xref: /openbmc/linux/drivers/md/dm-writecache.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 #include <linux/delay.h>
19 #include "dm-io-tracker.h"
20 
21 #define DM_MSG_PREFIX "writecache"
22 
23 #define HIGH_WATERMARK			50
24 #define LOW_WATERMARK			45
25 #define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
26 #define ENDIO_LATENCY			16
27 #define WRITEBACK_LATENCY		64
28 #define AUTOCOMMIT_BLOCKS_SSD		65536
29 #define AUTOCOMMIT_BLOCKS_PMEM		64
30 #define AUTOCOMMIT_MSEC			1000
31 #define MAX_AGE_DIV			16
32 #define MAX_AGE_UNSPECIFIED		-1UL
33 #define PAUSE_WRITEBACK			(HZ * 3)
34 
35 #define BITMAP_GRANULARITY	65536
36 #if BITMAP_GRANULARITY < PAGE_SIZE
37 #undef BITMAP_GRANULARITY
38 #define BITMAP_GRANULARITY	PAGE_SIZE
39 #endif
40 
41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
42 #define DM_WRITECACHE_HAS_PMEM
43 #endif
44 
45 #ifdef DM_WRITECACHE_HAS_PMEM
46 #define pmem_assign(dest, src)					\
47 do {								\
48 	typeof(dest) uniq = (src);				\
49 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
50 } while (0)
51 #else
52 #define pmem_assign(dest, src)	((dest) = (src))
53 #endif
54 
55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
57 #endif
58 
59 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
60 #define MEMORY_SUPERBLOCK_VERSION	1
61 
62 struct wc_memory_entry {
63 	__le64 original_sector;
64 	__le64 seq_count;
65 };
66 
67 struct wc_memory_superblock {
68 	union {
69 		struct {
70 			__le32 magic;
71 			__le32 version;
72 			__le32 block_size;
73 			__le32 pad;
74 			__le64 n_blocks;
75 			__le64 seq_count;
76 		};
77 		__le64 padding[8];
78 	};
79 	struct wc_memory_entry entries[];
80 };
81 
82 struct wc_entry {
83 	struct rb_node rb_node;
84 	struct list_head lru;
85 	unsigned short wc_list_contiguous;
86 #if BITS_PER_LONG == 64
87 	bool write_in_progress : 1;
88 	unsigned long index : 47;
89 #else
90 	bool write_in_progress;
91 	unsigned long index;
92 #endif
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 	unsigned long pause;
127 
128 	unsigned int uncommitted_blocks;
129 	unsigned int autocommit_blocks;
130 	unsigned int max_writeback_jobs;
131 
132 	int error;
133 
134 	unsigned long autocommit_jiffies;
135 	struct timer_list autocommit_timer;
136 	struct wait_queue_head freelist_wait;
137 
138 	struct timer_list max_age_timer;
139 
140 	atomic_t bio_in_progress[2];
141 	struct wait_queue_head bio_in_progress_wait[2];
142 
143 	struct dm_target *ti;
144 	struct dm_dev *dev;
145 	struct dm_dev *ssd_dev;
146 	sector_t start_sector;
147 	void *memory_map;
148 	uint64_t memory_map_size;
149 	size_t metadata_sectors;
150 	size_t n_blocks;
151 	uint64_t seq_count;
152 	sector_t data_device_sectors;
153 	void *block_start;
154 	struct wc_entry *entries;
155 	unsigned int block_size;
156 	unsigned char block_size_bits;
157 
158 	bool pmem_mode:1;
159 	bool writeback_fua:1;
160 
161 	bool overwrote_committed:1;
162 	bool memory_vmapped:1;
163 
164 	bool start_sector_set:1;
165 	bool high_wm_percent_set:1;
166 	bool low_wm_percent_set:1;
167 	bool max_writeback_jobs_set:1;
168 	bool autocommit_blocks_set:1;
169 	bool autocommit_time_set:1;
170 	bool max_age_set:1;
171 	bool writeback_fua_set:1;
172 	bool flush_on_suspend:1;
173 	bool cleaner:1;
174 	bool cleaner_set:1;
175 	bool metadata_only:1;
176 	bool pause_set:1;
177 
178 	unsigned int high_wm_percent_value;
179 	unsigned int low_wm_percent_value;
180 	unsigned int autocommit_time_value;
181 	unsigned int max_age_value;
182 	unsigned int pause_value;
183 
184 	unsigned int writeback_all;
185 	struct workqueue_struct *writeback_wq;
186 	struct work_struct writeback_work;
187 	struct work_struct flush_work;
188 
189 	struct dm_io_tracker iot;
190 
191 	struct dm_io_client *dm_io;
192 
193 	raw_spinlock_t endio_list_lock;
194 	struct list_head endio_list;
195 	struct task_struct *endio_thread;
196 
197 	struct task_struct *flush_thread;
198 	struct bio_list flush_list;
199 
200 	struct dm_kcopyd_client *dm_kcopyd;
201 	unsigned long *dirty_bitmap;
202 	unsigned int dirty_bitmap_size;
203 
204 	struct bio_set bio_set;
205 	mempool_t copy_pool;
206 
207 	struct {
208 		unsigned long long reads;
209 		unsigned long long read_hits;
210 		unsigned long long writes;
211 		unsigned long long write_hits_uncommitted;
212 		unsigned long long write_hits_committed;
213 		unsigned long long writes_around;
214 		unsigned long long writes_allocate;
215 		unsigned long long writes_blocked_on_freelist;
216 		unsigned long long flushes;
217 		unsigned long long discards;
218 	} stats;
219 };
220 
221 #define WB_LIST_INLINE		16
222 
223 struct writeback_struct {
224 	struct list_head endio_entry;
225 	struct dm_writecache *wc;
226 	struct wc_entry **wc_list;
227 	unsigned int wc_list_n;
228 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
229 	struct bio bio;
230 };
231 
232 struct copy_struct {
233 	struct list_head endio_entry;
234 	struct dm_writecache *wc;
235 	struct wc_entry *e;
236 	unsigned int n_entries;
237 	int error;
238 };
239 
240 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
241 					    "A percentage of time allocated for data copying");
242 
243 static void wc_lock(struct dm_writecache *wc)
244 {
245 	mutex_lock(&wc->lock);
246 }
247 
248 static void wc_unlock(struct dm_writecache *wc)
249 {
250 	mutex_unlock(&wc->lock);
251 }
252 
253 #ifdef DM_WRITECACHE_HAS_PMEM
254 static int persistent_memory_claim(struct dm_writecache *wc)
255 {
256 	int r;
257 	loff_t s;
258 	long p, da;
259 	pfn_t pfn;
260 	int id;
261 	struct page **pages;
262 	sector_t offset;
263 
264 	wc->memory_vmapped = false;
265 
266 	s = wc->memory_map_size;
267 	p = s >> PAGE_SHIFT;
268 	if (!p) {
269 		r = -EINVAL;
270 		goto err1;
271 	}
272 	if (p != s >> PAGE_SHIFT) {
273 		r = -EOVERFLOW;
274 		goto err1;
275 	}
276 
277 	offset = get_start_sect(wc->ssd_dev->bdev);
278 	if (offset & (PAGE_SIZE / 512 - 1)) {
279 		r = -EINVAL;
280 		goto err1;
281 	}
282 	offset >>= PAGE_SHIFT - 9;
283 
284 	id = dax_read_lock();
285 
286 	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
287 			&wc->memory_map, &pfn);
288 	if (da < 0) {
289 		wc->memory_map = NULL;
290 		r = da;
291 		goto err2;
292 	}
293 	if (!pfn_t_has_page(pfn)) {
294 		wc->memory_map = NULL;
295 		r = -EOPNOTSUPP;
296 		goto err2;
297 	}
298 	if (da != p) {
299 		long i;
300 
301 		wc->memory_map = NULL;
302 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
303 		if (!pages) {
304 			r = -ENOMEM;
305 			goto err2;
306 		}
307 		i = 0;
308 		do {
309 			long daa;
310 
311 			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
312 					p - i, DAX_ACCESS, NULL, &pfn);
313 			if (daa <= 0) {
314 				r = daa ? daa : -EINVAL;
315 				goto err3;
316 			}
317 			if (!pfn_t_has_page(pfn)) {
318 				r = -EOPNOTSUPP;
319 				goto err3;
320 			}
321 			while (daa-- && i < p) {
322 				pages[i++] = pfn_t_to_page(pfn);
323 				pfn.val++;
324 				if (!(i & 15))
325 					cond_resched();
326 			}
327 		} while (i < p);
328 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
329 		if (!wc->memory_map) {
330 			r = -ENOMEM;
331 			goto err3;
332 		}
333 		kvfree(pages);
334 		wc->memory_vmapped = true;
335 	}
336 
337 	dax_read_unlock(id);
338 
339 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
340 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
341 
342 	return 0;
343 err3:
344 	kvfree(pages);
345 err2:
346 	dax_read_unlock(id);
347 err1:
348 	return r;
349 }
350 #else
351 static int persistent_memory_claim(struct dm_writecache *wc)
352 {
353 	return -EOPNOTSUPP;
354 }
355 #endif
356 
357 static void persistent_memory_release(struct dm_writecache *wc)
358 {
359 	if (wc->memory_vmapped)
360 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
361 }
362 
363 static struct page *persistent_memory_page(void *addr)
364 {
365 	if (is_vmalloc_addr(addr))
366 		return vmalloc_to_page(addr);
367 	else
368 		return virt_to_page(addr);
369 }
370 
371 static unsigned int persistent_memory_page_offset(void *addr)
372 {
373 	return (unsigned long)addr & (PAGE_SIZE - 1);
374 }
375 
376 static void persistent_memory_flush_cache(void *ptr, size_t size)
377 {
378 	if (is_vmalloc_addr(ptr))
379 		flush_kernel_vmap_range(ptr, size);
380 }
381 
382 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
383 {
384 	if (is_vmalloc_addr(ptr))
385 		invalidate_kernel_vmap_range(ptr, size);
386 }
387 
388 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
389 {
390 	return wc->memory_map;
391 }
392 
393 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
394 {
395 	return &sb(wc)->entries[e->index];
396 }
397 
398 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
399 {
400 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
401 }
402 
403 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
404 {
405 	return wc->start_sector + wc->metadata_sectors +
406 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
407 }
408 
409 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
410 {
411 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
412 	return e->original_sector;
413 #else
414 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
415 #endif
416 }
417 
418 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
419 {
420 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
421 	return e->seq_count;
422 #else
423 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
424 #endif
425 }
426 
427 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
428 {
429 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
430 	e->seq_count = -1;
431 #endif
432 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
433 }
434 
435 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
