1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 #define MAX_AGE_DIV 16 30 #define MAX_AGE_UNSPECIFIED -1UL 31 32 #define BITMAP_GRANULARITY 65536 33 #if BITMAP_GRANULARITY < PAGE_SIZE 34 #undef BITMAP_GRANULARITY 35 #define BITMAP_GRANULARITY PAGE_SIZE 36 #endif 37 38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 39 #define DM_WRITECACHE_HAS_PMEM 40 #endif 41 42 #ifdef DM_WRITECACHE_HAS_PMEM 43 #define pmem_assign(dest, src) \ 44 do { \ 45 typeof(dest) uniq = (src); \ 46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 47 } while (0) 48 #else 49 #define pmem_assign(dest, src) ((dest) = (src)) 50 #endif 51 52 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM) 53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 54 #endif 55 56 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 57 #define MEMORY_SUPERBLOCK_VERSION 1 58 59 struct wc_memory_entry { 60 __le64 original_sector; 61 __le64 seq_count; 62 }; 63 64 struct wc_memory_superblock { 65 union { 66 struct { 67 __le32 magic; 68 __le32 version; 69 __le32 block_size; 70 __le32 pad; 71 __le64 n_blocks; 72 __le64 seq_count; 73 }; 74 __le64 padding[8]; 75 }; 76 struct wc_memory_entry entries[0]; 77 }; 78 79 struct wc_entry { 80 struct rb_node rb_node; 81 struct list_head lru; 82 unsigned short wc_list_contiguous; 83 bool write_in_progress 84 #if BITS_PER_LONG == 64 85 :1 86 #endif 87 ; 88 unsigned long index 89 #if BITS_PER_LONG == 64 90 :47 91 #endif 92 ; 93 unsigned long age; 94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 95 uint64_t original_sector; 96 uint64_t seq_count; 97 #endif 98 }; 99 100 #ifdef DM_WRITECACHE_HAS_PMEM 101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 103 #else 104 #define WC_MODE_PMEM(wc) false 105 #define WC_MODE_FUA(wc) false 106 #endif 107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 108 109 struct dm_writecache { 110 struct mutex lock; 111 struct list_head lru; 112 union { 113 struct list_head freelist; 114 struct { 115 struct rb_root freetree; 116 struct wc_entry *current_free; 117 }; 118 }; 119 struct rb_root tree; 120 121 size_t freelist_size; 122 size_t writeback_size; 123 size_t freelist_high_watermark; 124 size_t freelist_low_watermark; 125 unsigned long max_age; 126 127 unsigned uncommitted_blocks; 128 unsigned autocommit_blocks; 129 unsigned max_writeback_jobs; 130 131 int error; 132 133 unsigned long autocommit_jiffies; 134 struct timer_list autocommit_timer; 135 struct wait_queue_head freelist_wait; 136 137 struct timer_list max_age_timer; 138 139 atomic_t bio_in_progress[2]; 140 struct wait_queue_head bio_in_progress_wait[2]; 141 142 struct dm_target *ti; 143 struct dm_dev *dev; 144 struct dm_dev *ssd_dev; 145 sector_t start_sector; 146 void *memory_map; 147 uint64_t memory_map_size; 148 size_t metadata_sectors; 149 size_t n_blocks; 150 uint64_t seq_count; 151 sector_t data_device_sectors; 152 void *block_start; 153 struct wc_entry *entries; 154 unsigned block_size; 155 unsigned char block_size_bits; 156 157 bool pmem_mode:1; 158 bool writeback_fua:1; 159 160 bool overwrote_committed:1; 161 bool memory_vmapped:1; 162 163 bool start_sector_set:1; 164 bool high_wm_percent_set:1; 165 bool low_wm_percent_set:1; 166 bool max_writeback_jobs_set:1; 167 bool autocommit_blocks_set:1; 168 bool autocommit_time_set:1; 169 bool max_age_set:1; 170 bool writeback_fua_set:1; 171 bool flush_on_suspend:1; 172 bool cleaner:1; 173 bool cleaner_set:1; 174 175 unsigned high_wm_percent_value; 176 unsigned low_wm_percent_value; 177 unsigned autocommit_time_value; 178 unsigned max_age_value; 179 180 unsigned writeback_all; 181 struct workqueue_struct *writeback_wq; 182 struct work_struct writeback_work; 183 struct work_struct flush_work; 184 185 struct dm_io_client *dm_io; 186 187 raw_spinlock_t endio_list_lock; 188 struct list_head endio_list; 189 struct task_struct *endio_thread; 190 191 struct task_struct *flush_thread; 192 struct bio_list flush_list; 193 194 struct dm_kcopyd_client *dm_kcopyd; 195 unsigned long *dirty_bitmap; 196 unsigned dirty_bitmap_size; 197 198 struct bio_set bio_set; 199 mempool_t copy_pool; 200 }; 201 202 #define WB_LIST_INLINE 16 203 204 struct writeback_struct { 205 struct list_head endio_entry; 206 struct dm_writecache *wc; 207 struct wc_entry **wc_list; 208 unsigned wc_list_n; 209 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 210 struct bio bio; 211 }; 212 213 struct copy_struct { 214 struct list_head endio_entry; 215 struct dm_writecache *wc; 216 struct wc_entry *e; 217 unsigned n_entries; 218 int error; 219 }; 220 221 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 222 "A percentage of time allocated for data copying"); 223 224 static void wc_lock(struct dm_writecache *wc) 225 { 226 mutex_lock(&wc->lock); 227 } 228 229 static void wc_unlock(struct dm_writecache *wc) 230 { 231 mutex_unlock(&wc->lock); 232 } 233 234 #ifdef DM_WRITECACHE_HAS_PMEM 235 static int persistent_memory_claim(struct dm_writecache *wc) 236 { 237 int r; 238 loff_t s; 239 long p, da; 240 pfn_t pfn; 241 int id; 242 struct page **pages; 243 sector_t offset; 244 245 wc->memory_vmapped = false; 246 247 s = wc->memory_map_size; 248 p = s >> PAGE_SHIFT; 249 if (!p) { 250 r = -EINVAL; 251 goto err1; 252 } 253 if (p != s >> PAGE_SHIFT) { 254 r = -EOVERFLOW; 255 goto err1; 256 } 257 258 offset = get_start_sect(wc->ssd_dev->bdev); 259 if (offset & (PAGE_SIZE / 512 - 1)) { 260 r = -EINVAL; 261 goto err1; 262 } 263 offset >>= PAGE_SHIFT - 9; 264 265 id = dax_read_lock(); 266 267 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn); 268 if (da < 0) { 269 wc->memory_map = NULL; 270 r = da; 271 goto err2; 272 } 273 if (!pfn_t_has_page(pfn)) { 274 wc->memory_map = NULL; 275 r = -EOPNOTSUPP; 276 goto err2; 277 } 278 if (da != p) { 279 long i; 280 wc->memory_map = NULL; 281 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 282 if (!pages) { 283 r = -ENOMEM; 284 goto err2; 285 } 286 i = 0; 287 do { 288 long daa; 289 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i, 290 NULL, &pfn); 291 if (daa <= 0) { 292 r = daa ? daa : -EINVAL; 293 goto err3; 294 } 295 if (!pfn_t_has_page(pfn)) { 296 r = -EOPNOTSUPP; 297 goto err3; 298 } 299 while (daa-- && i < p) { 300 pages[i++] = pfn_t_to_page(pfn); 301 pfn.val++; 302 if (!(i & 15)) 303 cond_resched(); 304 } 305 } while (i < p); 306 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 307 if (!wc->memory_map) { 308 r = -ENOMEM; 309 goto err3; 310 } 311 kvfree(pages); 312 wc->memory_vmapped = true; 313 } 314 315 dax_read_unlock(id); 316 317 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 318 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 319 320 return 0; 321 err3: 322 kvfree(pages); 323 err2: 324 dax_read_unlock(id); 325 err1: 326 return r; 327 } 328 #else 329 static int persistent_memory_claim(struct dm_writecache *wc) 330 { 331 return -EOPNOTSUPP; 332 } 333 #endif 334 335 static void persistent_memory_release(struct dm_writecache *wc) 336 { 337 if (wc->memory_vmapped) 338 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 339 } 340 341 static struct page *persistent_memory_page(void *addr) 342 { 343 if (is_vmalloc_addr(addr)) 344 return vmalloc_to_page(addr); 345 else 346 return virt_to_page(addr); 347 } 348 349 static unsigned persistent_memory_page_offset(void *addr) 350 { 351 return (unsigned long)addr & (PAGE_SIZE - 1); 352 } 353 354 static void persistent_memory_flush_cache(void *ptr, size_t size) 355 { 356 if (is_vmalloc_addr(ptr)) 357 flush_kernel_vmap_range(ptr, size); 358 } 359 360 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 361 { 362 if (is_vmalloc_addr(ptr)) 363 invalidate_kernel_vmap_range(ptr, size); 364 } 365 366 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 367 { 368 return wc->memory_map; 369 } 370 371 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 372 { 373 return &sb(wc)->entries[e->index]; 374 } 375 376 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 377 { 378 return (char *)wc->block_start + (e->index << wc->block_size_bits); 379 } 380 381 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 382 { 383 return wc->start_sector + wc->metadata_sectors + 384 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 385 } 386 387 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 388 { 389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 390 return e->original_sector; 391 #else 392 return le64_to_cpu(memory_entry(wc, e)->original_sector); 393 #endif 394 } 395 396 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 397 { 398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 399 return e->seq_count; 400 #else 401 return le64_to_cpu(memory_entry(wc, e)->seq_count); 