1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 30 #define BITMAP_GRANULARITY 65536 31 #if BITMAP_GRANULARITY < PAGE_SIZE 32 #undef BITMAP_GRANULARITY 33 #define BITMAP_GRANULARITY PAGE_SIZE 34 #endif 35 36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 37 #define DM_WRITECACHE_HAS_PMEM 38 #endif 39 40 #ifdef DM_WRITECACHE_HAS_PMEM 41 #define pmem_assign(dest, src) \ 42 do { \ 43 typeof(dest) uniq = (src); \ 44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 45 } while (0) 46 #else 47 #define pmem_assign(dest, src) ((dest) = (src)) 48 #endif 49 50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 52 #endif 53 54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 55 #define MEMORY_SUPERBLOCK_VERSION 1 56 57 struct wc_memory_entry { 58 __le64 original_sector; 59 __le64 seq_count; 60 }; 61 62 struct wc_memory_superblock { 63 union { 64 struct { 65 __le32 magic; 66 __le32 version; 67 __le32 block_size; 68 __le32 pad; 69 __le64 n_blocks; 70 __le64 seq_count; 71 }; 72 __le64 padding[8]; 73 }; 74 struct wc_memory_entry entries[0]; 75 }; 76 77 struct wc_entry { 78 struct rb_node rb_node; 79 struct list_head lru; 80 unsigned short wc_list_contiguous; 81 bool write_in_progress 82 #if BITS_PER_LONG == 64 83 :1 84 #endif 85 ; 86 unsigned long index 87 #if BITS_PER_LONG == 64 88 :47 89 #endif 90 ; 91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 92 uint64_t original_sector; 93 uint64_t seq_count; 94 #endif 95 }; 96 97 #ifdef DM_WRITECACHE_HAS_PMEM 98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 100 #else 101 #define WC_MODE_PMEM(wc) false 102 #define WC_MODE_FUA(wc) false 103 #endif 104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 105 106 struct dm_writecache { 107 struct mutex lock; 108 struct list_head lru; 109 union { 110 struct list_head freelist; 111 struct { 112 struct rb_root freetree; 113 struct wc_entry *current_free; 114 }; 115 }; 116 struct rb_root tree; 117 118 size_t freelist_size; 119 size_t writeback_size; 120 size_t freelist_high_watermark; 121 size_t freelist_low_watermark; 122 123 unsigned uncommitted_blocks; 124 unsigned autocommit_blocks; 125 unsigned max_writeback_jobs; 126 127 int error; 128 129 unsigned long autocommit_jiffies; 130 struct timer_list autocommit_timer; 131 struct wait_queue_head freelist_wait; 132 133 atomic_t bio_in_progress[2]; 134 struct wait_queue_head bio_in_progress_wait[2]; 135 136 struct dm_target *ti; 137 struct dm_dev *dev; 138 struct dm_dev *ssd_dev; 139 sector_t start_sector; 140 void *memory_map; 141 uint64_t memory_map_size; 142 size_t metadata_sectors; 143 size_t n_blocks; 144 uint64_t seq_count; 145 void *block_start; 146 struct wc_entry *entries; 147 unsigned block_size; 148 unsigned char block_size_bits; 149 150 bool pmem_mode:1; 151 bool writeback_fua:1; 152 153 bool overwrote_committed:1; 154 bool memory_vmapped:1; 155 156 bool high_wm_percent_set:1; 157 bool low_wm_percent_set:1; 158 bool max_writeback_jobs_set:1; 159 bool autocommit_blocks_set:1; 160 bool autocommit_time_set:1; 161 bool writeback_fua_set:1; 162 bool flush_on_suspend:1; 163 164 unsigned writeback_all; 165 struct workqueue_struct *writeback_wq; 166 struct work_struct writeback_work; 167 struct work_struct flush_work; 168 169 struct dm_io_client *dm_io; 170 171 raw_spinlock_t endio_list_lock; 172 struct list_head endio_list; 173 struct task_struct *endio_thread; 174 175 struct task_struct *flush_thread; 176 struct bio_list flush_list; 177 178 struct dm_kcopyd_client *dm_kcopyd; 179 unsigned long *dirty_bitmap; 180 unsigned dirty_bitmap_size; 181 182 struct bio_set bio_set; 183 mempool_t copy_pool; 184 }; 185 186 #define WB_LIST_INLINE 16 187 188 struct writeback_struct { 189 struct list_head endio_entry; 190 struct dm_writecache *wc; 191 struct wc_entry **wc_list; 192 unsigned wc_list_n; 193 unsigned page_offset; 194 struct page *page; 195 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 196 struct bio bio; 197 }; 198 199 struct copy_struct { 200 struct list_head endio_entry; 201 struct dm_writecache *wc; 202 struct wc_entry *e; 203 unsigned n_entries; 204 int error; 205 }; 206 207 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 208 "A percentage of time allocated for data copying"); 209 210 static void wc_lock(struct dm_writecache *wc) 211 { 212 mutex_lock(&wc->lock); 213 } 214 215 static void wc_unlock(struct dm_writecache *wc) 216 { 217 mutex_unlock(&wc->lock); 218 } 219 220 #ifdef DM_WRITECACHE_HAS_PMEM 221 static int persistent_memory_claim(struct dm_writecache *wc) 222 { 223 int r; 224 loff_t s; 225 long p, da; 226 pfn_t pfn; 227 int id; 228 struct page **pages; 229 230 wc->memory_vmapped = false; 231 232 if (!wc->ssd_dev->dax_dev) { 233 r = -EOPNOTSUPP; 234 goto err1; 235 } 236 s = wc->memory_map_size; 237 p = s >> PAGE_SHIFT; 238 if (!p) { 239 r = -EINVAL; 240 goto err1; 241 } 242 if (p != s >> PAGE_SHIFT) { 243 r = -EOVERFLOW; 244 goto err1; 245 } 246 247 id = dax_read_lock(); 248 249 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 250 if (da < 0) { 251 wc->memory_map = NULL; 252 r = da; 253 goto err2; 254 } 255 if (!pfn_t_has_page(pfn)) { 256 wc->memory_map = NULL; 257 r = -EOPNOTSUPP; 258 goto err2; 259 } 260 if (da != p) { 261 long i; 262 wc->memory_map = NULL; 263 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 264 if (!pages) { 265 r = -ENOMEM; 266 goto err2; 267 } 268 i = 0; 269 do { 270 long daa; 271 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 272 NULL, &pfn); 273 if (daa <= 0) { 274 r = daa ? daa : -EINVAL; 275 goto err3; 276 } 277 if (!pfn_t_has_page(pfn)) { 278 r = -EOPNOTSUPP; 279 goto err3; 280 } 281 while (daa-- && i < p) { 282 pages[i++] = pfn_t_to_page(pfn); 283 pfn.val++; 284 } 285 } while (i < p); 286 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 287 if (!wc->memory_map) { 288 r = -ENOMEM; 289 goto err3; 290 } 291 kvfree(pages); 292 wc->memory_vmapped = true; 293 } 294 295 dax_read_unlock(id); 296 297 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 298 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 299 300 return 0; 301 err3: 302 kvfree(pages); 303 err2: 304 dax_read_unlock(id); 305 err1: 306 return r; 307 } 308 #else 309 static int persistent_memory_claim(struct dm_writecache *wc) 310 { 311 BUG(); 312 } 313 #endif 314 315 static void persistent_memory_release(struct dm_writecache *wc) 316 { 317 if (wc->memory_vmapped) 318 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 319 } 320 321 static struct page *persistent_memory_page(void *addr) 322 { 323 if (is_vmalloc_addr(addr)) 324 return vmalloc_to_page(addr); 325 else 326 return virt_to_page(addr); 327 } 328 329 static unsigned persistent_memory_page_offset(void *addr) 330 { 331 return (unsigned long)addr & (PAGE_SIZE - 1); 332 } 333 334 static void persistent_memory_flush_cache(void *ptr, size_t size) 335 { 336 if (is_vmalloc_addr(ptr)) 337 flush_kernel_vmap_range(ptr, size); 338 } 339 340 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 341 { 342 if (is_vmalloc_addr(ptr)) 343 invalidate_kernel_vmap_range(ptr, size); 344 } 345 346 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 347 { 348 return wc->memory_map; 349 } 350 351 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 352 { 353 if (is_power_of_2(sizeof(struct wc_entry)) && 0) 354 return &sb(wc)->entries[e - wc->entries]; 355 else 356 return &sb(wc)->entries[e->index]; 357 } 358 359 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 360 { 361 return (char *)wc->block_start + (e->index << wc->block_size_bits); 362 } 363 364 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 365 { 366 return wc->start_sector + wc->metadata_sectors + 367 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 368 } 369 370 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 371 { 372 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 373 return e->original_sector; 374 #else 375 return le64_to_cpu(memory_entry(wc, e)->original_sector); 376 #endif 377 } 378 379 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 380 { 381 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 382 return e->seq_count; 383 #else 384 return le64_to_cpu(memory_entry(wc, e)->seq_count); 385 #endif 386 } 387 388 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 389 { 390 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 391 e->seq_count = -1; 392 #endif 393 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 394 } 395 396 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 397 uint64_t original_sector, uint64_t seq_count) 398 { 399 struct wc_memory_entry me; 400 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 401 e->original_sector = original_sector; 402 e->seq_count = seq_count; 403 #endif 404 me.original_sector = cpu_to_le64(original_sector); 405 me.seq_count = cpu_to_le64(seq_count); 406 pmem_assign(*memory_entry(wc, e), me); 407 } 408 409 #define writecache_error(wc, err, msg, arg...) \ 410 do { \ 411 if (!cmpxchg(&(wc)->error, 0, err)) \ 412 DMERR(msg, ##arg); \ 413 wake_up(&(wc)->freelist_wait); \ 414 } while (0) 415 416 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 417 418 static void writecache_flush_all_metadata(struct dm_writecache *wc) 419 { 420 if (!WC_MODE_PMEM(wc)) 421 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 422 } 423 424 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 425 { 426 if (!WC_MODE_PMEM(wc)) 427 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 428 wc->dirty_bitmap); 429 } 430 431 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 432 433 struct io_notify { 434 struct dm_writecache *wc; 435 struct completion c; 436 atomic_t count; 437 }; 438 439 static void writecache_notify_io(unsigned long error, void *context) 440 { 441 struct io_notify *endio = context; 442 443 if (unlikely(error != 0)) 444 writecache_error(endio->wc, -EIO, "error writing metadata"); 445 BUG_ON(atomic_read(&endio->count) <= 0); 446 if (atomic_dec_and_test(&endio->count)) 447 complete(&endio->c); 448 } 449 450 static void ssd_commit_flushed(struct dm_writecache *wc) 451 { 452 struct dm_io_region region; 453 struct dm_io_request req; 454 struct io_notify endio = { 455 wc, 456 COMPLETION_INITIALIZER_ONSTACK(endio.c), 457 ATOMIC_INIT(1), 458 }; 459 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 460 unsigned i = 0; 461 462 while (1) { 463 unsigned j; 464 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 465 if (unlikely(i == bitmap_bits)) 466 break; 467 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 468 469 region.bdev = wc->ssd_dev->bdev; 470 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 471 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 472 473 if (unlikely(region.sector >= wc->metadata_sectors)) 474 break; 475 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 476 region.count = wc->metadata_sectors - region.sector; 477 478 region.sector += wc->start_sector; 479 atomic_inc(&endio.count); 480 req.bi_op = REQ_OP_WRITE; 481 req.bi_op_flags = REQ_SYNC; 482 req.mem.type = DM_IO_VMA; 483 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 484 req.client = wc->dm_io; 485 req.notify.fn = writecache_notify_io; 486 req.notify.context = &endio; 487 488 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 489 (void) dm_io(&req, 1, ®ion, NULL); 490 i = j; 491 } 492 493 writecache_notify_io(0, &endio); 494 wait_for_completion_io(&endio.c); 495 496 writecache_disk_flush(wc, wc->ssd_dev); 497 498 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 499 } 500 501 static void writecache_commit_flushed(struct dm_writecache *wc) 502 { 503 if (WC_MODE_PMEM(wc)) 504 wmb(); 505 else 506 ssd_commit_flushed(wc); 507 } 508 509 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 510 { 511 int r; 512 struct dm_io_region region; 513 struct dm_io_request req; 514 515 region.bdev = dev->bdev; 516 region.sector = 0; 517 region.count = 0; 518 req.bi_op = REQ_OP_WRITE; 519 req.bi_op_flags = REQ_PREFLUSH; 520 req.mem.type = DM_IO_KMEM; 521 req.mem.ptr.addr = NULL; 522 req.client = wc->dm_io; 523 req.notify.fn = NULL; 524 525 r = dm_io(&req, 1, ®ion, NULL); 526 if (unlikely(r)) 527 writecache_error(wc, r, "error flushing metadata: %d", r); 528 } 529 530 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 531 { 532 wait_event(wc->bio_in_progress_wait[direction], 533 !atomic_read(&wc->bio_in_progress[direction])); 534 } 535 536 #define WFE_RETURN_FOLLOWING 1 537 #define WFE_LOWEST_SEQ 2 538 539 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 540 uint64_t block, int flags) 541 { 542 struct wc_entry *e; 543 struct rb_node *node = wc->tree.rb_node; 544 545 if (unlikely(!node)) 546 return NULL; 547 548 while (1) { 549 e = container_of(node, struct wc_entry, rb_node); 550 if (read_original_sector(wc, e) == block) 551 break; 552 node = (read_original_sector(wc, e) >= block ? 553 e->rb_node.rb_left : e->rb_node.rb_right); 554 if (unlikely(!node)) { 555 if (!(flags & WFE_RETURN_FOLLOWING)) { 556 return NULL; 557 } 558 if (read_original_sector(wc, e) >= block) { 559 break; 560 } else { 561 node = rb_next(&e->rb_node); 562 if (unlikely(!node)) { 563 return NULL; 564 } 565 e = container_of(node, struct wc_entry, rb_node); 566 break; 567 } 568 } 569 } 570 571 while (1) { 572 struct wc_entry *e2; 573 if (flags & WFE_LOWEST_SEQ) 574 node = rb_prev(&e->rb_node); 575 else 576 node = rb_next(&e->rb_node); 577 if (!node) 578 return e; 579 e2 = container_of(node, struct wc_entry, rb_node); 580 if (read_original_sector(wc, e2) != block) 581 return e; 582 e = e2; 583 } 584 } 585 586 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 587 { 588 struct wc_entry *e; 589 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 590 591 while (*node) { 592 e = container_of(*node, struct wc_entry, rb_node); 593 parent = &e->rb_node; 594 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 595 node = &parent->rb_left; 596 else 597 node = &parent->rb_right; 598 } 599 rb_link_node(&ins->rb_node, parent, node); 600 rb_insert_color(&ins->rb_node, &wc->tree); 601 list_add(&ins->lru, &wc->lru); 602 } 603 604 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 605 { 606 list_del(&e->lru); 607 rb_erase(&e->rb_node, &wc->tree); 608 } 609 610 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 611 { 612 if (WC_MODE_SORT_FREELIST(wc)) { 613 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 614 if (unlikely(!