1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 #include <linux/delay.h> 19 #include "dm-io-tracker.h" 20 21 #define DM_MSG_PREFIX "writecache" 22 23 #define HIGH_WATERMARK 50 24 #define LOW_WATERMARK 45 25 #define MAX_WRITEBACK_JOBS 0 26 #define ENDIO_LATENCY 16 27 #define WRITEBACK_LATENCY 64 28 #define AUTOCOMMIT_BLOCKS_SSD 65536 29 #define AUTOCOMMIT_BLOCKS_PMEM 64 30 #define AUTOCOMMIT_MSEC 1000 31 #define MAX_AGE_DIV 16 32 #define MAX_AGE_UNSPECIFIED -1UL 33 #define PAUSE_WRITEBACK (HZ * 3) 34 35 #define BITMAP_GRANULARITY 65536 36 #if BITMAP_GRANULARITY < PAGE_SIZE 37 #undef BITMAP_GRANULARITY 38 #define BITMAP_GRANULARITY PAGE_SIZE 39 #endif 40 41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 42 #define DM_WRITECACHE_HAS_PMEM 43 #endif 44 45 #ifdef DM_WRITECACHE_HAS_PMEM 46 #define pmem_assign(dest, src) \ 47 do { \ 48 typeof(dest) uniq = (src); \ 49 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 50 } while (0) 51 #else 52 #define pmem_assign(dest, src) ((dest) = (src)) 53 #endif 54 55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM) 56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 57 #endif 58 59 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 60 #define MEMORY_SUPERBLOCK_VERSION 1 61 62 struct wc_memory_entry { 63 __le64 original_sector; 64 __le64 seq_count; 65 }; 66 67 struct wc_memory_superblock { 68 union { 69 struct { 70 __le32 magic; 71 __le32 version; 72 __le32 block_size; 73 __le32 pad; 74 __le64 n_blocks; 75 __le64 seq_count; 76 }; 77 __le64 padding[8]; 78 }; 79 struct wc_memory_entry entries[]; 80 }; 81 82 struct wc_entry { 83 struct rb_node rb_node; 84 struct list_head lru; 85 unsigned short wc_list_contiguous; 86 bool write_in_progress 87 #if BITS_PER_LONG == 64 88 :1 89 #endif 90 ; 91 unsigned long index 92 #if BITS_PER_LONG == 64 93 :47 94 #endif 95 ; 96 unsigned long age; 97 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 98 uint64_t original_sector; 99 uint64_t seq_count; 100 #endif 101 }; 102 103 #ifdef DM_WRITECACHE_HAS_PMEM 104 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 105 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 106 #else 107 #define WC_MODE_PMEM(wc) false 108 #define WC_MODE_FUA(wc) false 109 #endif 110 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 111 112 struct dm_writecache { 113 struct mutex lock; 114 struct list_head lru; 115 union { 116 struct list_head freelist; 117 struct { 118 struct rb_root freetree; 119 struct wc_entry *current_free; 120 }; 121 }; 122 struct rb_root tree; 123 124 size_t freelist_size; 125 size_t writeback_size; 126 size_t freelist_high_watermark; 127 size_t freelist_low_watermark; 128 unsigned long max_age; 129 unsigned long pause; 130 131 unsigned uncommitted_blocks; 132 unsigned autocommit_blocks; 133 unsigned max_writeback_jobs; 134 135 int error; 136 137 unsigned long autocommit_jiffies; 138 struct timer_list autocommit_timer; 139 struct wait_queue_head freelist_wait; 140 141 struct timer_list max_age_timer; 142 143 atomic_t bio_in_progress[2]; 144 struct wait_queue_head bio_in_progress_wait[2]; 145 146 struct dm_target *ti; 147 struct dm_dev *dev; 148 struct dm_dev *ssd_dev; 149 sector_t start_sector; 150 void *memory_map; 151 uint64_t memory_map_size; 152 size_t metadata_sectors; 153 size_t n_blocks; 154 uint64_t seq_count; 155 sector_t data_device_sectors; 156 void *block_start; 157 struct wc_entry *entries; 158 unsigned block_size; 159 unsigned char block_size_bits; 160 161 bool pmem_mode:1; 162 bool writeback_fua:1; 163 164 bool overwrote_committed:1; 165 bool memory_vmapped:1; 166 167 bool start_sector_set:1; 168 bool high_wm_percent_set:1; 169 bool low_wm_percent_set:1; 170 bool max_writeback_jobs_set:1; 171 bool autocommit_blocks_set:1; 172 bool autocommit_time_set:1; 173 bool max_age_set:1; 174 bool writeback_fua_set:1; 175 bool flush_on_suspend:1; 176 bool cleaner:1; 177 bool cleaner_set:1; 178 bool metadata_only:1; 179 bool pause_set:1; 180 181 unsigned high_wm_percent_value; 182 unsigned low_wm_percent_value; 183 unsigned autocommit_time_value; 184 unsigned max_age_value; 185 unsigned pause_value; 186 187 unsigned writeback_all; 188 struct workqueue_struct *writeback_wq; 189 struct work_struct writeback_work; 190 struct work_struct flush_work; 191 192 struct dm_io_tracker iot; 193 194 struct dm_io_client *dm_io; 195 196 raw_spinlock_t endio_list_lock; 197 struct list_head endio_list; 198 struct task_struct *endio_thread; 199 200 struct task_struct *flush_thread; 201 struct bio_list flush_list; 202 203 struct dm_kcopyd_client *dm_kcopyd; 204 unsigned long *dirty_bitmap; 205 unsigned dirty_bitmap_size; 206 207 struct bio_set bio_set; 208 mempool_t copy_pool; 209 210 struct { 211 unsigned long long reads; 212 unsigned long long read_hits; 213 unsigned long long writes; 214 unsigned long long write_hits_uncommitted; 215 unsigned long long write_hits_committed; 216 unsigned long long writes_around; 217 unsigned long long writes_allocate; 218 unsigned long long writes_blocked_on_freelist; 219 unsigned long long flushes; 220 unsigned long long discards; 221 } stats; 222 }; 223 224 #define WB_LIST_INLINE 16 225 226 struct writeback_struct { 227 struct list_head endio_entry; 228 struct dm_writecache *wc; 229 struct wc_entry **wc_list; 230 unsigned wc_list_n; 231 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 232 struct bio bio; 233 }; 234 235 struct copy_struct { 236 struct list_head endio_entry; 237 struct dm_writecache *wc; 238 struct wc_entry *e; 239 unsigned n_entries; 240 int error; 241 }; 242 243 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 244 "A percentage of time allocated for data copying"); 245 246 static void wc_lock(struct dm_writecache *wc) 247 { 248 mutex_lock(&wc->lock); 249 } 250 251 static void wc_unlock(struct dm_writecache *wc) 252 { 253 mutex_unlock(&wc->lock); 254 } 255 256 #ifdef DM_WRITECACHE_HAS_PMEM 257 static int persistent_memory_claim(struct dm_writecache *wc) 258 { 259 int r; 260 loff_t s; 261 long p, da; 262 pfn_t pfn; 263 int id; 264 struct page **pages; 265 sector_t offset; 266 267 wc->memory_vmapped = false; 268 269 s = wc->memory_map_size; 270 p = s >> PAGE_SHIFT; 271 if (!p) { 272 r = -EINVAL; 273 goto err1; 274 } 275 if (p != s >> PAGE_SHIFT) { 276 r = -EOVERFLOW; 277 goto err1; 278 } 279 280 offset = get_start_sect(wc->ssd_dev->bdev); 281 if (offset & (PAGE_SIZE / 512 - 1)) { 282 r = -EINVAL; 283 goto err1; 284 } 285 offset >>= PAGE_SHIFT - 9; 286 287 id = dax_read_lock(); 288 289 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn); 290 if (da < 0) { 291 wc->memory_map = NULL; 292 r = da; 293 goto err2; 294 } 295 if (!pfn_t_has_page(pfn)) { 296 wc->memory_map = NULL; 297 r = -EOPNOTSUPP; 298 goto err2; 299 } 300 if (da != p) { 301 long i; 302 wc->memory_map = NULL; 303 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 304 if (!pages) { 305 r = -ENOMEM; 306 goto err2; 307 } 308 i = 0; 309 do { 310 long daa; 311 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i, 312 NULL, &pfn); 313 if (daa <= 0) { 314 r = daa ? daa : -EINVAL; 315 goto err3; 316 } 317 if (!pfn_t_has_page(pfn)) { 318 r = -EOPNOTSUPP; 319 goto err3; 320 } 321 while (daa-- && i < p) { 322 pages[i++] = pfn_t_to_page(pfn); 323 pfn.val++; 324 if (!(i & 15)) 325 cond_resched(); 326 } 327 } while (i < p); 328 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 329 if (!wc->memory_map) { 330 r = -ENOMEM; 331 goto err3; 332 } 333 kvfree(pages); 334 wc->memory_vmapped = true; 335 } 336 337 dax_read_unlock(id); 338 339 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 340 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 341 342 return 0; 343 err3: 344 kvfree(pages); 345 err2: 346 dax_read_unlock(id); 347 err1: 348 return r; 349 } 350 #else 351 static int persistent_memory_claim(struct dm_writecache *wc) 352 { 353 return -EOPNOTSUPP; 354 } 355 #endif 356 357 static void persistent_memory_release(struct dm_writecache *wc) 358 { 359 if (wc->memory_vmapped) 360 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 361 } 362 363 static struct page *persistent_memory_page(void *addr) 364 { 365 if (is_vmalloc_addr(addr)) 366 return vmalloc_to_page(addr); 367 else 368 return virt_to_page(addr); 369 } 370 371 static unsigned persistent_memory_page_offset(void *addr) 372 { 373 return (unsigned long)addr & (PAGE_SIZE - 1); 374 } 375 376 static void persistent_memory_flush_cache(void *ptr, size_t size) 377 { 378 if (is_vmalloc_addr(ptr)) 379 flush_kernel_vmap_range(ptr, size); 380 } 381 382 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 383 { 384 if (is_vmalloc_addr(ptr)) 385 invalidate_kernel_vmap_range(ptr, size); 386 } 387 388 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 389 { 390 return wc->memory_map; 391 } 392 393 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 394 { 395 return &sb(wc)->entries[e->index]; 396 } 397 398 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 399 { 400 return (char *)wc->block_start + (e->index << wc->block_size_bits); 401 } 402 403 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 404 { 405 return wc->start_sector + wc->metadata_sectors + 406 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 407 } 408 409 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 410 { 411 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 412 return e->original_sector; 