436 					    uint64_t original_sector, uint64_t seq_count)
437 {
438 	struct wc_memory_entry me;
439 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
440 	e->original_sector = original_sector;
441 	e->seq_count = seq_count;
442 #endif
443 	me.original_sector = cpu_to_le64(original_sector);
444 	me.seq_count = cpu_to_le64(seq_count);
445 	pmem_assign(*memory_entry(wc, e), me);
446 }
447 
448 #define writecache_error(wc, err, msg, arg...)				\
449 do {									\
450 	if (!cmpxchg(&(wc)->error, 0, err))				\
451 		DMERR(msg, ##arg);					\
452 	wake_up(&(wc)->freelist_wait);					\
453 } while (0)
454 
455 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
456 
457 static void writecache_flush_all_metadata(struct dm_writecache *wc)
458 {
459 	if (!WC_MODE_PMEM(wc))
460 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
461 }
462 
463 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
464 {
465 	if (!WC_MODE_PMEM(wc))
466 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
467 			  wc->dirty_bitmap);
468 }
469 
470 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
471 
472 struct io_notify {
473 	struct dm_writecache *wc;
474 	struct completion c;
475 	atomic_t count;
476 };
477 
478 static void writecache_notify_io(unsigned long error, void *context)
479 {
480 	struct io_notify *endio = context;
481 
482 	if (unlikely(error != 0))
483 		writecache_error(endio->wc, -EIO, "error writing metadata");
484 	BUG_ON(atomic_read(&endio->count) <= 0);
485 	if (atomic_dec_and_test(&endio->count))
486 		complete(&endio->c);
487 }
488 
489 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
490 {
491 	wait_event(wc->bio_in_progress_wait[direction],
492 		   !atomic_read(&wc->bio_in_progress[direction]));
493 }
494 
495 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
496 {
497 	struct dm_io_region region;
498 	struct dm_io_request req;
499 	struct io_notify endio = {
500 		wc,
501 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
502 		ATOMIC_INIT(1),
503 	};
504 	unsigned int bitmap_bits = wc->dirty_bitmap_size * 8;
505 	unsigned int i = 0;
506 
507 	while (1) {
508 		unsigned int j;
509 
510 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
511 		if (unlikely(i == bitmap_bits))
512 			break;
513 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
514 
515 		region.bdev = wc->ssd_dev->bdev;
516 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
517 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
518 
519 		if (unlikely(region.sector >= wc->metadata_sectors))
520 			break;
521 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
522 			region.count = wc->metadata_sectors - region.sector;
523 
524 		region.sector += wc->start_sector;
525 		atomic_inc(&endio.count);
526 		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
527 		req.mem.type = DM_IO_VMA;
528 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
529 		req.client = wc->dm_io;
530 		req.notify.fn = writecache_notify_io;
531 		req.notify.context = &endio;
532 
533 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
534 		(void) dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
535 		i = j;
536 	}
537 
538 	writecache_notify_io(0, &endio);
539 	wait_for_completion_io(&endio.c);
540 
541 	if (wait_for_ios)
542 		writecache_wait_for_ios(wc, WRITE);
543 
544 	writecache_disk_flush(wc, wc->ssd_dev);
545 
546 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
547 }
548 
549 static void ssd_commit_superblock(struct dm_writecache *wc)
550 {
551 	int r;
552 	struct dm_io_region region;
553 	struct dm_io_request req;
554 
555 	region.bdev = wc->ssd_dev->bdev;
556 	region.sector = 0;
557 	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
558 
559 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
560 		region.count = wc->metadata_sectors - region.sector;
561 
562 	region.sector += wc->start_sector;
563 
564 	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
565 	req.mem.type = DM_IO_VMA;
566 	req.mem.ptr.vma = (char *)wc->memory_map;
567 	req.client = wc->dm_io;
568 	req.notify.fn = NULL;
569 	req.notify.context = NULL;
570 
571 	r = dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
572 	if (unlikely(r))
573 		writecache_error(wc, r, "error writing superblock");
574 }
575 
576 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
577 {
578 	if (WC_MODE_PMEM(wc))
579 		pmem_wmb();
580 	else
581 		ssd_commit_flushed(wc, wait_for_ios);
582 }
583 
584 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
585 {
586 	int r;
587 	struct dm_io_region region;
588 	struct dm_io_request req;
589 
590 	region.bdev = dev->bdev;
591 	region.sector = 0;
592 	region.count = 0;
593 	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
594 	req.mem.type = DM_IO_KMEM;
595 	req.mem.ptr.addr = NULL;
596 	req.client = wc->dm_io;
597 	req.notify.fn = NULL;
598 
599 	r = dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
600 	if (unlikely(r))
601 		writecache_error(wc, r, "error flushing metadata: %d", r);
602 }
603 
604 #define WFE_RETURN_FOLLOWING	1
605 #define WFE_LOWEST_SEQ		2
606 
607 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
608 					      uint64_t block, int flags)
609 {
610 	struct wc_entry *e;
611 	struct rb_node *node = wc->tree.rb_node;
612 
613 	if (unlikely(!node))
614 		return NULL;
615 
616 	while (1) {
617 		e = container_of(node, struct wc_entry, rb_node);
618 		if (read_original_sector(wc, e) == block)
619 			break;
620 
621 		node = (read_original_sector(wc, e) >= block ?
622 			e->rb_node.rb_left : e->rb_node.rb_right);
623 		if (unlikely(!node)) {
624 			if (!(flags & WFE_RETURN_FOLLOWING))
625 				return NULL;
626 			if (read_original_sector(wc, e) >= block)
627 				return e;
628 
629 			node = rb_next(&e->rb_node);
630 			if (unlikely(!node))
631 				return NULL;
632 
633 			e = container_of(node, struct wc_entry, rb_node);
634 			return e;
635 		}
636 	}
637 
638 	while (1) {
639 		struct wc_entry *e2;
640 
641 		if (flags & WFE_LOWEST_SEQ)
642 			node = rb_prev(&e->rb_node);
643 		else
644 			node = rb_next(&e->rb_node);
645 		if (unlikely(!node))
646 			return e;
647 		e2 = container_of(node, struct wc_entry, rb_node);
648 		if (read_original_sector(wc, e2) != block)
649 			return e;
650 		e = e2;
651 	}
652 }
653 
654 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
655 {
656 	struct wc_entry *e;
657 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
658 
659 	while (*node) {
660 		e = container_of(*node, struct wc_entry, rb_node);
661 		parent = &e->rb_node;
662 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
663 			node = &parent->rb_left;
664 		else
665 			node = &parent->rb_right;
666 	}
667 	rb_link_node(&ins->rb_node, parent, node);
668 	rb_insert_color(&ins->rb_node, &wc->tree);
669 	list_add(&ins->lru, &wc->lru);
670 	ins->age = jiffies;
671 }
672 
673 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
674 {
675 	list_del(&e->lru);
676 	rb_erase(&e->rb_node, &wc->tree);
677 }
678 
679 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
680 {
681 	if (WC_MODE_SORT_FREELIST(wc)) {
682 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
683 
684 		if (unlikely(!*node))
685 			wc->current_free = e;
686 		while (*node) {
687 			parent = *node;
688 			if (&e->rb_node < *node)
689 				node = &parent->rb_left;
690 			else
691 				node = &parent->rb_right;
692 		}
693 		rb_link_node(&e->rb_node, parent, node);
694 		rb_insert_color(&e->rb_node, &wc->freetree);
695 	} else {
696 		list_add_tail(&e->lru, &wc->freelist);
697 	}
698 	wc->freelist_size++;
699 }
700 
701 static inline void writecache_verify_watermark(struct dm_writecache *wc)
702 {
703 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
704 		queue_work(wc->writeback_wq, &wc->writeback_work);
705 }
706 
707 static void writecache_max_age_timer(struct timer_list *t)
708 {
709 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
710 
711 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
712 		queue_work(wc->writeback_wq, &wc->writeback_work);
713 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
714 	}
715 }
716 
717 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
718 {
719 	struct wc_entry *e;
720 
721 	if (WC_MODE_SORT_FREELIST(wc)) {
722 		struct rb_node *next;
723 
724 		if (unlikely(!wc->current_free))
725 			return NULL;
726 		e = wc->current_free;
727 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
728 			return NULL;
729 		next = rb_next(&e->rb_node);
730 		rb_erase(&e->rb_node, &wc->freetree);
731 		if (unlikely(!next))
732 			next = rb_first(&wc->freetree);
733 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
734 	} else {
735 		if (unlikely(list_empty(&wc->freelist)))
736 			return NULL;
737 		e = container_of(wc->freelist.next, struct wc_entry, lru);
738 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
739 			return NULL;
740 		list_del(&e->lru);
741 	}
742 	wc->freelist_size--;
743 
744 	writecache_verify_watermark(wc);
745 
746 	return e;
747 }
748 
749 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
750 {
751 	writecache_unlink(wc, e);
752 	writecache_add_to_freelist(wc, e);
753 	clear_seq_count(wc, e);
754 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
755 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
756 		wake_up(&wc->freelist_wait);
757 }
758 
759 static void writecache_wait_on_freelist(struct dm_writecache *wc)
760 {
761 	DEFINE_WAIT(wait);
762 
763 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
764 	wc_unlock(wc);
765 	io_schedule();
766 	finish_wait(&wc->freelist_wait, &wait);
767 	wc_lock(wc);
768 }
769 
770 static void writecache_poison_lists(struct dm_writecache *wc)
771 {
772 	/*
773 	 * Catch incorrect access to these values while the device is suspended.