*node)) 615 wc->current_free = e; 616 while (*node) { 617 parent = *node; 618 if (&e->rb_node < *node) 619 node = &parent->rb_left; 620 else 621 node = &parent->rb_right; 622 } 623 rb_link_node(&e->rb_node, parent, node); 624 rb_insert_color(&e->rb_node, &wc->freetree); 625 } else { 626 list_add_tail(&e->lru, &wc->freelist); 627 } 628 wc->freelist_size++; 629 } 630 631 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc) 632 { 633 struct wc_entry *e; 634 635 if (WC_MODE_SORT_FREELIST(wc)) { 636 struct rb_node *next; 637 if (unlikely(!wc->current_free)) 638 return NULL; 639 e = wc->current_free; 640 next = rb_next(&e->rb_node); 641 rb_erase(&e->rb_node, &wc->freetree); 642 if (unlikely(!next)) 643 next = rb_first(&wc->freetree); 644 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 645 } else { 646 if (unlikely(list_empty(&wc->freelist))) 647 return NULL; 648 e = container_of(wc->freelist.next, struct wc_entry, lru); 649 list_del(&e->lru); 650 } 651 wc->freelist_size--; 652 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 653 queue_work(wc->writeback_wq, &wc->writeback_work); 654 655 return e; 656 } 657 658 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 659 { 660 writecache_unlink(wc, e); 661 writecache_add_to_freelist(wc, e); 662 clear_seq_count(wc, e); 663 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 664 if (unlikely(waitqueue_active(&wc->freelist_wait))) 665 wake_up(&wc->freelist_wait); 666 } 667 668 static void writecache_wait_on_freelist(struct dm_writecache *wc) 669 { 670 DEFINE_WAIT(wait); 671 672 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 673 wc_unlock(wc); 674 io_schedule(); 675 finish_wait(&wc->freelist_wait, &wait); 676 wc_lock(wc); 677 } 678 679 static void writecache_poison_lists(struct dm_writecache *wc) 680 { 681 /* 682 * Catch incorrect access to these values while the device is suspended. 683 */ 684 memset(&wc->tree, -1, sizeof wc->tree); 685 wc->lru.next = LIST_POISON1; 686 wc->lru.prev = LIST_POISON2; 687 wc->freelist.next = LIST_POISON1; 688 wc->freelist.prev = LIST_POISON2; 689 } 690 691 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 692 { 693 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 694 if (WC_MODE_PMEM(wc)) 695 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 696 } 697 698 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 699 { 700 return read_seq_count(wc, e) < wc->seq_count; 701 } 702 703 static void writecache_flush(struct dm_writecache *wc) 704 { 705 struct wc_entry *e, *e2; 706 bool need_flush_after_free; 707 708 wc->uncommitted_blocks = 0; 709 del_timer(&wc->autocommit_timer); 710 711 if (list_empty(&wc->lru)) 712 return; 713 714 e = container_of(wc->lru.next, struct wc_entry, lru); 715 if (writecache_entry_is_committed(wc, e)) { 716 if (wc->overwrote_committed) { 717 writecache_wait_for_ios(wc, WRITE); 718 writecache_disk_flush(wc, wc->ssd_dev); 719 wc->overwrote_committed = false; 720 } 721 return; 722 } 723 while (1) { 724 writecache_flush_entry(wc, e); 725 if (unlikely(e->lru.next == &wc->lru)) 726 break; 727 e2 = container_of(e->lru.next, struct wc_entry, lru); 728 if (writecache_entry_is_committed(wc, e2)) 729 break; 730 e = e2; 731 cond_resched(); 732 } 733 writecache_commit_flushed(wc); 734 735 writecache_wait_for_ios(wc, WRITE); 736 737 wc->seq_count++; 738 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 739 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); 740 writecache_commit_flushed(wc); 741 742 wc->overwrote_committed = false; 743 744 need_flush_after_free = false; 745 while (1) { 746 /* Free another committed entry with lower seq-count */ 747 struct rb_node *rb_node = rb_prev(&e->rb_node); 748 749 if (rb_node) { 750 e2 = container_of(rb_node, struct wc_entry, rb_node); 751 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 752 likely(!e2->write_in_progress)) { 753 writecache_free_entry(wc, e2); 754 need_flush_after_free = true; 755 } 756 } 757 if (unlikely(e->lru.prev == &wc->lru)) 758 break; 759 e = container_of(e->lru.prev, struct wc_entry, lru); 760 cond_resched(); 761 } 762 763 if (need_flush_after_free) 764 writecache_commit_flushed(wc); 765 } 766 767 static void writecache_flush_work(struct work_struct *work) 768 { 769 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 770 771 wc_lock(wc); 772 writecache_flush(wc); 773 wc_unlock(wc); 774 } 775 776 static void writecache_autocommit_timer(struct timer_list *t) 777 { 778 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 779 if (!writecache_has_error(wc)) 780 queue_work(wc->writeback_wq, &wc->flush_work); 781 } 782 783 static void writecache_schedule_autocommit(struct dm_writecache *wc) 784 { 785 if (!timer_pending(&wc->autocommit_timer)) 786 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 787 } 788 789 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 790 { 791 struct wc_entry *e; 792 bool discarded_something = false; 793 794 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 795 if (unlikely(!e)) 796 return; 797 798 while (read_original_sector(wc, e) < end) { 799 struct rb_node *node = rb_next(&e->rb_node); 800 801 if (likely(!e->write_in_progress)) { 802 if (!discarded_something) { 803 writecache_wait_for_ios(wc, READ); 804 writecache_wait_for_ios(wc, WRITE); 805 discarded_something = true; 806 } 807 writecache_free_entry(wc, e); 808 } 809 810 if (!node) 811 break; 812 813 e = container_of(node, struct wc_entry, rb_node); 814 } 815 816 if (discarded_something) 817 writecache_commit_flushed(wc); 818 } 819 820 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 821 { 822 if (wc->writeback_size) { 823 writecache_wait_on_freelist(wc); 824 return true; 825 } 826 return false; 827 } 828 829 static void writecache_suspend(struct dm_target *ti) 830 { 831 struct dm_writecache *wc = ti->private; 832 bool flush_on_suspend; 833 834 del_timer_sync(&wc->autocommit_timer); 835 836 wc_lock(wc); 837 writecache_flush(wc); 838 flush_on_suspend = wc->flush_on_suspend; 839 if (flush_on_suspend) { 840 wc->flush_on_suspend = false; 841 wc->writeback_all++; 842 queue_work(wc->writeback_wq, &wc->writeback_work); 843 } 844 wc_unlock(wc); 845 846 flush_workqueue(wc->writeback_wq); 847 848 wc_lock(wc); 849 if (flush_on_suspend) 850 wc->writeback_all--; 851 while (writecache_wait_for_writeback(wc)); 852 853 if (WC_MODE_PMEM(wc)) 854 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 855 856 writecache_poison_lists(wc); 857 858 wc_unlock(wc); 859 } 860 861 static int writecache_alloc_entries(struct dm_writecache *wc) 862 { 863 size_t b; 864 865 if (wc->entries) 866 return 0; 867 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 868 if (!wc->entries) 869 return -ENOMEM; 870 for (b = 0; b < wc->n_blocks; b++) { 871 struct wc_entry *e = &wc->entries[b]; 872 e->index = b; 873 e->write_in_progress = false; 874 } 875 876 return 0; 877 } 878 879 static void writecache_resume(struct dm_target *ti) 880 { 881 struct dm_writecache *wc = ti->private; 882 size_t b; 883 bool need_flush = false; 884 __le64 sb_seq_count; 885 int r; 886 887 wc_lock(wc); 888 889 if (WC_MODE_PMEM(wc)) 890 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 891 892 wc->tree = RB_ROOT; 893 INIT_LIST_HEAD(&wc->lru); 894 if (WC_MODE_SORT_FREELIST(wc)) { 895 wc->freetree = RB_ROOT; 896 wc->current_free = NULL; 897 } else { 898 INIT_LIST_HEAD(&wc->freelist); 899 } 900 wc->freelist_size = 0; 901 902 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 903 if (r) { 904 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 905 sb_seq_count = cpu_to_le64(0); 906 } 907 wc->seq_count = le64_to_cpu(sb_seq_count); 908 909 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 910 for (b = 0; b < wc->n_blocks; b++) { 911 struct wc_entry *e = &wc->entries[b]; 912 struct wc_memory_entry wme; 913 if (writecache_has_error(wc)) { 914 e->original_sector = -1; 915 e->seq_count = -1; 916 continue; 917 } 918 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 919 if (r) { 920 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 921 (unsigned long)b, r); 922 e->original_sector = -1; 923 e->seq_count = -1; 924 } else { 925 e->original_sector = le64_to_cpu(wme.original_sector); 926 e->seq_count = le64_to_cpu(wme.seq_count); 927 } 928 } 929 #endif 930 for (b = 0; b < wc->n_blocks; b++) { 931 struct wc_entry *e = &wc->entries[b]; 932 if (!writecache_entry_is_committed(wc, e)) { 933 if (read_seq_count(wc, e) != -1) { 934 erase_this: 935 clear_seq_count(wc, e); 936 need_flush = true; 937 } 938 writecache_add_to_freelist(wc, e); 939 } else { 940 struct wc_entry *old; 941 942 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 943 if (!old) { 944 writecache_insert_entry(wc, e); 945 } else { 946 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 947 writecache_error(wc, -EINVAL, 948 "two identical entries, position %llu, sector %llu, sequence %llu", 949 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 950 (unsigned long long)read_seq_count(wc, e)); 951 } 952 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 953 goto erase_this; 954 } else { 955 writecache_free_entry(wc, old); 956 writecache_insert_entry(wc, e); 957 need_flush = true; 958 } 959 } 960 } 961 cond_resched(); 962 } 963 964 if (need_flush) { 965 writecache_flush_all_metadata(wc); 966 writecache_commit_flushed(wc); 967 } 968 969 wc_unlock(wc); 970 } 971 972 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 973 { 974 if (argc != 1) 975 return -EINVAL; 976 977 wc_lock(wc); 978 if (dm_suspended(wc->ti)) { 979 wc_unlock(wc); 980 return -EBUSY; 981 } 982 if (writecache_has_error(wc)) { 983 wc_unlock(wc); 984 return -EIO; 985 } 986 987 writecache_flush(wc); 988 wc->writeback_all++; 989 queue_work(wc->writeback_wq, &wc->writeback_work); 990 wc_unlock(wc); 991 992 flush_workqueue(wc->writeback_wq); 993 994 wc_lock(wc); 995 wc->writeback_all--; 996 if (writecache_has_error(wc)) { 997 wc_unlock(wc); 998 return -EIO; 999 } 1000 wc_unlock(wc); 1001 1002 return 0; 1003 } 1004 1005 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1006 { 1007 if (argc != 1) 1008 return -EINVAL; 1009 1010 wc_lock(wc); 1011 wc->flush_on_suspend = true; 1012 wc_unlock(wc); 1013 1014 return 0; 1015 } 1016 1017 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1018 char *result, unsigned maxlen) 1019 { 1020 int r = -EINVAL; 1021 struct dm_writecache *wc = ti->private; 1022 1023 if (!strcasecmp(argv[0], "flush")) 1024 r = process_flush_mesg(argc, argv, wc); 1025 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1026 r = process_flush_on_suspend_mesg(argc, argv, wc); 1027 else 1028 DMERR("unrecognised message received: %s", argv[0]); 1029 1030 return r; 1031 } 1032 1033 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1034 { 1035 void *buf; 1036 unsigned long flags; 1037 unsigned size; 1038 int rw = bio_data_dir(bio); 1039 unsigned remaining_size = wc->block_size; 1040 1041 do { 1042 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1043 buf = bvec_kmap_irq(&bv, &flags); 1044 size = bv.bv_len; 1045 if (unlikely(size > remaining_size)) 1046 size = remaining_size; 1047 1048 if (rw == READ) { 1049 int r; 1050 r = memcpy_mcsafe(buf, data, size); 1051 flush_dcache_page(bio_page(bio)); 1052 if (unlikely(r)) { 1053 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1054 bio->bi_status = BLK_STS_IOERR; 1055 } 1056 } else { 1057 flush_dcache_page(bio_page(bio)); 1058 memcpy_flushcache(data, buf, size); 1059 } 1060 1061 bvec_kunmap_irq(buf, &flags); 1062 1063 data = (char *)data + size; 1064 remaining_size -= size; 1065 bio_advance(bio, size); 1066 } while (unlikely(remaining_size)); 1067 } 1068 1069 static int writecache_flush_thread(void *data) 1070 { 1071 struct dm_writecache *wc = data; 1072 1073 while (1) { 1074 struct bio *bio; 1075 1076 wc_lock(wc); 1077 bio = bio_list_pop(&wc->flush_list); 1078 if (!bio) { 1079 set_current_state(TASK_INTERRUPTIBLE); 1080 wc_unlock(wc); 1081 1082 if (unlikely(kthread_should_stop())) { 1083 set_current_state(TASK_RUNNING); 1084 break; 1085 } 1086 1087 schedule(); 1088 continue; 1089 } 1090 1091 if (bio_op(bio) == REQ_OP_DISCARD) { 1092 writecache_discard(wc, bio->bi_iter.bi_sector, 1093 bio_end_sector(bio)); 1094 wc_unlock(wc); 1095 bio_set_dev(bio, wc->dev->bdev); 1096 generic_make_request(bio); 1097 } else { 1098 writecache_flush(wc); 1099 wc_unlock(wc); 1100 if (writecache_has_error(wc)) 1101 bio->bi_status = BLK_STS_IOERR; 1102 bio_endio(bio); 1103 } 1104 } 1105 1106 return 0; 1107 } 1108 1109 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1110 { 1111 if (bio_list_empty(&wc->flush_list)) 1112 wake_up_process(wc->flush_thread); 1113 bio_list_add(&wc->flush_list, bio); 1114 } 1115 1116 static int writecache_map(struct dm_target *ti, struct bio *bio) 1117 { 1118 struct wc_entry *e; 1119 struct dm_writecache *wc = ti->private; 1120 1121 bio->bi_private = NULL; 1122 1123 wc_lock(wc); 1124 1125 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1126 if (writecache_has_error(wc)) 1127 goto unlock_error; 1128 if (WC_MODE_PMEM(wc)) { 1129 writecache_flush(wc); 1130 if (writecache_has_error(wc)) 1131 goto unlock_error; 1132 goto unlock_submit; 1133 } else { 1134 writecache_offload_bio(wc, bio); 1135 goto unlock_return; 1136 } 1137 } 1138 1139 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1140 1141 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1142 (wc->block_size / 512 - 1)) != 0)) { 1143 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1144 (unsigned long long)bio->bi_iter.bi_sector, 1145 bio->bi_iter.bi_size, wc->block_size); 1146 goto unlock_error; 1147 } 1148 1149 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1150 if (writecache_has_error(wc)) 1151 goto unlock_error; 1152 if (WC_MODE_PMEM(wc)) { 1153 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1154 goto unlock_remap_origin; 1155 } else { 1156 writecache_offload_bio(wc, bio); 1157 goto unlock_return; 1158 } 1159 } 1160 1161 if (bio_data_dir(bio) == READ) { 1162 read_next_block: 1163 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1164 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1165 if (WC_MODE_PMEM(wc)) { 1166 bio_copy_block(wc, bio, memory_data(wc, e)); 1167 if (bio->bi_iter.bi_size) 1168 goto read_next_block; 1169 goto unlock_submit; 1170 } else { 1171 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1172 bio_set_dev(bio, wc->ssd_dev->bdev); 1173 bio->bi_iter.bi_sector = cache_sector(wc, e); 1174 if (!writecache_entry_is_committed(wc, e)) 1175 writecache_wait_for_ios(wc, WRITE); 1176 goto unlock_remap; 1177 } 1178 } else { 1179 if (e) { 1180 sector_t next_boundary = 1181 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1182 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1183 dm_accept_partial_bio(bio, next_boundary); 1184 } 1185 } 1186 goto unlock_remap_origin; 1187 } 1188 } else { 1189 do { 1190 if (writecache_has_error(wc)) 1191 goto unlock_error; 1192 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1193 if (e) { 1194 if (!writecache_entry_is_committed(wc, e)) 1195 goto bio_copy; 1196 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1197 wc->overwrote_committed = true; 1198 goto bio_copy; 1199 } 1200 } 1201 e = writecache_pop_from_freelist(wc); 1202 if (unlikely(!e)) { 1203 writecache_wait_on_freelist(wc); 1204 continue; 1205 } 1206 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1207 writecache_insert_entry(wc, e); 1208 wc->uncommitted_blocks++; 1209 bio_copy: 1210 if (WC_MODE_PMEM(wc)) { 1211 bio_copy_block(wc, bio, memory_data(wc, e)); 1212 } else { 1213 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1214 bio_set_dev(bio, wc->ssd_dev->bdev); 1215 bio->bi_iter.bi_sector = cache_sector(wc, e); 1216 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1217 wc->uncommitted_blocks = 0; 1218 queue_work(wc->writeback_wq, &wc->flush_work); 1219 } else { 1220 writecache_schedule_autocommit(wc); 1221 } 1222 goto unlock_remap; 1223 } 1224 } while (bio->bi_iter.bi_size); 1225 1226 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) 1227 writecache_flush(wc); 1228 else 1229 writecache_schedule_autocommit(wc); 1230 goto unlock_submit; 1231 } 1232 1233 unlock_remap_origin: 1234 bio_set_dev(bio, wc->dev->bdev); 1235 