector = cpu_to_le64(original_sector);
413 	me.seq_count = cpu_to_le64(seq_count);
414 	pmem_assign(*memory_entry(wc, e), me);
415 }
416 
417 #define writecache_error(wc, err, msg, arg...)				\
418 do {									\
419 	if (!cmpxchg(&(wc)->error, 0, err))				\
420 		DMERR(msg, ##arg);					\
421 	wake_up(&(wc)->freelist_wait);					\
422 } while (0)
423 
424 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
425 
426 static void writecache_flush_all_metadata(struct dm_writecache *wc)
427 {
428 	if (!WC_MODE_PMEM(wc))
429 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
430 }
431 
432 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
433 {
434 	if (!WC_MODE_PMEM(wc))
435 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
436 			  wc->dirty_bitmap);
437 }
438 
439 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
440 
441 struct io_notify {
442 	struct dm_writecache *wc;
443 	struct completion c;
444 	atomic_t count;
445 };
446 
447 static void writecache_notify_io(unsigned long error, void *context)
448 {
449 	struct io_notify *endio = context;
450 
451 	if (unlikely(error != 0))
452 		writecache_error(endio->wc, -EIO, "error writing metadata");
453 	BUG_ON(atomic_read(&endio->count) <= 0);
454 	if (atomic_dec_and_test(&endio->count))
455 		complete(&endio->c);
456 }
457 
458 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
459 {
460 	wait_event(wc->bio_in_progress_wait[direction],
461 		   !atomic_read(&wc->bio_in_progress[direction]));
462 }
463 
464 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
465 {
466 	struct dm_io_region region;
467 	struct dm_io_request req;
468 	struct io_notify endio = {
469 		wc,
470 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
471 		ATOMIC_INIT(1),
472 	};
473 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
474 	unsigned i = 0;
475 
476 	while (1) {
477 		unsigned j;
478 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
479 		if (unlikely(i == bitmap_bits))
480 			break;
481 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
482 
483 		region.bdev = wc->ssd_dev->bdev;
484 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
485 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
486 
487 		if (unlikely(region.sector >= wc->metadata_sectors))
488 			break;
489 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
490 			region.count = wc->metadata_sectors - region.sector;
491 
492 		region.sector += wc->start_sector;
493 		atomic_inc(&endio.count);
494 		req.bi_op = REQ_OP_WRITE;
495 		req.bi_op_flags = REQ_SYNC;
496 		req.mem.type = DM_IO_VMA;
497 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
498 		req.client = wc->dm_io;
499 		req.notify.fn = writecache_notify_io;
500 		req.notify.context = &endio;
501 
502 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
503 	        (void) dm_io(&req, 1, &region, NULL);
504 		i = j;
505 	}
506 
507 	writecache_notify_io(0, &endio);
508 	wait_for_completion_io(&endio.c);
509 
510 	if (wait_for_ios)
511 		writecache_wait_for_ios(wc, WRITE);
512 
513 	writecache_disk_flush(wc, wc->ssd_dev);
514 
515 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
516 }
517 
518 static void ssd_commit_superblock(struct dm_writecache *wc)
519 {
520 	int r;
521 	struct dm_io_region region;
522 	struct dm_io_request req;
523 
524 	region.bdev = wc->ssd_dev->bdev;
525 	region.sector = 0;
526 	region.count = PAGE_SIZE;
527 
528 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
529 		region.count = wc->metadata_sectors - region.sector;
530 
531 	region.sector += wc->start_sector;
532 
533 	req.bi_op = REQ_OP_WRITE;
534 	req.bi_op_flags = REQ_SYNC | REQ_FUA;
535 	req.mem.type = DM_IO_VMA;
536 	req.mem.ptr.vma = (char *)wc->memory_map;
537 	req.client = wc->dm_io;
538 	req.notify.fn = NULL;
539 	req.notify.context = NULL;
540 
541 	r = dm_io(&req, 1, &region, NULL);
542 	if (unlikely(r))
543 		writecache_error(wc, r, "error writing superblock");
544 }
545 
546 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
547 {
548 	if (WC_MODE_PMEM(wc))
549 		pmem_wmb();
550 	else
551 		ssd_commit_flushed(wc, wait_for_ios);
552 }
553 
554 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
555 {
556 	int r;
557 	struct dm_io_region region;
558 	struct dm_io_request req;
559 
560 	region.bdev = dev->bdev;
561 	region.sector = 0;
562 	region.count = 0;
563 	req.bi_op = REQ_OP_WRITE;
564 	req.bi_op_flags = REQ_PREFLUSH;
565 	req.mem.type = DM_IO_KMEM;
566 	req.mem.ptr.addr = NULL;
567 	req.client = wc->dm_io;
568 	req.notify.fn = NULL;
569 
570 	r = dm_io(&req, 1, &region, NULL);
571 	if (unlikely(r))
572 		writecache_error(wc, r, "error flushing metadata: %d", r);
573 }
574 
575 #define WFE_RETURN_FOLLOWING	1
576 #define WFE_LOWEST_SEQ		2
577 
578 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
579 					      uint64_t block, int flags)
580 {
581 	struct wc_entry *e;
582 	struct rb_node *node = wc->tree.rb_node;
583 
584 	if (unlikely(!node))
585 		return NULL;
586 
587 	while (1) {
588 		e = container_of(node, struct wc_entry, rb_node);
589 		if (read_original_sector(wc, e) == block)
590 			break;
591 
592 		node = (read_original_sector(wc, e) >= block ?
593 			e->rb_node.rb_left : e->rb_node.rb_right);
594 		if (unlikely(!node)) {
595 			if (!(flags & WFE_RETURN_FOLLOWING))
596 				return NULL;
597 			if (read_original_sector(wc, e) >= block) {
598 				return e;
599 			} else {
600 				node = rb_next(&e->rb_node);
601 				if (unlikely(!node))
602 					return NULL;
603 				e = container_of(node, struct wc_entry, rb_node);
604 				return e;
605 			}
606 		}
607 	}
608 
609 	while (1) {
610 		struct wc_entry *e2;
611 		if (flags & WFE_LOWEST_SEQ)
612 			node = rb_prev(&e->rb_node);
613 		else
614 			node = rb_next(&e->rb_node);
615 		if (unlikely(!node))
616 			return e;
617 		e2 = container_of(node, struct wc_entry, rb_node);
618 		if (read_original_sector(wc, e2) != block)
619 			return e;
620 		e = e2;
621 	}
622 }
623 
624 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
625 {
626 	struct wc_entry *e;
627 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
628 
629 	while (*node) {
630 		e = container_of(*node, struct wc_entry, rb_node);
631 		parent = &e->rb_node;
632 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
633 			node = &parent->rb_left;
634 		else
635 			node = &parent->rb_right;
636 	}
637 	rb_link_node(&ins->rb_node, parent, node);
638 	rb_insert_color(&ins->rb_node, &wc->tree);
639 	list_add(&ins->lru, &wc->lru);
640 	ins->age = jiffies;
641 }
642 
643 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
644 {
645 	list_del(&e->lru);
646 	rb_erase(&e->rb_node, &wc->tree);
647 }
648 
649 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
650 {
651 	if (WC_MODE_SORT_FREELIST(wc)) {
652 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
653 		if (unlikely(!*node))
654 			wc->current_free = e;
655 		while (*node) {
656 			parent = *node;
657 			if (&e->rb_node < *node)
658 				node = &parent->rb_left;
659 			else
660 				node = &parent->rb_right;
661 		}
662 		rb_link_node(&e->rb_node, parent, node);
663 		rb_insert_color(&e->rb_node, &wc->freetree);
664 	} else {
665 		list_add_tail(&e->lru, &wc->freelist);
666 	}
667 	wc->freelist_size++;
668 }
669 
670 static inline void writecache_verify_watermark(struct dm_writecache *wc)
671 {
672 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
673 		queue_work(wc->writeback_wq, &wc->writeback_work);
674 }
675 
676 static void writecache_max_age_timer(struct timer_list *t)
677 {
678 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
679 
680 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
681 		queue_work(wc->writeback_wq, &wc->writeback_work);
682 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
683 	}
684 }
685 
686 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
687 {
688 	struct wc_entry *e;
689 
690 	if (WC_MODE_SORT_FREELIST(wc)) {
691 		struct rb_node *next;
692 		if (unlikely(!wc->current_free))
693 			return NULL;
694 		e = wc->current_free;
695 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
696 			return NULL;
697 		next = rb_next(&e->rb_node);
698 		rb_erase(&e->rb_node, &wc->freetree);
699 		if (unlikely(!next))
700 			next = rb_first(&wc->freetree);
701 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
702 	} else {
703 		if (unlikely(list_empty(&wc->freelist)))
704 			return NULL;
705 		e = container_of(wc->freelist.next, struct wc_entry, lru);
706 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
707 			return NULL;
708 		list_del(&e->lru);
709 	}
710 	wc->freelist_size--;
711 
712 	writecache_verify_watermark(wc);
713 
714 	return e;
715 }
716 
717 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
718 {
719 	writecache_unlink(wc, e);
720 	writecache_add_to_freelist(wc, e);
721 	clear_seq_count(wc, e);
722 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
723 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
724 		wake_up(&wc->freelist_wait);
725 }
726 
727 static void writecache_wait_on_freelist(struct dm_writecache *wc)
728 {
729 	DEFINE_WAIT(wait);
730 
731 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
732 	wc_unlock(wc);
733 	io_schedule();
734 	finish_wait(&wc->freelist_wait, &wait);
735 	wc_lock(wc);
736 }
737 
738 static void writecache_poison_lists(struct dm_writecache *wc)
739 {
740 	/*
741 	 * Catch incorrect access to these values while the device is suspended.