774 	 */
775 	memset(&wc->tree, -1, sizeof(wc->tree));
776 	wc->lru.next = LIST_POISON1;
777 	wc->lru.prev = LIST_POISON2;
778 	wc->freelist.next = LIST_POISON1;
779 	wc->freelist.prev = LIST_POISON2;
780 }
781 
782 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
783 {
784 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
785 	if (WC_MODE_PMEM(wc))
786 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
787 }
788 
789 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
790 {
791 	return read_seq_count(wc, e) < wc->seq_count;
792 }
793 
794 static void writecache_flush(struct dm_writecache *wc)
795 {
796 	struct wc_entry *e, *e2;
797 	bool need_flush_after_free;
798 
799 	wc->uncommitted_blocks = 0;
800 	del_timer(&wc->autocommit_timer);
801 
802 	if (list_empty(&wc->lru))
803 		return;
804 
805 	e = container_of(wc->lru.next, struct wc_entry, lru);
806 	if (writecache_entry_is_committed(wc, e)) {
807 		if (wc->overwrote_committed) {
808 			writecache_wait_for_ios(wc, WRITE);
809 			writecache_disk_flush(wc, wc->ssd_dev);
810 			wc->overwrote_committed = false;
811 		}
812 		return;
813 	}
814 	while (1) {
815 		writecache_flush_entry(wc, e);
816 		if (unlikely(e->lru.next == &wc->lru))
817 			break;
818 		e2 = container_of(e->lru.next, struct wc_entry, lru);
819 		if (writecache_entry_is_committed(wc, e2))
820 			break;
821 		e = e2;
822 		cond_resched();
823 	}
824 	writecache_commit_flushed(wc, true);
825 
826 	wc->seq_count++;
827 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
828 	if (WC_MODE_PMEM(wc))
829 		writecache_commit_flushed(wc, false);
830 	else
831 		ssd_commit_superblock(wc);
832 
833 	wc->overwrote_committed = false;
834 
835 	need_flush_after_free = false;
836 	while (1) {
837 		/* Free another committed entry with lower seq-count */
838 		struct rb_node *rb_node = rb_prev(&e->rb_node);
839 
840 		if (rb_node) {
841 			e2 = container_of(rb_node, struct wc_entry, rb_node);
842 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
843 			    likely(!e2->write_in_progress)) {
844 				writecache_free_entry(wc, e2);
845 				need_flush_after_free = true;
846 			}
847 		}
848 		if (unlikely(e->lru.prev == &wc->lru))
849 			break;
850 		e = container_of(e->lru.prev, struct wc_entry, lru);
851 		cond_resched();
852 	}
853 
854 	if (need_flush_after_free)
855 		writecache_commit_flushed(wc, false);
856 }
857 
858 static void writecache_flush_work(struct work_struct *work)
859 {
860 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
861 
862 	wc_lock(wc);
863 	writecache_flush(wc);
864 	wc_unlock(wc);
865 }
866 
867 static void writecache_autocommit_timer(struct timer_list *t)
868 {
869 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
870 
871 	if (!writecache_has_error(wc))
872 		queue_work(wc->writeback_wq, &wc->flush_work);
873 }
874 
875 static void writecache_schedule_autocommit(struct dm_writecache *wc)
876 {
877 	if (!timer_pending(&wc->autocommit_timer))
878 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
879 }
880 
881 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
882 {
883 	struct wc_entry *e;
884 	bool discarded_something = false;
885 
886 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
887 	if (unlikely(!e))
888 		return;
889 
890 	while (read_original_sector(wc, e) < end) {
891 		struct rb_node *node = rb_next(&e->rb_node);
892 
893 		if (likely(!e->write_in_progress)) {
894 			if (!discarded_something) {
895 				if (!WC_MODE_PMEM(wc)) {
896 					writecache_wait_for_ios(wc, READ);
897 					writecache_wait_for_ios(wc, WRITE);
898 				}
899 				discarded_something = true;
900 			}
901 			if (!writecache_entry_is_committed(wc, e))
902 				wc->uncommitted_blocks--;
903 			writecache_free_entry(wc, e);
904 		}
905 
906 		if (unlikely(!node))
907 			break;
908 
909 		e = container_of(node, struct wc_entry, rb_node);
910 	}
911 
912 	if (discarded_something)
913 		writecache_commit_flushed(wc, false);
914 }
915 
916 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
917 {
918 	if (wc->writeback_size) {
919 		writecache_wait_on_freelist(wc);
920 		return true;
921 	}
922 	return false;
923 }
924 
925 static void writecache_suspend(struct dm_target *ti)
926 {
927 	struct dm_writecache *wc = ti->private;
928 	bool flush_on_suspend;
929 
930 	del_timer_sync(&wc->autocommit_timer);
931 	del_timer_sync(&wc->max_age_timer);
932 
933 	wc_lock(wc);
934 	writecache_flush(wc);
935 	flush_on_suspend = wc->flush_on_suspend;
936 	if (flush_on_suspend) {
937 		wc->flush_on_suspend = false;
938 		wc->writeback_all++;
939 		queue_work(wc->writeback_wq, &wc->writeback_work);
940 	}
941 	wc_unlock(wc);
942 
943 	drain_workqueue(wc->writeback_wq);
944 
945 	wc_lock(wc);
946 	if (flush_on_suspend)
947 		wc->writeback_all--;
948 	while (writecache_wait_for_writeback(wc))
949 		;
950 
951 	if (WC_MODE_PMEM(wc))
952 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
953 
954 	writecache_poison_lists(wc);
955 
956 	wc_unlock(wc);
957 }
958 
959 static int writecache_alloc_entries(struct dm_writecache *wc)
960 {
961 	size_t b;
962 
963 	if (wc->entries)
964 		return 0;
965 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
966 	if (!wc->entries)
967 		return -ENOMEM;
968 	for (b = 0; b < wc->n_blocks; b++) {
969 		struct wc_entry *e = &wc->entries[b];
970 
971 		e->index = b;
972 		e->write_in_progress = false;
973 		cond_resched();
974 	}
975 
976 	return 0;
977 }
978 
979 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
980 {
981 	struct dm_io_region region;
982 	struct dm_io_request req;
983 
984 	region.bdev = wc->ssd_dev->bdev;
985 	region.sector = wc->start_sector;
986 	region.count = n_sectors;
987 	req.bi_opf = REQ_OP_READ | REQ_SYNC;
988 	req.mem.type = DM_IO_VMA;
989 	req.mem.ptr.vma = (char *)wc->memory_map;
990 	req.client = wc->dm_io;
991 	req.notify.fn = NULL;
992 
993 	return dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
994 }
995 
996 static void writecache_resume(struct dm_target *ti)
997 {
998 	struct dm_writecache *wc = ti->private;
999 	size_t b;
1000 	bool need_flush = false;
1001 	__le64 sb_seq_count;
1002 	int r;
1003 
1004 	wc_lock(wc);
1005 
1006 	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1007 
1008 	if (WC_MODE_PMEM(wc)) {
1009 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1010 	} else {
1011 		r = writecache_read_metadata(wc, wc->metadata_sectors);
1012 		if (r) {
1013 			size_t sb_entries_offset;
1014 
1015 			writecache_error(wc, r, "unable to read metadata: %d", r);
1016 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1017 			memset((char *)wc->memory_map + sb_entries_offset, -1,
1018 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1019 		}
1020 	}
1021 
1022 	wc->tree = RB_ROOT;
1023 	INIT_LIST_HEAD(&wc->lru);
1024 	if (WC_MODE_SORT_FREELIST(wc)) {
1025 		wc->freetree = RB_ROOT;
1026 		wc->current_free = NULL;
1027 	} else {
1028 		INIT_LIST_HEAD(&wc->freelist);
1029 	}
1030 	wc->freelist_size = 0;
1031 
1032 	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1033 			      sizeof(uint64_t));
1034 	if (r) {
1035 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1036 		sb_seq_count = cpu_to_le64(0);
1037 	}
1038 	wc->seq_count = le64_to_cpu(sb_seq_count);
1039 
1040 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1041 	for (b = 0; b < wc->n_blocks; b++) {
1042 		struct wc_entry *e = &wc->entries[b];
1043 		struct wc_memory_entry wme;
1044 
1045 		if (writecache_has_error(wc)) {
1046 			e->original_sector = -1;
1047 			e->seq_count = -1;
1048 			continue;
1049 		}
1050 		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1051 				      sizeof(struct wc_memory_entry));
1052 		if (r) {
1053 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1054 					 (unsigned long)b, r);
1055 			e->original_sector = -1;
1056 			e->seq_count = -1;
1057 		} else {
1058 			e->original_sector = le64_to_cpu(wme.original_sector);
1059 			e->seq_count = le64_to_cpu(wme.seq_count);
1060 		}
1061 		cond_resched();
1062 	}
1063 #endif
1064 	for (b = 0; b < wc->n_blocks; b++) {
1065 		struct wc_entry *e = &wc->entries[b];
1066 
1067 		if (!writecache_entry_is_committed(wc, e)) {
1068 			if (read_seq_count(wc, e) != -1) {
1069 erase_this:
1070 				clear_seq_count(wc, e);
1071 				need_flush = true;
1072 			}
1073 			writecache_add_to_freelist(wc, e);
1074 		} else {
1075 			struct wc_entry *old;
1076 
1077 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1078 			if (!old) {
1079 				writecache_insert_entry(wc, e);
1080 			} else {
1081 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1082 					writecache_error(wc, -EINVAL,
1083 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1084 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1085 						 (unsigned long long)read_seq_count(wc, e));
1086 				}
1087 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1088 					goto erase_this;
1089 				} else {
1090 					writecache_free_entry(wc, old);
1091 					writecache_insert_entry(wc, e);
1092 					need_flush = true;
1093 				}
1094 			}
1095 		}
1096 		cond_resched();
1097 	}
1098 
1099 	if (need_flush) {
1100 		writecache_flush_all_metadata(wc);
1101 		writecache_commit_flushed(wc, false);
1102 	}
1103 
1104 	writecache_verify_watermark(wc);
1105 
1106 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1107 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1108 
1109 	wc_unlock(wc);
1110 }
1111 
1112 static int process_flush_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1113 {
1114 	if (argc != 1)
1115 		return -EINVAL;
1116 
1117 	wc_lock(wc);
1118 	if (dm_suspended(wc->ti)) {
1119 		wc_unlock(wc);
1120 		return -EBUSY;
1121 	}
1122 	if (writecache_has_error(wc)) {
1123 		wc_unlock(wc);
1124 		return -EIO;
1125 	}
1126 
1127 	writecache_flush(wc);
1128 	wc->writeback_all++;
1129 	queue_work(wc->writeback_wq, &wc->writeback_work);
1130 	wc_unlock(wc);
1131 
1132 	flush_workqueue(wc->writeback_wq);
1133 
1134 	wc_lock(wc);
1135 	wc->writeback_all--;
1136 	if (writecache_has_error(wc)) {
1137 		wc_unlock(wc);
1138 		return -EIO;
1139 	}
1140 	wc_unlock(wc);
1141 
1142 	return 0;
1143 }
1144 
1145 static int process_flush_on_suspend_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1146 {
1147 	if (argc != 1)
1148 		return -EINVAL;
1149 
1150 	wc_lock(wc);
1151 	wc->flush_on_suspend = true;
1152 	wc_unlock(wc);
1153 
1154 	return 0;
1155 }
1156 
1157 static void activate_cleaner(struct dm_writecache *wc)
1158 {
1159 	wc->flush_on_suspend = true;
1160 	wc->cleaner = true;
1161 	wc->freelist_high_watermark = wc->n_blocks;
1162 	wc->freelist_low_watermark = wc->n_blocks;
1163 }
1164 
1165 static int process_cleaner_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1166 {
1167 	if (argc != 1)
1168 		return -EINVAL;
1169 
1170 	wc_lock(wc);
1171 	activate_cleaner(wc);
1172 	if (!dm_suspended(wc->ti))
1173 		writecache_verify_watermark(wc);
1174 	wc_unlock(wc);
1175 
1176 	return 0;
1177 }
1178 
1179 static int process_clear_stats_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1180 {
1181 	if (argc != 1)
1182 		return -EINVAL;
1183 
1184 	wc_lock(wc);
1185 	memset(&wc->stats, 0, sizeof(wc->stats));
1186 	wc_unlock(wc);
1187 
1188 	return 0;
1189 }
1190 
1191 static int writecache_message(struct dm_target *ti, unsigned int argc, char **argv,
1192 			      char *result, unsigned int maxlen)
1193 {
1194 	int r = -EINVAL;
1195 	struct dm_writecache *wc = ti->private;
1196 
1197 	if (!strcasecmp(argv[0], "flush"))
1198 		r = process_flush_mesg(argc, argv, wc);
1199 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1200 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1201 	else if (!strcasecmp(argv[0], "cleaner"))
1202 		r = process_cleaner_mesg(argc, argv, wc);
1203 	else if (!strcasecmp(argv[0], "clear_stats"))
1204 		r = process_clear_stats_mesg(argc, argv, wc);
1205 	else
1206 		DMERR("unrecognised message received: %s", argv[0]);
1207 
1208 	return r;
1209 }
1210 
1211 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1212 {
1213 	/*
1214 	 * clflushopt performs better with block size 1024, 2048, 4096
1215 	 * non-temporal stores perform better with block size 512
1216 	 *
1217 	 * block size   512             1024            2048            4096
1218 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1219 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1220 	 *
1221 	 * We see that movnti performs better for 512-byte blocks, and
1222 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1223 	 * prefer clflushopt for sizes >= 768.