wc_unlock(wc); 1236 return DM_MAPIO_REMAPPED; 1237 1238 unlock_remap: 1239 /* make sure that writecache_end_io decrements bio_in_progress: */ 1240 bio->bi_private = (void *)1; 1241 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1242 wc_unlock(wc); 1243 return DM_MAPIO_REMAPPED; 1244 1245 unlock_submit: 1246 wc_unlock(wc); 1247 bio_endio(bio); 1248 return DM_MAPIO_SUBMITTED; 1249 1250 unlock_return: 1251 wc_unlock(wc); 1252 return DM_MAPIO_SUBMITTED; 1253 1254 unlock_error: 1255 wc_unlock(wc); 1256 bio_io_error(bio); 1257 return DM_MAPIO_SUBMITTED; 1258 } 1259 1260 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1261 { 1262 struct dm_writecache *wc = ti->private; 1263 1264 if (bio->bi_private != NULL) { 1265 int dir = bio_data_dir(bio); 1266 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1267 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1268 wake_up(&wc->bio_in_progress_wait[dir]); 1269 } 1270 return 0; 1271 } 1272 1273 static int writecache_iterate_devices(struct dm_target *ti, 1274 iterate_devices_callout_fn fn, void *data) 1275 { 1276 struct dm_writecache *wc = ti->private; 1277 1278 return fn(ti, wc->dev, 0, ti->len, data); 1279 } 1280 1281 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1282 { 1283 struct dm_writecache *wc = ti->private; 1284 1285 if (limits->logical_block_size < wc->block_size) 1286 limits->logical_block_size = wc->block_size; 1287 1288 if (limits->physical_block_size < wc->block_size) 1289 limits->physical_block_size = wc->block_size; 1290 1291 if (limits->io_min < wc->block_size) 1292 limits->io_min = wc->block_size; 1293 } 1294 1295 1296 static void writecache_writeback_endio(struct bio *bio) 1297 { 1298 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1299 struct dm_writecache *wc = wb->wc; 1300 unsigned long flags; 1301 1302 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1303 if (unlikely(list_empty(&wc->endio_list))) 1304 wake_up_process(wc->endio_thread); 1305 list_add_tail(&wb->endio_entry, &wc->endio_list); 1306 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1307 } 1308 1309 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1310 { 1311 struct copy_struct *c = ptr; 1312 struct dm_writecache *wc = c->wc; 1313 1314 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1315 1316 raw_spin_lock_irq(&wc->endio_list_lock); 1317 if (unlikely(list_empty(&wc->endio_list))) 1318 wake_up_process(wc->endio_thread); 1319 list_add_tail(&c->endio_entry, &wc->endio_list); 1320 raw_spin_unlock_irq(&wc->endio_list_lock); 1321 } 1322 1323 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1324 { 1325 unsigned i; 1326 struct writeback_struct *wb; 1327 struct wc_entry *e; 1328 unsigned long n_walked = 0; 1329 1330 do { 1331 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1332 list_del(&wb->endio_entry); 1333 1334 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1335 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1336 "write error %d", wb->bio.bi_status); 1337 i = 0; 1338 do { 1339 e = wb->wc_list[i]; 1340 BUG_ON(!e->write_in_progress); 1341 e->write_in_progress = false; 1342 INIT_LIST_HEAD(&e->lru); 1343 if (!writecache_has_error(wc)) 1344 writecache_free_entry(wc, e); 1345 BUG_ON(!wc->writeback_size); 1346 wc->writeback_size--; 1347 n_walked++; 1348 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1349 writecache_commit_flushed(wc); 1350 wc_unlock(wc); 1351 wc_lock(wc); 1352 n_walked = 0; 1353 } 1354 } while (++i < wb->wc_list_n); 1355 1356 if (wb->wc_list != wb->wc_list_inline) 1357 kfree(wb->wc_list); 1358 bio_put(&wb->bio); 1359 } while (!list_empty(list)); 1360 } 1361 1362 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1363 { 1364 struct copy_struct *c; 1365 struct wc_entry *e; 1366 1367 do { 1368 c = list_entry(list->next, struct copy_struct, endio_entry); 1369 list_del(&c->endio_entry); 1370 1371 if (unlikely(c->error)) 1372 writecache_error(wc, c->error, "copy error"); 1373 1374 e = c->e; 1375 do { 1376 BUG_ON(!e->write_in_progress); 1377 e->write_in_progress = false; 1378 INIT_LIST_HEAD(&e->lru); 1379 if (!writecache_has_error(wc)) 1380 writecache_free_entry(wc, e); 1381 1382 BUG_ON(!wc->writeback_size); 1383 wc->writeback_size--; 1384 e++; 1385 } while (--c->n_entries); 1386 mempool_free(c, &wc->copy_pool); 1387 } while (!list_empty(list)); 1388 } 1389 1390 static int writecache_endio_thread(void *data) 1391 { 1392 struct dm_writecache *wc = data; 1393 1394 while (1) { 1395 struct list_head list; 1396 1397 raw_spin_lock_irq(&wc->endio_list_lock); 1398 if (!list_empty(&wc->endio_list)) 1399 goto pop_from_list; 1400 set_current_state(TASK_INTERRUPTIBLE); 1401 raw_spin_unlock_irq(&wc->endio_list_lock); 1402 1403 if (unlikely(kthread_should_stop())) { 1404 set_current_state(TASK_RUNNING); 1405 break; 1406 } 1407 1408 schedule(); 1409 1410 continue; 1411 1412 pop_from_list: 1413 list = wc->endio_list; 1414 list.next->prev = list.prev->next = &list; 1415 INIT_LIST_HEAD(&wc->endio_list); 1416 raw_spin_unlock_irq(&wc->endio_list_lock); 1417 1418 if (!WC_MODE_FUA(wc)) 1419 writecache_disk_flush(wc, wc->dev); 1420 1421 wc_lock(wc); 1422 1423 if (WC_MODE_PMEM(wc)) { 1424 __writecache_endio_pmem(wc, &list); 1425 } else { 1426 __writecache_endio_ssd(wc, &list); 1427 writecache_wait_for_ios(wc, READ); 1428 } 1429 1430 writecache_commit_flushed(wc); 1431 1432 wc_unlock(wc); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1439 { 1440 struct dm_writecache *wc = wb->wc; 1441 unsigned block_size = wc->block_size; 1442 void *address = memory_data(wc, e); 1443 1444 persistent_memory_flush_cache(address, block_size); 1445 return bio_add_page(&wb->bio, persistent_memory_page(address), 1446 block_size, persistent_memory_page_offset(address)) != 0; 1447 } 1448 1449 struct writeback_list { 1450 struct list_head list; 1451 size_t size; 1452 }; 1453 1454 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1455 { 1456 if (unlikely(wc->max_writeback_jobs)) { 1457 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1458 wc_lock(wc); 1459 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1460 writecache_wait_on_freelist(wc); 1461 wc_unlock(wc); 1462 } 1463 } 1464 cond_resched(); 1465 } 1466 1467 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1468 { 1469 struct wc_entry *e, *f; 1470 struct bio *bio; 1471 struct writeback_struct *wb; 1472 unsigned max_pages; 1473 1474 while (wbl->size) { 1475 wbl->size--; 1476 e = container_of(wbl->list.prev, struct wc_entry, lru); 1477 list_del(&e->lru); 1478 1479 max_pages = e->wc_list_contiguous; 1480 1481 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1482 wb = container_of(bio, struct writeback_struct, bio); 1483 wb->wc = wc; 1484 wb->bio.bi_end_io = writecache_writeback_endio; 1485 bio_set_dev(&wb->bio, wc->dev->bdev); 1486 wb->bio.bi_iter.bi_sector = read_original_sector(wc, e); 1487 wb->page_offset = PAGE_SIZE; 1488 if (max_pages <= WB_LIST_INLINE || 1489 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1490 GFP_NOIO | __GFP_NORETRY | 1491 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1492 wb->wc_list = wb->wc_list_inline; 1493 max_pages = WB_LIST_INLINE; 1494 } 1495 1496 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1497 1498 wb->wc_list[0] = e; 1499 wb->wc_list_n = 1; 1500 1501 while (wbl->size && wb->wc_list_n < max_pages) { 1502 f = container_of(wbl->list.prev, struct wc_entry, lru); 1503 if (read_original_sector(wc, f) != 1504 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1505 break; 1506 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1507 break; 1508 wbl->size--; 1509 list_del(&f->lru); 1510 wb->wc_list[wb->wc_list_n++] = f; 1511 