402 #endif 403 } 404 405 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 406 { 407 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 408 e->seq_count = -1; 409 #endif 410 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 411 } 412 413 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 414 uint64_t original_sector, uint64_t seq_count) 415 { 416 struct wc_memory_entry me; 417 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 418 e->original_sector = original_sector; 419 e->seq_count = seq_count; 420 #endif 421 me.original_sector = cpu_to_le64(original_sector); 422 me.seq_count = cpu_to_le64(seq_count); 423 pmem_assign(*memory_entry(wc, e), me); 424 } 425 426 #define writecache_error(wc, err, msg, arg...) \ 427 do { \ 428 if (!cmpxchg(&(wc)->error, 0, err)) \ 429 DMERR(msg, ##arg); \ 430 wake_up(&(wc)->freelist_wait); \ 431 } while (0) 432 433 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 434 435 static void writecache_flush_all_metadata(struct dm_writecache *wc) 436 { 437 if (!WC_MODE_PMEM(wc)) 438 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 439 } 440 441 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 442 { 443 if (!WC_MODE_PMEM(wc)) 444 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 445 wc->dirty_bitmap); 446 } 447 448 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 449 450 struct io_notify { 451 struct dm_writecache *wc; 452 struct completion c; 453 atomic_t count; 454 }; 455 456 static void writecache_notify_io(unsigned long error, void *context) 457 { 458 struct io_notify *endio = context; 459 460 if (unlikely(error != 0)) 461 writecache_error(endio->wc, -EIO, "error writing metadata"); 462 BUG_ON(atomic_read(&endio->count) <= 0); 463 if (atomic_dec_and_test(&endio->count)) 464 complete(&endio->c); 465 } 466 467 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 468 { 469 wait_event(wc->bio_in_progress_wait[direction], 470 !atomic_read(&wc->bio_in_progress[direction])); 471 } 472 473 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 474 { 475 struct dm_io_region region; 476 struct dm_io_request req; 477 struct io_notify endio = { 478 wc, 479 COMPLETION_INITIALIZER_ONSTACK(endio.c), 480 ATOMIC_INIT(1), 481 }; 482 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 483 unsigned i = 0; 484 485 while (1) { 486 unsigned j; 487 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 488 if (unlikely(i == bitmap_bits)) 489 break; 490 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 491 492 region.bdev = wc->ssd_dev->bdev; 493 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 494 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 495 496 if (unlikely(region.sector >= wc->metadata_sectors)) 497 break; 498 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 499 region.count = wc->metadata_sectors - region.sector; 500 501 region.sector += wc->start_sector; 502 atomic_inc(&endio.count); 503 req.bi_op = REQ_OP_WRITE; 504 req.bi_op_flags = REQ_SYNC; 505 req.mem.type = DM_IO_VMA; 506 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 507 req.client = wc->dm_io; 508 req.notify.fn = writecache_notify_io; 509 req.notify.context = &endio; 510 511 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 512 (void) dm_io(&req, 1, ®ion, NULL); 513 i = j; 514 } 515 516 writecache_notify_io(0, &endio); 517 wait_for_completion_io(&endio.c); 518 519 if (wait_for_ios) 520 writecache_wait_for_ios(wc, WRITE); 521 522 writecache_disk_flush(wc, wc->ssd_dev); 523 524 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 525 } 526 527 static void ssd_commit_superblock(struct dm_writecache *wc) 528 { 529 int r; 530 struct dm_io_region region; 531 struct dm_io_request req; 532 533 region.bdev = wc->ssd_dev->bdev; 534 region.sector = 0; 535 region.count = PAGE_SIZE >> SECTOR_SHIFT; 536 537 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 538 region.count = wc->metadata_sectors - region.sector; 539 540 region.sector += wc->start_sector; 541 542 req.bi_op = REQ_OP_WRITE; 543 req.bi_op_flags = REQ_SYNC | REQ_FUA; 544 req.mem.type = DM_IO_VMA; 545 req.mem.ptr.vma = (char *)wc->memory_map; 546 req.client = wc->dm_io; 547 req.notify.fn = NULL; 548 req.notify.context = NULL; 549 550 r = dm_io(&req, 1, ®ion, NULL); 551 if (unlikely(r)) 552 writecache_error(wc, r, "error writing superblock"); 553 } 554 555 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 556 { 557 if (WC_MODE_PMEM(wc)) 558 pmem_wmb(); 559 else 560 ssd_commit_flushed(wc, wait_for_ios); 561 } 562 563 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 564 { 565 int r; 566 struct dm_io_region region; 567 struct dm_io_request req; 568 569 region.bdev = dev->bdev; 570 region.sector = 0; 571 region.count = 0; 572 req.bi_op = REQ_OP_WRITE; 573 req.bi_op_flags = REQ_PREFLUSH; 574 req.mem.type = DM_IO_KMEM; 575 req.mem.ptr.addr = NULL; 576 req.client = wc->dm_io; 577 req.notify.fn = NULL; 578 579 r = dm_io(&req, 1, ®ion, NULL); 580 if (unlikely(r)) 581 writecache_error(wc, r, "error flushing metadata: %d", r); 582 } 583 584 #define WFE_RETURN_FOLLOWING 1 585 #define WFE_LOWEST_SEQ 2 586 587 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 588 uint64_t block, int flags) 589 { 590 struct wc_entry *e; 591 struct rb_node *node = wc->tree.rb_node; 592 593 if (unlikely(!node)) 594 return NULL; 595 596 while (1) { 597 e = container_of(node, struct wc_entry, rb_node); 598 if (read_original_sector(wc, e) == block) 599 break; 600 601 node = (read_original_sector(wc, e) >= block ? 602 e->rb_node.rb_left : e->rb_node.rb_right); 603 if (unlikely(!node)) { 604 if (!(flags & WFE_RETURN_FOLLOWING)) 605 return NULL; 606 if (read_original_sector(wc, e) >= block) { 607 return e; 608 } else { 609 node = rb_next(&e->rb_node); 610 if (unlikely(!node)) 611 return NULL; 612 e = container_of(node, struct wc_entry, rb_node); 613 return e; 614 } 615 } 616 } 617 618 while (1) { 619 struct wc_entry *e2; 620 if (flags & WFE_LOWEST_SEQ) 621 node = rb_prev(&e->rb_node); 622 else 623 node = rb_next(&e->rb_node); 624 if (unlikely(!node)) 625 return e; 626 e2 = container_of(node, struct wc_entry, rb_node); 627 if (read_original_sector(wc, e2) != block) 628 return e; 629 e = e2; 630 } 631 } 632 633 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 634 { 635 struct wc_entry *e; 636 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 637 638 while (*node) { 639 e = container_of(*node, struct wc_entry, rb_node); 640 parent = &e->rb_node; 641 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 642 node = &parent->rb_left; 643 else 644 node = &parent->rb_right; 645 } 646 rb_link_node(&ins->rb_node, parent, node); 647 rb_insert_color(&ins->rb_node, &wc->tree); 648 list_add(&ins->lru, &wc->lru); 649 ins->age = jiffies; 650 } 651 652 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 653 { 654 list_del(&e->lru); 655 rb_erase(&e->rb_node, &wc->tree); 656 } 657 658 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 659 { 660 if (WC_MODE_SORT_FREELIST(wc)) { 661 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 662 if (unlikely(!*node)) 663 wc->current_free = e; 664 while (*node) { 665 parent = *node; 666 if (&e->rb_node < *node) 667 node = &parent->rb_left; 668 else 669 node = &parent->rb_right; 670 } 671 rb_link_node(&e->rb_node, parent, node); 672 rb_insert_color(&e->rb_node, &wc->freetree); 673 } else { 674 list_add_tail(&e->lru, &wc->freelist); 675 } 676 wc->freelist_size++; 677 } 678 679 static inline void writecache_verify_watermark(struct dm_writecache *wc) 680 { 681 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 682 queue_work(wc->writeback_wq, &wc->writeback_work); 683 } 684 685 static void writecache_max_age_timer(struct timer_list *t) 686 { 687 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 688 689 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 690 queue_work(wc->writeback_wq, &wc->writeback_work); 691 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 692 } 693 } 694 695 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 696 { 697 struct wc_entry *e; 698 699 if (WC_MODE_SORT_FREELIST(wc)) { 700 struct rb_node *next; 701 if (unlikely(!wc->current_free)) 702 return NULL; 703 e = wc->current_free; 704 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 705 return NULL; 706 next = rb_next(&e->rb_node); 707 rb_erase(&e->rb_node, &wc->freetree); 708 if (unlikely(!next)) 709 next = rb_first(&wc->freetree); 710 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 711 } else { 712 if (unlikely(list_empty(&wc->freelist))) 713 return NULL; 714 e = container_of(wc->freelist.next, struct wc_entry, lru); 715 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 716 return NULL; 717 list_del(&e->lru); 718 } 719 wc->freelist_size--; 720 721 writecache_verify_watermark(wc); 722 723 return e; 724 } 725 726 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 727 { 728 writecache_unlink(wc, e); 729 writecache_add_to_freelist(wc, e); 730 clear_seq_count(wc, e); 731 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 732 if (unlikely(waitqueue_active(&wc->freelist_wait))) 733 wake_up(&wc->freelist_wait); 734 } 735 736 static void writecache_wait_on_freelist(struct dm_writecache *wc) 737 { 738 DEFINE_WAIT(wait); 739 740 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 741 wc_unlock(wc); 742 io_schedule(); 743 finish_wait(&wc->freelist_wait, &wait); 744 wc_lock(wc); 745 } 746 747 static void writecache_poison_lists(struct dm_writecache *wc) 748 { 749 /* 750 * Catch incorrect access to these values while the device is suspended. 