413 #else 414 return le64_to_cpu(memory_entry(wc, e)->original_sector); 415 #endif 416 } 417 418 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 419 { 420 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 421 return e->seq_count; 422 #else 423 return le64_to_cpu(memory_entry(wc, e)->seq_count); 424 #endif 425 } 426 427 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 428 { 429 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 430 e->seq_count = -1; 431 #endif 432 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 433 } 434 435 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 436 uint64_t original_sector, uint64_t seq_count) 437 { 438 struct wc_memory_entry me; 439 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 440 e->original_sector = original_sector; 441 e->seq_count = seq_count; 442 #endif 443 me.original_sector = cpu_to_le64(original_sector); 444 me.seq_count = cpu_to_le64(seq_count); 445 pmem_assign(*memory_entry(wc, e), me); 446 } 447 448 #define writecache_error(wc, err, msg, arg...) \ 449 do { \ 450 if (!cmpxchg(&(wc)->error, 0, err)) \ 451 DMERR(msg, ##arg); \ 452 wake_up(&(wc)->freelist_wait); \ 453 } while (0) 454 455 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 456 457 static void writecache_flush_all_metadata(struct dm_writecache *wc) 458 { 459 if (!WC_MODE_PMEM(wc)) 460 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 461 } 462 463 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 464 { 465 if (!WC_MODE_PMEM(wc)) 466 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 467 wc->dirty_bitmap); 468 } 469 470 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 471 472 struct io_notify { 473 struct dm_writecache *wc; 474 struct completion c; 475 atomic_t count; 476 }; 477 478 static void writecache_notify_io(unsigned long error, void *context) 479 { 480 struct io_notify *endio = context; 481 482 if (unlikely(error != 0)) 483 writecache_error(endio->wc, -EIO, "error writing metadata"); 484 BUG_ON(atomic_read(&endio->count) <= 0); 485 if (atomic_dec_and_test(&endio->count)) 486 complete(&endio->c); 487 } 488 489 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 490 { 491 wait_event(wc->bio_in_progress_wait[direction], 492 !atomic_read(&wc->bio_in_progress[direction])); 493 } 494 495 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 496 { 497 struct dm_io_region region; 498 struct dm_io_request req; 499 struct io_notify endio = { 500 wc, 501 COMPLETION_INITIALIZER_ONSTACK(endio.c), 502 ATOMIC_INIT(1), 503 }; 504 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 505 unsigned i = 0; 506 507 while (1) { 508 unsigned j; 509 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 510 if (unlikely(i == bitmap_bits)) 511 break; 512 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 513 514 region.bdev = wc->ssd_dev->bdev; 515 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 516 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 517 518 if (unlikely(region.sector >= wc->metadata_sectors)) 519 break; 520 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 521 region.count = wc->metadata_sectors - region.sector; 522 523 region.sector += wc->start_sector; 524 atomic_inc(&endio.count); 525 req.bi_op = REQ_OP_WRITE; 526 req.bi_op_flags = REQ_SYNC; 527 req.mem.type = DM_IO_VMA; 528 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 529 req.client = wc->dm_io; 530 req.notify.fn = writecache_notify_io; 531 req.notify.context = &endio; 532 533 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 534 (void) dm_io(&req, 1, ®ion, NULL); 535 i = j; 536 } 537 538 writecache_notify_io(0, &endio); 539 wait_for_completion_io(&endio.c); 540 541 if (wait_for_ios) 542 writecache_wait_for_ios(wc, WRITE); 543 544 writecache_disk_flush(wc, wc->ssd_dev); 545 546 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 547 } 548 549 static void ssd_commit_superblock(struct dm_writecache *wc) 550 { 551 int r; 552 struct dm_io_region region; 553 struct dm_io_request req; 554 555 region.bdev = wc->ssd_dev->bdev; 556 region.sector = 0; 557 region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT; 558 559 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 560 region.count = wc->metadata_sectors - region.sector; 561 562 region.sector += wc->start_sector; 563 564 req.bi_op = REQ_OP_WRITE; 565 req.bi_op_flags = REQ_SYNC | REQ_FUA; 566 req.mem.type = DM_IO_VMA; 567 req.mem.ptr.vma = (char *)wc->memory_map; 568 req.client = wc->dm_io; 569 req.notify.fn = NULL; 570 req.notify.context = NULL; 571 572 r = dm_io(&req, 1, ®ion, NULL); 573 if (unlikely(r)) 574 writecache_error(wc, r, "error writing superblock"); 575 } 576 577 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 578 { 579 if (WC_MODE_PMEM(wc)) 580 pmem_wmb(); 581 else 582 ssd_commit_flushed(wc, wait_for_ios); 583 } 584 585 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 586 { 587 int r; 588 struct dm_io_region region; 589 struct dm_io_request req; 590 591 region.bdev = dev->bdev; 592 region.sector = 0; 593 region.count = 0; 594 req.bi_op = REQ_OP_WRITE; 595 req.bi_op_flags = REQ_PREFLUSH; 596 req.mem.type = DM_IO_KMEM; 597 req.mem.ptr.addr = NULL; 598 req.client = wc->dm_io; 599 req.notify.fn = NULL; 600 601 r = dm_io(&req, 1, ®ion, NULL); 602 if (unlikely(r)) 603 writecache_error(wc, r, "error flushing metadata: %d", r); 604 } 605 606 #define WFE_RETURN_FOLLOWING 1 607 #define WFE_LOWEST_SEQ 2 608 609 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 610 uint64_t block, int flags) 611 { 612 struct wc_entry *e; 613 struct rb_node *node = wc->tree.rb_node; 614 615 if (unlikely(!node)) 616 return NULL; 617 618 while (1) { 619 e = container_of(node, struct wc_entry, rb_node); 620 if (read_original_sector(wc, e) == block) 621 break; 622 623 node = (read_original_sector(wc, e) >= block ? 624 e->rb_node.rb_left : e->rb_node.rb_right); 625 if (unlikely(!node)) { 626 if (!(flags & WFE_RETURN_FOLLOWING)) 627 return NULL; 628 if (read_original_sector(wc, e) >= block) { 629 return e; 630 } else { 631 node = rb_next(&e->rb_node); 632 if (unlikely(!node)) 633 return NULL; 634 e = container_of(node, struct wc_entry, rb_node); 635 return e; 636 } 637 } 638 } 639 640 while (1) { 641 struct wc_entry *e2; 642 if (flags & WFE_LOWEST_SEQ) 643 node = rb_prev(&e->rb_node); 644 else 645 node = rb_next(&e->rb_node); 646 if (unlikely(!node)) 647 return e; 648 e2 = container_of(node, struct wc_entry, rb_node); 649 if (read_original_sector(wc, e2) != block) 650 return e; 651 e = e2; 652 } 653 } 654 655 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 656 { 657 struct wc_entry *e; 658 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 659 660 while (*node) { 661 e = container_of(*node, struct wc_entry, rb_node); 662 parent = &e->rb_node; 663 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 664 node = &parent->rb_left; 665 else 666 node = &parent->rb_right; 667 } 668 rb_link_node(&ins->rb_node, parent, node); 669 rb_insert_color(&ins->rb_node, &wc->tree); 670 list_add(&ins->lru, &wc->lru); 671 ins->age = jiffies; 672 } 673 674 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 675 { 676 list_del(&e->lru); 677 rb_erase(&e->rb_node, &wc->tree); 678 } 679 680 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 681 { 682 if (WC_MODE_SORT_FREELIST(wc)) { 683 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 684 if (unlikely(!*node)) 685 wc->current_free = e; 686 while (*node) { 687 parent = *node; 688 if (&e->rb_node < *node) 689 node = &parent->rb_left; 690 else 691 node = &parent->rb_right; 692 } 693 rb_link_node(&e->rb_node, parent, node); 694 rb_insert_color(&e->rb_node, &wc->freetree); 695 } else { 696 list_add_tail(&e->lru, &wc->freelist); 697 } 698 wc->freelist_size++; 699 } 700 701 static inline void writecache_verify_watermark(struct dm_writecache *wc) 702 { 703 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 704 queue_work(wc->writeback_wq, &wc->writeback_work); 705 } 706 707 static void writecache_max_age_timer(struct timer_list *t) 708 { 709 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 710 711 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 712 queue_work(wc->writeback_wq, &wc->writeback_work); 713 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 714 } 715 } 716 717 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 718 { 719 struct wc_entry *e; 720 721 if (WC_MODE_SORT_FREELIST(wc)) { 722 struct rb_node *next; 723 if (unlikely(!wc->current_free)) 724 return NULL; 725 e = wc->current_free; 726 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 727 return NULL; 728 next = rb_next(&e->rb_node); 729 rb_erase(&e->rb_node, &wc->freetree); 730 if (unlikely(!next)) 731 next = rb_first(&wc->freetree); 732 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 733 } else { 734 if (unlikely(list_empty(&wc->freelist))) 735 return NULL; 736 e = container_of(wc->freelist.next, struct wc_entry, lru); 737 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 738 return NULL; 739 list_del(&e->lru); 740 } 741 wc->freelist_size--; 742 743 writecache_verify_watermark(wc); 744 745 return e; 746 } 747 748 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 749 { 750 writecache_unlink(wc, e); 751 writecache_add_to_freelist(wc, e); 752 clear_seq_count(wc, e); 753 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 754 if (unlikely(waitqueue_active(&wc->freelist_wait))) 755 wake_up(&wc->freelist_wait); 756 } 757 758 static void writecache_wait_on_freelist(struct dm_writecache *wc) 759 { 760 DEFINE_WAIT(wait); 761 762 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 763 wc_unlock(wc); 764 io_schedule(); 765 finish_wait(&wc->freelist_wait, &wait); 766 wc_lock(wc); 767 } 768 769 static void writecache_poison_lists(struct dm_writecache *wc) 770 { 771 /* 772 * Catch incorrect access to these values while the device is suspended. 