742 	 */
743 	memset(&wc->tree, -1, sizeof wc->tree);
744 	wc->lru.next = LIST_POISON1;
745 	wc->lru.prev = LIST_POISON2;
746 	wc->freelist.next = LIST_POISON1;
747 	wc->freelist.prev = LIST_POISON2;
748 }
749 
750 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
751 {
752 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
753 	if (WC_MODE_PMEM(wc))
754 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
755 }
756 
757 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
758 {
759 	return read_seq_count(wc, e) < wc->seq_count;
760 }
761 
762 static void writecache_flush(struct dm_writecache *wc)
763 {
764 	struct wc_entry *e, *e2;
765 	bool need_flush_after_free;
766 
767 	wc->uncommitted_blocks = 0;
768 	del_timer(&wc->autocommit_timer);
769 
770 	if (list_empty(&wc->lru))
771 		return;
772 
773 	e = container_of(wc->lru.next, struct wc_entry, lru);
774 	if (writecache_entry_is_committed(wc, e)) {
775 		if (wc->overwrote_committed) {
776 			writecache_wait_for_ios(wc, WRITE);
777 			writecache_disk_flush(wc, wc->ssd_dev);
778 			wc->overwrote_committed = false;
779 		}
780 		return;
781 	}
782 	while (1) {
783 		writecache_flush_entry(wc, e);
784 		if (unlikely(e->lru.next == &wc->lru))
785 			break;
786 		e2 = container_of(e->lru.next, struct wc_entry, lru);
787 		if (writecache_entry_is_committed(wc, e2))
788 			break;
789 		e = e2;
790 		cond_resched();
791 	}
792 	writecache_commit_flushed(wc, true);
793 
794 	wc->seq_count++;
795 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
796 	if (WC_MODE_PMEM(wc))
797 		writecache_commit_flushed(wc, false);
798 	else
799 		ssd_commit_superblock(wc);
800 
801 	wc->overwrote_committed = false;
802 
803 	need_flush_after_free = false;
804 	while (1) {
805 		/* Free another committed entry with lower seq-count */
806 		struct rb_node *rb_node = rb_prev(&e->rb_node);
807 
808 		if (rb_node) {
809 			e2 = container_of(rb_node, struct wc_entry, rb_node);
810 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
811 			    likely(!e2->write_in_progress)) {
812 				writecache_free_entry(wc, e2);
813 				need_flush_after_free = true;
814 			}
815 		}
816 		if (unlikely(e->lru.prev == &wc->lru))
817 			break;
818 		e = container_of(e->lru.prev, struct wc_entry, lru);
819 		cond_resched();
820 	}
821 
822 	if (need_flush_after_free)
823 		writecache_commit_flushed(wc, false);
824 }
825 
826 static void writecache_flush_work(struct work_struct *work)
827 {
828 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
829 
830 	wc_lock(wc);
831 	writecache_flush(wc);
832 	wc_unlock(wc);
833 }
834 
835 static void writecache_autocommit_timer(struct timer_list *t)
836 {
837 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
838 	if (!writecache_has_error(wc))
839 		queue_work(wc->writeback_wq, &wc->flush_work);
840 }
841 
842 static void writecache_schedule_autocommit(struct dm_writecache *wc)
843 {
844 	if (!timer_pending(&wc->autocommit_timer))
845 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
846 }
847 
848 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
849 {
850 	struct wc_entry *e;
851 	bool discarded_something = false;
852 
853 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
854 	if (unlikely(!e))
855 		return;
856 
857 	while (read_original_sector(wc, e) < end) {
858 		struct rb_node *node = rb_next(&e->rb_node);
859 
860 		if (likely(!e->write_in_progress)) {
861 			if (!discarded_something) {
862 				if (!WC_MODE_PMEM(wc)) {
863 					writecache_wait_for_ios(wc, READ);
864 					writecache_wait_for_ios(wc, WRITE);
865 				}
866 				discarded_something = true;
867 			}
868 			if (!writecache_entry_is_committed(wc, e))
869 				wc->uncommitted_blocks--;
870 			writecache_free_entry(wc, e);
871 		}
872 
873 		if (unlikely(!node))
874 			break;
875 
876 		e = container_of(node, struct wc_entry, rb_node);
877 	}
878 
879 	if (discarded_something)
880 		writecache_commit_flushed(wc, false);
881 }
882 
883 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
884 {
885 	if (wc->writeback_size) {
886 		writecache_wait_on_freelist(wc);
887 		return true;
888 	}
889 	return false;
890 }
891 
892 static void writecache_suspend(struct dm_target *ti)
893 {
894 	struct dm_writecache *wc = ti->private;
895 	bool flush_on_suspend;
896 
897 	del_timer_sync(&wc->autocommit_timer);
898 	del_timer_sync(&wc->max_age_timer);
899 
900 	wc_lock(wc);
901 	writecache_flush(wc);
902 	flush_on_suspend = wc->flush_on_suspend;
903 	if (flush_on_suspend) {
904 		wc->flush_on_suspend = false;
905 		wc->writeback_all++;
906 		queue_work(wc->writeback_wq, &wc->writeback_work);
907 	}
908 	wc_unlock(wc);
909 
910 	drain_workqueue(wc->writeback_wq);
911 
912 	wc_lock(wc);
913 	if (flush_on_suspend)
914 		wc->writeback_all--;
915 	while (writecache_wait_for_writeback(wc));
916 
917 	if (WC_MODE_PMEM(wc))
918 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
919 
920 	writecache_poison_lists(wc);
921 
922 	wc_unlock(wc);
923 }
924 
925 static int writecache_alloc_entries(struct dm_writecache *wc)
926 {
927 	size_t b;
928 
929 	if (wc->entries)
930 		return 0;
931 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
932 	if (!wc->entries)
933 		return -ENOMEM;
934 	for (b = 0; b < wc->n_blocks; b++) {
935 		struct wc_entry *e = &wc->entries[b];
936 		e->index = b;
937 		e->write_in_progress = false;
938 		cond_resched();
939 	}
940 
941 	return 0;
942 }
943 
944 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
945 {
946 	struct dm_io_region region;
947 	struct dm_io_request req;
948 
949 	region.bdev = wc->ssd_dev->bdev;
950 	region.sector = wc->start_sector;
951 	region.count = n_sectors;
952 	req.bi_op = REQ_OP_READ;
953 	req.bi_op_flags = REQ_SYNC;
954 	req.mem.type = DM_IO_VMA;
955 	req.mem.ptr.vma = (char *)wc->memory_map;
956 	req.client = wc->dm_io;
957 	req.notify.fn = NULL;
958 
959 	return dm_io(&req, 1, &region, NULL);
960 }
961 
962 static void writecache_resume(struct dm_target *ti)
963 {
964 	struct dm_writecache *wc = ti->private;
965 	size_t b;
966 	bool need_flush = false;
967 	__le64 sb_seq_count;
968 	int r;
