1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 #define MAX_AGE_DIV 16 30 #define MAX_AGE_UNSPECIFIED -1UL 31 32 #define BITMAP_GRANULARITY 65536 33 #if BITMAP_GRANULARITY < PAGE_SIZE 34 #undef BITMAP_GRANULARITY 35 #define BITMAP_GRANULARITY PAGE_SIZE 36 #endif 37 38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 39 #define DM_WRITECACHE_HAS_PMEM 40 #endif 41 42 #ifdef DM_WRITECACHE_HAS_PMEM 43 #define pmem_assign(dest, src) \ 44 do { \ 45 typeof(dest) uniq = (src); \ 46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 47 } while (0) 48 #else 49 #define pmem_assign(dest, src) ((dest) = (src)) 50 #endif 51 52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 54 #endif 55 56 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 57 #define MEMORY_SUPERBLOCK_VERSION 1 58 59 struct wc_memory_entry { 60 __le64 original_sector; 61 __le64 seq_count; 62 }; 63 64 struct wc_memory_superblock { 65 union { 66 struct { 67 __le32 magic; 68 __le32 version; 69 __le32 block_size; 70 __le32 pad; 71 __le64 n_blocks; 72 __le64 seq_count; 73 }; 74 __le64 padding[8]; 75 }; 76 struct wc_memory_entry entries[0]; 77 }; 78 79 struct wc_entry { 80 struct rb_node rb_node; 81 struct list_head lru; 82 unsigned short wc_list_contiguous; 83 bool write_in_progress 84 #if BITS_PER_LONG == 64 85 :1 86 #endif 87 ; 88 unsigned long index 89 #if BITS_PER_LONG == 64 90 :47 91 #endif 92 ; 93 unsigned long age; 94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 95 uint64_t original_sector; 96 uint64_t seq_count; 97 #endif 98 }; 99 100 #ifdef DM_WRITECACHE_HAS_PMEM 101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 103 #else 104 #define WC_MODE_PMEM(wc) false 105 #define WC_MODE_FUA(wc) false 106 #endif 107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 108 109 struct dm_writecache { 110 struct mutex lock; 111 struct list_head lru; 112 union { 113 struct list_head freelist; 114 struct { 115 struct rb_root freetree; 116 struct wc_entry *current_free; 117 }; 118 }; 119 struct rb_root tree; 120 121 size_t freelist_size; 122 size_t writeback_size; 123 size_t freelist_high_watermark; 124 size_t freelist_low_watermark; 125 unsigned long max_age; 126 127 unsigned uncommitted_blocks; 128 unsigned autocommit_blocks; 129 unsigned max_writeback_jobs; 130 131 int error; 132 133 unsigned long autocommit_jiffies; 134 struct timer_list autocommit_timer; 135 struct wait_queue_head freelist_wait; 136 137 struct timer_list max_age_timer; 138 139 atomic_t bio_in_progress[2]; 140 struct wait_queue_head bio_in_progress_wait[2]; 141 142 struct dm_target *ti; 143 struct dm_dev *dev; 144 struct dm_dev *ssd_dev; 145 sector_t start_sector; 146 void *memory_map; 147 uint64_t memory_map_size; 148 size_t metadata_sectors; 149 size_t n_blocks; 150 uint64_t seq_count; 151 void *block_start; 152 struct wc_entry *entries; 153 unsigned block_size; 154 unsigned char block_size_bits; 155 156 bool pmem_mode:1; 157 bool writeback_fua:1; 158 159 bool overwrote_committed:1; 160 bool memory_vmapped:1; 161 162 bool high_wm_percent_set:1; 163 bool low_wm_percent_set:1; 164 bool max_writeback_jobs_set:1; 165 bool autocommit_blocks_set:1; 166 bool autocommit_time_set:1; 167 bool writeback_fua_set:1; 168 bool flush_on_suspend:1; 169 bool cleaner:1; 170 171 unsigned writeback_all; 172 struct workqueue_struct *writeback_wq; 173 struct work_struct writeback_work; 174 struct work_struct flush_work; 175 176 struct dm_io_client *dm_io; 177 178 raw_spinlock_t endio_list_lock; 179 struct list_head endio_list; 180 struct task_struct *endio_thread; 181 182 struct task_struct *flush_thread; 183 struct bio_list flush_list; 184 185 struct dm_kcopyd_client *dm_kcopyd; 186 unsigned long *dirty_bitmap; 187 unsigned dirty_bitmap_size; 188 189 struct bio_set bio_set; 190 mempool_t copy_pool; 191 }; 192 193 #define WB_LIST_INLINE 16 194 195 struct writeback_struct { 196 struct list_head endio_entry; 197 struct dm_writecache *wc; 198 struct wc_entry **wc_list; 199 unsigned wc_list_n; 200 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 201 struct bio bio; 202 }; 203 204 struct copy_struct { 205 struct list_head endio_entry; 206 struct dm_writecache *wc; 207 struct wc_entry *e; 208 unsigned n_entries; 209 int error; 210 }; 211 212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 213 "A percentage of time allocated for data copying"); 214 215 static void wc_lock(struct dm_writecache *wc) 216 { 217 mutex_lock(&wc->lock); 218 } 219 220 static void wc_unlock(struct dm_writecache *wc) 221 { 222 mutex_unlock(&wc->lock); 223 } 224 225 #ifdef DM_WRITECACHE_HAS_PMEM 226 static int persistent_memory_claim(struct dm_writecache *wc) 227 { 228 int r; 229 loff_t s; 230 long p, da; 231 pfn_t pfn; 232 int id; 233 struct page **pages; 234 235 wc->memory_vmapped = false; 236 237 s = wc->memory_map_size; 238 p = s >> PAGE_SHIFT; 239 if (!p) { 240 r = -EINVAL; 241 goto err1; 242 } 243 if (p != s >> PAGE_SHIFT) { 244 r = -EOVERFLOW; 245 goto err1; 246 } 247 248 id = dax_read_lock(); 249 250 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 251 if (da < 0) { 252 wc->memory_map = NULL; 253 r = da; 254 goto err2; 255 } 256 if (!pfn_t_has_page(pfn)) { 257 wc->memory_map = NULL; 258 r = -EOPNOTSUPP; 259 goto err2; 260 } 261 if (da != p) { 262 long i; 263 wc->memory_map = NULL; 264 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 265 if (!pages) { 266 r = -ENOMEM; 267 goto err2; 268 } 269 i = 0; 270 do { 271 long daa; 272 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 273 NULL, &pfn); 274 if (daa <= 0) { 275 r = daa ? daa : -EINVAL; 276 goto err3; 277 } 278 if (!pfn_t_has_page(pfn)) { 279 r = -EOPNOTSUPP; 280 goto err3; 281 } 282 while (daa-- && i < p) { 283 pages[i++] = pfn_t_to_page(pfn); 284 pfn.val++; 285 } 286 } while (i < p); 287 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 288 if (!wc->memory_map) { 289 r = -ENOMEM; 290 goto err3; 291 } 292 kvfree(pages); 293 wc->memory_vmapped = true; 294 } 295 296 dax_read_unlock(id); 297 298 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 299 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 300 301 return 0; 302 err3: 303 kvfree(pages); 304 err2: 305 dax_read_unlock(id); 306 err1: 307 return r; 308 } 309 #else 310 static int persistent_memory_claim(struct dm_writecache *wc) 311 { 312 BUG(); 313 } 314 #endif 315 316 static void persistent_memory_release(struct dm_writecache *wc) 317 { 318 if (wc->memory_vmapped) 319 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 320 } 321 322 static struct page *persistent_memory_page(void *addr) 323 { 324 if (is_vmalloc_addr(addr)) 325 return vmalloc_to_page(addr); 326 else 327 return virt_to_page(addr); 328 } 329 330 static unsigned persistent_memory_page_offset(void *addr) 331 { 332 return (unsigned long)addr & (PAGE_SIZE - 1); 333 } 334 335 static void persistent_memory_flush_cache(void *ptr, size_t size) 336 { 337 if (is_vmalloc_addr(ptr)) 338 flush_kernel_vmap_range(ptr, size); 339 } 340 341 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 342 { 343 if (is_vmalloc_addr(ptr)) 344 invalidate_kernel_vmap_range(ptr, size); 345 } 346 347 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 348 { 349 return wc->memory_map; 350 } 351 352 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 353 { 354 return &sb(wc)->entries[e->index]; 355 } 356 357 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 358 { 359 return (char *)wc->block_start + (e->index << wc->block_size_bits); 360 } 361 362 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 363 { 364 return wc->start_sector + wc->metadata_sectors + 365 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 366 } 367 368 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 369 { 370 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 371 return e->original_sector; 372 #else 373 return le64_to_cpu(memory_entry(wc, e)->original_sector); 374 #endif 375 } 376 377 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 378 { 379 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 380 return e->seq_count; 381 #else 382 return le64_to_cpu(memory_entry(wc, e)->seq_count); 383 #endif 384 } 385 386 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 387 { 388 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 389 e->seq_count = -1; 390 #endif 391 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 392 } 393 394 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 395 uint64_t original_sector, uint64_t seq_count) 396 { 397 