773 */ 774 memset(&wc->tree, -1, sizeof wc->tree); 775 wc->lru.next = LIST_POISON1; 776 wc->lru.prev = LIST_POISON2; 777 wc->freelist.next = LIST_POISON1; 778 wc->freelist.prev = LIST_POISON2; 779 } 780 781 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 782 { 783 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 784 if (WC_MODE_PMEM(wc)) 785 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 786 } 787 788 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 789 { 790 return read_seq_count(wc, e) < wc->seq_count; 791 } 792 793 static void writecache_flush(struct dm_writecache *wc) 794 { 795 struct wc_entry *e, *e2; 796 bool need_flush_after_free; 797 798 wc->uncommitted_blocks = 0; 799 del_timer(&wc->autocommit_timer); 800 801 if (list_empty(&wc->lru)) 802 return; 803 804 e = container_of(wc->lru.next, struct wc_entry, lru); 805 if (writecache_entry_is_committed(wc, e)) { 806 if (wc->overwrote_committed) { 807 writecache_wait_for_ios(wc, WRITE); 808 writecache_disk_flush(wc, wc->ssd_dev); 809 wc->overwrote_committed = false; 810 } 811 return; 812 } 813 while (1) { 814 writecache_flush_entry(wc, e); 815 if (unlikely(e->lru.next == &wc->lru)) 816 break; 817 e2 = container_of(e->lru.next, struct wc_entry, lru); 818 if (writecache_entry_is_committed(wc, e2)) 819 break; 820 e = e2; 821 cond_resched(); 822 } 823 writecache_commit_flushed(wc, true); 824 825 wc->seq_count++; 826 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 827 if (WC_MODE_PMEM(wc)) 828 writecache_commit_flushed(wc, false); 829 else 830 ssd_commit_superblock(wc); 831 832 wc->overwrote_committed = false; 833 834 need_flush_after_free = false; 835 while (1) { 836 /* Free another committed entry with lower seq-count */ 837 struct rb_node *rb_node = rb_prev(&e->rb_node); 838 839 if (rb_node) { 840 e2 = container_of(rb_node, struct wc_entry, rb_node); 841 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 842 likely(!e2->write_in_progress)) { 843 writecache_free_entry(wc, e2); 844 need_flush_after_free = true; 845 } 846 } 847 if (unlikely(e->lru.prev == &wc->lru)) 848 break; 849 e = container_of(e->lru.prev, struct wc_entry, lru); 850 cond_resched(); 851 } 852 853 if (need_flush_after_free) 854 writecache_commit_flushed(wc, false); 855 } 856 857 static void writecache_flush_work(struct work_struct *work) 858 { 859 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 860 861 wc_lock(wc); 862 writecache_flush(wc); 863 wc_unlock(wc); 864 } 865 866 static void writecache_autocommit_timer(struct timer_list *t) 867 { 868 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 869 if (!writecache_has_error(wc)) 870 queue_work(wc->writeback_wq, &wc->flush_work); 871 } 872 873 static void writecache_schedule_autocommit(struct dm_writecache *wc) 874 { 875 if (!timer_pending(&wc->autocommit_timer)) 876 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 877 } 878 879 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 880 { 881 struct wc_entry *e; 882 bool discarded_something = false; 883 884 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 885 if (unlikely(!e)) 886 return; 887 888 while (read_original_sector(wc, e) < end) { 889 struct rb_node *node = rb_next(&e->rb_node); 890 891 if (likely(!e->write_in_progress)) { 892 if (!discarded_something) { 893 if (!WC_MODE_PMEM(wc)) { 894 writecache_wait_for_ios(wc, READ); 895 writecache_wait_for_ios(wc, WRITE); 896 } 897 discarded_something = true; 898 } 899 if (!writecache_entry_is_committed(wc, e)) 900 wc->uncommitted_blocks--; 901 writecache_free_entry(wc, e); 902 } 903 904 if (unlikely(!node)) 905 break; 906 907 e = container_of(node, struct wc_entry, rb_node); 908 } 909 910 if (discarded_something) 911 writecache_commit_flushed(wc, false); 912 } 913 914 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 915 { 916 if (wc->writeback_size) { 917 writecache_wait_on_freelist(wc); 918 return true; 919 } 920 return false; 921 } 922 923 static void writecache_suspend(struct dm_target *ti) 924 { 925 struct dm_writecache *wc = ti->private; 926 bool flush_on_suspend; 927 928 del_timer_sync(&wc->autocommit_timer); 929 del_timer_sync(&wc->max_age_timer); 930 931 wc_lock(wc); 932 writecache_flush(wc); 933 flush_on_suspend = wc->flush_on_suspend; 934 if (flush_on_suspend) { 935 wc->flush_on_suspend = false; 936 wc->writeback_all++; 937 queue_work(wc->writeback_wq, &wc->writeback_work); 938 } 939 wc_unlock(wc); 940 941 drain_workqueue(wc->writeback_wq); 942 943 wc_lock(wc); 944 if (flush_on_suspend) 945 wc->writeback_all--; 946 while (writecache_wait_for_writeback(wc)); 947 948 if (WC_MODE_PMEM(wc)) 949 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 950 951 writecache_poison_lists(wc); 952 953 wc_unlock(wc); 954 } 955 956 static int writecache_alloc_entries(struct dm_writecache *wc) 957 { 958 size_t b; 959 960 if (wc->entries) 961 return 0; 962 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 963 if (!wc->entries) 964 return -ENOMEM; 965 for (b = 0; b < wc->n_blocks; b++) { 966 struct wc_entry *e = &wc->entries[b]; 967 e->index = b; 968 e->write_in_progress = false; 969 cond_resched(); 970 } 971 972 return 0; 973 } 974 975 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 976 { 977 struct dm_io_region region; 978 struct dm_io_request req; 979 980 region.bdev = wc->ssd_dev->bdev; 981 region.sector = wc->start_sector; 982 region.count = n_sectors; 983 req.bi_op = REQ_OP_READ; 984 req.bi_op_flags = REQ_SYNC; 985 req.mem.type = DM_IO_VMA; 986 req.mem.ptr.vma = (char *)wc->memory_map; 987 req.client = wc->dm_io; 988 req.notify.fn = NULL; 989 990 return dm_io(&req, 1, ®ion, NULL); 991 } 992 993 static void writecache_resume(struct dm_target *ti) 994 { 995 struct dm_writecache *wc = ti->private; 996 size_t b; 997 bool need_flush = false; 998 __le64 sb_seq_count; 999 int r; 1000 1001 wc_lock(wc); 1002 1003 wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev); 1004 1005 if (WC_MODE_PMEM(wc)) { 1006 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 1007 } else { 1008 r = writecache_read_metadata(wc, wc->metadata_sectors); 1009 if (r) { 1010 size_t sb_entries_offset; 1011 writecache_error(wc, r, "unable to read metadata: %d", r); 1012 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 1013 memset((char *)wc->memory_map + sb_entries_offset, -1, 1014 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 1015 } 1016 } 1017 1018 wc->tree = RB_ROOT; 1019 INIT_LIST_HEAD(&wc->lru); 1020 if (WC_MODE_SORT_FREELIST(wc)) { 1021 wc->freetree = RB_ROOT; 1022 wc->current_free = NULL; 1023 } else { 1024 INIT_LIST_HEAD(&wc->freelist); 1025 } 1026 wc->freelist_size = 0; 1027 1028 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count, 1029 sizeof(uint64_t)); 1030 if (r) { 1031 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 1032 sb_seq_count = cpu_to_le64(0); 1033 } 1034 wc->seq_count = le64_to_cpu(sb_seq_count); 1035 1036 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 1037 for (b = 0; b < wc->n_blocks; b++) { 1038 struct wc_entry *e = &wc->entries[b]; 1039 struct wc_memory_entry wme; 1040 if (writecache_has_error(wc)) { 1041 e->original_sector = -1; 1042 e->seq_count = -1; 1043 continue; 1044 } 1045 r = copy_mc_to_kernel(&wme, memory_entry(wc, e), 1046 sizeof(struct wc_memory_entry)); 1047 if (r) { 1048 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1049 (unsigned long)b, r); 1050 e->original_sector = -1; 1051 e->seq_count = -1; 1052 } else { 1053 e->original_sector = le64_to_cpu(wme.original_sector); 1054 e->seq_count = le64_to_cpu(wme.seq_count); 1055 } 1056 cond_resched(); 1057 } 1058 #endif 1059 for (b = 0; b < wc->n_blocks; b++) { 1060 struct wc_entry *e = &wc->entries[b]; 1061 if (!writecache_entry_is_committed(wc, e)) { 1062 if (read_seq_count(wc, e) != -1) { 1063 erase_this: 1064 clear_seq_count(wc, e); 1065 need_flush = true; 1066 } 1067 writecache_add_to_freelist(wc, e); 1068 } else { 1069 struct wc_entry *old; 1070 1071 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1072 if (!old) { 1073 writecache_insert_entry(wc, e); 1074 } else { 1075 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1076 writecache_error(wc, -EINVAL, 1077 "two identical entries, position %llu, sector %llu, sequence %llu", 1078 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1079 (unsigned long long)read_seq_count(wc, e)); 1080 } 1081 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1082 goto erase_this; 1083 } else { 1084 writecache_free_entry(wc, old); 1085 writecache_insert_entry(wc, e); 1086 need_flush = true; 1087 } 1088 } 1089 } 1090 cond_resched(); 1091 } 1092 1093 if (need_flush) { 1094 writecache_flush_all_metadata(wc); 1095 writecache_commit_flushed(wc, false); 1096 } 1097 1098 writecache_verify_watermark(wc); 1099 1100 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1101 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1102 1103 