1224 	 *
1225 	 * NOTE: this happens to be the case now (with dm-writecache's single
1226 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1227 	 * enabled to use movdir64b which might invalidate this performance
1228 	 * advantage seen with cache-allocating-writes plus flushing.
1229 	 */
1230 #ifdef CONFIG_X86
1231 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1232 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1233 	    likely(size >= 768)) {
1234 		do {
1235 			memcpy((void *)dest, (void *)source, 64);
1236 			clflushopt((void *)dest);
1237 			dest += 64;
1238 			source += 64;
1239 			size -= 64;
1240 		} while (size >= 64);
1241 		return;
1242 	}
1243 #endif
1244 	memcpy_flushcache(dest, source, size);
1245 }
1246 
1247 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1248 {
1249 	void *buf;
1250 	unsigned int size;
1251 	int rw = bio_data_dir(bio);
1252 	unsigned int remaining_size = wc->block_size;
1253 
1254 	do {
1255 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1256 
1257 		buf = bvec_kmap_local(&bv);
1258 		size = bv.bv_len;
1259 		if (unlikely(size > remaining_size))
1260 			size = remaining_size;
1261 
1262 		if (rw == READ) {
1263 			int r;
1264 
1265 			r = copy_mc_to_kernel(buf, data, size);
1266 			flush_dcache_page(bio_page(bio));
1267 			if (unlikely(r)) {
1268 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1269 				bio->bi_status = BLK_STS_IOERR;
1270 			}
1271 		} else {
1272 			flush_dcache_page(bio_page(bio));
1273 			memcpy_flushcache_optimized(data, buf, size);
1274 		}
1275 
1276 		kunmap_local(buf);
1277 
1278 		data = (char *)data + size;
1279 		remaining_size -= size;
1280 		bio_advance(bio, size);
1281 	} while (unlikely(remaining_size));
1282 }
1283 
1284 static int writecache_flush_thread(void *data)
1285 {
1286 	struct dm_writecache *wc = data;
1287 
1288 	while (1) {
1289 		struct bio *bio;
1290 
1291 		wc_lock(wc);
1292 		bio = bio_list_pop(&wc->flush_list);
1293 		if (!bio) {
1294 			set_current_state(TASK_INTERRUPTIBLE);
1295 			wc_unlock(wc);
1296 
1297 			if (unlikely(kthread_should_stop())) {
1298 				set_current_state(TASK_RUNNING);
1299 				break;
1300 			}
1301 
1302 			schedule();
1303 			continue;
1304 		}
1305 
1306 		if (bio_op(bio) == REQ_OP_DISCARD) {
1307 			writecache_discard(wc, bio->bi_iter.bi_sector,
1308 					   bio_end_sector(bio));
1309 			wc_unlock(wc);
1310 			bio_set_dev(bio, wc->dev->bdev);
1311 			submit_bio_noacct(bio);
1312 		} else {
1313 			writecache_flush(wc);
1314 			wc_unlock(wc);
1315 			if (writecache_has_error(wc))
1316 				bio->bi_status = BLK_STS_IOERR;
1317 			bio_endio(bio);
1318 		}
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1325 {
1326 	if (bio_list_empty(&wc->flush_list))
1327 		wake_up_process(wc->flush_thread);
1328 	bio_list_add(&wc->flush_list, bio);
1329 }
1330 
1331 enum wc_map_op {
1332 	WC_MAP_SUBMIT,
1333 	WC_MAP_REMAP,
1334 	WC_MAP_REMAP_ORIGIN,
1335 	WC_MAP_RETURN,
1336 	WC_MAP_ERROR,
1337 };
1338 
1339 static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1340 					struct wc_entry *e)
1341 {
1342 	if (e) {
1343 		sector_t next_boundary =
1344 			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1345 		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1346 			dm_accept_partial_bio(bio, next_boundary);
1347 	}
1348 }
1349 
1350 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1351 {
1352 	enum wc_map_op map_op;
1353 	struct wc_entry *e;
1354 
1355 read_next_block:
1356 	wc->stats.reads++;
1357 	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1358 	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1359 		wc->stats.read_hits++;
1360 		if (WC_MODE_PMEM(wc)) {
1361 			bio_copy_block(wc, bio, memory_data(wc, e));
1362 			if (bio->bi_iter.bi_size)
1363 				goto read_next_block;
1364 			map_op = WC_MAP_SUBMIT;
1365 		} else {
1366 			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1367 			bio_set_dev(bio, wc->ssd_dev->bdev);
1368 			bio->bi_iter.bi_sector = cache_sector(wc, e);
1369 			if (!writecache_entry_is_committed(wc, e))
1370 				writecache_wait_for_ios(wc, WRITE);
1371 			map_op = WC_MAP_REMAP;
1372 		}
1373 	} else {
1374 		writecache_map_remap_origin(wc, bio, e);
1375 		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1376 		map_op = WC_MAP_REMAP_ORIGIN;
1377 	}
1378 
1379 	return map_op;
1380 }
1381 
1382 static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1383 				    struct wc_entry *e, bool search_used)
1384 {
1385 	unsigned int bio_size = wc->block_size;
1386 	sector_t start_cache_sec = cache_sector(wc, e);
1387 	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1388 
1389 	while (bio_size < bio->bi_iter.bi_size) {
1390 		if (!search_used) {
1391 			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1392 
1393 			if (!f)
1394 				break;
1395 			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1396 							(bio_size >> SECTOR_SHIFT), wc->seq_count);
1397 			writecache_insert_entry(wc, f);
1398 			wc->uncommitted_blocks++;
1399 		} else {
1400 			struct wc_entry *f;
1401 			struct rb_node *next = rb_next(&e->rb_node);
1402 
1403 			if (!next)
1404 				break;
1405 			f = container_of(next, struct wc_entry, rb_node);
1406 			if (f != e + 1)
1407 				break;
1408 			if (read_original_sector(wc, f) !=
1409 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1410 				break;
1411 			if (unlikely(f->write_in_progress))
1412 				break;
1413 			if (writecache_entry_is_committed(wc, f))
1414 				wc->overwrote_committed = true;
1415 			e = f;
1416 		}
1417 		bio_size += wc->block_size;
1418 		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1419 	}
1420 
1421 	bio_set_dev(bio, wc->ssd_dev->bdev);
1422 	bio->bi_iter.bi_sector = start_cache_sec;
1423 	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1424 
1425 	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1426 	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1427 
1428 	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1429 		wc->uncommitted_blocks = 0;
1430 		queue_work(wc->writeback_wq, &wc->flush_work);
1431 	} else {
1432 		writecache_schedule_autocommit(wc);
1433 	}
1434 }
1435 
1436 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1437 {
1438 	struct wc_entry *e;
1439 
1440 	do {
1441 		bool found_entry = false;
1442 		bool search_used = false;
1443 
1444 		if (writecache_has_error(wc)) {
1445 			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1446 			return WC_MAP_ERROR;
1447 		}
1448 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1449 		if (e) {
1450 			if (!writecache_entry_is_committed(wc, e)) {
1451 				wc->stats.write_hits_uncommitted++;
1452 				search_used = true;
1453 				goto bio_copy;
1454 			}
1455 			wc->stats.write_hits_committed++;
1456 			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1457 				wc->overwrote_committed = true;
1458 				search_used = true;
1459 				goto bio_copy;
1460 			}
1461 			found_entry = true;
1462 		} else {
1463 			if (unlikely(wc->cleaner) ||
1464 			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1465 				goto direct_write;
1466 		}
1467 		e = writecache_pop_from_freelist(wc, (sector_t)-1);
1468 		if (unlikely(!e)) {
1469 			if (!WC_MODE_PMEM(wc) && !found_entry) {
1470 direct_write:
1471 				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1472 				writecache_map_remap_origin(wc, bio, e);
1473 				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1474 				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1475 				return WC_MAP_REMAP_ORIGIN;
1476 			}
1477 			wc->stats.writes_blocked_on_freelist++;
1478 			writecache_wait_on_freelist(wc);
1479 			continue;
1480 		}
1481 		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1482 		writecache_insert_entry(wc, e);
1483 		wc->uncommitted_blocks++;
1484 		wc->stats.writes_allocate++;
1485 bio_copy:
1486 		if (WC_MODE_PMEM(wc)) {
1487 			bio_copy_block(wc, bio, memory_data(wc, e));
1488 			wc->stats.writes++;
1489 		} else {
1490 			writecache_bio_copy_ssd(wc, bio, e, search_used);
1491 			return WC_MAP_REMAP;
1492 		}
1493 	} while (bio->bi_iter.bi_size);
1494 
1495 	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1496 		writecache_flush(wc);
1497 	else
1498 		writecache_schedule_autocommit(wc);
1499 
1500 	return WC_MAP_SUBMIT;
1501 }
1502 
1503 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1504 {
1505 	if (writecache_has_error(wc))
1506 		return WC_MAP_ERROR;
1507 
1508 	if (WC_MODE_PMEM(wc)) {
1509 		wc->stats.flushes++;
1510 		writecache_flush(wc);
1511 		if (writecache_has_error(wc))
1512 			return WC_MAP_ERROR;
1513 		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1514 			return WC_MAP_REMAP_ORIGIN;
1515 		return WC_MAP_SUBMIT;
1516 	}
1517 	/* SSD: */
1518 	if (dm_bio_get_target_bio_nr(bio))
1519 		return WC_MAP_REMAP_ORIGIN;
1520 	wc->stats.flushes++;
1521 	writecache_offload_bio(wc, bio);
1522 	return WC_MAP_RETURN;
1523 }
1524 
1525 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1526 {
1527 	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1528 
1529 	if (writecache_has_error(wc))
1530 		return WC_MAP_ERROR;
1531 
1532 	if (WC_MODE_PMEM(wc)) {
1533 		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1534 		return WC_MAP_REMAP_ORIGIN;
1535 	}
1536 	/* SSD: */
1537 	writecache_offload_bio(wc, bio);
1538 	return WC_MAP_RETURN;