struct wc_memory_entry me; 398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 399 e->original_sector = original_sector; 400 e->seq_count = seq_count; 401 #endif 402 me.original_sector = cpu_to_le64(original_sector); 403 me.seq_count = cpu_to_le64(seq_count); 404 pmem_assign(*memory_entry(wc, e), me); 405 } 406 407 #define writecache_error(wc, err, msg, arg...) \ 408 do { \ 409 if (!cmpxchg(&(wc)->error, 0, err)) \ 410 DMERR(msg, ##arg); \ 411 wake_up(&(wc)->freelist_wait); \ 412 } while (0) 413 414 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 415 416 static void writecache_flush_all_metadata(struct dm_writecache *wc) 417 { 418 if (!WC_MODE_PMEM(wc)) 419 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 420 } 421 422 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 423 { 424 if (!WC_MODE_PMEM(wc)) 425 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 426 wc->dirty_bitmap); 427 } 428 429 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 430 431 struct io_notify { 432 struct dm_writecache *wc; 433 struct completion c; 434 atomic_t count; 435 }; 436 437 static void writecache_notify_io(unsigned long error, void *context) 438 { 439 struct io_notify *endio = context; 440 441 if (unlikely(error != 0)) 442 writecache_error(endio->wc, -EIO, "error writing metadata"); 443 BUG_ON(atomic_read(&endio->count) <= 0); 444 if (atomic_dec_and_test(&endio->count)) 445 complete(&endio->c); 446 } 447 448 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 449 { 450 wait_event(wc->bio_in_progress_wait[direction], 451 !atomic_read(&wc->bio_in_progress[direction])); 452 } 453 454 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 455 { 456 struct dm_io_region region; 457 struct dm_io_request req; 458 struct io_notify endio = { 459 wc, 460 COMPLETION_INITIALIZER_ONSTACK(endio.c), 461 ATOMIC_INIT(1), 462 }; 463 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 464 unsigned i = 0; 465 466 while (1) { 467 unsigned j; 468 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 469 if (unlikely(i == bitmap_bits)) 470 break; 471 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 472 473 region.bdev = wc->ssd_dev->bdev; 474 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 475 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 476 477 if (unlikely(region.sector >= wc->metadata_sectors)) 478 break; 479 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 480 region.count = wc->metadata_sectors - region.sector; 481 482 region.sector += wc->start_sector; 483 atomic_inc(&endio.count); 484 req.bi_op = REQ_OP_WRITE; 485 req.bi_op_flags = REQ_SYNC; 486 req.mem.type = DM_IO_VMA; 487 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 488 req.client = wc->dm_io; 489 req.notify.fn = writecache_notify_io; 490 req.notify.context = &endio; 491 492 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 493 (void) dm_io(&req, 1, ®ion, NULL); 494 i = j; 495 } 496 497 writecache_notify_io(0, &endio); 498 wait_for_completion_io(&endio.c); 499 500 if (wait_for_ios) 501 writecache_wait_for_ios(wc, WRITE); 502 503 writecache_disk_flush(wc, wc->ssd_dev); 504 505 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 506 } 507 508 static void ssd_commit_superblock(struct dm_writecache *wc) 509 { 510 int r; 511 struct dm_io_region region; 512 struct dm_io_request req; 513 514 region.bdev = wc->ssd_dev->bdev; 515 region.sector = 0; 516 region.count = PAGE_SIZE; 517 518 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 519 region.count = wc->metadata_sectors - region.sector; 520 521 region.sector += wc->start_sector; 522 523 req.bi_op = REQ_OP_WRITE; 524 req.bi_op_flags = REQ_SYNC | REQ_FUA; 525 req.mem.type = DM_IO_VMA; 526 req.mem.ptr.vma = (char *)wc->memory_map; 527 req.client = wc->dm_io; 528 req.notify.fn = NULL; 529 req.notify.context = NULL; 530 531 r = dm_io(&req, 1, ®ion, NULL); 532 if (unlikely(r)) 533 writecache_error(wc, r, "error writing superblock"); 534 } 535 536 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 537 { 538 if (WC_MODE_PMEM(wc)) 539 wmb(); 540 else 541 ssd_commit_flushed(wc, wait_for_ios); 542 } 543 544 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 545 { 546 int r; 547 struct dm_io_region region; 548 struct dm_io_request req; 549 550 region.bdev = dev->bdev; 551 region.sector = 0; 552 region.count = 0; 553 req.bi_op = REQ_OP_WRITE; 554 req.bi_op_flags = REQ_PREFLUSH; 555 req.mem.type = DM_IO_KMEM; 556 req.mem.ptr.addr = NULL; 557 req.client = wc->dm_io; 558 req.notify.fn = NULL; 559 560 r = dm_io(&req, 1, ®ion, NULL); 561 if (unlikely(r)) 562 writecache_error(wc, r, "error flushing metadata: %d", r); 563 } 564 565 #define WFE_RETURN_FOLLOWING 1 566 #define WFE_LOWEST_SEQ 2 567 568 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 569 uint64_t block, int flags) 570 { 571 struct wc_entry *e; 572 struct rb_node *node = wc->tree.rb_node; 573 574 if (unlikely(!node)) 575 return NULL; 576 577 while (1) { 578 e = container_of(node, struct wc_entry, rb_node); 579 if (read_original_sector(wc, e) == block) 580 break; 581 582 node = (read_original_sector(wc, e) >= block ? 583 e->rb_node.rb_left : e->rb_node.rb_right); 584 if (unlikely(!node)) { 585 if (!(flags & WFE_RETURN_FOLLOWING)) 586 return NULL; 587 if (read_original_sector(wc, e) >= block) { 588 return e; 589 } else { 590 node = rb_next(&e->rb_node); 591 if (unlikely(!node)) 592 return NULL; 593 e = container_of(node, struct wc_entry, rb_node); 594 return e; 595 } 596 } 597 } 598 599 while (1) { 600 struct wc_entry *e2; 601 if (flags & WFE_LOWEST_SEQ) 602 node = rb_prev(&e->rb_node); 603 else 604 node = rb_next(&e->rb_node); 605 if (unlikely(!node)) 606 return e; 607 e2 = container_of(node, struct wc_entry, rb_node); 608 if (read_original_sector(wc, e2) != block) 609 return e; 610 e = e2; 611 } 612 } 613 614 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 615 { 616 struct wc_entry *e; 617 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 618 619 while (*node) { 620 e = container_of(*node, struct wc_entry, rb_node); 621 parent = &e->rb_node; 622 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 623 node = &parent->rb_left; 624 else 625 node = &parent->rb_right; 626 } 627 rb_link_node(&ins->rb_node, parent, node); 628 rb_insert_color(&ins->rb_node, &wc->tree); 629 list_add(&ins->lru, &wc->lru); 630 ins->age = jiffies; 631 } 632 633 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 634 { 635 list_del(&e->lru); 636 rb_erase(&e->rb_node, &wc->tree); 637 } 638 639 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 640 { 641 if (WC_MODE_SORT_FREELIST(wc)) { 642 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 643 if (unlikely(!*node)) 644 wc->current_free = e; 645 while (*node) { 646 parent = *node; 647 if (&e->rb_node < *node) 648 node = &parent->rb_left; 649 else 650 node = &parent->rb_right; 651 } 652 rb_link_node(&e->rb_node, parent, node); 653 rb_insert_color(&e->rb_node, &wc->freetree); 654 } else { 655 list_add_tail(&e->lru, &wc->freelist); 656 } 657 wc->freelist_size++; 658 } 659 660 static inline void writecache_verify_watermark(struct dm_writecache *wc) 661 { 662 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 663 queue_work(wc->writeback_wq, &wc->writeback_work); 664 } 665 666 static void writecache_max_age_timer(struct timer_list *t) 667 { 668 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 669 670 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 671 queue_work(wc->writeback_wq, &wc->writeback_work); 672 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 673 } 674 } 675 676 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 677 { 678 struct wc_entry *e; 679 680 if (WC_MODE_SORT_FREELIST(wc)) { 681 struct rb_node *next; 682 if (unlikely(!wc->current_free)) 683 return NULL; 684 e = wc->current_free; 685 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 686 return NULL; 687 next = rb_next(&e->rb_node); 688 rb_erase(&e->rb_node, &wc->freetree); 689 if (unlikely(!next)) 690 next = rb_first(&wc->freetree); 691 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 692 } else { 693 if (unlikely(list_empty(&wc->freelist))) 694 return NULL; 695 e = container_of(wc->freelist.next, struct wc_entry, lru); 696 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 697 return NULL; 698 list_del(&e->lru); 699 } 700 wc->freelist_size--; 701 702 writecache_verify_watermark(wc); 703 704 return e; 705 } 706 707 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 708 { 709 writecache_unlink(wc, e); 710 writecache_add_to_freelist(wc, e); 711 clear_seq_count(wc, e); 712 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 713 if (unlikely(waitqueue_active(&wc->freelist_wait))) 714 wake_up(&wc->freelist_wait); 715 } 716 717 static void writecache_wait_on_freelist(struct dm_writecache *wc) 718 { 719 DEFINE_WAIT(wait); 720 721 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 722 wc_unlock(wc); 723 io_schedule(); 724 finish_wait(&wc->freelist_wait, &wait); 725 wc_lock(wc); 726 } 727 728 static void writecache_poison_lists(struct dm_writecache *wc) 729 { 730 /* 731 * Catch incorrect access to these values while the device is suspended. 