wc_unlock(wc); 1104 } 1105 1106 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1107 { 1108 if (argc != 1) 1109 return -EINVAL; 1110 1111 wc_lock(wc); 1112 if (dm_suspended(wc->ti)) { 1113 wc_unlock(wc); 1114 return -EBUSY; 1115 } 1116 if (writecache_has_error(wc)) { 1117 wc_unlock(wc); 1118 return -EIO; 1119 } 1120 1121 writecache_flush(wc); 1122 wc->writeback_all++; 1123 queue_work(wc->writeback_wq, &wc->writeback_work); 1124 wc_unlock(wc); 1125 1126 flush_workqueue(wc->writeback_wq); 1127 1128 wc_lock(wc); 1129 wc->writeback_all--; 1130 if (writecache_has_error(wc)) { 1131 wc_unlock(wc); 1132 return -EIO; 1133 } 1134 wc_unlock(wc); 1135 1136 return 0; 1137 } 1138 1139 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1140 { 1141 if (argc != 1) 1142 return -EINVAL; 1143 1144 wc_lock(wc); 1145 wc->flush_on_suspend = true; 1146 wc_unlock(wc); 1147 1148 return 0; 1149 } 1150 1151 static void activate_cleaner(struct dm_writecache *wc) 1152 { 1153 wc->flush_on_suspend = true; 1154 wc->cleaner = true; 1155 wc->freelist_high_watermark = wc->n_blocks; 1156 wc->freelist_low_watermark = wc->n_blocks; 1157 } 1158 1159 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1160 { 1161 if (argc != 1) 1162 return -EINVAL; 1163 1164 wc_lock(wc); 1165 activate_cleaner(wc); 1166 if (!dm_suspended(wc->ti)) 1167 writecache_verify_watermark(wc); 1168 wc_unlock(wc); 1169 1170 return 0; 1171 } 1172 1173 static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1174 { 1175 if (argc != 1) 1176 return -EINVAL; 1177 1178 wc_lock(wc); 1179 memset(&wc->stats, 0, sizeof wc->stats); 1180 wc_unlock(wc); 1181 1182 return 0; 1183 } 1184 1185 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1186 char *result, unsigned maxlen) 1187 { 1188 int r = -EINVAL; 1189 struct dm_writecache *wc = ti->private; 1190 1191 if (!strcasecmp(argv[0], "flush")) 1192 r = process_flush_mesg(argc, argv, wc); 1193 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1194 r = process_flush_on_suspend_mesg(argc, argv, wc); 1195 else if (!strcasecmp(argv[0], "cleaner")) 1196 r = process_cleaner_mesg(argc, argv, wc); 1197 else if (!strcasecmp(argv[0], "clear_stats")) 1198 r = process_clear_stats_mesg(argc, argv, wc); 1199 else 1200 DMERR("unrecognised message received: %s", argv[0]); 1201 1202 return r; 1203 } 1204 1205 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1206 { 1207 /* 1208 * clflushopt performs better with block size 1024, 2048, 4096 1209 * non-temporal stores perform better with block size 512 1210 * 1211 * block size 512 1024 2048 4096 1212 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1213 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1214 * 1215 * We see that movnti performs better for 512-byte blocks, and 1216 * clflushopt performs better for 1024-byte and larger blocks. So, we 1217 * prefer clflushopt for sizes >= 768. 1218 * 1219 * NOTE: this happens to be the case now (with dm-writecache's single 1220 * threaded model) but re-evaluate this once memcpy_flushcache() is 1221 * enabled to use movdir64b which might invalidate this performance 1222 * advantage seen with cache-allocating-writes plus flushing. 1223 */ 1224 #ifdef CONFIG_X86 1225 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1226 likely(boot_cpu_data.x86_clflush_size == 64) && 1227 likely(size >= 768)) { 1228 do { 1229 memcpy((void *)dest, (void *)source, 64); 1230 clflushopt((void *)dest); 1231 dest += 64; 1232 source += 64; 1233 size -= 64; 1234 } while (size >= 64); 1235 return; 1236 } 1237 #endif 1238 memcpy_flushcache(dest, source, size); 1239 } 1240 1241 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1242 { 1243 void *buf; 1244 unsigned size; 1245 int rw = bio_data_dir(bio); 1246 unsigned remaining_size = wc->block_size; 1247 1248 do { 1249 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1250 buf = bvec_kmap_local(&bv); 1251 size = bv.bv_len; 1252 if (unlikely(size > remaining_size)) 1253 size = remaining_size; 1254 1255 if (rw == READ) { 1256 int r; 1257 r = copy_mc_to_kernel(buf, data, size); 1258 flush_dcache_page(bio_page(bio)); 1259 if (unlikely(r)) { 1260 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1261 bio->bi_status = BLK_STS_IOERR; 1262 } 1263 } else { 1264 flush_dcache_page(bio_page(bio)); 1265 memcpy_flushcache_optimized(data, buf, size); 1266 } 1267 1268 kunmap_local(buf); 1269 1270 data = (char *)data + size; 1271 remaining_size -= size; 1272 bio_advance(bio, size); 1273 } while (unlikely(remaining_size)); 1274 } 1275 1276 static int writecache_flush_thread(void *data) 1277 { 1278 struct dm_writecache *wc = data; 1279 1280 while (1) { 1281 struct bio *bio; 1282 1283 wc_lock(wc); 1284 bio = bio_list_pop(&wc->flush_list); 1285 if (!bio) { 1286 set_current_state(TASK_INTERRUPTIBLE); 1287 wc_unlock(wc); 1288 1289 if (unlikely(kthread_should_stop())) { 1290 set_current_state(TASK_RUNNING); 1291 break; 1292 } 1293 1294 schedule(); 1295 continue; 1296 } 1297 1298 if (bio_op(bio) == REQ_OP_DISCARD) { 1299 writecache_discard(wc, bio->bi_iter.bi_sector, 1300 bio_end_sector(bio)); 1301 wc_unlock(wc); 1302 bio_set_dev(bio, wc->dev->bdev); 1303 submit_bio_noacct(bio); 1304 } else { 1305 writecache_flush(wc); 1306 wc_unlock(wc); 1307 if (writecache_has_error(wc)) 1308 bio->bi_status = BLK_STS_IOERR; 1309 bio_endio(bio); 1310 } 1311 } 1312 1313 return 0; 1314 } 1315 1316 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1317 { 1318 if (bio_list_empty(&wc->flush_list)) 1319 wake_up_process(wc->flush_thread); 1320 bio_list_add(&wc->flush_list, bio); 1321 } 1322 1323 enum wc_map_op { 1324 WC_MAP_SUBMIT, 1325 WC_MAP_REMAP, 1326 WC_MAP_REMAP_ORIGIN, 1327 WC_MAP_RETURN, 1328 WC_MAP_ERROR, 1329 }; 1330 1331 static enum wc_map_op writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio, 1332 struct wc_entry *e) 1333 { 1334 if (e) { 1335 sector_t next_boundary = 1336 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1337 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) 1338 dm_accept_partial_bio(bio, next_boundary); 1339 } 1340 1341 return WC_MAP_REMAP_ORIGIN; 1342 } 1343 1344 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio) 1345 { 1346 enum wc_map_op map_op; 1347 struct wc_entry *e; 1348 1349 read_next_block: 1350 wc->stats.reads++; 1351 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1352 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1353 wc->stats.read_hits++; 1354 if (WC_MODE_PMEM(wc)) { 1355 bio_copy_block(wc, bio, memory_data(wc, e)); 1356 if (bio->bi_iter.bi_size) 1357 goto read_next_block; 1358 map_op = WC_MAP_SUBMIT; 1359 } else { 1360 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1361 bio_set_dev(bio, wc->ssd_dev->bdev); 1362 bio->bi_iter.bi_sector = cache_sector(wc, e); 1363 if (!writecache_entry_is_committed(wc, e)) 1364 writecache_wait_for_ios(wc, WRITE); 1365 map_op = WC_MAP_REMAP; 1366 } 1367 } else { 1368 map_op = writecache_map_remap_origin(wc, bio, e); 1369 } 1370 1371 return map_op; 1372 } 1373 1374 static enum wc_map_op writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio, 1375 struct wc_entry *e, bool search_used) 1376 { 1377 unsigned bio_size = wc->block_size; 1378 sector_t start_cache_sec = cache_sector(wc, e); 1379 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1380 1381 while (bio_size < bio->bi_iter.bi_size) { 1382 if (!search_used) { 1383 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1384 if (!f) 1385 break; 1386 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1387 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1388 writecache_insert_entry(wc, f); 1389 wc->uncommitted_blocks++; 1390 } else { 1391 struct wc_entry *f; 1392 struct rb_node *next = rb_next(&e->rb_node); 1393 if (!next) 1394 break; 1395 f = container_of(next, struct wc_entry, rb_node); 1396 if (f != e + 1) 1397 break; 1398 if (read_original_sector(wc, f) != 1399 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1400 break; 1401 if (unlikely(f->write_in_progress)) 1402 break; 1403 if (writecache_entry_is_committed(wc, f)) 1404 wc->overwrote_committed = true; 1405 e = f; 1406 } 1407 bio_size += wc->block_size; 1408 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1409 } 1410 1411 bio_set_dev(bio, wc->ssd_dev->bdev); 1412 bio->bi_iter.bi_sector = start_cache_sec; 1413 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1414 1415 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1416 wc->uncommitted_blocks = 0; 1417 queue_work(wc->writeback_wq, &wc->flush_work); 1418 } else { 1419 writecache_schedule_autocommit(wc); 1420 } 1421 1422 return WC_MAP_REMAP; 1423 } 1424 1425 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio) 1426 { 1427 struct wc_entry *e; 1428 1429 do { 1430 bool found_entry = false; 1431 bool search_used = false; 1432 wc->stats.writes++; 1433 if (writecache_has_error(wc)) 1434 return WC_MAP_ERROR; 1435 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1436 if (e) { 1437 if (!writecache_entry_is_committed(wc, e)) { 1438 wc->stats.write_hits_uncommitted++; 1439 search_used = true; 1440 goto bio_copy; 1441 } 1442 wc->stats.write_hits_committed++; 1443 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1444 wc->overwrote_committed = true; 1445 search_used = true; 1446 goto bio_copy; 1447 } 1448 found_entry = true; 1449 } else { 1450 if (unlikely(wc->cleaner) || 1451 (wc->metadata_only && !