xref: /openbmc/linux/drivers/md/dm-writecache.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 #define MAX_AGE_DIV			16
30 #define MAX_AGE_UNSPECIFIED		-1UL
31 
32 #define BITMAP_GRANULARITY	65536
33 #if BITMAP_GRANULARITY < PAGE_SIZE
34 #undef BITMAP_GRANULARITY
35 #define BITMAP_GRANULARITY	PAGE_SIZE
36 #endif
37 
38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39 #define DM_WRITECACHE_HAS_PMEM
40 #endif
41 
42 #ifdef DM_WRITECACHE_HAS_PMEM
43 #define pmem_assign(dest, src)					\
44 do {								\
45 	typeof(dest) uniq = (src);				\
46 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
47 } while (0)
48 #else
49 #define pmem_assign(dest, src)	((dest) = (src))
50 #endif
51 
52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #endif
55 
56 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
57 #define MEMORY_SUPERBLOCK_VERSION	1
58 
59 struct wc_memory_entry {
60 	__le64 original_sector;
61 	__le64 seq_count;
62 };
63 
64 struct wc_memory_superblock {
65 	union {
66 		struct {
67 			__le32 magic;
68 			__le32 version;
69 			__le32 block_size;
70 			__le32 pad;
71 			__le64 n_blocks;
72 			__le64 seq_count;
73 		};
74 		__le64 padding[8];
75 	};
76 	struct wc_memory_entry entries[0];
77 };
78 
79 struct wc_entry {
80 	struct rb_node rb_node;
81 	struct list_head lru;
82 	unsigned short wc_list_contiguous;
83 	bool write_in_progress
84 #if BITS_PER_LONG == 64
85 		:1
86 #endif
87 	;
88 	unsigned long index
89 #if BITS_PER_LONG == 64
90 		:47
91 #endif
92 	;
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 
127 	unsigned uncommitted_blocks;
128 	unsigned autocommit_blocks;
129 	unsigned max_writeback_jobs;
130 
131 	int error;
132 
133 	unsigned long autocommit_jiffies;
134 	struct timer_list autocommit_timer;
135 	struct wait_queue_head freelist_wait;
136 
137 	struct timer_list max_age_timer;
138 
139 	atomic_t bio_in_progress[2];
140 	struct wait_queue_head bio_in_progress_wait[2];
141 
142 	struct dm_target *ti;
143 	struct dm_dev *dev;
144 	struct dm_dev *ssd_dev;
145 	sector_t start_sector;
146 	void *memory_map;
147 	uint64_t memory_map_size;
148 	size_t metadata_sectors;
149 	size_t n_blocks;
150 	uint64_t seq_count;
151 	void *block_start;
152 	struct wc_entry *entries;
153 	unsigned block_size;
154 	unsigned char block_size_bits;
155 
156 	bool pmem_mode:1;
157 	bool writeback_fua:1;
158 
159 	bool overwrote_committed:1;
160 	bool memory_vmapped:1;
161 
162 	bool high_wm_percent_set:1;
163 	bool low_wm_percent_set:1;
164 	bool max_writeback_jobs_set:1;
165 	bool autocommit_blocks_set:1;
166 	bool autocommit_time_set:1;
167 	bool writeback_fua_set:1;
168 	bool flush_on_suspend:1;
169 	bool cleaner:1;
170 
171 	unsigned writeback_all;
172 	struct workqueue_struct *writeback_wq;
173 	struct work_struct writeback_work;
174 	struct work_struct flush_work;
175 
176 	struct dm_io_client *dm_io;
177 
178 	raw_spinlock_t endio_list_lock;
179 	struct list_head endio_list;
180 	struct task_struct *endio_thread;
181 
182 	struct task_struct *flush_thread;
183 	struct bio_list flush_list;
184 
185 	struct dm_kcopyd_client *dm_kcopyd;
186 	unsigned long *dirty_bitmap;
187 	unsigned dirty_bitmap_size;
188 
189 	struct bio_set bio_set;
190 	mempool_t copy_pool;
191 };
192 
193 #define WB_LIST_INLINE		16
194 
195 struct writeback_struct {
196 	struct list_head endio_entry;
197 	struct dm_writecache *wc;
198 	struct wc_entry **wc_list;
199 	unsigned wc_list_n;
200 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
201 	struct bio bio;
202 };
203 
204 struct copy_struct {
205 	struct list_head endio_entry;
206 	struct dm_writecache *wc;
207 	struct wc_entry *e;
208 	unsigned n_entries;
209 	int error;
210 };
211 
212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
213 					    "A percentage of time allocated for data copying");
214 
215 static void wc_lock(struct dm_writecache *wc)
216 {
217 	mutex_lock(&wc->lock);
218 }
219 
220 static void wc_unlock(struct dm_writecache *wc)
221 {
222 	mutex_unlock(&wc->lock);
223 }
224 
225 #ifdef DM_WRITECACHE_HAS_PMEM
226 static int persistent_memory_claim(struct dm_writecache *wc)
227 {
228 	int r;
229 	loff_t s;
230 	long p, da;
231 	pfn_t pfn;
232 	int id;
233 	struct page **pages;
234 
235 	wc->memory_vmapped = false;
236 
237 	s = wc->memory_map_size;
238 	p = s >> PAGE_SHIFT;
239 	if (!p) {
240 		r = -EINVAL;
241 		goto err1;
242 	}
243 	if (p != s >> PAGE_SHIFT) {
244 		r = -EOVERFLOW;
245 		goto err1;
246 	}
247 
248 	id = dax_read_lock();
249 
250 	da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
251 	if (da < 0) {
252 		wc->memory_map = NULL;
253 		r = da;
254 		goto err2;
255 	}
256 	if (!pfn_t_has_page(pfn)) {
257 		wc->memory_map = NULL;
258 		r = -EOPNOTSUPP;
259 		goto err2;
260 	}
261 	if (da != p) {
262 		long i;
263 		wc->memory_map = NULL;
264 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
265 		if (!pages) {
266 			r = -ENOMEM;
267 			goto err2;
268 		}
269 		i = 0;
270 		do {
271 			long daa;
272 			daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
273 						NULL, &pfn);
274 			if (daa <= 0) {
275 				r = daa ? daa : -EINVAL;
276 				goto err3;
277 			}
278 			if (!pfn_t_has_page(pfn)) {
279 				r = -EOPNOTSUPP;
280 				goto err3;
281 			}
282 			while (daa-- && i < p) {
283 				pages[i++] = pfn_t_to_page(pfn);
284 				pfn.val++;
285 				if (!(i & 15))
286 					cond_resched();
287 			}
288 		} while (i < p);
289 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
290 		if (!wc->memory_map) {
291 			r = -ENOMEM;
292 			goto err3;
293 		}
294 		kvfree(pages);
295 		wc->memory_vmapped = true;
296 	}
297 
298 	dax_read_unlock(id);
299 
300 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
301 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
302 
303 	return 0;
304 err3:
305 	kvfree(pages);
306 err2:
307 	dax_read_unlock(id);
308 err1:
309 	return r;
310 }
311 #else
312 static int persistent_memory_claim(struct dm_writecache *wc)