1539 }
1540 
1541 static int writecache_map(struct dm_target *ti, struct bio *bio)
1542 {
1543 	struct dm_writecache *wc = ti->private;
1544 	enum wc_map_op map_op;
1545 
1546 	bio->bi_private = NULL;
1547 
1548 	wc_lock(wc);
1549 
1550 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1551 		map_op = writecache_map_flush(wc, bio);
1552 		goto done;
1553 	}
1554 
1555 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1556 
1557 	if (unlikely((((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1558 				(wc->block_size / 512 - 1)) != 0)) {
1559 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1560 		      (unsigned long long)bio->bi_iter.bi_sector,
1561 		      bio->bi_iter.bi_size, wc->block_size);
1562 		map_op = WC_MAP_ERROR;
1563 		goto done;
1564 	}
1565 
1566 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1567 		map_op = writecache_map_discard(wc, bio);
1568 		goto done;
1569 	}
1570 
1571 	if (bio_data_dir(bio) == READ)
1572 		map_op = writecache_map_read(wc, bio);
1573 	else
1574 		map_op = writecache_map_write(wc, bio);
1575 done:
1576 	switch (map_op) {
1577 	case WC_MAP_REMAP_ORIGIN:
1578 		if (likely(wc->pause != 0)) {
1579 			if (bio_op(bio) == REQ_OP_WRITE) {
1580 				dm_iot_io_begin(&wc->iot, 1);
1581 				bio->bi_private = (void *)2;
1582 			}
1583 		}
1584 		bio_set_dev(bio, wc->dev->bdev);
1585 		wc_unlock(wc);
1586 		return DM_MAPIO_REMAPPED;
1587 
1588 	case WC_MAP_REMAP:
1589 		/* make sure that writecache_end_io decrements bio_in_progress: */
1590 		bio->bi_private = (void *)1;
1591 		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1592 		wc_unlock(wc);
1593 		return DM_MAPIO_REMAPPED;
1594 
1595 	case WC_MAP_SUBMIT:
1596 		wc_unlock(wc);
1597 		bio_endio(bio);
1598 		return DM_MAPIO_SUBMITTED;
1599 
1600 	case WC_MAP_RETURN:
1601 		wc_unlock(wc);
1602 		return DM_MAPIO_SUBMITTED;
1603 
1604 	case WC_MAP_ERROR:
1605 		wc_unlock(wc);
1606 		bio_io_error(bio);
1607 		return DM_MAPIO_SUBMITTED;
1608 
1609 	default:
1610 		BUG();
1611 		wc_unlock(wc);
1612 		return DM_MAPIO_KILL;
1613 	}
1614 }
1615 
1616 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1617 {
1618 	struct dm_writecache *wc = ti->private;
1619 
1620 	if (bio->bi_private == (void *)1) {
1621 		int dir = bio_data_dir(bio);
1622 
1623 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1624 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1625 				wake_up(&wc->bio_in_progress_wait[dir]);
1626 	} else if (bio->bi_private == (void *)2) {
1627 		dm_iot_io_end(&wc->iot, 1);
1628 	}
1629 	return 0;
1630 }
1631 
1632 static int writecache_iterate_devices(struct dm_target *ti,
1633 				      iterate_devices_callout_fn fn, void *data)
1634 {
1635 	struct dm_writecache *wc = ti->private;
1636 
1637 	return fn(ti, wc->dev, 0, ti->len, data);
1638 }
1639 
1640 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1641 {
1642 	struct dm_writecache *wc = ti->private;
1643 
1644 	if (limits->logical_block_size < wc->block_size)
1645 		limits->logical_block_size = wc->block_size;
1646 
1647 	if (limits->physical_block_size < wc->block_size)
1648 		limits->physical_block_size = wc->block_size;
1649 
1650 	if (limits->io_min < wc->block_size)
1651 		limits->io_min = wc->block_size;
1652 }
1653 
1654 
1655 static void writecache_writeback_endio(struct bio *bio)
1656 {
1657 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1658 	struct dm_writecache *wc = wb->wc;
1659 	unsigned long flags;
1660 
1661 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1662 	if (unlikely(list_empty(&wc->endio_list)))
1663 		wake_up_process(wc->endio_thread);
1664 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1665 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1666 }
1667 
1668 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1669 {
1670 	struct copy_struct *c = ptr;
1671 	struct dm_writecache *wc = c->wc;
1672 
1673 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1674 
1675 	raw_spin_lock_irq(&wc->endio_list_lock);
1676 	if (unlikely(list_empty(&wc->endio_list)))
1677 		wake_up_process(wc->endio_thread);
1678 	list_add_tail(&c->endio_entry, &wc->endio_list);
1679 	raw_spin_unlock_irq(&wc->endio_list_lock);
1680 }
1681 
1682 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1683 {
1684 	unsigned int i;
1685 	struct writeback_struct *wb;
1686 	struct wc_entry *e;
1687 	unsigned long n_walked = 0;
1688 
1689 	do {
1690 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1691 		list_del(&wb->endio_entry);
1692 
1693 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1694 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1695 					"write error %d", wb->bio.bi_status);
1696 		i = 0;
1697 		do {
1698 			e = wb->wc_list[i];
1699 			BUG_ON(!e->write_in_progress);
1700 			e->write_in_progress = false;
1701 			INIT_LIST_HEAD(&e->lru);
1702 			if (!writecache_has_error(wc))
1703 				writecache_free_entry(wc, e);
1704 			BUG_ON(!wc->writeback_size);
1705 			wc->writeback_size--;
1706 			n_walked++;
1707 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1708 				writecache_commit_flushed(wc, false);
1709 				wc_unlock(wc);
1710 				wc_lock(wc);
1711 				n_walked = 0;
1712 			}
1713 		} while (++i < wb->wc_list_n);
1714 
1715 		if (wb->wc_list != wb->wc_list_inline)
1716 			kfree(wb->wc_list);
1717 		bio_put(&wb->bio);
1718 	} while (!list_empty(list));
1719 }
1720 
1721 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1722 {
1723 	struct copy_struct *c;
1724 	struct wc_entry *e;
1725 
1726 	do {
1727 		c = list_entry(list->next, struct copy_struct, endio_entry);
1728 		list_del(&c->endio_entry);
1729 
1730 		if (unlikely(c->error))
1731 			writecache_error(wc, c->error, "copy error");
1732 
1733 		e = c->e;
1734 		do {
1735 			BUG_ON(!e->write_in_progress);
1736 			e->write_in_progress = false;
1737 			INIT_LIST_HEAD(&e->lru);
1738 			if (!writecache_has_error(wc))
1739 				writecache_free_entry(wc, e);
1740 
1741 			BUG_ON(!wc->writeback_size);
1742 			wc->writeback_size--;
1743 			e++;
1744 		} while (--c->n_entries);
1745 		mempool_free(c, &wc->copy_pool);
1746 	} while (!list_empty(list));
1747 }
1748 
1749 static int writecache_endio_thread(void *data)
1750 {
1751 	struct dm_writecache *wc = data;
1752 
1753 	while (1) {
1754 		struct list_head list;
1755 
1756 		raw_spin_lock_irq(&wc->endio_list_lock);
1757 		if (!list_empty(&wc->endio_list))
1758 			goto pop_from_list;
1759 		set_current_state(TASK_INTERRUPTIBLE);
1760 		raw_spin_unlock_irq(&wc->endio_list_lock);
1761 
1762 		if (unlikely(kthread_should_stop())) {
1763 			set_current_state(TASK_RUNNING);
1764 			break;
1765 		}
1766 
1767 		schedule();
1768 
1769 		continue;
1770 
1771 pop_from_list:
1772 		list = wc->endio_list;
1773 		list.next->prev = list.prev->next = &list;
1774 		INIT_LIST_HEAD(&wc->endio_list);
1775 		raw_spin_unlock_irq(&wc->endio_list_lock);
1776 
1777 		if (!WC_MODE_FUA(wc))
1778 			writecache_disk_flush(wc, wc->dev);
1779 
1780 		wc_lock(wc);
1781 
1782 		if (WC_MODE_PMEM(wc)) {
1783 			__writecache_endio_pmem(wc, &list);
1784 		} else {
1785 			__writecache_endio_ssd(wc, &list);
1786 			writecache_wait_for_ios(wc, READ);
1787 		}
1788 
1789 		writecache_commit_flushed(wc, false);
1790 
1791 		wc_unlock(wc);
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1798 {
1799 	struct dm_writecache *wc = wb->wc;
1800 	unsigned int block_size = wc->block_size;
1801 	void *address = memory_data(wc, e);
1802 
1803 	persistent_memory_flush_cache(address, block_size);
1804 
1805 	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1806 		return true;
1807 
1808 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1809 			    block_size, persistent_memory_page_offset(address)) != 0;
1810 }
1811 
1812 struct writeback_list {
1813 	struct list_head list;
1814 	size_t size;
1815 };
1816 
1817 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1818 {
1819 	if (unlikely(wc->max_writeback_jobs)) {
1820 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1821 			wc_lock(wc);
1822 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1823 				writecache_wait_on_freelist(wc);
1824 			wc_unlock(wc);
1825 		}
1826 	}
1827 	cond_resched();
1828 }
1829 
1830 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1831 {
1832 	struct wc_entry *e, *f;
1833 	struct bio *bio;
1834 	struct writeback_struct *wb;
1835 	unsigned int max_pages;
1836 
1837 	while (wbl->size) {
1838 		wbl->size--;
1839 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1840 		list_del(&e->lru);
1841 
1842 		max_pages = e->wc_list_contiguous;
1843 
1844 		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1845 				       GFP_NOIO, &wc->bio_set);
1846 		wb = container_of(bio, struct writeback_struct, bio);
1847 		wb->wc = wc;
1848 		bio->bi_end_io = writecache_writeback_endio;
1849 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1850 
1851 		if (unlikely(max_pages > WB_LIST_INLINE))
1852 			wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1853 						    GFP_NOIO | __GFP_NORETRY |
1854 						    __GFP_NOMEMALLOC | __GFP_NOWARN);
1855 
1856 		if (likely(max_pages <= WB_LIST_INLINE) || unlikely(!wb->wc_list)) {
1857 			wb->wc_list = wb->wc_list_inline;
1858 			max_pages = WB_LIST_INLINE;
1859 		}
1860 
1861 		BUG_ON(!wc_add_block(wb, e));
1862 
1863 		wb->wc_list[0] = e;
1864 		wb->wc_list_n = 1;