969 
970 	wc_lock(wc);
971 
972 	if (WC_MODE_PMEM(wc)) {
973 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
974 	} else {
975 		r = writecache_read_metadata(wc, wc->metadata_sectors);
976 		if (r) {
977 			size_t sb_entries_offset;
978 			writecache_error(wc, r, "unable to read metadata: %d", r);
979 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
980 			memset((char *)wc->memory_map + sb_entries_offset, -1,
981 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
982 		}
983 	}
984 
985 	wc->tree = RB_ROOT;
986 	INIT_LIST_HEAD(&wc->lru);
987 	if (WC_MODE_SORT_FREELIST(wc)) {
988 		wc->freetree = RB_ROOT;
989 		wc->current_free = NULL;
990 	} else {
991 		INIT_LIST_HEAD(&wc->freelist);
992 	}
993 	wc->freelist_size = 0;
994 
995 	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
996 			      sizeof(uint64_t));
997 	if (r) {
998 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
999 		sb_seq_count = cpu_to_le64(0);
1000 	}
1001 	wc->seq_count = le64_to_cpu(sb_seq_count);
1002 
1003 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1004 	for (b = 0; b < wc->n_blocks; b++) {
1005 		struct wc_entry *e = &wc->entries[b];
1006 		struct wc_memory_entry wme;
1007 		if (writecache_has_error(wc)) {
1008 			e->original_sector = -1;
1009 			e->seq_count = -1;
1010 			continue;
1011 		}
1012 		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1013 				      sizeof(struct wc_memory_entry));
1014 		if (r) {
1015 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1016 					 (unsigned long)b, r);
1017 			e->original_sector = -1;
1018 			e->seq_count = -1;
1019 		} else {
1020 			e->original_sector = le64_to_cpu(wme.original_sector);
1021 			e->seq_count = le64_to_cpu(wme.seq_count);
1022 		}
1023 		cond_resched();
1024 	}
1025 #endif
1026 	for (b = 0; b < wc->n_blocks; b++) {
1027 		struct wc_entry *e = &wc->entries[b];
1028 		if (!writecache_entry_is_committed(wc, e)) {
1029 			if (read_seq_count(wc, e) != -1) {
1030 erase_this:
1031 				clear_seq_count(wc, e);
1032 				need_flush = true;
1033 			}
1034 			writecache_add_to_freelist(wc, e);
1035 		} else {
1036 			struct wc_entry *old;
1037 
1038 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1039 			if (!old) {
1040 				writecache_insert_entry(wc, e);
1041 			} else {
1042 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1043 					writecache_error(wc, -EINVAL,
1044 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1045 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1046 						 (unsigned long long)read_seq_count(wc, e));
1047 				}
1048 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1049 					goto erase_this;
1050 				} else {
1051 					writecache_free_entry(wc, old);
1052 					writecache_insert_entry(wc, e);
1053 					need_flush = true;
1054 				}
1055 			}
1056 		}
1057 		cond_resched();
1058 	}
1059 
1060 	if (need_flush) {
1061 		writecache_flush_all_metadata(wc);
1062 		writecache_commit_flushed(wc, false);
1063 	}
1064 
1065 	writecache_verify_watermark(wc);
1066 
1067 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1068 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1069 
1070 	wc_unlock(wc);
1071 }
1072 
1073 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1074 {
1075 	if (argc != 1)
1076 		return -EINVAL;
1077 
1078 	wc_lock(wc);
1079 	if (dm_suspended(wc->ti)) {
1080 		wc_unlock(wc);
1081 		return -EBUSY;
1082 	}
1083 	if (writecache_has_error(wc)) {
1084 		wc_unlock(wc);
1085 		return -EIO;
1086 	}
1087 
1088 	writecache_flush(wc);
1089 	wc->writeback_all++;
1090 	queue_work(wc->writeback_wq, &wc->writeback_work);
1091 	wc_unlock(wc);
1092 
1093 	flush_workqueue(wc->writeback_wq);
1094 
1095 	wc_lock(wc);
1096 	wc->writeback_all--;
1097 	if (writecache_has_error(wc)) {
1098 		wc_unlock(wc);
1099 		return -EIO;
1100 	}
1101 	wc_unlock(wc);
1102 
1103 	return 0;
1104 }
1105 
1106 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1107 {
1108 	if (argc != 1)
1109 		return -EINVAL;
1110 
1111 	wc_lock(wc);
1112 	wc->flush_on_suspend = true;
1113 	wc_unlock(wc);
1114 
1115 	return 0;
1116 }
1117 
1118 static void activate_cleaner(struct dm_writecache *wc)
1119 {
1120 	wc->flush_on_suspend = true;
1121 	wc->cleaner = true;
1122 	wc->freelist_high_watermark = wc->n_blocks;
1123 	wc->freelist_low_watermark = wc->n_blocks;
1124 }
1125 
1126 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1127 {
1128 	if (argc != 1)
1129 		return -EINVAL;
1130 
1131 	wc_lock(wc);
1132 	activate_cleaner(wc);
1133 	if (!dm_suspended(wc->ti))
1134 		writecache_verify_watermark(wc);
1135 	wc_unlock(wc);
1136 
1137 	return 0;
1138 }
1139 
1140 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1141 			      char *result, unsigned maxlen)
1142 {
1143 	int r = -EINVAL;
1144 	struct dm_writecache *wc = ti->private;
1145 
1146 	if (!strcasecmp(argv[0], "flush"))
1147 		r = process_flush_mesg(argc, argv, wc);
1148 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1149 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1150 	else if (!strcasecmp(argv[0], "cleaner"))
1151 		r = process_cleaner_mesg(argc, argv, wc);
1152 	else
1153 		DMERR("unrecognised message received: %s", argv[0]);
1154 
1155 	return r;
1156 }
1157 
1158 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1159 {
1160 	/*
1161 	 * clflushopt performs better with block size 1024, 2048, 4096
1162 	 * non-temporal stores perform better with block size 512
1163 	 *
1164 	 * block size   512             1024            2048            4096
1165 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1166 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1167 	 *
1168 	 * We see that movnti performs better for 512-byte blocks, and
1169 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1170 	 * prefer clflushopt for sizes >= 768.
1171 	 *
1172 	 * NOTE: this happens to be the case now (with dm-writecache's single
1173 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1174 	 * enabled to use movdir64b which might invalidate this performance
1175 	 * advantage seen with cache-allocating-writes plus flushing.