313 {
314 	BUG();
315 }
316 #endif
317 
318 static void persistent_memory_release(struct dm_writecache *wc)
319 {
320 	if (wc->memory_vmapped)
321 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
322 }
323 
324 static struct page *persistent_memory_page(void *addr)
325 {
326 	if (is_vmalloc_addr(addr))
327 		return vmalloc_to_page(addr);
328 	else
329 		return virt_to_page(addr);
330 }
331 
332 static unsigned persistent_memory_page_offset(void *addr)
333 {
334 	return (unsigned long)addr & (PAGE_SIZE - 1);
335 }
336 
337 static void persistent_memory_flush_cache(void *ptr, size_t size)
338 {
339 	if (is_vmalloc_addr(ptr))
340 		flush_kernel_vmap_range(ptr, size);
341 }
342 
343 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
344 {
345 	if (is_vmalloc_addr(ptr))
346 		invalidate_kernel_vmap_range(ptr, size);
347 }
348 
349 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
350 {
351 	return wc->memory_map;
352 }
353 
354 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
355 {
356 	return &sb(wc)->entries[e->index];
357 }
358 
359 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
360 {
361 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
362 }
363 
364 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
365 {
366 	return wc->start_sector + wc->metadata_sectors +
367 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
368 }
369 
370 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
371 {
372 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
373 	return e->original_sector;
374 #else
375 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
376 #endif
377 }
378 
379 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
380 {
381 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
382 	return e->seq_count;
383 #else
384 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
385 #endif
386 }
387 
388 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
389 {
390 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
391 	e->seq_count = -1;
392 #endif
393 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
394 }
395 
396 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
397 					    uint64_t original_sector, uint64_t seq_count)
398 {
399 	struct wc_memory_entry me;
400 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
401 	e->original_sector = original_sector;
402 	e->seq_count = seq_count;
403 #endif
404 	me.original_sector = cpu_to_le64(original_sector);
405 	me.seq_count = cpu_to_le64(seq_count);
406 	pmem_assign(*memory_entry(wc, e), me);
407 }
408 
409 #define writecache_error(wc, err, msg, arg...)				\
410 do {									\
411 	if (!cmpxchg(&(wc)->error, 0, err))				\
412 		DMERR(msg, ##arg);					\
413 	wake_up(&(wc)->freelist_wait);					\
414 } while (0)
415 
416 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
417 
418 static void writecache_flush_all_metadata(struct dm_writecache *wc)
419 {
420 	if (!WC_MODE_PMEM(wc))
421 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
422 }
423 
424 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
425 {
426 	if (!WC_MODE_PMEM(wc))
427 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
428 			  wc->dirty_bitmap);
429 }
430 
431 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
432 
433 struct io_notify {
434 	struct dm_writecache *wc;
435 	struct completion c;
436 	atomic_t count;
437 };
438 
439 static void writecache_notify_io(unsigned long error, void *context)
440 {
441 	struct io_notify *endio = context;
442 
443 	if (unlikely(error != 0))
444 		writecache_error(endio->wc, -EIO, "error writing metadata");
445 	BUG_ON(atomic_read(&endio->count) <= 0);
446 	if (atomic_dec_and_test(&endio->count))
447 		complete(&endio->c);
448 }
449 
450 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
451 {
452 	wait_event(wc->bio_in_progress_wait[direction],
453 		   !atomic_read(&wc->bio_in_progress[direction]));
454 }
455 
456 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
457 {
458 	struct dm_io_region region;
459 	struct dm_io_request req;
460 	struct io_notify endio = {
461 		wc,
462 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
463 		ATOMIC_INIT(1),
464 	};
465 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
466 	unsigned i = 0;
467 
468 	while (1) {
469 		unsigned j;
470 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
471 		if (unlikely(i == bitmap_bits))
472 			break;
473 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
474 
475 		region.bdev = wc->ssd_dev->bdev;
476 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
477 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
478 
479 		if (unlikely(region.sector >= wc->metadata_sectors))
480 			break;
481 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
482 			region.count = wc->metadata_sectors - region.sector;
483 
484 		region.sector += wc->start_sector;
485 		atomic_inc(&endio.count);
486 		req.bi_op = REQ_OP_WRITE;
487 		req.bi_op_flags = REQ_SYNC;
488 		req.mem.type = DM_IO_VMA;
489 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
490 		req.client = wc->dm_io;
491 		req.notify.fn = writecache_notify_io;
492 		req.notify.context = &endio;
493 
494 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
495 	        (void) dm_io(&req, 1, &region, NULL);
496 		i = j;
497 	}
498 
499 	writecache_notify_io(0, &endio);
500 	wait_for_completion_io(&endio.c);
501 
502 	if (wait_for_ios)
503 		writecache_wait_for_ios(wc, WRITE);
504 
505 	writecache_disk_flush(wc, wc->ssd_dev);
506 
507 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
508 }
509 
510 static void ssd_commit_superblock(struct dm_writecache *wc)
511 {
512 	int r;
513 	struct dm_io_region region;
514 	struct dm_io_request req;
515 
516 	region.bdev = wc->ssd_dev->bdev;
517 	region.sector = 0;
518 	region.count = PAGE_SIZE;
519 
520 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
521 		region.count = wc->metadata_sectors - region.sector;
