1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 30 #define BITMAP_GRANULARITY 65536 31 #if BITMAP_GRANULARITY < PAGE_SIZE 32 #undef BITMAP_GRANULARITY 33 #define BITMAP_GRANULARITY PAGE_SIZE 34 #endif 35 36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 37 #define DM_WRITECACHE_HAS_PMEM 38 #endif 39 40 #ifdef DM_WRITECACHE_HAS_PMEM 41 #define pmem_assign(dest, src) \ 42 do { \ 43 typeof(dest) uniq = (src); \ 44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 45 } while (0) 46 #else 47 #define pmem_assign(dest, src) ((dest) = (src)) 48 #endif 49 50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 52 #endif 53 54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 55 #define MEMORY_SUPERBLOCK_VERSION 1 56 57 struct wc_memory_entry { 58 __le64 original_sector; 59 __le64 seq_count; 60 }; 61 62 struct wc_memory_superblock { 63 union { 64 struct { 65 __le32 magic; 66 __le32 version; 67 __le32 block_size; 68 __le32 pad; 69 __le64 n_blocks; 70 __le64 seq_count; 71 }; 72 __le64 padding[8]; 73 }; 74 struct wc_memory_entry entries[0]; 75 }; 76 77 struct wc_entry { 78 struct rb_node rb_node; 79 struct list_head lru; 80 unsigned short wc_list_contiguous; 81 bool write_in_progress 82 #if BITS_PER_LONG == 64 83 :1 84 #endif 85 ; 86 unsigned long index 87 #if BITS_PER_LONG == 64 88 :47 89 #endif 90 ; 91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 92 uint64_t original_sector; 93 uint64_t seq_count; 94 #endif 95 }; 96 97 #ifdef DM_WRITECACHE_HAS_PMEM 98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 100 #else 101 #define WC_MODE_PMEM(wc) false 102 #define WC_MODE_FUA(wc) false 103 #endif 104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 105 106 struct dm_writecache { 107 struct mutex lock; 108 struct list_head lru; 109 union { 110 struct list_head freelist; 111 struct { 112 struct rb_root freetree; 113 struct wc_entry *current_free; 114 }; 115 }; 116 struct rb_root tree; 117 118 size_t freelist_size; 119 size_t writeback_size; 120 size_t freelist_high_watermark; 121 size_t freelist_low_watermark; 122 123 unsigned uncommitted_blocks; 124 unsigned autocommit_blocks; 125 unsigned max_writeback_jobs; 126 127 int error; 128 129 unsigned long autocommit_jiffies; 130 struct timer_list autocommit_timer; 131 struct wait_queue_head freelist_wait; 132 133 atomic_t bio_in_progress[2]; 134 struct wait_queue_head bio_in_progress_wait[2]; 135 136 struct dm_target *ti; 137 struct dm_dev *dev; 138 struct dm_dev *ssd_dev; 139 sector_t start_sector; 140 void *memory_map; 141 uint64_t memory_map_size; 142 size_t metadata_sectors; 143 size_t n_blocks; 144 uint64_t seq_count; 145 void *block_start; 146 struct wc_entry *entries; 147 unsigned block_size; 148 unsigned char block_size_bits; 149 150 bool pmem_mode:1; 151 bool writeback_fua:1; 152 153 bool overwrote_committed:1; 154 bool memory_vmapped:1; 155 156 bool high_wm_percent_set:1; 157 bool low_wm_percent_set:1; 158 bool max_writeback_jobs_set:1; 159 bool autocommit_blocks_set:1; 160 bool autocommit_time_set:1; 161 bool writeback_fua_set:1; 162 bool flush_on_suspend:1; 163 164 unsigned writeback_all; 165 struct workqueue_struct *writeback_wq; 166 struct work_struct writeback_work; 167 struct work_struct flush_work; 168 169 struct dm_io_client *dm_io; 170 171 raw_spinlock_t endio_list_lock; 172 struct list_head endio_list; 173 struct task_struct *endio_thread; 174 175 struct task_struct *flush_thread; 176 struct bio_list flush_list; 177 178 struct dm_kcopyd_client *dm_kcopyd; 179 unsigned long *dirty_bitmap; 180 unsigned dirty_bitmap_size; 181 182 struct bio_set bio_set; 183 mempool_t copy_pool; 184 }; 185 186 #define WB_LIST_INLINE 16 187 188 struct writeback_struct { 189 struct list_head endio_entry; 190 struct dm_writecache *wc; 191 struct wc_entry **wc_list; 192 unsigned wc_list_n; 193 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 194 struct bio bio; 195 }; 196 197 struct copy_struct { 198 struct list_head endio_entry; 199 struct dm_writecache *wc; 200 struct wc_entry *e; 201 unsigned n_entries; 202 int error; 203 }; 204 205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 206 "A percentage of time allocated for data copying"); 207 208 static void wc_lock(struct dm_writecache *wc) 209 { 210 mutex_lock(&wc->lock); 211 } 212 213 static void wc_unlock(struct dm_writecache *wc) 214 { 215 mutex_unlock(&wc->lock); 216 } 217 218 #ifdef DM_WRITECACHE_HAS_PMEM 219 static int persistent_memory_claim(struct dm_writecache *wc) 220 { 221 int r; 222 loff_t s; 223 long p, da; 224 pfn_t pfn; 225 int id; 226 struct page **pages; 227 228 wc->memory_vmapped = false; 229 230 if (!wc->ssd_dev->dax_dev) { 231 r = -EOPNOTSUPP; 232 goto err1; 233 } 234 s = wc->memory_map_size; 235 p = s >> PAGE_SHIFT; 236 if (!p) { 237 r = -EINVAL; 238 goto err1; 239 } 240 if (p != s >> PAGE_SHIFT) { 241 r = -EOVERFLOW; 242 goto err1; 243 } 244 245 id = dax_read_lock(); 246 247 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 248 if (da < 0) { 249 wc->memory_map = NULL; 250 r = da; 251 goto err2; 252 } 253 if (!pfn_t_has_page(pfn)) { 254 wc->memory_map = NULL; 255 r = -EOPNOTSUPP; 256 goto err2; 257 } 258 if (da != p) { 259 long i; 260 wc->memory_map = NULL; 261 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 262 if (!pages) { 263 r = -ENOMEM; 264 goto err2; 265 } 266 i = 0; 267 do { 268 long daa; 269 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 270 NULL, &pfn); 271 if (daa <= 0) { 272 r = daa ? daa : -EINVAL; 273 goto err3; 274 } 275 if (!pfn_t_has_page(pfn)) { 276 r = -EOPNOTSUPP; 277 goto err3; 278 } 279 while (daa-- && i < p) { 280 pages[i++] = pfn_t_to_page(pfn); 281 pfn.val++; 282 } 283 } while (i < p); 284 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 285 if (!wc->memory_map) { 286 r = -ENOMEM; 287 goto err3; 288 } 289 kvfree(pages); 290 wc->memory_vmapped = true; 291 } 292 293 dax_read_unlock(id); 294 295 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 296 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 297 298 return 0; 299 err3: 300 kvfree(pages); 301 err2: 302 dax_read_unlock(id); 303 err1: 304 return r; 305 } 306 #else 307 static int persistent_memory_claim(struct dm_writecache *wc) 308 { 309 BUG(); 310 } 311 #endif 312 313 static void persistent_memory_release(struct dm_writecache *wc) 314 { 315 if (wc->memory_vmapped) 316 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 317 } 318 319 static struct page *persistent_memory_page(void *addr) 320 { 321 if (is_vmalloc_addr(addr)) 322 return vmalloc_to_page(addr); 323 else 324 return virt_to_page(addr); 325 } 326 327 static unsigned persistent_memory_page_offset(void *addr) 328 { 329 return (unsigned long)addr & (PAGE_SIZE - 1); 330 } 331 332 static void persistent_memory_flush_cache(void *ptr, size_t size) 333 { 334 if (is_vmalloc_addr(ptr)) 335 flush_kernel_vmap_range(ptr, size); 336 } 337 338 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 339 { 340 if (is_vmalloc_addr(ptr)) 341 invalidate_kernel_vmap_range(ptr, size); 342 } 343 344 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 345 { 346 return wc->memory_map; 347 } 348 349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 350 { 351 return &sb(wc)->entries[e->index]; 352 } 353 354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 355 { 356 return (char *)wc->block_start + (e->index << wc->block_size_bits); 357 } 358 359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 360 { 361 return wc->start_sector + wc->metadata_sectors + 362 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 363 } 364 365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 366 { 367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 368 return e->original_sector; 369 #else 370 return le64_to_cpu(memory_entry(wc, e)->original_sector); 