1176 	 */
1177 #ifdef CONFIG_X86
1178 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1179 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1180 	    likely(size >= 768)) {
1181 		do {
1182 			memcpy((void *)dest, (void *)source, 64);
1183 			clflushopt((void *)dest);
1184 			dest += 64;
1185 			source += 64;
1186 			size -= 64;
1187 		} while (size >= 64);
1188 		return;
1189 	}
1190 #endif
1191 	memcpy_flushcache(dest, source, size);
1192 }
1193 
1194 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1195 {
1196 	void *buf;
1197 	unsigned long flags;
1198 	unsigned size;
1199 	int rw = bio_data_dir(bio);
1200 	unsigned remaining_size = wc->block_size;
1201 
1202 	do {
1203 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1204 		buf = bvec_kmap_irq(&bv, &flags);
1205 		size = bv.bv_len;
1206 		if (unlikely(size > remaining_size))
1207 			size = remaining_size;
1208 
1209 		if (rw == READ) {
1210 			int r;
1211 			r = copy_mc_to_kernel(buf, data, size);
1212 			flush_dcache_page(bio_page(bio));
1213 			if (unlikely(r)) {
1214 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1215 				bio->bi_status = BLK_STS_IOERR;
1216 			}
1217 		} else {
1218 			flush_dcache_page(bio_page(bio));
1219 			memcpy_flushcache_optimized(data, buf, size);
1220 		}
1221 
1222 		bvec_kunmap_irq(buf, &flags);
1223 
1224 		data = (char *)data + size;
1225 		remaining_size -= size;
1226 		bio_advance(bio, size);
1227 	} while (unlikely(remaining_size));
1228 }
1229 
1230 static int writecache_flush_thread(void *data)
1231 {
1232 	struct dm_writecache *wc = data;
1233 
1234 	while (1) {
1235 		struct bio *bio;
1236 
1237 		wc_lock(wc);
1238 		bio = bio_list_pop(&wc->flush_list);
1239 		if (!bio) {
1240 			set_current_state(TASK_INTERRUPTIBLE);
1241 			wc_unlock(wc);
1242 
1243 			if (unlikely(kthread_should_stop())) {
1244 				set_current_state(TASK_RUNNING);
1245 				break;
1246 			}
1247 
1248 			schedule();
1249 			continue;
1250 		}
1251 
1252 		if (bio_op(bio) == REQ_OP_DISCARD) {
1253 			writecache_discard(wc, bio->bi_iter.bi_sector,
1254 					   bio_end_sector(bio));
1255 			wc_unlock(wc);
1256 			bio_set_dev(bio, wc->dev->bdev);
1257 			submit_bio_noacct(bio);
1258 		} else {
1259 			writecache_flush(wc);
1260 			wc_unlock(wc);
1261 			if (writecache_has_error(wc))
1262 				bio->bi_status = BLK_STS_IOERR;
1263 			bio_endio(bio);
1264 		}
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1271 {
1272 	if (bio_list_empty(&wc->flush_list))
1273 		wake_up_process(wc->flush_thread);
1274 	bio_list_add(&wc->flush_list, bio);
1275 }
1276 
1277 static int writecache_map(struct dm_target *ti, struct bio *bio)
1278 {
1279 	struct wc_entry *e;
1280 	struct dm_writecache *wc = ti->private;
1281 
1282 	bio->bi_private = NULL;
1283 
1284 	wc_lock(wc);
1285 
1286 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1287 		if (writecache_has_error(wc))
1288 			goto unlock_error;
1289 		if (WC_MODE_PMEM(wc)) {
1290 			writecache_flush(wc);
1291 			if (writecache_has_error(wc))
1292 				goto unlock_error;
1293 			goto unlock_submit;
1294 		} else {
1295 			writecache_offload_bio(wc, bio);
1296 			goto unlock_return;
1297 		}
1298 	}
1299 
1300 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1301 
1302 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1303 				(wc->block_size / 512 - 1)) != 0)) {
1304 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1305 		      (unsigned long long)bio->bi_iter.bi_sector,
1306 		      bio->bi_iter.bi_size, wc->block_size);
1307 		goto unlock_error;
1308 	}
1309 
1310 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1311 		if (writecache_has_error(wc))
1312 			goto unlock_error;
1313 		if (WC_MODE_PMEM(wc)) {
1314 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1315 			goto unlock_remap_origin;
1316 		} else {
1317 			writecache_offload_bio(wc, bio);
1318 			goto unlock_return;
1319 		}
1320 	}
1321 
1322 	if (bio_data_dir(bio) == READ) {
1323 read_next_block:
1324 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1325 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1326 			if (WC_MODE_PMEM(wc)) {
1327 				bio_copy_block(wc, bio, memory_data(wc, e));
1328 				if (bio->bi_iter.bi_size)
1329 					goto read_next_block;
1330 				goto unlock_submit;
1331 			} else {
1332 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1333 				bio_set_dev(bio, wc->ssd_dev->bdev);
1334 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1335 				if (!writecache_entry_is_committed(wc, e))
1336 					writecache_wait_for_ios(wc, WRITE);
1337 				goto unlock_remap;
1338 			}
1339 		} else {
1340 			if (e) {
1341 				sector_t next_boundary =
1342 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1343 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1344 					dm_accept_partial_bio(bio, next_boundary);
1345 				}
1346 			}
1347 			goto unlock_remap_origin;
1348 		}
1349 	} else {
1350 		do {
1351 			bool found_entry = false;
1352 			if (writecache_has_error(wc))
1353 				goto unlock_error;
1354 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1355 			if (e) {
1356 				if (!writecache_entry_is_committed(wc, e))
1357 					goto bio_copy;
1358 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1359 					wc->overwrote_committed = true;
1360 					goto bio_copy;
1361 				}
1362 				found_entry = true;
1363 			} else {
1364 				if (unlikely(wc->cleaner))
1365 					goto direct_write;
1366 			}
1367 			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1368 			if (unlikely(!e)) {
1369 				if (!found_entry) {
1370 direct_write:
1371 					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1372 					if (e) {
1373 						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1374 						BUG_ON(!next_boundary);
1375 						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1376 							dm_accept_partial_bio(bio, next_boundary);
1377 						}
1378 					}
1379 					goto unlock_remap_origin;
1380 				}
1381 				writecache_wait_on_freelist(wc);
1382 				continue;
1383 			}
1384 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1385 			writecache_insert_entry(wc, e);
1386 			wc->uncommitted_blocks++;
1387 bio_copy:
1388 			if (WC_MODE_PMEM(wc)) {
1389 				bio_copy_block(wc, bio, memory_data(wc, e));
1390 			} else {
1391 				unsigned bio_size = wc->block_size;
1392 				sector_t start_cache_sec = cache_sector(wc, e);
1393 				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1394 
1395 				while (bio_size < bio->bi_iter.bi_size) {
1396 					struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1397 					if (!f)
1398 						break;
1399 					write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1400 									(bio_size >> SECTOR_SHIFT), wc->seq_count);
1401 					writecache_insert_entry(wc, f);
1402 					wc->uncommitted_blocks++;
1403 					bio_size += wc->block_size;
1404 					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1405 				}
1406 
1407 				bio_set_dev(bio, wc->ssd_dev->bdev);
1408 				bio->bi_iter.bi_sector = start_cache_sec;
1409 				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1410 
1411 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1412 					wc->uncommitted_blocks = 0;
1413 					queue_work(wc->writeback_wq, &wc->flush_work);
1414 				} else {
1415 					writecache_schedule_autocommit(wc);
1416 				}
1417 				goto unlock_remap;
1418 			}
1419 		} while (bio->bi_iter.bi_size);
1420 
1421 		if (unlikely(bio->bi_opf & REQ_FUA ||
1422 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1423 			writecache_flush(wc);
1424 		else
1425 			writecache_schedule_autocommit(wc);
1426 		goto unlock_submit;
1427 	}
1428 
1429 unlock_remap_origin:
1430 	bio_set_dev(bio, wc->dev->bdev);
1431 	wc_unlock(wc);
1432 	return DM_MAPIO_REMAPPED;
1433 
1434 unlock_remap:
1435 	/* make sure that writecache_end_io decrements bio_in_progress: */
1436 	bio->bi_private = (void *)1;
1437 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1438 	wc_unlock(wc);
1439 	return DM_MAPIO_REMAPPED;
1440 
1441 unlock_submit:
1442 	wc_unlock(wc);
1443 	bio_endio(bio);
1444 	return DM_MAPIO_SUBMITTED;
1445 
1446 unlock_return:
1447 	wc_unlock(wc);
1448 	return DM_MAPIO_SUBMITTED;
1449 
1450 unlock_error:
1451 	wc_unlock(wc);
1452 	bio_io_error(bio);
1453 	return DM_MAPIO_SUBMITTED;
1454 }
1455 