522 
523 	region.sector += wc->start_sector;
524 
525 	req.bi_op = REQ_OP_WRITE;
526 	req.bi_op_flags = REQ_SYNC | REQ_FUA;
527 	req.mem.type = DM_IO_VMA;
528 	req.mem.ptr.vma = (char *)wc->memory_map;
529 	req.client = wc->dm_io;
530 	req.notify.fn = NULL;
531 	req.notify.context = NULL;
532 
533 	r = dm_io(&req, 1, &region, NULL);
534 	if (unlikely(r))
535 		writecache_error(wc, r, "error writing superblock");
536 }
537 
538 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
539 {
540 	if (WC_MODE_PMEM(wc))
541 		pmem_wmb();
542 	else
543 		ssd_commit_flushed(wc, wait_for_ios);
544 }
545 
546 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
547 {
548 	int r;
549 	struct dm_io_region region;
550 	struct dm_io_request req;
551 
552 	region.bdev = dev->bdev;
553 	region.sector = 0;
554 	region.count = 0;
555 	req.bi_op = REQ_OP_WRITE;
556 	req.bi_op_flags = REQ_PREFLUSH;
557 	req.mem.type = DM_IO_KMEM;
558 	req.mem.ptr.addr = NULL;
559 	req.client = wc->dm_io;
560 	req.notify.fn = NULL;
561 
562 	r = dm_io(&req, 1, &region, NULL);
563 	if (unlikely(r))
564 		writecache_error(wc, r, "error flushing metadata: %d", r);
565 }
566 
567 #define WFE_RETURN_FOLLOWING	1
568 #define WFE_LOWEST_SEQ		2
569 
570 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
571 					      uint64_t block, int flags)
572 {
573 	struct wc_entry *e;
574 	struct rb_node *node = wc->tree.rb_node;
575 
576 	if (unlikely(!node))
577 		return NULL;
578 
579 	while (1) {
580 		e = container_of(node, struct wc_entry, rb_node);
581 		if (read_original_sector(wc, e) == block)
582 			break;
583 
584 		node = (read_original_sector(wc, e) >= block ?
585 			e->rb_node.rb_left : e->rb_node.rb_right);
586 		if (unlikely(!node)) {
587 			if (!(flags & WFE_RETURN_FOLLOWING))
588 				return NULL;
589 			if (read_original_sector(wc, e) >= block) {
590 				return e;
591 			} else {
592 				node = rb_next(&e->rb_node);
593 				if (unlikely(!node))
594 					return NULL;
595 				e = container_of(node, struct wc_entry, rb_node);
596 				return e;
597 			}
598 		}
599 	}
600 
601 	while (1) {
602 		struct wc_entry *e2;
603 		if (flags & WFE_LOWEST_SEQ)
604 			node = rb_prev(&e->rb_node);
605 		else
606 			node = rb_next(&e->rb_node);
607 		if (unlikely(!node))
608 			return e;
609 		e2 = container_of(node, struct wc_entry, rb_node);
610 		if (read_original_sector(wc, e2) != block)
611 			return e;
612 		e = e2;
613 	}
614 }
615 
616 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
617 {
618 	struct wc_entry *e;
619 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
620 
621 	while (*node) {
622 		e = container_of(*node, struct wc_entry, rb_node);
623 		parent = &e->rb_node;
624 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
625 			node = &parent->rb_left;
626 		else
627 			node = &parent->rb_right;
628 	}
629 	rb_link_node(&ins->rb_node, parent, node);
630 	rb_insert_color(&ins->rb_node, &wc->tree);
631 	list_add(&ins->lru, &wc->lru);
632 	ins->age = jiffies;
633 }
634 
635 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
636 {
637 	list_del(&e->lru);
638 	rb_erase(&e->rb_node, &wc->tree);
639 }
640 
641 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
642 {
643 	if (WC_MODE_SORT_FREELIST(wc)) {
644 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
645 		if (unlikely(!*node))
646 			wc->current_free = e;
647 		while (*node) {
648 			parent = *node;
649 			if (&e->rb_node < *node)
650 				node = &parent->rb_left;
651 			else
652 				node = &parent->rb_right;
653 		}
654 		rb_link_node(&e->rb_node, parent, node);
655 		rb_insert_color(&e->rb_node, &wc->freetree);
656 	} else {
657 		list_add_tail(&e->lru, &wc->freelist);
658 	}
659 	wc->freelist_size++;
660 }
661 
662 static inline void writecache_verify_watermark(struct dm_writecache *wc)
663 {
664 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
665 		queue_work(wc->writeback_wq, &wc->writeback_work);
666 }
667 
668 static void writecache_max_age_timer(struct timer_list *t)
669 {
670 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
671 
672 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
673 		queue_work(wc->writeback_wq, &wc->writeback_work);
674 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
675 	}
676 }
677 
678 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
679 {
680 	struct wc_entry *e;
681 
682 	if (WC_MODE_SORT_FREELIST(wc)) {
683 		struct rb_node *next;
684 		if (unlikely(!wc->current_free))
685 			return NULL;
686 		e = wc->current_free;
687 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
688 			return NULL;
689 		next = rb_next(&e->rb_node);
690 		rb_erase(&e->rb_node, &wc->freetree);
691 		if (unlikely(!next))
692 			next = rb_first(&wc->freetree);
693 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
694 	} else {
695 		if (unlikely(list_empty(&wc->freelist)))
696 			return NULL;
697 		e = container_of(wc->freelist.next, struct wc_entry, lru);
698 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
699 			return NULL;
700 		list_del(&e->lru);
701 	}
702 	wc->freelist_size--;
703 
704 	writecache_verify_watermark(wc);
705 
706 	return e;
707 }
708 
709 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
710 {
711 	writecache_unlink(wc, e);
712 	writecache_add_to_freelist(wc, e);
713 	clear_seq_count(wc, e);
714 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
715 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
716 		wake_up(&wc->freelist_wait);
717 }
718 
719 static void writecache_wait_on_freelist(struct dm_writecache *wc)
720 {
721 	DEFINE_WAIT(wait);
722 
723 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
724 	wc_unlock(wc);
725 	io_schedule();
726 	finish_wait(&wc->freelist_wait, &wait);
727 	wc_lock(wc);
728 }
729 
730 static void writecache_poison_lists(struct dm_writecache *wc)
731 {
732 	/*
733 	 * Catch incorrect access to these values while the device is suspended.