732 */ 733 memset(&wc->tree, -1, sizeof wc->tree); 734 wc->lru.next = LIST_POISON1; 735 wc->lru.prev = LIST_POISON2; 736 wc->freelist.next = LIST_POISON1; 737 wc->freelist.prev = LIST_POISON2; 738 } 739 740 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 741 { 742 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 743 if (WC_MODE_PMEM(wc)) 744 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 745 } 746 747 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 748 { 749 return read_seq_count(wc, e) < wc->seq_count; 750 } 751 752 static void writecache_flush(struct dm_writecache *wc) 753 { 754 struct wc_entry *e, *e2; 755 bool need_flush_after_free; 756 757 wc->uncommitted_blocks = 0; 758 del_timer(&wc->autocommit_timer); 759 760 if (list_empty(&wc->lru)) 761 return; 762 763 e = container_of(wc->lru.next, struct wc_entry, lru); 764 if (writecache_entry_is_committed(wc, e)) { 765 if (wc->overwrote_committed) { 766 writecache_wait_for_ios(wc, WRITE); 767 writecache_disk_flush(wc, wc->ssd_dev); 768 wc->overwrote_committed = false; 769 } 770 return; 771 } 772 while (1) { 773 writecache_flush_entry(wc, e); 774 if (unlikely(e->lru.next == &wc->lru)) 775 break; 776 e2 = container_of(e->lru.next, struct wc_entry, lru); 777 if (writecache_entry_is_committed(wc, e2)) 778 break; 779 e = e2; 780 cond_resched(); 781 } 782 writecache_commit_flushed(wc, true); 783 784 wc->seq_count++; 785 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 786 if (WC_MODE_PMEM(wc)) 787 writecache_commit_flushed(wc, false); 788 else 789 ssd_commit_superblock(wc); 790 791 wc->overwrote_committed = false; 792 793 need_flush_after_free = false; 794 while (1) { 795 /* Free another committed entry with lower seq-count */ 796 struct rb_node *rb_node = rb_prev(&e->rb_node); 797 798 if (rb_node) { 799 e2 = container_of(rb_node, struct wc_entry, rb_node); 800 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 801 likely(!e2->write_in_progress)) { 802 writecache_free_entry(wc, e2); 803 need_flush_after_free = true; 804 } 805 } 806 if (unlikely(e->lru.prev == &wc->lru)) 807 break; 808 e = container_of(e->lru.prev, struct wc_entry, lru); 809 cond_resched(); 810 } 811 812 if (need_flush_after_free) 813 writecache_commit_flushed(wc, false); 814 } 815 816 static void writecache_flush_work(struct work_struct *work) 817 { 818 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 819 820 wc_lock(wc); 821 writecache_flush(wc); 822 wc_unlock(wc); 823 } 824 825 static void writecache_autocommit_timer(struct timer_list *t) 826 { 827 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 828 if (!writecache_has_error(wc)) 829 queue_work(wc->writeback_wq, &wc->flush_work); 830 } 831 832 static void writecache_schedule_autocommit(struct dm_writecache *wc) 833 { 834 if (!timer_pending(&wc->autocommit_timer)) 835 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 836 } 837 838 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 839 { 840 struct wc_entry *e; 841 bool discarded_something = false; 842 843 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 844 if (unlikely(!e)) 845 return; 846 847 while (read_original_sector(wc, e) < end) { 848 struct rb_node *node = rb_next(&e->rb_node); 849 850 if (likely(!e->write_in_progress)) { 851 if (!discarded_something) { 852 writecache_wait_for_ios(wc, READ); 853 writecache_wait_for_ios(wc, WRITE); 854 discarded_something = true; 855 } 856 writecache_free_entry(wc, e); 857 } 858 859 if (unlikely(!node)) 860 break; 861 862 e = container_of(node, struct wc_entry, rb_node); 863 } 864 865 if (discarded_something) 866 writecache_commit_flushed(wc, false); 867 } 868 869 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 870 { 871 if (wc->writeback_size) { 872 writecache_wait_on_freelist(wc); 873 return true; 874 } 875 return false; 876 } 877 878 static void writecache_suspend(struct dm_target *ti) 879 { 880 struct dm_writecache *wc = ti->private; 881 bool flush_on_suspend; 882 883 del_timer_sync(&wc->autocommit_timer); 884 del_timer_sync(&wc->max_age_timer); 885 886 wc_lock(wc); 887 writecache_flush(wc); 888 flush_on_suspend = wc->flush_on_suspend; 889 if (flush_on_suspend) { 890 wc->flush_on_suspend = false; 891 wc->writeback_all++; 892 queue_work(wc->writeback_wq, &wc->writeback_work); 893 } 894 wc_unlock(wc); 895 896 drain_workqueue(wc->writeback_wq); 897 898 wc_lock(wc); 899 if (flush_on_suspend) 900 wc->writeback_all--; 901 while (writecache_wait_for_writeback(wc)); 902 903 if (WC_MODE_PMEM(wc)) 904 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 905 906 writecache_poison_lists(wc); 907 908 wc_unlock(wc); 909 } 910 911 static int writecache_alloc_entries(struct dm_writecache *wc) 912 { 913 size_t b; 914 915 if (wc->entries) 916 return 0; 917 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 918 if (!wc->entries) 919 return -ENOMEM; 920 for (b = 0; b < wc->n_blocks; b++) { 921 struct wc_entry *e = &wc->entries[b]; 922 e->index = b; 923 e->write_in_progress = false; 924 cond_resched(); 925 } 926 927 return 0; 928 } 929 930 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 931 { 932 struct dm_io_region region; 933 struct dm_io_request req; 934 935 region.bdev = wc->ssd_dev->bdev; 936 region.sector = wc->start_sector; 937 region.count = n_sectors; 938 req.bi_op = REQ_OP_READ; 939 req.bi_op_flags = REQ_SYNC; 940 req.mem.type = DM_IO_VMA; 941 req.mem.ptr.vma = (char *)wc->memory_map; 942 req.client = wc->dm_io; 943 req.notify.fn = NULL; 944 945 return dm_io(&req, 1, ®ion, NULL); 946 } 947 948 static void writecache_resume(struct dm_target *ti) 949 { 950 struct dm_writecache *wc = ti->private; 951 size_t b; 952 bool need_flush = false; 953 __le64 sb_seq_count; 954 int r; 955 956 wc_lock(wc); 957 958 if (WC_MODE_PMEM(wc)) { 959 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 960 } else { 961 r = writecache_read_metadata(wc, wc->metadata_sectors); 962 if (r) { 963 size_t sb_entries_offset; 964 writecache_error(wc, r, "unable to read metadata: %d", r); 965 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 966 memset((char *)wc->memory_map + sb_entries_offset, -1, 967 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 968 } 969 } 970 971 wc->tree = RB_ROOT; 972 INIT_LIST_HEAD(&wc->lru); 973 if (WC_MODE_SORT_FREELIST(wc)) { 974 wc->freetree = RB_ROOT; 975 wc->current_free = NULL; 976 } else { 977 INIT_LIST_HEAD(&wc->freelist); 978 } 979 wc->freelist_size = 0; 980 981 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 982 if (r) { 983 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 984 sb_seq_count = cpu_to_le64(0); 985 } 986 wc->seq_count = le64_to_cpu(sb_seq_count); 987 988 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 989 for (b = 0; b < wc->n_blocks; b++) { 990 struct wc_entry *e = &wc->entries[b]; 991 struct wc_memory_entry wme; 992 if (writecache_has_error(wc)) { 993 e->original_sector = -1; 994 e->seq_count = -1; 995 continue; 996 } 997 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 998 if (r) { 999 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1000 (unsigned long)b, r); 1001 e->original_sector = -1; 1002 e->seq_count = -1; 1003 } else { 1004 e->original_sector = le64_to_cpu(wme.original_sector); 1005 e->seq_count = le64_to_cpu(wme.seq_count); 1006 } 1007 cond_resched(); 1008 } 1009 #endif 1010 for (b = 0; b < wc->n_blocks; b++) { 1011 struct wc_entry *e = &wc->entries[b]; 1012 if (!writecache_entry_is_committed(wc, e)) { 1013 if (read_seq_count(wc, e) != -1) { 1014 erase_this: 1015 clear_seq_count(wc, e); 1016 need_flush = true; 1017 } 1018 writecache_add_to_freelist(wc, e); 1019 } else { 1020 struct wc_entry *old; 1021 1022 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1023 if (!old) { 1024 writecache_insert_entry(wc, e); 1025 } else { 1026 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1027 