1456 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1457 {
1458 	struct dm_writecache *wc = ti->private;
1459 
1460 	if (bio->bi_private != NULL) {
1461 		int dir = bio_data_dir(bio);
1462 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1463 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1464 				wake_up(&wc->bio_in_progress_wait[dir]);
1465 	}
1466 	return 0;
1467 }
1468 
1469 static int writecache_iterate_devices(struct dm_target *ti,
1470 				      iterate_devices_callout_fn fn, void *data)
1471 {
1472 	struct dm_writecache *wc = ti->private;
1473 
1474 	return fn(ti, wc->dev, 0, ti->len, data);
1475 }
1476 
1477 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1478 {
1479 	struct dm_writecache *wc = ti->private;
1480 
1481 	if (limits->logical_block_size < wc->block_size)
1482 		limits->logical_block_size = wc->block_size;
1483 
1484 	if (limits->physical_block_size < wc->block_size)
1485 		limits->physical_block_size = wc->block_size;
1486 
1487 	if (limits->io_min < wc->block_size)
1488 		limits->io_min = wc->block_size;
1489 }
1490 
1491 
1492 static void writecache_writeback_endio(struct bio *bio)
1493 {
1494 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1495 	struct dm_writecache *wc = wb->wc;
1496 	unsigned long flags;
1497 
1498 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1499 	if (unlikely(list_empty(&wc->endio_list)))
1500 		wake_up_process(wc->endio_thread);
1501 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1502 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1503 }
1504 
1505 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1506 {
1507 	struct copy_struct *c = ptr;
1508 	struct dm_writecache *wc = c->wc;
1509 
1510 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1511 
1512 	raw_spin_lock_irq(&wc->endio_list_lock);
1513 	if (unlikely(list_empty(&wc->endio_list)))
1514 		wake_up_process(wc->endio_thread);
1515 	list_add_tail(&c->endio_entry, &wc->endio_list);
1516 	raw_spin_unlock_irq(&wc->endio_list_lock);
1517 }
1518 
1519 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1520 {
1521 	unsigned i;
1522 	struct writeback_struct *wb;
1523 	struct wc_entry *e;
1524 	unsigned long n_walked = 0;
1525 
1526 	do {
1527 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1528 		list_del(&wb->endio_entry);
1529 
1530 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1531 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1532 					"write error %d", wb->bio.bi_status);
1533 		i = 0;
1534 		do {
1535 			e = wb->wc_list[i];
1536 			BUG_ON(!e->write_in_progress);
1537 			e->write_in_progress = false;
1538 			INIT_LIST_HEAD(&e->lru);
1539 			if (!writecache_has_error(wc))
1540 				writecache_free_entry(wc, e);
1541 			BUG_ON(!wc->writeback_size);
1542 			wc->writeback_size--;
1543 			n_walked++;
1544 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1545 				writecache_commit_flushed(wc, false);
1546 				wc_unlock(wc);
1547 				wc_lock(wc);
1548 				n_walked = 0;
1549 			}
1550 		} while (++i < wb->wc_list_n);
1551 
1552 		if (wb->wc_list != wb->wc_list_inline)
1553 			kfree(wb->wc_list);
1554 		bio_put(&wb->bio);
1555 	} while (!list_empty(list));
1556 }
1557 
1558 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1559 {
1560 	struct copy_struct *c;
1561 	struct wc_entry *e;
1562 
1563 	do {
1564 		c = list_entry(list->next, struct copy_struct, endio_entry);
1565 		list_del(&c->endio_entry);
1566 
1567 		if (unlikely(c->error))
1568 			writecache_error(wc, c->error, "copy error");
1569 
1570 		e = c->e;
1571 		do {
1572 			BUG_ON(!e->write_in_progress);
1573 			e->write_in_progress = false;
1574 			INIT_LIST_HEAD(&e->lru);
1575 			if (!writecache_has_error(wc))
1576 				writecache_free_entry(wc, e);
1577 
1578 			BUG_ON(!wc->writeback_size);
1579 			wc->writeback_size--;
1580 			e++;
1581 		} while (--c->n_entries);
1582 		mempool_free(c, &wc->copy_pool);
1583 	} while (!list_empty(list));
1584 }
1585 
1586 static int writecache_endio_thread(void *data)
1587 {
1588 	struct dm_writecache *wc = data;
1589 
1590 	while (1) {
1591 		struct list_head list;
1592 
1593 		raw_spin_lock_irq(&wc->endio_list_lock);
1594 		if (!list_empty(&wc->endio_list))
1595 			goto pop_from_list;
1596 		set_current_state(TASK_INTERRUPTIBLE);
1597 		raw_spin_unlock_irq(&wc->endio_list_lock);
1598 
1599 		if (unlikely(kthread_should_stop())) {
1600 			set_current_state(TASK_RUNNING);
1601 			break;
1602 		}
1603 
1604 		schedule();
1605 
1606 		continue;
1607 
1608 pop_from_list:
1609 		list = wc->endio_list;
1610 		list.next->prev = list.prev->next = &list;
1611 		INIT_LIST_HEAD(&wc->endio_list);
1612 		raw_spin_unlock_irq(&wc->endio_list_lock);
1613 
1614 		if (!WC_MODE_FUA(wc))
1615 			writecache_disk_flush(wc, wc->dev);
1616 
1617 		wc_lock(wc);
1618 
1619 		if (WC_MODE_PMEM(wc)) {
1620 			__writecache_endio_pmem(wc, &list);
1621 		} else {
1622 			__writecache_endio_ssd(wc, &list);
1623 			writecache_wait_for_ios(wc, READ);
1624 		}
1625 
1626 		writecache_commit_flushed(wc, false);
1627 
1628 		wc_unlock(wc);
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1635 {
1636 	struct dm_writecache *wc = wb->wc;
1637 	unsigned block_size = wc->block_size;
1638 	void *address = memory_data(wc, e);
1639 
1640 	persistent_memory_flush_cache(address, block_size);
1641 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1642 			    block_size, persistent_memory_page_offset(address)) != 0;
1643 }
1644 
1645 struct writeback_list {
1646 	struct list_head list;
1647 	size_t size;
1648 };
1649 
1650 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1651 {
1652 	if (unlikely(wc->max_writeback_jobs)) {
1653 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1654 			wc_lock(wc);
1655 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1656 				writecache_wait_on_freelist(wc);
1657 			wc_unlock(wc);
1658 		}
1659 	}
1660 	cond_resched();
1661 }
1662 
1663 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1664 {
1665 	struct wc_entry *e, *f;
1666 	struct bio *bio;
1667 	struct writeback_struct *wb;
1668 	unsigned max_pages;
1669 
1670 	while (wbl->size) {
1671 		wbl->size--;
1672 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1673 		list_del(&e->lru);
1674 
1675 		max_pages = e->wc_list_contiguous;
1676 
1677 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1678 		wb = container_of(bio, struct writeback_struct, bio);
1679 		wb->wc = wc;
1680 		bio->bi_end_io = writecache_writeback_endio;
1681 		bio_set_dev(bio, wc->dev->bdev);
1682 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1683 		if (max_pages <= WB_LIST_INLINE ||
1684 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1685 							   GFP_NOIO | __GFP_NORETRY |
1686 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1687 			wb->wc_list = wb->wc_list_inline;
1688 			max_pages = WB_LIST_INLINE;
1689 		}
1690 
1691 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1692 
1693 		wb->wc_list[0] = e;
1694 		wb->wc_list_n = 1;
1695 
1696 		while (wbl->size && wb->wc_list_n < max_pages) {
1697 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1698 			if (read_original_sector(wc, f) !=
1699 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1700 				break;
1701 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1702 				break;
1703 			wbl->size--;
1704 			list_del(&f->lru);
1705 			wb->wc_list[wb->wc_list_n++] = f;
1706 			e = f;
1707 		}
1708 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1709 		if (writecache_has_error(wc)) {
1710 			bio->bi_status = BLK_STS_IOERR;
1711 			bio_endio(bio);
1712 		} else {
1713 			submit_bio(bio);
1714 		}
1715 
1716 		__writeback_throttle(wc, wbl);
1717 	}
1718 }
1719 
1720 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1721 {
1722 	struct wc_entry *e, *f;
1723 	struct dm_io_region from, to;
1724 	struct copy_struct *c;
1725 
1726 	while (wbl->size) {
1727 		unsigned n_sectors;
1728 
1729 		wbl->size--;
1730 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1731 		list_del(&e->lru);
1732 
1733 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1734 
1735 		from.bdev = wc->ssd_dev->bdev;
1736 		from.sector = cache_sector(wc, e);
1737 		from.count = n_sectors;
1738 		to.bdev = wc->dev->bdev;
1739 		to.sector = read_original_sector(wc, e);
1740 		to.count = n_sectors;