371 #endif 372 } 373 374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 375 { 376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 377 return e->seq_count; 378 #else 379 return le64_to_cpu(memory_entry(wc, e)->seq_count); 380 #endif 381 } 382 383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 384 { 385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 386 e->seq_count = -1; 387 #endif 388 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 389 } 390 391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 392 uint64_t original_sector, uint64_t seq_count) 393 { 394 struct wc_memory_entry me; 395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 396 e->original_sector = original_sector; 397 e->seq_count = seq_count; 398 #endif 399 me.original_sector = cpu_to_le64(original_sector); 400 me.seq_count = cpu_to_le64(seq_count); 401 pmem_assign(*memory_entry(wc, e), me); 402 } 403 404 #define writecache_error(wc, err, msg, arg...) \ 405 do { \ 406 if (!cmpxchg(&(wc)->error, 0, err)) \ 407 DMERR(msg, ##arg); \ 408 wake_up(&(wc)->freelist_wait); \ 409 } while (0) 410 411 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 412 413 static void writecache_flush_all_metadata(struct dm_writecache *wc) 414 { 415 if (!WC_MODE_PMEM(wc)) 416 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 417 } 418 419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 420 { 421 if (!WC_MODE_PMEM(wc)) 422 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 423 wc->dirty_bitmap); 424 } 425 426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 427 428 struct io_notify { 429 struct dm_writecache *wc; 430 struct completion c; 431 atomic_t count; 432 }; 433 434 static void writecache_notify_io(unsigned long error, void *context) 435 { 436 struct io_notify *endio = context; 437 438 if (unlikely(error != 0)) 439 writecache_error(endio->wc, -EIO, "error writing metadata"); 440 BUG_ON(atomic_read(&endio->count) <= 0); 441 if (atomic_dec_and_test(&endio->count)) 442 complete(&endio->c); 443 } 444 445 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 446 { 447 wait_event(wc->bio_in_progress_wait[direction], 448 !atomic_read(&wc->bio_in_progress[direction])); 449 } 450 451 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 452 { 453 struct dm_io_region region; 454 struct dm_io_request req; 455 struct io_notify endio = { 456 wc, 457 COMPLETION_INITIALIZER_ONSTACK(endio.c), 458 ATOMIC_INIT(1), 459 }; 460 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 461 unsigned i = 0; 462 463 while (1) { 464 unsigned j; 465 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 466 if (unlikely(i == bitmap_bits)) 467 break; 468 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 469 470 region.bdev = wc->ssd_dev->bdev; 471 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 472 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 473 474 if (unlikely(region.sector >= wc->metadata_sectors)) 475 break; 476 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 477 region.count = wc->metadata_sectors - region.sector; 478 479 region.sector += wc->start_sector; 480 atomic_inc(&endio.count); 481 req.bi_op = REQ_OP_WRITE; 482 req.bi_op_flags = REQ_SYNC; 483 req.mem.type = DM_IO_VMA; 484 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 485 req.client = wc->dm_io; 486 req.notify.fn = writecache_notify_io; 487 req.notify.context = &endio; 488 489 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 490 (void) dm_io(&req, 1, ®ion, NULL); 491 i = j; 492 } 493 494 writecache_notify_io(0, &endio); 495 wait_for_completion_io(&endio.c); 496 497 if (wait_for_ios) 498 writecache_wait_for_ios(wc, WRITE); 499 500 writecache_disk_flush(wc, wc->ssd_dev); 501 502 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 503 } 504 505 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 506 { 507 if (WC_MODE_PMEM(wc)) 508 wmb(); 509 else 510 ssd_commit_flushed(wc, wait_for_ios); 511 } 512 513 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 514 { 515 int r; 516 struct dm_io_region region; 517 struct dm_io_request req; 518 519 region.bdev = dev->bdev; 520 region.sector = 0; 521 region.count = 0; 522 req.bi_op = REQ_OP_WRITE; 523 req.bi_op_flags = REQ_PREFLUSH; 524 req.mem.type = DM_IO_KMEM; 525 req.mem.ptr.addr = NULL; 526 req.client = wc->dm_io; 527 req.notify.fn = NULL; 528 529 r = dm_io(&req, 1, ®ion, NULL); 530 if (unlikely(r)) 531 writecache_error(wc, r, "error flushing metadata: %d", r); 532 } 533 534 #define WFE_RETURN_FOLLOWING 1 535 #define WFE_LOWEST_SEQ 2 536 537 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 538 uint64_t block, int flags) 539 { 540 struct wc_entry *e; 541 struct rb_node *node = wc->tree.rb_node; 542 543 if (unlikely(!node)) 544 return NULL; 545 546 while (1) { 547 e = container_of(node, struct wc_entry, rb_node); 548 if (read_original_sector(wc, e) == block) 549 break; 550 551 node = (read_original_sector(wc, e) >= block ? 552 e->rb_node.rb_left : e->rb_node.rb_right); 553 if (unlikely(!node)) { 554 if (!(flags & WFE_RETURN_FOLLOWING)) 555 return NULL; 556 if (read_original_sector(wc, e) >= block) { 557 return e; 558 } else { 559 node = rb_next(&e->rb_node); 560 if (unlikely(!node)) 561 return NULL; 562 e = container_of(node, struct wc_entry, rb_node); 563 return e; 564 } 565 } 566 } 567 568 while (1) { 569 struct wc_entry *e2; 570 if (flags & WFE_LOWEST_SEQ) 571 node = rb_prev(&e->rb_node); 572 else 573 node = rb_next(&e->rb_node); 574 if (unlikely(!node)) 575 return e; 576 e2 = container_of(node, struct wc_entry, rb_node); 577 if (read_original_sector(wc, e2) != block) 578 return e; 579 e = e2; 580 } 581 } 582 583 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 584 { 585 struct wc_entry *e; 586 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 587 588 while (*node) { 589 e = container_of(*node, struct wc_entry, rb_node); 590 parent = &e->rb_node; 591 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 592 node = &parent->rb_left; 593 else 594 node = &parent->rb_right; 595 } 596 rb_link_node(&ins->rb_node, parent, node); 597 rb_insert_color(&ins->rb_node, &wc->tree); 598 list_add(&ins->lru, &wc->lru); 599 } 600 601 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 602 { 603 list_del(&e->lru); 604 rb_erase(&e->rb_node, &wc->tree); 605 } 606 607 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 608 { 609 if (WC_MODE_SORT_FREELIST(wc)) { 610 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 611 if (unlikely(!*node)) 612 wc->current_free = e; 613 while (*node) { 614 parent = *node; 615 if (&e->rb_node < *node) 616 node = &parent->rb_left; 617 else 618 node = &parent->rb_right; 619 } 620 rb_link_node(&e->rb_node, parent, node); 621 rb_insert_color(&e->rb_node, &wc->freetree); 622 } else { 623 list_add_tail(&e->lru, &wc->freelist); 624 } 625 wc->freelist_size++; 626 } 627 628 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 629 { 630 struct wc_entry *e; 631 632 if (WC_MODE_SORT_FREELIST(wc)) { 633 struct rb_node *next; 634 if (unlikely(!wc->current_free)) 635 return NULL; 636 e = wc->current_free; 637 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 638 return NULL; 639 next = rb_next(&e->rb_node); 640 rb_erase(&e->rb_node, &wc->freetree); 641 if (unlikely(!next)) 642 next = rb_first(&wc->freetree); 643 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 644 } else { 645 if (unlikely(list_empty(&wc->freelist))) 646 return NULL; 647 e = container_of(wc->freelist.next, struct wc_entry, lru); 648 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 649 return NULL; 650 list_del(&e->lru); 651 } 652 wc->freelist_size--; 653 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 654 queue_work(wc->writeback_wq, &wc->writeback_work); 655 656 return e; 657 } 658 659 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 660 { 661 writecache_unlink(wc, e); 662 writecache_add_to_freelist(wc, e); 663 clear_seq_count(wc, e); 664 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 665 if (unlikely(waitqueue_active(&wc->freelist_wait))) 666 wake_up(&wc->freelist_wait); 667 } 668 669 static void writecache_wait_on_freelist(struct dm_writecache *wc) 670 { 671 DEFINE_WAIT(wait); 672 673 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 674 wc_unlock(wc); 675 io_schedule(); 676 finish_wait(&wc->freelist_wait, &wait); 677 wc_lock(wc); 678 } 679 680 static void writecache_poison_lists(struct dm_writecache *wc) 681 { 682 /* 683 * Catch incorrect access to these values while the device is suspended. 