734 	 */
735 	memset(&wc->tree, -1, sizeof wc->tree);
736 	wc->lru.next = LIST_POISON1;
737 	wc->lru.prev = LIST_POISON2;
738 	wc->freelist.next = LIST_POISON1;
739 	wc->freelist.prev = LIST_POISON2;
740 }
741 
742 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
743 {
744 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
745 	if (WC_MODE_PMEM(wc))
746 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
747 }
748 
749 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
750 {
751 	return read_seq_count(wc, e) < wc->seq_count;
752 }
753 
754 static void writecache_flush(struct dm_writecache *wc)
755 {
756 	struct wc_entry *e, *e2;
757 	bool need_flush_after_free;
758 
759 	wc->uncommitted_blocks = 0;
760 	del_timer(&wc->autocommit_timer);
761 
762 	if (list_empty(&wc->lru))
763 		return;
764 
765 	e = container_of(wc->lru.next, struct wc_entry, lru);
766 	if (writecache_entry_is_committed(wc, e)) {
767 		if (wc->overwrote_committed) {
768 			writecache_wait_for_ios(wc, WRITE);
769 			writecache_disk_flush(wc, wc->ssd_dev);
770 			wc->overwrote_committed = false;
771 		}
772 		return;
773 	}
774 	while (1) {
775 		writecache_flush_entry(wc, e);
776 		if (unlikely(e->lru.next == &wc->lru))
777 			break;
778 		e2 = container_of(e->lru.next, struct wc_entry, lru);
779 		if (writecache_entry_is_committed(wc, e2))
780 			break;
781 		e = e2;
782 		cond_resched();
783 	}
784 	writecache_commit_flushed(wc, true);
785 
786 	wc->seq_count++;
787 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
788 	if (WC_MODE_PMEM(wc))
789 		writecache_commit_flushed(wc, false);
790 	else
791 		ssd_commit_superblock(wc);
792 
793 	wc->overwrote_committed = false;
794 
795 	need_flush_after_free = false;
796 	while (1) {
797 		/* Free another committed entry with lower seq-count */
798 		struct rb_node *rb_node = rb_prev(&e->rb_node);
799 
800 		if (rb_node) {
801 			e2 = container_of(rb_node, struct wc_entry, rb_node);
802 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
803 			    likely(!e2->write_in_progress)) {
804 				writecache_free_entry(wc, e2);
805 				need_flush_after_free = true;
806 			}
807 		}
808 		if (unlikely(e->lru.prev == &wc->lru))
809 			break;
810 		e = container_of(e->lru.prev, struct wc_entry, lru);
811 		cond_resched();
812 	}
813 
814 	if (need_flush_after_free)
815 		writecache_commit_flushed(wc, false);
816 }
817 
818 static void writecache_flush_work(struct work_struct *work)
819 {
820 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
821 
822 	wc_lock(wc);
823 	writecache_flush(wc);
824 	wc_unlock(wc);
825 }
826 
827 static void writecache_autocommit_timer(struct timer_list *t)
828 {
829 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
830 	if (!writecache_has_error(wc))
831 		queue_work(wc->writeback_wq, &wc->flush_work);
832 }
833 
834 static void writecache_schedule_autocommit(struct dm_writecache *wc)
835 {
836 	if (!timer_pending(&wc->autocommit_timer))
837 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
838 }
839 
840 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
841 {
842 	struct wc_entry *e;
843 	bool discarded_something = false;
844 
845 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
846 	if (unlikely(!e))
847 		return;
848 
849 	while (read_original_sector(wc, e) < end) {
850 		struct rb_node *node = rb_next(&e->rb_node);
851 
852 		if (likely(!e->write_in_progress)) {
853 			if (!discarded_something) {
854 				if (!WC_MODE_PMEM(wc)) {
855 					writecache_wait_for_ios(wc, READ);
856 					writecache_wait_for_ios(wc, WRITE);
857 				}
858 				discarded_something = true;
859 			}
860 			if (!writecache_entry_is_committed(wc, e))
861 				wc->uncommitted_blocks--;
862 			writecache_free_entry(wc, e);
863 		}
864 
865 		if (unlikely(!node))
866 			break;
867 
868 		e = container_of(node, struct wc_entry, rb_node);
869 	}
870 
871 	if (discarded_something)
872 		writecache_commit_flushed(wc, false);
873 }
874 
875 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
876 {
877 	if (wc->writeback_size) {
878 		writecache_wait_on_freelist(wc);
879 		return true;
880 	}
881 	return false;
882 }
883 
884 static void writecache_suspend(struct dm_target *ti)
885 {
886 	struct dm_writecache *wc = ti->private;
887 	bool flush_on_suspend;
888 
889 	del_timer_sync(&wc->autocommit_timer);
890 	del_timer_sync(&wc->max_age_timer);
891 
892 	wc_lock(wc);
893 	writecache_flush(wc);
894 	flush_on_suspend = wc->flush_on_suspend;
895 	if (flush_on_suspend) {
896 		wc->flush_on_suspend = false;
897 		wc->writeback_all++;
898 		queue_work(wc->writeback_wq, &wc->writeback_work);
899 	}
900 	wc_unlock(wc);
901 
902 	drain_workqueue(wc->writeback_wq);
903 
904 	wc_lock(wc);
905 	if (flush_on_suspend)
906 		wc->writeback_all--;
907 	while (writecache_wait_for_writeback(wc));
908 
909 	if (WC_MODE_PMEM(wc))
910 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
911 
912 	writecache_poison_lists(wc);
913 
914 	wc_unlock(wc);
915 }
916 
