1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 30 #define BITMAP_GRANULARITY 65536 31 #if BITMAP_GRANULARITY < PAGE_SIZE 32 #undef BITMAP_GRANULARITY 33 #define BITMAP_GRANULARITY PAGE_SIZE 34 #endif 35 36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 37 #define DM_WRITECACHE_HAS_PMEM 38 #endif 39 40 #ifdef DM_WRITECACHE_HAS_PMEM 41 #define pmem_assign(dest, src) \ 42 do { \ 43 typeof(dest) uniq = (src); \ 44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 45 } while (0) 46 #else 47 #define pmem_assign(dest, src) ((dest) = (src)) 48 #endif 49 50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 52 #endif 53 54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 55 #define MEMORY_SUPERBLOCK_VERSION 1 56 57 struct wc_memory_entry { 58 __le64 original_sector; 59 __le64 seq_count; 60 }; 61 62 struct wc_memory_superblock { 63 union { 64 struct { 65 __le32 magic; 66 __le32 version; 67 __le32 block_size; 68 __le32 pad; 69 __le64 n_blocks; 70 __le64 seq_count; 71 }; 72 __le64 padding[8]; 73 }; 74 struct wc_memory_entry entries[0]; 75 }; 76 77 struct wc_entry { 78 struct rb_node rb_node; 79 struct list_head lru; 80 unsigned short wc_list_contiguous; 81 bool write_in_progress 82 #if BITS_PER_LONG == 64 83 :1 84 #endif 85 ; 86 unsigned long index 87 #if BITS_PER_LONG == 64 88 :47 89 #endif 90 ; 91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 92 uint64_t original_sector; 93 uint64_t seq_count; 94 #endif 95 }; 96 97 #ifdef DM_WRITECACHE_HAS_PMEM 98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 100 #else 101 #define WC_MODE_PMEM(wc) false 102 #define WC_MODE_FUA(wc) false 103 #endif 104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 105 106 struct dm_writecache { 107 struct mutex lock; 108 struct list_head lru; 109 union { 110 struct list_head freelist; 111 struct { 112 struct rb_root freetree; 113 struct wc_entry *current_free; 114 }; 115 }; 116 struct rb_root tree; 117 118 size_t freelist_size; 119 size_t writeback_size; 120 size_t freelist_high_watermark; 121 size_t freelist_low_watermark; 122 123 unsigned uncommitted_blocks; 124 unsigned autocommit_blocks; 125 unsigned max_writeback_jobs; 126 127 int error; 128 129 unsigned long autocommit_jiffies; 130 struct timer_list autocommit_timer; 131 struct wait_queue_head freelist_wait; 132 133 atomic_t bio_in_progress[2]; 134 struct wait_queue_head bio_in_progress_wait[2]; 135 136 struct dm_target *ti; 137 struct dm_dev *dev; 138 struct dm_dev *ssd_dev; 139 sector_t start_sector; 140 void *memory_map; 141 uint64_t memory_map_size; 142 size_t metadata_sectors; 143 size_t n_blocks; 144 uint64_t seq_count; 145 void *block_start; 146 struct wc_entry *entries; 147 unsigned block_size; 148 unsigned char block_size_bits; 149 150 bool pmem_mode:1; 151 bool writeback_fua:1; 152 153 bool overwrote_committed:1; 154 bool memory_vmapped:1; 155 156 bool high_wm_percent_set:1; 157 bool low_wm_percent_set:1; 158 bool max_writeback_jobs_set:1; 159 bool autocommit_blocks_set:1; 160 bool autocommit_time_set:1; 161 bool writeback_fua_set:1; 162 bool flush_on_suspend:1; 163 164 unsigned writeback_all; 165 struct workqueue_struct *writeback_wq; 166 struct work_struct writeback_work; 167 struct work_struct flush_work; 168 169 struct dm_io_client *dm_io; 170 171 raw_spinlock_t endio_list_lock; 172 struct list_head endio_list; 173 struct task_struct *endio_thread; 174 175 struct task_struct *flush_thread; 176 struct bio_list flush_list; 177 178 struct dm_kcopyd_client *dm_kcopyd; 179 unsigned long *dirty_bitmap; 180 unsigned dirty_bitmap_size; 181 182 struct bio_set bio_set; 183 mempool_t copy_pool; 184 }; 185 186 #define WB_LIST_INLINE 16 187 188 struct writeback_struct { 189 struct list_head endio_entry; 190 struct dm_writecache *wc; 191 struct wc_entry **wc_list; 192 unsigned wc_list_n; 193 unsigned page_offset; 194 struct page *page; 195 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 196 struct bio bio; 197 }; 198 199 struct copy_struct { 200 struct list_head endio_entry; 201 struct dm_writecache *wc; 202 struct wc_entry *e; 203 unsigned n_entries; 204 int error; 205 }; 206 207 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 208 "A percentage of time allocated for data copying"); 209 210 static void wc_lock(struct dm_writecache *wc) 211 { 212 mutex_lock(&wc->lock); 213 } 214 215 static void wc_unlock(struct dm_writecache *wc) 216 { 217 mutex_unlock(&wc->lock); 218 } 219 220 #ifdef DM_WRITECACHE_HAS_PMEM 221 static int persistent_memory_claim(struct dm_writecache *wc) 222 { 223 int r; 224 loff_t s; 225 long p, da; 226 pfn_t pfn; 227 int id; 228 struct page **pages; 229 230 wc->memory_vmapped = false; 231 232 if (!wc->ssd_dev->dax_dev) { 233 r = -EOPNOTSUPP; 234 goto err1; 235 } 236 s = wc->memory_map_size; 237 p = s >> PAGE_SHIFT; 238 if (!p) { 239 r = -EINVAL; 240 goto err1; 241 } 242 if (p != s >> PAGE_SHIFT) { 243 r = -EOVERFLOW; 244 goto err1; 245 } 246 247 id = dax_read_lock(); 248 249 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 250 if (da < 0) { 251 wc->memory_map = NULL; 252 r = da; 253 goto err2; 254 } 255 if (!pfn_t_has_page(pfn)) { 256 wc->memory_map = NULL; 257 r = -EOPNOTSUPP; 258 goto err2; 259 } 260 if (da != p) { 261 long i; 262 wc->memory_map = NULL; 263 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 264 if (!pages) { 265 r = -ENOMEM; 266 goto err2; 267 } 268 i = 0; 269 do { 270 long daa; 271 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 272 NULL, &pfn); 273 if (daa <= 0) { 274 r = daa ? daa : -EINVAL; 275 goto err3; 276 } 277 if (!pfn_t_has_page(pfn)) { 278 r = -EOPNOTSUPP; 279 goto err3; 280 } 281 while (daa-- && i < p) { 282 pages[i++] = pfn_t_to_page(pfn); 283 pfn.val++; 284 } 285 } while (i < p); 286 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 287 if (!wc->memory_map) { 288 r = -ENOMEM; 289 goto err3; 290 } 291 kvfree(pages); 292 wc->memory_vmapped = true; 293 } 294 295 dax_read_unlock(id); 296 297 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 298 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 299 300 return 0; 301 err3: 302 kvfree(pages); 303 err2: 304 dax_read_unlock(id); 305 err1: 306 return r; 307 } 308 #else 309 static int persistent_memory_claim(struct dm_writecache *wc) 310 { 311 BUG(); 312 } 313 #endif 314 315 static void persistent_memory_release(struct dm_writecache *wc) 316 { 317 if (wc->memory_vmapped) 318 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 319 } 320 321 static struct page *persistent_memory_page(void *addr) 322 { 323 if (is_vmalloc_addr(addr)) 324 return vmalloc_to_page(addr); 325 else 326 return virt_to_page(addr); 327 } 328 329 static unsigned persistent_memory_page_offset(void *addr) 330 { 331 return (unsigned long)addr & (PAGE_SIZE - 1); 332 } 333 334 static void persistent_memory_flush_cache(void *ptr, size_t size) 335 { 336 if (is_vmalloc_addr(ptr)) 337 flush_kernel_vmap_range(ptr, size); 338 } 339 340 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 341 { 342 if (is_vmalloc_addr(ptr)) 343 invalidate_kernel_vmap_range(ptr, size); 344 } 345 346 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 347 { 348 return wc->memory_map; 349 } 350 351 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 352 { 353 return &sb(wc)->entries[e->index]; 354 } 355 356 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 357 { 358 return (char *)wc->block_start + (e->index << wc->block_size_bits); 359 } 360 361 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 362 { 363 return wc->start_sector + wc->metadata_sectors + 364 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 365 } 366 367 