751 */ 752 memset(&wc->tree, -1, sizeof wc->tree); 753 wc->lru.next = LIST_POISON1; 754 wc->lru.prev = LIST_POISON2; 755 wc->freelist.next = LIST_POISON1; 756 wc->freelist.prev = LIST_POISON2; 757 } 758 759 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 760 { 761 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 762 if (WC_MODE_PMEM(wc)) 763 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 764 } 765 766 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 767 { 768 return read_seq_count(wc, e) < wc->seq_count; 769 } 770 771 static void writecache_flush(struct dm_writecache *wc) 772 { 773 struct wc_entry *e, *e2; 774 bool need_flush_after_free; 775 776 wc->uncommitted_blocks = 0; 777 del_timer(&wc->autocommit_timer); 778 779 if (list_empty(&wc->lru)) 780 return; 781 782 e = container_of(wc->lru.next, struct wc_entry, lru); 783 if (writecache_entry_is_committed(wc, e)) { 784 if (wc->overwrote_committed) { 785 writecache_wait_for_ios(wc, WRITE); 786 writecache_disk_flush(wc, wc->ssd_dev); 787 wc->overwrote_committed = false; 788 } 789 return; 790 } 791 while (1) { 792 writecache_flush_entry(wc, e); 793 if (unlikely(e->lru.next == &wc->lru)) 794 break; 795 e2 = container_of(e->lru.next, struct wc_entry, lru); 796 if (writecache_entry_is_committed(wc, e2)) 797 break; 798 e = e2; 799 cond_resched(); 800 } 801 writecache_commit_flushed(wc, true); 802 803 wc->seq_count++; 804 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 805 if (WC_MODE_PMEM(wc)) 806 writecache_commit_flushed(wc, false); 807 else 808 ssd_commit_superblock(wc); 809 810 wc->overwrote_committed = false; 811 812 need_flush_after_free = false; 813 while (1) { 814 /* Free another committed entry with lower seq-count */ 815 struct rb_node *rb_node = rb_prev(&e->rb_node); 816 817 if (rb_node) { 818 e2 = container_of(rb_node, struct wc_entry, rb_node); 819 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 820 likely(!e2->write_in_progress)) { 821 writecache_free_entry(wc, e2); 822 need_flush_after_free = true; 823 } 824 } 825 if (unlikely(e->lru.prev == &wc->lru)) 826 break; 827 e = container_of(e->lru.prev, struct wc_entry, lru); 828 cond_resched(); 829 } 830 831 if (need_flush_after_free) 832 writecache_commit_flushed(wc, false); 833 } 834 835 static void writecache_flush_work(struct work_struct *work) 836 { 837 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 838 839 wc_lock(wc); 840 writecache_flush(wc); 841 wc_unlock(wc); 842 } 843 844 static void writecache_autocommit_timer(struct timer_list *t) 845 { 846 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 847 if (!writecache_has_error(wc)) 848 queue_work(wc->writeback_wq, &wc->flush_work); 849 } 850 851 static void writecache_schedule_autocommit(struct dm_writecache *wc) 852 { 853 if (!timer_pending(&wc->autocommit_timer)) 854 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 855 } 856 857 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 858 { 859 struct wc_entry *e; 860 bool discarded_something = false; 861 862 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 863 if (unlikely(!e)) 864 return; 865 866 while (read_original_sector(wc, e) < end) { 867 struct rb_node *node = rb_next(&e->rb_node); 868 869 if (likely(!e->write_in_progress)) { 870 if (!discarded_something) { 871 if (!WC_MODE_PMEM(wc)) { 872 writecache_wait_for_ios(wc, READ); 873 writecache_wait_for_ios(wc, WRITE); 874 } 875 discarded_something = true; 876 } 877 if (!writecache_entry_is_committed(wc, e)) 878 wc->uncommitted_blocks--; 879 writecache_free_entry(wc, e); 880 } 881 882 if (unlikely(!node)) 883 break; 884 885 e = container_of(node, struct wc_entry, rb_node); 886 } 887 888 if (discarded_something) 889 writecache_commit_flushed(wc, false); 890 } 891 892 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 893 { 894 if (wc->writeback_size) { 895 writecache_wait_on_freelist(wc); 896 return true; 897 } 898 return false; 899 } 900 901 static void writecache_suspend(struct dm_target *ti) 902 { 903 struct dm_writecache *wc = ti->private; 904 bool flush_on_suspend; 905 906 del_timer_sync(&wc->autocommit_timer); 907 del_timer_sync(&wc->max_age_timer); 908 909 wc_lock(wc); 910 writecache_flush(wc); 911 flush_on_suspend = wc->flush_on_suspend; 912 if (flush_on_suspend) { 913 wc->flush_on_suspend = false; 914 wc->writeback_all++; 915 queue_work(wc->writeback_wq, &wc->writeback_work); 916 } 917 wc_unlock(wc); 918 919 drain_workqueue(wc->writeback_wq); 920 921 wc_lock(wc); 922 if (flush_on_suspend) 923 wc->writeback_all--; 924 while (writecache_wait_for_writeback(wc)); 925 926 if (WC_MODE_PMEM(wc)) 927 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 928 929 writecache_poison_lists(wc); 930 931 wc_unlock(wc); 932 } 933 934 static int writecache_alloc_entries(struct dm_writecache *wc) 935 { 936 size_t b; 937 938 if (wc->entries) 939 return 0; 940 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 941 if (!wc->entries) 942 return -ENOMEM; 943 for (b = 0; b < wc->n_blocks; b++) { 944 struct wc_entry *e = &wc->entries[b]; 945 e->index = b; 946 e->write_in_progress = false; 947 cond_resched(); 948 } 949 950 return 0; 951 } 952 953 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 954 { 955 struct dm_io_region region; 956 struct dm_io_request req; 957 958 region.bdev = wc->ssd_dev->bdev; 959 region.sector = wc->start_sector; 960 region.count = n_sectors; 961 req.bi_op = REQ_OP_READ; 962 req.bi_op_flags = REQ_SYNC; 963 req.mem.type = DM_IO_VMA; 964 req.mem.ptr.vma = (char *)wc->memory_map; 965 req.client = wc->dm_io; 966 req.notify.fn = NULL; 967 968 return dm_io(&req, 1, ®ion, NULL); 969 } 970 971 static void writecache_resume(struct dm_target *ti) 972 { 973 struct dm_writecache *wc = ti->private; 974 size_t b; 975 bool need_flush = false; 976 __le64 sb_seq_count; 977 int r; 978 979 wc_lock(wc); 980 981 wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev); 982 983 if (WC_MODE_PMEM(wc)) { 984 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 985 } else { 986 r = writecache_read_metadata(wc, wc->metadata_sectors); 987 if (r) { 988 size_t sb_entries_offset; 989 writecache_error(wc, r, "unable to read metadata: %d", r); 990 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 991 memset((char *)wc->memory_map + sb_entries_offset, -1, 992 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 993 } 994 } 995 996 wc->tree = RB_ROOT; 997 INIT_LIST_HEAD(&wc->lru); 998 if (WC_MODE_SORT_FREELIST(wc)) { 999 wc->freetree = RB_ROOT; 1000 wc->current_free = NULL; 1001 } else { 1002 INIT_LIST_HEAD(&wc->freelist); 1003 } 1004 wc->freelist_size = 0; 1005 1006 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count, 1007 sizeof(uint64_t)); 1008 if (r) { 1009 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 1010 sb_seq_count = cpu_to_le64(0); 1011 } 1012 wc->seq_count = le64_to_cpu(sb_seq_count); 1013 1014 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 1015 for (b = 0; b < wc->n_blocks; b++) { 1016 struct wc_entry *e = &wc->entries[b]; 1017 struct wc_memory_entry wme; 1018 if (writecache_has_error(wc)) { 1019 e->original_sector = -1; 1020 e->seq_count = -1; 1021 continue; 1022 } 1023 r = copy_mc_to_kernel(&wme, memory_entry(wc, e), 1024 sizeof(struct wc_memory_entry)); 1025 if (r) { 1026 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1027 (unsigned long)b, r); 1028 e->original_sector = -1; 1029 e->seq_count = -1; 1030 } else { 1031 e->original_sector = le64_to_cpu(wme.original_sector); 1032 e->seq_count = le64_to_cpu(wme.seq_count); 1033 } 1034 cond_resched(); 1035 } 1036 #endif 1037 for (b = 0; b < wc->n_blocks; b++) { 1038 struct wc_entry *e = &wc->entries[b]; 1039 if (!writecache_entry_is_committed(wc, e)) { 1040 if (read_seq_count(wc, e) != -1) { 1041 erase_this: 1042 clear_seq_count(wc, e); 