917 static int writecache_alloc_entries(struct dm_writecache *wc)
918 {
919 	size_t b;
920 
921 	if (wc->entries)
922 		return 0;
923 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
924 	if (!wc->entries)
925 		return -ENOMEM;
926 	for (b = 0; b < wc->n_blocks; b++) {
927 		struct wc_entry *e = &wc->entries[b];
928 		e->index = b;
929 		e->write_in_progress = false;
930 		cond_resched();
931 	}
932 
933 	return 0;
934 }
935 
936 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
937 {
938 	struct dm_io_region region;
939 	struct dm_io_request req;
940 
941 	region.bdev = wc->ssd_dev->bdev;
942 	region.sector = wc->start_sector;
943 	region.count = n_sectors;
944 	req.bi_op = REQ_OP_READ;
945 	req.bi_op_flags = REQ_SYNC;
946 	req.mem.type = DM_IO_VMA;
947 	req.mem.ptr.vma = (char *)wc->memory_map;
948 	req.client = wc->dm_io;
949 	req.notify.fn = NULL;
950 
951 	return dm_io(&req, 1, &region, NULL);
952 }
953 
954 static void writecache_resume(struct dm_target *ti)
955 {
956 	struct dm_writecache *wc = ti->private;
957 	size_t b;
958 	bool need_flush = false;
959 	__le64 sb_seq_count;
960 	int r;
961 
962 	wc_lock(wc);
963 
964 	if (WC_MODE_PMEM(wc)) {
965 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
966 	} else {
967 		r = writecache_read_metadata(wc, wc->metadata_sectors);
968 		if (r) {
969 			size_t sb_entries_offset;
970 			writecache_error(wc, r, "unable to read metadata: %d", r);
971 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
972 			memset((char *)wc->memory_map + sb_entries_offset, -1,
973 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
974 		}
975 	}
976 
977 	wc->tree = RB_ROOT;
978 	INIT_LIST_HEAD(&wc->lru);
979 	if (WC_MODE_SORT_FREELIST(wc)) {
980 		wc->freetree = RB_ROOT;
981 		wc->current_free = NULL;
982 	} else {
983 		INIT_LIST_HEAD(&wc->freelist);
984 	}
985 	wc->freelist_size = 0;
986 
987 	r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
988 	if (r) {
989 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
990 		sb_seq_count = cpu_to_le64(0);
991 	}
992 	wc->seq_count = le64_to_cpu(sb_seq_count);
993 
994 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
995 	for (b = 0; b < wc->n_blocks; b++) {
996 		struct wc_entry *e = &wc->entries[b];
997 		struct wc_memory_entry wme;
998 		if (writecache_has_error(wc)) {
999 			e->original_sector = -1;
1000 			e->seq_count = -1;
1001 			continue;
1002 		}
1003 		r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
1004 		if (r) {
1005 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1006 					 (unsigned long)b, r);
1007 			e->original_sector = -1;
1008 			e->seq_count = -1;
1009 		} else {
1010 			e->original_sector = le64_to_cpu(wme.original_sector);
1011 			e->seq_count = le64_to_cpu(wme.seq_count);
1012 		}
1013 		cond_resched();
1014 	}
1015 #endif
1016 	for (b = 0; b < wc->n_blocks; b++) {
1017 		struct wc_entry *e = &wc->entries[b];
1018 		if (!writecache_entry_is_committed(wc, e)) {
1019 			if (read_seq_count(wc, e) != -1) {
1020 erase_this:
1021 				clear_seq_count(wc, e);
1022 				need_flush = true;
1023 			}
1024 			writecache_add_to_freelist(wc, e);
1025 		} else {
1026 			struct wc_entry *old;
1027 
1028 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1029 			if (!old) {
1030 				writecache_insert_entry(wc, e);
1031 			} else {
1032 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1033 					writecache_error(wc, -EINVAL,
1034 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1035 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1036 						 (unsigned long long)read_seq_count(wc, e));
1037 				}
1038 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1039 					goto erase_this;
1040 				} else {
1041 					writecache_free_entry(wc, old);
1042 					writecache_insert_entry(wc, e);
1043 					need_flush = true;
1044 				}
1045 			}
1046 		}
1047 		cond_resched();
1048 	}
1049 
1050 	if (need_flush) {
1051 		writecache_flush_all_metadata(wc);
1052 		writecache_commit_flushed(wc, false);
1053 	}
1054 
1055 	writecache_verify_watermark(wc);
1056 
1057 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1058 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1059 
1060 	wc_unlock(wc);
1061 }
1062 
1063 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1064 {
1065 	if (argc != 1)
1066 		return -EINVAL;
1067 
1068 	wc_lock(wc);
1069 	if (dm_suspended(wc->ti)) {
1070 		wc_unlock(wc);
1071 		return -EBUSY;
1072 	}
1073 	if (writecache_has_error(wc)) {
1074 		wc_unlock(wc);
1075 		return -EIO;
1076 	}
1077 
1078 	writecache_flush(wc);
1079 	wc->writeback_all++;
1080 	queue_work(wc->writeback_wq, &wc->writeback_work);
1081 	wc_unlock(wc);
1082 
1083 	flush_workqueue(wc->writeback_wq);
1084 
1085 	wc_lock(wc);
1086 	wc->writeback_all--;
1087 	if (writecache_has_error(wc)) {
1088 		wc_unlock(wc);
1089 		return -EIO;
1090 	}
1091 	wc_unlock(wc);
1092 
1093 	return 0;
1094 }
1095 
1096 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1097 {
1098 	if (argc != 1)