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 368 { 369 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 370 return e->original_sector; 371 #else 372 return le64_to_cpu(memory_entry(wc, e)->original_sector); 373 #endif 374 } 375 376 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 377 { 378 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 379 return e->seq_count; 380 #else 381 return le64_to_cpu(memory_entry(wc, e)->seq_count); 382 #endif 383 } 384 385 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 386 { 387 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 388 e->seq_count = -1; 389 #endif 390 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 391 } 392 393 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 394 uint64_t original_sector, uint64_t seq_count) 395 { 396 struct wc_memory_entry me; 397 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 398 e->original_sector = original_sector; 399 e->seq_count = seq_count; 400 #endif 401 me.original_sector = cpu_to_le64(original_sector); 402 me.seq_count = cpu_to_le64(seq_count); 403 pmem_assign(*memory_entry(wc, e), me); 404 } 405 406 #define writecache_error(wc, err, msg, arg...) \ 407 do { \ 408 if (!cmpxchg(&(wc)->error, 0, err)) \ 409 DMERR(msg, ##arg); \ 410 wake_up(&(wc)->freelist_wait); \ 411 } while (0) 412 413 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 414 415 static void writecache_flush_all_metadata(struct dm_writecache *wc) 416 { 417 if (!WC_MODE_PMEM(wc)) 418 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 419 } 420 421 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 422 { 423 if (!WC_MODE_PMEM(wc)) 424 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 425 wc->dirty_bitmap); 426 } 427 428 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 429 430 struct io_notify { 431 struct dm_writecache *wc; 432 struct completion c; 433 atomic_t count; 434 }; 435 436 static void writecache_notify_io(unsigned long error, void *context) 437 { 438 struct io_notify *endio = context; 439 440 if (unlikely(error != 0)) 441 writecache_error(endio->wc, -EIO, "error writing metadata"); 442 BUG_ON(atomic_read(&endio->count) <= 0); 443 if (atomic_dec_and_test(&endio->count)) 444 complete(&endio->c); 445 } 446 447 static void ssd_commit_flushed(struct dm_writecache *wc) 448 { 449 struct dm_io_region region; 450 struct dm_io_request req; 451 struct io_notify endio = { 452 wc, 453 COMPLETION_INITIALIZER_ONSTACK(endio.c), 454 ATOMIC_INIT(1), 455 }; 456 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 457 unsigned i = 0; 458 459 while (1) { 460 unsigned j; 461 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 462 if (unlikely(i == bitmap_bits)) 463 break; 464 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 465 466 region.bdev = wc->ssd_dev->bdev; 467 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 468 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 469 470 if (unlikely(region.sector >= wc->metadata_sectors)) 471 break; 472 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 473 region.count = wc->metadata_sectors - region.sector; 474 475 region.sector += wc->start_sector; 476 atomic_inc(&endio.count); 477 req.bi_op = REQ_OP_WRITE; 478 req.bi_op_flags = REQ_SYNC; 479 req.mem.type = DM_IO_VMA; 480 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 481 req.client = wc->dm_io; 482 req.notify.fn = writecache_notify_io; 483 req.notify.context = &endio; 484 485 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 486 (void) dm_io(&req, 1, ®ion, NULL); 487 i = j; 488 } 489 490 writecache_notify_io(0, &endio); 491 wait_for_completion_io(&endio.c); 492 493 writecache_disk_flush(wc, wc->ssd_dev); 494 495 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 496 } 497 498 static void writecache_commit_flushed(struct dm_writecache *wc) 499 { 500 if (WC_MODE_PMEM(wc)) 501 wmb(); 502 else 503 ssd_commit_flushed(wc); 504 } 505 506 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 507 { 508 int r; 509 struct dm_io_region region; 510 struct dm_io_request req; 511 512 region.bdev = dev->bdev; 513 region.sector = 0; 514 region.count = 0; 515 req.bi_op = REQ_OP_WRITE; 516 req.bi_op_flags = REQ_PREFLUSH; 517 req.mem.type = DM_IO_KMEM; 518 req.mem.ptr.addr = NULL; 519 req.client = wc->dm_io; 520 req.notify.fn = NULL; 521 522 r = dm_io(&req, 1, ®ion, NULL); 523 if (unlikely(r)) 524 writecache_error(wc, r, "error flushing metadata: %d", r); 525 } 526 527 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 528 { 529 wait_event(wc->bio_in_progress_wait[direction], 530 !atomic_read(&wc->bio_in_progress[direction])); 531 } 532 533 #define WFE_RETURN_FOLLOWING 1 534 #define WFE_LOWEST_SEQ 2 535 536 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 537 uint64_t block, int flags) 538 { 539 struct wc_entry *e; 540 struct rb_node *node = wc->tree.rb_node; 541 542 if (unlikely(!node)) 543 return NULL; 544 545 while (1) { 546 e = container_of(node, struct wc_entry, rb_node); 547 if (read_original_sector(wc, e) == block) 548 break; 549 node = (read_original_sector(wc, e) >= block ? 550 e->rb_node.rb_left : e->rb_node.rb_right); 551 if (unlikely(!node)) { 552 if (!(flags & WFE_RETURN_FOLLOWING)) { 553 return NULL; 554 } 555 if (read_original_sector(wc, e) >= block) { 556 break; 557 } else { 558 node = rb_next(&e->rb_node); 559 if (unlikely(!node)) { 560 return NULL; 561 } 562 e = container_of(node, struct wc_entry, rb_node); 563 break; 564 } 565 } 566 } 567 568 while (1) { 569 struct wc_entry *e2; 570 if (flags & WFE_LOWEST_SEQ) 571 node = rb_prev(&e->rb_node); 572 else 573 node = rb_next(&e->rb_node); 574 if (!node) 575 return e; 576 e2 = container_of(node, struct wc_entry, rb_node); 577 if (read_original_sector(wc, e2) != block) 578 return e; 579 e = e2; 580 } 581 } 582 583 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 584 { 585 struct wc_entry *e; 586 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 587 588 while (*node) { 589 e = container_of(*node, struct wc_entry, rb_node); 590 parent = &e->rb_node; 591 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 592 node = &parent->rb_left; 593 else 594 node = &parent->rb_right; 595 } 596 rb_link_node(&ins->rb_node, parent, node); 597 rb_insert_color(&ins->rb_node, &wc->tree); 598 list_add(&ins->lru, &wc->lru); 599 } 600 601 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 602 { 603 list_del(&e->lru); 604 rb_erase(&e->rb_node, &wc->tree); 605 } 606 607 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 608 { 609 if (WC_MODE_SORT_FREELIST(wc)) { 610 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 611 if (unlikely(!*node)) 612 wc->current_free = e; 613 while (*node) { 614 parent = *node; 615 if (&e->rb_node < *node) 616 node = &parent->rb_left; 617 else 618 node = &parent->rb_right; 619 } 620 rb_link_node(&e->rb_node, parent, node); 621 rb_insert_color(&e->rb_node, &wc->freetree); 622 } else { 623 list_add_tail(&e->lru, &wc->freelist); 624 } 625 wc->freelist_size++; 626 } 627 628 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc) 629 { 630 struct wc_entry *e; 631 632 if (WC_MODE_SORT_FREELIST(wc)) { 633 struct rb_node *next; 634 if (unlikely(!wc->current_free)) 635 return NULL; 636 e = wc->current_free; 637 next = rb_next(&e->rb_node); 638 rb_erase(&e->rb_node, &wc->freetree); 639 if (unlikely(!next)) 640 next = rb_first(&wc->freetree); 641 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 642 } else { 643 if (unlikely(list_empty(&wc->freelist))) 644 return NULL; 645 e = container_of(wc->freelist.next, struct wc_entry, lru); 646 list_del(&e->lru); 647 } 648 wc->freelist_size--; 649 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 650 queue_work(wc->writeback_wq, &wc->writeback_work); 651 652 return e; 653 } 654 655 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 656 { 657 writecache_unlink(wc, e); 658 writecache_add_to_freelist(wc, e); 659 clear_seq_count(wc, e); 660 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 661 if (unlikely(waitqueue_active(&wc->freelist_wait))) 662 wake_up(&wc->freelist_wait); 663 } 664 665 static void writecache_wait_on_freelist(struct dm_writecache *wc) 666 { 667 DEFINE_WAIT(wait); 668 669 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 670 wc_unlock(wc); 671 io_schedule(); 672 finish_wait(&wc->freelist_wait, &wait); 673 wc_lock(wc); 674 } 675 676 static void writecache_poison_lists(struct dm_writecache *wc) 677 { 678 /* 679 * Catch incorrect access to these values while the device is suspended. 