(bio->bi_opf & REQ_META))) 1452 goto direct_write; 1453 } 1454 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1455 if (unlikely(!e)) { 1456 if (!WC_MODE_PMEM(wc) && !found_entry) { 1457 direct_write: 1458 wc->stats.writes_around++; 1459 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1460 return writecache_map_remap_origin(wc, bio, e); 1461 } 1462 wc->stats.writes_blocked_on_freelist++; 1463 writecache_wait_on_freelist(wc); 1464 continue; 1465 } 1466 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1467 writecache_insert_entry(wc, e); 1468 wc->uncommitted_blocks++; 1469 wc->stats.writes_allocate++; 1470 bio_copy: 1471 if (WC_MODE_PMEM(wc)) 1472 bio_copy_block(wc, bio, memory_data(wc, e)); 1473 else 1474 return writecache_bio_copy_ssd(wc, bio, e, search_used); 1475 } while (bio->bi_iter.bi_size); 1476 1477 if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks)) 1478 writecache_flush(wc); 1479 else 1480 writecache_schedule_autocommit(wc); 1481 1482 return WC_MAP_SUBMIT; 1483 } 1484 1485 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio) 1486 { 1487 if (writecache_has_error(wc)) 1488 return WC_MAP_ERROR; 1489 1490 if (WC_MODE_PMEM(wc)) { 1491 wc->stats.flushes++; 1492 writecache_flush(wc); 1493 if (writecache_has_error(wc)) 1494 return WC_MAP_ERROR; 1495 else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only)) 1496 return WC_MAP_REMAP_ORIGIN; 1497 return WC_MAP_SUBMIT; 1498 } 1499 /* SSD: */ 1500 if (dm_bio_get_target_bio_nr(bio)) 1501 return WC_MAP_REMAP_ORIGIN; 1502 wc->stats.flushes++; 1503 writecache_offload_bio(wc, bio); 1504 return WC_MAP_RETURN; 1505 } 1506 1507 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio) 1508 { 1509 wc->stats.discards++; 1510 1511 if (writecache_has_error(wc)) 1512 return WC_MAP_ERROR; 1513 1514 if (WC_MODE_PMEM(wc)) { 1515 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1516 return WC_MAP_REMAP_ORIGIN; 1517 } 1518 /* SSD: */ 1519 writecache_offload_bio(wc, bio); 1520 return WC_MAP_RETURN; 1521 } 1522 1523 static int writecache_map(struct dm_target *ti, struct bio *bio) 1524 { 1525 struct dm_writecache *wc = ti->private; 1526 enum wc_map_op map_op; 1527 1528 bio->bi_private = NULL; 1529 1530 wc_lock(wc); 1531 1532 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1533 map_op = writecache_map_flush(wc, bio); 1534 goto done; 1535 } 1536 1537 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1538 1539 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1540 (wc->block_size / 512 - 1)) != 0)) { 1541 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1542 (unsigned long long)bio->bi_iter.bi_sector, 1543 bio->bi_iter.bi_size, wc->block_size); 1544 map_op = WC_MAP_ERROR; 1545 goto done; 1546 } 1547 1548 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1549 map_op = writecache_map_discard(wc, bio); 1550 goto done; 1551 } 1552 1553 if (bio_data_dir(bio) == READ) 1554 map_op = writecache_map_read(wc, bio); 1555 else 1556 map_op = writecache_map_write(wc, bio); 1557 done: 1558 switch (map_op) { 1559 case WC_MAP_REMAP_ORIGIN: 1560 if (likely(wc->pause != 0)) { 1561 if (bio_op(bio) == REQ_OP_WRITE) { 1562 dm_iot_io_begin(&wc->iot, 1); 1563 bio->bi_private = (void *)2; 1564 } 1565 } 1566 bio_set_dev(bio, wc->dev->bdev); 1567 wc_unlock(wc); 1568 return DM_MAPIO_REMAPPED; 1569 1570 case WC_MAP_REMAP: 1571 /* make sure that writecache_end_io decrements bio_in_progress: */ 1572 bio->bi_private = (void *)1; 1573 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1574 wc_unlock(wc); 1575 return DM_MAPIO_REMAPPED; 1576 1577 case WC_MAP_SUBMIT: 1578 wc_unlock(wc); 1579 bio_endio(bio); 1580 return DM_MAPIO_SUBMITTED; 1581 1582 case WC_MAP_RETURN: 1583 wc_unlock(wc); 1584 return DM_MAPIO_SUBMITTED; 1585 1586 case WC_MAP_ERROR: 1587 wc_unlock(wc); 1588 bio_io_error(bio); 1589 return DM_MAPIO_SUBMITTED; 1590 1591 default: 1592 BUG(); 1593 return -1; 1594 } 1595 } 1596 1597 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1598 { 1599 struct dm_writecache *wc = ti->private; 1600 1601 if (bio->bi_private == (void *)1) { 1602 int dir = bio_data_dir(bio); 1603 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1604 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1605 wake_up(&wc->bio_in_progress_wait[dir]); 1606 } else if (bio->bi_private == (void *)2) { 1607 dm_iot_io_end(&wc->iot, 1); 1608 } 1609 return 0; 1610 } 1611 1612 static int writecache_iterate_devices(struct dm_target *ti, 1613 iterate_devices_callout_fn fn, void *data) 1614 { 1615 struct dm_writecache *wc = ti->private; 1616 1617 return fn(ti, wc->dev, 0, ti->len, data); 1618 } 1619 1620 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1621 { 1622 struct dm_writecache *wc = ti->private; 1623 1624 if (limits->logical_block_size < wc->block_size) 1625 limits->logical_block_size = wc->block_size; 1626 1627 if (limits->physical_block_size < wc->block_size) 1628 limits->physical_block_size = wc->block_size; 1629 1630 if (limits->io_min < wc->block_size) 1631 limits->io_min = wc->block_size; 1632 } 1633 1634 1635 static void writecache_writeback_endio(struct bio *bio) 1636 { 1637 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1638 struct dm_writecache *wc = wb->wc; 1639 unsigned long flags; 1640 1641 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1642 if (unlikely(list_empty(&wc->endio_list))) 1643 wake_up_process(wc->endio_thread); 1644 list_add_tail(&wb->endio_entry, &wc->endio_list); 1645 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1646 } 1647 1648 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1649 { 1650 struct copy_struct *c = ptr; 1651 struct dm_writecache *wc = c->wc; 1652 1653 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1654 1655 raw_spin_lock_irq(&wc->endio_list_lock); 1656 if (unlikely(list_empty(&wc->endio_list))) 1657 wake_up_process(wc->endio_thread); 1658 list_add_tail(&c->endio_entry, &wc->endio_list); 1659 raw_spin_unlock_irq(&wc->endio_list_lock); 1660 } 1661 1662 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1663 { 1664 unsigned i; 1665 struct writeback_struct *wb; 1666 struct wc_entry *e; 1667 unsigned long n_walked = 0; 1668 1669 do { 1670 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1671 list_del(&wb->endio_entry); 1672 1673 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1674 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1675 "write error %d", wb->bio.bi_status); 1676 i = 0; 1677 do { 1678 e = wb->wc_list[i]; 1679 BUG_ON(!e->write_in_progress); 1680 e->write_in_progress = false; 1681 INIT_LIST_HEAD(&e->lru); 1682 if (!writecache_has_error(wc)) 1683 writecache_free_entry(wc, e); 1684 BUG_ON(!wc->writeback_size); 1685 wc->writeback_size--; 1686 n_walked++; 1687 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1688 writecache_commit_flushed(wc, false); 1689 wc_unlock(wc); 1690 wc_lock(wc); 1691 n_walked = 0; 1692 } 1693 } while (++i < wb->wc_list_n); 1694 1695 if (wb->wc_list != wb->wc_list_inline) 1696 kfree(wb->wc_list); 1697 bio_put(&wb->bio); 1698 } while (!list_empty(list)); 1699 } 1700 1701 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1702 { 1703 struct copy_struct *c; 1704 struct wc_entry *e; 1705 1706 do { 1707 c = list_entry(list->next, struct copy_struct, endio_entry); 1708 list_del(&c->endio_entry); 1709 1710 if (unlikely(c->error)) 1711 writecache_error(wc, c->error, "copy error"); 1712 1713 e = c->e; 1714 do { 1715 BUG_ON(!e->write_in_progress); 1716 e->write_in_progress = false; 1717 INIT_LIST_HEAD(&e->lru); 1718 if (!writecache_has_error(wc)) 1719 writecache_free_entry(wc, e); 1720 1721 BUG_ON(!wc->writeback_size); 1722 wc->writeback_size--; 1723 e++; 1724 } while (--c->n_entries); 1725 mempool_free(c, &wc->copy_pool); 1726 } while (!list_empty(list)); 1727 } 1728 1729 static int writecache_endio_thread(void *data) 1730 { 1731 struct dm_writecache *wc = data; 1732 1733 while (1) { 1734 struct list_head list; 1735 1736 raw_spin_lock_irq(&wc->endio_list_lock); 1737 if (!list_empty(&wc->endio_list)) 1738 goto pop_from_list; 1739 set_current_state(TASK_INTERRUPTIBLE); 1740 raw_spin_unlock_irq(&wc->endio_list_lock); 1741 1742 if (unlikely(kthread_should_stop())) { 1743 set_current_state(TASK_RUNNING); 1744 break; 1745 } 1746 1747 schedule(); 1748 1749 continue; 1750 1751 pop_from_list: 1752 list = wc->endio_list; 1753 list.next->prev = list.prev->next = &list; 1754 INIT_LIST_HEAD(&wc->endio_list); 1755 raw_spin_unlock_irq(&wc->endio_list_lock); 1756 1757 if (!WC_MODE_FUA(wc)) 1758 writecache_disk_flush(wc, wc->dev); 1759 1760 wc_lock(wc); 1761 1762 if (WC_MODE_PMEM(wc)) { 1763 __writecache_endio_pmem(wc, &list); 1764 } else { 1765 __writecache_endio_ssd(wc, &list); 1766 writecache_wait_for_ios(wc, READ); 1767 } 1768 1769 writecache_commit_flushed(wc, false); 1770 1771 wc_unlock(wc); 1772 } 1773 1774 return 0; 1775 } 1776 1777 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e) 1778 { 1779 struct dm_writecache *wc = wb->wc; 1780 unsigned block_size = wc->block_size; 1781 void *address = memory_data(wc, e); 1782 1783 persistent_memory_flush_cache(address, block_size); 1784 1785 if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors)) 1786 return true; 1787 1788 return bio_add_page(&wb->bio, persistent_memory_page(address), 1789 block_size, persistent_memory_page_offset(address)) != 0; 1790 } 1791 1792 struct writeback_list { 1793 struct list_head list; 1794 size_t size; 