1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 #include <linux/delay.h> 19 #include "dm-io-tracker.h" 20 21 #define DM_MSG_PREFIX "writecache" 22 23 #define HIGH_WATERMARK 50 24 #define LOW_WATERMARK 45 25 #define MAX_WRITEBACK_JOBS 0 26 #define ENDIO_LATENCY 16 27 #define WRITEBACK_LATENCY 64 28 #define AUTOCOMMIT_BLOCKS_SSD 65536 29 #define AUTOCOMMIT_BLOCKS_PMEM 64 30 #define AUTOCOMMIT_MSEC 1000 31 #define MAX_AGE_DIV 16 32 #define MAX_AGE_UNSPECIFIED -1UL 33 #define PAUSE_WRITEBACK (HZ * 3) 34 35 #define BITMAP_GRANULARITY 65536 36 #if BITMAP_GRANULARITY < PAGE_SIZE 37 #undef BITMAP_GRANULARITY 38 #define BITMAP_GRANULARITY PAGE_SIZE 39 #endif 40 41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX) 42 #define DM_WRITECACHE_HAS_PMEM 43 #endif 44 45 #ifdef DM_WRITECACHE_HAS_PMEM 46 #define pmem_assign(dest, src) \ 47 do { \ 48 typeof(dest) uniq = (src); \ 49 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 50 } while (0) 51 #else 52 #define pmem_assign(dest, src) ((dest) = (src)) 53 #endif 54 55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM) 56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 57 #endif 58 59 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 60 #define MEMORY_SUPERBLOCK_VERSION 1 61 62 struct wc_memory_entry { 63 __le64 original_sector; 64 __le64 seq_count; 65 }; 66 67 struct wc_memory_superblock { 68 union { 69 struct { 70 __le32 magic; 71 __le32 version; 72 __le32 block_size; 73 __le32 pad; 74 __le64 n_blocks; 75 __le64 seq_count; 76 }; 77 __le64 padding[8]; 78 }; 79 struct wc_memory_entry entries[]; 80 }; 81 82 struct wc_entry { 83 struct rb_node rb_node; 84 struct list_head lru; 85 unsigned short wc_list_contiguous; 86 bool write_in_progress 87 #if BITS_PER_LONG == 64 88 :1 89 #endif 90 ; 91 unsigned long index 92 #if BITS_PER_LONG == 64 93 :47 94 #endif 95 ; 96 unsigned long age; 97 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 98 uint64_t original_sector; 99 uint64_t seq_count; 100 #endif 101 }; 102 103 #ifdef DM_WRITECACHE_HAS_PMEM 104 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 105 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 106 #else 107 #define WC_MODE_PMEM(wc) false 108 #define WC_MODE_FUA(wc) false 109 #endif 110 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 111 112 struct dm_writecache { 113 struct mutex lock; 114 struct list_head lru; 115 union { 116 struct list_head freelist; 117 struct { 118 struct rb_root freetree; 119 struct wc_entry *current_free; 120 }; 121 }; 122 struct rb_root tree; 123 124 size_t freelist_size; 125 size_t writeback_size; 126 size_t freelist_high_watermark; 127 size_t freelist_low_watermark; 128 unsigned long max_age; 129 unsigned long pause; 130 131 unsigned uncommitted_blocks; 132 unsigned autocommit_blocks; 133 unsigned max_writeback_jobs; 134 135 int error; 136 137 unsigned long autocommit_jiffies; 138 struct timer_list autocommit_timer; 139 struct wait_queue_head freelist_wait; 140 141 struct timer_list max_age_timer; 142 143 atomic_t bio_in_progress[2]; 144 struct wait_queue_head bio_in_progress_wait[2]; 145 146 struct dm_target *ti; 147 struct dm_dev *dev; 148 struct dm_dev *ssd_dev; 149 sector_t start_sector; 150 void *memory_map; 151 uint64_t memory_map_size; 152 size_t metadata_sectors; 153 size_t n_blocks; 154 uint64_t seq_count; 155 sector_t data_device_sectors; 156 void *block_start; 157 struct wc_entry *entries; 158 unsigned block_size; 159 unsigned char block_size_bits; 160 161 bool pmem_mode:1; 162 bool writeback_fua:1; 163 164 bool overwrote_committed:1; 165 bool memory_vmapped:1; 166 167 bool start_sector_set:1; 168 bool high_wm_percent_set:1; 169 bool low_wm_percent_set:1; 170 bool max_writeback_jobs_set:1; 171 bool autocommit_blocks_set:1; 172 bool autocommit_time_set:1; 173 bool max_age_set:1; 174 bool writeback_fua_set:1; 175 bool flush_on_suspend:1; 176 bool cleaner:1; 177 bool cleaner_set:1; 178 bool metadata_only:1; 179 bool pause_set:1; 180 181 unsigned high_wm_percent_value; 182 unsigned low_wm_percent_value; 183 unsigned autocommit_time_value; 184 unsigned max_age_value; 185 unsigned pause_value; 186 187 unsigned writeback_all; 188 struct workqueue_struct *writeback_wq; 189 struct work_struct writeback_work; 190 struct work_struct flush_work; 191 192 struct dm_io_tracker iot; 193 194 struct dm_io_client *dm_io; 195 196 raw_spinlock_t endio_list_lock; 197 struct list_head endio_list; 198 struct task_struct *endio_thread; 199 200 struct task_struct *flush_thread; 201 struct bio_list flush_list; 202 203 struct dm_kcopyd_client *dm_kcopyd; 204 unsigned long *dirty_bitmap; 205 unsigned dirty_bitmap_size; 206 207 struct bio_set bio_set; 208 mempool_t copy_pool; 209 210 struct { 211 unsigned long long reads; 212 unsigned long long read_hits; 213 unsigned long long writes; 214 unsigned long long write_hits_uncommitted; 215 unsigned long long write_hits_committed; 216 unsigned long long writes_around; 217 unsigned long long writes_allocate; 218 unsigned long long writes_blocked_on_freelist; 219 unsigned long long flushes; 220 unsigned long long discards; 221 } stats; 222 }; 223 224 #define WB_LIST_INLINE 16 225 226 struct writeback_struct { 227 struct list_head endio_entry; 228 struct dm_writecache *wc; 229 struct wc_entry **wc_list; 230 unsigned wc_list_n; 231 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 232 struct bio bio; 233 }; 234 235 struct copy_struct { 236 struct list_head endio_entry; 237 struct dm_writecache *wc; 238 struct wc_entry *e; 239 unsigned n_entries; 240 int error; 241 }; 242 243 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 244 "A percentage of time allocated for data copying"); 245 246 static void wc_lock(struct dm_writecache *wc) 247 { 248 mutex_lock(&wc->lock); 249 } 250 251 static void wc_unlock(struct dm_writecache *wc) 252 { 253 mutex_unlock(&wc->lock); 254 } 255 256 #ifdef DM_WRITECACHE_HAS_PMEM 257 static int persistent_memory_claim(struct dm_writecache *wc) 258 { 259 int r; 260 loff_t s; 261 long p, da; 262 pfn_t pfn; 263 int id; 264 struct page **pages; 265 sector_t offset; 266 267 wc->memory_vmapped = false; 268 269 s = wc->memory_map_size; 270 p = s >> PAGE_SHIFT; 271 if (!p) { 272 r = -EINVAL; 273 goto err1; 274 } 275 if (p != s >> PAGE_SHIFT) { 276 r = -EOVERFLOW; 277 goto err1; 278 } 279 280 offset = get_start_sect(wc->ssd_dev->bdev); 281 if (offset & (PAGE_SIZE / 512 - 1)) { 282 r = -EINVAL; 283 goto err1; 284 } 285 offset >>= PAGE_SHIFT - 9; 286 287 id = dax_read_lock(); 288 289 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS, 290 &wc->memory_map, &pfn); 291 if (da < 0) { 292 wc->memory_map = NULL; 293 r = da; 294 goto err2; 295 } 296 if (!pfn_t_has_page(pfn)) { 297 wc->memory_map = NULL; 298 r = -EOPNOTSUPP; 299 goto err2; 300 } 301 if (da != p) { 302 long i; 303 wc->memory_map = NULL; 304 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 305 if (!pages) { 306 r = -ENOMEM; 307 goto err2; 308 } 309 i = 0; 310 do { 311 long daa; 312 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, 313 p - i, DAX_ACCESS, NULL, &pfn); 314 if (daa <= 0) { 315 r = daa ? daa : -EINVAL; 316 goto err3; 317 } 318 if (!pfn_t_has_page(pfn)) { 319 r = -EOPNOTSUPP; 320 goto err3; 321 } 322 while (daa-- && i < p) { 323 pages[i++] = pfn_t_to_page(pfn); 324 pfn.val++; 325 if (!(i & 15)) 326 cond_resched(); 327 } 328 } while (i < p); 329 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 330 if (!wc->memory_map) { 331 r = -ENOMEM; 332 goto err3; 333 } 334 kvfree(pages); 335 wc->memory_vmapped = true; 336 } 337 338 dax_read_unlock(id); 339 340 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 341 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 342 343 return 0; 344 err3: 345 kvfree(pages); 346 err2: 347 dax_read_unlock(id); 348 err1: 349 return r; 350 } 351 #else 352 static int persistent_memory_claim(struct dm_writecache *wc) 353 { 354 return -EOPNOTSUPP; 355 } 356 #endif 357 358 static void persistent_memory_release(struct dm_writecache *wc) 359 { 360 if (wc->memory_vmapped) 361 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 362 } 363 364 static struct page *persistent_memory_page(void *addr) 365 { 366 if (is_vmalloc_addr(addr)) 367 return vmalloc_to_page(addr); 368 else 369 return virt_to_page(addr); 370 } 371 372 static unsigned persistent_memory_page_offset(void *addr) 373 { 374 return (unsigned long)addr & (PAGE_SIZE - 1); 375 } 376 377 static void persistent_memory_flush_cache(void *ptr, size_t size) 378 { 379 if (is_vmalloc_addr(ptr)) 380 flush_kernel_vmap_range(ptr, size); 381 } 382 383 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 384 { 385 if (is_vmalloc_addr(ptr)) 386 invalidate_kernel_vmap_range(ptr, size); 387 } 388 389 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 390 { 391 return wc->memory_map; 392 } 393 394 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 395 { 396 return &sb(wc)->entries[e->index]; 397 } 398 399 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 400 { 401 return (char *)wc->block_start + (e->index << wc->block_size_bits); 402 } 403 404 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 405 { 406 return wc->start_sector + wc->metadata_sectors + 407 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 408 } 409 410 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 411 { 412 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 