1865 
1866 		while (wbl->size && wb->wc_list_n < max_pages) {
1867 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1868 			if (read_original_sector(wc, f) !=
1869 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1870 				break;
1871 			if (!wc_add_block(wb, f))
1872 				break;
1873 			wbl->size--;
1874 			list_del(&f->lru);
1875 			wb->wc_list[wb->wc_list_n++] = f;
1876 			e = f;
1877 		}
1878 		if (WC_MODE_FUA(wc))
1879 			bio->bi_opf |= REQ_FUA;
1880 		if (writecache_has_error(wc)) {
1881 			bio->bi_status = BLK_STS_IOERR;
1882 			bio_endio(bio);
1883 		} else if (unlikely(!bio_sectors(bio))) {
1884 			bio->bi_status = BLK_STS_OK;
1885 			bio_endio(bio);
1886 		} else {
1887 			submit_bio(bio);
1888 		}
1889 
1890 		__writeback_throttle(wc, wbl);
1891 	}
1892 }
1893 
1894 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1895 {
1896 	struct wc_entry *e, *f;
1897 	struct dm_io_region from, to;
1898 	struct copy_struct *c;
1899 
1900 	while (wbl->size) {
1901 		unsigned int n_sectors;
1902 
1903 		wbl->size--;
1904 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1905 		list_del(&e->lru);
1906 
1907 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1908 
1909 		from.bdev = wc->ssd_dev->bdev;
1910 		from.sector = cache_sector(wc, e);
1911 		from.count = n_sectors;
1912 		to.bdev = wc->dev->bdev;
1913 		to.sector = read_original_sector(wc, e);
1914 		to.count = n_sectors;
1915 
1916 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1917 		c->wc = wc;
1918 		c->e = e;
1919 		c->n_entries = e->wc_list_contiguous;
1920 
1921 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1922 			wbl->size--;
1923 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1924 			BUG_ON(f != e + 1);
1925 			list_del(&f->lru);
1926 			e = f;
1927 		}
1928 
1929 		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1930 			if (to.sector >= wc->data_device_sectors) {
1931 				writecache_copy_endio(0, 0, c);
1932 				continue;
1933 			}
1934 			from.count = to.count = wc->data_device_sectors - to.sector;
1935 		}
1936 
1937 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1938 
1939 		__writeback_throttle(wc, wbl);
1940 	}
1941 }
1942 
1943 static void writecache_writeback(struct work_struct *work)
1944 {
1945 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1946 	struct blk_plug plug;
1947 	struct wc_entry *f, *g, *e = NULL;
1948 	struct rb_node *node, *next_node;
1949 	struct list_head skipped;
1950 	struct writeback_list wbl;
1951 	unsigned long n_walked;
1952 
1953 	if (!WC_MODE_PMEM(wc)) {
1954 		/* Wait for any active kcopyd work on behalf of ssd writeback */
1955 		dm_kcopyd_client_flush(wc->dm_kcopyd);
1956 	}
1957 
1958 	if (likely(wc->pause != 0)) {
1959 		while (1) {
1960 			unsigned long idle;
1961 
1962 			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1963 			    unlikely(dm_suspended(wc->ti)))
1964 				break;
1965 			idle = dm_iot_idle_time(&wc->iot);
1966 			if (idle >= wc->pause)
1967 				break;
1968 			idle = wc->pause - idle;
1969 			if (idle > HZ)
1970 				idle = HZ;
1971 			schedule_timeout_idle(idle);
1972 		}
1973 	}
1974 
1975 	wc_lock(wc);
1976 restart:
1977 	if (writecache_has_error(wc)) {
1978 		wc_unlock(wc);
1979 		return;
1980 	}
1981 
1982 	if (unlikely(wc->writeback_all)) {
1983 		if (writecache_wait_for_writeback(wc))
1984 			goto restart;
1985 	}
1986 
1987 	if (wc->overwrote_committed)
1988 		writecache_wait_for_ios(wc, WRITE);
1989 
1990 	n_walked = 0;
1991 	INIT_LIST_HEAD(&skipped);
1992 	INIT_LIST_HEAD(&wbl.list);
1993 	wbl.size = 0;
1994 	while (!list_empty(&wc->lru) &&
1995 	       (wc->writeback_all ||
1996 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1997 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1998 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1999 
2000 		n_walked++;
2001 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
2002 		    likely(!wc->writeback_all)) {
2003 			if (likely(!dm_suspended(wc->ti)))
2004 				queue_work(wc->writeback_wq, &wc->writeback_work);
2005 			break;
2006 		}
2007 
2008 		if (unlikely(wc->writeback_all)) {
2009 			if (unlikely(!e)) {
2010 				writecache_flush(wc);
2011 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
2012 			} else
2013 				e = g;
2014 		} else
2015 			e = container_of(wc->lru.prev, struct wc_entry, lru);
2016 		BUG_ON(e->write_in_progress);
2017 		if (unlikely(!writecache_entry_is_committed(wc, e)))
2018 			writecache_flush(wc);
2019 
2020 		node = rb_prev(&e->rb_node);
2021 		if (node) {
2022 			f = container_of(node, struct wc_entry, rb_node);
2023 			if (unlikely(read_original_sector(wc, f) ==
2024 				     read_original_sector(wc, e))) {
2025 				BUG_ON(!f->write_in_progress);
2026 				list_move(&e->lru, &skipped);
2027 				cond_resched();
2028 				continue;
2029 			}
2030 		}
2031 		wc->writeback_size++;
2032 		list_move(&e->lru, &wbl.list);
2033 		wbl.size++;
2034 		e->write_in_progress = true;
2035 		e->wc_list_contiguous = 1;
2036 
2037 		f = e;
2038 
2039 		while (1) {
2040 			next_node = rb_next(&f->rb_node);
2041 			if (unlikely(!next_node))
2042 				break;
2043 			g = container_of(next_node, struct wc_entry, rb_node);
2044 			if (unlikely(read_original_sector(wc, g) ==
2045 			    read_original_sector(wc, f))) {
2046 				f = g;
2047 				continue;
2048 			}
2049 			if (read_original_sector(wc, g) !=
2050 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2051 				break;
2052 			if (unlikely(g->write_in_progress))
2053 				break;
2054 			if (unlikely(!writecache_entry_is_committed(wc, g)))
2055 				break;
2056 
2057 			if (!WC_MODE_PMEM(wc)) {
2058 				if (g != f + 1)
2059 					break;
2060 			}
2061 
2062 			n_walked++;
2063 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2064 			//	break;
2065 
2066 			wc->writeback_size++;
2067 			list_move(&g->lru, &wbl.list);
2068 			wbl.size++;
2069 			g->write_in_progress = true;
2070 			g->wc_list_contiguous = BIO_MAX_VECS;
2071 			f = g;
2072 			e->wc_list_contiguous++;
2073 			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2074 				if (unlikely(wc->writeback_all)) {
2075 					next_node = rb_next(&f->rb_node);
2076 					if (likely(next_node))
2077 						g = container_of(next_node, struct wc_entry, rb_node);
2078 				}
2079 				break;
2080 			}
2081 		}
2082 		cond_resched();
2083 	}
2084 
2085 	if (!list_empty(&skipped)) {
2086 		list_splice_tail(&skipped, &wc->lru);
2087 		/*
2088 		 * If we didn't do any progress, we must wait until some
2089 		 * writeback finishes to avoid burning CPU in a loop
2090 		 */
2091 		if (unlikely(!wbl.size))
2092 			writecache_wait_for_writeback(wc);
2093 	}
2094 
2095 	wc_unlock(wc);
2096 
2097 	blk_start_plug(&plug);
2098 
2099 	if (WC_MODE_PMEM(wc))
2100 		__writecache_writeback_pmem(wc, &wbl);
2101 	else
2102 		__writecache_writeback_ssd(wc, &wbl);
2103 
2104 	blk_finish_plug(&plug);
2105 
2106 	if (unlikely(wc->writeback_all)) {
2107 		wc_lock(wc);
2108 		while (writecache_wait_for_writeback(wc))
2109 			;
2110 		wc_unlock(wc);
2111 	}
2112 }
2113 
2114 static int calculate_memory_size(uint64_t device_size, unsigned int block_size,
2115 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2116 {
2117 	uint64_t n_blocks, offset;
2118 	struct wc_entry e;
2119 
2120 	n_blocks = device_size;
2121 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2122 
2123 	while (1) {
2124 		if (!n_blocks)
2125 			return -ENOSPC;
2126 		/* Verify the following entries[n_blocks] won't overflow */
2127 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2128 				 sizeof(struct wc_memory_entry)))
2129 			return -EFBIG;
2130 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2131 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2132 		if (offset + n_blocks * block_size <= device_size)
2133 			break;
2134 		n_blocks--;
2135 	}
2136 
2137 	/* check if the bit field overflows */
2138 	e.index = n_blocks;
2139 	if (e.index != n_blocks)
2140 		return -EFBIG;
2141 
2142 	if (n_blocks_p)
2143 		*n_blocks_p = n_blocks;
2144 	if (n_metadata_blocks_p)
2145 		*n_metadata_blocks_p = offset >> __ffs(block_size);
2146 	return 0;
2147 }
2148 
2149 static int init_memory(struct dm_writecache *wc)
2150 {
2151 	size_t b;
2152 	int r;
2153 
2154 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2155 	if (r)
2156 		return r;
2157 
2158 	r = writecache_alloc_entries(wc);
2159 	if (r)
2160 		return r;
2161 
2162 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2163 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2164 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2165 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2166 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2167 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2168 
2169 	for (b = 0; b < wc->n_blocks; b++) {
2170 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2171 		cond_resched();
2172 	}
2173 
2174 	writecache_flush_all_metadata(wc);
2175 	writecache_commit_flushed(wc, false);
2176 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2177 	writecache_flush_region(wc, &sb(wc)->magic, sizeof(sb(wc)->magic));
2178 	writecache_commit_flushed(wc, false);
2179 
2180 	return 0;
2181 }
2182 
2183 static void writecache_dtr(struct dm_target *ti)
2184 {
2185 	struct dm_writecache *wc = ti->private;
2186 
2187 	if (!wc)
2188 		return;
2189 