writecache_error(wc, -EINVAL, 1028 "two identical entries, position %llu, sector %llu, sequence %llu", 1029 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1030 (unsigned long long)read_seq_count(wc, e)); 1031 } 1032 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1033 goto erase_this; 1034 } else { 1035 writecache_free_entry(wc, old); 1036 writecache_insert_entry(wc, e); 1037 need_flush = true; 1038 } 1039 } 1040 } 1041 cond_resched(); 1042 } 1043 1044 if (need_flush) { 1045 writecache_flush_all_metadata(wc); 1046 writecache_commit_flushed(wc, false); 1047 } 1048 1049 writecache_verify_watermark(wc); 1050 1051 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1052 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1053 1054 wc_unlock(wc); 1055 } 1056 1057 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1058 { 1059 if (argc != 1) 1060 return -EINVAL; 1061 1062 wc_lock(wc); 1063 if (dm_suspended(wc->ti)) { 1064 wc_unlock(wc); 1065 return -EBUSY; 1066 } 1067 if (writecache_has_error(wc)) { 1068 wc_unlock(wc); 1069 return -EIO; 1070 } 1071 1072 writecache_flush(wc); 1073 wc->writeback_all++; 1074 queue_work(wc->writeback_wq, &wc->writeback_work); 1075 wc_unlock(wc); 1076 1077 flush_workqueue(wc->writeback_wq); 1078 1079 wc_lock(wc); 1080 wc->writeback_all--; 1081 if (writecache_has_error(wc)) { 1082 wc_unlock(wc); 1083 return -EIO; 1084 } 1085 wc_unlock(wc); 1086 1087 return 0; 1088 } 1089 1090 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1091 { 1092 if (argc != 1) 1093 return -EINVAL; 1094 1095 wc_lock(wc); 1096 wc->flush_on_suspend = true; 1097 wc_unlock(wc); 1098 1099 return 0; 1100 } 1101 1102 static void activate_cleaner(struct dm_writecache *wc) 1103 { 1104 wc->flush_on_suspend = true; 1105 wc->cleaner = true; 1106 wc->freelist_high_watermark = wc->n_blocks; 1107 wc->freelist_low_watermark = wc->n_blocks; 1108 } 1109 1110 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1111 { 1112 if (argc != 1) 1113 return -EINVAL; 1114 1115 wc_lock(wc); 1116 activate_cleaner(wc); 1117 if (!dm_suspended(wc->ti)) 1118 writecache_verify_watermark(wc); 1119 wc_unlock(wc); 1120 1121 return 0; 1122 } 1123 1124 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1125 char *result, unsigned maxlen) 1126 { 1127 int r = -EINVAL; 1128 struct dm_writecache *wc = ti->private; 1129 1130 if (!strcasecmp(argv[0], "flush")) 1131 r = process_flush_mesg(argc, argv, wc); 1132 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1133 r = process_flush_on_suspend_mesg(argc, argv, wc); 1134 else if (!strcasecmp(argv[0], "cleaner")) 1135 r = process_cleaner_mesg(argc, argv, wc); 1136 else 1137 DMERR("unrecognised message received: %s", argv[0]); 1138 1139 return r; 1140 } 1141 1142 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1143 { 1144 /* 1145 * clflushopt performs better with block size 1024, 2048, 4096 1146 * non-temporal stores perform better with block size 512 1147 * 1148 * block size 512 1024 2048 4096 1149 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1150 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1151 * 1152 * We see that movnti performs better for 512-byte blocks, and 1153 * clflushopt performs better for 1024-byte and larger blocks. So, we 1154 * prefer clflushopt for sizes >= 768. 1155 * 1156 * NOTE: this happens to be the case now (with dm-writecache's single 1157 * threaded model) but re-evaluate this once memcpy_flushcache() is 1158 * enabled to use movdir64b which might invalidate this performance 1159 * advantage seen with cache-allocating-writes plus flushing. 1160 */ 1161 #ifdef CONFIG_X86 1162 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1163 likely(boot_cpu_data.x86_clflush_size == 64) && 1164 likely(size >= 768)) { 1165 do { 1166 memcpy((void *)dest, (void *)source, 64); 1167 clflushopt((void *)dest); 1168 dest += 64; 1169 source += 64; 1170 size -= 64; 1171 } while (size >= 64); 1172 return; 1173 } 1174 #endif 1175 memcpy_flushcache(dest, source, size); 1176 } 1177 1178 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1179 { 1180 void *buf; 1181 unsigned long flags; 1182 unsigned size; 1183 int rw = bio_data_dir(bio); 1184 unsigned remaining_size = wc->block_size; 1185 1186 do { 1187 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1188 buf = bvec_kmap_irq(&bv, &flags); 1189 size = bv.bv_len; 1190 if (unlikely(size > remaining_size)) 1191 size = remaining_size; 1192 1193 if (rw == READ) { 1194 int r; 1195 r = memcpy_mcsafe(buf, data, size); 1196 flush_dcache_page(bio_page(bio)); 1197 if (unlikely(r)) { 1198 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1199 bio->bi_status = BLK_STS_IOERR; 1200 } 1201 } else { 1202 flush_dcache_page(bio_page(bio)); 1203 memcpy_flushcache_optimized(data, buf, size); 1204 } 1205 1206 bvec_kunmap_irq(buf, &flags); 1207 1208 data = (char *)data + size; 1209 remaining_size -= size; 1210 bio_advance(bio, size); 1211 } while (unlikely(remaining_size)); 1212 } 1213 1214 static int writecache_flush_thread(void *data) 1215 { 1216 struct dm_writecache *wc = data; 1217 1218 while (1) { 1219 struct bio *bio; 1220 1221 wc_lock(wc); 1222 bio = bio_list_pop(&wc->flush_list); 1223 if (!bio) { 1224 set_current_state(TASK_INTERRUPTIBLE); 1225 wc_unlock(wc); 1226 1227 if (unlikely(kthread_should_stop())) { 1228 set_current_state(TASK_RUNNING); 1229 break; 1230 } 1231 1232 schedule(); 1233 continue; 1234 } 1235 1236 if (bio_op(bio) == REQ_OP_DISCARD) { 1237 writecache_discard(wc, bio->bi_iter.bi_sector, 1238 bio_end_sector(bio)); 1239 wc_unlock(wc); 1240 bio_set_dev(bio, wc->dev->bdev); 1241 generic_make_request(bio); 1242 } else { 1243 writecache_flush(wc); 1244 wc_unlock(wc); 1245 if (writecache_has_error(wc)) 1246 bio->bi_status = BLK_STS_IOERR; 1247 bio_endio(bio); 1248 } 1249 } 1250 1251 return 0; 1252 } 1253 1254 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1255 { 1256 if (bio_list_empty(&wc->flush_list)) 1257 wake_up_process(wc->flush_thread); 1258 bio_list_add(&wc->flush_list, bio); 1259 } 1260 1261 static int writecache_map(struct dm_target *ti, struct bio *bio) 1262 { 1263 struct wc_entry *e; 1264 struct dm_writecache *wc = ti->private; 1265 1266 bio->bi_private = NULL; 1267 1268 wc_lock(wc); 1269 1270 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1271 if (writecache_has_error(wc)) 1272 goto unlock_error; 1273 if (WC_MODE_PMEM(wc)) { 1274 writecache_flush(wc); 1275 if (writecache_has_error(wc)) 1276 goto unlock_error; 1277 goto unlock_submit; 1278 } else { 1279 writecache_offload_bio(wc, bio); 1280 goto unlock_return; 1281 } 1282 } 1283 1284 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1285 1286 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1287 (wc->block_size / 512 - 1)) != 0)) { 1288 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1289 (unsigned long long)bio->bi_iter.bi_sector, 1290 bio->bi_iter.bi_size, wc->block_size); 1291 goto unlock_error; 1292 } 1293 1294 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1295 if (writecache_has_error(wc)) 1296 goto unlock_error; 1297 if (WC_MODE_PMEM(wc)) { 1298 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1299 goto unlock_remap_origin; 1300 } else { 1301 writecache_offload_bio(wc, bio); 1302 goto unlock_return; 1303 } 1304 } 1305 1306 if (bio_data_dir(bio) == READ) { 1307 read_next_block: 1308 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1309 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1310 if (WC_MODE_PMEM(wc)) { 1311 bio_copy_block(wc, bio, memory_data(wc, e)); 1312 if (bio->bi_iter.bi_size) 1313 goto read_next_block; 1314 goto unlock_submit; 1315 } else { 1316 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1317 bio_set_dev(bio, wc->ssd_dev->bdev); 1318 bio->bi_iter.bi_sector = cache_sector(wc, e); 1319 if (!writecache_entry_is_committed(wc, e)) 1320 writecache_wait_for_ios(wc, WRITE); 1321 goto unlock_remap; 1322 } 1323 } else { 1324 if (e) { 1325 sector_t next_boundary = 1326 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1327 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1328 dm_accept_partial_bio(bio, next_boundary); 1329 } 1330 } 1331 goto unlock_remap_origin; 1332 } 1333 } else { 1334 do { 1335 bool found_entry = false; 1336 if (writecache_has_error(wc)) 1337 goto unlock_error; 1338 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1339 if (e) { 1340 if (!writecache_entry_is_committed(wc, e)) 1341 goto bio_copy; 1342 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1343 wc->overwrote_committed = true; 1344 goto bio_copy; 1345 } 1346 found_entry = true; 1347 } else { 1348 if (unlikely(wc->cleaner)) 1349 goto direct_write; 1350 } 1351 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1352 if (unlikely(!e)) { 1353 if (!found_entry) { 1354 direct_write: 1355 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1356 if (e) { 1357 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1358 BUG_ON(!next_boundary); 1359 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1360 dm_accept_partial_bio(bio, next_boundary); 1361 } 1362 } 1363 goto unlock_remap_origin; 1364 } 1365 writecache_wait_on_freelist(wc); 1366 continue; 1367 } 1368 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1369 writecache_insert_entry(wc, e); 1370 wc->uncommitted_blocks++; 1371 bio_copy: 1372 if (WC_MODE_PMEM(wc)) { 1373 bio_copy_block(wc, bio, memory_data(wc, e)); 1374 } else { 1375 unsigned bio_size = wc->block_size; 1376 sector_t start_cache_sec = cache_sector(wc, e); 1377 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1378 1379 while (bio_size < bio->bi_iter.bi_size) { 1380 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1381 if (!f) 1382 break; 1383 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1384 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1385 writecache_insert_entry(wc, f); 1386 wc->uncommitted_blocks++; 1387 bio_size += wc->block_size; 1388 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1389 } 1390 1391 bio_set_dev(bio, wc->ssd_dev->bdev); 1392 bio->bi_iter.bi_sector = start_cache_sec; 1393 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1394 1395 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1396 wc->uncommitted_blocks = 0; 1397 queue_work(wc->writeback_wq, &wc->flush_work); 1398 } else { 1399 writecache_schedule_autocommit(wc); 1400 } 1401 goto unlock_remap; 1402 } 1403 } while (bio->bi_iter.bi_size); 1404 1405 if (unlikely(bio->bi_opf & REQ_FUA || 1406 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1407 writecache_flush(wc); 1408 else 1409 writecache_schedule_autocommit(wc); 1410 goto unlock_submit; 1411 } 1412 1413 unlock_remap_origin: 1414 bio_set_dev(bio, wc->dev->bdev); 1415 wc_unlock(wc); 1416 return DM_MAPIO_REMAPPED; 1417 1418 unlock_remap: 1419 /* make sure that writecache_end_io decrements bio_in_progress: */ 1420 bio->bi_private = (void *)1; 1421 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1422 wc_unlock(wc); 1423 return DM_MAPIO_REMAPPED; 1424 1425 unlock_submit: 1426 wc_unlock(wc); 1427 bio_endio(bio); 1428 return DM_MAPIO_SUBMITTED; 1429 1430 unlock_return: 1431 wc_unlock(wc); 1432 return DM_MAPIO_SUBMITTED; 1433 1434 unlock_error: 1435 wc_unlock(wc); 1436 bio_io_error(bio); 1437 return DM_MAPIO_SUBMITTED; 1438 } 1439 1440 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1441 { 1442 struct dm_writecache *wc = ti->private; 1443 1444 if (bio->bi_private != NULL) { 1445 int dir = bio_data_dir(bio); 1446 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1447 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1448 wake_up(&wc->bio_in_progress_wait[dir]); 1449 } 1450 return 0; 1451 } 1452 1453 static int writecache_iterate_devices(struct dm_target *ti, 1454 iterate_devices_callout_fn fn, void *data) 1455 { 1456 struct dm_writecache *wc = ti->private; 1457 1458 return fn(ti, wc->dev, 0, ti->len, data); 1459 } 1460 1461 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1462 { 1463 struct dm_writecache *wc = ti->private; 1464 1465 if (limits->logical_block_size < wc->block_size) 1466 limits->logical_block_size = wc->block_size; 1467 1468 if (limits->physical_block_size < wc->block_size) 1469 limits->physical_block_size = wc->block_size; 1470 1471 if (limits->io_min < wc->block_size) 1472 limits->io_min = wc->block_size; 1473 } 1474 1475 1476 static void writecache_writeback_endio(struct bio *bio) 1477 { 1478 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1479 struct dm_writecache *wc = wb->wc; 1480 unsigned long flags; 1481 1482 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1483 if (unlikely(list_empty(&wc->endio_list))) 1484 wake_up_process(wc->endio_thread); 1485 list_add_tail(&wb->endio_entry, &wc->endio_list); 1486 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1487 } 1488 1489 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1490 { 1491 struct copy_struct *c = ptr; 1492 struct dm_writecache *wc = c->wc; 1493 1494 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1495 1496 raw_spin_lock_irq(&wc->endio_list_lock); 1497 if (unlikely(list_empty(&wc->endio_list))) 1498 wake_up_process(wc->endio_thread); 1499 list_add_tail(&c->endio_entry, &wc->endio_list); 1500 raw_spin_unlock_irq(&wc->endio_list_lock); 1501 } 1502 1503 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1504 { 1505 unsigned i; 1506 struct writeback_struct *wb; 1507 struct wc_entry *e; 1508 unsigned long n_walked = 0; 1509 1510 do { 1511 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1512 list_del(&wb->endio_entry); 1513 1514 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1515 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1516 "write error %d", wb->bio.bi_status); 1517 i = 0; 1518 do { 1519 e = wb->wc_list[i]; 1520 BUG_ON(!e->write_in_progress); 1521 e->write_in_progress = false; 1522 INIT_LIST_HEAD(&e->lru); 1523 if (!writecache_has_error(wc)) 1524 writecache_free_entry(wc, e); 1525 BUG_ON(!wc->writeback_size); 1526 wc->writeback_size--; 1527 n_walked++; 1528 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1529 writecache_commit_flushed(wc, false); 1530 wc_unlock(wc); 1531 wc_lock(wc); 1532 n_walked = 0; 1533 } 1534 } while (++i < wb->wc_list_n); 1535 1536 if (wb->wc_list != wb->wc_list_inline) 1537 kfree(wb->wc_list); 1538 bio_put(&wb->bio); 1539 } while (!list_empty(list)); 1540 } 1541 1542 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1543 { 1544 struct copy_struct *c; 1545 struct wc_entry *e; 1546 1547 do { 1548 c = list_entry(list->next, struct copy_struct, endio_entry); 1549 list_del(&c->endio_entry); 1550 1551 if (unlikely(c->error)) 1552 writecache_error(wc, c->error, "copy error"); 1553 1554 e = c->e; 1555 do { 1556 BUG_ON(!e->write_in_progress); 1557 e->write_in_progress = false; 1558 INIT_LIST_HEAD(&e->lru); 1559 if (!writecache_has_error(wc)) 1560 writecache_free_entry(wc, e); 1561 1562 BUG_ON(!wc->writeback_size); 1563 wc->writeback_size--; 1564 e++; 1565 } while (--c->n_entries); 1566 mempool_free(c, &wc->copy_pool); 1567 } while (!list_empty(list)); 1568 } 1569 1570 static int writecache_endio_thread(void *data) 1571 { 1572 struct dm_writecache *wc = data; 1573 1574 while (1) { 1575 struct list_head list; 1576 1577 raw_spin_lock_irq(&wc->endio_list_lock); 1578 if (!list_empty(&wc->endio_list)) 1579 goto pop_from_list; 1580 set_current_state(TASK_INTERRUPTIBLE); 1581 raw_spin_unlock_irq(&wc->endio_list_lock); 1582 1583 if (unlikely(kthread_should_stop())) { 1584 set_current_state(TASK_RUNNING); 1585 break; 1586 } 1587 1588 schedule(); 1589 1590 continue; 1591 1592 pop_from_list: 1593 list = wc->endio_list; 1594 list.next->prev = list.prev->next = &list; 1595 INIT_LIST_HEAD(&wc->endio_list); 1596 raw_spin_unlock_irq(&wc->endio_list_lock); 1597 1598 if (!WC_MODE_FUA(wc)) 1599 writecache_disk_flush(wc, wc->dev); 1600 1601 wc_lock(wc); 1602 1603 if (WC_MODE_PMEM(wc)) { 1604 __writecache_endio_pmem(wc, &list); 1605 } else { 1606 __writecache_endio_ssd(wc, &list); 1607 writecache_wait_for_ios(wc, READ); 1608 } 1609 1610 writecache_commit_flushed(wc, false); 1611 1612 wc_unlock(wc); 1613 } 1614 1615 return 0; 1616 } 1617 1618 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1619 { 1620 struct dm_writecache *wc = wb->wc; 1621 unsigned block_size = wc->block_size; 1622 void *address = memory_data(wc, e); 1623 1624 persistent_memory_flush_cache(address, block_size); 1625 return bio_add_page(&wb->bio, persistent_memory_page(address), 1626 block_size, persistent_memory_page_offset(address)) != 0; 1627 } 1628 1629 struct writeback_list { 1630 struct list_head list; 1631 size_t size; 1632 }; 1633 1634 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1635 { 1636 if (unlikely(wc->max_writeback_jobs)) { 1637 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1638 wc_lock(wc); 1639 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1640 writecache_wait_on_freelist(wc); 1641 wc_unlock(wc); 1642 } 1643 } 1644 cond_resched(); 1645 } 1646 1647 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1648 { 