413 return e->original_sector; 414 #else 415 return le64_to_cpu(memory_entry(wc, e)->original_sector); 416 #endif 417 } 418 419 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 420 { 421 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 422 return e->seq_count; 423 #else 424 return le64_to_cpu(memory_entry(wc, e)->seq_count); 425 #endif 426 } 427 428 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 429 { 430 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 431 e->seq_count = -1; 432 #endif 433 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 434 } 435 436 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 437 uint64_t original_sector, uint64_t seq_count) 438 { 439 struct wc_memory_entry me; 440 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 441 e->original_sector = original_sector; 442 e->seq_count = seq_count; 443 #endif 444 me.original_sector = cpu_to_le64(original_sector); 445 me.seq_count = cpu_to_le64(seq_count); 446 pmem_assign(*memory_entry(wc, e), me); 447 } 448 449 #define writecache_error(wc, err, msg, arg...) \ 450 do { \ 451 if (!cmpxchg(&(wc)->error, 0, err)) \ 452 DMERR(msg, ##arg); \ 453 wake_up(&(wc)->freelist_wait); \ 454 } while (0) 455 456 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 457 458 static void writecache_flush_all_metadata(struct dm_writecache *wc) 459 { 460 if (!WC_MODE_PMEM(wc)) 461 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 462 } 463 464 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 465 { 466 if (!WC_MODE_PMEM(wc)) 467 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 468 wc->dirty_bitmap); 469 } 470 471 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 472 473 struct io_notify { 474 struct dm_writecache *wc; 475 struct completion c; 476 atomic_t count; 477 }; 478 479 static void writecache_notify_io(unsigned long error, void *context) 480 { 481 struct io_notify *endio = context; 482 483 if (unlikely(error != 0)) 484 writecache_error(endio->wc, -EIO, "error writing metadata"); 485 BUG_ON(atomic_read(&endio->count) <= 0); 486 if (atomic_dec_and_test(&endio->count)) 487 complete(&endio->c); 488 } 489 490 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 491 { 492 wait_event(wc->bio_in_progress_wait[direction], 493 !atomic_read(&wc->bio_in_progress[direction])); 494 } 495 496 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 497 { 498 struct dm_io_region region; 499 struct dm_io_request req; 500 struct io_notify endio = { 501 wc, 502 COMPLETION_INITIALIZER_ONSTACK(endio.c), 503 ATOMIC_INIT(1), 504 }; 505 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 506 unsigned i = 0; 507 508 while (1) { 509 unsigned j; 510 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 511 if (unlikely(i == bitmap_bits)) 512 break; 513 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 514 515 region.bdev = wc->ssd_dev->bdev; 516 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 517 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 518 519 if (unlikely(region.sector >= wc->metadata_sectors)) 520 break; 521 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 522 region.count = wc->metadata_sectors - region.sector; 523 524 region.sector += wc->start_sector; 525 atomic_inc(&endio.count); 526 req.bi_op = REQ_OP_WRITE; 527 req.bi_op_flags = REQ_SYNC; 528 req.mem.type = DM_IO_VMA; 529 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 530 req.client = wc->dm_io; 531 req.notify.fn = writecache_notify_io; 532 req.notify.context = &endio; 533 534 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 535 (void) dm_io(&req, 1, ®ion, NULL); 536 i = j; 537 } 538 539 writecache_notify_io(0, &endio); 540 wait_for_completion_io(&endio.c); 541 542 if (wait_for_ios) 543 writecache_wait_for_ios(wc, WRITE); 544 545 writecache_disk_flush(wc, wc->ssd_dev); 546 547 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 548 } 549 550 static void ssd_commit_superblock(struct dm_writecache *wc) 551 { 552 int r; 553 struct dm_io_region region; 554 struct dm_io_request req; 555 556 region.bdev = wc->ssd_dev->bdev; 557 region.sector = 0; 558 region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT; 559 560 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 561 region.count = wc->metadata_sectors - region.sector; 562 563 region.sector += wc->start_sector; 564 565 req.bi_op = REQ_OP_WRITE; 566 req.bi_op_flags = REQ_SYNC | REQ_FUA; 567 req.mem.type = DM_IO_VMA; 568 req.mem.ptr.vma = (char *)wc->memory_map; 569 req.client = wc->dm_io; 570 req.notify.fn = NULL; 571 req.notify.context = NULL; 572 573 r = dm_io(&req, 1, ®ion, NULL); 574 if (unlikely(r)) 575 writecache_error(wc, r, "error writing superblock"); 576 } 577 578 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 579 { 580 if (WC_MODE_PMEM(wc)) 581 pmem_wmb(); 582 else 583 ssd_commit_flushed(wc, wait_for_ios); 584 } 585 586 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 587 { 588 int r; 589 struct dm_io_region region; 590 struct dm_io_request req; 591 592 region.bdev = dev->bdev; 593 region.sector = 0; 594 region.count = 0; 595 req.bi_op = REQ_OP_WRITE; 596 req.bi_op_flags = REQ_PREFLUSH; 597 req.mem.type = DM_IO_KMEM; 598 req.mem.ptr.addr = NULL; 599 req.client = wc->dm_io; 600 req.notify.fn = NULL; 601 602 r = dm_io(&req, 1, ®ion, NULL); 603 if (unlikely(r)) 604 writecache_error(wc, r, "error flushing metadata: %d", r); 605 } 606 607 #define WFE_RETURN_FOLLOWING 1 608 #define WFE_LOWEST_SEQ 2 609 610 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 611 uint64_t block, int flags) 612 { 613 struct wc_entry *e; 614 struct rb_node *node = wc->tree.rb_node; 615 616 if (unlikely(!node)) 617 return NULL; 618 619 while (1) { 620 e = container_of(node, struct wc_entry, rb_node); 621 if (read_original_sector(wc, e) == block) 622 break; 623 624 node = (read_original_sector(wc, e) >= block ? 625 e->rb_node.rb_left : e->rb_node.rb_right); 626 if (unlikely(!node)) { 627 if (!(flags & WFE_RETURN_FOLLOWING)) 628 return NULL; 629 if (read_original_sector(wc, e) >= block) { 630 return e; 631 } else { 632 node = rb_next(&e->rb_node); 633 if (unlikely(!node)) 634 return NULL; 635 e = container_of(node, struct wc_entry, rb_node); 636 return e; 637 } 638 } 639 } 640 641 while (1) { 642 struct wc_entry *e2; 643 if (flags & WFE_LOWEST_SEQ) 644 node = rb_prev(&e->rb_node); 645 else 646 node = rb_next(&e->rb_node); 647 if (unlikely(!node)) 648 return e; 649 e2 = container_of(node, struct wc_entry, rb_node); 650 if (read_original_sector(wc, e2) != block) 651 return e; 652 e = e2; 653 } 654 } 655 656 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 657 { 658 struct wc_entry *e; 659 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 660 661 while (*node) { 662 e = container_of(*node, struct wc_entry, rb_node); 663 parent = &e->rb_node; 664 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 665 node = &parent->rb_left; 666 else 667 node = &parent->rb_right; 668 } 669 rb_link_node(&ins->rb_node, parent, node); 670 rb_insert_color(&ins->rb_node, &wc->tree); 671 list_add(&ins->lru, &wc->lru); 672 ins->age = jiffies; 673 } 674 675 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 676 { 677 list_del(&e->lru); 678 rb_erase(&e->rb_node, &wc->tree); 679 } 680 681 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 682 { 683 if (WC_MODE_SORT_FREELIST(wc)) { 684 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 685 if (unlikely(!*node)) 686 wc->current_free = e; 687 while (*node) { 688 parent = *node; 689 if (&e->rb_node < *node) 690 node = &parent->rb_left; 691 else 692 node = &parent->rb_right; 693 } 694 rb_link_node(&e->rb_node, parent, node); 695 rb_insert_color(&e->rb_node, &wc->freetree); 696 } else { 697 list_add_tail(&e->lru, &wc->freelist); 698 } 699 wc->freelist_size++; 700 } 701 702 static inline void writecache_verify_watermark(struct dm_writecache *wc) 703 { 704 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 705 queue_work(wc->writeback_wq, &wc->writeback_work); 706 } 707 708 static void writecache_max_age_timer(struct timer_list *t) 709 { 710 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 711 712 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 713 queue_work(wc->writeback_wq, &wc->writeback_work); 714 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 715 } 716 } 717 718 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 719 { 720 struct wc_entry *e; 721 722 if (WC_MODE_SORT_FREELIST(wc)) { 723 struct rb_node *next; 724 if (unlikely(!wc->current_free)) 725 return NULL; 726 e = wc->current_free; 727 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 728 return NULL; 729 next = rb_next(&e->rb_node); 730 rb_erase(&e->rb_node, &wc->freetree); 731 if (unlikely(!next)) 732 next = rb_first(&wc->freetree); 733 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 734 } else { 735 if (unlikely(list_empty(&wc->freelist))) 736 return NULL; 737 e = container_of(wc->freelist.next, struct wc_entry, lru); 738 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 739 return NULL; 740 list_del(&e->lru); 741 } 742 wc->freelist_size--; 743 744 writecache_verify_watermark(wc); 745 746 return e; 747 } 748 749 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 750 { 751 writecache_unlink(wc, e); 752 writecache_add_to_freelist(wc, e); 753 clear_seq_count(wc, e); 754 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 755 if (unlikely(waitqueue_active(&wc->freelist_wait))) 756 wake_up(&wc->freelist_wait); 757 } 758 759 static void writecache_wait_on_freelist(struct dm_writecache *wc) 760 { 761 DEFINE_WAIT(wait); 762 763 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 764 wc_unlock(wc); 765 io_schedule(); 766 finish_wait(&wc->freelist_wait, &wait); 767 wc_lock(wc); 768 } 769 770 static void writecache_poison_lists(struct dm_writecache *wc) 771 { 772 /* 773 * Catch incorrect access to these values while the device is suspended. 