684 */ 685 memset(&wc->tree, -1, sizeof wc->tree); 686 wc->lru.next = LIST_POISON1; 687 wc->lru.prev = LIST_POISON2; 688 wc->freelist.next = LIST_POISON1; 689 wc->freelist.prev = LIST_POISON2; 690 } 691 692 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 693 { 694 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 695 if (WC_MODE_PMEM(wc)) 696 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 697 } 698 699 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 700 { 701 return read_seq_count(wc, e) < wc->seq_count; 702 } 703 704 static void writecache_flush(struct dm_writecache *wc) 705 { 706 struct wc_entry *e, *e2; 707 bool need_flush_after_free; 708 709 wc->uncommitted_blocks = 0; 710 del_timer(&wc->autocommit_timer); 711 712 if (list_empty(&wc->lru)) 713 return; 714 715 e = container_of(wc->lru.next, struct wc_entry, lru); 716 if (writecache_entry_is_committed(wc, e)) { 717 if (wc->overwrote_committed) { 718 writecache_wait_for_ios(wc, WRITE); 719 writecache_disk_flush(wc, wc->ssd_dev); 720 wc->overwrote_committed = false; 721 } 722 return; 723 } 724 while (1) { 725 writecache_flush_entry(wc, e); 726 if (unlikely(e->lru.next == &wc->lru)) 727 break; 728 e2 = container_of(e->lru.next, struct wc_entry, lru); 729 if (writecache_entry_is_committed(wc, e2)) 730 break; 731 e = e2; 732 cond_resched(); 733 } 734 writecache_commit_flushed(wc, true); 735 736 wc->seq_count++; 737 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 738 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); 739 writecache_commit_flushed(wc, false); 740 741 wc->overwrote_committed = false; 742 743 need_flush_after_free = false; 744 while (1) { 745 /* Free another committed entry with lower seq-count */ 746 struct rb_node *rb_node = rb_prev(&e->rb_node); 747 748 if (rb_node) { 749 e2 = container_of(rb_node, struct wc_entry, rb_node); 750 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 751 likely(!e2->write_in_progress)) { 752 writecache_free_entry(wc, e2); 753 need_flush_after_free = true; 754 } 755 } 756 if (unlikely(e->lru.prev == &wc->lru)) 757 break; 758 e = container_of(e->lru.prev, struct wc_entry, lru); 759 cond_resched(); 760 } 761 762 if (need_flush_after_free) 763 writecache_commit_flushed(wc, false); 764 } 765 766 static void writecache_flush_work(struct work_struct *work) 767 { 768 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 769 770 wc_lock(wc); 771 writecache_flush(wc); 772 wc_unlock(wc); 773 } 774 775 static void writecache_autocommit_timer(struct timer_list *t) 776 { 777 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 778 if (!writecache_has_error(wc)) 779 queue_work(wc->writeback_wq, &wc->flush_work); 780 } 781 782 static void writecache_schedule_autocommit(struct dm_writecache *wc) 783 { 784 if (!timer_pending(&wc->autocommit_timer)) 785 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 786 } 787 788 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 789 { 790 struct wc_entry *e; 791 bool discarded_something = false; 792 793 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 794 if (unlikely(!e)) 795 return; 796 797 while (read_original_sector(wc, e) < end) { 798 struct rb_node *node = rb_next(&e->rb_node); 799 800 if (likely(!e->write_in_progress)) { 801 if (!discarded_something) { 802 writecache_wait_for_ios(wc, READ); 803 writecache_wait_for_ios(wc, WRITE); 804 discarded_something = true; 805 } 806 writecache_free_entry(wc, e); 807 } 808 809 if (unlikely(!node)) 810 break; 811 812 e = container_of(node, struct wc_entry, rb_node); 813 } 814 815 if (discarded_something) 816 writecache_commit_flushed(wc, false); 817 } 818 819 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 820 { 821 if (wc->writeback_size) { 822 writecache_wait_on_freelist(wc); 823 return true; 824 } 825 return false; 826 } 827 828 static void writecache_suspend(struct dm_target *ti) 829 { 830 struct dm_writecache *wc = ti->private; 831 bool flush_on_suspend; 832 833 del_timer_sync(&wc->autocommit_timer); 834 835 wc_lock(wc); 836 writecache_flush(wc); 837 flush_on_suspend = wc->flush_on_suspend; 838 if (flush_on_suspend) { 839 wc->flush_on_suspend = false; 840 wc->writeback_all++; 841 queue_work(wc->writeback_wq, &wc->writeback_work); 842 } 843 wc_unlock(wc); 844 845 flush_workqueue(wc->writeback_wq); 846 847 wc_lock(wc); 848 if (flush_on_suspend) 849 wc->writeback_all--; 850 while (writecache_wait_for_writeback(wc)); 851 852 if (WC_MODE_PMEM(wc)) 853 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 854 855 writecache_poison_lists(wc); 856 857 wc_unlock(wc); 858 } 859 860 static int writecache_alloc_entries(struct dm_writecache *wc) 861 { 862 size_t b; 863 864 if (wc->entries) 865 return 0; 866 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 867 if (!wc->entries) 868 return -ENOMEM; 869 for (b = 0; b < wc->n_blocks; b++) { 870 struct wc_entry *e = &wc->entries[b]; 871 e->index = b; 872 e->write_in_progress = false; 873 } 874 875 return 0; 876 } 877 878 static void writecache_resume(struct dm_target *ti) 879 { 880 struct dm_writecache *wc = ti->private; 881 size_t b; 882 bool need_flush = false; 883 __le64 sb_seq_count; 884 int r; 885 886 wc_lock(wc); 887 888 if (WC_MODE_PMEM(wc)) 889 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 890 891 wc->tree = RB_ROOT; 892 INIT_LIST_HEAD(&wc->lru); 893 if (WC_MODE_SORT_FREELIST(wc)) { 894 wc->freetree = RB_ROOT; 895 wc->current_free = NULL; 896 } else { 897 INIT_LIST_HEAD(&wc->freelist); 898 } 899 wc->freelist_size = 0; 900 901 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 902 if (r) { 903 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 904 sb_seq_count = cpu_to_le64(0); 905 } 906 wc->seq_count = le64_to_cpu(sb_seq_count); 907 908 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 909 for (b = 0; b < wc->n_blocks; b++) { 910 struct wc_entry *e = &wc->entries[b]; 911 struct wc_memory_entry wme; 912 if (writecache_has_error(wc)) { 913 e->original_sector = -1; 914 e->seq_count = -1; 915 continue; 916 } 917 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 918 if (r) { 919 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 920 (unsigned long)b, r); 921 e->original_sector = -1; 922 e->seq_count = -1; 923 } else { 924 e->original_sector = le64_to_cpu(wme.original_sector); 925 e->seq_count = le64_to_cpu(wme.seq_count); 926 } 927 } 928 #endif 929 for (b = 0; b < wc->n_blocks; b++) { 930 struct wc_entry *e = &wc->entries[b]; 931 if (!writecache_entry_is_committed(wc, e)) { 932 if (read_seq_count(wc, e) != -1) { 933 erase_this: 934 clear_seq_count(wc, e); 935 need_flush = true; 936 } 937 writecache_add_to_freelist(wc, e); 938 } else { 939 struct wc_entry *old; 940 941 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 942 if (!old) { 943 writecache_insert_entry(wc, e); 944 } else { 945 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 946 writecache_error(wc, -EINVAL, 947 "two identical entries, position %llu, sector %llu, sequence %llu", 948 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 949 (unsigned long long)read_seq_count(wc, e)); 950 } 951 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 952 goto erase_this; 953 } else { 954 writecache_free_entry(wc, old); 955 writecache_insert_entry(wc, e); 956 need_flush = true; 957 } 958 } 959 } 960 cond_resched(); 961 } 962 963 if (need_flush) { 964 writecache_flush_all_metadata(wc); 965 writecache_commit_flushed(wc, false); 966 } 967 968 wc_unlock(wc); 969 } 970 971 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 972 { 973 if (argc != 1) 974 return -EINVAL; 975 976 wc_lock(wc); 977 if (dm_suspended(wc->ti)) { 978 wc_unlock(wc); 979 return -EBUSY; 980 } 981 if (writecache_has_error(wc)) { 982 wc_unlock(wc); 983 return -EIO; 984 } 985 986 writecache_flush(wc); 987 wc->writeback_all++; 988 queue_work(wc->writeback_wq, &wc->writeback_work); 989 wc_unlock(wc); 990 991 flush_workqueue(wc->writeback_wq); 992 993 wc_lock(wc); 994 wc->writeback_all--; 995 if (writecache_has_error(wc)) { 996 wc_unlock(wc); 997 return -EIO; 998 } 999 wc_unlock(wc); 1000 1001 return 0; 1002 } 1003 1004 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1005 { 1006 if (argc != 1) 1007 return -EINVAL; 1008 1009 wc_lock(wc); 1010 wc->flush_on_suspend = true; 1011 wc_unlock(wc); 1012 1013 return 0; 1014 } 1015 1016 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1017 char *result, unsigned maxlen) 1018 { 1019 int r = -EINVAL; 1020 struct dm_writecache *wc = ti->private; 1021 1022 if (!strcasecmp(argv[0], "flush")) 1023 r = process_flush_mesg(argc, argv, wc); 1024 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1025 r = process_flush_on_suspend_mesg(argc, argv, wc); 1026 else 1027 DMERR("unrecognised message received: %s", argv[0]); 1028 1029 return r; 1030 } 1031 1032 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1033 { 1034 void *buf; 1035 unsigned long flags; 1036 unsigned size; 1037 int rw = bio_data_dir(bio); 1038 unsigned remaining_size = wc->block_size; 1039 1040 do { 1041 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1042 buf = bvec_kmap_irq(&bv, &flags); 1043 size = bv.bv_len; 1044 if (unlikely(size > remaining_size)) 1045 size = remaining_size; 1046 1047 if (rw == READ) { 1048 int r; 1049 r = memcpy_mcsafe(buf, data, size); 1050 flush_dcache_page(bio_page(bio)); 1051 if (unlikely(r)) { 1052 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1053 bio->bi_status = BLK_STS_IOERR; 1054 } 1055 } else { 1056 flush_dcache_page(bio_page(bio)); 1057 memcpy_flushcache(data, buf, size); 1058 } 1059 1060 bvec_kunmap_irq(buf, &flags); 1061 1062 data = (char *)data + size; 1063 remaining_size -= size; 1064 bio_advance(bio, size); 1065 } while (unlikely(remaining_size)); 1066 } 1067 1068 static int writecache_flush_thread(void *data) 1069 { 1070 struct dm_writecache *wc = data; 1071 1072 while (1) { 1073 struct bio *bio; 1074 1075 wc_lock(wc); 1076 bio = bio_list_pop(&wc->flush_list); 1077 if (!bio) { 1078 set_current_state(TASK_INTERRUPTIBLE); 1079 wc_unlock(wc); 1080 1081 if (unlikely(kthread_should_stop())) { 1082 set_current_state(TASK_RUNNING); 1083 break; 1084 } 1085 1086 schedule(); 1087 continue; 1088 } 1089 1090 if (bio_op(bio) == REQ_OP_DISCARD) { 1091 writecache_discard(wc, bio->bi_iter.bi_sector, 1092 bio_end_sector(bio)); 1093 wc_unlock(wc); 1094 bio_set_dev(bio, wc->dev->bdev); 1095 generic_make_request(bio); 1096 } else { 1097 writecache_flush(wc); 1098 wc_unlock(wc); 1099 if (writecache_has_error(wc)) 1100 bio->bi_status = BLK_STS_IOERR; 1101 bio_endio(bio); 1102 } 1103 } 1104 1105 return 0; 1106 } 1107 1108 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1109 { 1110 if (bio_list_empty(&wc->flush_list)) 1111 wake_up_process(wc->flush_thread); 1112 bio_list_add(&wc->flush_list, bio); 1113 } 1114 1115 static int writecache_map(struct dm_target *ti, struct bio *bio) 1116 { 1117 struct wc_entry *e; 1118 struct dm_writecache *wc = ti->private; 1119 1120 bio->bi_private = NULL; 1121 1122 wc_lock(wc); 1123 1124 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1125 if (writecache_has_error(wc)) 1126 goto unlock_error; 1127 if (WC_MODE_PMEM(wc)) { 1128 writecache_flush(wc); 1129 if (writecache_has_error(wc)) 1130 goto unlock_error; 1131 goto unlock_submit; 1132 } else { 1133 writecache_offload_bio(wc, bio); 1134 goto unlock_return; 1135 } 1136 } 1137 1138 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1139 1140 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1141 (wc->block_size / 512 - 1)) != 0)) { 1142 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1143 (unsigned long long)bio->bi_iter.bi_sector, 1144 bio->bi_iter.bi_size, wc->block_size); 1145 goto unlock_error; 1146 } 1147 1148 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1149 if (writecache_has_error(wc)) 1150 goto unlock_error; 1151 if (WC_MODE_PMEM(wc)) { 1152 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1153 goto unlock_remap_origin; 1154 } else { 1155 writecache_offload_bio(wc, bio); 1156 goto unlock_return; 1157 } 1158 } 1159 1160 if (bio_data_dir(bio) == READ) { 1161 read_next_block: 1162 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1163 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1164 if (WC_MODE_PMEM(wc)) { 1165 bio_copy_block(wc, bio, memory_data(wc, e)); 1166 if (bio->bi_iter.bi_size) 1167 goto read_next_block; 1168 goto unlock_submit; 1169 } else { 1170 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1171 bio_set_dev(bio, wc->ssd_dev->bdev); 1172 bio->bi_iter.bi_sector = cache_sector(wc, e); 1173 if (!writecache_entry_is_committed(wc, e)) 1174 writecache_wait_for_ios(wc, WRITE); 1175 goto unlock_remap; 1176 } 1177 } else { 1178 if (e) { 1179 sector_t next_boundary = 1180 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1181 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1182 dm_accept_partial_bio(bio, next_boundary); 1183 } 1184 } 1185 goto unlock_remap_origin; 1186 } 1187 } else { 1188 do { 1189 if (writecache_has_error(wc)) 1190 goto unlock_error; 1191 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1192 if (e) { 1193 if (!writecache_entry_is_committed(wc, e)) 1194 goto bio_copy; 1195 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1196 wc->overwrote_committed = true; 1197 goto bio_copy; 1198 } 1199 } 1200 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1201 if (unlikely(!e)) { 1202 writecache_wait_on_freelist(wc); 1203 continue; 1204 } 1205 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1206 writecache_insert_entry(wc, e); 1207 wc->uncommitted_blocks++; 1208 bio_copy: 1209 if (WC_MODE_PMEM(wc)) { 1210 bio_copy_block(wc, bio, memory_data(wc, e)); 1211 } else { 1212 unsigned bio_size = wc->block_size; 1213 sector_t start_cache_sec = cache_sector(wc, e); 1214 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1215 1216 while (bio_size < bio->bi_iter.bi_size) { 1217 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1218 if (!f) 1219 break; 1220 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1221 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1222 writecache_insert_entry(wc, f); 1223 wc->uncommitted_blocks++; 1224 bio_size += wc->block_size; 1225 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1226 } 1227 1228 bio_set_dev(bio, wc->ssd_dev->bdev); 1229 bio->bi_iter.bi_sector = start_cache_sec; 1230 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1231 1232 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1233 wc->uncommitted_blocks = 0; 1234 queue_work(wc->writeback_wq, &wc->flush_work); 1235 } else { 1236 writecache_schedule_autocommit(wc); 1237 } 1238 goto unlock_remap; 1239 } 1240 } while (bio->bi_iter.bi_size); 1241 1242 if (unlikely(bio->bi_opf & REQ_FUA || 1243 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1244 writecache_flush(wc); 1245 else 1246 