680 */ 681 memset(&wc->tree, -1, sizeof wc->tree); 682 wc->lru.next = LIST_POISON1; 683 wc->lru.prev = LIST_POISON2; 684 wc->freelist.next = LIST_POISON1; 685 wc->freelist.prev = LIST_POISON2; 686 } 687 688 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 689 { 690 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 691 if (WC_MODE_PMEM(wc)) 692 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 693 } 694 695 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 696 { 697 return read_seq_count(wc, e) < wc->seq_count; 698 } 699 700 static void writecache_flush(struct dm_writecache *wc) 701 { 702 struct wc_entry *e, *e2; 703 bool need_flush_after_free; 704 705 wc->uncommitted_blocks = 0; 706 del_timer(&wc->autocommit_timer); 707 708 if (list_empty(&wc->lru)) 709 return; 710 711 e = container_of(wc->lru.next, struct wc_entry, lru); 712 if (writecache_entry_is_committed(wc, e)) { 713 if (wc->overwrote_committed) { 714 writecache_wait_for_ios(wc, WRITE); 715 writecache_disk_flush(wc, wc->ssd_dev); 716 wc->overwrote_committed = false; 717 } 718 return; 719 } 720 while (1) { 721 writecache_flush_entry(wc, e); 722 if (unlikely(e->lru.next == &wc->lru)) 723 break; 724 e2 = container_of(e->lru.next, struct wc_entry, lru); 725 if (writecache_entry_is_committed(wc, e2)) 726 break; 727 e = e2; 728 cond_resched(); 729 } 730 writecache_commit_flushed(wc); 731 732 writecache_wait_for_ios(wc, WRITE); 733 734 wc->seq_count++; 735 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 736 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); 737 writecache_commit_flushed(wc); 738 739 wc->overwrote_committed = false; 740 741 need_flush_after_free = false; 742 while (1) { 743 /* Free another committed entry with lower seq-count */ 744 struct rb_node *rb_node = rb_prev(&e->rb_node); 745 746 if (rb_node) { 747 e2 = container_of(rb_node, struct wc_entry, rb_node); 748 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 749 likely(!e2->write_in_progress)) { 750 writecache_free_entry(wc, e2); 751 need_flush_after_free = true; 752 } 753 } 754 if (unlikely(e->lru.prev == &wc->lru)) 755 break; 756 e = container_of(e->lru.prev, struct wc_entry, lru); 757 cond_resched(); 758 } 759 760 if (need_flush_after_free) 761 writecache_commit_flushed(wc); 762 } 763 764 static void writecache_flush_work(struct work_struct *work) 765 { 766 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 767 768 wc_lock(wc); 769 writecache_flush(wc); 770 wc_unlock(wc); 771 } 772 773 static void writecache_autocommit_timer(struct timer_list *t) 774 { 775 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 776 if (!writecache_has_error(wc)) 777 queue_work(wc->writeback_wq, &wc->flush_work); 778 } 779 780 static void writecache_schedule_autocommit(struct dm_writecache *wc) 781 { 782 if (!timer_pending(&wc->autocommit_timer)) 783 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 784 } 785 786 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 787 { 788 struct wc_entry *e; 789 bool discarded_something = false; 790 791 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 792 if (unlikely(!e)) 793 return; 794 795 while (read_original_sector(wc, e) < end) { 796 struct rb_node *node = rb_next(&e->rb_node); 797 798 if (likely(!e->write_in_progress)) { 799 if (!discarded_something) { 800 writecache_wait_for_ios(wc, READ); 801 writecache_wait_for_ios(wc, WRITE); 802 discarded_something = true; 803 } 804 writecache_free_entry(wc, e); 805 } 806 807 if (!node) 808 break; 809 810 e = container_of(node, struct wc_entry, rb_node); 811 } 812 813 if (discarded_something) 814 writecache_commit_flushed(wc); 815 } 816 817 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 818 { 819 if (wc->writeback_size) { 820 writecache_wait_on_freelist(wc); 821 return true; 822 } 823 return false; 824 } 825 826 static void writecache_suspend(struct dm_target *ti) 827 { 828 struct dm_writecache *wc = ti->private; 829 bool flush_on_suspend; 830 831 del_timer_sync(&wc->autocommit_timer); 832 833 wc_lock(wc); 834 writecache_flush(wc); 835 flush_on_suspend = wc->flush_on_suspend; 836 if (flush_on_suspend) { 837 wc->flush_on_suspend = false; 838 wc->writeback_all++; 839 queue_work(wc->writeback_wq, &wc->writeback_work); 840 } 841 wc_unlock(wc); 842 843 flush_workqueue(wc->writeback_wq); 844 845 wc_lock(wc); 846 if (flush_on_suspend) 847 wc->writeback_all--; 848 while (writecache_wait_for_writeback(wc)); 849 850 if (WC_MODE_PMEM(wc)) 851 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 852 853 writecache_poison_lists(wc); 854 855 wc_unlock(wc); 856 } 857 858 static int writecache_alloc_entries(struct dm_writecache *wc) 859 { 860 size_t b; 861 862 if (wc->entries) 863 return 0; 864 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 865 if (!wc->entries) 866 return -ENOMEM; 867 for (b = 0; b < wc->n_blocks; b++) { 868 struct wc_entry *e = &wc->entries[b]; 869 e->index = b; 870 e->write_in_progress = false; 871 } 872 873 return 0; 874 } 875 876 static void writecache_resume(struct dm_target *ti) 877 { 878 struct dm_writecache *wc = ti->private; 879 size_t b; 880 bool need_flush = false; 881 __le64 sb_seq_count; 882 int r; 883 884 wc_lock(wc); 885 886 if (WC_MODE_PMEM(wc)) 887 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 888 889 wc->tree = RB_ROOT; 890 INIT_LIST_HEAD(&wc->lru); 891 if (WC_MODE_SORT_FREELIST(wc)) { 892 wc->freetree = RB_ROOT; 893 wc->current_free = NULL; 894 } else { 895 INIT_LIST_HEAD(&wc->freelist); 896 } 897 wc->freelist_size = 0; 898 899 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 900 if (r) { 901 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 902 sb_seq_count = cpu_to_le64(0); 903 } 904 wc->seq_count = le64_to_cpu(sb_seq_count); 905 906 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 907 for (b = 0; b < wc->n_blocks; b++) { 908 struct wc_entry *e = &wc->entries[b]; 909 struct wc_memory_entry wme; 910 if (writecache_has_error(wc)) { 911 e->original_sector = -1; 912 e->seq_count = -1; 913 continue; 914 } 915 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 916 if (r) { 917 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 918 (unsigned long)b, r); 919 e->original_sector = -1; 920 e->seq_count = -1; 921 } else { 922 e->original_sector = le64_to_cpu(wme.original_sector); 923 e->seq_count = le64_to_cpu(wme.seq_count); 924 } 925 } 926 #endif 927 for (b = 0; b < wc->n_blocks; b++) { 928 struct wc_entry *e = &wc->entries[b]; 929 if (!writecache_entry_is_committed(wc, e)) { 930 if (read_seq_count(wc, e) != -1) { 931 erase_this: 932 clear_seq_count(wc, e); 933 need_flush = true; 934 } 935 writecache_add_to_freelist(wc, e); 936 } else { 937 struct wc_entry *old; 938 939 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 940 if (!old) { 941 writecache_insert_entry(wc, e); 942 } else { 943 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 944 writecache_error(wc, -EINVAL, 945 "two identical entries, position %llu, sector %llu, sequence %llu", 946 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 947 (unsigned long long)read_seq_count(wc, e)); 948 } 949 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 950 goto erase_this; 951 } else { 952 writecache_free_entry(wc, old); 953 writecache_insert_entry(wc, e); 954 need_flush = true; 955 } 956 } 957 } 958 cond_resched(); 959 } 960 961 if (need_flush) { 962 writecache_flush_all_metadata(wc); 963 writecache_commit_flushed(wc); 964 } 965 966 wc_unlock(wc); 967 } 968 969 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 970 { 971 if (argc != 1) 972 return -EINVAL; 973 974 wc_lock(wc); 975 if (dm_suspended(wc->ti)) { 976 wc_unlock(wc); 977 return -EBUSY; 978 } 979 if (writecache_has_error(wc)) { 980 wc_unlock(wc); 981 return -EIO; 982 } 983 984 writecache_flush(wc); 985 wc->writeback_all++; 986 queue_work(wc->writeback_wq, &wc->writeback_work); 987 wc_unlock(wc); 988 989 flush_workqueue(wc->writeback_wq); 990 991 wc_lock(wc); 992 wc->writeback_all--; 993 if (writecache_has_error(wc)) { 994 wc_unlock(wc); 995 return -EIO; 996 } 997 wc_unlock(wc); 998 999 return 0; 1000 } 1001 1002 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1003 { 1004 if (argc != 1) 1005 return -EINVAL; 1006 1007 wc_lock(wc); 1008 wc->flush_on_suspend = true; 1009 wc_unlock(wc); 1010 1011 return 0; 1012 } 1013 1014 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1015 char *result, unsigned maxlen) 1016 { 1017 int r = -EINVAL; 1018 struct dm_writecache *wc = ti->private; 1019 1020 if (!strcasecmp(argv[0], "flush")) 1021 r = process_flush_mesg(argc, argv, wc); 1022 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1023 r = process_flush_on_suspend_mesg(argc, argv, wc); 1024 else 1025 DMERR("unrecognised message received: %s", argv[0]); 1026 1027 return r; 1028 } 1029 1030 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1031 { 1032 void *buf; 1033 unsigned long flags; 1034 unsigned size; 1035 int rw = bio_data_dir(bio); 1036 unsigned remaining_size = wc->block_size; 1037 1038 do { 1039 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1040 buf = bvec_kmap_irq(&bv, &flags); 1041 size = bv.bv_len; 1042 if (unlikely(size > remaining_size)) 1043 size = remaining_size; 1044 1045 if (rw == READ) { 1046 int r; 1047 r = memcpy_mcsafe(buf, data, size); 1048 flush_dcache_page(bio_page(bio)); 1049 if (unlikely(r)) { 1050 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1051 bio->bi_status = BLK_STS_IOERR; 1052 } 1053 } else { 1054 flush_dcache_page(bio_page(bio)); 1055 memcpy_flushcache(data, buf, size); 1056 } 1057 1058 bvec_kunmap_irq(buf, &flags); 1059 1060 data = (char *)data + size; 1061 remaining_size -= size; 1062 bio_advance(bio, size); 1063 } while (unlikely(remaining_size)); 1064 } 1065 1066 static int writecache_flush_thread(void *data) 1067 { 1068 struct dm_writecache *wc = data; 1069 1070 while (1) { 1071 struct bio *bio; 1072 1073 wc_lock(wc); 1074 bio = bio_list_pop(&wc->flush_list); 1075 if (!bio) { 1076 set_current_state(TASK_INTERRUPTIBLE); 1077 wc_unlock(wc); 1078 1079 if (unlikely(kthread_should_stop())) { 1080 set_current_state(TASK_RUNNING); 1081 break; 1082 } 1083 1084 schedule(); 1085 continue; 1086 } 1087 1088 if (bio_op(bio) == REQ_OP_DISCARD) { 1089 writecache_discard(wc, bio->bi_iter.bi_sector, 1090 bio_end_sector(bio)); 1091 wc_unlock(wc); 1092 bio_set_dev(bio, wc->dev->bdev); 1093 generic_make_request(bio); 1094 } else { 1095 writecache_flush(wc); 1096 wc_unlock(wc); 1097 if (writecache_has_error(wc)) 1098 bio->bi_status = BLK_STS_IOERR; 1099 bio_endio(bio); 1100 } 1101 } 1102 1103 return 0; 1104 } 1105 1106 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1107 { 1108 if (bio_list_empty(&wc->flush_list)) 1109 wake_up_process(wc->flush_thread); 1110 bio_list_add(&wc->flush_list, bio); 1111 } 1112 1113 static int writecache_map(struct dm_target *ti, struct bio *bio) 1114 { 1115 struct wc_entry *e; 1116 struct dm_writecache *wc = ti->private; 1117 1118 bio->bi_private = NULL; 1119 1120 wc_lock(wc); 1121 1122 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1123 if (writecache_has_error(wc)) 1124 goto unlock_error; 1125 if (WC_MODE_PMEM(wc)) { 1126 writecache_flush(wc); 1127 if (writecache_has_error(wc)) 1128 goto unlock_error; 1129 goto unlock_submit; 1130 } else { 1131 writecache_offload_bio(wc, bio); 1132 goto unlock_return; 1133 } 1134 } 1135 1136 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1137 1138 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1139 (wc->block_size / 512 - 1)) != 0)) { 1140 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1141 (unsigned long long)bio->bi_iter.bi_sector, 1142 bio->bi_iter.bi_size, wc->block_size); 1143 goto unlock_error; 1144 } 1145 1146 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1147 if (writecache_has_error(wc)) 1148 goto unlock_error; 1149 if (WC_MODE_PMEM(wc)) { 1150 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1151 goto unlock_remap_origin; 1152 } else { 1153 writecache_offload_bio(wc, bio); 1154 goto unlock_return; 1155 } 1156 } 1157 1158 if (bio_data_dir(bio) == READ) { 1159 read_next_block: 1160 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1161 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1162 if (WC_MODE_PMEM(wc)) { 1163 bio_copy_block(wc, bio, memory_data(wc, e)); 1164 if (bio->bi_iter.bi_size) 1165 goto read_next_block; 1166 goto unlock_submit; 1167 } else { 1168 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1169 bio_set_dev(bio, wc->ssd_dev->bdev); 1170 bio->bi_iter.bi_sector = cache_sector(wc, e); 1171 if (!writecache_entry_is_committed(wc, e)) 1172 writecache_wait_for_ios(wc, WRITE); 1173 goto unlock_remap; 1174 } 1175 } else { 1176 if (e) { 1177 sector_t next_boundary = 1178 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1179 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1180 dm_accept_partial_bio(bio, next_boundary); 1181 } 1182 } 1183 goto unlock_remap_origin; 1184 } 1185 } else { 1186 do { 1187 if (writecache_has_error(wc)) 1188 goto unlock_error; 1189 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1190 if (e) { 1191 if (!writecache_entry_is_committed(wc, e)) 1192 goto bio_copy; 1193 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1194 wc->overwrote_committed = true; 1195 goto bio_copy; 1196 } 1197 } 1198 e = writecache_pop_from_freelist(wc); 1199 if (unlikely(!e)) { 1200 writecache_wait_on_freelist(wc); 1201 continue; 1202 } 1203 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1204 writecache_insert_entry(wc, e); 1205 wc->uncommitted_blocks++; 1206 bio_copy: 1207 if (WC_MODE_PMEM(wc)) { 1208 bio_copy_block(wc, bio, memory_data(wc, e)); 1209 } else { 1210 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1211 bio_set_dev(bio, wc->ssd_dev->bdev); 1212 bio->bi_iter.bi_sector = cache_sector(wc, e); 1213 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1214 wc->uncommitted_blocks = 0; 1215 queue_work(wc->writeback_wq, &wc->flush_work); 1216 } else { 1217 writecache_schedule_autocommit(wc); 1218 } 1219 goto unlock_remap; 1220 } 1221 } while (bio->bi_iter.bi_size); 1222 1223 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) 1224 writecache_flush(wc); 1225 else 1226 writecache_schedule_autocommit(wc); 1227 goto unlock_submit; 1228 } 1229 1230 unlock_remap_origin: 1231 bio_set_dev(bio, wc->dev->bdev); 1232 wc_unlock(wc); 1233 return DM_MAPIO_REMAPPED; 1234 1235 unlock_remap: 1236 /* make sure that writecache_end_io decrements bio_in_progress: */ 1237 bio->bi_private = (void *)1; 1238 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1239 wc_unlock(wc); 1240 return DM_MAPIO_REMAPPED; 1241 1242 unlock_submit: 1243 wc_unlock(wc); 1244 bio_endio(bio); 1245 return DM_MAPIO_SUBMITTED; 1246 1247 unlock_return: 1248 wc_unlock(wc); 1249 return DM_MAPIO_SUBMITTED; 1250 1251 unlock_error: 1252 wc_unlock(wc); 1253 bio_io_error(bio); 1254 return DM_MAPIO_SUBMITTED; 1255 } 1256 1257 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1258 { 1259 struct dm_writecache *wc = ti->private; 1260 1261 if (bio->bi_private != NULL) { 1262 int dir = bio_data_dir(bio); 1263 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1264 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1265 wake_up(&wc->bio_in_progress_wait[dir]); 1266 } 1267 return 0; 1268 } 1269 1270 static int writecache_iterate_devices(struct dm_target *ti, 1271 iterate_devices_callout_fn fn, void *data) 1272 { 1273 struct dm_writecache *wc = ti->private; 1274 1275 return fn(ti, wc->dev, 0, ti->len, data); 1276 } 1277 1278 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1279 { 1280 struct dm_writecache *wc = ti->private; 1281 1282 if (limits->logical_block_size < wc->block_size) 1283 limits->logical_block_size = wc->block_size; 1284 1285 if (limits->physical_block_size < wc->block_size) 1286 limits->physical_block_size = wc->block_size; 1287 1288 if (limits->io_min < wc->block_size) 1289 limits->io_min = wc->block_size; 1290 } 1291 1292 1293 static void writecache_writeback_endio(struct bio *bio) 1294 { 1295 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1296 struct dm_writecache *wc = wb->wc; 1297 unsigned long flags; 1298 1299 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1300 if (unlikely(list_empty(&wc->endio_list))) 1301 wake_up_process(wc->endio_thread); 1302 list_add_tail(&wb->endio_entry, &wc->endio_list); 1303 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1304 } 1305 1306 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1307 { 1308 struct copy_struct *c = ptr; 1309 struct dm_writecache *wc = c->wc; 1310 1311 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1312 1313 raw_spin_lock_irq(&wc->endio_list_lock); 1314 if (unlikely(list_empty(&wc->endio_list))) 1315 wake_up_process(wc->endio_thread); 1316 list_add_tail(&c->endio_entry, &wc->endio_list); 1317 raw_spin_unlock_irq(&wc->endio_list_lock); 1318 } 1319 1320 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1321 { 1322 unsigned i; 1323 struct writeback_struct *wb; 1324 struct wc_entry *e; 1325 unsigned long n_walked = 0; 1326 1327 do { 1328 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1329 list_del(&wb->endio_entry); 1330 1331 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1332 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1333 "write error %d", wb->bio.bi_status); 1334 i = 0; 1335 do { 1336 e = wb->wc_list[i]; 1337 BUG_ON(!e->write_in_progress); 1338 e->write_in_progress = false; 1339 INIT_LIST_HEAD(&e->lru); 1340 if (!writecache_has_error(wc)) 1341 writecache_free_entry(wc, e); 1342 BUG_ON(!wc->writeback_size); 1343 wc->writeback_size--; 1344 n_walked++; 1345 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1346 writecache_commit_flushed(wc); 1347 wc_unlock(wc); 1348 wc_lock(wc); 1349 n_walked = 0; 1350 } 1351 } while (++i < wb->wc_list_n); 1352 1353 if (wb->wc_list != wb->wc_list_inline) 1354 kfree(wb->wc_list); 1355 bio_put(&wb->bio); 1356 } while (!list_empty(list)); 1357 } 1358 1359 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1360 { 1361 struct copy_struct *c; 1362 struct wc_entry *e; 1363 1364 do { 1365 c = list_entry(list->next, struct copy_struct, endio_entry); 1366 list_del(&c->endio_entry); 1367 1368 if (unlikely(c->error)) 1369 writecache_error(wc, c->error, "copy error"); 1370 1371 e = c->e; 1372 do { 1373 BUG_ON(!e->write_in_progress); 1374 e->write_in_progress = false; 1375 INIT_LIST_HEAD(&e->lru); 1376 if (!writecache_has_error(wc)) 1377 writecache_free_entry(wc, e); 1378 1379 BUG_ON(!wc->writeback_size); 1380 wc->writeback_size--; 1381 e++; 1382 } while (--c->n_entries); 1383 mempool_free(c, &wc->copy_pool); 1384 } while (!list_empty(list)); 1385 } 1386 1387 static int writecache_endio_thread(void *data) 1388 { 1389 struct dm_writecache *wc = data; 1390 1391 while (1) { 1392 struct list_head list; 1393 1394 raw_spin_lock_irq(&wc->endio_list_lock); 1395 if (!list_empty(&wc->endio_list)) 1396 goto pop_from_list; 1397 set_current_state(TASK_INTERRUPTIBLE); 1398 raw_spin_unlock_irq(&wc->endio_list_lock); 1399 1400 if (unlikely(kthread_should_stop())) { 1401 set_current_state(TASK_RUNNING); 1402 break; 1403 } 1404 1405 schedule(); 1406 1407 continue; 1408 1409 pop_from_list: 1410 list = wc->endio_list; 1411 list.next->prev = list.prev->next = &list; 1412 INIT_LIST_HEAD(&wc->endio_list); 1413 raw_spin_unlock_irq(&wc->endio_list_lock); 1414 1415 if (!WC_MODE_FUA(wc)) 1416 writecache_disk_flush(wc, wc->dev); 1417 1418 wc_lock(wc); 1419 1420 if (WC_MODE_PMEM(wc)) { 1421 __writecache_endio_pmem(wc, &list); 1422 } else { 1423 __writecache_endio_ssd(wc, &list); 1424 writecache_wait_for_ios(wc, READ); 1425 } 1426 1427 writecache_commit_flushed(wc); 1428 1429 wc_unlock(wc); 1430 } 1431 1432 return 0; 1433 } 1434 1435 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1436 { 1437 struct dm_writecache *wc = wb->wc; 1438 unsigned block_size = wc->block_size; 1439 void *address = memory_data(wc, e); 1440 1441 persistent_memory_flush_cache(address, block_size); 1442 return bio_add_page(&wb->bio, persistent_memory_page(address), 1443 block_size, persistent_memory_page_offset(address)) != 0; 1444 } 1445 1446 struct writeback_list { 1447 struct list_head list; 1448 size_t size; 1449 }; 1450 1451 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1452 { 1453 if (unlikely(wc->max_writeback_jobs)) { 1454 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1455 wc_lock(wc); 1456 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1457 writecache_wait_on_freelist(wc); 1458 wc_unlock(wc); 1459 } 1460 } 1461 cond_resched(); 1462 } 1463 1464 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1465 { 1466 struct wc_entry *e, *f; 1467 struct bio *bio; 1468 struct writeback_struct *wb; 1469 unsigned max_pages; 1470 1471 while (wbl->size) { 1472 wbl->size--; 1473 e = container_of(wbl->list.prev, struct wc_entry, lru); 1474 list_del(&e->lru); 1475 1476 max_pages = e->wc_list_contiguous; 1477 1478 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1479 wb = container_of(bio, struct writeback_struct, bio); 1480 wb->wc = wc; 1481 wb->bio.bi_end_io = writecache_writeback_endio; 1482 bio_set_dev(&wb->bio, wc->dev->bdev); 1483 wb->bio.bi_iter.bi_sector = read_original_sector(wc, e); 1484 wb->page_offset = PAGE_SIZE; 1485 if (max_pages <= WB_LIST_INLINE || 1486 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1487 GFP_NOIO | __GFP_NORETRY | 1488 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1489 wb->wc_list = wb->wc_list_inline; 1490 max_pages = WB_LIST_INLINE; 1491 } 1492 1493 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1494 1495 wb->wc_list[0] = e; 1496 wb->wc_list_n = 1; 1497 1498 while (wbl->size && wb->wc_list_n < max_pages) { 1499 f = container_of(wbl->list.prev, struct wc_entry, lru); 1500 if (read_original_sector(wc, f) != 1501 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1502 break; 1503 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1504 break; 1505 wbl->size--; 1506 list_del(&f->lru); 1507 wb->wc_list[wb->wc_list_n++] = f; 1508 e = f; 1509 } 1510 bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1511 if (writecache_has_error(wc)) { 1512 bio->bi_status = BLK_STS_IOERR; 1513 bio_endio(&wb->bio); 1514 } else { 1515 submit_bio(&wb->bio); 1516 } 1517 1518 __writeback_throttle(wc, wbl); 1519 } 1520 } 1521 1522 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1523 { 1524 struct wc_entry *e, *f; 1525 struct dm_io_region from, to; 1526 struct copy_struct *c; 1527 1528 while (wbl->size) { 1529 unsigned n_sectors; 1530 1531 wbl->size--; 1532 e = container_of(wbl->list.prev, struct wc_entry, lru); 1533 list_del(&e->lru); 1534 1535 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1536 1537 from.bdev = wc->ssd_dev->bdev; 1538 from.sector = cache_sector(wc, e); 1539 from.count = n_sectors; 1540 to.bdev = wc->dev->bdev; 1541 to.sector = read_original_sector(wc, e); 1542 to.count = n_sectors; 1543 1544 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1545 c->wc = wc; 1546 c->e = e; 1547 c->n_entries = e->wc_list_contiguous; 1548 1549 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1550 wbl->size--; 1551 f = container_of(wbl->list.prev, struct wc_entry, lru); 1552 BUG_ON(f != e + 1); 1553 list_del(&f->lru); 1554 e = f; 1555 } 1556 1557 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1558 1559 __writeback_throttle(wc, wbl); 1560 } 1561 } 1562 1563 static void writecache_writeback(struct work_struct *work) 1564 { 1565 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1566 struct blk_plug plug; 1567 struct wc_entry *e, *f, *g; 1568 struct rb_node *node, *next_node; 1569 struct list_head skipped; 1570 struct writeback_list wbl; 1571 unsigned long n_walked; 1572 1573 wc_lock(wc); 1574 restart: 1575 if (writecache_has_error(wc)) { 1576 wc_unlock(wc); 1577 return; 1578 } 1579 1580 if (unlikely(wc->writeback_all)) { 1581 if (writecache_wait_for_writeback(wc)) 1582 goto restart; 1583 } 1584 1585 if (wc->overwrote_committed) { 1586 writecache_wait_for_ios(wc, WRITE); 1587 } 1588 1589 n_walked = 0; 1590 INIT_LIST_HEAD(&skipped); 1591 INIT_LIST_HEAD(&wbl.list); 1592 wbl.size = 0; 1593 while (!list_empty(&wc->lru) && 1594 (wc->writeback_all || 1595 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { 1596 1597 n_walked++; 1598 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1599 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1600 queue_work(wc->writeback_wq, &wc->writeback_work); 1601 break; 1602 } 1603 1604 e = container_of(wc->lru.prev, struct wc_entry, lru); 1605 BUG_ON(e->write_in_progress); 1606 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1607 writecache_flush(wc); 1608 } 1609 node = rb_prev(&e->rb_node); 1610 if (node) { 1611 f = container_of(node, struct wc_entry, rb_node); 1612 if (unlikely(read_original_sector(wc, f) == 1613 read_original_sector(wc, e))) { 1614 BUG_ON(!f->write_in_progress); 1615 list_del(&e->lru); 1616 list_add(&e->lru, &skipped); 1617 cond_resched(); 1618 continue; 1619 } 1620 } 1621 wc->writeback_size++; 1622 list_del(&e->lru); 1623 list_add(&e->lru, &wbl.list); 1624 wbl.size++; 1625 e->write_in_progress = true; 1626 e->wc_list_contiguous = 1; 1627 1628 f = e; 1629 1630 while (1) { 1631 next_node = rb_next(&f->rb_node); 1632 if (unlikely(!next_node)) 1633 break; 1634 g = container_of(next_node, struct wc_entry, rb_node); 1635 if (read_original_sector(wc, g) == 1636 read_original_sector(wc, f)) { 1637 f = g; 1638 continue; 1639 } 1640 if (read_original_sector(wc, g) != 1641 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1642 break; 1643 if (unlikely(g->write_in_progress)) 1644 break; 1645 if (unlikely(!writecache_entry_is_committed(wc, g))) 1646 break; 1647 1648 if (!WC_MODE_PMEM(wc)) { 1649 if (g != f + 1) 1650 break; 1651 } 1652 1653 n_walked++; 1654 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1655 // break; 1656 1657 wc->writeback_size++; 1658 list_del(&g->lru); 1659 list_add(&g->lru, &wbl.list); 1660 wbl.size++; 1661 g->write_in_progress = true; 1662 g->wc_list_contiguous = BIO_MAX_PAGES; 1663 f = g; 1664 e->wc_list_contiguous++; 1665 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) 1666 break; 1667 } 1668 cond_resched(); 1669 } 1670 1671 if (!list_empty(&skipped)) { 1672 list_splice_tail(&skipped, &wc->lru); 1673 /* 1674 * If we didn't do any progress, we must wait until some 1675 * writeback finishes to avoid burning CPU in a loop 1676 */ 1677 if (unlikely(!wbl.size)) 1678 writecache_wait_for_writeback(wc); 1679 } 1680 1681 wc_unlock(wc); 1682 1683 blk_start_plug(&plug); 1684 1685 if (WC_MODE_PMEM(wc)) 1686 __writecache_writeback_pmem(wc, &wbl); 1687 else 1688 __writecache_writeback_ssd(wc, &wbl); 1689 1690 blk_finish_plug(&plug); 1691 1692 if (unlikely(wc->writeback_all)) { 1693 wc_lock(wc); 1694 while (writecache_wait_for_writeback(wc)); 1695 wc_unlock(wc); 1696 } 1697 } 1698 1699 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1700 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1701 { 1702 uint64_t n_blocks, offset; 1703 struct wc_entry e; 1704 1705 n_blocks = device_size; 1706 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1707 1708 while (1) { 1709 if (!n_blocks) 1710 return -ENOSPC; 1711 /* Verify the following entries[n_blocks] won't overflow */ 1712 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1713 sizeof(struct wc_memory_entry))) 1714 return -EFBIG; 1715 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1716 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1717 if (offset + n_blocks * block_size <= device_size) 1718 break; 1719 n_blocks--; 1720 } 1721 1722 /* check if the bit field overflows */ 1723 e.index = n_blocks; 1724 if (e.index != n_blocks) 1725 return -EFBIG; 1726 1727 if (n_blocks_p) 1728 *n_blocks_p = n_blocks; 1729 if (n_metadata_blocks_p) 1730 *n_metadata_blocks_p = offset >> __ffs(block_size); 1731 return 0; 1732 } 1733 1734 static int init_memory(struct dm_writecache *wc) 1735 { 1736 size_t b; 1737 int r; 1738 1739 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1740 if (r) 1741 return r; 1742 1743 r = writecache_alloc_entries(wc); 1744 if (r) 1745 return r; 1746 1747 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1748 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1749 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1750 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1751 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1752 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1753 1754 for (b = 0; b < wc->n_blocks; b++) 1755 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1756 1757 writecache_flush_all_metadata(wc); 1758 writecache_commit_flushed(wc); 1759 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1760 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1761 writecache_commit_flushed(wc); 1762 1763 return 0; 1764 } 1765 1766 static void writecache_dtr(struct dm_target *ti) 1767 { 1768 struct dm_writecache *wc = ti->private; 1769 1770 if (!wc) 1771 return; 1772 1773 if (wc->endio_thread) 1774 kthread_stop(wc->endio_thread); 1775 1776 if (wc->flush_thread) 1777 kthread_stop(wc->flush_thread); 1778 1779 bioset_exit(&wc->bio_set); 1780 1781 mempool_exit(&wc->copy_pool); 1782 1783 if (wc->writeback_wq) 1784 destroy_workqueue(wc->writeback_wq); 1785 1786 if (wc->dev) 1787 dm_put_device(ti, wc->dev); 1788 1789 if (wc->ssd_dev) 1790 dm_put_device(ti, wc->ssd_dev); 1791 1792 if (wc->entries) 1793 vfree(wc->entries); 1794 1795 if (wc->memory_map) { 1796 if (WC_MODE_PMEM(wc)) 1797 persistent_memory_release(wc); 1798 else 1799 vfree(wc->memory_map); 1800 } 1801 1802 if (wc->dm_kcopyd) 1803 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1804 