774 */ 775 memset(&wc->tree, -1, sizeof wc->tree); 776 wc->lru.next = LIST_POISON1; 777 wc->lru.prev = LIST_POISON2; 778 wc->freelist.next = LIST_POISON1; 779 wc->freelist.prev = LIST_POISON2; 780 } 781 782 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 783 { 784 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 785 if (WC_MODE_PMEM(wc)) 786 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 787 } 788 789 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 790 { 791 return read_seq_count(wc, e) < wc->seq_count; 792 } 793 794 static void writecache_flush(struct dm_writecache *wc) 795 { 796 struct wc_entry *e, *e2; 797 bool need_flush_after_free; 798 799 wc->uncommitted_blocks = 0; 800 del_timer(&wc->autocommit_timer); 801 802 if (list_empty(&wc->lru)) 803 return; 804 805 e = container_of(wc->lru.next, struct wc_entry, lru); 806 if (writecache_entry_is_committed(wc, e)) { 807 if (wc->overwrote_committed) { 808 writecache_wait_for_ios(wc, WRITE); 809 writecache_disk_flush(wc, wc->ssd_dev); 810 wc->overwrote_committed = false; 811 } 812 return; 813 } 814 while (1) { 815 writecache_flush_entry(wc, e); 816 if (unlikely(e->lru.next == &wc->lru)) 817 break; 818 e2 = container_of(e->lru.next, struct wc_entry, lru); 819 if (writecache_entry_is_committed(wc, e2)) 820 break; 821 e = e2; 822 cond_resched(); 823 } 824 writecache_commit_flushed(wc, true); 825 826 wc->seq_count++; 827 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 828 if (WC_MODE_PMEM(wc)) 829 writecache_commit_flushed(wc, false); 830 else 831 ssd_commit_superblock(wc); 832 833 wc->overwrote_committed = false; 834 835 need_flush_after_free = false; 836 while (1) { 837 /* Free another committed entry with lower seq-count */ 838 struct rb_node *rb_node = rb_prev(&e->rb_node); 839 840 if (rb_node) { 841 e2 = container_of(rb_node, struct wc_entry, rb_node); 842 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 843 likely(!e2->write_in_progress)) { 844 writecache_free_entry(wc, e2); 845 need_flush_after_free = true; 846 } 847 } 848 if (unlikely(e->lru.prev == &wc->lru)) 849 break; 850 e = container_of(e->lru.prev, struct wc_entry, lru); 851 cond_resched(); 852 } 853 854 if (need_flush_after_free) 855 writecache_commit_flushed(wc, false); 856 } 857 858 static void writecache_flush_work(struct work_struct *work) 859 { 860 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 861 862 wc_lock(wc); 863 writecache_flush(wc); 864 wc_unlock(wc); 865 } 866 867 static void writecache_autocommit_timer(struct timer_list *t) 868 { 869 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 870 if (!writecache_has_error(wc)) 871 queue_work(wc->writeback_wq, &wc->flush_work); 872 } 873 874 static void writecache_schedule_autocommit(struct dm_writecache *wc) 875 { 876 if (!timer_pending(&wc->autocommit_timer)) 877 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 878 } 879 880 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 881 { 882 struct wc_entry *e; 883 bool discarded_something = false; 884 885 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 886 if (unlikely(!e)) 887 return; 888 889 while (read_original_sector(wc, e) < end) { 890 struct rb_node *node = rb_next(&e->rb_node); 891 892 if (likely(!e->write_in_progress)) { 893 if (!discarded_something) { 894 if (!WC_MODE_PMEM(wc)) { 895 writecache_wait_for_ios(wc, READ); 896 writecache_wait_for_ios(wc, WRITE); 897 } 898 discarded_something = true; 899 } 900 if (!writecache_entry_is_committed(wc, e)) 901 wc->uncommitted_blocks--; 902 writecache_free_entry(wc, e); 903 } 904 905 if (unlikely(!node)) 906 break; 907 908 e = container_of(node, struct wc_entry, rb_node); 909 } 910 911 if (discarded_something) 912 writecache_commit_flushed(wc, false); 913 } 914 915 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 916 { 917 if (wc->writeback_size) { 918 writecache_wait_on_freelist(wc); 919 return true; 920 } 921 return false; 922 } 923 924 static void writecache_suspend(struct dm_target *ti) 925 { 926 struct dm_writecache *wc = ti->private; 927 bool flush_on_suspend; 928 929 del_timer_sync(&wc->autocommit_timer); 930 del_timer_sync(&wc->max_age_timer); 931 932 wc_lock(wc); 933 writecache_flush(wc); 934 flush_on_suspend = wc->flush_on_suspend; 935 if (flush_on_suspend) { 936 wc->flush_on_suspend = false; 937 wc->writeback_all++; 938 queue_work(wc->writeback_wq, &wc->writeback_work); 939 } 940 wc_unlock(wc); 941 942 drain_workqueue(wc->writeback_wq); 943 944 wc_lock(wc); 945 if (flush_on_suspend) 946 wc->writeback_all--; 947 while (writecache_wait_for_writeback(wc)); 948 949 if (WC_MODE_PMEM(wc)) 950 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 951 952 writecache_poison_lists(wc); 953 954 wc_unlock(wc); 955 } 956 957 static int writecache_alloc_entries(struct dm_writecache *wc) 958 { 959 size_t b; 960 961 if (wc->entries) 962 return 0; 963 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 964 if (!wc->entries) 965 return -ENOMEM; 966 for (b = 0; b < wc->n_blocks; b++) { 967 struct wc_entry *e = &wc->entries[b]; 968 e->index = b; 969 e->write_in_progress = false; 970 cond_resched(); 971 } 972 973 return 0; 974 } 975 976 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 977 { 978 struct dm_io_region region; 979 struct dm_io_request req; 980 981 region.bdev = wc->ssd_dev->bdev; 982 region.sector = wc->start_sector; 983 region.count = n_sectors; 984 req.bi_op = REQ_OP_READ; 985 req.bi_op_flags = REQ_SYNC; 986 req.mem.type = DM_IO_VMA; 987 req.mem.ptr.vma = (char *)wc->memory_map; 988 req.client = wc->dm_io; 989 req.notify.fn = NULL; 990 991 return dm_io(&req, 1, ®ion, NULL); 992 } 993 994 static void writecache_resume(struct dm_target *ti) 995 { 996 struct dm_writecache *wc = ti->private; 997 size_t b; 998 bool need_flush = false; 999 __le64 sb_seq_count; 1000 int r; 1001 1002 wc_lock(wc); 1003 1004 wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev); 1005 1006 if (WC_MODE_PMEM(wc)) { 1007 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 1008 } else { 1009 r = writecache_read_metadata(wc, wc->metadata_sectors); 1010 if (r) { 1011 size_t sb_entries_offset; 1012 writecache_error(wc, r, "unable to read metadata: %d", r); 1013 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 1014 memset((char *)wc->memory_map + sb_entries_offset, -1, 1015 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 1016 } 1017 } 1018 1019 wc->tree = RB_ROOT; 1020 INIT_LIST_HEAD(&wc->lru); 1021 if (WC_MODE_SORT_FREELIST(wc)) { 1022 wc->freetree = RB_ROOT; 1023 wc->current_free = NULL; 1024 } else { 1025 INIT_LIST_HEAD(&wc->freelist); 1026 } 1027 wc->freelist_size = 0; 1028 1029 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count, 1030 sizeof(uint64_t)); 1031 if (r) { 1032 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 1033 sb_seq_count = cpu_to_le64(0); 1034 } 1035 wc->seq_count = le64_to_cpu(sb_seq_count); 1036 1037 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 1038 for (b = 0; b < wc->n_blocks; b++) { 1039 struct wc_entry *e = &wc->entries[b]; 1040 struct wc_memory_entry wme; 1041 if (writecache_has_error(wc)) { 1042 e->original_sector = -1; 1043 e->seq_count = -1; 1044 continue; 1045 } 1046 r = copy_mc_to_kernel(&wme, memory_entry(wc, e), 1047 sizeof(struct wc_memory_entry)); 1048 if (r) { 1049 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1050 (unsigned long)b, r); 1051 e->original_sector = -1; 1052 e->seq_count = -1; 1053 } else { 1054 e->original_sector = le64_to_cpu(wme.original_sector); 1055 e->seq_count = le64_to_cpu(wme.seq_count); 1056 } 1057 cond_resched(); 1058 } 1059 #endif 1060 for (b = 0; b < wc->n_blocks; b++) { 1061 struct wc_entry *e = &wc->entries[b]; 1062 if (!writecache_entry_is_committed(wc, e)) { 1063 if (read_seq_count(wc, e) != -1) { 1064 erase_this: 1065 clear_seq_count(wc, e); 1066 need_flush = true; 1067 } 1068 writecache_add_to_freelist(wc, e); 1069 } else { 1070 struct wc_entry *old; 1071 1072 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1073 if (!old) { 1074 writecache_insert_entry(wc, e); 1075 } else { 1076 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1077 writecache_error(wc, -EINVAL, 1078 "two identical entries, position %llu, sector %llu, sequence %llu", 1079 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1080 (unsigned long long)read_seq_count(wc, e)); 1081 } 1082 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1083 goto erase_this; 1084 } else { 1085 writecache_free_entry(wc, old); 1086 writecache_insert_entry(wc, e); 1087 need_flush = true; 1088 } 1089 } 1090 } 1091 cond_resched(); 1092 } 1093 1094 if (need_flush) { 1095 writecache_flush_all_metadata(wc); 1096 writecache_commit_flushed(wc, false); 1097 } 1098 1099 writecache_verify_watermark(wc); 1100 1101 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1102 