1649 struct wc_entry *e, *f; 1650 struct bio *bio; 1651 struct writeback_struct *wb; 1652 unsigned max_pages; 1653 1654 while (wbl->size) { 1655 wbl->size--; 1656 e = container_of(wbl->list.prev, struct wc_entry, lru); 1657 list_del(&e->lru); 1658 1659 max_pages = e->wc_list_contiguous; 1660 1661 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1662 wb = container_of(bio, struct writeback_struct, bio); 1663 wb->wc = wc; 1664 bio->bi_end_io = writecache_writeback_endio; 1665 bio_set_dev(bio, wc->dev->bdev); 1666 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1667 if (max_pages <= WB_LIST_INLINE || 1668 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1669 GFP_NOIO | __GFP_NORETRY | 1670 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1671 wb->wc_list = wb->wc_list_inline; 1672 max_pages = WB_LIST_INLINE; 1673 } 1674 1675 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1676 1677 wb->wc_list[0] = e; 1678 wb->wc_list_n = 1; 1679 1680 while (wbl->size && wb->wc_list_n < max_pages) { 1681 f = container_of(wbl->list.prev, struct wc_entry, lru); 1682 if (read_original_sector(wc, f) != 1683 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1684 break; 1685 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1686 break; 1687 wbl->size--; 1688 list_del(&f->lru); 1689 wb->wc_list[wb->wc_list_n++] = f; 1690 e = f; 1691 } 1692 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1693 if (writecache_has_error(wc)) { 1694 bio->bi_status = BLK_STS_IOERR; 1695 bio_endio(bio); 1696 } else { 1697 submit_bio(bio); 1698 } 1699 1700 __writeback_throttle(wc, wbl); 1701 } 1702 } 1703 1704 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1705 { 1706 struct wc_entry *e, *f; 1707 struct dm_io_region from, to; 1708 struct copy_struct *c; 1709 1710 while (wbl->size) { 1711 unsigned n_sectors; 1712 1713 wbl->size--; 1714 e = container_of(wbl->list.prev, struct wc_entry, lru); 1715 list_del(&e->lru); 1716 1717 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1718 1719 from.bdev = wc->ssd_dev->bdev; 1720 from.sector = cache_sector(wc, e); 1721 from.count = n_sectors; 1722 to.bdev = wc->dev->bdev; 1723 to.sector = read_original_sector(wc, e); 1724 to.count = n_sectors; 1725 1726 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1727 c->wc = wc; 1728 c->e = e; 1729 c->n_entries = e->wc_list_contiguous; 1730 1731 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1732 wbl->size--; 1733 f = container_of(wbl->list.prev, struct wc_entry, lru); 1734 BUG_ON(f != e + 1); 1735 list_del(&f->lru); 1736 e = f; 1737 } 1738 1739 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1740 1741 __writeback_throttle(wc, wbl); 1742 } 1743 } 1744 1745 static void writecache_writeback(struct work_struct *work) 1746 { 1747 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1748 struct blk_plug plug; 1749 struct wc_entry *f, *uninitialized_var(g), *e = NULL; 1750 struct rb_node *node, *next_node; 1751 struct list_head skipped; 1752 struct writeback_list wbl; 1753 unsigned long n_walked; 1754 1755 wc_lock(wc); 1756 restart: 1757 if (writecache_has_error(wc)) { 1758 wc_unlock(wc); 1759 return; 1760 } 1761 1762 if (unlikely(wc->writeback_all)) { 1763 if (writecache_wait_for_writeback(wc)) 1764 goto restart; 1765 } 1766 1767 if (wc->overwrote_committed) { 1768 writecache_wait_for_ios(wc, WRITE); 1769 } 1770 1771 n_walked = 0; 1772 INIT_LIST_HEAD(&skipped); 1773 INIT_LIST_HEAD(&wbl.list); 1774 wbl.size = 0; 1775 while (!list_empty(&wc->lru) && 1776 (wc->writeback_all || 1777 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1778 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1779 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1780 1781 n_walked++; 1782 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1783 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1784 queue_work(wc->writeback_wq, &wc->writeback_work); 1785 break; 1786 } 1787 1788 if (unlikely(wc->writeback_all)) { 1789 if (unlikely(!e)) { 1790 writecache_flush(wc); 1791 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1792 } else 1793 e = g; 1794 } else 1795 e = container_of(wc->lru.prev, struct wc_entry, lru); 1796 BUG_ON(e->write_in_progress); 1797 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1798 writecache_flush(wc); 1799 } 1800 node = rb_prev(&e->rb_node); 1801 if (node) { 1802 f = container_of(node, struct wc_entry, rb_node); 1803 if (unlikely(read_original_sector(wc, f) == 1804 read_original_sector(wc, e))) { 1805 BUG_ON(!f->write_in_progress); 1806 list_del(&e->lru); 1807 list_add(&e->lru, &skipped); 1808 cond_resched(); 1809 continue; 1810 } 1811 } 1812 wc->writeback_size++; 1813 list_del(&e->lru); 1814 list_add(&e->lru, &wbl.list); 1815 wbl.size++; 1816 e->write_in_progress = true; 1817 e->wc_list_contiguous = 1; 1818 1819 f = e; 1820 1821 while (1) { 1822 next_node = rb_next(&f->rb_node); 1823 if (unlikely(!next_node)) 1824 break; 1825 g = container_of(next_node, struct wc_entry, rb_node); 1826 if (unlikely(read_original_sector(wc, g) == 1827 read_original_sector(wc, f))) { 1828 f = g; 1829 continue; 1830 } 1831 if (read_original_sector(wc, g) != 1832 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1833 break; 1834 if (unlikely(g->write_in_progress)) 1835 break; 1836 if (unlikely(!writecache_entry_is_committed(wc, g))) 1837 break; 1838 1839 if (!WC_MODE_PMEM(wc)) { 1840 if (g != f + 1) 1841 break; 1842 } 1843 1844 n_walked++; 1845 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1846 // break; 1847 1848 wc->writeback_size++; 1849 list_del(&g->lru); 1850 list_add(&g->lru, &wbl.list); 1851 wbl.size++; 1852 g->write_in_progress = true; 1853 g->wc_list_contiguous = BIO_MAX_PAGES; 1854 f = g; 1855 e->wc_list_contiguous++; 1856 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1857 if (unlikely(wc->writeback_all)) { 1858 next_node = rb_next(&f->rb_node); 1859 if (likely(next_node)) 1860 g = container_of(next_node, struct wc_entry, rb_node); 1861 } 1862 break; 1863 } 1864 } 1865 cond_resched(); 1866 } 1867 1868 if (!list_empty(&skipped)) { 1869 list_splice_tail(&skipped, &wc->lru); 1870 /* 1871 * If we didn't do any progress, we must wait until some 1872 * writeback finishes to avoid burning CPU in a loop 1873 */ 1874 if (unlikely(!wbl.size)) 1875 writecache_wait_for_writeback(wc); 1876 } 1877 1878 wc_unlock(wc); 1879 1880 blk_start_plug(&plug); 1881 1882 if (WC_MODE_PMEM(wc)) 1883 __writecache_writeback_pmem(wc, &wbl); 1884 else 1885 __writecache_writeback_ssd(wc, &wbl); 1886 1887 blk_finish_plug(&plug); 1888 1889 if (unlikely(wc->writeback_all)) { 1890 wc_lock(wc); 1891 while (writecache_wait_for_writeback(wc)); 1892 wc_unlock(wc); 1893 } 1894 } 1895 1896 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1897 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1898 { 1899 uint64_t n_blocks, offset; 1900 struct wc_entry e; 1901 1902 n_blocks = device_size; 1903 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1904 1905 while (1) { 1906 if (!n_blocks) 1907 return -ENOSPC; 1908 /* Verify the following entries[n_blocks] won't overflow */ 1909 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1910 sizeof(struct wc_memory_entry))) 1911 return -EFBIG; 1912 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1913 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1914 if (offset + n_blocks * block_size <= device_size) 1915 break; 1916 n_blocks--; 1917 } 1918 1919 /* check if the bit field overflows */ 1920 e.index = n_blocks; 1921 if (e.index != n_blocks) 1922 return -EFBIG; 1923 1924 if (n_blocks_p) 1925 *n_blocks_p = n_blocks; 1926 if (n_metadata_blocks_p) 1927 *n_metadata_blocks_p = offset >> __ffs(block_size); 1928 return 0; 1929 } 1930 1931 static int init_memory(struct dm_writecache *wc) 1932 { 1933 size_t b; 1934 int r; 1935 1936 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1937 if (r) 1938 return r; 1939 1940 r = writecache_alloc_entries(wc); 1941 if (r) 1942 return r; 1943 1944 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1945 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1946 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1947 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1948 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1949 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1950 1951 for (b = 0; b < wc->n_blocks; b++) { 1952 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1953 cond_resched(); 1954 } 1955 1956 writecache_flush_all_metadata(wc); 1957 