1099 		return -EINVAL;
1100 
1101 	wc_lock(wc);
1102 	wc->flush_on_suspend = true;
1103 	wc_unlock(wc);
1104 
1105 	return 0;
1106 }
1107 
1108 static void activate_cleaner(struct dm_writecache *wc)
1109 {
1110 	wc->flush_on_suspend = true;
1111 	wc->cleaner = true;
1112 	wc->freelist_high_watermark = wc->n_blocks;
1113 	wc->freelist_low_watermark = wc->n_blocks;
1114 }
1115 
1116 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1117 {
1118 	if (argc != 1)
1119 		return -EINVAL;
1120 
1121 	wc_lock(wc);
1122 	activate_cleaner(wc);
1123 	if (!dm_suspended(wc->ti))
1124 		writecache_verify_watermark(wc);
1125 	wc_unlock(wc);
1126 
1127 	return 0;
1128 }
1129 
1130 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1131 			      char *result, unsigned maxlen)
1132 {
1133 	int r = -EINVAL;
1134 	struct dm_writecache *wc = ti->private;
1135 
1136 	if (!strcasecmp(argv[0], "flush"))
1137 		r = process_flush_mesg(argc, argv, wc);
1138 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1139 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1140 	else if (!strcasecmp(argv[0], "cleaner"))
1141 		r = process_cleaner_mesg(argc, argv, wc);
1142 	else
1143 		DMERR("unrecognised message received: %s", argv[0]);
1144 
1145 	return r;
1146 }
1147 
1148 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1149 {
1150 	/*
1151 	 * clflushopt performs better with block size 1024, 2048, 4096
1152 	 * non-temporal stores perform better with block size 512
1153 	 *
1154 	 * block size   512             1024            2048            4096
1155 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1156 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1157 	 *
1158 	 * We see that movnti performs better for 512-byte blocks, and
1159 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1160 	 * prefer clflushopt for sizes >= 768.
1161 	 *
1162 	 * NOTE: this happens to be the case now (with dm-writecache's single
1163 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1164 	 * enabled to use movdir64b which might invalidate this performance
1165 	 * advantage seen with cache-allocating-writes plus flushing.
1166 	 */
1167 #ifdef CONFIG_X86
1168 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1169 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1170 	    likely(size >= 768)) {
1171 		do {
1172 			memcpy((void *)dest, (void *)source, 64);
1173 			clflushopt((void *)dest);
1174 			dest += 64;
1175 			source += 64;
1176 			size -= 64;
1177 		} while (size >= 64);
1178 		return;
1179 	}
1180 #endif
1181 	memcpy_flushcache(dest, source, size);
1182 }
1183 
1184 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1185 {
1186 	void *buf;
1187 	unsigned long flags;
1188 	unsigned size;
1189 	int rw = bio_data_dir(bio);
1190 	unsigned remaining_size = wc->block_size;
1191 
1192 	do {
1193 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1194 		buf = bvec_kmap_irq(&bv, &flags);
1195 		size = bv.bv_len;
1196 		if (unlikely(size > remaining_size))
1197 			size = remaining_size;
1198 
1199 		if (rw == READ) {
1200 			int r;
1201 			r = memcpy_mcsafe(buf, data, size);
1202 			flush_dcache_page(bio_page(bio));
1203 			if (unlikely(r)) {
1204 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1205 				bio->bi_status = BLK_STS_IOERR;
1206 			}
1207 		} else {
1208 			flush_dcache_page(bio_page(bio));
1209 			memcpy_flushcache_optimized(data, buf, size);
1210 		}
1211 
1212 		bvec_kunmap_irq(buf, &flags);
1213 
1214 		data = (char *)data + size;
1215 		remaining_size -= size;
1216 		bio_advance(bio, size);
1217 	} while (unlikely(remaining_size));
1218 }
1219 
1220 static int writecache_flush_thread(void *data)
1221 {
1222 	struct dm_writecache *wc = data;
1223 
1224 	while (1) {
1225 		struct bio *bio;
1226 
1227 		wc_lock(wc);
1228 		bio = bio_list_pop(&wc->flush_list);
1229 		if (!bio) {
1230 			set_current_state(TASK_INTERRUPTIBLE);
1231 			wc_unlock(wc);
1232 
1233 			if (unlikely(kthread_should_stop())) {
1234 				set_current_state(TASK_RUNNING);
1235 				break;
1236 			}
1237 
1238 			schedule();
1239 			continue;
1240 		}
1241 
1242 		if (bio_op(bio) == REQ_OP_DISCARD) {
1243 			writecache_discard(wc, bio->bi_iter.bi_sector,
1244 					   bio_end_sector(bio));
1245 			wc_unlock(wc);
1246 			bio_set_dev(bio, wc->dev->bdev);
1247 			submit_bio_noacct(bio);
1248 		} else {
1249 			writecache_flush(wc);
1250 			wc_unlock(wc);
1251 			if (writecache_has_error(wc))
1252 				bio->bi_status = BLK_STS_IOERR;
1253 			bio_endio(bio);
1254 		}
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1261 {
1262 	if (bio_list_empty(&wc->flush_list))
1263 		wake_up_process(wc->flush_thread);
1264 	bio_list_add(&wc->flush_list, bio);
1265 }
1266 
1267 static int writecache_map(struct dm_target *ti, struct bio *bio)
1268 {
1269 	struct wc_entry *e;
1270 	struct dm_writecache *wc = ti->private;
1271 
1272 	bio->bi_private = NULL;
1273 
1274 	wc_lock(wc);
1275 