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1103 1104 wc_unlock(wc); 1105 } 1106 1107 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1108 { 1109 if (argc != 1) 1110 return -EINVAL; 1111 1112 wc_lock(wc); 1113 if (dm_suspended(wc->ti)) { 1114 wc_unlock(wc); 1115 return -EBUSY; 1116 } 1117 if (writecache_has_error(wc)) { 1118 wc_unlock(wc); 1119 return -EIO; 1120 } 1121 1122 writecache_flush(wc); 1123 wc->writeback_all++; 1124 queue_work(wc->writeback_wq, &wc->writeback_work); 1125 wc_unlock(wc); 1126 1127 flush_workqueue(wc->writeback_wq); 1128 1129 wc_lock(wc); 1130 wc->writeback_all--; 1131 if (writecache_has_error(wc)) { 1132 wc_unlock(wc); 1133 return -EIO; 1134 } 1135 wc_unlock(wc); 1136 1137 return 0; 1138 } 1139 1140 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1141 { 1142 if (argc != 1) 1143 return -EINVAL; 1144 1145 wc_lock(wc); 1146 wc->flush_on_suspend = true; 1147 wc_unlock(wc); 1148 1149 return 0; 1150 } 1151 1152 static void activate_cleaner(struct dm_writecache *wc) 1153 { 1154 wc->flush_on_suspend = true; 1155 wc->cleaner = true; 1156 wc->freelist_high_watermark = wc->n_blocks; 1157 wc->freelist_low_watermark = wc->n_blocks; 1158 } 1159 1160 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1161 { 1162 if (argc != 1) 1163 return -EINVAL; 1164 1165 wc_lock(wc); 1166 activate_cleaner(wc); 1167 if (!dm_suspended(wc->ti)) 1168 writecache_verify_watermark(wc); 1169 wc_unlock(wc); 1170 1171 return 0; 1172 } 1173 1174 static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1175 { 1176 if (argc != 1) 1177 return -EINVAL; 1178 1179 wc_lock(wc); 1180 memset(&wc->stats, 0, sizeof wc->stats); 1181 wc_unlock(wc); 1182 1183 return 0; 1184 } 1185 1186 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1187 char *result, unsigned maxlen) 1188 { 1189 int r = -EINVAL; 1190 struct dm_writecache *wc = ti->private; 1191 1192 if (!strcasecmp(argv[0], "flush")) 1193 r = process_flush_mesg(argc, argv, wc); 1194 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1195 r = process_flush_on_suspend_mesg(argc, argv, wc); 1196 else if (!strcasecmp(argv[0], "cleaner")) 1197 r = process_cleaner_mesg(argc, argv, wc); 1198 else if (!strcasecmp(argv[0], "clear_stats")) 1199 r = process_clear_stats_mesg(argc, argv, wc); 1200 else 1201 DMERR("unrecognised message received: %s", argv[0]); 1202 1203 return r; 1204 } 1205 1206 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1207 { 1208 /* 1209 * clflushopt performs better with block size 1024, 2048, 4096 1210 * non-temporal stores perform better with block size 512 1211 * 1212 * block size 512 1024 2048 4096 1213 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1214 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1215 * 1216 * We see that movnti performs better for 512-byte blocks, and 1217 * clflushopt performs better for 1024-byte and larger blocks. So, we 1218 * prefer clflushopt for sizes >= 768. 1219 * 1220 * NOTE: this happens to be the case now (with dm-writecache's single 1221 * threaded model) but re-evaluate this once memcpy_flushcache() is 1222 * enabled to use movdir64b which might invalidate this performance 1223 * advantage seen with cache-allocating-writes plus flushing. 1224 */ 1225 #ifdef CONFIG_X86 1226 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1227 likely(boot_cpu_data.x86_clflush_size == 64) && 1228 likely(size >= 768)) { 1229 do { 1230 memcpy((void *)dest, (void *)source, 64); 1231 clflushopt((void *)dest); 1232 dest += 64; 1233 source += 64; 1234 size -= 64; 1235 } while (size >= 64); 1236 return; 1237 } 1238 #endif 1239 memcpy_flushcache(dest, source, size); 1240 } 1241 1242 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1243 { 1244 void *buf; 1245 unsigned size; 1246 int rw = bio_data_dir(bio); 1247 unsigned remaining_size = wc->block_size; 1248 1249 do { 1250 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1251 buf = bvec_kmap_local(&bv); 1252 size = bv.bv_len; 1253 if (unlikely(size > remaining_size)) 1254 size = remaining_size; 1255 1256 if (rw == READ) { 1257 int r; 1258 r = copy_mc_to_kernel(buf, data, size); 1259 flush_dcache_page(bio_page(bio)); 1260 if (unlikely(r)) { 1261 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1262 bio->bi_status = BLK_STS_IOERR; 1263 } 1264 } else { 1265 flush_dcache_page(bio_page(bio)); 1266 memcpy_flushcache_optimized(data, buf, size); 1267 } 1268 1269 kunmap_local(buf); 1270 1271 data = (char *)data + size; 1272 remaining_size -= size; 1273 bio_advance(bio, size); 1274 } while (unlikely(remaining_size)); 1275 } 1276 1277 static int writecache_flush_thread(void *data) 1278 { 1279 struct dm_writecache *wc = data; 1280 1281 while (1) { 1282 struct bio *bio; 1283 1284 wc_lock(wc); 1285 bio = bio_list_pop(&wc->flush_list); 1286 if (!bio) { 1287 set_current_state(TASK_INTERRUPTIBLE); 1288 wc_unlock(wc); 1289 1290 if (unlikely(kthread_should_stop())) { 1291 set_current_state(TASK_RUNNING); 1292 break; 1293 } 1294 1295 schedule(); 1296 continue; 1297 } 1298 1299 if (bio_op(bio) == REQ_OP_DISCARD) { 1300 writecache_discard(wc, bio->bi_iter.bi_sector, 1301 bio_end_sector(bio)); 1302 wc_unlock(wc); 1303 bio_set_dev(bio, wc->dev->bdev); 1304 submit_bio_noacct(bio); 1305 } else { 1306 writecache_flush(wc); 1307 wc_unlock(wc); 1308 if (writecache_has_error(wc)) 1309 bio->bi_status = BLK_STS_IOERR; 1310 bio_endio(bio); 1311 } 1312 } 1313 1314 return 0; 1315 } 1316 1317 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1318 { 1319 if (bio_list_empty(&wc->flush_list)) 1320 wake_up_process(wc->flush_thread); 1321 bio_list_add(&wc->flush_list, bio); 1322 } 1323 1324 enum wc_map_op { 1325 WC_MAP_SUBMIT, 1326 WC_MAP_REMAP, 1327 WC_MAP_REMAP_ORIGIN, 1328 WC_MAP_RETURN, 1329 WC_MAP_ERROR, 1330 }; 1331 1332 static enum wc_map_op writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio, 1333 struct wc_entry *e) 1334 { 1335 if (e) { 1336 sector_t next_boundary = 1337 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1338 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) 1339 dm_accept_partial_bio(bio, next_boundary); 1340 } 1341 1342 return WC_MAP_REMAP_ORIGIN; 1343 } 1344 1345 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio) 1346 { 1347 enum wc_map_op map_op; 1348 struct wc_entry *e; 1349 1350 read_next_block: 1351 wc->stats.reads++; 1352 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1353 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1354 wc->stats.read_hits++; 1355 if (WC_MODE_PMEM(wc)) { 1356 bio_copy_block(wc, bio, memory_data(wc, e)); 1357 if (bio->bi_iter.bi_size) 1358 goto read_next_block; 1359 map_op = WC_MAP_SUBMIT; 1360 } else { 1361 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1362 bio_set_dev(bio, wc->ssd_dev->bdev); 1363 bio->bi_iter.bi_sector = cache_sector(wc, e); 1364 if (!writecache_entry_is_committed(wc, e)) 1365 writecache_wait_for_ios(wc, WRITE); 1366 map_op = WC_MAP_REMAP; 1367 } 1368 } else { 1369 map_op = writecache_map_remap_origin(wc, bio, e); 1370 } 1371 1372 return map_op; 1373 } 1374 1375 static enum wc_map_op writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio, 1376 struct wc_entry *e, bool search_used) 1377 { 1378 unsigned bio_size = wc->block_size; 1379 sector_t start_cache_sec = cache_sector(wc, e); 1380 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1381 1382 while (bio_size < bio->bi_iter.bi_size) { 1383 if (!search_used) { 1384 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1385 if (!f) 1386 break; 1387 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1388 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1389 writecache_insert_entry(wc, f); 1390 wc->uncommitted_blocks++; 1391 } else { 1392 struct wc_entry *f; 1393 struct rb_node *next = rb_next(&e->rb_node); 1394 if (!next) 1395 break; 1396 f = container_of(next, struct wc_entry, rb_node); 1397 if (f != e + 1) 1398 break; 1399 if (read_original_sector(wc, f) != 1400 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1401 break; 1402 if (unlikely(f->write_in_progress)) 1403 break; 1404 if (writecache_entry_is_committed(wc, f)) 1405 wc->overwrote_committed = true; 1406 e = f; 1407 } 1408 bio_size += wc->block_size; 1409 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1410 } 1411 1412 bio_set_dev(bio, wc->ssd_dev->bdev); 1413 bio->bi_iter.bi_sector = start_cache_sec; 1414 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1415 1416 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1417 wc->uncommitted_blocks = 0; 1418 queue_work(wc->writeback_wq, &wc->flush_work); 1419 } else { 1420 writecache_schedule_autocommit(wc); 1421 } 1422 1423 return WC_MAP_REMAP; 1424 } 1425 1426 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio) 1427 { 1428 struct wc_entry *e; 1429 1430 do { 1431 bool found_entry = false; 1432 bool search_used = false; 1433 wc->stats.writes++; 1434 if (writecache_has_error(wc)) 1435 return WC_MAP_ERROR; 1436 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1437 if (e) { 1438 if (!writecache_entry_is_committed(wc, e)) { 1439 wc->stats.write_hits_uncommitted++; 1440 search_used = true; 1441 goto bio_copy; 1442 } 1443 wc->stats.write_hits_committed++; 1444 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1445 wc->overwrote_committed = true; 1446 search_used = true; 1447 goto bio_copy; 1448 } 1449 found_entry = true; 1450 } else { 1451 if (unlikely(wc->cleaner) || 1452 (wc->metadata_only && !