writecache_schedule_autocommit(wc); 1247 goto unlock_submit; 1248 } 1249 1250 unlock_remap_origin: 1251 bio_set_dev(bio, wc->dev->bdev); 1252 wc_unlock(wc); 1253 return DM_MAPIO_REMAPPED; 1254 1255 unlock_remap: 1256 /* make sure that writecache_end_io decrements bio_in_progress: */ 1257 bio->bi_private = (void *)1; 1258 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1259 wc_unlock(wc); 1260 return DM_MAPIO_REMAPPED; 1261 1262 unlock_submit: 1263 wc_unlock(wc); 1264 bio_endio(bio); 1265 return DM_MAPIO_SUBMITTED; 1266 1267 unlock_return: 1268 wc_unlock(wc); 1269 return DM_MAPIO_SUBMITTED; 1270 1271 unlock_error: 1272 wc_unlock(wc); 1273 bio_io_error(bio); 1274 return DM_MAPIO_SUBMITTED; 1275 } 1276 1277 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1278 { 1279 struct dm_writecache *wc = ti->private; 1280 1281 if (bio->bi_private != NULL) { 1282 int dir = bio_data_dir(bio); 1283 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1284 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1285 wake_up(&wc->bio_in_progress_wait[dir]); 1286 } 1287 return 0; 1288 } 1289 1290 static int writecache_iterate_devices(struct dm_target *ti, 1291 iterate_devices_callout_fn fn, void *data) 1292 { 1293 struct dm_writecache *wc = ti->private; 1294 1295 return fn(ti, wc->dev, 0, ti->len, data); 1296 } 1297 1298 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1299 { 1300 struct dm_writecache *wc = ti->private; 1301 1302 if (limits->logical_block_size < wc->block_size) 1303 limits->logical_block_size = wc->block_size; 1304 1305 if (limits->physical_block_size < wc->block_size) 1306 limits->physical_block_size = wc->block_size; 1307 1308 if (limits->io_min < wc->block_size) 1309 limits->io_min = wc->block_size; 1310 } 1311 1312 1313 static void writecache_writeback_endio(struct bio *bio) 1314 { 1315 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1316 struct dm_writecache *wc = wb->wc; 1317 unsigned long flags; 1318 1319 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1320 if (unlikely(list_empty(&wc->endio_list))) 1321 wake_up_process(wc->endio_thread); 1322 list_add_tail(&wb->endio_entry, &wc->endio_list); 1323 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1324 } 1325 1326 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1327 { 1328 struct copy_struct *c = ptr; 1329 struct dm_writecache *wc = c->wc; 1330 1331 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1332 1333 raw_spin_lock_irq(&wc->endio_list_lock); 1334 if (unlikely(list_empty(&wc->endio_list))) 1335 wake_up_process(wc->endio_thread); 1336 list_add_tail(&c->endio_entry, &wc->endio_list); 1337 raw_spin_unlock_irq(&wc->endio_list_lock); 1338 } 1339 1340 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1341 { 1342 unsigned i; 1343 struct writeback_struct *wb; 1344 struct wc_entry *e; 1345 unsigned long n_walked = 0; 1346 1347 do { 1348 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1349 list_del(&wb->endio_entry); 1350 1351 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1352 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1353 "write error %d", wb->bio.bi_status); 1354 i = 0; 1355 do { 1356 e = wb->wc_list[i]; 1357 BUG_ON(!e->write_in_progress); 1358 e->write_in_progress = false; 1359 INIT_LIST_HEAD(&e->lru); 1360 if (!writecache_has_error(wc)) 1361 writecache_free_entry(wc, e); 1362 BUG_ON(!wc->writeback_size); 1363 wc->writeback_size--; 1364 n_walked++; 1365 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1366 writecache_commit_flushed(wc, false); 1367 wc_unlock(wc); 1368 wc_lock(wc); 1369 n_walked = 0; 1370 } 1371 } while (++i < wb->wc_list_n); 1372 1373 if (wb->wc_list != wb->wc_list_inline) 1374 kfree(wb->wc_list); 1375 bio_put(&wb->bio); 1376 } while (!list_empty(list)); 1377 } 1378 1379 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1380 { 1381 struct copy_struct *c; 1382 struct wc_entry *e; 1383 1384 do { 1385 c = list_entry(list->next, struct copy_struct, endio_entry); 1386 list_del(&c->endio_entry); 1387 1388 if (unlikely(c->error)) 1389 writecache_error(wc, c->error, "copy error"); 1390 1391 e = c->e; 1392 do { 1393 BUG_ON(!e->write_in_progress); 1394 e->write_in_progress = false; 1395 INIT_LIST_HEAD(&e->lru); 1396 if (!writecache_has_error(wc)) 1397 writecache_free_entry(wc, e); 1398 1399 BUG_ON(!wc->writeback_size); 1400 wc->writeback_size--; 1401 e++; 1402 } while (--c->n_entries); 1403 mempool_free(c, &wc->copy_pool); 1404 } while (!list_empty(list)); 1405 } 1406 1407 static int writecache_endio_thread(void *data) 1408 { 1409 struct dm_writecache *wc = data; 1410 1411 while (1) { 1412 struct list_head list; 1413 1414 raw_spin_lock_irq(&wc->endio_list_lock); 1415 if (!list_empty(&wc->endio_list)) 1416 goto pop_from_list; 1417 set_current_state(TASK_INTERRUPTIBLE); 1418 raw_spin_unlock_irq(&wc->endio_list_lock); 1419 1420 if (unlikely(kthread_should_stop())) { 1421 set_current_state(TASK_RUNNING); 1422 break; 1423 } 1424 1425 schedule(); 1426 1427 continue; 1428 1429 pop_from_list: 1430 list = wc->endio_list; 1431 list.next->prev = list.prev->next = &list; 1432 INIT_LIST_HEAD(&wc->endio_list); 1433 raw_spin_unlock_irq(&wc->endio_list_lock); 1434 1435 if (!WC_MODE_FUA(wc)) 1436 writecache_disk_flush(wc, wc->dev); 1437 1438 wc_lock(wc); 1439 1440 if (WC_MODE_PMEM(wc)) { 1441 __writecache_endio_pmem(wc, &list); 1442 } else { 1443 __writecache_endio_ssd(wc, &list); 1444 writecache_wait_for_ios(wc, READ); 1445 } 1446 1447 writecache_commit_flushed(wc, false); 1448 1449 wc_unlock(wc); 1450 } 1451 1452 return 0; 1453 } 1454 1455 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1456 { 1457 struct dm_writecache *wc = wb->wc; 1458 unsigned block_size = wc->block_size; 1459 void *address = memory_data(wc, e); 1460 1461 persistent_memory_flush_cache(address, block_size); 1462 return bio_add_page(&wb->bio, persistent_memory_page(address), 1463 block_size, persistent_memory_page_offset(address)) != 0; 1464 } 1465 1466 struct writeback_list { 1467 struct list_head list; 1468 size_t size; 1469 }; 1470 1471 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1472 { 1473 if (unlikely(wc->max_writeback_jobs)) { 1474 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1475 wc_lock(wc); 1476 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1477 writecache_wait_on_freelist(wc); 1478 wc_unlock(wc); 1479 } 1480 } 1481 cond_resched(); 1482 } 1483 1484 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1485 { 1486 struct wc_entry *e, *f; 1487 struct bio *bio; 1488 struct writeback_struct *wb; 1489 unsigned max_pages; 1490 1491 while (wbl->size) { 1492 wbl->size--; 1493 e = container_of(wbl->list.prev, struct wc_entry, lru); 1494 list_del(&e->lru); 1495 1496 max_pages = e->wc_list_contiguous; 1497 1498 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1499 wb = container_of(bio, struct writeback_struct, bio); 1500 wb->wc = wc; 1501 bio->bi_end_io = writecache_writeback_endio; 1502 bio_set_dev(bio, wc->dev->bdev); 1503 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1504 if (max_pages <= WB_LIST_INLINE || 1505 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1506 GFP_NOIO | __GFP_NORETRY | 1507 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1508 wb->wc_list = wb->wc_list_inline; 1509 max_pages = WB_LIST_INLINE; 1510 } 1511 1512 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1513 1514 wb->wc_list[0] = e; 1515 wb->wc_list_n = 1; 1516 1517 while (wbl->size && wb->wc_list_n < max_pages) { 1518 f = container_of(wbl->list.prev, struct wc_entry, lru); 1519 if (read_original_sector(wc, f) != 1520 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1521 break; 1522 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1523 break; 1524 wbl->size--; 1525 list_del(&f->lru); 1526 