1276 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1277 		if (writecache_has_error(wc))
1278 			goto unlock_error;
1279 		if (WC_MODE_PMEM(wc)) {
1280 			writecache_flush(wc);
1281 			if (writecache_has_error(wc))
1282 				goto unlock_error;
1283 			goto unlock_submit;
1284 		} else {
1285 			writecache_offload_bio(wc, bio);
1286 			goto unlock_return;
1287 		}
1288 	}
1289 
1290 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1291 
1292 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1293 				(wc->block_size / 512 - 1)) != 0)) {
1294 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1295 		      (unsigned long long)bio->bi_iter.bi_sector,
1296 		      bio->bi_iter.bi_size, wc->block_size);
1297 		goto unlock_error;
1298 	}
1299 
1300 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1301 		if (writecache_has_error(wc))
1302 			goto unlock_error;
1303 		if (WC_MODE_PMEM(wc)) {
1304 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1305 			goto unlock_remap_origin;
1306 		} else {
1307 			writecache_offload_bio(wc, bio);
1308 			goto unlock_return;
1309 		}
1310 	}
1311 
1312 	if (bio_data_dir(bio) == READ) {
1313 read_next_block:
1314 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1315 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1316 			if (WC_MODE_PMEM(wc)) {
1317 				bio_copy_block(wc, bio, memory_data(wc, e));
1318 				if (bio->bi_iter.bi_size)
1319 					goto read_next_block;
1320 				goto unlock_submit;
1321 			} else {
1322 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1323 				bio_set_dev(bio, wc->ssd_dev->bdev);
1324 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1325 				if (!writecache_entry_is_committed(wc, e))
1326 					writecache_wait_for_ios(wc, WRITE);
1327 				goto unlock_remap;
1328 			}
1329 		} else {
1330 			if (e) {
1331 				sector_t next_boundary =
1332 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1333 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1334 					dm_accept_partial_bio(bio, next_boundary);
1335 				}
1336 			}
1337 			goto unlock_remap_origin;
1338 		}
1339 	} else {
1340 		do {
1341 			bool found_entry = false;
1342 			if (writecache_has_error(wc))
1343 				goto unlock_error;
1344 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1345 			if (e) {
1346 				if (!writecache_entry_is_committed(wc, e))
1347 					goto bio_copy;
1348 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1349 					wc->overwrote_committed = true;
1350 					goto bio_copy;
1351 				}
1352 				found_entry = true;
1353 			} else {
1354 				if (unlikely(wc->cleaner))
1355 					goto direct_write;
1356 			}
1357 			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1358 			if (unlikely(!e)) {
1359 				if (!found_entry) {
1360 direct_write:
1361 					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1362 					if (e) {
1363 						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1364 						BUG_ON(!next_boundary);
1365 						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1366 							dm_accept_partial_bio(bio, next_boundary);
1367 						}
1368 					}
1369 					goto unlock_remap_origin;
1370 				}
1371 				writecache_wait_on_freelist(wc);
1372 				continue;
1373 			}
1374 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1375 			writecache_insert_entry(wc, e);
1376 			wc->uncommitted_blocks++;
1377 bio_copy:
1378 			if (WC_MODE_PMEM(wc)) {
1379 				bio_copy_block(wc, bio, memory_data(wc, e));
1380 			} else {
1381 				unsigned bio_size = wc->block_size;
1382 				sector_t start_cache_sec = cache_sector(wc, e);
1383 				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1384 
1385 				while (bio_size < bio->bi_iter.bi_size) {
1386 					struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1387 					if (!f)
1388 						break;
1389 					write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1390 									(bio_size >> SECTOR_SHIFT), wc->seq_count);
1391 					writecache_insert_entry(wc, f);
1392 					wc->uncommitted_blocks++;
1393 					bio_size += wc->block_size;
1394 					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1395 				}
1396 
1397 				bio_set_dev(bio, wc->ssd_dev->bdev);
1398 				bio->bi_iter.bi_sector = start_cache_sec;
1399 				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1400 
1401 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1402 					wc->uncommitted_blocks = 0;
1403 					queue_work(wc->writeback_wq, &wc->flush_work);
1404 				} else {
1405 					writecache_schedule_autocommit(wc);
1406 				}
1407 				goto unlock_remap;
1408 			}
1409 		} while (bio->bi_iter.bi_size);
1410 
1411 		if (unlikely(bio->bi_opf & REQ_FUA ||
1412 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1413 			writecache_flush(wc);
1414 		else
1415 			writecache_schedule_autocommit(wc);
1416 		goto unlock_submit;
1417 	}
1418 
1419 unlock_remap_origin:
1420 	bio_set_dev(bio, wc->dev->bdev);
1421 	wc_unlock(wc);
1422 	return DM_MAPIO_REMAPPED;
1423 
1424 unlock_remap:
1425 	/* make sure that writecache_end_io decrements bio_in_progress: */