(bio->bi_opf & REQ_META))) 1453 goto direct_write; 1454 } 1455 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1456 if (unlikely(!e)) { 1457 if (!WC_MODE_PMEM(wc) && !found_entry) { 1458 direct_write: 1459 wc->stats.writes_around++; 1460 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1461 return writecache_map_remap_origin(wc, bio, e); 1462 } 1463 wc->stats.writes_blocked_on_freelist++; 1464 writecache_wait_on_freelist(wc); 1465 continue; 1466 } 1467 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1468 writecache_insert_entry(wc, e); 1469 wc->uncommitted_blocks++; 1470 wc->stats.writes_allocate++; 1471 bio_copy: 1472 if (WC_MODE_PMEM(wc)) 1473 bio_copy_block(wc, bio, memory_data(wc, e)); 1474 else 1475 return writecache_bio_copy_ssd(wc, bio, e, search_used); 1476 } while (bio->bi_iter.bi_size); 1477 1478 if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks)) 1479 writecache_flush(wc); 1480 else 1481 writecache_schedule_autocommit(wc); 1482 1483 return WC_MAP_SUBMIT; 1484 } 1485 1486 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio) 1487 { 1488 if (writecache_has_error(wc)) 1489 return WC_MAP_ERROR; 1490 1491 if (WC_MODE_PMEM(wc)) { 1492 wc->stats.flushes++; 1493 writecache_flush(wc); 1494 if (writecache_has_error(wc)) 1495 return WC_MAP_ERROR; 1496 else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only)) 1497 return WC_MAP_REMAP_ORIGIN; 1498 return WC_MAP_SUBMIT; 1499 } 1500 /* SSD: */ 1501 if (dm_bio_get_target_bio_nr(bio)) 1502 return WC_MAP_REMAP_ORIGIN; 1503 wc->stats.flushes++; 1504 writecache_offload_bio(wc, bio); 1505 return WC_MAP_RETURN; 1506 } 1507 1508 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio) 1509 { 1510 wc->stats.discards++; 1511 1512 if (writecache_has_error(wc)) 1513 return WC_MAP_ERROR; 1514 1515 if (WC_MODE_PMEM(wc)) { 1516 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1517 return WC_MAP_REMAP_ORIGIN; 1518 } 1519 /* SSD: */ 1520 writecache_offload_bio(wc, bio); 1521 return WC_MAP_RETURN; 1522 } 1523 1524 static int writecache_map(struct dm_target *ti, struct bio *bio) 1525 { 1526 struct dm_writecache *wc = ti->private; 1527 enum wc_map_op map_op; 1528 1529 bio->bi_private = NULL; 1530 1531 wc_lock(wc); 1532 1533 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1534 map_op = writecache_map_flush(wc, bio); 1535 goto done; 1536 } 1537 1538 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1539 1540 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1541 (wc->block_size / 512 - 1)) != 0)) { 1542 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1543 (unsigned long long)bio->bi_iter.bi_sector, 1544 bio->bi_iter.bi_size, wc->block_size); 1545 map_op = WC_MAP_ERROR; 1546 goto done; 1547 } 1548 1549 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1550 map_op = writecache_map_discard(wc, bio); 1551 goto done; 1552 } 1553 1554 if (bio_data_dir(bio) == READ) 1555 map_op = writecache_map_read(wc, bio); 1556 else 1557 map_op = writecache_map_write(wc, bio); 1558 done: 1559 switch (map_op) { 1560 case WC_MAP_REMAP_ORIGIN: 1561 if (likely(wc->pause != 0)) { 1562 if (bio_op(bio) == REQ_OP_WRITE) { 1563 dm_iot_io_begin(&wc->iot, 1); 1564 bio->bi_private = (void *)2; 1565 } 1566 } 1567 bio_set_dev(bio, wc->dev->bdev); 1568 wc_unlock(wc); 1569 return DM_MAPIO_REMAPPED; 1570 1571 case WC_MAP_REMAP: 1572 /* make sure that writecache_end_io decrements bio_in_progress: */ 1573 bio->bi_private = (void *)1; 1574 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1575 wc_unlock(wc); 1576 return DM_MAPIO_REMAPPED; 1577 1578 case WC_MAP_SUBMIT: 1579 wc_unlock(wc); 1580 bio_endio(bio); 1581 return DM_MAPIO_SUBMITTED; 1582 1583 case WC_MAP_RETURN: 1584 wc_unlock(wc); 1585 return DM_MAPIO_SUBMITTED; 1586 1587 case WC_MAP_ERROR: 1588 wc_unlock(wc); 1589 bio_io_error(bio); 1590 return DM_MAPIO_SUBMITTED; 1591 1592 default: 1593 BUG(); 1594 return -1; 1595 } 1596 } 1597 1598 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1599 { 1600 struct dm_writecache *wc = ti->private; 1601 1602 if (bio->bi_private == (void *)1) { 1603 int dir = bio_data_dir(bio); 1604 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1605 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1606 wake_up(&wc->bio_in_progress_wait[dir]); 1607 } else if (bio->bi_private == (void *)2) { 1608 dm_iot_io_end(&wc->iot, 1); 1609 } 1610 return 0; 1611 } 1612 1613 static int writecache_iterate_devices(struct dm_target *ti, 1614 iterate_devices_callout_fn fn, void *data) 1615 { 1616 struct dm_writecache *wc = ti->private; 1617 1618 return fn(ti, wc->dev, 0, ti->len, data); 1619 } 1620 1621 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1622 { 1623 struct dm_writecache *wc = ti->private; 1624 1625 if (limits->logical_block_size < wc->block_size) 1626 limits->logical_block_size = wc->block_size; 1627 1628 if (limits->physical_block_size < wc->block_size) 1629 limits->physical_block_size = wc->block_size; 1630 1631 if (limits->io_min < wc->block_size) 1632 limits->io_min = wc->block_size; 1633 } 1634 1635 1636 static void writecache_writeback_endio(struct bio *bio) 1637 { 1638 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1639 struct dm_writecache *wc = wb->wc; 1640 unsigned long flags; 1641 1642 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1643 if (unlikely(list_empty(&wc->endio_list))) 1644 wake_up_process(wc->endio_thread); 1645 list_add_tail(&wb->endio_entry, &wc->endio_list); 1646 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1647 } 1648 1649 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1650 { 1651 struct copy_struct *c = ptr; 1652 struct dm_writecache *wc = c->wc; 1653 1654 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1655 1656 raw_spin_lock_irq(&wc->endio_list_lock); 1657 if (unlikely(list_empty(&wc->endio_list))) 1658 wake_up_process(wc->endio_thread); 1659 list_add_tail(&c->endio_entry, &wc->endio_list); 1660 raw_spin_unlock_irq(&wc->endio_list_lock); 1661 } 1662 1663 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1664 { 1665 unsigned i; 1666 struct writeback_struct *wb; 1667 struct wc_entry *e; 1668 unsigned long n_walked = 0; 1669 1670 do { 1671 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1672 list_del(&wb->endio_entry); 1673 1674 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1675 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1676 "write error %d", wb->bio.bi_status); 1677 i = 0; 1678 do { 1679 e = wb->wc_list[i]; 1680 BUG_ON(!e->write_in_progress); 1681 e->write_in_progress = false; 1682 INIT_LIST_HEAD(&e->lru); 1683 if (!writecache_has_error(wc)) 1684 writecache_free_entry(wc, e); 1685 BUG_ON(!wc->writeback_size); 1686 wc->writeback_size--; 1687 n_walked++; 1688 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1689 writecache_commit_flushed(wc, false); 1690 wc_unlock(wc); 1691 wc_lock(wc); 1692 n_walked = 0; 1693 } 1694 } while (++i < wb->wc_list_n); 1695 1696 if (wb->wc_list != wb->wc_list_inline) 1697 kfree(wb->wc_list); 1698 bio_put(&wb->bio); 1699 } while (!list_empty(list)); 1700 } 1701 1702 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1703 { 1704 struct copy_struct *c; 1705 struct wc_entry *e; 1706 1707 do { 1708 c = list_entry(list->next, struct copy_struct, endio_entry); 1709 list_del(&c->endio_entry); 1710 1711 if (unlikely(c->error)) 1712 writecache_error(wc, c->error, "copy error"); 1713 1714 e = c->e; 1715 do { 1716 BUG_ON(!e->write_in_progress); 1717 e->write_in_progress = false; 1718 INIT_LIST_HEAD(&e->lru); 1719 if (!writecache_has_error(wc)) 1720 writecache_free_entry(wc, e); 1721 1722 BUG_ON(!wc->writeback_size); 1723 wc->writeback_size--; 1724 e++; 1725 } while (--c->n_entries); 1726 mempool_free(c, &wc->copy_pool); 1727 } while (!list_empty(list)); 1728 } 1729 1730 static int writecache_endio_thread(void *data) 1731 { 1732 struct dm_writecache *wc = data; 1733 1734 while (1) { 1735 struct list_head list; 1736 1737 raw_spin_lock_irq(&wc->endio_list_lock); 1738 if (!list_empty(&wc->endio_list)) 1739 goto pop_from_list; 1740 set_current_state(TASK_INTERRUPTIBLE); 1741 raw_spin_unlock_irq(&wc->endio_list_lock); 1742 1743 if (unlikely(kthread_should_stop())) { 1744 set_current_state(TASK_RUNNING); 1745 break; 1746 } 1747 1748 schedule(); 1749 1750 continue; 1751 1752 pop_from_list: 1753 list = wc->endio_list; 1754 list.next->prev = list.prev->next = &list; 1755 INIT_LIST_HEAD(&wc->endio_list); 1756 raw_spin_unlock_irq(&wc->endio_list_lock); 1757 1758 if (!WC_MODE_FUA(wc)) 1759 writecache_disk_flush(wc, wc->dev); 1760 1761 wc_lock(wc); 1762 1763 if (WC_MODE_PMEM(wc)) { 1764 __writecache_endio_pmem(wc, &list); 1765 } else { 1766 __writecache_endio_ssd(wc, &list); 1767 writecache_wait_for_ios(wc, READ); 1768 } 1769 1770 writecache_commit_flushed(wc, false); 1771 1772 wc_unlock(wc); 1773 } 1774 1775 return 0; 1776 } 1777 1778 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e) 1779 { 1780 struct dm_writecache *wc = wb->wc; 1781 unsigned block_size = wc->block_size; 1782 void *address = memory_data(wc, e); 1783 1784 persistent_memory_flush_cache(address, block_size); 1785 1786 if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors)) 1787 return true; 1788 1789 return bio_add_page(&wb->bio, persistent_memory_page(address), 1790 block_size, persistent_memory_page_offset(address)) != 0; 1791 } 1792 1793 struct