1043 need_flush = true; 1044 } 1045 writecache_add_to_freelist(wc, e); 1046 } else { 1047 struct wc_entry *old; 1048 1049 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1050 if (!old) { 1051 writecache_insert_entry(wc, e); 1052 } else { 1053 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1054 writecache_error(wc, -EINVAL, 1055 "two identical entries, position %llu, sector %llu, sequence %llu", 1056 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1057 (unsigned long long)read_seq_count(wc, e)); 1058 } 1059 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1060 goto erase_this; 1061 } else { 1062 writecache_free_entry(wc, old); 1063 writecache_insert_entry(wc, e); 1064 need_flush = true; 1065 } 1066 } 1067 } 1068 cond_resched(); 1069 } 1070 1071 if (need_flush) { 1072 writecache_flush_all_metadata(wc); 1073 writecache_commit_flushed(wc, false); 1074 } 1075 1076 writecache_verify_watermark(wc); 1077 1078 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1079 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1080 1081 wc_unlock(wc); 1082 } 1083 1084 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1085 { 1086 if (argc != 1) 1087 return -EINVAL; 1088 1089 wc_lock(wc); 1090 if (dm_suspended(wc->ti)) { 1091 wc_unlock(wc); 1092 return -EBUSY; 1093 } 1094 if (writecache_has_error(wc)) { 1095 wc_unlock(wc); 1096 return -EIO; 1097 } 1098 1099 writecache_flush(wc); 1100 wc->writeback_all++; 1101 queue_work(wc->writeback_wq, &wc->writeback_work); 1102 wc_unlock(wc); 1103 1104 flush_workqueue(wc->writeback_wq); 1105 1106 wc_lock(wc); 1107 wc->writeback_all--; 1108 if (writecache_has_error(wc)) { 1109 wc_unlock(wc); 1110 return -EIO; 1111 } 1112 wc_unlock(wc); 1113 1114 return 0; 1115 } 1116 1117 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1118 { 1119 if (argc != 1) 1120 return -EINVAL; 1121 1122 wc_lock(wc); 1123 wc->flush_on_suspend = true; 1124 wc_unlock(wc); 1125 1126 return 0; 1127 } 1128 1129 static void activate_cleaner(struct dm_writecache *wc) 1130 { 1131 wc->flush_on_suspend = true; 1132 wc->cleaner = true; 1133 wc->freelist_high_watermark = wc->n_blocks; 1134 wc->freelist_low_watermark = wc->n_blocks; 1135 } 1136 1137 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1138 { 1139 if (argc != 1) 1140 return -EINVAL; 1141 1142 wc_lock(wc); 1143 activate_cleaner(wc); 1144 if (!dm_suspended(wc->ti)) 1145 writecache_verify_watermark(wc); 1146 wc_unlock(wc); 1147 1148 return 0; 1149 } 1150 1151 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1152 char *result, unsigned maxlen) 1153 { 1154 int r = -EINVAL; 1155 struct dm_writecache *wc = ti->private; 1156 1157 if (!strcasecmp(argv[0], "flush")) 1158 r = process_flush_mesg(argc, argv, wc); 1159 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1160 r = process_flush_on_suspend_mesg(argc, argv, wc); 1161 else if (!strcasecmp(argv[0], "cleaner")) 1162 r = process_cleaner_mesg(argc, argv, wc); 1163 else 1164 DMERR("unrecognised message received: %s", argv[0]); 1165 1166 return r; 1167 } 1168 1169 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1170 { 1171 /* 1172 * clflushopt performs better with block size 1024, 2048, 4096 1173 * non-temporal stores perform better with block size 512 1174 * 1175 * block size 512 1024 2048 4096 1176 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1177 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1178 * 1179 * We see that movnti performs better for 512-byte blocks, and 1180 * clflushopt performs better for 1024-byte and larger blocks. So, we 1181 * prefer clflushopt for sizes >= 768. 1182 * 1183 * NOTE: this happens to be the case now (with dm-writecache's single 1184 * threaded model) but re-evaluate this once memcpy_flushcache() is 1185 * enabled to use movdir64b which might invalidate this performance 1186 * advantage seen with cache-allocating-writes plus flushing. 1187 */ 1188 #ifdef CONFIG_X86 1189 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1190 likely(boot_cpu_data.x86_clflush_size == 64) && 1191 likely(size >= 768)) { 1192 do { 1193 memcpy((void *)dest, (void *)source, 64); 1194 clflushopt((void *)dest); 1195 dest += 64; 1196 source += 64; 1197 size -= 64; 1198 } while (size >= 64); 1199 return; 1200 } 1201 #endif 1202 memcpy_flushcache(dest, source, size); 1203 } 1204 1205 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1206 { 1207 void *buf; 1208 unsigned long flags; 1209 unsigned size; 1210 int rw = bio_data_dir(bio); 1211 unsigned remaining_size = wc->block_size; 1212 1213 do { 1214 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1215 buf = bvec_kmap_irq(&bv, &flags); 1216 size = bv.bv_len; 1217 if (unlikely(size > remaining_size)) 1218 size = remaining_size; 1219 1220 if (rw == READ) { 1221 int r; 1222 r = copy_mc_to_kernel(buf, data, size); 1223 flush_dcache_page(bio_page(bio)); 1224 if (unlikely(r)) { 1225 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1226 bio->bi_status = BLK_STS_IOERR; 1227 } 1228 } else { 1229 flush_dcache_page(bio_page(bio)); 1230 memcpy_flushcache_optimized(data, buf, size); 1231 } 1232 1233 bvec_kunmap_irq(buf, &flags); 1234 1235 data = (char *)data + size; 1236 remaining_size -= size; 1237 bio_advance(bio, size); 1238 } while (unlikely(remaining_size)); 1239 } 1240 1241 static int writecache_flush_thread(void *data) 1242 { 1243 struct dm_writecache *wc = data; 1244 1245 while (1) { 1246 struct bio *bio; 1247 1248 wc_lock(wc); 1249 bio = bio_list_pop(&wc->flush_list); 1250 if (!bio) { 1251 set_current_state(TASK_INTERRUPTIBLE); 1252 wc_unlock(wc); 1253 1254 if (unlikely(kthread_should_stop())) { 1255 set_current_state(TASK_RUNNING); 1256 break; 1257 } 1258 1259 schedule(); 1260 continue; 1261 } 1262 1263 if (bio_op(bio) == REQ_OP_DISCARD) { 1264 writecache_discard(wc, bio->bi_iter.bi_sector, 1265 bio_end_sector(bio)); 1266 wc_unlock(wc); 1267 bio_set_dev(bio, wc->dev->bdev); 1268 submit_bio_noacct(bio); 1269 } else { 1270 writecache_flush(wc); 1271 wc_unlock(wc); 1272 if (writecache_has_error(wc)) 1273 bio->bi_status = BLK_STS_IOERR; 1274 bio_endio(bio); 1275 } 1276 } 1277 1278 return 0; 1279 } 1280 1281 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1282 { 1283 if (bio_list_empty(&wc->flush_list)) 1284 wake_up_process(wc->flush_thread); 1285 bio_list_add(&wc->flush_list, bio); 1286 } 1287 1288 static int writecache_map(struct dm_target *ti, struct bio *bio) 1289 { 1290 struct wc_entry *e; 1291 struct dm_writecache *wc = ti->private; 1292 1293 bio->bi_private = NULL; 1294 1295 wc_lock(wc); 1296 1297 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1298 if (writecache_has_error(wc)) 1299 goto unlock_error; 1300 if (WC_MODE_PMEM(wc)) { 1301 writecache_flush(wc); 1302 if (writecache_has_error(wc)) 1303 goto unlock_error; 1304 goto unlock_submit; 1305 } else { 1306 writecache_offload_bio(wc, bio); 1307 goto unlock_return; 1308 } 1309 } 1310 1311 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1312 1313 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1314 (wc->block_size / 512 - 1)) != 0)) { 1315 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1316 (unsigned long long)bio->bi_iter.bi_sector, 1317 bio->bi_iter.bi_size, wc->block_size); 1318 goto unlock_error; 1319 } 1320 1321 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1322 if (writecache_has_error(wc)) 1323 goto unlock_error; 1324 if (WC_MODE_PMEM(wc)) { 1325 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1326 goto unlock_remap_origin; 1327 } else { 1328 writecache_offload_bio(wc, bio); 1329 goto unlock_return; 1330 } 1331 } 1332 1333 if (bio_data_dir(bio) == READ) { 1334 read_next_block: 1335 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1336 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1337 if (WC_MODE_PMEM(wc)) { 1338 bio_copy_block(wc, bio, memory_data(wc, e)); 1339 if (bio->bi_iter.bi_size) 1340 goto read_next_block; 1341 goto unlock_submit; 1342 } else { 1343 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1344 bio_set_dev(bio, wc->ssd_dev->bdev); 1345 bio->bi_iter.bi_sector = cache_sector(wc, e); 1346 if (!writecache_entry_is_committed(wc, e)) 1347 writecache_wait_for_ios(wc, WRITE); 1348 goto unlock_remap; 1349 } 1350 } else { 1351 if (e) { 1352 sector_t next_boundary = 1353 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1354 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1355 dm_accept_partial_bio(bio, next_boundary); 1356 } 1357 } 1358 goto unlock_remap_origin; 1359 } 1360 } else { 1361 do { 1362 bool found_entry = false; 1363 if (writecache_has_error(wc)) 1364 goto unlock_error; 1365 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1366 if (e) { 1367 if (!writecache_entry_is_committed(wc, e)) 1368 goto bio_copy; 1369 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1370 wc->overwrote_committed = true; 1371 goto bio_copy; 1372 } 1373 found_entry = true; 1374 } else { 1375 if (unlikely(wc->cleaner)) 1376 goto direct_write; 1377 } 1378 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1379 if (unlikely(!e)) { 1380 if (!found_entry) { 1381 direct_write: 1382 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1383 if (e) { 1384 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1385 BUG_ON(!next_boundary); 1386 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1387 dm_accept_partial_bio(bio, next_boundary); 1388 } 1389 } 1390 goto unlock_remap_origin; 1391 } 1392 writecache_wait_on_freelist(wc); 1393 continue; 1394 } 1395 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1396 writecache_insert_entry(wc, e); 1397 wc->uncommitted_blocks++; 1398 bio_copy: 1399 if (WC_MODE_PMEM(wc)) { 1400 bio_copy_block(wc, bio, memory_data(wc, e)); 1401 } else { 1402 unsigned bio_size = wc->block_size; 1403 sector_t start_cache_sec = cache_sector(wc, e); 1404 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1405 1406 while (bio_size < bio->bi_iter.bi_size) { 1407 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1408 if (!f) 1409 break; 1410 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1411 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1412 writecache_insert_entry(wc, f); 1413 wc->uncommitted_blocks++; 1414 bio_size += wc->block_size; 1415 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1416 } 1417 1418 bio_set_dev(bio, wc->ssd_dev->bdev); 1419 bio->bi_iter.bi_sector = start_cache_sec; 1420 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1421 1422 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1423 wc->uncommitted_blocks = 0; 1424 queue_work(wc->writeback_wq, &wc->flush_work); 1425 } else { 1426 writecache_schedule_autocommit(wc); 1427 } 1428 goto unlock_remap; 1429 } 1430 } while (bio->bi_iter.bi_size); 1431 1432 if (unlikely(bio->bi_opf & REQ_FUA || 1433 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1434 writecache_flush(wc); 1435 else 1436 writecache_schedule_autocommit(wc); 1437 goto unlock_submit; 1438 } 1439 1440 unlock_remap_origin: 1441 bio_set_dev(bio, wc->dev->bdev); 1442 wc_unlock(wc); 1443 return DM_MAPIO_REMAPPED; 1444 1445 unlock_remap: 1446 /* make sure that writecache_end_io decrements bio_in_progress: */ 1447 bio->bi_private = (void *)1; 1448 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1449 wc_unlock(wc); 1450 return DM_MAPIO_REMAPPED; 1451 1452 unlock_submit: 1453 wc_unlock(wc); 1454 bio_endio(bio); 1455 return DM_MAPIO_SUBMITTED; 1456 1457 unlock_return: 1458 wc_unlock(wc); 1459 return DM_MAPIO_SUBMITTED; 1460 1461 unlock_error: 1462 wc_unlock(wc); 1463 bio_io_error(bio); 1464 return DM_MAPIO_SUBMITTED; 1465 } 1466 1467 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1468 { 1469 struct dm_writecache *wc = ti->private; 1470 1471 if (bio->bi_private != NULL) { 1472 int dir = bio_data_dir(bio); 1473 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1474 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1475 wake_up(&wc->bio_in_progress_wait[dir]); 1476 } 1477 return 0; 1478 } 1479 1480 static int writecache_iterate_devices(struct dm_target *ti, 1481 iterate_devices_callout_fn fn, void *data) 1482 { 1483 struct dm_writecache *wc = ti->private; 1484 1485 return fn(ti, wc->dev, 0, ti->len, data); 1486 } 1487 1488 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1489 { 1490 struct dm_writecache *wc = ti->private; 1491 1492 if (limits->logical_block_size < wc->block_size) 1493 limits->logical_block_size = wc->block_size; 1494 1495 if (limits->physical_block_size < wc->block_size) 1496 limits->physical_block_size = wc->block_size; 1497 1498 if (limits->io_min < wc->block_size) 1499 limits->io_min = wc->block_size; 1500 } 1501 1502 1503 static void writecache_writeback_endio(struct bio *bio) 1504 { 1505 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1506 struct dm_writecache *wc = wb->wc; 1507 unsigned long flags; 1508 1509 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1510 if (unlikely(list_empty(&wc->endio_list))) 1511 wake_up_process(wc->endio_thread); 1512 list_add_tail(&wb->endio_entry, &wc->endio_list); 1513 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1514 } 1515 1516 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1517 { 1518 struct copy_struct *c = ptr; 1519 struct dm_writecache *wc = c->wc; 1520 1521 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1522 1523 raw_spin_lock_irq(&wc->endio_list_lock); 1524 if (unlikely(list_empty(&wc->endio_list))) 1525 wake_up_process(wc->endio_thread); 1526 list_add_tail(&c->endio_entry, &wc->endio_list); 1527 raw_spin_unlock_irq(&wc->endio_list_lock); 1528 } 1529 1530 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1531 { 1532 unsigned i; 1533 struct writeback_struct *wb; 1534 struct wc_entry *e; 1535 unsigned long n_walked = 0; 1536 1537 do { 1538 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1539 list_del(&wb->endio_entry); 1540 1541 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1542 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1543 "write error %d", wb->bio.bi_status); 1544 i = 0; 1545 do { 1546 e = wb->wc_list[i]; 1547 BUG_ON(!e->write_in_progress); 1548 e->write_in_progress = false; 1549 INIT_LIST_HEAD(&e->lru); 1550 if (!writecache_has_error(wc)) 1551 writecache_free_entry(wc, e); 1552 BUG_ON(!wc->writeback_size); 1553 wc->writeback_size--; 1554 n_walked++; 1555 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1556 writecache_commit_flushed(wc, false); 1557 wc_unlock(wc); 1558 wc_lock(wc); 1559 n_walked = 0; 1560 } 1561 } while (++i < wb->wc_list_n); 1562 1563 if (wb->wc_list != wb->wc_list_inline) 1564 kfree(wb->wc_list); 1565 bio_put(&wb->bio); 1566 } while (!list_empty(list)); 1567 } 1568 1569 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1570 { 1571 struct copy_struct *c; 1572 struct wc_entry *e; 1573 1574 do { 1575 c = list_entry(list->next, struct copy_struct, endio_entry); 1576 list_del(&c->endio_entry); 1577 1578 if (unlikely(c->error)) 1579 writecache_error(wc, c->error, "copy error"); 1580 1581 e = c->e; 1582 do { 1583 BUG_ON(!e->write_in_progress); 1584 e->write_in_progress = false; 1585 INIT_LIST_HEAD(&e->lru); 1586 if (!writecache_has_error(wc)) 1587 writecache_free_entry(wc, e); 1588 1589 BUG_ON(!wc->writeback_size); 1590 wc->writeback_size--; 1591 e++; 1592 } while (--c->n_entries); 1593 mempool_free(c, &wc->copy_pool); 1594 } while (!list_empty(list)); 1595 } 1596 1597 static int writecache_endio_thread(void *data) 1598 { 1599 struct dm_writecache *wc = data; 1600 1601 while (1) { 1602 struct list_head list; 1603 1604 raw_spin_lock_irq(&wc->endio_list_lock); 1605 if (!list_empty(&wc->endio_list)) 1606 goto pop_from_list; 1607 set_current_state(TASK_INTERRUPTIBLE); 1608 raw_spin_unlock_irq(&wc->endio_list_lock); 1609 1610 if (unlikely(kthread_should_stop())) { 1611 set_current_state(TASK_RUNNING); 1612 break; 1613 } 1614 1615 schedule(); 1616 1617 continue; 1618 1619 pop_from_list: 1620 list = wc->endio_list; 1621 list.next->prev = list.prev->next = &list; 1622 INIT_LIST_HEAD(&wc->endio_list); 1623 raw_spin_unlock_irq(&wc->endio_list_lock); 1624 1625 if (!WC_MODE_FUA(wc)) 1626 writecache_disk_flush(wc, wc->dev); 1627 1628 wc_lock(wc); 1629 1630 if (WC_MODE_PMEM(wc)) { 1631 __writecache_endio_pmem(wc, &list); 1632 } else { 1633 __writecache_endio_ssd(wc, &list); 1634 writecache_wait_for_ios(wc, READ); 1635 } 1636 1637 writecache_commit_flushed(wc, false); 1638 1639 wc_unlock(wc); 1640 } 1641 1642 return 0; 1643 } 1644 1645 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1646 { 1647 struct dm_writecache *wc = wb->wc; 1648 unsigned block_size = wc->block_size; 1649 void *address = memory_data(wc, e); 1650 1651 persistent_memory_flush_cache(address, block_size); 1652 1653 if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors)) 1654 return true; 1655 1656 return bio_add_page(&wb->bio, persistent_memory_page(address), 1657 block_size, persistent_memory_page_offset(address)) != 0; 1658 } 1659 1660 struct writeback_list { 1661 struct list_head list; 1662 size_t size; 1663 }; 1664 1665 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1666 { 1667 if (unlikely(wc->max_writeback_jobs)) { 1668 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1669 wc_lock(wc); 1670 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1671 writecache_wait_on_freelist(wc); 1672 wc_unlock(wc); 1673 } 1674 } 1675 cond_resched(); 1676 } 1677 1678 