2190 	if (wc->endio_thread)
2191 		kthread_stop(wc->endio_thread);
2192 
2193 	if (wc->flush_thread)
2194 		kthread_stop(wc->flush_thread);
2195 
2196 	bioset_exit(&wc->bio_set);
2197 
2198 	mempool_exit(&wc->copy_pool);
2199 
2200 	if (wc->writeback_wq)
2201 		destroy_workqueue(wc->writeback_wq);
2202 
2203 	if (wc->dev)
2204 		dm_put_device(ti, wc->dev);
2205 
2206 	if (wc->ssd_dev)
2207 		dm_put_device(ti, wc->ssd_dev);
2208 
2209 	vfree(wc->entries);
2210 
2211 	if (wc->memory_map) {
2212 		if (WC_MODE_PMEM(wc))
2213 			persistent_memory_release(wc);
2214 		else
2215 			vfree(wc->memory_map);
2216 	}
2217 
2218 	if (wc->dm_kcopyd)
2219 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2220 
2221 	if (wc->dm_io)
2222 		dm_io_client_destroy(wc->dm_io);
2223 
2224 	vfree(wc->dirty_bitmap);
2225 
2226 	kfree(wc);
2227 }
2228 
2229 static int writecache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2230 {
2231 	struct dm_writecache *wc;
2232 	struct dm_arg_set as;
2233 	const char *string;
2234 	unsigned int opt_params;
2235 	size_t offset, data_size;
2236 	int i, r;
2237 	char dummy;
2238 	int high_wm_percent = HIGH_WATERMARK;
2239 	int low_wm_percent = LOW_WATERMARK;
2240 	uint64_t x;
2241 	struct wc_memory_superblock s;
2242 
2243 	static struct dm_arg _args[] = {
2244 		{0, 18, "Invalid number of feature args"},
2245 	};
2246 
2247 	as.argc = argc;
2248 	as.argv = argv;
2249 
2250 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2251 	if (!wc) {
2252 		ti->error = "Cannot allocate writecache structure";
2253 		r = -ENOMEM;
2254 		goto bad;
2255 	}
2256 	ti->private = wc;
2257 	wc->ti = ti;
2258 
2259 	mutex_init(&wc->lock);
2260 	wc->max_age = MAX_AGE_UNSPECIFIED;
2261 	writecache_poison_lists(wc);
2262 	init_waitqueue_head(&wc->freelist_wait);
2263 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2264 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2265 
2266 	for (i = 0; i < 2; i++) {
2267 		atomic_set(&wc->bio_in_progress[i], 0);
2268 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2269 	}
2270 
2271 	wc->dm_io = dm_io_client_create();
2272 	if (IS_ERR(wc->dm_io)) {
2273 		r = PTR_ERR(wc->dm_io);
2274 		ti->error = "Unable to allocate dm-io client";
2275 		wc->dm_io = NULL;
2276 		goto bad;
2277 	}
2278 
2279 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2280 	if (!wc->writeback_wq) {
2281 		r = -ENOMEM;
2282 		ti->error = "Could not allocate writeback workqueue";
2283 		goto bad;
2284 	}
2285 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2286 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2287 
2288 	dm_iot_init(&wc->iot);
2289 
2290 	raw_spin_lock_init(&wc->endio_list_lock);
2291 	INIT_LIST_HEAD(&wc->endio_list);
2292 	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2293 	if (IS_ERR(wc->endio_thread)) {
2294 		r = PTR_ERR(wc->endio_thread);
2295 		wc->endio_thread = NULL;
2296 		ti->error = "Couldn't spawn endio thread";
2297 		goto bad;
2298 	}
2299 
2300 	/*
2301 	 * Parse the mode (pmem or ssd)
2302 	 */
2303 	string = dm_shift_arg(&as);
2304 	if (!string)
2305 		goto bad_arguments;
2306 
2307 	if (!strcasecmp(string, "s")) {
2308 		wc->pmem_mode = false;
2309 	} else if (!strcasecmp(string, "p")) {
2310 #ifdef DM_WRITECACHE_HAS_PMEM
2311 		wc->pmem_mode = true;
2312 		wc->writeback_fua = true;
2313 #else
2314 		/*
2315 		 * If the architecture doesn't support persistent memory or
2316 		 * the kernel doesn't support any DAX drivers, this driver can
2317 		 * only be used in SSD-only mode.
2318 		 */
2319 		r = -EOPNOTSUPP;
2320 		ti->error = "Persistent memory or DAX not supported on this system";
2321 		goto bad;
2322 #endif
2323 	} else {
2324 		goto bad_arguments;
2325 	}
2326 
2327 	if (WC_MODE_PMEM(wc)) {
2328 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2329 				offsetof(struct writeback_struct, bio),
2330 				BIOSET_NEED_BVECS);
2331 		if (r) {
2332 			ti->error = "Could not allocate bio set";
2333 			goto bad;
2334 		}
2335 	} else {
2336 		wc->pause = PAUSE_WRITEBACK;
2337 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2338 		if (r) {
2339 			ti->error = "Could not allocate mempool";
2340 			goto bad;
2341 		}
2342 	}
2343 
2344 	/*
2345 	 * Parse the origin data device
2346 	 */
2347 	string = dm_shift_arg(&as);
2348 	if (!string)
2349 		goto bad_arguments;
2350 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2351 	if (r) {
2352 		ti->error = "Origin data device lookup failed";
2353 		goto bad;
2354 	}
2355 
2356 	/*
2357 	 * Parse cache data device (be it pmem or ssd)
2358 	 */
2359 	string = dm_shift_arg(&as);
2360 	if (!string)
2361 		goto bad_arguments;
2362 
2363 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2364 	if (r) {
2365 		ti->error = "Cache data device lookup failed";
2366 		goto bad;
2367 	}
2368 	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2369 
2370 	/*
2371 	 * Parse the cache block size
2372 	 */
2373 	string = dm_shift_arg(&as);
2374 	if (!string)
2375 		goto bad_arguments;
2376 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2377 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2378 	    (wc->block_size & (wc->block_size - 1))) {
2379 		r = -EINVAL;
2380 		ti->error = "Invalid block size";
2381 		goto bad;
2382 	}
2383 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2384 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2385 		r = -EINVAL;
2386 		ti->error = "Block size is smaller than device logical block size";
2387 		goto bad;
2388 	}
2389 	wc->block_size_bits = __ffs(wc->block_size);
2390 
2391 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2392 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2393 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2394 
2395 	/*
2396 	 * Parse optional arguments
2397 	 */
2398 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2399 	if (r)
2400 		goto bad;
2401 
2402 	while (opt_params) {
2403 		string = dm_shift_arg(&as), opt_params--;
2404 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2405 			unsigned long long start_sector;
2406 
2407 			string = dm_shift_arg(&as), opt_params--;
2408 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2409 				goto invalid_optional;
2410 			wc->start_sector = start_sector;
2411 			wc->start_sector_set = true;
2412 			if (wc->start_sector != start_sector ||
2413 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2414 				goto invalid_optional;
2415 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2416 			string = dm_shift_arg(&as), opt_params--;
2417 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2418 				goto invalid_optional;
2419 			if (high_wm_percent < 0 || high_wm_percent > 100)
2420 				goto invalid_optional;
2421 			wc->high_wm_percent_value = high_wm_percent;
2422 			wc->high_wm_percent_set = true;
2423 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2424 			string = dm_shift_arg(&as), opt_params--;
2425 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2426 				goto invalid_optional;
2427 			if (low_wm_percent < 0 || low_wm_percent > 100)
2428 				goto invalid_optional;
2429 			wc->low_wm_percent_value = low_wm_percent;
2430 			wc->low_wm_percent_set = true;
2431 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2432 			string = dm_shift_arg(&as), opt_params--;
2433 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2434 				goto invalid_optional;
2435 			wc->max_writeback_jobs_set = true;
2436 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2437 			string = dm_shift_arg(&as), opt_params--;
2438 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2439 				goto invalid_optional;
2440 			wc->autocommit_blocks_set = true;
2441 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2442 			unsigned int autocommit_msecs;
2443 
2444 			string = dm_shift_arg(&as), opt_params--;
2445 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2446 				goto invalid_optional;
2447 			if (autocommit_msecs > 3600000)
2448 				goto invalid_optional;
2449 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2450 			wc->autocommit_time_value = autocommit_msecs;
2451 			wc->autocommit_time_set = true;
2452 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2453 			unsigned int max_age_msecs;
2454 
2455 			string = dm_shift_arg(&as), opt_params--;
2456 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2457 				goto invalid_optional;
2458 			if (max_age_msecs > 86400000)
2459 				goto invalid_optional;
2460 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2461 			wc->max_age_set = true;
2462 			wc->max_age_value = max_age_msecs;
2463 		} else if (!strcasecmp(string, "cleaner")) {
2464 			wc->cleaner_set = true;
2465 			wc->cleaner = true;
2466 		} else if (!strcasecmp(string, "fua")) {
2467 			if (WC_MODE_PMEM(wc)) {
2468 				wc->writeback_fua = true;
2469 				wc->writeback_fua_set = true;
2470 			} else
2471 				goto invalid_optional;
2472 		} else if (!strcasecmp(string, "nofua")) {
2473 			if (WC_MODE_PMEM(wc)) {
2474 				wc->writeback_fua = false;
2475 				wc->writeback_fua_set = true;
2476 			} else
2477 				goto invalid_optional;
2478 		} else if (!strcasecmp(string, "metadata_only")) {
2479 			wc->metadata_only = true;
2480 		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2481 			unsigned int pause_msecs;
2482 
2483 			if (WC_MODE_PMEM(wc))
2484 				goto invalid_optional;