e = f; 1512 } 1513 bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1514 if (writecache_has_error(wc)) { 1515 bio->bi_status = BLK_STS_IOERR; 1516 bio_endio(&wb->bio); 1517 } else { 1518 submit_bio(&wb->bio); 1519 } 1520 1521 __writeback_throttle(wc, wbl); 1522 } 1523 } 1524 1525 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1526 { 1527 struct wc_entry *e, *f; 1528 struct dm_io_region from, to; 1529 struct copy_struct *c; 1530 1531 while (wbl->size) { 1532 unsigned n_sectors; 1533 1534 wbl->size--; 1535 e = container_of(wbl->list.prev, struct wc_entry, lru); 1536 list_del(&e->lru); 1537 1538 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1539 1540 from.bdev = wc->ssd_dev->bdev; 1541 from.sector = cache_sector(wc, e); 1542 from.count = n_sectors; 1543 to.bdev = wc->dev->bdev; 1544 to.sector = read_original_sector(wc, e); 1545 to.count = n_sectors; 1546 1547 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1548 c->wc = wc; 1549 c->e = e; 1550 c->n_entries = e->wc_list_contiguous; 1551 1552 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1553 wbl->size--; 1554 f = container_of(wbl->list.prev, struct wc_entry, lru); 1555 BUG_ON(f != e + 1); 1556 list_del(&f->lru); 1557 e = f; 1558 } 1559 1560 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1561 1562 __writeback_throttle(wc, wbl); 1563 } 1564 } 1565 1566 static void writecache_writeback(struct work_struct *work) 1567 { 1568 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1569 struct blk_plug plug; 1570 struct wc_entry *e, *f, *g; 1571 struct rb_node *node, *next_node; 1572 struct list_head skipped; 1573 struct writeback_list wbl; 1574 unsigned long n_walked; 1575 1576 wc_lock(wc); 1577 restart: 1578 if (writecache_has_error(wc)) { 1579 wc_unlock(wc); 1580 return; 1581 } 1582 1583 if (unlikely(wc->writeback_all)) { 1584 if (writecache_wait_for_writeback(wc)) 1585 goto restart; 1586 } 1587 1588 if (wc->overwrote_committed) { 1589 writecache_wait_for_ios(wc, WRITE); 1590 } 1591 1592 n_walked = 0; 1593 INIT_LIST_HEAD(&skipped); 1594 INIT_LIST_HEAD(&wbl.list); 1595 wbl.size = 0; 1596 while (!list_empty(&wc->lru) && 1597 (wc->writeback_all || 1598 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { 1599 1600 n_walked++; 1601 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1602 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1603 queue_work(wc->writeback_wq, &wc->writeback_work); 1604 break; 1605 } 1606 1607 e = container_of(wc->lru.prev, struct wc_entry, lru); 1608 BUG_ON(e->write_in_progress); 1609 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1610 writecache_flush(wc); 1611 } 1612 node = rb_prev(&e->rb_node); 1613 if (node) { 1614 f = container_of(node, struct wc_entry, rb_node); 1615 if (unlikely(read_original_sector(wc, f) == 1616 read_original_sector(wc, e))) { 1617 BUG_ON(!f->write_in_progress); 1618 list_del(&e->lru); 1619 list_add(&e->lru, &skipped); 1620 cond_resched(); 1621 continue; 1622 } 1623 } 1624 wc->writeback_size++; 1625 list_del(&e->lru); 1626 list_add(&e->lru, &wbl.list); 1627 wbl.size++; 1628 e->write_in_progress = true; 1629 e->wc_list_contiguous = 1; 1630 1631 f = e; 1632 1633 while (1) { 1634 next_node = rb_next(&f->rb_node); 1635 if (unlikely(!next_node)) 1636 break; 1637 g = container_of(next_node, struct wc_entry, rb_node); 1638 if (read_original_sector(wc, g) == 1639 read_original_sector(wc, f)) { 1640 f = g; 1641 continue; 1642 } 1643 if (read_original_sector(wc, g) != 1644 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1645 break; 1646 if (unlikely(g->write_in_progress)) 1647 break; 1648 if (unlikely(!writecache_entry_is_committed(wc, g))) 1649 break; 1650 1651 if (!WC_MODE_PMEM(wc)) { 1652 if (g != f + 1) 1653 break; 1654 } 1655 1656 n_walked++; 1657 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1658 // break; 1659 1660 wc->writeback_size++; 1661 list_del(&g->lru); 1662 list_add(&g->lru, &wbl.list); 1663 wbl.size++; 1664 g->write_in_progress = true; 1665 g->wc_list_contiguous = BIO_MAX_PAGES; 1666 f = g; 1667 e->wc_list_contiguous++; 1668 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) 1669 break; 1670 } 1671 cond_resched(); 1672 } 1673 1674 if (!list_empty(&skipped)) { 1675 list_splice_tail(&skipped, &wc->lru); 1676 /* 1677 * If we didn't do any progress, we must wait until some 1678 * writeback finishes to avoid burning CPU in a loop 1679 */ 1680 if (unlikely(!wbl.size)) 1681 writecache_wait_for_writeback(wc); 1682 } 1683 1684 wc_unlock(wc); 1685 1686 blk_start_plug(&plug); 1687 1688 if (WC_MODE_PMEM(wc)) 1689 __writecache_writeback_pmem(wc, &wbl); 1690 else 1691 __writecache_writeback_ssd(wc, &wbl); 1692 1693 blk_finish_plug(&plug); 1694 1695 if (unlikely(wc->writeback_all)) { 1696 wc_lock(wc); 1697 while (writecache_wait_for_writeback(wc)); 1698 wc_unlock(wc); 1699 } 1700 } 1701 1702 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1703 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1704 { 1705 uint64_t n_blocks, offset; 1706 struct wc_entry e; 1707 1708 n_blocks = device_size; 1709 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1710 1711 while (1) { 1712 if (!n_blocks) 1713 return -ENOSPC; 1714 /* Verify the following entries[n_blocks] won't overflow */ 1715 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1716 sizeof(struct wc_memory_entry))) 1717 return -EFBIG; 1718 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1719 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1720 if (offset + n_blocks * block_size <= device_size) 1721 break; 1722 n_blocks--; 1723 } 1724 1725 /* check if the bit field overflows */ 1726 e.index = n_blocks; 1727 if (e.index != n_blocks) 1728 return -EFBIG; 1729 1730 if (n_blocks_p) 1731 *n_blocks_p = n_blocks; 1732 if (n_metadata_blocks_p) 1733 *n_metadata_blocks_p = offset >> __ffs(block_size); 1734 return 0; 1735 } 1736 1737 static int init_memory(struct dm_writecache *wc) 1738 { 1739 size_t b; 1740 int r; 1741 1742 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1743 if (r) 1744 return r; 1745 1746 r = writecache_alloc_entries(wc); 1747 if (r) 1748 return r; 1749 1750 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1751 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1752 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1753 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1754 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1755 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1756 1757 for (b = 0; b < wc->n_blocks; b++) 1758 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1759 1760 writecache_flush_all_metadata(wc); 1761 writecache_commit_flushed(wc); 1762 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1763 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1764 writecache_commit_flushed(wc); 1765 1766 return 0; 1767 } 1768 1769 static void writecache_dtr(struct dm_target *ti) 1770 { 1771 struct dm_writecache *wc = ti->private; 1772 1773 if (!wc) 1774 return; 1775 1776 if (wc->endio_thread) 1777 kthread_stop(wc->endio_thread); 1778 1779 if (wc->flush_thread) 1780 kthread_stop(wc->flush_thread); 1781 1782 bioset_exit(&wc->bio_set); 1783 1784 mempool_exit(&wc->copy_pool); 1785 1786 if (wc->writeback_wq) 1787 destroy_workqueue(wc->writeback_wq); 1788 1789 if (wc->dev) 1790 dm_put_device(ti, wc->dev); 1791 1792 if (wc->ssd_dev) 1793 dm_put_device(ti, wc->ssd_dev); 1794 1795 if (wc->entries) 1796 vfree(wc->entries); 1797 1798 if (wc->memory_map) { 1799 if (WC_MODE_PMEM(wc)) 1800 persistent_memory_release(wc); 1801 else 1802 vfree(wc->memory_map); 1803 } 1804 1805 if (wc->dm_kcopyd) 1806 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1807 