1805 if (wc->dm_io) 1806 dm_io_client_destroy(wc->dm_io); 1807 1808 if (wc->dirty_bitmap) 1809 vfree(wc->dirty_bitmap); 1810 1811 kfree(wc); 1812 } 1813 1814 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1815 { 1816 struct dm_writecache *wc; 1817 struct dm_arg_set as; 1818 const char *string; 1819 unsigned opt_params; 1820 size_t offset, data_size; 1821 int i, r; 1822 char dummy; 1823 int high_wm_percent = HIGH_WATERMARK; 1824 int low_wm_percent = LOW_WATERMARK; 1825 uint64_t x; 1826 struct wc_memory_superblock s; 1827 1828 static struct dm_arg _args[] = { 1829 {0, 10, "Invalid number of feature args"}, 1830 }; 1831 1832 as.argc = argc; 1833 as.argv = argv; 1834 1835 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1836 if (!wc) { 1837 ti->error = "Cannot allocate writecache structure"; 1838 r = -ENOMEM; 1839 goto bad; 1840 } 1841 ti->private = wc; 1842 wc->ti = ti; 1843 1844 mutex_init(&wc->lock); 1845 writecache_poison_lists(wc); 1846 init_waitqueue_head(&wc->freelist_wait); 1847 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1848 1849 for (i = 0; i < 2; i++) { 1850 atomic_set(&wc->bio_in_progress[i], 0); 1851 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1852 } 1853 1854 wc->dm_io = dm_io_client_create(); 1855 if (IS_ERR(wc->dm_io)) { 1856 r = PTR_ERR(wc->dm_io); 1857 ti->error = "Unable to allocate dm-io client"; 1858 wc->dm_io = NULL; 1859 goto bad; 1860 } 1861 1862 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 1863 if (!wc->writeback_wq) { 1864 r = -ENOMEM; 1865 ti->error = "Could not allocate writeback workqueue"; 1866 goto bad; 1867 } 1868 INIT_WORK(&wc->writeback_work, writecache_writeback); 1869 INIT_WORK(&wc->flush_work, writecache_flush_work); 1870 1871 raw_spin_lock_init(&wc->endio_list_lock); 1872 INIT_LIST_HEAD(&wc->endio_list); 1873 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 1874 if (IS_ERR(wc->endio_thread)) { 1875 r = PTR_ERR(wc->endio_thread); 1876 wc->endio_thread = NULL; 1877 ti->error = "Couldn't spawn endio thread"; 1878 goto bad; 1879 } 1880 wake_up_process(wc->endio_thread); 1881 1882 /* 1883 * Parse the mode (pmem or ssd) 1884 */ 1885 string = dm_shift_arg(&as); 1886 if (!string) 1887 goto bad_arguments; 1888 1889 if (!strcasecmp(string, "s")) { 1890 wc->pmem_mode = false; 1891 } else if (!strcasecmp(string, "p")) { 1892 #ifdef DM_WRITECACHE_HAS_PMEM 1893 wc->pmem_mode = true; 1894 wc->writeback_fua = true; 1895 #else 1896 /* 1897 * If the architecture doesn't support persistent memory or 1898 * the kernel doesn't support any DAX drivers, this driver can 1899 * only be used in SSD-only mode. 1900 */ 1901 r = -EOPNOTSUPP; 1902 ti->error = "Persistent memory or DAX not supported on this system"; 1903 goto bad; 1904 #endif 1905 } else { 1906 goto bad_arguments; 1907 } 1908 1909 if (WC_MODE_PMEM(wc)) { 1910 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 1911 offsetof(struct writeback_struct, bio), 1912 BIOSET_NEED_BVECS); 1913 if (r) { 1914 ti->error = "Could not allocate bio set"; 1915 goto bad; 1916 } 1917 } else { 1918 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 1919 if (r) { 1920 ti->error = "Could not allocate mempool"; 1921 goto bad; 1922 } 1923 } 1924 1925 /* 1926 * Parse the origin data device 1927 */ 1928 string = dm_shift_arg(&as); 1929 if (!string) 1930 goto bad_arguments; 1931 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 1932 if (r) { 1933 ti->error = "Origin data device lookup failed"; 1934 goto bad; 1935 } 1936 1937 /* 1938 * Parse cache data device (be it pmem or ssd) 1939 */ 1940 string = dm_shift_arg(&as); 1941 if (!string) 1942 goto bad_arguments; 1943 1944 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 1945 if (r) { 1946 ti->error = "Cache data device lookup failed"; 1947 goto bad; 1948 } 1949 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 1950 1951 /* 1952 * Parse the cache block size 1953 */ 1954 string = dm_shift_arg(&as); 1955 if (!string) 1956 goto bad_arguments; 1957 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 1958 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 1959 (wc->block_size & (wc->block_size - 1))) { 1960 r = -EINVAL; 1961 ti->error = "Invalid block size"; 1962 goto bad; 1963 } 1964 wc->block_size_bits = __ffs(wc->block_size); 1965 1966 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 1967 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 1968 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 1969 1970 /* 1971 * Parse optional arguments 1972 */ 1973 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1974 if (r) 1975 goto bad; 1976 1977 while (opt_params) { 1978 string = dm_shift_arg(&as), opt_params--; 1979 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 1980 unsigned long long start_sector; 1981 string = dm_shift_arg(&as), opt_params--; 1982 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 1983 goto invalid_optional; 1984 wc->start_sector = start_sector; 1985 if (wc->start_sector != start_sector || 1986 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 1987 goto invalid_optional; 1988 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 1989 string = dm_shift_arg(&as), opt_params--; 1990 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 1991 goto invalid_optional; 1992 if (high_wm_percent < 0 || high_wm_percent > 100) 1993 goto invalid_optional; 1994 wc->high_wm_percent_set = true; 1995 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 1996 string = dm_shift_arg(&as), opt_params--; 1997 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 1998 goto invalid_optional; 1999 if (low_wm_percent < 0 || low_wm_percent > 100) 2000 goto invalid_optional; 2001 wc->low_wm_percent_set = true; 2002 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2003 string = dm_shift_arg(&as), opt_params--; 2004 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2005 goto invalid_optional; 2006 wc->max_writeback_jobs_set = true; 2007 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2008 string = dm_shift_arg(&as), opt_params--; 2009 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2010 goto invalid_optional; 2011 wc->autocommit_blocks_set = true; 2012 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2013 unsigned autocommit_msecs; 2014 string = dm_shift_arg(&as), opt_params--; 2015 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2016 goto invalid_optional; 2017 if (autocommit_msecs > 3600000) 2018 goto invalid_optional; 2019 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2020 wc->autocommit_time_set = true; 2021 } else if (!strcasecmp(string, "fua")) { 2022 if (WC_MODE_PMEM(wc)) { 2023 wc->writeback_fua = true; 2024 wc->writeback_fua_set = true; 2025 } else goto invalid_optional; 2026 } else if (!strcasecmp(string, "nofua")) { 2027 if (WC_MODE_PMEM(wc)) { 2028 wc->writeback_fua = false; 2029 wc->writeback_fua_set = true; 2030 } else goto invalid_optional; 2031 } else { 2032 invalid_optional: 2033 r = -EINVAL; 2034 ti->error = "Invalid optional argument"; 2035 goto bad; 2036 } 2037 } 2038 2039 if (high_wm_percent < low_wm_percent) { 2040 r = -EINVAL; 2041 ti->error = "High watermark must be greater than or equal to low watermark"; 2042 goto bad; 2043 } 2044 2045 if (WC_MODE_PMEM(wc)) { 2046 r = persistent_memory_claim(wc); 2047 if (r) { 2048 ti->error = "Unable to map persistent memory for cache"; 2049 goto bad; 2050 } 2051 } else { 2052 struct dm_io_region region; 2053 struct dm_io_request req; 2054 size_t n_blocks, n_metadata_blocks; 2055 uint64_t n_bitmap_bits; 2056 2057 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2058 2059 bio_list_init(&wc->flush_list); 