wb->wc_list[wb->wc_list_n++] = f; 1527 e = f; 1528 } 1529 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1530 if (writecache_has_error(wc)) { 1531 bio->bi_status = BLK_STS_IOERR; 1532 bio_endio(bio); 1533 } else { 1534 submit_bio(bio); 1535 } 1536 1537 __writeback_throttle(wc, wbl); 1538 } 1539 } 1540 1541 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1542 { 1543 struct wc_entry *e, *f; 1544 struct dm_io_region from, to; 1545 struct copy_struct *c; 1546 1547 while (wbl->size) { 1548 unsigned n_sectors; 1549 1550 wbl->size--; 1551 e = container_of(wbl->list.prev, struct wc_entry, lru); 1552 list_del(&e->lru); 1553 1554 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1555 1556 from.bdev = wc->ssd_dev->bdev; 1557 from.sector = cache_sector(wc, e); 1558 from.count = n_sectors; 1559 to.bdev = wc->dev->bdev; 1560 to.sector = read_original_sector(wc, e); 1561 to.count = n_sectors; 1562 1563 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1564 c->wc = wc; 1565 c->e = e; 1566 c->n_entries = e->wc_list_contiguous; 1567 1568 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1569 wbl->size--; 1570 f = container_of(wbl->list.prev, struct wc_entry, lru); 1571 BUG_ON(f != e + 1); 1572 list_del(&f->lru); 1573 e = f; 1574 } 1575 1576 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1577 1578 __writeback_throttle(wc, wbl); 1579 } 1580 } 1581 1582 static void writecache_writeback(struct work_struct *work) 1583 { 1584 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1585 struct blk_plug plug; 1586 struct wc_entry *f, *uninitialized_var(g), *e = NULL; 1587 struct rb_node *node, *next_node; 1588 struct list_head skipped; 1589 struct writeback_list wbl; 1590 unsigned long n_walked; 1591 1592 wc_lock(wc); 1593 restart: 1594 if (writecache_has_error(wc)) { 1595 wc_unlock(wc); 1596 return; 1597 } 1598 1599 if (unlikely(wc->writeback_all)) { 1600 if (writecache_wait_for_writeback(wc)) 1601 goto restart; 1602 } 1603 1604 if (wc->overwrote_committed) { 1605 writecache_wait_for_ios(wc, WRITE); 1606 } 1607 1608 n_walked = 0; 1609 INIT_LIST_HEAD(&skipped); 1610 INIT_LIST_HEAD(&wbl.list); 1611 wbl.size = 0; 1612 while (!list_empty(&wc->lru) && 1613 (wc->writeback_all || 1614 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { 1615 1616 n_walked++; 1617 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1618 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1619 queue_work(wc->writeback_wq, &wc->writeback_work); 1620 break; 1621 } 1622 1623 if (unlikely(wc->writeback_all)) { 1624 if (unlikely(!e)) { 1625 writecache_flush(wc); 1626 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1627 } else 1628 e = g; 1629 } else 1630 e = container_of(wc->lru.prev, struct wc_entry, lru); 1631 BUG_ON(e->write_in_progress); 1632 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1633 writecache_flush(wc); 1634 } 1635 node = rb_prev(&e->rb_node); 1636 if (node) { 1637 f = container_of(node, struct wc_entry, rb_node); 1638 if (unlikely(read_original_sector(wc, f) == 1639 read_original_sector(wc, e))) { 1640 BUG_ON(!f->write_in_progress); 1641 list_del(&e->lru); 1642 list_add(&e->lru, &skipped); 1643 cond_resched(); 1644 continue; 1645 } 1646 } 1647 wc->writeback_size++; 1648 list_del(&e->lru); 1649 list_add(&e->lru, &wbl.list); 1650 wbl.size++; 1651 e->write_in_progress = true; 1652 e->wc_list_contiguous = 1; 1653 1654 f = e; 1655 1656 while (1) { 1657 next_node = rb_next(&f->rb_node); 1658 if (unlikely(!next_node)) 1659 break; 1660 g = container_of(next_node, struct wc_entry, rb_node); 1661 if (unlikely(read_original_sector(wc, g) == 1662 read_original_sector(wc, f))) { 1663 f = g; 1664 continue; 1665 } 1666 if (read_original_sector(wc, g) != 1667 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1668 break; 1669 if (unlikely(g->write_in_progress)) 1670 break; 1671 if (unlikely(!writecache_entry_is_committed(wc, g))) 1672 break; 1673 1674 if (!WC_MODE_PMEM(wc)) { 1675 if (g != f + 1) 1676 break; 1677 } 1678 1679 n_walked++; 1680 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1681 // break; 1682 1683 wc->writeback_size++; 1684 list_del(&g->lru); 1685 list_add(&g->lru, &wbl.list); 1686 wbl.size++; 1687 g->write_in_progress = true; 1688 g->wc_list_contiguous = BIO_MAX_PAGES; 1689 f = g; 1690 e->wc_list_contiguous++; 1691 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1692 if (unlikely(wc->writeback_all)) { 1693 next_node = rb_next(&f->rb_node); 1694 if (likely(next_node)) 1695 g = container_of(next_node, struct wc_entry, rb_node); 1696 } 1697 break; 1698 } 1699 } 1700 cond_resched(); 1701 } 1702 1703 if (!list_empty(&skipped)) { 1704 list_splice_tail(&skipped, &wc->lru); 1705 /* 1706 * If we didn't do any progress, we must wait until some 1707 * writeback finishes to avoid burning CPU in a loop 1708 */ 1709 if (unlikely(!wbl.size)) 1710 writecache_wait_for_writeback(wc); 1711 } 1712 1713 wc_unlock(wc); 1714 1715 blk_start_plug(&plug); 1716 1717 if (WC_MODE_PMEM(wc)) 1718 __writecache_writeback_pmem(wc, &wbl); 1719 else 1720 __writecache_writeback_ssd(wc, &wbl); 1721 1722 blk_finish_plug(&plug); 1723 1724 if (unlikely(wc->writeback_all)) { 1725 wc_lock(wc); 1726 while (writecache_wait_for_writeback(wc)); 1727 wc_unlock(wc); 1728 } 1729 } 1730 1731 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1732 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1733 { 1734 uint64_t n_blocks, offset; 1735 struct wc_entry e; 1736 1737 n_blocks = device_size; 1738 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1739 1740 while (1) { 1741 if (!n_blocks) 1742 return -ENOSPC; 1743 /* Verify the following entries[n_blocks] won't overflow */ 1744 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1745 sizeof(struct wc_memory_entry))) 1746 return -EFBIG; 1747 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1748 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1749 if (offset + n_blocks * block_size <= device_size) 1750 break; 1751 n_blocks--; 1752 } 1753 1754 /* check if the bit field overflows */ 1755 e.index = n_blocks; 1756 if (e.index != n_blocks) 1757 return -EFBIG; 1758 1759 if (n_blocks_p) 1760 *n_blocks_p = n_blocks; 1761 if (n_metadata_blocks_p) 1762 *n_metadata_blocks_p = offset >> __ffs(block_size); 1763 return 0; 1764 } 1765 1766 static int init_memory(struct dm_writecache *wc) 1767 { 1768 size_t b; 1769 int r; 1770 1771 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1772 if (r) 1773 return r; 1774 1775 r = writecache_alloc_entries(wc); 1776 if (r) 1777 return r; 1778 1779 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1780 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1781 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1782 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1783 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1784 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1785 1786 for (b = 0; b < wc->n_blocks; b++) 1787 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1788 1789 writecache_flush_all_metadata(wc); 1790 writecache_commit_flushed(wc, false); 1791 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1792 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1793 writecache_commit_flushed(wc, false); 1794 1795 return 0; 1796 } 1797 1798 static void writecache_dtr(struct dm_target *ti) 1799 { 1800 struct dm_writecache *wc = ti->private; 1801 1802 if (!wc) 1803 return; 1804 1805 if (wc->endio_thread) 1806 kthread_stop(wc->endio_thread); 1807 1808 if (wc->flush_thread) 1809 kthread_stop(wc->flush_thread); 1810 1811 bioset_exit(&wc->bio_set); 1812 1813 mempool_exit(&wc->copy_pool); 1814 1815 if (wc->writeback_wq) 1816 destroy_workqueue(wc->writeback_wq); 1817 1818 if (wc->dev) 1819 dm_put_device(ti, wc->dev); 1820 1821 if (wc->ssd_dev) 1822 