1741 
1742 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1743 		c->wc = wc;
1744 		c->e = e;
1745 		c->n_entries = e->wc_list_contiguous;
1746 
1747 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1748 			wbl->size--;
1749 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1750 			BUG_ON(f != e + 1);
1751 			list_del(&f->lru);
1752 			e = f;
1753 		}
1754 
1755 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1756 
1757 		__writeback_throttle(wc, wbl);
1758 	}
1759 }
1760 
1761 static void writecache_writeback(struct work_struct *work)
1762 {
1763 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1764 	struct blk_plug plug;
1765 	struct wc_entry *f, *g, *e = NULL;
1766 	struct rb_node *node, *next_node;
1767 	struct list_head skipped;
1768 	struct writeback_list wbl;
1769 	unsigned long n_walked;
1770 
1771 	wc_lock(wc);
1772 restart:
1773 	if (writecache_has_error(wc)) {
1774 		wc_unlock(wc);
1775 		return;
1776 	}
1777 
1778 	if (unlikely(wc->writeback_all)) {
1779 		if (writecache_wait_for_writeback(wc))
1780 			goto restart;
1781 	}
1782 
1783 	if (wc->overwrote_committed) {
1784 		writecache_wait_for_ios(wc, WRITE);
1785 	}
1786 
1787 	n_walked = 0;
1788 	INIT_LIST_HEAD(&skipped);
1789 	INIT_LIST_HEAD(&wbl.list);
1790 	wbl.size = 0;
1791 	while (!list_empty(&wc->lru) &&
1792 	       (wc->writeback_all ||
1793 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1794 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1795 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1796 
1797 		n_walked++;
1798 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1799 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1800 			queue_work(wc->writeback_wq, &wc->writeback_work);
1801 			break;
1802 		}
1803 
1804 		if (unlikely(wc->writeback_all)) {
1805 			if (unlikely(!e)) {
1806 				writecache_flush(wc);
1807 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1808 			} else
1809 				e = g;
1810 		} else
1811 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1812 		BUG_ON(e->write_in_progress);
1813 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1814 			writecache_flush(wc);
1815 		}
1816 		node = rb_prev(&e->rb_node);
1817 		if (node) {
1818 			f = container_of(node, struct wc_entry, rb_node);
1819 			if (unlikely(read_original_sector(wc, f) ==
1820 				     read_original_sector(wc, e))) {
1821 				BUG_ON(!f->write_in_progress);
1822 				list_del(&e->lru);
1823 				list_add(&e->lru, &skipped);
1824 				cond_resched();
1825 				continue;
1826 			}
1827 		}
1828 		wc->writeback_size++;
1829 		list_del(&e->lru);
1830 		list_add(&e->lru, &wbl.list);
1831 		wbl.size++;
1832 		e->write_in_progress = true;
1833 		e->wc_list_contiguous = 1;
1834 
1835 		f = e;
1836 
1837 		while (1) {
1838 			next_node = rb_next(&f->rb_node);
1839 			if (unlikely(!next_node))
1840 				break;
1841 			g = container_of(next_node, struct wc_entry, rb_node);
1842 			if (unlikely(read_original_sector(wc, g) ==
1843 			    read_original_sector(wc, f))) {
1844 				f = g;
1845 				continue;
1846 			}
1847 			if (read_original_sector(wc, g) !=
1848 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1849 				break;
1850 			if (unlikely(g->write_in_progress))
1851 				break;
1852 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1853 				break;
1854 
1855 			if (!WC_MODE_PMEM(wc)) {
1856 				if (g != f + 1)
1857 					break;
1858 			}
1859 
1860 			n_walked++;
1861 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1862 			//	break;
1863 
1864 			wc->writeback_size++;
1865 			list_del(&g->lru);
1866 			list_add(&g->lru, &wbl.list);
1867 			wbl.size++;
1868 			g->write_in_progress = true;
1869 			g->wc_list_contiguous = BIO_MAX_PAGES;
1870 			f = g;
1871 			e->wc_list_contiguous++;
1872 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1873 				if (unlikely(wc->writeback_all)) {
1874 					next_node = rb_next(&f->rb_node);
1875 					if (likely(next_node))
1876 						g = container_of(next_node, struct wc_entry, rb_node);
1877 				}
1878 				break;
1879 			}
1880 		}
1881 		cond_resched();
1882 	}
1883 
1884 	if (!list_empty(&skipped)) {
1885 		list_splice_tail(&skipped, &wc->lru);
1886 		/*
1887 		 * If we didn't do any progress, we must wait until some
1888 		 * writeback finishes to avoid burning CPU in a loop
1889 		 */
1890 		if (unlikely(!wbl.size))
1891 			writecache_wait_for_writeback(wc);
1892 	}
1893 
1894 	wc_unlock(wc);
1895 
1896 	blk_start_plug(&plug);
1897 
1898 	if (WC_MODE_PMEM(wc))
1899 		__writecache_writeback_pmem(wc, &wbl);
1900 	else
1901 		__writecache_writeback_ssd(wc, &wbl);
1902 
1903 	blk_finish_plug(&plug);
1904 
1905 	if (unlikely(wc->writeback_all)) {
1906 		wc_lock(wc);
1907 		while (writecache_wait_for_writeback(wc));
1908 		wc_unlock(wc);
1909 	}
1910 }
1911 
1912 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1913 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1914 {
1915 	uint64_t n_blocks, offset;
1916 	struct wc_entry e;
1917 
1918 	n_blocks = device_size;
1919 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1920 
1921 	while (1) {
1922 		if (!n_blocks)
1923 			return -ENOSPC;
1924 		/* Verify the following entries[n_blocks] won't overflow */
1925 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1926 				 sizeof(struct wc_memory_entry)))
1927 			return -EFBIG;
1928 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1929 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1930 		if (offset + n_blocks * block_size <= device_size)
1931 			break;
1932 		n_blocks--;
1933 	}
1934 
1935 	/* check if the bit field overflows */
1936 	e.index = n_blocks;
1937 	if (e.index != n_blocks)
1938 		return -EFBIG;
1939 
1940 	if (n_blocks_p)
1941 		*n_blocks_p = n_blocks;
1942 	if (n_metadata_blocks_p)
1943 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1944 	return 0;
1945 }
1946 
1947 static int init_memory(struct dm_writecache *wc)
1948 {
1949 	size_t b;
1950 	int r;
1951 
1952 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1953 	if (r)
1954 		return r;
1955 
1956 	r = writecache_alloc_entries(wc);
1957 	if (r)
1958 		return r;
1959 
1960 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1961 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1962 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1963 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1964 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1965 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1966 
1967 	for (b = 0; b < wc->n_blocks; b++) {
1968 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1969 		cond_resched();
1970 	}
1971 
1972 	writecache_flush_all_metadata(wc);
1973 	writecache_commit_flushed(wc, false);
1974 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1975 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1976 	writecache_commit_flushed(wc, false);
1977 
1978 	return 0;
1979 }
1980 
1981 static void writecache_dtr(struct dm_target *ti)
1982 {
1983 	struct dm_writecache *wc = ti->private;
1984 
1985 	if (!wc)
1986 		return;
1987 
1988 	if (wc->endio_thread)
1989 		kthread_stop(wc->endio_thread);
1990 
1991 	if (wc->flush_thread)
1992 		kthread_stop(wc->flush_thread);
1993 
1994 	bioset_exit(&wc->bio_set);
1995 
1996 	mempool_exit(&wc->copy_pool);
1997 
1998 	if (wc->writeback_wq)
1999 		destroy_workqueue(wc->writeback_wq);
2000 
2001 	if (wc->dev)
2002 		dm_put_device(ti, wc->dev);
2003 
2004 	if (wc->ssd_dev)
2005 		dm_put_device(ti, wc->ssd_dev);
2006 
2007 	if (wc->entries)
2008 		vfree(wc->entries);
2009 
2010 	if (wc->memory_map) {
2011 		if (WC_MODE_PMEM(wc))
2012 			persistent_memory_release(wc);
2013 		else
2014 			vfree(wc->memory_map);
2015 	}
2016 
2017 	if (wc->dm_kcopyd)
2018 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2019 
2020 	if (wc->dm_io)
2021 		dm_io_client_destroy(wc->dm_io);
2022 
2023 	if (wc->dirty_bitmap)
2024 		vfree(wc->dirty_bitmap);
2025 
2026 	kfree(wc);
2027 }
2028 
2029 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2030 {
2031 	struct dm_writecache *wc;
2032 	struct dm_arg_set as;
2033 	const char *string;
2034 	unsigned opt_params;
2035 	size_t offset, data_size;
2036 	int i, r;
2037 	char dummy;
2038 	int high_wm_percent = HIGH_WATERMARK;
2039 	int low_wm_percent = LOW_WATERMARK;
2040 	uint64_t x;