writeback_list { 1794 struct list_head list; 1795 size_t size; 1796 }; 1797 1798 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1799 { 1800 if (unlikely(wc->max_writeback_jobs)) { 1801 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1802 wc_lock(wc); 1803 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1804 writecache_wait_on_freelist(wc); 1805 wc_unlock(wc); 1806 } 1807 } 1808 cond_resched(); 1809 } 1810 1811 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1812 { 1813 struct wc_entry *e, *f; 1814 struct bio *bio; 1815 struct writeback_struct *wb; 1816 unsigned max_pages; 1817 1818 while (wbl->size) { 1819 wbl->size--; 1820 e = container_of(wbl->list.prev, struct wc_entry, lru); 1821 list_del(&e->lru); 1822 1823 max_pages = e->wc_list_contiguous; 1824 1825 bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE, 1826 GFP_NOIO, &wc->bio_set); 1827 wb = container_of(bio, struct writeback_struct, bio); 1828 wb->wc = wc; 1829 bio->bi_end_io = writecache_writeback_endio; 1830 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1831 if (max_pages <= WB_LIST_INLINE || 1832 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1833 GFP_NOIO | __GFP_NORETRY | 1834 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1835 wb->wc_list = wb->wc_list_inline; 1836 max_pages = WB_LIST_INLINE; 1837 } 1838 1839 BUG_ON(!wc_add_block(wb, e)); 1840 1841 wb->wc_list[0] = e; 1842 wb->wc_list_n = 1; 1843 1844 while (wbl->size && wb->wc_list_n < max_pages) { 1845 f = container_of(wbl->list.prev, struct wc_entry, lru); 1846 if (read_original_sector(wc, f) != 1847 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1848 break; 1849 if (!wc_add_block(wb, f)) 1850 break; 1851 wbl->size--; 1852 list_del(&f->lru); 1853 wb->wc_list[wb->wc_list_n++] = f; 1854 e = f; 1855 } 1856 if (WC_MODE_FUA(wc)) 1857 bio->bi_opf |= REQ_FUA; 1858 if (writecache_has_error(wc)) { 1859 bio->bi_status = BLK_STS_IOERR; 1860 bio_endio(bio); 1861 } else if (unlikely(!bio_sectors(bio))) { 1862 bio->bi_status = BLK_STS_OK; 1863 bio_endio(bio); 1864 } else { 1865 submit_bio(bio); 1866 } 1867 1868 __writeback_throttle(wc, wbl); 1869 } 1870 } 1871 1872 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1873 { 1874 struct wc_entry *e, *f; 1875 struct dm_io_region from, to; 1876 struct copy_struct *c; 1877 1878 while (wbl->size) { 1879 unsigned n_sectors; 1880 1881 wbl->size--; 1882 e = container_of(wbl->list.prev, struct wc_entry, lru); 1883 list_del(&e->lru); 1884 1885 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1886 1887 from.bdev = wc->ssd_dev->bdev; 1888 from.sector = cache_sector(wc, e); 1889 from.count = n_sectors; 1890 to.bdev = wc->dev->bdev; 1891 to.sector = read_original_sector(wc, e); 1892 to.count = n_sectors; 1893 1894 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1895 c->wc = wc; 1896 c->e = e; 1897 c->n_entries = e->wc_list_contiguous; 1898 1899 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1900 wbl->size--; 1901 f = container_of(wbl->list.prev, struct wc_entry, lru); 1902 BUG_ON(f != e + 1); 1903 list_del(&f->lru); 1904 e = f; 1905 } 1906 1907 if (unlikely(to.sector + to.count > wc->data_device_sectors)) { 1908 if (to.sector >= wc->data_device_sectors) { 1909 writecache_copy_endio(0, 0, c); 1910 continue; 1911 } 1912 from.count = to.count = wc->data_device_sectors - to.sector; 1913 } 1914 1915 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1916 1917 __writeback_throttle(wc, wbl); 1918 } 1919 } 1920 1921 static void writecache_writeback(struct work_struct *work) 1922 { 1923 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1924 struct blk_plug plug; 1925 struct wc_entry *f, *g, *e = NULL; 1926 struct rb_node *node, *next_node; 1927 struct list_head skipped; 1928 struct writeback_list wbl; 1929 unsigned long n_walked; 1930 1931 if (!WC_MODE_PMEM(wc)) { 1932 /* Wait for any active kcopyd work on behalf of ssd writeback */ 1933 dm_kcopyd_client_flush(wc->dm_kcopyd); 1934 } 1935 1936 if (likely(wc->pause != 0)) { 1937 while (1) { 1938 unsigned long idle; 1939 if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) || 1940 unlikely(dm_suspended(wc->ti))) 1941 break; 1942 idle = dm_iot_idle_time(&wc->iot); 1943 if (idle >= wc->pause) 1944 break; 1945 idle = wc->pause - idle; 1946 if (idle > HZ) 1947 idle = HZ; 1948 schedule_timeout_idle(idle); 1949 } 1950 } 1951 1952 wc_lock(wc); 1953 restart: 1954 if (writecache_has_error(wc)) { 1955 wc_unlock(wc); 1956 return; 1957 } 1958 1959 if (unlikely(wc->writeback_all)) { 1960 if (writecache_wait_for_writeback(wc)) 1961 goto restart; 1962 } 1963 1964 if (wc->overwrote_committed) { 1965 writecache_wait_for_ios(wc, WRITE); 1966 } 1967 1968 n_walked = 0; 1969 INIT_LIST_HEAD(&skipped); 1970 INIT_LIST_HEAD(&wbl.list); 1971 wbl.size = 0; 1972 while (!list_empty(&wc->lru) && 1973 (wc->writeback_all || 1974 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1975 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1976 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1977 1978 n_walked++; 1979 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1980 likely(!wc->writeback_all)) { 1981 if (likely(!dm_suspended(wc->ti))) 1982 queue_work(wc->writeback_wq, &wc->writeback_work); 1983 break; 1984 } 1985 1986 if (unlikely(wc->writeback_all)) { 1987 if (unlikely(!e)) { 1988 writecache_flush(wc); 1989 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1990 } else 1991 e = g; 1992 } else 1993 e = container_of(wc->lru.prev, struct wc_entry, lru); 1994 BUG_ON(e->write_in_progress); 1995 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1996 writecache_flush(wc); 1997 } 1998 node = rb_prev(&e->rb_node); 1999 if (node) { 2000 f = container_of(node, struct wc_entry, rb_node); 2001 if (unlikely(read_original_sector(wc, f) == 2002 read_original_sector(wc, e))) { 2003 BUG_ON(!f->write_in_progress); 2004 list_move(&e->lru, &skipped); 2005 cond_resched(); 2006 continue; 2007 } 2008 } 2009 wc->writeback_size++; 2010 list_move(&e->lru, &wbl.list); 2011 wbl.size++; 2012 e->write_in_progress = true; 2013 e->wc_list_contiguous = 1; 2014 2015 f = e; 2016 2017 while (1) { 2018 next_node = rb_next(&f->rb_node); 2019 if (unlikely(!next_node)) 2020 break; 2021 g = container_of(next_node, struct wc_entry, rb_node); 2022 if (unlikely(read_original_sector(wc, g) == 2023 read_original_sector(wc, f))) { 2024 f = g; 2025 continue; 2026 } 2027 if (read_original_sector(wc, g) != 2028 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 2029 break; 2030 if (unlikely(g->write_in_progress)) 2031 break; 2032 if (unlikely(!writecache_entry_is_committed(wc, g))) 2033 break; 2034 2035 if (!WC_MODE_PMEM(wc)) { 2036 if (g != f + 1) 2037 break; 2038 } 2039 2040 n_walked++; 2041 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 2042 // break; 2043 2044 wc->writeback_size++; 2045 list_move(&g->lru, &wbl.list); 2046 wbl.size++; 2047 g->write_in_progress = true; 2048 g->wc_list_contiguous = BIO_MAX_VECS; 2049 f = g; 2050 e->wc_list_contiguous++; 2051 if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) { 2052 if (unlikely(wc->writeback_all)) { 2053 next_node = rb_next(&f->rb_node); 2054 if (likely(next_node)) 2055 g = container_of(next_node, struct wc_entry, rb_node); 2056 } 2057 break; 2058 } 2059 } 2060 cond_resched(); 2061 } 2062 2063 if (!list_empty(&skipped)) { 2064 list_splice_tail(&skipped, &wc->lru); 2065 /* 2066 * If we didn't do any progress, we must wait until some 2067 * writeback finishes to avoid burning CPU in a loop 2068 */ 2069 if (unlikely(!wbl.size)) 2070 writecache_wait_for_writeback(wc); 2071 } 2072 2073 wc_unlock(wc); 2074 2075 blk_start_plug(&plug); 2076 2077 if (WC_MODE_PMEM(wc)) 2078 __writecache_writeback_pmem(wc, &wbl); 2079 else 2080 __writecache_writeback_ssd(wc, &wbl); 2081 2082 blk_finish_plug(&plug); 2083 2084 if (unlikely(wc->writeback_all)) { 2085 wc_lock(wc); 2086 while (writecache_wait_for_writeback(wc)); 2087 wc_unlock(wc); 2088 } 2089 } 2090 2091 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 2092 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 2093 { 2094 uint64_t n_blocks, offset; 2095 struct wc_entry e; 2096 2097 n_blocks = device_size; 2098 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 2099 2100 while (1) { 2101 if (!n_blocks) 2102 return -ENOSPC; 2103 /* Verify the following entries[n_blocks] won't overflow */ 2104 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 2105 sizeof(struct wc_memory_entry))) 2106 return -EFBIG; 2107 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 2108 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 2109 if (offset + n_blocks * block_size <= device_size) 2110 break; 2111 n_blocks--; 2112 } 2113 2114 /* check if the bit field overflows */ 2115 e.index = n_blocks; 2116 if (e.index != n_blocks) 2117 return -EFBIG; 2118 2119 if (n_blocks_p) 2120 *n_blocks_p = n_blocks; 2121 if (n_metadata_blocks_p) 2122 *n_metadata_blocks_p = offset >> __ffs(block_size); 2123 return 0; 2124 } 2125 2126 static int init_memory(struct dm_writecache *wc) 2127 { 2128 size_t b; 2129 int r; 2130 2131 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 2132 if (r) 2133 return r; 2134 2135 r = writecache_alloc_entries(wc); 2136 if (r) 2137 return r; 2138 2139 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 2140 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 2141 