1795 }; 1796 1797 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1798 { 1799 if (unlikely(wc->max_writeback_jobs)) { 1800 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1801 wc_lock(wc); 1802 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1803 writecache_wait_on_freelist(wc); 1804 wc_unlock(wc); 1805 } 1806 } 1807 cond_resched(); 1808 } 1809 1810 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1811 { 1812 struct wc_entry *e, *f; 1813 struct bio *bio; 1814 struct writeback_struct *wb; 1815 unsigned max_pages; 1816 1817 while (wbl->size) { 1818 wbl->size--; 1819 e = container_of(wbl->list.prev, struct wc_entry, lru); 1820 list_del(&e->lru); 1821 1822 max_pages = e->wc_list_contiguous; 1823 1824 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1825 wb = container_of(bio, struct writeback_struct, bio); 1826 wb->wc = wc; 1827 bio->bi_end_io = writecache_writeback_endio; 1828 bio_set_dev(bio, wc->dev->bdev); 1829 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1830 if (max_pages <= WB_LIST_INLINE || 1831 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1832 GFP_NOIO | __GFP_NORETRY | 1833 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1834 wb->wc_list = wb->wc_list_inline; 1835 max_pages = WB_LIST_INLINE; 1836 } 1837 1838 BUG_ON(!wc_add_block(wb, e)); 1839 1840 wb->wc_list[0] = e; 1841 wb->wc_list_n = 1; 1842 1843 while (wbl->size && wb->wc_list_n < max_pages) { 1844 f = container_of(wbl->list.prev, struct wc_entry, lru); 1845 if (read_original_sector(wc, f) != 1846 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1847 break; 1848 if (!wc_add_block(wb, f)) 1849 break; 1850 wbl->size--; 1851 list_del(&f->lru); 1852 wb->wc_list[wb->wc_list_n++] = f; 1853 e = f; 1854 } 1855 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1856 if (writecache_has_error(wc)) { 1857 bio->bi_status = BLK_STS_IOERR; 1858 bio_endio(bio); 1859 } else if (unlikely(!bio_sectors(bio))) { 1860 bio->bi_status = BLK_STS_OK; 1861 bio_endio(bio); 1862 } else { 1863 submit_bio(bio); 1864 } 1865 1866 __writeback_throttle(wc, wbl); 1867 } 1868 } 1869 1870 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1871 { 1872 struct wc_entry *e, *f; 1873 struct dm_io_region from, to; 1874 struct copy_struct *c; 1875 1876 while (wbl->size) { 1877 unsigned n_sectors; 1878 1879 wbl->size--; 1880 e = container_of(wbl->list.prev, struct wc_entry, lru); 1881 list_del(&e->lru); 1882 1883 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1884 1885 from.bdev = wc->ssd_dev->bdev; 1886 from.sector = cache_sector(wc, e); 1887 from.count = n_sectors; 1888 to.bdev = wc->dev->bdev; 1889 to.sector = read_original_sector(wc, e); 1890 to.count = n_sectors; 1891 1892 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1893 c->wc = wc; 1894 c->e = e; 1895 c->n_entries = e->wc_list_contiguous; 1896 1897 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1898 wbl->size--; 1899 f = container_of(wbl->list.prev, struct wc_entry, lru); 1900 BUG_ON(f != e + 1); 1901 list_del(&f->lru); 1902 e = f; 1903 } 1904 1905 if (unlikely(to.sector + to.count > wc->data_device_sectors)) { 1906 if (to.sector >= wc->data_device_sectors) { 1907 writecache_copy_endio(0, 0, c); 1908 continue; 1909 } 1910 from.count = to.count = wc->data_device_sectors - to.sector; 1911 } 1912 1913 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1914 1915 __writeback_throttle(wc, wbl); 1916 } 1917 } 1918 1919 static void writecache_writeback(struct work_struct *work) 1920 { 1921 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1922 struct blk_plug plug; 1923 struct wc_entry *f, *g, *e = NULL; 1924 struct rb_node *node, *next_node; 1925 struct list_head skipped; 1926 struct writeback_list wbl; 1927 unsigned long n_walked; 1928 1929 if (!WC_MODE_PMEM(wc)) { 1930 /* Wait for any active kcopyd work on behalf of ssd writeback */ 1931 dm_kcopyd_client_flush(wc->dm_kcopyd); 1932 } 1933 1934 if (likely(wc->pause != 0)) { 1935 while (1) { 1936 unsigned long idle; 1937 if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) || 1938 unlikely(dm_suspended(wc->ti))) 1939 break; 1940 idle = dm_iot_idle_time(&wc->iot); 1941 if (idle >= wc->pause) 1942 break; 1943 idle = wc->pause - idle; 1944 if (idle > HZ) 1945 idle = HZ; 1946 schedule_timeout_idle(idle); 1947 } 1948 } 1949 1950 wc_lock(wc); 1951 restart: 1952 if (writecache_has_error(wc)) { 1953 wc_unlock(wc); 1954 return; 1955 } 1956 1957 if (unlikely(wc->writeback_all)) { 1958 if (writecache_wait_for_writeback(wc)) 1959 goto restart; 1960 } 1961 1962 if (wc->overwrote_committed) { 1963 writecache_wait_for_ios(wc, WRITE); 1964 } 1965 1966 n_walked = 0; 1967 INIT_LIST_HEAD(&skipped); 1968 INIT_LIST_HEAD(&wbl.list); 1969 wbl.size = 0; 1970 while (!list_empty(&wc->lru) && 1971 (wc->writeback_all || 1972 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1973 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1974 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1975 1976 n_walked++; 1977 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1978 likely(!wc->writeback_all)) { 1979 if (likely(!dm_suspended(wc->ti))) 1980 queue_work(wc->writeback_wq, &wc->writeback_work); 1981 break; 1982 } 1983 1984 if (unlikely(wc->writeback_all)) { 1985 if (unlikely(!e)) { 1986 writecache_flush(wc); 1987 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1988 } else 1989 e = g; 1990 } else 1991 e = container_of(wc->lru.prev, struct wc_entry, lru); 1992 BUG_ON(e->write_in_progress); 1993 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1994 writecache_flush(wc); 1995 } 1996 node = rb_prev(&e->rb_node); 1997 if (node) { 1998 f = container_of(node, struct wc_entry, rb_node); 1999 if (unlikely(read_original_sector(wc, f) == 2000 read_original_sector(wc, e))) { 2001 BUG_ON(!f->write_in_progress); 2002 list_move(&e->lru, &skipped); 2003 cond_resched(); 2004 continue; 2005 } 2006 } 2007 wc->writeback_size++; 2008 list_move(&e->lru, &wbl.list); 2009 wbl.size++; 2010 e->write_in_progress = true; 2011 e->wc_list_contiguous = 1; 2012 2013 f = e; 2014 2015 while (1) { 2016 next_node = rb_next(&f->rb_node); 2017 if (unlikely(!next_node)) 2018 break; 2019 g = container_of(next_node, struct wc_entry, rb_node); 2020 if (unlikely(read_original_sector(wc, g) == 2021 read_original_sector(wc, f))) { 2022 f = g; 2023 continue; 2024 } 2025 if (read_original_sector(wc, g) != 2026 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 2027 break; 2028 if (unlikely(g->write_in_progress)) 2029 break; 2030 if (unlikely(!writecache_entry_is_committed(wc, g))) 2031 break; 2032 2033 if (!WC_MODE_PMEM(wc)) { 2034 if (g != f + 1) 2035 break; 2036 } 2037 2038 n_walked++; 2039 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 2040 // break; 2041 2042 wc->writeback_size++; 2043 list_move(&g->lru, &wbl.list); 2044 wbl.size++; 2045 g->write_in_progress = true; 2046 g->wc_list_contiguous = BIO_MAX_VECS; 2047 f = g; 2048 e->wc_list_contiguous++; 2049 if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) { 2050 if (unlikely(wc->writeback_all)) { 2051 next_node = rb_next(&f->rb_node); 2052 if (likely(next_node)) 2053 g = container_of(next_node, struct wc_entry, rb_node); 2054 } 2055 break; 2056 } 2057 } 2058 cond_resched(); 2059 } 2060 2061 if (!list_empty(&skipped)) { 2062 list_splice_tail(&skipped, &wc->lru); 2063 /* 2064 * If we didn't do any progress, we must wait until some 2065 * writeback finishes to avoid burning CPU in a loop 2066 */ 2067 if (unlikely(!wbl.size)) 2068 writecache_wait_for_writeback(wc); 2069 } 2070 2071 wc_unlock(wc); 2072 2073 blk_start_plug(&plug); 2074 2075 if (WC_MODE_PMEM(wc)) 2076 __writecache_writeback_pmem(wc, &wbl); 2077 else 2078 __writecache_writeback_ssd(wc, &wbl); 2079 2080 blk_finish_plug(&plug); 2081 2082 if (unlikely(wc->writeback_all)) { 2083 wc_lock(wc); 2084 while (writecache_wait_for_writeback(wc)); 2085 wc_unlock(wc); 2086 } 2087 } 2088 2089 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 2090 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 2091 { 2092 uint64_t n_blocks, offset; 2093 struct wc_entry e; 2094 2095 n_blocks = device_size; 2096 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 2097 2098 while (1) { 2099 if (!n_blocks) 2100 return -ENOSPC; 2101 /* Verify the following entries[n_blocks] won't overflow */ 2102 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 2103 sizeof(struct wc_memory_entry))) 2104 return -EFBIG; 2105 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 2106 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 2107 if (offset + n_blocks * block_size <= device_size) 2108 break; 2109 n_blocks--; 2110 } 2111 2112 /* check if the bit field overflows */ 2113 e.index = n_blocks; 2114 if (e.index != n_blocks) 2115 return -EFBIG; 2116 2117 if (n_blocks_p) 2118 *n_blocks_p = n_blocks; 2119 if (n_metadata_blocks_p) 2120 *n_metadata_blocks_p = offset >> __ffs(block_size); 2121 return 0; 2122 } 2123 2124 static int init_memory(struct dm_writecache *wc) 2125 { 2126 size_t b; 2127 int r; 2128 2129 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 2130 if (r) 2131 return r; 2132 2133 r = writecache_alloc_entries(wc); 2134 if (r) 2135 return r; 2136 2137 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 2138 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 2139 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 2140 