2041 	struct wc_memory_superblock s;
2042 
2043 	static struct dm_arg _args[] = {
2044 		{0, 16, "Invalid number of feature args"},
2045 	};
2046 
2047 	as.argc = argc;
2048 	as.argv = argv;
2049 
2050 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2051 	if (!wc) {
2052 		ti->error = "Cannot allocate writecache structure";
2053 		r = -ENOMEM;
2054 		goto bad;
2055 	}
2056 	ti->private = wc;
2057 	wc->ti = ti;
2058 
2059 	mutex_init(&wc->lock);
2060 	wc->max_age = MAX_AGE_UNSPECIFIED;
2061 	writecache_poison_lists(wc);
2062 	init_waitqueue_head(&wc->freelist_wait);
2063 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2064 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2065 
2066 	for (i = 0; i < 2; i++) {
2067 		atomic_set(&wc->bio_in_progress[i], 0);
2068 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2069 	}
2070 
2071 	wc->dm_io = dm_io_client_create();
2072 	if (IS_ERR(wc->dm_io)) {
2073 		r = PTR_ERR(wc->dm_io);
2074 		ti->error = "Unable to allocate dm-io client";
2075 		wc->dm_io = NULL;
2076 		goto bad;
2077 	}
2078 
2079 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2080 	if (!wc->writeback_wq) {
2081 		r = -ENOMEM;
2082 		ti->error = "Could not allocate writeback workqueue";
2083 		goto bad;
2084 	}
2085 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2086 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2087 
2088 	raw_spin_lock_init(&wc->endio_list_lock);
2089 	INIT_LIST_HEAD(&wc->endio_list);
2090 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2091 	if (IS_ERR(wc->endio_thread)) {
2092 		r = PTR_ERR(wc->endio_thread);
2093 		wc->endio_thread = NULL;
2094 		ti->error = "Couldn't spawn endio thread";
2095 		goto bad;
2096 	}
2097 	wake_up_process(wc->endio_thread);
2098 
2099 	/*
2100 	 * Parse the mode (pmem or ssd)
2101 	 */
2102 	string = dm_shift_arg(&as);
2103 	if (!string)
2104 		goto bad_arguments;
2105 
2106 	if (!strcasecmp(string, "s")) {
2107 		wc->pmem_mode = false;
2108 	} else if (!strcasecmp(string, "p")) {
2109 #ifdef DM_WRITECACHE_HAS_PMEM
2110 		wc->pmem_mode = true;
2111 		wc->writeback_fua = true;
2112 #else
2113 		/*
2114 		 * If the architecture doesn't support persistent memory or
2115 		 * the kernel doesn't support any DAX drivers, this driver can
2116 		 * only be used in SSD-only mode.
2117 		 */
2118 		r = -EOPNOTSUPP;
2119 		ti->error = "Persistent memory or DAX not supported on this system";
2120 		goto bad;
2121 #endif
2122 	} else {
2123 		goto bad_arguments;
2124 	}
2125 
2126 	if (WC_MODE_PMEM(wc)) {
2127 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2128 				offsetof(struct writeback_struct, bio),
2129 				BIOSET_NEED_BVECS);
2130 		if (r) {
2131 			ti->error = "Could not allocate bio set";
2132 			goto bad;
2133 		}
2134 	} else {
2135 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2136 		if (r) {
2137 			ti->error = "Could not allocate mempool";
2138 			goto bad;
2139 		}
2140 	}
2141 
2142 	/*
2143 	 * Parse the origin data device
2144 	 */
2145 	string = dm_shift_arg(&as);
2146 	if (!string)
2147 		goto bad_arguments;
2148 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2149 	if (r) {
2150 		ti->error = "Origin data device lookup failed";
2151 		goto bad;
2152 	}
2153 
2154 	/*
2155 	 * Parse cache data device (be it pmem or ssd)
2156 	 */
2157 	string = dm_shift_arg(&as);
2158 	if (!string)
2159 		goto bad_arguments;
2160 
2161 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2162 	if (r) {
2163 		ti->error = "Cache data device lookup failed";
2164 		goto bad;
2165 	}
2166 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2167 
2168 	/*
2169 	 * Parse the cache block size
2170 	 */
2171 	string = dm_shift_arg(&as);
2172 	if (!string)
2173 		goto bad_arguments;
2174 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2175 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2176 	    (wc->block_size & (wc->block_size - 1))) {
2177 		r = -EINVAL;
2178 		ti->error = "Invalid block size";
2179 		goto bad;
2180 	}
2181 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2182 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2183 		r = -EINVAL;
2184 		ti->error = "Block size is smaller than device logical block size";
2185 		goto bad;
2186 	}
2187 	wc->block_size_bits = __ffs(wc->block_size);
2188 
2189 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2190 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2191 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2192 
2193 	/*
2194 	 * Parse optional arguments
2195 	 */
2196 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2197 	if (r)
2198 		goto bad;
2199 
2200 	while (opt_params) {
2201 		string = dm_shift_arg(&as), opt_params--;
2202 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2203 			unsigned long long start_sector;
2204 			string = dm_shift_arg(&as), opt_params--;
2205 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2206 				goto invalid_optional;
2207 			wc->start_sector = start_sector;
2208 			if (wc->start_sector != start_sector ||
2209 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2210 				goto invalid_optional;
2211 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2212 			string = dm_shift_arg(&as), opt_params--;
2213 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2214 				goto invalid_optional;
2215 			if (high_wm_percent < 0 || high_wm_percent > 100)
2216 				goto invalid_optional;
2217 			wc->high_wm_percent_set = true;
2218 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2219 			string = dm_shift_arg(&as), opt_params--;
2220 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2221 				goto invalid_optional;
2222 			if (low_wm_percent < 0 || low_wm_percent > 100)
2223 				goto invalid_optional;
2224 			wc->low_wm_percent_set = true;
2225 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2226 			string = dm_shift_arg(&as), opt_params--;
2227 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2228 				goto invalid_optional;
2229 			wc->max_writeback_jobs_set = true;
2230 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2231 			string = dm_shift_arg(&as), opt_params--;
2232 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2233 				goto invalid_optional;
2234 			wc->autocommit_blocks_set = true;
2235 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2236 			unsigned autocommit_msecs;
2237 			string = dm_shift_arg(&as), opt_params--;
2238 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2239 				goto invalid_optional;
2240 			if (autocommit_msecs > 3600000)
2241 				goto invalid_optional;
2242 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2243 			wc->autocommit_time_set = true;
2244 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2245 			unsigned max_age_msecs;
2246 			string = dm_shift_arg(&as), opt_params--;
2247 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2248 				goto invalid_optional;
2249 			if (max_age_msecs > 86400000)
2250 				goto invalid_optional;
2251 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2252 		} else if (!strcasecmp(string, "cleaner")) {
2253 			wc->cleaner = true;
2254 		} else if (!strcasecmp(string, "fua")) {
2255 			if (WC_MODE_PMEM(wc)) {
2256 				wc->writeback_fua = true;
2257 				wc->writeback_fua_set = true;
2258 			} else goto invalid_optional;
2259 		} else if (!strcasecmp(string, "nofua")) {
2260 			if (WC_MODE_PMEM(wc)) {
2261 				wc->writeback_fua = false;
2262 				wc->writeback_fua_set = true;
2263 			} else goto invalid_optional;
2264 		} else {
2265 invalid_optional:
2266 			r = -EINVAL;
2267 			ti->error = "Invalid optional argument";
2268 			goto bad;
2269 		}
2270 	}
2271 
2272 	if (high_wm_percent < low_wm_percent) {
2273 		r = -EINVAL;
2274 		ti->error = "High watermark must be greater than or equal to low watermark";
2275 		goto bad;
2276 	}
2277 
2278 	if (WC_MODE_PMEM(wc)) {
2279 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2280 			r = -EOPNOTSUPP;
2281 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2282 			goto bad;
2283 		}
2284 
2285 		r = persistent_memory_claim(wc);
2286 		if (r) {
2287 			ti->error = "Unable to map persistent memory for cache";
2288 			goto bad;
2289 		}
2290 	} else {
2291 		size_t n_blocks, n_metadata_blocks;
2292 		uint64_t n_bitmap_bits;
2293 