dm_put_device(ti, wc->ssd_dev); 1823 1824 if (wc->entries) 1825 vfree(wc->entries); 1826 1827 if (wc->memory_map) { 1828 if (WC_MODE_PMEM(wc)) 1829 persistent_memory_release(wc); 1830 else 1831 vfree(wc->memory_map); 1832 } 1833 1834 if (wc->dm_kcopyd) 1835 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1836 1837 if (wc->dm_io) 1838 dm_io_client_destroy(wc->dm_io); 1839 1840 if (wc->dirty_bitmap) 1841 vfree(wc->dirty_bitmap); 1842 1843 kfree(wc); 1844 } 1845 1846 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1847 { 1848 struct dm_writecache *wc; 1849 struct dm_arg_set as; 1850 const char *string; 1851 unsigned opt_params; 1852 size_t offset, data_size; 1853 int i, r; 1854 char dummy; 1855 int high_wm_percent = HIGH_WATERMARK; 1856 int low_wm_percent = LOW_WATERMARK; 1857 uint64_t x; 1858 struct wc_memory_superblock s; 1859 1860 static struct dm_arg _args[] = { 1861 {0, 10, "Invalid number of feature args"}, 1862 }; 1863 1864 as.argc = argc; 1865 as.argv = argv; 1866 1867 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1868 if (!wc) { 1869 ti->error = "Cannot allocate writecache structure"; 1870 r = -ENOMEM; 1871 goto bad; 1872 } 1873 ti->private = wc; 1874 wc->ti = ti; 1875 1876 mutex_init(&wc->lock); 1877 writecache_poison_lists(wc); 1878 init_waitqueue_head(&wc->freelist_wait); 1879 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1880 1881 for (i = 0; i < 2; i++) { 1882 atomic_set(&wc->bio_in_progress[i], 0); 1883 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1884 } 1885 1886 wc->dm_io = dm_io_client_create(); 1887 if (IS_ERR(wc->dm_io)) { 1888 r = PTR_ERR(wc->dm_io); 1889 ti->error = "Unable to allocate dm-io client"; 1890 wc->dm_io = NULL; 1891 goto bad; 1892 } 1893 1894 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 1895 if (!wc->writeback_wq) { 1896 r = -ENOMEM; 1897 ti->error = "Could not allocate writeback workqueue"; 1898 goto bad; 1899 } 1900 INIT_WORK(&wc->writeback_work, writecache_writeback); 1901 INIT_WORK(&wc->flush_work, writecache_flush_work); 1902 1903 raw_spin_lock_init(&wc->endio_list_lock); 1904 INIT_LIST_HEAD(&wc->endio_list); 1905 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 1906 if (IS_ERR(wc->endio_thread)) { 1907 r = PTR_ERR(wc->endio_thread); 1908 wc->endio_thread = NULL; 1909 ti->error = "Couldn't spawn endio thread"; 1910 goto bad; 1911 } 1912 wake_up_process(wc->endio_thread); 1913 1914 /* 1915 * Parse the mode (pmem or ssd) 1916 */ 1917 string = dm_shift_arg(&as); 1918 if (!string) 1919 goto bad_arguments; 1920 1921 if (!strcasecmp(string, "s")) { 1922 wc->pmem_mode = false; 1923 } else if (!strcasecmp(string, "p")) { 1924 #ifdef DM_WRITECACHE_HAS_PMEM 1925 wc->pmem_mode = true; 1926 wc->writeback_fua = true; 1927 #else 1928 /* 1929 * If the architecture doesn't support persistent memory or 1930 * the kernel doesn't support any DAX drivers, this driver can 1931 * only be used in SSD-only mode. 1932 */ 1933 r = -EOPNOTSUPP; 1934 ti->error = "Persistent memory or DAX not supported on this system"; 1935 goto bad; 1936 #endif 1937 } else { 1938 goto bad_arguments; 1939 } 1940 1941 if (WC_MODE_PMEM(wc)) { 1942 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 1943 offsetof(struct writeback_struct, bio), 1944 BIOSET_NEED_BVECS); 1945 if (r) { 1946 ti->error = "Could not allocate bio set"; 1947 goto bad; 1948 } 1949 } else { 1950 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 1951 if (r) { 1952 ti->error = "Could not allocate mempool"; 1953 goto bad; 1954 } 1955 } 1956 1957 /* 1958 * Parse the origin data device 1959 */ 1960 string = dm_shift_arg(&as); 1961 if (!string) 1962 goto bad_arguments; 1963 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 1964 if (r) { 1965 ti->error = "Origin data device lookup failed"; 1966 goto bad; 1967 } 1968 1969 /* 1970 * Parse cache data device (be it pmem or ssd) 1971 */ 1972 string = dm_shift_arg(&as); 1973 if (!string) 1974 goto bad_arguments; 1975 1976 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 1977 if (r) { 1978 ti->error = "Cache data device lookup failed"; 1979 goto bad; 1980 } 1981 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 1982 1983 /* 1984 * Parse the cache block size 1985 */ 1986 string = dm_shift_arg(&as); 1987 if (!string) 1988 goto bad_arguments; 1989 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 1990 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 1991 (wc->block_size & (wc->block_size - 1))) { 1992 r = -EINVAL; 1993 ti->error = "Invalid block size"; 1994 goto bad; 1995 } 1996 wc->block_size_bits = __ffs(wc->block_size); 1997 1998 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 1999 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2000 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2001 2002 /* 2003 * Parse optional arguments 2004 */ 2005 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2006 if (r) 2007 goto bad; 2008 2009 while (opt_params) { 2010 string = dm_shift_arg(&as), opt_params--; 2011 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2012 unsigned long long start_sector; 2013 string = dm_shift_arg(&as), opt_params--; 2014 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2015 goto invalid_optional; 2016 wc->start_sector = start_sector; 2017 if (wc->start_sector != start_sector || 2018 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2019 goto invalid_optional; 2020 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2021 string = dm_shift_arg(&as), opt_params--; 2022 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2023 goto invalid_optional; 2024 if (high_wm_percent < 0 || high_wm_percent > 100) 2025 goto invalid_optional; 2026 wc->high_wm_percent_set = true; 2027 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2028 string = dm_shift_arg(&as), opt_params--; 2029 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2030 goto invalid_optional; 2031 if (low_wm_percent < 0 || low_wm_percent > 100) 2032 goto invalid_optional; 2033 wc->low_wm_percent_set = true; 2034 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2035 string = dm_shift_arg(&as), opt_params--; 2036 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2037 goto invalid_optional; 2038 wc->max_writeback_jobs_set = true; 2039 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2040 string = dm_shift_arg(&as), opt_params--; 2041 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2042 goto invalid_optional; 2043 wc->autocommit_blocks_set = true; 2044 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2045 unsigned autocommit_msecs; 2046 string = dm_shift_arg(&as), opt_params--; 2047 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2048 goto invalid_optional; 2049 if (autocommit_msecs > 3600000) 2050 goto invalid_optional; 2051 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2052 wc->autocommit_time_set = true; 2053 } else if (!strcasecmp(string, "fua")) { 2054 if (WC_MODE_PMEM(wc)) { 2055 wc->writeback_fua = true; 2056 wc->writeback_fua_set = true; 2057 } else goto invalid_optional; 2058 } else if (!strcasecmp(string, "nofua")) { 2059 if (WC_MODE_PMEM(wc)) { 2060 wc->writeback_fua = false; 2061 wc->writeback_fua_set = true; 2062 } else goto invalid_optional; 2063 } else { 2064 invalid_optional: 2065 r = -EINVAL; 2066 ti->error = "Invalid optional argument"; 2067 goto bad; 2068 } 2069 } 2070 2071 if (high_wm_percent < low_wm_percent) { 2072 r = -EINVAL; 2073 ti->error = "High watermark must be greater than or equal to low watermark"; 2074 goto bad; 2075 } 2076 2077 if (WC_MODE_PMEM(wc)) { 2078 r = persistent_memory_claim(wc); 2079 if (r) { 2080 ti->error = "Unable to map persistent memory for cache"; 2081 goto bad; 2082 } 2083 } else { 2084 struct dm_io_region region; 2085 struct dm_io_request req; 2086 size_t