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 2142 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 2143 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 2144 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 2145 2146 for (b = 0; b < wc->n_blocks; b++) { 2147 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 2148 cond_resched(); 2149 } 2150 2151 writecache_flush_all_metadata(wc); 2152 writecache_commit_flushed(wc, false); 2153 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 2154 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 2155 writecache_commit_flushed(wc, false); 2156 2157 return 0; 2158 } 2159 2160 static void writecache_dtr(struct dm_target *ti) 2161 { 2162 struct dm_writecache *wc = ti->private; 2163 2164 if (!wc) 2165 return; 2166 2167 if (wc->endio_thread) 2168 kthread_stop(wc->endio_thread); 2169 2170 if (wc->flush_thread) 2171 kthread_stop(wc->flush_thread); 2172 2173 bioset_exit(&wc->bio_set); 2174 2175 mempool_exit(&wc->copy_pool); 2176 2177 if (wc->writeback_wq) 2178 destroy_workqueue(wc->writeback_wq); 2179 2180 if (wc->dev) 2181 dm_put_device(ti, wc->dev); 2182 2183 if (wc->ssd_dev) 2184 dm_put_device(ti, wc->ssd_dev); 2185 2186 vfree(wc->entries); 2187 2188 if (wc->memory_map) { 2189 if (WC_MODE_PMEM(wc)) 2190 persistent_memory_release(wc); 2191 else 2192 vfree(wc->memory_map); 2193 } 2194 2195 if (wc->dm_kcopyd) 2196 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2197 2198 if (wc->dm_io) 2199 dm_io_client_destroy(wc->dm_io); 2200 2201 vfree(wc->dirty_bitmap); 2202 2203 kfree(wc); 2204 } 2205 2206 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2207 { 2208 struct dm_writecache *wc; 2209 struct dm_arg_set as; 2210 const char *string; 2211 unsigned opt_params; 2212 size_t offset, data_size; 2213 int i, r; 2214 char dummy; 2215 int high_wm_percent = HIGH_WATERMARK; 2216 int low_wm_percent = LOW_WATERMARK; 2217 uint64_t x; 2218 struct wc_memory_superblock s; 2219 2220 static struct dm_arg _args[] = { 2221 {0, 18, "Invalid number of feature args"}, 2222 }; 2223 2224 as.argc = argc; 2225 as.argv = argv; 2226 2227 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2228 if (!wc) { 2229 ti->error = "Cannot allocate writecache structure"; 2230 r = -ENOMEM; 2231 goto bad; 2232 } 2233 ti->private = wc; 2234 wc->ti = ti; 2235 2236 mutex_init(&wc->lock); 2237 wc->max_age = MAX_AGE_UNSPECIFIED; 2238 writecache_poison_lists(wc); 2239 init_waitqueue_head(&wc->freelist_wait); 2240 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2241 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2242 2243 for (i = 0; i < 2; i++) { 2244 atomic_set(&wc->bio_in_progress[i], 0); 2245 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2246 } 2247 2248 wc->dm_io = dm_io_client_create(); 2249 if (IS_ERR(wc->dm_io)) { 2250 r = PTR_ERR(wc->dm_io); 2251 ti->error = "Unable to allocate dm-io client"; 2252 wc->dm_io = NULL; 2253 goto bad; 2254 } 2255 2256 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2257 if (!wc->writeback_wq) { 2258 r = -ENOMEM; 2259 ti->error = "Could not allocate writeback workqueue"; 2260 goto bad; 2261 } 2262 INIT_WORK(&wc->writeback_work, writecache_writeback); 2263 INIT_WORK(&wc->flush_work, writecache_flush_work); 2264 2265 dm_iot_init(&wc->iot); 2266 2267 raw_spin_lock_init(&wc->endio_list_lock); 2268 INIT_LIST_HEAD(&wc->endio_list); 2269 wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio"); 2270 if (IS_ERR(wc->endio_thread)) { 2271 r = PTR_ERR(wc->endio_thread); 2272 wc->endio_thread = NULL; 2273 ti->error = "Couldn't spawn endio thread"; 2274 goto bad; 2275 } 2276 2277 /* 2278 * Parse the mode (pmem or ssd) 2279 */ 2280 string = dm_shift_arg(&as); 2281 if (!string) 2282 goto bad_arguments; 2283 2284 if (!strcasecmp(string, "s")) { 2285 wc->pmem_mode = false; 2286 } else if (!strcasecmp(string, "p")) { 2287 #ifdef DM_WRITECACHE_HAS_PMEM 2288 wc->pmem_mode = true; 2289 wc->writeback_fua = true; 2290 #else 2291 /* 2292 * If the architecture doesn't support persistent memory or 2293 * the kernel doesn't support any DAX drivers, this driver can 2294 * only be used in SSD-only mode. 2295 */ 2296 r = -EOPNOTSUPP; 2297 ti->error = "Persistent memory or DAX not supported on this system"; 2298 goto bad; 2299 #endif 2300 } else { 2301 goto bad_arguments; 2302 } 2303 2304 if (WC_MODE_PMEM(wc)) { 2305 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2306 offsetof(struct writeback_struct, bio), 2307 BIOSET_NEED_BVECS); 2308 if (r) { 2309 ti->error = "Could not allocate bio set"; 2310 goto bad; 2311 } 2312 } else { 2313 wc->pause = PAUSE_WRITEBACK; 2314 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2315 if (r) { 2316 ti->error = "Could not allocate mempool"; 2317 goto bad; 2318 } 2319 } 2320 2321 /* 2322 * Parse the origin data device 2323 */ 2324 string = dm_shift_arg(&as); 2325 if (!string) 2326 goto bad_arguments; 2327 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2328 if (r) { 2329 ti->error = "Origin data device lookup failed"; 2330 goto bad; 2331 } 2332 2333 /* 2334 * Parse cache data device (be it pmem or ssd) 2335 */ 2336 string = dm_shift_arg(&as); 2337 if (!string) 2338 goto bad_arguments; 2339 2340 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2341 if (r) { 2342 ti->error = "Cache data device lookup failed"; 2343 goto bad; 2344 } 2345 wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev); 2346 2347 /* 2348 * Parse the cache block size 2349 */ 2350 string = dm_shift_arg(&as); 2351 if (!string) 2352 goto bad_arguments; 2353 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2354 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2355 (wc->block_size & (wc->block_size - 1))) { 2356 r = -EINVAL; 2357 ti->error = "Invalid block size"; 2358 goto bad; 2359 } 2360 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2361 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2362 r = -EINVAL; 2363 ti->error = "Block size is smaller than device logical block size"; 2364 goto bad; 2365 } 2366 wc->block_size_bits = __ffs(wc->block_size); 2367 2368 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2369 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2370 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2371 2372 /* 2373 * Parse optional arguments 2374 */ 2375 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2376 if (r) 2377 goto bad; 2378 2379 while (opt_params) { 2380 string = dm_shift_arg(&as), opt_params--; 2381 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2382 unsigned long long start_sector; 2383 string = dm_shift_arg(&as), opt_params--; 2384 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2385 goto invalid_optional; 2386 wc->start_sector = start_sector; 2387 wc->start_sector_set = true; 2388 if (wc->start_sector != start_sector || 2389 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2390 goto invalid_optional; 2391 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2392 string = dm_shift_arg(&as), opt_params--; 2393 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2394 goto invalid_optional; 2395 if (high_wm_percent < 0 || high_wm_percent > 100) 2396 goto invalid_optional; 2397 wc->high_wm_percent_value = high_wm_percent; 2398 wc->high_wm_percent_set = true; 2399 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2400 string = dm_shift_arg(&as), opt_params--; 2401 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2402 goto invalid_optional; 2403 if (low_wm_percent < 0 || low_wm_percent > 100) 2404 goto invalid_optional; 2405 wc->low_wm_percent_value = low_wm_percent; 2406 wc->low_wm_percent_set = true; 2407 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2408 string = dm_shift_arg(&as), opt_params--; 2409 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2410 goto invalid_optional; 2411 wc->max_writeback_jobs_set = true; 2412 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2413 string = dm_shift_arg(&as), opt_params--; 2414 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2415 goto invalid_optional; 2416 wc->autocommit_blocks_set = true; 2417 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2418 unsigned autocommit_msecs; 2419 string = dm_shift_arg(&as), opt_params--; 2420 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2421 goto invalid_optional; 2422 if (autocommit_msecs > 3600000) 2423 goto invalid_optional; 2424 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2425 wc->autocommit_time_value = autocommit_msecs; 2426 wc->autocommit_time_set = true; 2427 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2428 unsigned max_age_msecs; 2429 string = dm_shift_arg(&as), opt_params--; 2430 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2431 goto invalid_optional; 2432 if (max_age_msecs > 86400000) 2433 goto invalid_optional; 2434 wc->max_age = msecs_to_jiffies(max_age_msecs); 2435 wc->max_age_set = true; 2436 wc->max_age_value = max_age_msecs; 2437 } else if (!strcasecmp(string, "cleaner")) { 2438 wc->cleaner_set = true; 2439 wc->cleaner = true; 2440 } else if (!strcasecmp(string, "fua")) { 2441 if (WC_MODE_PMEM(wc)) { 2442 wc->writeback_fua = true; 2443 wc->writeback_fua_set = true; 2444 } else goto invalid_optional; 2445 } else if (!strcasecmp(string, "nofua")) { 2446 if (WC_MODE_PMEM(wc)) { 2447 wc->writeback_fua = false; 2448 wc->writeback_fua_set = true; 2449 } else goto invalid_optional; 2450 } else if (!strcasecmp(string, "metadata_only")) { 2451 wc->metadata_only = true; 2452 } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) { 2453 unsigned pause_msecs; 2454 if (WC_MODE_PMEM(wc)) 2455 goto invalid_optional; 2456 string = dm_shift_arg(&as), opt_params--; 2457 if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1) 2458 goto invalid_optional; 2459 if (pause_msecs > 60000) 2460 goto invalid_optional; 2461 wc->pause = msecs_to_jiffies(pause_msecs); 2462 wc->pause_set = true; 2463 wc->pause_value = pause_msecs; 2464 } else { 2465 invalid_optional: 2466 r = -EINVAL; 2467 ti->error = "Invalid optional argument"; 2468 goto bad; 2469 } 2470 } 2471 2472 if (high_wm_percent < low_wm_percent) { 2473 r = -EINVAL; 2474 ti->error = "High watermark must be greater than or equal to low watermark"; 2475 goto bad; 2476 } 2477 2478 if (WC_MODE_PMEM(wc)) { 2479 if (!dax_synchronous(wc->ssd_dev->dax_dev)) { 2480 r = -EOPNOTSUPP; 2481 ti->error = "Asynchronous persistent memory not supported as pmem cache"; 2482 goto bad; 2483 } 2484 2485 r = persistent_memory_claim(wc); 2486 if (r) { 2487 ti->error = "Unable to map persistent memory for cache"; 2488 goto bad; 2489 } 2490 } else { 2491 size_t n_blocks, n_metadata_blocks; 2492 uint64_t n_bitmap_bits; 2493 2494 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2495 2496 bio_list_init(&wc->flush_list); 2497 wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush"); 2498 if (IS_ERR(wc->flush_thread)) { 2499 r = PTR_ERR(wc->flush_thread); 2500 wc->flush_thread = NULL; 2501 ti->error = "Couldn't spawn flush thread"; 2502 goto bad; 2503 } 2504 2505 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2506 &n_blocks, &n_metadata_blocks); 2507 if (r) { 2508 ti->error = "Invalid device size"; 2509 goto bad; 2510 } 2511 2512 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2513 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2514 /* this is limitation of test_bit functions */ 2515 if (n_bitmap_bits > 1U << 31) { 2516 r = -EFBIG; 2517 ti->error = "Invalid device size"; 2518 goto bad; 2519 } 2520 2521 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2522 if (!wc->memory_map) { 2523 r = -ENOMEM; 2524 ti->error = "Unable to allocate memory for metadata"; 2525 goto bad; 2526 } 2527 2528 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2529 if (IS_ERR(wc->dm_kcopyd)) { 2530 r = PTR_ERR(wc->dm_kcopyd); 2531 ti->error = "Unable to allocate dm-kcopyd client"; 2532 wc->dm_kcopyd = NULL; 2533 goto bad; 2534 } 2535 2536 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2537 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2538 BITS_PER_LONG * sizeof(unsigned long); 2539 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2540 if (!wc->dirty_bitmap) { 2541 r = -ENOMEM; 2542 ti->error = "Unable to allocate dirty bitmap"; 2543 goto bad; 2544 } 2545 2546 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2547 if (r) { 2548 ti->error = "Unable to read first block of metadata"; 2549 goto bad; 2550 } 2551 } 2552 2553 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2554 if (r) { 2555 ti->error = "Hardware memory error when reading superblock"; 2556 goto bad; 2557 } 2558 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2559 r = init_memory(wc); 2560 if (r) { 2561 ti->error = "Unable to initialize device"; 2562 goto bad; 2563 } 2564 r = copy_mc_to_kernel(&s, sb(wc), 2565 sizeof(struct wc_memory_superblock)); 2566 if (r) { 2567 ti->error = "Hardware memory error when reading superblock"; 2568 goto bad; 2569 } 2570 } 2571 2572 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2573 ti->error = "Invalid magic in the superblock"; 2574 r = -EINVAL; 2575 goto bad; 2576 } 2577 2578 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2579 ti->error = "Invalid version in the superblock"; 2580 r = -EINVAL; 2581 goto bad; 2582 } 2583 2584 if (le32_to_cpu(s.block_size) != wc->block_size) { 2585 ti->error = "Block size does not match superblock"; 2586 r = -EINVAL; 2587 goto bad; 2588 } 2589 2590 wc->n_blocks = le64_to_cpu(s.n_blocks); 2591 2592 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2593 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2594 overflow: 2595 ti->error = "Overflow in size calculation"; 2596 r = -EINVAL; 2597 goto bad; 2598 } 2599 offset += sizeof(struct wc_memory_superblock); 2600 if (offset < sizeof(struct wc_memory_superblock)) 2601 goto overflow; 2602 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2603 data_size = wc->n_blocks * (size_t)wc->block_size; 2604 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2605 (offset + data_size < offset)) 2606 goto overflow; 2607 if (offset + data_size > wc->memory_map_size) { 2608 ti->error = "Memory area is too small"; 2609 r = -EINVAL; 2610 goto bad; 2611 } 2612 2613 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2614 wc->block_start = (char *)sb(wc) + offset; 2615 2616 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2617 x += 50; 2618 do_div(x, 100); 2619 wc->freelist_high_watermark = x; 2620 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2621 x += 50; 2622 do_div(x, 100); 2623 wc->freelist_low_watermark = x; 2624 2625 if (wc->cleaner) 2626 activate_cleaner(wc); 2627 2628 r = writecache_alloc_entries(wc); 2629 if (r) { 2630 ti->error = "Cannot allocate memory"; 2631 goto bad; 2632 } 2633 2634 ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2; 2635 ti->flush_supported = true; 2636 ti->num_discard_bios = 1; 2637 2638 if (WC_MODE_PMEM(wc)) 2639 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2640 2641 return 0; 2642 2643 bad_arguments: 2644 r = -EINVAL; 2645 ti->error = "Bad arguments"; 2646 bad: 2647 writecache_dtr(ti); 2648 return r; 2649 } 2650 2651 static void writecache_status(struct dm_target *ti, status_type_t type, 2652 unsigned status_flags, char *result, unsigned maxlen) 2653 { 2654 struct dm_writecache *wc = ti->private; 2655 unsigned extra_args; 2656 unsigned sz = 0; 2657 2658 switch (type) { 2659 case STATUSTYPE_INFO: 2660 DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu", 2661 writecache_has_error(wc), 2662 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2663 (unsigned long long)wc->writeback_size, 2664 wc->stats.reads, 2665 wc->stats.read_hits, 2666 wc->stats.writes, 2667 wc->stats.write_hits_uncommitted, 2668 wc->stats.write_hits_committed, 2669 wc->stats.writes_around, 2670 wc->stats.writes_allocate, 2671 wc->stats.writes_blocked_on_freelist, 2672 wc->stats.flushes, 2673 wc->stats.discards); 2674 break; 2675 case STATUSTYPE_TABLE: 2676 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2677 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2678 extra_args = 0; 2679 if (wc->start_sector_set) 2680 extra_args += 2; 2681 if (wc->high_wm_percent_set) 2682 extra_args += 2; 2683 if (wc->low_wm_percent_set) 2684 extra_args += 2; 2685 if (wc->max_writeback_jobs_set) 2686 extra_args += 2; 2687 if (wc->autocommit_blocks_set) 2688 extra_args += 2; 2689 if (wc->autocommit_time_set) 2690 extra_args += 2; 2691 if (wc->max_age_set) 2692 extra_args += 2; 2693 if (wc->cleaner_set) 2694 extra_args++; 2695 if (wc->writeback_fua_set) 2696 extra_args++; 2697 if (wc->metadata_only) 2698 extra_args++; 2699 if (wc->pause_set) 2700 extra_args += 2; 2701 2702 DMEMIT("%u", extra_args); 2703 if (wc->start_sector_set) 2704 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2705 if (wc->high_wm_percent_set) 2706 DMEMIT(" high_watermark %u", wc->high_wm_percent_value); 2707 if (wc->low_wm_percent_set) 2708 DMEMIT(" low_watermark %u", wc->low_wm_percent_value); 2709 if (wc->max_writeback_jobs_set) 2710 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2711 if (wc->autocommit_blocks_set) 2712 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2713 if (wc->autocommit_time_set) 2714 DMEMIT(" autocommit_time %u", wc->autocommit_time_value); 2715 if (wc->max_age_set) 2716 DMEMIT(" max_age %u", wc->max_age_value); 2717 if (wc->cleaner_set) 2718 DMEMIT(" cleaner"); 2719 if (wc->writeback_fua_set) 2720 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2721 if (wc->metadata_only) 2722 DMEMIT(" metadata_only"); 2723 if (wc->pause_set) 2724 DMEMIT(" pause_writeback %u", wc->pause_value); 2725 break; 2726 case STATUSTYPE_IMA: 2727 *result = '\0'; 2728 break; 2729 } 2730 } 2731 2732 static struct target_type writecache_target = { 2733 .name = "writecache", 2734 .version = {1, 6, 0}, 2735 .module = THIS_MODULE, 2736 .ctr = writecache_ctr, 2737 .dtr = writecache_dtr, 2738 .status = writecache_status, 2739 .postsuspend = writecache_suspend, 2740 .resume = writecache_resume, 2741 .message = writecache_message, 2742 .map = writecache_map, 2743 .end_io = writecache_end_io, 2744 .iterate_devices = writecache_iterate_devices, 2745 .io_hints = writecache_io_hints, 2746 }; 2747 2748 static int __init dm_writecache_init(void) 2749 { 2750 int r; 2751 2752 r = dm_register_target(&writecache_target); 2753 if (r < 0) { 2754 DMERR("register failed %d", r); 2755 return r; 2756 } 2757 2758 return 0; 2759 } 2760 2761 static void __exit dm_writecache_exit(void) 2762 { 2763 dm_unregister_target(&writecache_target); 2764 } 2765 2766 module_init(dm_writecache_init); 2767 module_exit(dm_writecache_exit); 2768 2769 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2770 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2771 MODULE_LICENSE("GPL"); 2772