2485 			string = dm_shift_arg(&as), opt_params--;
2486 			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2487 				goto invalid_optional;
2488 			if (pause_msecs > 60000)
2489 				goto invalid_optional;
2490 			wc->pause = msecs_to_jiffies(pause_msecs);
2491 			wc->pause_set = true;
2492 			wc->pause_value = pause_msecs;
2493 		} else {
2494 invalid_optional:
2495 			r = -EINVAL;
2496 			ti->error = "Invalid optional argument";
2497 			goto bad;
2498 		}
2499 	}
2500 
2501 	if (high_wm_percent < low_wm_percent) {
2502 		r = -EINVAL;
2503 		ti->error = "High watermark must be greater than or equal to low watermark";
2504 		goto bad;
2505 	}
2506 
2507 	if (WC_MODE_PMEM(wc)) {
2508 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2509 			r = -EOPNOTSUPP;
2510 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2511 			goto bad;
2512 		}
2513 
2514 		r = persistent_memory_claim(wc);
2515 		if (r) {
2516 			ti->error = "Unable to map persistent memory for cache";
2517 			goto bad;
2518 		}
2519 	} else {
2520 		size_t n_blocks, n_metadata_blocks;
2521 		uint64_t n_bitmap_bits;
2522 
2523 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2524 
2525 		bio_list_init(&wc->flush_list);
2526 		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2527 		if (IS_ERR(wc->flush_thread)) {
2528 			r = PTR_ERR(wc->flush_thread);
2529 			wc->flush_thread = NULL;
2530 			ti->error = "Couldn't spawn flush thread";
2531 			goto bad;
2532 		}
2533 
2534 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2535 					  &n_blocks, &n_metadata_blocks);
2536 		if (r) {
2537 			ti->error = "Invalid device size";
2538 			goto bad;
2539 		}
2540 
2541 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2542 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2543 		/* this is limitation of test_bit functions */
2544 		if (n_bitmap_bits > 1U << 31) {
2545 			r = -EFBIG;
2546 			ti->error = "Invalid device size";
2547 			goto bad;
2548 		}
2549 
2550 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2551 		if (!wc->memory_map) {
2552 			r = -ENOMEM;
2553 			ti->error = "Unable to allocate memory for metadata";
2554 			goto bad;
2555 		}
2556 
2557 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2558 		if (IS_ERR(wc->dm_kcopyd)) {
2559 			r = PTR_ERR(wc->dm_kcopyd);
2560 			ti->error = "Unable to allocate dm-kcopyd client";
2561 			wc->dm_kcopyd = NULL;
2562 			goto bad;
2563 		}
2564 
2565 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2566 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2567 			BITS_PER_LONG * sizeof(unsigned long);
2568 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2569 		if (!wc->dirty_bitmap) {
2570 			r = -ENOMEM;
2571 			ti->error = "Unable to allocate dirty bitmap";
2572 			goto bad;
2573 		}
2574 
2575 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2576 		if (r) {
2577 			ti->error = "Unable to read first block of metadata";
2578 			goto bad;
2579 		}
2580 	}
2581 
2582 	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2583 	if (r) {
2584 		ti->error = "Hardware memory error when reading superblock";
2585 		goto bad;
2586 	}
2587 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2588 		r = init_memory(wc);
2589 		if (r) {
2590 			ti->error = "Unable to initialize device";
2591 			goto bad;
2592 		}
2593 		r = copy_mc_to_kernel(&s, sb(wc),
2594 				      sizeof(struct wc_memory_superblock));
2595 		if (r) {
2596 			ti->error = "Hardware memory error when reading superblock";
2597 			goto bad;
2598 		}
2599 	}
2600 
2601 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2602 		ti->error = "Invalid magic in the superblock";
2603 		r = -EINVAL;
2604 		goto bad;
2605 	}
2606 
2607 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2608 		ti->error = "Invalid version in the superblock";
2609 		r = -EINVAL;
2610 		goto bad;
2611 	}
2612 
2613 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2614 		ti->error = "Block size does not match superblock";
2615 		r = -EINVAL;
2616 		goto bad;
2617 	}
2618 
2619 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2620 
2621 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2622 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2623 overflow:
2624 		ti->error = "Overflow in size calculation";
2625 		r = -EINVAL;
2626 		goto bad;
2627 	}
2628 	offset += sizeof(struct wc_memory_superblock);
2629 	if (offset < sizeof(struct wc_memory_superblock))
2630 		goto overflow;
2631 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2632 	data_size = wc->n_blocks * (size_t)wc->block_size;
2633 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2634 	    (offset + data_size < offset))
2635 		goto overflow;
2636 	if (offset + data_size > wc->memory_map_size) {
2637 		ti->error = "Memory area is too small";
2638 		r = -EINVAL;
2639 		goto bad;
2640 	}
2641 
2642 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2643 	wc->block_start = (char *)sb(wc) + offset;
2644 
2645 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2646 	x += 50;
2647 	do_div(x, 100);
2648 	wc->freelist_high_watermark = x;
2649 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2650 	x += 50;
2651 	do_div(x, 100);
2652 	wc->freelist_low_watermark = x;
2653 
2654 	if (wc->cleaner)
2655 		activate_cleaner(wc);
2656 
2657 	r = writecache_alloc_entries(wc);
2658 	if (r) {
2659 		ti->error = "Cannot allocate memory";
2660 		goto bad;
2661 	}
2662 
2663 	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2664 	ti->flush_supported = true;
2665 	ti->num_discard_bios = 1;
2666 
2667 	if (WC_MODE_PMEM(wc))
2668 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2669 
2670 	return 0;
2671 
2672 bad_arguments:
2673 	r = -EINVAL;
2674 	ti->error = "Bad arguments";
2675 bad:
2676 	writecache_dtr(ti);
2677 	return r;
2678 }
2679 
2680 static void writecache_status(struct dm_target *ti, status_type_t type,
2681 			      unsigned int status_flags, char *result, unsigned int maxlen)
2682 {
2683 	struct dm_writecache *wc = ti->private;
2684 	unsigned int extra_args;
2685 	unsigned int sz = 0;
2686 
2687 	switch (type) {
2688 	case STATUSTYPE_INFO:
2689 		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2690 		       writecache_has_error(wc),
2691 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2692 		       (unsigned long long)wc->writeback_size,
2693 		       wc->stats.reads,
2694 		       wc->stats.read_hits,
2695 		       wc->stats.writes,
2696 		       wc->stats.write_hits_uncommitted,
2697 		       wc->stats.write_hits_committed,
2698 		       wc->stats.writes_around,
2699 		       wc->stats.writes_allocate,
2700 		       wc->stats.writes_blocked_on_freelist,
2701 		       wc->stats.flushes,
2702 		       wc->stats.discards);
2703 		break;
2704 	case STATUSTYPE_TABLE:
2705 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2706 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2707 		extra_args = 0;
2708 		if (wc->start_sector_set)
2709 			extra_args += 2;
2710 		if (wc->high_wm_percent_set)
2711 			extra_args += 2;
2712 		if (wc->low_wm_percent_set)
2713 			extra_args += 2;
2714 		if (wc->max_writeback_jobs_set)
2715 			extra_args += 2;
2716 		if (wc->autocommit_blocks_set)
2717 			extra_args += 2;
2718 		if (wc->autocommit_time_set)
2719 			extra_args += 2;
2720 		if (wc->max_age_set)
2721 			extra_args += 2;
2722 		if (wc->cleaner_set)
2723 			extra_args++;
2724 		if (wc->writeback_fua_set)
2725 			extra_args++;
2726 		if (wc->metadata_only)
2727 			extra_args++;
2728 		if (wc->pause_set)
2729 			extra_args += 2;
2730 
2731 		DMEMIT("%u", extra_args);
2732 		if (wc->start_sector_set)
2733 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2734 		if (wc->high_wm_percent_set)
2735 			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2736 		if (wc->low_wm_percent_set)
2737 			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2738 		if (wc->max_writeback_jobs_set)
2739 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2740 		if (wc->autocommit_blocks_set)
2741 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2742 		if (wc->autocommit_time_set)
2743 			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2744 		if (wc->max_age_set)
2745 			DMEMIT(" max_age %u", wc->max_age_value);
2746 		if (wc->cleaner_set)
2747 			DMEMIT(" cleaner");
2748 		if (wc->writeback_fua_set)
2749 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2750 		if (wc->metadata_only)
2751 			DMEMIT(" metadata_only");
2752 		if (wc->pause_set)
2753 			DMEMIT(" pause_writeback %u", wc->pause_value);
2754 		break;
2755 	case STATUSTYPE_IMA:
2756 		*result = '\0';
2757 		break;
2758 	}
2759 }
2760 
2761 static struct target_type writecache_target = {
2762 	.name			= "writecache",
2763 	.version		= {1, 6, 0},
2764 	.module			= THIS_MODULE,
2765 	.ctr			= writecache_ctr,
2766 	.dtr			= writecache_dtr,
2767 	.status			= writecache_status,
2768 	.postsuspend		= writecache_suspend,
2769 	.resume			= writecache_resume,
2770 	.message		= writecache_message,
2771 	.map			= writecache_map,
2772 	.end_io			= writecache_end_io,
2773 	.iterate_devices	= writecache_iterate_devices,
2774 	.io_hints		= writecache_io_hints,
2775 };
2776 module_dm(writecache);
2777 
2778 MODULE_DESCRIPTION(DM_NAME " writecache target");
2779 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2780 MODULE_LICENSE("GPL");
2781