1808 if (wc->dm_io) 1809 dm_io_client_destroy(wc->dm_io); 1810 1811 if (wc->dirty_bitmap) 1812 vfree(wc->dirty_bitmap); 1813 1814 kfree(wc); 1815 } 1816 1817 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1818 { 1819 struct dm_writecache *wc; 1820 struct dm_arg_set as; 1821 const char *string; 1822 unsigned opt_params; 1823 size_t offset, data_size; 1824 int i, r; 1825 char dummy; 1826 int high_wm_percent = HIGH_WATERMARK; 1827 int low_wm_percent = LOW_WATERMARK; 1828 uint64_t x; 1829 struct wc_memory_superblock s; 1830 1831 static struct dm_arg _args[] = { 1832 {0, 10, "Invalid number of feature args"}, 1833 }; 1834 1835 as.argc = argc; 1836 as.argv = argv; 1837 1838 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1839 if (!wc) { 1840 ti->error = "Cannot allocate writecache structure"; 1841 r = -ENOMEM; 1842 goto bad; 1843 } 1844 ti->private = wc; 1845 wc->ti = ti; 1846 1847 mutex_init(&wc->lock); 1848 writecache_poison_lists(wc); 1849 init_waitqueue_head(&wc->freelist_wait); 1850 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1851 1852 for (i = 0; i < 2; i++) { 1853 atomic_set(&wc->bio_in_progress[i], 0); 1854 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1855 } 1856 1857 wc->dm_io = dm_io_client_create(); 1858 if (IS_ERR(wc->dm_io)) { 1859 r = PTR_ERR(wc->dm_io); 1860 ti->error = "Unable to allocate dm-io client"; 1861 wc->dm_io = NULL; 1862 goto bad; 1863 } 1864 1865 wc->writeback_wq = alloc_workqueue("writecache-writeabck", WQ_MEM_RECLAIM, 1); 1866 if (!wc->writeback_wq) { 1867 r = -ENOMEM; 1868 ti->error = "Could not allocate writeback workqueue"; 1869 goto bad; 1870 } 1871 INIT_WORK(&wc->writeback_work, writecache_writeback); 1872 INIT_WORK(&wc->flush_work, writecache_flush_work); 1873 1874 raw_spin_lock_init(&wc->endio_list_lock); 1875 INIT_LIST_HEAD(&wc->endio_list); 1876 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 1877 if (IS_ERR(wc->endio_thread)) { 1878 r = PTR_ERR(wc->endio_thread); 1879 wc->endio_thread = NULL; 1880 ti->error = "Couldn't spawn endio thread"; 1881 goto bad; 1882 } 1883 wake_up_process(wc->endio_thread); 1884 1885 /* 1886 * Parse the mode (pmem or ssd) 1887 */ 1888 string = dm_shift_arg(&as); 1889 if (!string) 1890 goto bad_arguments; 1891 1892 if (!strcasecmp(string, "s")) { 1893 wc->pmem_mode = false; 1894 } else if (!strcasecmp(string, "p")) { 1895 #ifdef DM_WRITECACHE_HAS_PMEM 1896 wc->pmem_mode = true; 1897 wc->writeback_fua = true; 1898 #else 1899 /* 1900 * If the architecture doesn't support persistent memory or 1901 * the kernel doesn't support any DAX drivers, this driver can 1902 * only be used in SSD-only mode. 1903 */ 1904 r = -EOPNOTSUPP; 1905 ti->error = "Persistent memory or DAX not supported on this system"; 1906 goto bad; 1907 #endif 1908 } else { 1909 goto bad_arguments; 1910 } 1911 1912 if (WC_MODE_PMEM(wc)) { 1913 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 1914 offsetof(struct writeback_struct, bio), 1915 BIOSET_NEED_BVECS); 1916 if (r) { 1917 ti->error = "Could not allocate bio set"; 1918 goto bad; 1919 } 1920 } else { 1921 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 1922 if (r) { 1923 ti->error = "Could not allocate mempool"; 1924 goto bad; 1925 } 1926 } 1927 1928 /* 1929 * Parse the origin data device 1930 */ 1931 string = dm_shift_arg(&as); 1932 if (!string) 1933 goto bad_arguments; 1934 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 1935 if (r) { 1936 ti->error = "Origin data device lookup failed"; 1937 goto bad; 1938 } 1939 1940 /* 1941 * Parse cache data device (be it pmem or ssd) 1942 */ 1943 string = dm_shift_arg(&as); 1944 if (!string) 1945 goto bad_arguments; 1946 1947 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 1948 if (r) { 1949 ti->error = "Cache data device lookup failed"; 1950 goto bad; 1951 } 1952 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 1953 1954 /* 1955 * Parse the cache block size 1956 */ 1957 string = dm_shift_arg(&as); 1958 if (!string) 1959 goto bad_arguments; 1960 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 1961 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 1962 (wc->block_size & (wc->block_size - 1))) { 1963 r = -EINVAL; 1964 ti->error = "Invalid block size"; 1965 goto bad; 1966 } 1967 wc->block_size_bits = __ffs(wc->block_size); 1968 1969 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 1970 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 1971 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 1972 1973 /* 1974 * Parse optional arguments 1975 */ 1976 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 1977 if (r) 1978 goto bad; 1979 1980 while (opt_params) { 1981 string = dm_shift_arg(&as), opt_params--; 1982 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 1983 unsigned long long start_sector; 1984 string = dm_shift_arg(&as), opt_params--; 1985 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 1986 goto invalid_optional; 1987 wc->start_sector = start_sector; 1988 if (wc->start_sector != start_sector || 1989 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 1990 goto invalid_optional; 1991 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 1992 string = dm_shift_arg(&as), opt_params--; 1993 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 1994 goto invalid_optional; 1995 if (high_wm_percent < 0 || high_wm_percent > 100) 1996 goto invalid_optional; 1997 wc->high_wm_percent_set = true; 1998 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 1999 string = dm_shift_arg(&as), opt_params--; 2000 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2001 goto invalid_optional; 2002 if (low_wm_percent < 0 || low_wm_percent > 100) 2003 goto invalid_optional; 2004 wc->low_wm_percent_set = true; 2005 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2006 string = dm_shift_arg(&as), opt_params--; 2007 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2008 goto invalid_optional; 2009 wc->max_writeback_jobs_set = true; 2010 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2011 string = dm_shift_arg(&as), opt_params--; 2012 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2013 goto invalid_optional; 2014 wc->autocommit_blocks_set = true; 2015 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2016 unsigned autocommit_msecs; 2017 string = dm_shift_arg(&as), opt_params--; 2018 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2019 goto invalid_optional; 2020 if (autocommit_msecs > 3600000) 2021 goto invalid_optional; 2022 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2023 wc->autocommit_time_set = true; 2024 } else if (!strcasecmp(string, "fua")) { 2025 if (WC_MODE_PMEM(wc)) { 2026 wc->writeback_fua = true; 2027 wc->writeback_fua_set = true; 2028 } else goto invalid_optional; 2029 } else if (!strcasecmp(string, "nofua")) { 2030 if (WC_MODE_PMEM(wc)) { 2031 wc->writeback_fua = false; 2032 wc->writeback_fua_set = true; 2033 } else goto invalid_optional; 2034 } else { 2035 invalid_optional: 2036 r = -EINVAL; 2037 ti->error = "Invalid optional argument"; 2038 goto bad; 2039 } 2040 } 2041 2042 if (high_wm_percent < low_wm_percent) { 2043 r = -EINVAL; 2044 ti->error = "High watermark must be greater than or equal to low watermark"; 2045 goto bad; 2046 } 2047 2048 if (WC_MODE_PMEM(wc)) { 2049 r = persistent_memory_claim(wc); 2050 if (r) { 2051 ti->error = "Unable to map persistent memory for cache"; 2052 goto bad; 2053 } 2054 } else { 2055 struct dm_io_region region; 2056 struct dm_io_request req; 2057 size_t n_blocks, n_metadata_blocks; 2058 uint64_t n_bitmap_bits; 2059 2060 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2061 2062 