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1679 { 1680 struct wc_entry *e, *f; 1681 struct bio *bio; 1682 struct writeback_struct *wb; 1683 unsigned max_pages; 1684 1685 while (wbl->size) { 1686 wbl->size--; 1687 e = container_of(wbl->list.prev, struct wc_entry, lru); 1688 list_del(&e->lru); 1689 1690 max_pages = e->wc_list_contiguous; 1691 1692 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1693 wb = container_of(bio, struct writeback_struct, bio); 1694 wb->wc = wc; 1695 bio->bi_end_io = writecache_writeback_endio; 1696 bio_set_dev(bio, wc->dev->bdev); 1697 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1698 if (max_pages <= WB_LIST_INLINE || 1699 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1700 GFP_NOIO | __GFP_NORETRY | 1701 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1702 wb->wc_list = wb->wc_list_inline; 1703 max_pages = WB_LIST_INLINE; 1704 } 1705 1706 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1707 1708 wb->wc_list[0] = e; 1709 wb->wc_list_n = 1; 1710 1711 while (wbl->size && wb->wc_list_n < max_pages) { 1712 f = container_of(wbl->list.prev, struct wc_entry, lru); 1713 if (read_original_sector(wc, f) != 1714 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1715 break; 1716 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1717 break; 1718 wbl->size--; 1719 list_del(&f->lru); 1720 wb->wc_list[wb->wc_list_n++] = f; 1721 e = f; 1722 } 1723 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1724 if (writecache_has_error(wc)) { 1725 bio->bi_status = BLK_STS_IOERR; 1726 bio_endio(bio); 1727 } else if (unlikely(!bio_sectors(bio))) { 1728 bio->bi_status = BLK_STS_OK; 1729 bio_endio(bio); 1730 } else { 1731 submit_bio(bio); 1732 } 1733 1734 __writeback_throttle(wc, wbl); 1735 } 1736 } 1737 1738 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1739 { 1740 struct wc_entry *e, *f; 1741 struct dm_io_region from, to; 1742 struct copy_struct *c; 1743 1744 while (wbl->size) { 1745 unsigned n_sectors; 1746 1747 wbl->size--; 1748 e = container_of(wbl->list.prev, struct wc_entry, lru); 1749 list_del(&e->lru); 1750 1751 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1752 1753 from.bdev = wc->ssd_dev->bdev; 1754 from.sector = cache_sector(wc, e); 1755 from.count = n_sectors; 1756 to.bdev = wc->dev->bdev; 1757 to.sector = read_original_sector(wc, e); 1758 to.count = n_sectors; 1759 1760 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1761 c->wc = wc; 1762 c->e = e; 1763 c->n_entries = e->wc_list_contiguous; 1764 1765 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1766 wbl->size--; 1767 f = container_of(wbl->list.prev, struct wc_entry, lru); 1768 BUG_ON(f != e + 1); 1769 list_del(&f->lru); 1770 e = f; 1771 } 1772 1773 if (unlikely(to.sector + to.count > wc->data_device_sectors)) { 1774 if (to.sector >= wc->data_device_sectors) { 1775 writecache_copy_endio(0, 0, c); 1776 continue; 1777 } 1778 from.count = to.count = wc->data_device_sectors - to.sector; 1779 } 1780 1781 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1782 1783 __writeback_throttle(wc, wbl); 1784 } 1785 } 1786 1787 static void writecache_writeback(struct work_struct *work) 1788 { 1789 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1790 struct blk_plug plug; 1791 struct wc_entry *f, *g, *e = NULL; 1792 struct rb_node *node, *next_node; 1793 struct list_head skipped; 1794 struct writeback_list wbl; 1795 unsigned long n_walked; 1796 1797 wc_lock(wc); 1798 restart: 1799 if (writecache_has_error(wc)) { 1800 wc_unlock(wc); 1801 return; 1802 } 1803 1804 if (unlikely(wc->writeback_all)) { 1805 if (writecache_wait_for_writeback(wc)) 1806 goto restart; 1807 } 1808 1809 if (wc->overwrote_committed) { 1810 writecache_wait_for_ios(wc, WRITE); 1811 } 1812 1813 n_walked = 0; 1814 INIT_LIST_HEAD(&skipped); 1815 INIT_LIST_HEAD(&wbl.list); 1816 wbl.size = 0; 1817 while (!list_empty(&wc->lru) && 1818 (wc->writeback_all || 1819 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1820 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1821 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1822 1823 n_walked++; 1824 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1825 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1826 queue_work(wc->writeback_wq, &wc->writeback_work); 1827 break; 1828 } 1829 1830 if (unlikely(wc->writeback_all)) { 1831 if (unlikely(!e)) { 1832 writecache_flush(wc); 1833 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1834 } else 1835 e = g; 1836 } else 1837 e = container_of(wc->lru.prev, struct wc_entry, lru); 1838 BUG_ON(e->write_in_progress); 1839 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1840 writecache_flush(wc); 1841 } 1842 node = rb_prev(&e->rb_node); 1843 if (node) { 1844 f = container_of(node, struct wc_entry, rb_node); 1845 if (unlikely(read_original_sector(wc, f) == 1846 read_original_sector(wc, e))) { 1847 BUG_ON(!f->write_in_progress); 1848 list_del(&e->lru); 1849 list_add(&e->lru, &skipped); 1850 cond_resched(); 1851 continue; 1852 } 1853 } 1854 wc->writeback_size++; 1855 list_del(&e->lru); 1856 list_add(&e->lru, &wbl.list); 1857 wbl.size++; 1858 e->write_in_progress = true; 1859 e->wc_list_contiguous = 1; 1860 1861 f = e; 1862 1863 while (1) { 1864 next_node = rb_next(&f->rb_node); 1865 if (unlikely(!next_node)) 1866 break; 1867 g = container_of(next_node, struct wc_entry, rb_node); 1868 if (unlikely(read_original_sector(wc, g) == 1869 read_original_sector(wc, f))) { 1870 f = g; 1871 continue; 1872 } 1873 if (read_original_sector(wc, g) != 1874 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1875 break; 1876 if (unlikely(g->write_in_progress)) 1877 break; 1878 if (unlikely(!writecache_entry_is_committed(wc, g))) 1879 break; 1880 1881 if (!WC_MODE_PMEM(wc)) { 1882 if (g != f + 1) 1883 break; 1884 } 1885 1886 n_walked++; 1887 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1888 // break; 1889 1890 wc->writeback_size++; 1891 list_del(&g->lru); 1892 list_add(&g->lru, &wbl.list); 1893 wbl.size++; 1894 g->write_in_progress = true; 1895 g->wc_list_contiguous = BIO_MAX_PAGES; 1896 f = g; 1897 e->wc_list_contiguous++; 1898 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1899 if (unlikely(wc->writeback_all)) { 1900 next_node = rb_next(&f->rb_node); 1901 if (likely(next_node)) 1902 g = container_of(next_node, struct wc_entry, rb_node); 1903 } 1904 break; 1905 } 1906 } 1907 cond_resched(); 1908 } 1909 1910 if (!list_empty(&skipped)) { 1911 list_splice_tail(&skipped, &wc->lru); 1912 /* 1913 * If we didn't do any progress, we must wait until some 1914 * writeback finishes to avoid burning CPU in a loop 1915 */ 1916 if (unlikely(!wbl.size)) 1917 writecache_wait_for_writeback(wc); 1918 } 1919 1920 wc_unlock(wc); 1921 1922 blk_start_plug(&plug); 1923 1924 if (WC_MODE_PMEM(wc)) 1925 __writecache_writeback_pmem(wc, &wbl); 1926 else 1927 __writecache_writeback_ssd(wc, &wbl); 1928 1929 blk_finish_plug(&plug); 1930 1931 if (unlikely(wc->writeback_all)) { 1932 wc_lock(wc); 1933 while (writecache_wait_for_writeback(wc)); 1934 wc_unlock(wc); 1935 } 1936 } 1937 1938 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1939 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1940 { 1941 uint64_t n_blocks, offset; 1942 struct wc_entry e; 1943 1944 n_blocks = device_size; 1945 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1946 1947 while (1) { 1948 if (!n_blocks) 1949 return -ENOSPC; 1950 /* Verify the following entries[n_blocks] won't overflow */ 1951 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1952 sizeof(struct wc_memory_entry))) 1953 return -EFBIG; 1954 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1955 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1956 if (offset + n_blocks * block_size <= device_size) 1957 break; 1958 n_blocks--; 1959 } 1960 1961 /* check if the bit field overflows */ 1962 e.index = n_blocks; 1963 if (e.index != n_blocks) 1964 return -EFBIG; 1965 1966 if (n_blocks_p) 1967 *n_blocks_p = n_blocks; 1968 if (n_metadata_blocks_p) 1969 *n_metadata_blocks_p = offset >> __ffs(block_size); 1970 return 0; 1971 } 1972 1973 static int init_memory(struct dm_writecache *wc) 1974 { 1975 size_t b; 1976 int r; 1977 1978 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1979 if (r) 1980 return r; 1981 1982 r = writecache_alloc_entries(wc); 1983 if (r) 1984 return r; 1985 1986 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1987 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1988 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1989 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1990 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1991 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1992 