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 2141 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 2142 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 2143 2144 for (b = 0; b < wc->n_blocks; b++) { 2145 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 2146 cond_resched(); 2147 } 2148 2149 writecache_flush_all_metadata(wc); 2150 writecache_commit_flushed(wc, false); 2151 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 2152 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 2153 writecache_commit_flushed(wc, false); 2154 2155 return 0; 2156 } 2157 2158 static void writecache_dtr(struct dm_target *ti) 2159 { 2160 struct dm_writecache *wc = ti->private; 2161 2162 if (!wc) 2163 return; 2164 2165 if (wc->endio_thread) 2166 kthread_stop(wc->endio_thread); 2167 2168 if (wc->flush_thread) 2169 kthread_stop(wc->flush_thread); 2170 2171 bioset_exit(&wc->bio_set); 2172 2173 mempool_exit(&wc->copy_pool); 2174 2175 if (wc->writeback_wq) 2176 destroy_workqueue(wc->writeback_wq); 2177 2178 if (wc->dev) 2179 dm_put_device(ti, wc->dev); 2180 2181 if (wc->ssd_dev) 2182 dm_put_device(ti, wc->ssd_dev); 2183 2184 vfree(wc->entries); 2185 2186 if (wc->memory_map) { 2187 if (WC_MODE_PMEM(wc)) 2188 persistent_memory_release(wc); 2189 else 2190 vfree(wc->memory_map); 2191 } 2192 2193 if (wc->dm_kcopyd) 2194 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2195 2196 if (wc->dm_io) 2197 dm_io_client_destroy(wc->dm_io); 2198 2199 vfree(wc->dirty_bitmap); 2200 2201 kfree(wc); 2202 } 2203 2204 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2205 { 2206 struct dm_writecache *wc; 2207 struct dm_arg_set as; 2208 const char *string; 2209 unsigned opt_params; 2210 size_t offset, data_size; 2211 int i, r; 2212 char dummy; 2213 int high_wm_percent = HIGH_WATERMARK; 2214 int low_wm_percent = LOW_WATERMARK; 2215 uint64_t x; 2216 struct wc_memory_superblock s; 2217 2218 static struct dm_arg _args[] = { 2219 {0, 18, "Invalid number of feature args"}, 2220 }; 2221 2222 as.argc = argc; 2223 as.argv = argv; 2224 2225 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2226 if (!wc) { 2227 ti->error = "Cannot allocate writecache structure"; 2228 r = -ENOMEM; 2229 goto bad; 2230 } 2231 ti->private = wc; 2232 wc->ti = ti; 2233 2234 mutex_init(&wc->lock); 2235 wc->max_age = MAX_AGE_UNSPECIFIED; 2236 writecache_poison_lists(wc); 2237 init_waitqueue_head(&wc->freelist_wait); 2238 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2239 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2240 2241 for (i = 0; i < 2; i++) { 2242 atomic_set(&wc->bio_in_progress[i], 0); 2243 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2244 } 2245 2246 wc->dm_io = dm_io_client_create(); 2247 if (IS_ERR(wc->dm_io)) { 2248 r = PTR_ERR(wc->dm_io); 2249 ti->error = "Unable to allocate dm-io client"; 2250 wc->dm_io = NULL; 2251 goto bad; 2252 } 2253 2254 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2255 if (!wc->writeback_wq) { 2256 r = -ENOMEM; 2257 ti->error = "Could not allocate writeback workqueue"; 2258 goto bad; 2259 } 2260 INIT_WORK(&wc->writeback_work, writecache_writeback); 2261 INIT_WORK(&wc->flush_work, writecache_flush_work); 2262 2263 dm_iot_init(&wc->iot); 2264 2265 raw_spin_lock_init(&wc->endio_list_lock); 2266 INIT_LIST_HEAD(&wc->endio_list); 2267 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2268 if (IS_ERR(wc->endio_thread)) { 2269 r = PTR_ERR(wc->endio_thread); 2270 wc->endio_thread = NULL; 2271 ti->error = "Couldn't spawn endio thread"; 2272 goto bad; 2273 } 2274 wake_up_process(wc->endio_thread); 2275 2276 /* 2277 * Parse the mode (pmem or ssd) 2278 */ 2279 string = dm_shift_arg(&as); 2280 if (!string) 2281 goto bad_arguments; 2282 2283 if (!strcasecmp(string, "s")) { 2284 wc->pmem_mode = false; 2285 } else if (!strcasecmp(string, "p")) { 2286 #ifdef DM_WRITECACHE_HAS_PMEM 2287 wc->pmem_mode = true; 2288 wc->writeback_fua = true; 2289 #else 2290 /* 2291 * If the architecture doesn't support persistent memory or 2292 * the kernel doesn't support any DAX drivers, this driver can 2293 * only be used in SSD-only mode. 2294 */ 2295 r = -EOPNOTSUPP; 2296 ti->error = "Persistent memory or DAX not supported on this system"; 2297 goto bad; 2298 #endif 2299 } else { 2300 goto bad_arguments; 2301 } 2302 2303 if (WC_MODE_PMEM(wc)) { 2304 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2305 offsetof(struct writeback_struct, bio), 2306 BIOSET_NEED_BVECS); 2307 if (r) { 2308 ti->error = "Could not allocate bio set"; 2309 goto bad; 2310 } 2311 } else { 2312 wc->pause = PAUSE_WRITEBACK; 2313 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2314 if (r) { 2315 ti->error = "Could not allocate mempool"; 2316 goto bad; 2317 } 2318 } 2319 2320 /* 2321 * Parse the origin data device 2322 */ 2323 string = dm_shift_arg(&as); 2324 if (!string) 2325 goto bad_arguments; 2326 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2327 if (r) { 2328 ti->error = "Origin data device lookup failed"; 2329 goto bad; 2330 } 2331 2332 /* 2333 * Parse cache data device (be it pmem or ssd) 2334 */ 2335 string = dm_shift_arg(&as); 2336 if (!string) 2337 goto bad_arguments; 2338 2339 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2340 if (r) { 2341 ti->error = "Cache data device lookup failed"; 2342 goto bad; 2343 } 2344 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2345 2346 /* 2347 * Parse the cache block size 2348 */ 2349 string = dm_shift_arg(&as); 2350 if (!string) 2351 goto bad_arguments; 2352 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2353 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2354 (wc->block_size & (wc->block_size - 1))) { 2355 r = -EINVAL; 2356 ti->error = "Invalid block size"; 2357 goto bad; 2358 } 2359 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2360 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2361 r = -EINVAL; 2362 ti->error = "Block size is smaller than device logical block size"; 2363 goto bad; 2364 } 2365 wc->block_size_bits = __ffs(wc->block_size); 2366 2367 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2368 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2369 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2370 2371 /* 2372 * Parse optional arguments 2373 */ 2374 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2375 if (r) 2376 goto bad; 2377 2378 while (opt_params) { 2379 string = dm_shift_arg(&as), opt_params--; 2380 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2381 unsigned long long start_sector; 2382 string = dm_shift_arg(&as), opt_params--; 2383 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2384 goto invalid_optional; 2385 wc->start_sector = start_sector; 2386 wc->start_sector_set = true; 2387 if (wc->start_sector != start_sector || 2388 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2389 goto invalid_optional; 2390 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2391 string = dm_shift_arg(&as), opt_params--; 2392 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2393 goto invalid_optional; 2394 if (high_wm_percent < 0 || high_wm_percent > 100) 2395 goto invalid_optional; 2396 wc->high_wm_percent_value = high_wm_percent; 2397 wc->high_wm_percent_set = true; 2398 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2399 string = dm_shift_arg(&as), opt_params--; 2400 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2401 goto invalid_optional; 2402 if (low_wm_percent < 0 || low_wm_percent > 100) 2403 goto invalid_optional; 2404 wc->low_wm_percent_value = low_wm_percent; 2405 wc->low_wm_percent_set = true; 2406 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2407 string = dm_shift_arg(&as), opt_params--; 2408 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2409 goto invalid_optional; 2410 wc->max_writeback_jobs_set = true; 2411 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2412 string = dm_shift_arg(&as), opt_params--; 2413 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2414 goto invalid_optional; 2415 wc->autocommit_blocks_set = true; 2416 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2417 unsigned autocommit_msecs; 2418 string = dm_shift_arg(&as), opt_params--; 2419 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2420 goto invalid_optional; 2421 if (autocommit_msecs > 3600000) 2422 goto invalid_optional; 2423 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2424 wc->autocommit_time_value = autocommit_msecs; 2425 wc->autocommit_time_set = true; 2426 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2427 unsigned max_age_msecs; 2428 string = dm_shift_arg(&as), opt_params--; 2429 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2430 goto invalid_optional; 2431 if (max_age_msecs > 86400000) 2432 goto invalid_optional; 2433 wc->max_age = msecs_to_jiffies(max_age_msecs); 2434 wc->max_age_set = true; 2435 wc->max_age_value = max_age_msecs; 2436 } else if (!strcasecmp(string, "cleaner")) { 2437 wc->cleaner_set = true; 2438 wc->cleaner = true; 2439 } else if (!strcasecmp(string, "fua")) { 2440 if (WC_MODE_PMEM(wc)) { 2441 wc->writeback_fua = true; 2442 wc->writeback_fua_set = true; 2443 } else goto invalid_optional; 2444 } else if (!strcasecmp(string, "nofua")) { 2445 if (WC_MODE_PMEM(wc)) { 2446 wc->writeback_fua = false; 2447 wc->writeback_fua_set = true; 2448 } else goto invalid_optional; 2449 } else if (!strcasecmp(string, "metadata_only")) { 