bio_list_init(&wc->flush_list); 2063 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2064 if (IS_ERR(wc->flush_thread)) { 2065 r = PTR_ERR(wc->flush_thread); 2066 wc->flush_thread = NULL; 2067 ti->error = "Couldn't spawn endio thread"; 2068 goto bad; 2069 } 2070 wake_up_process(wc->flush_thread); 2071 2072 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2073 &n_blocks, &n_metadata_blocks); 2074 if (r) { 2075 ti->error = "Invalid device size"; 2076 goto bad; 2077 } 2078 2079 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2080 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2081 /* this is limitation of test_bit functions */ 2082 if (n_bitmap_bits > 1U << 31) { 2083 r = -EFBIG; 2084 ti->error = "Invalid device size"; 2085 goto bad; 2086 } 2087 2088 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2089 if (!wc->memory_map) { 2090 r = -ENOMEM; 2091 ti->error = "Unable to allocate memory for metadata"; 2092 goto bad; 2093 } 2094 2095 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2096 if (IS_ERR(wc->dm_kcopyd)) { 2097 r = PTR_ERR(wc->dm_kcopyd); 2098 ti->error = "Unable to allocate dm-kcopyd client"; 2099 wc->dm_kcopyd = NULL; 2100 goto bad; 2101 } 2102 2103 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2104 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2105 BITS_PER_LONG * sizeof(unsigned long); 2106 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2107 if (!wc->dirty_bitmap) { 2108 r = -ENOMEM; 2109 ti->error = "Unable to allocate dirty bitmap"; 2110 goto bad; 2111 } 2112 2113 region.bdev = wc->ssd_dev->bdev; 2114 region.sector = wc->start_sector; 2115 region.count = wc->metadata_sectors; 2116 req.bi_op = REQ_OP_READ; 2117 req.bi_op_flags = REQ_SYNC; 2118 req.mem.type = DM_IO_VMA; 2119 req.mem.ptr.vma = (char *)wc->memory_map; 2120 req.client = wc->dm_io; 2121 req.notify.fn = NULL; 2122 2123 r = dm_io(&req, 1, ®ion, NULL); 2124 if (r) { 2125 ti->error = "Unable to read metadata"; 2126 goto bad; 2127 } 2128 } 2129 2130 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2131 if (r) { 2132 ti->error = "Hardware memory error when reading superblock"; 2133 goto bad; 2134 } 2135 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2136 r = init_memory(wc); 2137 if (r) { 2138 ti->error = "Unable to initialize device"; 2139 goto bad; 2140 } 2141 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2142 if (r) { 2143 ti->error = "Hardware memory error when reading superblock"; 2144 goto bad; 2145 } 2146 } 2147 2148 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2149 ti->error = "Invalid magic in the superblock"; 2150 r = -EINVAL; 2151 goto bad; 2152 } 2153 2154 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2155 ti->error = "Invalid version in the superblock"; 2156 r = -EINVAL; 2157 goto bad; 2158 } 2159 2160 if (le32_to_cpu(s.block_size) != wc->block_size) { 2161 ti->error = "Block size does not match superblock"; 2162 r = -EINVAL; 2163 goto bad; 2164 } 2165 2166 wc->n_blocks = le64_to_cpu(s.n_blocks); 2167 2168 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2169 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2170 overflow: 2171 ti->error = "Overflow in size calculation"; 2172 r = -EINVAL; 2173 goto bad; 2174 } 2175 offset += sizeof(struct wc_memory_superblock); 2176 if (offset < sizeof(struct wc_memory_superblock)) 2177 goto overflow; 2178 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2179 data_size = wc->n_blocks * (size_t)wc->block_size; 2180 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2181 (offset + data_size < offset)) 2182 goto overflow; 2183 if (offset + data_size > wc->memory_map_size) { 2184 ti->error = "Memory area is too small"; 2185 r = -EINVAL; 2186 goto bad; 2187 } 2188 2189 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2190 wc->block_start = (char *)sb(wc) + offset; 2191 2192 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2193 x += 50; 2194 do_div(x, 100); 2195 wc->freelist_high_watermark = x; 2196 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2197 x += 50; 2198 do_div(x, 100); 2199 wc->freelist_low_watermark = x; 2200 2201 r = writecache_alloc_entries(wc); 2202 if (r) { 2203 ti->error = "Cannot allocate memory"; 2204 goto bad; 2205 } 2206 2207 ti->num_flush_bios = 1; 2208 ti->flush_supported = true; 2209 ti->num_discard_bios = 1; 2210 2211 if (WC_MODE_PMEM(wc)) 2212 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2213 2214 return 0; 2215 2216 bad_arguments: 2217 r = -EINVAL; 2218 ti->error = "Bad arguments"; 2219 bad: 2220 writecache_dtr(ti); 2221 return r; 2222 } 2223 2224 static void writecache_status(struct dm_target *ti, status_type_t type, 2225 unsigned status_flags, char *result, unsigned maxlen) 2226 { 2227 struct dm_writecache *wc = ti->private; 2228 unsigned extra_args; 2229 unsigned sz = 0; 2230 uint64_t x; 2231 2232 switch (type) { 2233 case STATUSTYPE_INFO: 2234 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2235 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2236 (unsigned long long)wc->writeback_size); 2237 break; 2238 case STATUSTYPE_TABLE: 2239 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2240 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2241 extra_args = 0; 2242 if (wc->start_sector) 2243 extra_args += 2; 2244 if (wc->high_wm_percent_set) 2245 extra_args += 2; 2246 if (wc->low_wm_percent_set) 2247 extra_args += 2; 2248 if (wc->max_writeback_jobs_set) 2249 extra_args += 2; 2250 if (wc->autocommit_blocks_set) 2251 extra_args += 2; 2252 if (wc->autocommit_time_set) 2253 extra_args += 2; 2254 if (wc->writeback_fua_set) 2255 extra_args++; 2256 2257 DMEMIT("%u", extra_args); 2258 if (wc->start_sector) 2259 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2260 if (wc->high_wm_percent_set) { 2261 x = (uint64_t)wc->freelist_high_watermark * 100; 2262 x += wc->n_blocks / 2; 2263 do_div(x, (size_t)wc->n_blocks); 2264 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2265 } 2266 if (wc->low_wm_percent_set) { 2267 x = (uint64_t)wc->freelist_low_watermark * 100; 2268 x += wc->n_blocks / 2; 2269 do_div(x, (size_t)wc->n_blocks); 2270 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2271 } 2272 if (wc->max_writeback_jobs_set) 2273 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2274 if (wc->autocommit_blocks_set) 2275 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2276 if (wc->autocommit_time_set) 2277 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2278 if (wc->writeback_fua_set) 2279 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2280 break; 2281 } 2282 } 2283 2284 static struct target_type writecache_target = { 2285 .name = "writecache", 2286 .version = {1, 1, 1}, 2287 .module = THIS_MODULE, 2288 .ctr = writecache_ctr, 2289 .dtr = writecache_dtr, 2290 .status = writecache_status, 2291 .postsuspend = writecache_suspend, 2292 .resume = writecache_resume, 2293 .message = writecache_message, 2294 .map = writecache_map, 2295 .end_io = writecache_end_io, 2296 .iterate_devices = writecache_iterate_devices, 2297 .io_hints = writecache_io_hints, 2298 }; 2299 2300 static int __init dm_writecache_init(void) 2301 { 2302 int r; 2303 2304 r = dm_register_target(&writecache_target); 2305 if (r < 0) { 2306 DMERR("register failed %d", r); 2307 return r; 2308 } 2309 2310 return 0; 2311 } 2312 2313 static void __exit dm_writecache_exit(void) 2314 { 2315 dm_unregister_target(&writecache_target); 2316 } 2317 2318 module_init(dm_writecache_init); 2319 module_exit(dm_writecache_exit); 2320 2321 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2322 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2323 MODULE_LICENSE("GPL"); 2324