1993 for (b = 0; b < wc->n_blocks; b++) { 1994 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1995 cond_resched(); 1996 } 1997 1998 writecache_flush_all_metadata(wc); 1999 writecache_commit_flushed(wc, false); 2000 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 2001 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 2002 writecache_commit_flushed(wc, false); 2003 2004 return 0; 2005 } 2006 2007 static void writecache_dtr(struct dm_target *ti) 2008 { 2009 struct dm_writecache *wc = ti->private; 2010 2011 if (!wc) 2012 return; 2013 2014 if (wc->endio_thread) 2015 kthread_stop(wc->endio_thread); 2016 2017 if (wc->flush_thread) 2018 kthread_stop(wc->flush_thread); 2019 2020 bioset_exit(&wc->bio_set); 2021 2022 mempool_exit(&wc->copy_pool); 2023 2024 if (wc->writeback_wq) 2025 destroy_workqueue(wc->writeback_wq); 2026 2027 if (wc->dev) 2028 dm_put_device(ti, wc->dev); 2029 2030 if (wc->ssd_dev) 2031 dm_put_device(ti, wc->ssd_dev); 2032 2033 vfree(wc->entries); 2034 2035 if (wc->memory_map) { 2036 if (WC_MODE_PMEM(wc)) 2037 persistent_memory_release(wc); 2038 else 2039 vfree(wc->memory_map); 2040 } 2041 2042 if (wc->dm_kcopyd) 2043 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2044 2045 if (wc->dm_io) 2046 dm_io_client_destroy(wc->dm_io); 2047 2048 vfree(wc->dirty_bitmap); 2049 2050 kfree(wc); 2051 } 2052 2053 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2054 { 2055 struct dm_writecache *wc; 2056 struct dm_arg_set as; 2057 const char *string; 2058 unsigned opt_params; 2059 size_t offset, data_size; 2060 int i, r; 2061 char dummy; 2062 int high_wm_percent = HIGH_WATERMARK; 2063 int low_wm_percent = LOW_WATERMARK; 2064 uint64_t x; 2065 struct wc_memory_superblock s; 2066 2067 static struct dm_arg _args[] = { 2068 {0, 16, "Invalid number of feature args"}, 2069 }; 2070 2071 as.argc = argc; 2072 as.argv = argv; 2073 2074 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2075 if (!wc) { 2076 ti->error = "Cannot allocate writecache structure"; 2077 r = -ENOMEM; 2078 goto bad; 2079 } 2080 ti->private = wc; 2081 wc->ti = ti; 2082 2083 mutex_init(&wc->lock); 2084 wc->max_age = MAX_AGE_UNSPECIFIED; 2085 writecache_poison_lists(wc); 2086 init_waitqueue_head(&wc->freelist_wait); 2087 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2088 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2089 2090 for (i = 0; i < 2; i++) { 2091 atomic_set(&wc->bio_in_progress[i], 0); 2092 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2093 } 2094 2095 wc->dm_io = dm_io_client_create(); 2096 if (IS_ERR(wc->dm_io)) { 2097 r = PTR_ERR(wc->dm_io); 2098 ti->error = "Unable to allocate dm-io client"; 2099 wc->dm_io = NULL; 2100 goto bad; 2101 } 2102 2103 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2104 if (!wc->writeback_wq) { 2105 r = -ENOMEM; 2106 ti->error = "Could not allocate writeback workqueue"; 2107 goto bad; 2108 } 2109 INIT_WORK(&wc->writeback_work, writecache_writeback); 2110 INIT_WORK(&wc->flush_work, writecache_flush_work); 2111 2112 raw_spin_lock_init(&wc->endio_list_lock); 2113 INIT_LIST_HEAD(&wc->endio_list); 2114 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2115 if (IS_ERR(wc->endio_thread)) { 2116 r = PTR_ERR(wc->endio_thread); 2117 wc->endio_thread = NULL; 2118 ti->error = "Couldn't spawn endio thread"; 2119 goto bad; 2120 } 2121 wake_up_process(wc->endio_thread); 2122 2123 /* 2124 * Parse the mode (pmem or ssd) 2125 */ 2126 string = dm_shift_arg(&as); 2127 if (!string) 2128 goto bad_arguments; 2129 2130 if (!strcasecmp(string, "s")) { 2131 wc->pmem_mode = false; 2132 } else if (!strcasecmp(string, "p")) { 2133 #ifdef DM_WRITECACHE_HAS_PMEM 2134 wc->pmem_mode = true; 2135 wc->writeback_fua = true; 2136 #else 2137 /* 2138 * If the architecture doesn't support persistent memory or 2139 * the kernel doesn't support any DAX drivers, this driver can 2140 * only be used in SSD-only mode. 2141 */ 2142 r = -EOPNOTSUPP; 2143 ti->error = "Persistent memory or DAX not supported on this system"; 2144 goto bad; 2145 #endif 2146 } else { 2147 goto bad_arguments; 2148 } 2149 2150 if (WC_MODE_PMEM(wc)) { 2151 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2152 offsetof(struct writeback_struct, bio), 2153 BIOSET_NEED_BVECS); 2154 if (r) { 2155 ti->error = "Could not allocate bio set"; 2156 goto bad; 2157 } 2158 } else { 2159 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2160 if (r) { 2161 ti->error = "Could not allocate mempool"; 2162 goto bad; 2163 } 2164 } 2165 2166 /* 2167 * Parse the origin data device 2168 */ 2169 string = dm_shift_arg(&as); 2170 if (!string) 2171 goto bad_arguments; 2172 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2173 if (r) { 2174 ti->error = "Origin data device lookup failed"; 2175 goto bad; 2176 } 2177 2178 /* 2179 * Parse cache data device (be it pmem or ssd) 2180 */ 2181 string = dm_shift_arg(&as); 2182 if (!string) 2183 goto bad_arguments; 2184 2185 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2186 if (r) { 2187 ti->error = "Cache data device lookup failed"; 2188 goto bad; 2189 } 2190 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2191 2192 /* 2193 * Parse the cache block size 2194 */ 2195 string = dm_shift_arg(&as); 2196 if (!string) 2197 goto bad_arguments; 2198 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2199 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2200 (wc->block_size & (wc->block_size - 1))) { 2201 r = -EINVAL; 2202 ti->error = "Invalid block size"; 2203 goto bad; 2204 } 2205 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2206 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2207 r = -EINVAL; 2208 ti->error = "Block size is smaller than device logical block size"; 2209 goto bad; 2210 } 2211 wc->block_size_bits = __ffs(wc->block_size); 2212 2213 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2214 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2215 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2216 2217 /* 2218 * Parse optional arguments 2219 */ 2220 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2221 if (r) 2222 goto bad; 2223 2224 while (opt_params) { 2225 string = dm_shift_arg(&as), opt_params--; 2226 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2227 unsigned long long start_sector; 2228 string = dm_shift_arg(&as), opt_params--; 2229 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2230 goto invalid_optional; 2231 wc->start_sector = start_sector; 2232 wc->start_sector_set = true; 2233 if (wc->start_sector != start_sector || 2234 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2235 goto invalid_optional; 2236 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2237 string = dm_shift_arg(&as), opt_params--; 2238 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2239 goto invalid_optional; 2240 if (high_wm_percent < 0 || high_wm_percent > 100) 2241 goto invalid_optional; 2242 wc->high_wm_percent_value = high_wm_percent; 2243 wc->high_wm_percent_set = true; 2244 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2245 string = dm_shift_arg(&as), opt_params--; 2246 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2247 goto invalid_optional; 2248 if (low_wm_percent < 0 || low_wm_percent > 100) 2249 goto invalid_optional; 2250 wc->low_wm_percent_value = low_wm_percent; 2251 wc->low_wm_percent_set = true; 2252 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2253 string = dm_shift_arg(&as), opt_params--; 2254 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2255 goto invalid_optional; 2256 wc->max_writeback_jobs_set = true; 2257 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2258 string = dm_shift_arg(&as), opt_params--; 2259 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2260 goto invalid_optional; 2261 wc->autocommit_blocks_set = true; 2262 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2263 unsigned autocommit_msecs; 2264 string = dm_shift_arg(&as), opt_params--; 2265 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2266 goto invalid_optional; 2267 if (autocommit_msecs > 3600000) 2268 goto invalid_optional; 2269 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2270 wc->autocommit_time_value = autocommit_msecs; 2271 wc->autocommit_time_set = true; 2272 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2273 unsigned max_age_msecs; 2274 string = dm_shift_arg(&as), opt_params--; 2275 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2276 goto invalid_optional; 2277 if (max_age_msecs > 86400000) 2278 goto invalid_optional; 2279 wc->max_age = msecs_to_jiffies(max_age_msecs); 2280 wc->max_age_set = true; 2281 wc->max_age_value = max_age_msecs; 2282 } else