writecache_commit_flushed(wc, false); 1958 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1959 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1960 writecache_commit_flushed(wc, false); 1961 1962 return 0; 1963 } 1964 1965 static void writecache_dtr(struct dm_target *ti) 1966 { 1967 struct dm_writecache *wc = ti->private; 1968 1969 if (!wc) 1970 return; 1971 1972 if (wc->endio_thread) 1973 kthread_stop(wc->endio_thread); 1974 1975 if (wc->flush_thread) 1976 kthread_stop(wc->flush_thread); 1977 1978 bioset_exit(&wc->bio_set); 1979 1980 mempool_exit(&wc->copy_pool); 1981 1982 if (wc->writeback_wq) 1983 destroy_workqueue(wc->writeback_wq); 1984 1985 if (wc->dev) 1986 dm_put_device(ti, wc->dev); 1987 1988 if (wc->ssd_dev) 1989 dm_put_device(ti, wc->ssd_dev); 1990 1991 if (wc->entries) 1992 vfree(wc->entries); 1993 1994 if (wc->memory_map) { 1995 if (WC_MODE_PMEM(wc)) 1996 persistent_memory_release(wc); 1997 else 1998 vfree(wc->memory_map); 1999 } 2000 2001 if (wc->dm_kcopyd) 2002 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2003 2004 if (wc->dm_io) 2005 dm_io_client_destroy(wc->dm_io); 2006 2007 if (wc->dirty_bitmap) 2008 vfree(wc->dirty_bitmap); 2009 2010 kfree(wc); 2011 } 2012 2013 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2014 { 2015 struct dm_writecache *wc; 2016 struct dm_arg_set as; 2017 const char *string; 2018 unsigned opt_params; 2019 size_t offset, data_size; 2020 int i, r; 2021 char dummy; 2022 int high_wm_percent = HIGH_WATERMARK; 2023 int low_wm_percent = LOW_WATERMARK; 2024 uint64_t x; 2025 struct wc_memory_superblock s; 2026 2027 static struct dm_arg _args[] = { 2028 {0, 10, "Invalid number of feature args"}, 2029 }; 2030 2031 as.argc = argc; 2032 as.argv = argv; 2033 2034 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2035 if (!wc) { 2036 ti->error = "Cannot allocate writecache structure"; 2037 r = -ENOMEM; 2038 goto bad; 2039 } 2040 ti->private = wc; 2041 wc->ti = ti; 2042 2043 mutex_init(&wc->lock); 2044 wc->max_age = MAX_AGE_UNSPECIFIED; 2045 writecache_poison_lists(wc); 2046 init_waitqueue_head(&wc->freelist_wait); 2047 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2048 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2049 2050 for (i = 0; i < 2; i++) { 2051 atomic_set(&wc->bio_in_progress[i], 0); 2052 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2053 } 2054 2055 wc->dm_io = dm_io_client_create(); 2056 if (IS_ERR(wc->dm_io)) { 2057 r = PTR_ERR(wc->dm_io); 2058 ti->error = "Unable to allocate dm-io client"; 2059 wc->dm_io = NULL; 2060 goto bad; 2061 } 2062 2063 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2064 if (!wc->writeback_wq) { 2065 r = -ENOMEM; 2066 ti->error = "Could not allocate writeback workqueue"; 2067 goto bad; 2068 } 2069 INIT_WORK(&wc->writeback_work, writecache_writeback); 2070 INIT_WORK(&wc->flush_work, writecache_flush_work); 2071 2072 raw_spin_lock_init(&wc->endio_list_lock); 2073 INIT_LIST_HEAD(&wc->endio_list); 2074 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2075 if (IS_ERR(wc->endio_thread)) { 2076 r = PTR_ERR(wc->endio_thread); 2077 wc->endio_thread = NULL; 2078 ti->error = "Couldn't spawn endio thread"; 2079 goto bad; 2080 } 2081 wake_up_process(wc->endio_thread); 2082 2083 /* 2084 * Parse the mode (pmem or ssd) 2085 */ 2086 string = dm_shift_arg(&as); 2087 if (!string) 2088 goto bad_arguments; 2089 2090 if (!strcasecmp(string, "s")) { 2091 wc->pmem_mode = false; 2092 } else if (!strcasecmp(string, "p")) { 2093 #ifdef DM_WRITECACHE_HAS_PMEM 2094 wc->pmem_mode = true; 2095 wc->writeback_fua = true; 2096 #else 2097 /* 2098 * If the architecture doesn't support persistent memory or 2099 * the kernel doesn't support any DAX drivers, this driver can 2100 * only be used in SSD-only mode. 2101 */ 2102 r = -EOPNOTSUPP; 2103 ti->error = "Persistent memory or DAX not supported on this system"; 2104 goto bad; 2105 #endif 2106 } else { 2107 goto bad_arguments; 2108 } 2109 2110 if (WC_MODE_PMEM(wc)) { 2111 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2112 offsetof(struct writeback_struct, bio), 2113 BIOSET_NEED_BVECS); 2114 if (r) { 2115 ti->error = "Could not allocate bio set"; 2116 goto bad; 2117 } 2118 } else { 2119 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2120 if (r) { 2121 ti->error = "Could not allocate mempool"; 2122 goto bad; 2123 } 2124 } 2125 2126 /* 2127 * Parse the origin data device 2128 */ 2129 string = dm_shift_arg(&as); 2130 if (!string) 2131 goto bad_arguments; 2132 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2133 if (r) { 2134 ti->error = "Origin data device lookup failed"; 2135 goto bad; 2136 } 2137 2138 /* 2139 * Parse cache data device (be it pmem or ssd) 2140 */ 2141 string = dm_shift_arg(&as); 2142 if (!string) 2143 goto bad_arguments; 2144 2145 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2146 if (r) { 2147 ti->error = "Cache data device lookup failed"; 2148 goto bad; 2149 } 2150 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2151 2152 /* 2153 * Parse the cache block size 2154 */ 2155 string = dm_shift_arg(&as); 2156 if (!string) 2157 goto bad_arguments; 2158 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2159 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2160 (wc->block_size & (wc->block_size - 1))) { 2161 r = -EINVAL; 2162 ti->error = "Invalid block size"; 2163 goto bad; 2164 } 2165 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2166 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2167 r = -EINVAL; 2168 ti->error = "Block size is smaller than device logical block size"; 2169 goto bad; 2170 } 2171 wc->block_size_bits = __ffs(wc->block_size); 2172 2173 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2174 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2175 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2176 2177 /* 2178 * Parse optional arguments 2179 */ 2180 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2181 if (r) 2182 goto bad; 2183 2184 while (opt_params) { 2185 string = dm_shift_arg(&as), opt_params--; 2186 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2187 unsigned long long start_sector; 2188 string = dm_shift_arg(&as), opt_params--; 2189 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2190 goto invalid_optional; 2191 wc->start_sector = start_sector; 2192 if (wc->start_sector != start_sector || 2193 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2194 goto invalid_optional; 2195 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2196 string = dm_shift_arg(&as), opt_params--; 2197 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2198 goto invalid_optional; 2199 if (high_wm_percent < 0 || high_wm_percent > 100) 2200 goto invalid_optional; 2201 wc->high_wm_percent_set = true; 2202 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2203 string = dm_shift_arg(&as), opt_params--; 2204 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2205 goto invalid_optional; 2206 if (low_wm_percent < 0 || low_wm_percent > 100) 2207 goto invalid_optional; 2208 wc->low_wm_percent_set = true; 2209 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2210 string = dm_shift_arg(&as), opt_params--; 2211 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2212 goto invalid_optional; 2213 wc->max_writeback_jobs_set = true; 2214 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2215 string = dm_shift_arg(&as), opt_params--; 2216 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2217 goto invalid_optional; 2218 wc->autocommit_blocks_set = true; 2219 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2220 unsigned autocommit_msecs; 2221 string = dm_shift_arg(&as), opt_params--; 2222 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2223 goto invalid_optional; 2224 if (autocommit_msecs > 3600000) 2225 goto invalid_optional; 2226 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2227 wc->autocommit_time_set = true; 2228 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2229 unsigned max_age_msecs; 2230 string = dm_shift_arg(&as), opt_params--; 2231 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2232 goto invalid_optional; 2233 if (max_age_msecs > 86400000) 2234 goto invalid_optional; 2235 wc->max_age = msecs_to_jiffies(max_age_msecs); 2236 } else if (!strcasecmp(string, "cleaner")) { 2237 wc->cleaner = true; 2238 } else if (!strcasecmp(string, "fua")) { 2239 if (WC_MODE_PMEM(wc)) { 2240 wc->writeback_fua = true; 2241 wc->writeback_fua_set = true; 2242 } else goto invalid_optional; 2243 } else if (!strcasecmp(string, "nofua")) { 2244 if (WC_MODE_PMEM(wc)) { 2245 wc->writeback_fua = false; 2246 wc->writeback_fua_set = true; 2247 } else goto invalid_optional; 2248 } else { 2249 invalid_optional: 2250 r = -EINVAL; 2251 ti->error = "Invalid optional argument"; 2252 goto bad; 2253 } 2254 } 2255 2256 if (high_wm_percent < low_wm_percent) { 2257 r = -EINVAL; 2258 ti->error = "High watermark must be greater than or equal to low watermark"; 2259 goto bad; 2260 } 2261 2262 if (WC_MODE_PMEM(wc)) { 2263 r = persistent_memory_claim(wc); 2264 if (r) { 2265 ti->error = "Unable to map persistent memory for cache"; 2266 goto bad; 2267 } 2268 } else { 2269 size_t n_blocks, n_metadata_blocks; 2270 uint64_t n_bitmap_bits; 2271 2272 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2273 2274 bio_list_init(&wc->flush_list); 2275 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2276 if (IS_ERR(wc->flush_thread)) { 2277 r = PTR_ERR(wc->flush_thread); 2278 wc->flush_thread = NULL; 2279 ti->error = "Couldn't spawn flush thread"; 2280 goto bad; 2281 } 2282 wake_up_process(wc->flush_thread); 2283 2284 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2285 &n_blocks, &n_metadata_blocks); 2286 if (r) { 2287 ti->error = "Invalid device size"; 2288 goto bad; 2289 } 2290 2291 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2292 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2293 /* this is limitation of test_bit functions */ 2294 if (n_bitmap_bits > 1U << 31) { 2295 r = -EFBIG; 2296 ti->error = "Invalid device size"; 2297 goto bad; 2298 } 2299 2300 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2301 if (!wc->memory_map) { 2302 r = -ENOMEM; 2303 ti->error = "Unable to allocate memory for metadata"; 2304 goto bad; 2305 } 2306 2307 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2308 if (IS_ERR(wc->dm_kcopyd)) { 2309 r = PTR_ERR(wc->dm_kcopyd); 2310 ti->error = "Unable to allocate dm-kcopyd client"; 2311 wc->dm_kcopyd = NULL; 2312 goto bad; 2313 } 2314 2315 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2316 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2317 BITS_PER_LONG * sizeof(unsigned long); 2318 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2319 if (!wc->dirty_bitmap) { 2320 r = -ENOMEM; 2321 ti->error = "Unable to allocate dirty bitmap"; 2322 goto bad; 2323 } 2324 2325 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2326 if (r) { 2327 ti->error = "Unable to read first block of metadata"; 2328 goto bad; 2329 } 2330 } 2331 2332 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2333 if (r) { 2334 ti->error = "Hardware memory error when reading superblock"; 2335 goto bad; 2336 } 2337 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2338 r = init_memory(wc); 2339 if (r) { 2340 ti->error = "Unable to initialize device"; 2341 goto bad; 2342 } 2343 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2344 if (r) { 2345 ti->error = "Hardware memory error when reading superblock"; 2346 goto bad; 2347 } 2348 } 2349 2350 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2351 ti->error = "Invalid magic in the superblock"; 2352 r = -EINVAL; 2353 goto bad; 2354 } 2355 2356 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2357 ti->error = "Invalid version in the superblock"; 2358 r = -EINVAL; 2359 goto bad; 2360 } 2361 2362 if (le32_to_cpu(s.block_size) != wc->block_size) { 2363 ti->error = "Block size does not match superblock"; 2364 r = -EINVAL; 2365 goto bad; 2366 } 2367 2368 wc->n_blocks = le64_to_cpu(s.n_blocks); 2369 2370 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2371 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2372 overflow: 2373 ti->error = "Overflow in size calculation"; 2374 r = -EINVAL; 2375 goto bad; 2376 } 2377 offset += sizeof(struct wc_memory_superblock); 2378 if (offset < sizeof(struct wc_memory_superblock)) 2379 goto overflow; 2380 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2381 data_size = wc->n_blocks * (size_t)wc->block_size; 2382 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2383 (offset + data_size < offset)) 2384 goto overflow; 2385 if (offset + data_size > wc->memory_map_size) { 2386 ti->error = "Memory area is too small"; 2387 r = -EINVAL; 2388 goto bad; 2389 } 2390 2391 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2392 wc->block_start = (char *)sb(wc) + offset; 2393 2394 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2395 x += 50; 2396 do_div(x, 100); 2397 wc->freelist_high_watermark = x; 2398 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2399 x += 50; 2400 do_div(x, 100); 2401 wc->freelist_low_watermark = x; 2402 2403 if (wc->cleaner) 2404 activate_cleaner(wc); 2405 2406 r = writecache_alloc_entries(wc); 2407 if (r) { 2408 ti->error = "Cannot allocate memory"; 2409 goto bad; 2410 } 2411 2412 ti->num_flush_bios = 1; 2413 ti->flush_supported = true; 2414 ti->num_discard_bios = 1; 2415 2416 if (WC_MODE_PMEM(wc)) 2417 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2418 2419 return 0; 2420 2421 bad_arguments: 2422 r = -EINVAL; 2423 ti->error = "Bad arguments"; 2424 bad: 2425 writecache_dtr(ti); 2426 return r; 2427 } 2428 2429 static void writecache_status(struct dm_target *ti, status_type_t type, 2430 unsigned status_flags, char *result, unsigned maxlen) 2431 { 2432 struct dm_writecache *wc = ti->private; 2433 unsigned extra_args; 2434 unsigned sz = 0; 2435 uint64_t x; 2436 2437 switch (type) { 2438 case STATUSTYPE_INFO: 2439 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2440 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2441 (unsigned long long)wc->writeback_size); 2442 break; 2443 case STATUSTYPE_TABLE: 2444 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2445 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2446 extra_args = 0; 2447 if (wc->start_sector) 2448 extra_args += 2; 2449 if (wc->high_wm_percent_set && !wc->cleaner) 2450 extra_args += 2; 2451 if (wc->low_wm_percent_set && !wc->cleaner) 2452 extra_args += 2; 2453 if (wc->max_writeback_jobs_set) 2454 extra_args += 2; 2455 if (wc->autocommit_blocks_set) 2456 extra_args += 2; 2457 if (wc->autocommit_time_set) 2458 extra_args += 2; 2459 if (wc->cleaner) 2460 extra_args++; 2461 if (wc->writeback_fua_set) 2462 extra_args++; 2463 2464 DMEMIT("%u", extra_args); 2465 if (wc->start_sector) 2466 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2467 if (wc->high_wm_percent_set && !wc->cleaner) { 2468 x = (uint64_t)wc->freelist_high_watermark * 100; 2469 x += wc->n_blocks / 2; 2470 do_div(x, (size_t)wc->n_blocks); 2471 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2472 } 2473 if (wc->low_wm_percent_set && !wc->cleaner) { 2474 x = (uint64_t)wc->freelist_low_watermark * 100; 2475 x += wc->n_blocks / 2; 2476 do_div(x, (size_t)wc->n_blocks); 2477 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2478 } 2479 if (wc->max_writeback_jobs_set) 2480 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2481 if (wc->autocommit_blocks_set) 2482 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2483 if (wc->autocommit_time_set) 2484 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2485 if (wc->max_age != MAX_AGE_UNSPECIFIED) 2486 DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age)); 2487 if (wc->cleaner) 2488 DMEMIT(" cleaner"); 2489 if (wc->writeback_fua_set) 2490 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2491 break; 2492 } 2493 } 2494 2495 static struct target_type writecache_target = { 2496 .name = "writecache", 2497 .version = {1, 3, 0}, 2498 .module = THIS_MODULE, 2499 .ctr = writecache_ctr, 2500 .dtr = writecache_dtr, 2501 .status = writecache_status, 2502 .postsuspend = writecache_suspend, 2503 .resume = writecache_resume, 2504 .message = writecache_message, 2505 .map = writecache_map, 2506 .end_io = writecache_end_io, 2507 .iterate_devices = writecache_iterate_devices, 2508 .io_hints = writecache_io_hints, 2509 }; 2510 2511 static int __init dm_writecache_init(void) 2512 { 2513 int r; 2514 2515 r = dm_register_target(&writecache_target); 2516 if (r < 0) { 2517 DMERR("register failed %d", r); 2518 return r; 2519 } 2520 2521 return 0; 2522 } 2523 2524 static void __exit dm_writecache_exit(void) 2525 { 2526 dm_unregister_target(&writecache_target); 2527 } 2528 2529 module_init(dm_writecache_init); 2530 module_exit(dm_writecache_exit); 2531 2532 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2533 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2534 MODULE_LICENSE("GPL"); 2535