2060 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2061 if (IS_ERR(wc->flush_thread)) { 2062 r = PTR_ERR(wc->flush_thread); 2063 wc->flush_thread = NULL; 2064 ti->error = "Couldn't spawn flush thread"; 2065 goto bad; 2066 } 2067 wake_up_process(wc->flush_thread); 2068 2069 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2070 &n_blocks, &n_metadata_blocks); 2071 if (r) { 2072 ti->error = "Invalid device size"; 2073 goto bad; 2074 } 2075 2076 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2077 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2078 /* this is limitation of test_bit functions */ 2079 if (n_bitmap_bits > 1U << 31) { 2080 r = -EFBIG; 2081 ti->error = "Invalid device size"; 2082 goto bad; 2083 } 2084 2085 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2086 if (!wc->memory_map) { 2087 r = -ENOMEM; 2088 ti->error = "Unable to allocate memory for metadata"; 2089 goto bad; 2090 } 2091 2092 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2093 if (IS_ERR(wc->dm_kcopyd)) { 2094 r = PTR_ERR(wc->dm_kcopyd); 2095 ti->error = "Unable to allocate dm-kcopyd client"; 2096 wc->dm_kcopyd = NULL; 2097 goto bad; 2098 } 2099 2100 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2101 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2102 BITS_PER_LONG * sizeof(unsigned long); 2103 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2104 if (!wc->dirty_bitmap) { 2105 r = -ENOMEM; 2106 ti->error = "Unable to allocate dirty bitmap"; 2107 goto bad; 2108 } 2109 2110 region.bdev = wc->ssd_dev->bdev; 2111 region.sector = wc->start_sector; 2112 region.count = wc->metadata_sectors; 2113 req.bi_op = REQ_OP_READ; 2114 req.bi_op_flags = REQ_SYNC; 2115 req.mem.type = DM_IO_VMA; 2116 req.mem.ptr.vma = (char *)wc->memory_map; 2117 req.client = wc->dm_io; 2118 req.notify.fn = NULL; 2119 2120 r = dm_io(&req, 1, ®ion, NULL); 2121 if (r) { 2122 ti->error = "Unable to read metadata"; 2123 goto bad; 2124 } 2125 } 2126 2127 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2128 if (r) { 2129 ti->error = "Hardware memory error when reading superblock"; 2130 goto bad; 2131 } 2132 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2133 r = init_memory(wc); 2134 if (r) { 2135 ti->error = "Unable to initialize device"; 2136 goto bad; 2137 } 2138 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2139 if (r) { 2140 ti->error = "Hardware memory error when reading superblock"; 2141 goto bad; 2142 } 2143 } 2144 2145 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2146 ti->error = "Invalid magic in the superblock"; 2147 r = -EINVAL; 2148 goto bad; 2149 } 2150 2151 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2152 ti->error = "Invalid version in the superblock"; 2153 r = -EINVAL; 2154 goto bad; 2155 } 2156 2157 if (le32_to_cpu(s.block_size) != wc->block_size) { 2158 ti->error = "Block size does not match superblock"; 2159 r = -EINVAL; 2160 goto bad; 2161 } 2162 2163 wc->n_blocks = le64_to_cpu(s.n_blocks); 2164 2165 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2166 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2167 overflow: 2168 ti->error = "Overflow in size calculation"; 2169 r = -EINVAL; 2170 goto bad; 2171 } 2172 offset += sizeof(struct wc_memory_superblock); 2173 if (offset < sizeof(struct wc_memory_superblock)) 2174 goto overflow; 2175 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2176 data_size = wc->n_blocks * (size_t)wc->block_size; 2177 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2178 (offset + data_size < offset)) 2179 goto overflow; 2180 if (offset + data_size > wc->memory_map_size) { 2181 ti->error = "Memory area is too small"; 2182 r = -EINVAL; 2183 goto bad; 2184 } 2185 2186 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2187 wc->block_start = (char *)sb(wc) + offset; 2188 2189 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2190 x += 50; 2191 do_div(x, 100); 2192 wc->freelist_high_watermark = x; 2193 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2194 x += 50; 2195 do_div(x, 100); 2196 wc->freelist_low_watermark = x; 2197 2198 r = writecache_alloc_entries(wc); 2199 if (r) { 2200 ti->error = "Cannot allocate memory"; 2201 goto bad; 2202 } 2203 2204 ti->num_flush_bios = 1; 2205 ti->flush_supported = true; 2206 ti->num_discard_bios = 1; 2207 2208 if (WC_MODE_PMEM(wc)) 2209 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2210 2211 return 0; 2212 2213 bad_arguments: 2214 r = -EINVAL; 2215 ti->error = "Bad arguments"; 2216 bad: 2217 writecache_dtr(ti); 2218 return r; 2219 } 2220 2221 static void writecache_status(struct dm_target *ti, status_type_t type, 2222 unsigned status_flags, char *result, unsigned maxlen) 2223 { 2224 struct dm_writecache *wc = ti->private; 2225 unsigned extra_args; 2226 unsigned sz = 0; 2227 uint64_t x; 2228 2229 switch (type) { 2230 case STATUSTYPE_INFO: 2231 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2232 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2233 (unsigned long long)wc->writeback_size); 2234 break; 2235 case STATUSTYPE_TABLE: 2236 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2237 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2238 extra_args = 0; 2239 if (wc->start_sector) 2240 extra_args += 2; 2241 if (wc->high_wm_percent_set) 2242 extra_args += 2; 2243 if (wc->low_wm_percent_set) 2244 extra_args += 2; 2245 if (wc->max_writeback_jobs_set) 2246 extra_args += 2; 2247 if (wc->autocommit_blocks_set) 2248 extra_args += 2; 2249 if (wc->autocommit_time_set) 2250 extra_args += 2; 2251 if (wc->writeback_fua_set) 2252 extra_args++; 2253 2254 DMEMIT("%u", extra_args); 2255 if (wc->start_sector) 2256 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2257 if (wc->high_wm_percent_set) { 2258 x = (uint64_t)wc->freelist_high_watermark * 100; 2259 x += wc->n_blocks / 2; 2260 do_div(x, (size_t)wc->n_blocks); 2261 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2262 } 2263 if (wc->low_wm_percent_set) { 2264 x = (uint64_t)wc->freelist_low_watermark * 100; 2265 x += wc->n_blocks / 2; 2266 do_div(x, (size_t)wc->n_blocks); 2267 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2268 } 2269 if (wc->max_writeback_jobs_set) 2270 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2271 if (wc->autocommit_blocks_set) 2272 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2273 if (wc->autocommit_time_set) 2274 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2275 if (wc->writeback_fua_set) 2276 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2277 break; 2278 } 2279 } 2280 2281 static struct target_type writecache_target = { 2282 .name = "writecache", 2283 .version = {1, 1, 1}, 2284 .module = THIS_MODULE, 2285 .ctr = writecache_ctr, 2286 .dtr = writecache_dtr, 2287 .status = writecache_status, 2288 .postsuspend = writecache_suspend, 2289 .resume = writecache_resume, 2290 .message = writecache_message, 2291 .map = writecache_map, 2292 .end_io = writecache_end_io, 2293 .iterate_devices = writecache_iterate_devices, 2294 .io_hints = writecache_io_hints, 2295 }; 2296 2297 static int __init dm_writecache_init(void) 2298 { 2299 int r; 2300 2301 r = dm_register_target(&writecache_target); 2302 if (r < 0) { 2303 DMERR("register failed %d", r); 2304 return r; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static void __exit dm_writecache_exit(void) 2311 { 2312 dm_unregister_target(&writecache_target); 2313 } 2314 2315 module_init(dm_writecache_init); 2316 module_exit(dm_writecache_exit); 2317 2318 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2319 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2320 MODULE_LICENSE("GPL"); 2321