n_blocks, n_metadata_blocks; 2087 uint64_t n_bitmap_bits; 2088 2089 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2090 2091 bio_list_init(&wc->flush_list); 2092 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2093 if (IS_ERR(wc->flush_thread)) { 2094 r = PTR_ERR(wc->flush_thread); 2095 wc->flush_thread = NULL; 2096 ti->error = "Couldn't spawn flush thread"; 2097 goto bad; 2098 } 2099 wake_up_process(wc->flush_thread); 2100 2101 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2102 &n_blocks, &n_metadata_blocks); 2103 if (r) { 2104 ti->error = "Invalid device size"; 2105 goto bad; 2106 } 2107 2108 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2109 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2110 /* this is limitation of test_bit functions */ 2111 if (n_bitmap_bits > 1U << 31) { 2112 r = -EFBIG; 2113 ti->error = "Invalid device size"; 2114 goto bad; 2115 } 2116 2117 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2118 if (!wc->memory_map) { 2119 r = -ENOMEM; 2120 ti->error = "Unable to allocate memory for metadata"; 2121 goto bad; 2122 } 2123 2124 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2125 if (IS_ERR(wc->dm_kcopyd)) { 2126 r = PTR_ERR(wc->dm_kcopyd); 2127 ti->error = "Unable to allocate dm-kcopyd client"; 2128 wc->dm_kcopyd = NULL; 2129 goto bad; 2130 } 2131 2132 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2133 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2134 BITS_PER_LONG * sizeof(unsigned long); 2135 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2136 if (!wc->dirty_bitmap) { 2137 r = -ENOMEM; 2138 ti->error = "Unable to allocate dirty bitmap"; 2139 goto bad; 2140 } 2141 2142 region.bdev = wc->ssd_dev->bdev; 2143 region.sector = wc->start_sector; 2144 region.count = wc->metadata_sectors; 2145 req.bi_op = REQ_OP_READ; 2146 req.bi_op_flags = REQ_SYNC; 2147 req.mem.type = DM_IO_VMA; 2148 req.mem.ptr.vma = (char *)wc->memory_map; 2149 req.client = wc->dm_io; 2150 req.notify.fn = NULL; 2151 2152 r = dm_io(&req, 1, ®ion, NULL); 2153 if (r) { 2154 ti->error = "Unable to read metadata"; 2155 goto bad; 2156 } 2157 } 2158 2159 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2160 if (r) { 2161 ti->error = "Hardware memory error when reading superblock"; 2162 goto bad; 2163 } 2164 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2165 r = init_memory(wc); 2166 if (r) { 2167 ti->error = "Unable to initialize device"; 2168 goto bad; 2169 } 2170 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2171 if (r) { 2172 ti->error = "Hardware memory error when reading superblock"; 2173 goto bad; 2174 } 2175 } 2176 2177 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2178 ti->error = "Invalid magic in the superblock"; 2179 r = -EINVAL; 2180 goto bad; 2181 } 2182 2183 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2184 ti->error = "Invalid version in the superblock"; 2185 r = -EINVAL; 2186 goto bad; 2187 } 2188 2189 if (le32_to_cpu(s.block_size) != wc->block_size) { 2190 ti->error = "Block size does not match superblock"; 2191 r = -EINVAL; 2192 goto bad; 2193 } 2194 2195 wc->n_blocks = le64_to_cpu(s.n_blocks); 2196 2197 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2198 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2199 overflow: 2200 ti->error = "Overflow in size calculation"; 2201 r = -EINVAL; 2202 goto bad; 2203 } 2204 offset += sizeof(struct wc_memory_superblock); 2205 if (offset < sizeof(struct wc_memory_superblock)) 2206 goto overflow; 2207 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2208 data_size = wc->n_blocks * (size_t)wc->block_size; 2209 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2210 (offset + data_size < offset)) 2211 goto overflow; 2212 if (offset + data_size > wc->memory_map_size) { 2213 ti->error = "Memory area is too small"; 2214 r = -EINVAL; 2215 goto bad; 2216 } 2217 2218 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2219 wc->block_start = (char *)sb(wc) + offset; 2220 2221 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2222 x += 50; 2223 do_div(x, 100); 2224 wc->freelist_high_watermark = x; 2225 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2226 x += 50; 2227 do_div(x, 100); 2228 wc->freelist_low_watermark = x; 2229 2230 r = writecache_alloc_entries(wc); 2231 if (r) { 2232 ti->error = "Cannot allocate memory"; 2233 goto bad; 2234 } 2235 2236 ti->num_flush_bios = 1; 2237 ti->flush_supported = true; 2238 ti->num_discard_bios = 1; 2239 2240 if (WC_MODE_PMEM(wc)) 2241 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2242 2243 return 0; 2244 2245 bad_arguments: 2246 r = -EINVAL; 2247 ti->error = "Bad arguments"; 2248 bad: 2249 writecache_dtr(ti); 2250 return r; 2251 } 2252 2253 static void writecache_status(struct dm_target *ti, status_type_t type, 2254 unsigned status_flags, char *result, unsigned maxlen) 2255 { 2256 struct dm_writecache *wc = ti->private; 2257 unsigned extra_args; 2258 unsigned sz = 0; 2259 uint64_t x; 2260 2261 switch (type) { 2262 case STATUSTYPE_INFO: 2263 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2264 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2265 (unsigned long long)wc->writeback_size); 2266 break; 2267 case STATUSTYPE_TABLE: 2268 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2269 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2270 extra_args = 0; 2271 if (wc->start_sector) 2272 extra_args += 2; 2273 if (wc->high_wm_percent_set) 2274 extra_args += 2; 2275 if (wc->low_wm_percent_set) 2276 extra_args += 2; 2277 if (wc->max_writeback_jobs_set) 2278 extra_args += 2; 2279 if (wc->autocommit_blocks_set) 2280 extra_args += 2; 2281 if (wc->autocommit_time_set) 2282 extra_args += 2; 2283 if (wc->writeback_fua_set) 2284 extra_args++; 2285 2286 DMEMIT("%u", extra_args); 2287 if (wc->start_sector) 2288 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2289 if (wc->high_wm_percent_set) { 2290 x = (uint64_t)wc->freelist_high_watermark * 100; 2291 x += wc->n_blocks / 2; 2292 do_div(x, (size_t)wc->n_blocks); 2293 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2294 } 2295 if (wc->low_wm_percent_set) { 2296 x = (uint64_t)wc->freelist_low_watermark * 100; 2297 x += wc->n_blocks / 2; 2298 do_div(x, (size_t)wc->n_blocks); 2299 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2300 } 2301 if (wc->max_writeback_jobs_set) 2302 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2303 if (wc->autocommit_blocks_set) 2304 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2305 if (wc->autocommit_time_set) 2306 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2307 if (wc->writeback_fua_set) 2308 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2309 break; 2310 } 2311 } 2312 2313 static struct target_type writecache_target = { 2314 .name = "writecache", 2315 .version = {1, 1, 1}, 2316 .module = THIS_MODULE, 2317 .ctr = writecache_ctr, 2318 .dtr = writecache_dtr, 2319 .status = writecache_status, 2320 .postsuspend = writecache_suspend, 2321 .resume = writecache_resume, 2322 .message = writecache_message, 2323 .map = writecache_map, 2324 .end_io = writecache_end_io, 2325 .iterate_devices = writecache_iterate_devices, 2326 .io_hints = writecache_io_hints, 2327 }; 2328 2329 static int __init dm_writecache_init(void) 2330 { 2331 int r; 2332 2333 r = dm_register_target(&writecache_target); 2334 if (r < 0) { 2335 DMERR("register failed %d", r); 2336 return r; 2337 } 2338 2339 return 0; 2340 } 2341 2342 static void __exit dm_writecache_exit(void) 2343 { 2344 dm_unregister_target(&writecache_target); 2345 } 2346 2347 module_init(dm_writecache_init); 2348 module_exit(dm_writecache_exit); 2349 2350 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2351 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2352 MODULE_LICENSE("GPL"); 2353