2450 wc->metadata_only = true; 2451 } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) { 2452 unsigned pause_msecs; 2453 if (WC_MODE_PMEM(wc)) 2454 goto invalid_optional; 2455 string = dm_shift_arg(&as), opt_params--; 2456 if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1) 2457 goto invalid_optional; 2458 if (pause_msecs > 60000) 2459 goto invalid_optional; 2460 wc->pause = msecs_to_jiffies(pause_msecs); 2461 wc->pause_set = true; 2462 wc->pause_value = pause_msecs; 2463 } else { 2464 invalid_optional: 2465 r = -EINVAL; 2466 ti->error = "Invalid optional argument"; 2467 goto bad; 2468 } 2469 } 2470 2471 if (high_wm_percent < low_wm_percent) { 2472 r = -EINVAL; 2473 ti->error = "High watermark must be greater than or equal to low watermark"; 2474 goto bad; 2475 } 2476 2477 if (WC_MODE_PMEM(wc)) { 2478 if (!dax_synchronous(wc->ssd_dev->dax_dev)) { 2479 r = -EOPNOTSUPP; 2480 ti->error = "Asynchronous persistent memory not supported as pmem cache"; 2481 goto bad; 2482 } 2483 2484 r = persistent_memory_claim(wc); 2485 if (r) { 2486 ti->error = "Unable to map persistent memory for cache"; 2487 goto bad; 2488 } 2489 } else { 2490 size_t n_blocks, n_metadata_blocks; 2491 uint64_t n_bitmap_bits; 2492 2493 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2494 2495 bio_list_init(&wc->flush_list); 2496 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2497 if (IS_ERR(wc->flush_thread)) { 2498 r = PTR_ERR(wc->flush_thread); 2499 wc->flush_thread = NULL; 2500 ti->error = "Couldn't spawn flush thread"; 2501 goto bad; 2502 } 2503 wake_up_process(wc->flush_thread); 2504 2505 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2506 &n_blocks, &n_metadata_blocks); 2507 if (r) { 2508 ti->error = "Invalid device size"; 2509 goto bad; 2510 } 2511 2512 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2513 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2514 /* this is limitation of test_bit functions */ 2515 if (n_bitmap_bits > 1U << 31) { 2516 r = -EFBIG; 2517 ti->error = "Invalid device size"; 2518 goto bad; 2519 } 2520 2521 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2522 if (!wc->memory_map) { 2523 r = -ENOMEM; 2524 ti->error = "Unable to allocate memory for metadata"; 2525 goto bad; 2526 } 2527 2528 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2529 if (IS_ERR(wc->dm_kcopyd)) { 2530 r = PTR_ERR(wc->dm_kcopyd); 2531 ti->error = "Unable to allocate dm-kcopyd client"; 2532 wc->dm_kcopyd = NULL; 2533 goto bad; 2534 } 2535 2536 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2537 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2538 BITS_PER_LONG * sizeof(unsigned long); 2539 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2540 if (!wc->dirty_bitmap) { 2541 r = -ENOMEM; 2542 ti->error = "Unable to allocate dirty bitmap"; 2543 goto bad; 2544 } 2545 2546 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2547 if (r) { 2548 ti->error = "Unable to read first block of metadata"; 2549 goto bad; 2550 } 2551 } 2552 2553 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2554 if (r) { 2555 ti->error = "Hardware memory error when reading superblock"; 2556 goto bad; 2557 } 2558 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2559 r = init_memory(wc); 2560 if (r) { 2561 ti->error = "Unable to initialize device"; 2562 goto bad; 2563 } 2564 r = copy_mc_to_kernel(&s, sb(wc), 2565 sizeof(struct wc_memory_superblock)); 2566 if (r) { 2567 ti->error = "Hardware memory error when reading superblock"; 2568 goto bad; 2569 } 2570 } 2571 2572 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2573 ti->error = "Invalid magic in the superblock"; 2574 r = -EINVAL; 2575 goto bad; 2576 } 2577 2578 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2579 ti->error = "Invalid version in the superblock"; 2580 r = -EINVAL; 2581 goto bad; 2582 } 2583 2584 if (le32_to_cpu(s.block_size) != wc->block_size) { 2585 ti->error = "Block size does not match superblock"; 2586 r = -EINVAL; 2587 goto bad; 2588 } 2589 2590 wc->n_blocks = le64_to_cpu(s.n_blocks); 2591 2592 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2593 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2594 overflow: 2595 ti->error = "Overflow in size calculation"; 2596 r = -EINVAL; 2597 goto bad; 2598 } 2599 offset += sizeof(struct wc_memory_superblock); 2600 if (offset < sizeof(struct wc_memory_superblock)) 2601 goto overflow; 2602 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2603 data_size = wc->n_blocks * (size_t)wc->block_size; 2604 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2605 (offset + data_size < offset)) 2606 goto overflow; 2607 if (offset + data_size > wc->memory_map_size) { 2608 ti->error = "Memory area is too small"; 2609 r = -EINVAL; 2610 goto bad; 2611 } 2612 2613 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2614 wc->block_start = (char *)sb(wc) + offset; 2615 2616 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2617 x += 50; 2618 do_div(x, 100); 2619 wc->freelist_high_watermark = x; 2620 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2621 x += 50; 2622 do_div(x, 100); 2623 wc->freelist_low_watermark = x; 2624 2625 if (wc->cleaner) 2626 activate_cleaner(wc); 2627 2628 r = writecache_alloc_entries(wc); 2629 if (r) { 2630 ti->error = "Cannot allocate memory"; 2631 goto bad; 2632 } 2633 2634 ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2; 2635 ti->flush_supported = true; 2636 ti->num_discard_bios = 1; 2637 2638 if (WC_MODE_PMEM(wc)) 2639 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2640 2641 return 0; 2642 2643 bad_arguments: 2644 r = -EINVAL; 2645 ti->error = "Bad arguments"; 2646 bad: 2647 writecache_dtr(ti); 2648 return r; 2649 } 2650 2651 static void writecache_status(struct dm_target *ti, status_type_t type, 2652 unsigned status_flags, char *result, unsigned maxlen) 2653 { 2654 struct dm_writecache *wc = ti->private; 2655 unsigned extra_args; 2656 unsigned sz = 0; 2657 2658 switch (type) { 2659 case STATUSTYPE_INFO: 2660 DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu", 2661 writecache_has_error(wc), 2662 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2663 (unsigned long long)wc->writeback_size, 2664 wc->stats.reads, 2665 wc->stats.read_hits, 2666 wc->stats.writes, 2667 wc->stats.write_hits_uncommitted, 2668 wc->stats.write_hits_committed, 2669 wc->stats.writes_around, 2670 wc->stats.writes_allocate, 2671 wc->stats.writes_blocked_on_freelist, 2672 wc->stats.flushes, 2673 wc->stats.discards); 2674 break; 2675 case STATUSTYPE_TABLE: 2676 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2677 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2678 extra_args = 0; 2679 if (wc->start_sector_set) 2680 extra_args += 2; 2681 if (wc->high_wm_percent_set) 2682 extra_args += 2; 2683 if (wc->low_wm_percent_set) 2684 extra_args += 2; 2685 if (wc->max_writeback_jobs_set) 2686 extra_args += 2; 2687 if (wc->autocommit_blocks_set) 2688 extra_args += 2; 2689 if (wc->autocommit_time_set) 2690 extra_args += 2; 2691 if (wc->max_age_set) 2692 extra_args += 2; 2693 if (wc->cleaner_set) 2694 extra_args++; 2695 if (wc->writeback_fua_set) 2696 extra_args++; 2697 if (wc->metadata_only) 2698 extra_args++; 2699 if (wc->pause_set) 2700 extra_args += 2; 2701 2702 DMEMIT("%u", extra_args); 2703 if (wc->start_sector_set) 2704 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2705 if (wc->high_wm_percent_set) 2706 DMEMIT(" high_watermark %u", wc->high_wm_percent_value); 2707 if (wc->low_wm_percent_set) 2708 DMEMIT(" low_watermark %u", wc->low_wm_percent_value); 2709 if (wc->max_writeback_jobs_set) 2710 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2711 if (wc->autocommit_blocks_set) 2712 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2713 if (wc->autocommit_time_set) 2714 DMEMIT(" autocommit_time %u", wc->autocommit_time_value); 2715 if (wc->max_age_set) 2716 DMEMIT(" max_age %u", wc->max_age_value); 2717 if (wc->cleaner_set) 2718 DMEMIT(" cleaner"); 2719 if (wc->writeback_fua_set) 2720 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2721 if (wc->metadata_only) 2722 DMEMIT(" metadata_only"); 2723 if (wc->pause_set) 2724 DMEMIT(" pause_writeback %u", wc->pause_value); 2725 break; 2726 case STATUSTYPE_IMA: 2727 *result = '\0'; 2728 break; 2729 } 2730 } 2731 2732 static struct target_type writecache_target = { 2733 .name = "writecache", 2734 .version = {1, 6, 0}, 2735 .module = THIS_MODULE, 2736 .ctr = writecache_ctr, 2737 .dtr = writecache_dtr, 2738 .status = writecache_status, 2739 .postsuspend = writecache_suspend, 2740 .resume = writecache_resume, 2741 .message = writecache_message, 2742 .map = writecache_map, 2743 .end_io = writecache_end_io, 2744 .iterate_devices = writecache_iterate_devices, 2745 .io_hints = writecache_io_hints, 2746 }; 2747 2748 static int __init dm_writecache_init(void) 2749 { 2750 int r; 2751 2752 r = dm_register_target(&writecache_target); 2753 if (r < 0) { 2754 DMERR("register failed %d", r); 2755 return r; 2756 } 2757 2758 return 0; 2759 } 2760 2761 static void __exit dm_writecache_exit(void) 2762 { 2763 dm_unregister_target(&writecache_target); 2764 } 2765 2766 module_init(dm_writecache_init); 2767 module_exit(dm_writecache_exit); 2768 2769 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2770 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2771 MODULE_LICENSE("GPL"); 2772