2294 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2295 
2296 		bio_list_init(&wc->flush_list);
2297 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2298 		if (IS_ERR(wc->flush_thread)) {
2299 			r = PTR_ERR(wc->flush_thread);
2300 			wc->flush_thread = NULL;
2301 			ti->error = "Couldn't spawn flush thread";
2302 			goto bad;
2303 		}
2304 		wake_up_process(wc->flush_thread);
2305 
2306 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2307 					  &n_blocks, &n_metadata_blocks);
2308 		if (r) {
2309 			ti->error = "Invalid device size";
2310 			goto bad;
2311 		}
2312 
2313 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2314 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2315 		/* this is limitation of test_bit functions */
2316 		if (n_bitmap_bits > 1U << 31) {
2317 			r = -EFBIG;
2318 			ti->error = "Invalid device size";
2319 			goto bad;
2320 		}
2321 
2322 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2323 		if (!wc->memory_map) {
2324 			r = -ENOMEM;
2325 			ti->error = "Unable to allocate memory for metadata";
2326 			goto bad;
2327 		}
2328 
2329 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2330 		if (IS_ERR(wc->dm_kcopyd)) {
2331 			r = PTR_ERR(wc->dm_kcopyd);
2332 			ti->error = "Unable to allocate dm-kcopyd client";
2333 			wc->dm_kcopyd = NULL;
2334 			goto bad;
2335 		}
2336 
2337 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2338 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2339 			BITS_PER_LONG * sizeof(unsigned long);
2340 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2341 		if (!wc->dirty_bitmap) {
2342 			r = -ENOMEM;
2343 			ti->error = "Unable to allocate dirty bitmap";
2344 			goto bad;
2345 		}
2346 
2347 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2348 		if (r) {
2349 			ti->error = "Unable to read first block of metadata";
2350 			goto bad;
2351 		}
2352 	}
2353 
2354 	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2355 	if (r) {
2356 		ti->error = "Hardware memory error when reading superblock";
2357 		goto bad;
2358 	}
2359 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2360 		r = init_memory(wc);
2361 		if (r) {
2362 			ti->error = "Unable to initialize device";
2363 			goto bad;
2364 		}
2365 		r = copy_mc_to_kernel(&s, sb(wc),
2366 				      sizeof(struct wc_memory_superblock));
2367 		if (r) {
2368 			ti->error = "Hardware memory error when reading superblock";
2369 			goto bad;
2370 		}
2371 	}
2372 
2373 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2374 		ti->error = "Invalid magic in the superblock";
2375 		r = -EINVAL;
2376 		goto bad;
2377 	}
2378 
2379 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2380 		ti->error = "Invalid version in the superblock";
2381 		r = -EINVAL;
2382 		goto bad;
2383 	}
2384 
2385 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2386 		ti->error = "Block size does not match superblock";
2387 		r = -EINVAL;
2388 		goto bad;
2389 	}
2390 
2391 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2392 
2393 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2394 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2395 overflow:
2396 		ti->error = "Overflow in size calculation";
2397 		r = -EINVAL;
2398 		goto bad;
2399 	}
2400 	offset += sizeof(struct wc_memory_superblock);
2401 	if (offset < sizeof(struct wc_memory_superblock))
2402 		goto overflow;
2403 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2404 	data_size = wc->n_blocks * (size_t)wc->block_size;
2405 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2406 	    (offset + data_size < offset))
2407 		goto overflow;
2408 	if (offset + data_size > wc->memory_map_size) {
2409 		ti->error = "Memory area is too small";
2410 		r = -EINVAL;
2411 		goto bad;
2412 	}
2413 
2414 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2415 	wc->block_start = (char *)sb(wc) + offset;
2416 
2417 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2418 	x += 50;
2419 	do_div(x, 100);
2420 	wc->freelist_high_watermark = x;
2421 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2422 	x += 50;
2423 	do_div(x, 100);
2424 	wc->freelist_low_watermark = x;
2425 
2426 	if (wc->cleaner)
2427 		activate_cleaner(wc);
2428 
2429 	r = writecache_alloc_entries(wc);
2430 	if (r) {
2431 		ti->error = "Cannot allocate memory";
2432 		goto bad;
2433 	}
2434 
2435 	ti->num_flush_bios = 1;
2436 	ti->flush_supported = true;
2437 	ti->num_discard_bios = 1;
2438 
2439 	if (WC_MODE_PMEM(wc))
2440 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2441 
2442 	return 0;
2443 
2444 bad_arguments:
2445 	r = -EINVAL;
2446 	ti->error = "Bad arguments";
2447 bad:
2448 	writecache_dtr(ti);
2449 	return r;
2450 }
2451 
2452 static void writecache_status(struct dm_target *ti, status_type_t type,
2453 			      unsigned status_flags, char *result, unsigned maxlen)
2454 {
2455 	struct dm_writecache *wc = ti->private;
2456 	unsigned extra_args;
2457 	unsigned sz = 0;
2458 	uint64_t x;
2459 
2460 	switch (type) {
2461 	case STATUSTYPE_INFO:
2462 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2463 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2464 		       (unsigned long long)wc->writeback_size);
2465 		break;
2466 	case STATUSTYPE_TABLE:
2467 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2468 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2469 		extra_args = 0;
2470 		if (wc->start_sector)
2471 			extra_args += 2;
2472 		if (wc->high_wm_percent_set && !wc->cleaner)
2473 			extra_args += 2;
2474 		if (wc->low_wm_percent_set && !wc->cleaner)
2475 			extra_args += 2;
2476 		if (wc->max_writeback_jobs_set)
2477 			extra_args += 2;
2478 		if (wc->autocommit_blocks_set)
2479 			extra_args += 2;
2480 		if (wc->autocommit_time_set)
2481 			extra_args += 2;
2482 		if (wc->max_age != MAX_AGE_UNSPECIFIED)
2483 			extra_args += 2;
2484 		if (wc->cleaner)
2485 			extra_args++;
2486 		if (wc->writeback_fua_set)
2487 			extra_args++;
2488 
2489 		DMEMIT("%u", extra_args);
2490 		if (wc->start_sector)
2491 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2492 		if (wc->high_wm_percent_set && !wc->cleaner) {
2493 			x = (uint64_t)wc->freelist_high_watermark * 100;
2494 			x += wc->n_blocks / 2;
2495 			do_div(x, (size_t)wc->n_blocks);
2496 			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2497 		}
2498 		if (wc->low_wm_percent_set && !wc->cleaner) {
2499 			x = (uint64_t)wc->freelist_low_watermark * 100;
2500 			x += wc->n_blocks / 2;
2501 			do_div(x, (size_t)wc->n_blocks);
2502 			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2503 		}
2504 		if (wc->max_writeback_jobs_set)
2505 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2506 		if (wc->autocommit_blocks_set)
2507 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2508 		if (wc->autocommit_time_set)
2509 			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2510 		if (wc->max_age != MAX_AGE_UNSPECIFIED)
2511 			DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age));
2512 		if (wc->cleaner)
2513 			DMEMIT(" cleaner");
2514 		if (wc->writeback_fua_set)
2515 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2516 		break;
2517 	}
2518 }
2519 
2520 static struct target_type writecache_target = {
2521 	.name			= "writecache",
2522 	.version		= {1, 3, 0},
2523 	.module			= THIS_MODULE,
2524 	.ctr			= writecache_ctr,
2525 	.dtr			= writecache_dtr,
2526 	.status			= writecache_status,
2527 	.postsuspend		= writecache_suspend,
2528 	.resume			= writecache_resume,
2529 	.message		= writecache_message,
2530 	.map			= writecache_map,
2531 	.end_io			= writecache_end_io,
2532 	.iterate_devices	= writecache_iterate_devices,
2533 	.io_hints		= writecache_io_hints,
2534 };
2535 
2536 static int __init dm_writecache_init(void)
2537 {
2538 	int r;
2539 
2540 	r = dm_register_target(&writecache_target);
2541 	if (r < 0) {
2542 		DMERR("register failed %d", r);
2543 		return r;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 static void __exit dm_writecache_exit(void)
2550 {
2551 	dm_unregister_target(&writecache_target);
2552 }
2553 
2554 module_init(dm_writecache_init);
2555 module_exit(dm_writecache_exit);
2556 
2557 MODULE_DESCRIPTION(DM_NAME " writecache target");
2558 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2559 MODULE_LICENSE("GPL");
2560