if (!strcasecmp(string, "cleaner")) { 2283 wc->cleaner_set = true; 2284 wc->cleaner = true; 2285 } else if (!strcasecmp(string, "fua")) { 2286 if (WC_MODE_PMEM(wc)) { 2287 wc->writeback_fua = true; 2288 wc->writeback_fua_set = true; 2289 } else goto invalid_optional; 2290 } else if (!strcasecmp(string, "nofua")) { 2291 if (WC_MODE_PMEM(wc)) { 2292 wc->writeback_fua = false; 2293 wc->writeback_fua_set = true; 2294 } else goto invalid_optional; 2295 } else { 2296 invalid_optional: 2297 r = -EINVAL; 2298 ti->error = "Invalid optional argument"; 2299 goto bad; 2300 } 2301 } 2302 2303 if (high_wm_percent < low_wm_percent) { 2304 r = -EINVAL; 2305 ti->error = "High watermark must be greater than or equal to low watermark"; 2306 goto bad; 2307 } 2308 2309 if (WC_MODE_PMEM(wc)) { 2310 if (!dax_synchronous(wc->ssd_dev->dax_dev)) { 2311 r = -EOPNOTSUPP; 2312 ti->error = "Asynchronous persistent memory not supported as pmem cache"; 2313 goto bad; 2314 } 2315 2316 r = persistent_memory_claim(wc); 2317 if (r) { 2318 ti->error = "Unable to map persistent memory for cache"; 2319 goto bad; 2320 } 2321 } else { 2322 size_t n_blocks, n_metadata_blocks; 2323 uint64_t n_bitmap_bits; 2324 2325 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2326 2327 bio_list_init(&wc->flush_list); 2328 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2329 if (IS_ERR(wc->flush_thread)) { 2330 r = PTR_ERR(wc->flush_thread); 2331 wc->flush_thread = NULL; 2332 ti->error = "Couldn't spawn flush thread"; 2333 goto bad; 2334 } 2335 wake_up_process(wc->flush_thread); 2336 2337 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2338 &n_blocks, &n_metadata_blocks); 2339 if (r) { 2340 ti->error = "Invalid device size"; 2341 goto bad; 2342 } 2343 2344 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2345 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2346 /* this is limitation of test_bit functions */ 2347 if (n_bitmap_bits > 1U << 31) { 2348 r = -EFBIG; 2349 ti->error = "Invalid device size"; 2350 goto bad; 2351 } 2352 2353 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2354 if (!wc->memory_map) { 2355 r = -ENOMEM; 2356 ti->error = "Unable to allocate memory for metadata"; 2357 goto bad; 2358 } 2359 2360 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2361 if (IS_ERR(wc->dm_kcopyd)) { 2362 r = PTR_ERR(wc->dm_kcopyd); 2363 ti->error = "Unable to allocate dm-kcopyd client"; 2364 wc->dm_kcopyd = NULL; 2365 goto bad; 2366 } 2367 2368 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2369 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2370 BITS_PER_LONG * sizeof(unsigned long); 2371 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2372 if (!wc->dirty_bitmap) { 2373 r = -ENOMEM; 2374 ti->error = "Unable to allocate dirty bitmap"; 2375 goto bad; 2376 } 2377 2378 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2379 if (r) { 2380 ti->error = "Unable to read first block of metadata"; 2381 goto bad; 2382 } 2383 } 2384 2385 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2386 if (r) { 2387 ti->error = "Hardware memory error when reading superblock"; 2388 goto bad; 2389 } 2390 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2391 r = init_memory(wc); 2392 if (r) { 2393 ti->error = "Unable to initialize device"; 2394 goto bad; 2395 } 2396 r = copy_mc_to_kernel(&s, sb(wc), 2397 sizeof(struct wc_memory_superblock)); 2398 if (r) { 2399 ti->error = "Hardware memory error when reading superblock"; 2400 goto bad; 2401 } 2402 } 2403 2404 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2405 ti->error = "Invalid magic in the superblock"; 2406 r = -EINVAL; 2407 goto bad; 2408 } 2409 2410 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2411 ti->error = "Invalid version in the superblock"; 2412 r = -EINVAL; 2413 goto bad; 2414 } 2415 2416 if (le32_to_cpu(s.block_size) != wc->block_size) { 2417 ti->error = "Block size does not match superblock"; 2418 r = -EINVAL; 2419 goto bad; 2420 } 2421 2422 wc->n_blocks = le64_to_cpu(s.n_blocks); 2423 2424 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2425 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2426 overflow: 2427 ti->error = "Overflow in size calculation"; 2428 r = -EINVAL; 2429 goto bad; 2430 } 2431 offset += sizeof(struct wc_memory_superblock); 2432 if (offset < sizeof(struct wc_memory_superblock)) 2433 goto overflow; 2434 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2435 data_size = wc->n_blocks * (size_t)wc->block_size; 2436 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2437 (offset + data_size < offset)) 2438 goto overflow; 2439 if (offset + data_size > wc->memory_map_size) { 2440 ti->error = "Memory area is too small"; 2441 r = -EINVAL; 2442 goto bad; 2443 } 2444 2445 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2446 wc->block_start = (char *)sb(wc) + offset; 2447 2448 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2449 x += 50; 2450 do_div(x, 100); 2451 wc->freelist_high_watermark = x; 2452 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2453 x += 50; 2454 do_div(x, 100); 2455 wc->freelist_low_watermark = x; 2456 2457 if (wc->cleaner) 2458 activate_cleaner(wc); 2459 2460 r = writecache_alloc_entries(wc); 2461 if (r) { 2462 ti->error = "Cannot allocate memory"; 2463 goto bad; 2464 } 2465 2466 ti->num_flush_bios = 1; 2467 ti->flush_supported = true; 2468 ti->num_discard_bios = 1; 2469 2470 if (WC_MODE_PMEM(wc)) 2471 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2472 2473 return 0; 2474 2475 bad_arguments: 2476 r = -EINVAL; 2477 ti->error = "Bad arguments"; 2478 bad: 2479 writecache_dtr(ti); 2480 return r; 2481 } 2482 2483 static void writecache_status(struct dm_target *ti, status_type_t type, 2484 unsigned status_flags, char *result, unsigned maxlen) 2485 { 2486 struct dm_writecache *wc = ti->private; 2487 unsigned extra_args; 2488 unsigned sz = 0; 2489 2490 switch (type) { 2491 case STATUSTYPE_INFO: 2492 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2493 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2494 (unsigned long long)wc->writeback_size); 2495 break; 2496 case STATUSTYPE_TABLE: 2497 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2498 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2499 extra_args = 0; 2500 if (wc->start_sector_set) 2501 extra_args += 2; 2502 if (wc->high_wm_percent_set) 2503 extra_args += 2; 2504 if (wc->low_wm_percent_set) 2505 extra_args += 2; 2506 if (wc->max_writeback_jobs_set) 2507 extra_args += 2; 2508 if (wc->autocommit_blocks_set) 2509 extra_args += 2; 2510 if (wc->autocommit_time_set) 2511 extra_args += 2; 2512 if (wc->max_age_set) 2513 extra_args += 2; 2514 if (wc->cleaner_set) 2515 extra_args++; 2516 if (wc->writeback_fua_set) 2517 extra_args++; 2518 2519 DMEMIT("%u", extra_args); 2520 if (wc->start_sector_set) 2521 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2522 if (wc->high_wm_percent_set) 2523 DMEMIT(" high_watermark %u", wc->high_wm_percent_value); 2524 if (wc->low_wm_percent_set) 2525 DMEMIT(" low_watermark %u", wc->low_wm_percent_value); 2526 if (wc->max_writeback_jobs_set) 2527 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2528 if (wc->autocommit_blocks_set) 2529 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2530 if (wc->autocommit_time_set) 2531 DMEMIT(" autocommit_time %u", wc->autocommit_time_value); 2532 if (wc->max_age_set) 2533 DMEMIT(" max_age %u", wc->max_age_value); 2534 if (wc->cleaner_set) 2535 DMEMIT(" cleaner"); 2536 if (wc->writeback_fua_set) 2537 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2538 break; 2539 } 2540 } 2541 2542 static struct target_type writecache_target = { 2543 .name = "writecache", 2544 .version = {1, 4, 0}, 2545 .module = THIS_MODULE, 2546 .ctr = writecache_ctr, 2547 .dtr = writecache_dtr, 2548 .status = writecache_status, 2549 .postsuspend = writecache_suspend, 2550 .resume = writecache_resume, 2551 .message = writecache_message, 2552 .map = writecache_map, 2553 .end_io = writecache_end_io, 2554 .iterate_devices = writecache_iterate_devices, 2555 .io_hints = writecache_io_hints, 2556 }; 2557 2558 static int __init dm_writecache_init(void) 2559 { 2560 int r; 2561 2562 r = dm_register_target(&writecache_target); 2563 if (r < 0) { 2564 DMERR("register failed %d", r); 2565 return r; 2566 } 2567 2568 return 0; 2569 } 2570 2571 static void __exit dm_writecache_exit(void) 2572 { 2573 dm_unregister_target(&writecache_target); 2574 } 2575 2576 module_init(dm_writecache_init); 2577 module_exit(dm_writecache_exit); 2578 2579 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2580 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2581 MODULE_LICENSE("GPL"); 2582