1426 	bio->bi_private = (void *)1;
1427 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1428 	wc_unlock(wc);
1429 	return DM_MAPIO_REMAPPED;
1430 
1431 unlock_submit:
1432 	wc_unlock(wc);
1433 	bio_endio(bio);
1434 	return DM_MAPIO_SUBMITTED;
1435 
1436 unlock_return:
1437 	wc_unlock(wc);
1438 	return DM_MAPIO_SUBMITTED;
1439 
1440 unlock_error:
1441 	wc_unlock(wc);
1442 	bio_io_error(bio);
1443 	return DM_MAPIO_SUBMITTED;
1444 }
1445 
1446 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1447 {
1448 	struct dm_writecache *wc = ti->private;
1449 
1450 	if (bio->bi_private != NULL) {
1451 		int dir = bio_data_dir(bio);
1452 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1453 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1454 				wake_up(&wc->bio_in_progress_wait[dir]);
1455 	}
1456 	return 0;
1457 }
1458 
1459 static int writecache_iterate_devices(struct dm_target *ti,
1460 				      iterate_devices_callout_fn fn, void *data)
1461 {
1462 	struct dm_writecache *wc = ti->private;
1463 
1464 	return fn(ti, wc->dev, 0, ti->len, data);
1465 }
1466 
1467 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1468 {
1469 	struct dm_writecache *wc = ti->private;
1470 
1471 	if (limits->logical_block_size < wc->block_size)
1472 		limits->logical_block_size = wc->block_size;
1473 
1474 	if (limits->physical_block_size < wc->block_size)
1475 		limits->physical_block_size = wc->block_size;
1476 
1477 	if (limits->io_min < wc->block_size)
1478 		limits->io_min = wc->block_size;
1479 }
1480 
1481 
1482 static void writecache_writeback_endio(struct bio *bio)
1483 {
1484 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1485 	struct dm_writecache *wc = wb->wc;
1486 	unsigned long flags;
1487 
1488 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1489 	if (unlikely(list_empty(&wc->endio_list)))
1490 		wake_up_process(wc->endio_thread);
1491 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1492 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1493 }
1494 
1495 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1496 {
1497 	struct copy_struct *c = ptr;
1498 	struct dm_writecache *wc = c->wc;
1499 
1500 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1501 
1502 	raw_spin_lock_irq(&wc->endio_list_lock);
1503 	if (unlikely(list_empty(&wc->endio_list)))
1504 		wake_up_process(wc->endio_thread);
1505 	list_add_tail(&c->endio_entry, &wc->endio_list);
1506 	raw_spin_unlock_irq(&wc->endio_list_lock);
1507 }
1508 
1509 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1510 {
1511 	unsigned i;
1512 	struct writeback_struct *wb;
1513 	struct wc_entry *e;
1514 	unsigned long n_walked = 0;
1515 
1516 	do {
1517 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1518 		list_del(&wb->endio_entry);
1519 
1520 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1521 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1522 					"write error %d", wb->bio.bi_status);
1523 		i = 0;
1524 		do {
1525 			e = wb->wc_list[i];
1526 			BUG_ON(!e->write_in_progress);
1527 			e->write_in_progress = false;
1528 			INIT_LIST_HEAD(&e->lru);
1529 			if (!writecache_has_error(wc))
1530 				writecache_free_entry(wc, e);
1531 			BUG_ON(!wc->writeback_size);
1532 			wc->writeback_size--;
1533 			n_walked++;
1534 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1535 				writecache_commit_flushed(wc, false);
1536 				wc_unlock(wc);
1537 				wc_lock(wc);
1538 				n_walked = 0;
1539 			}
1540 		} while (++i < wb->wc_list_n);
1541 
1542 		if (wb->wc_list != wb->wc_list_inline)
1543 			kfree(wb->wc_list);
1544 		bio_put(&wb->bio);
1545 	} while (!list_empty(list));
1546 }
1547 
1548 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1549 {
1550 	struct copy_struct *c;
1551 	struct wc_entry *e;
1552 
1553 	do {
1554 		c = list_entry(list->next, struct copy_struct, endio_entry);
1555 		list_del(&c->endio_entry);
1556 
1557 		if (unlikely(c->error))
1558 			writecache_error(wc, c->error, "copy error");
1559 
1560 		e = c->e;
1561 		do {
1562 			BUG_ON(!e->write_in_progress);
1563 			e->write_in_progress = false;
1564 			INIT_LIST_HEAD(&e->lru);
1565 			if (!writecache_has_error(wc))
1566 				writecache_free_entry(wc, e);
1567 
1568 			BUG_ON(!wc->writeback_size);
1569 			wc->writeback_size--;
1570 			e++;
1571 		} while (--c->n_entries);
1572 		mempool_free(c, &wc->copy_pool);
1573 	} while (!list_empty(list));
1574 }
1575 
1576 static int writecache_endio_thread(void *data)
1577 {
1578 	struct dm_writecache *wc = data;
1579 
1580 	while (1) {
1581 		struct list_head list;
1582 
1583 		raw_spin_lock_irq(&wc->endio_list_lock);
1584 		if (!list_empty(&wc->endio_list))
1585 			goto pop_from_list;
1586 		set_current_state(TASK_INTERRUPTIBLE);
1587 		raw_spin_unlock_irq(&wc->endio_list_lock);
1588 
1589 		if (unlikely(kthread_should_stop())) {
1590 			set_current_state(TASK_RUNNING);
1591 			break;
1592 		}
1593 
1594 		schedule();
1595 
1596 		continue;
1597 
1598 pop_from_list:
1599 		list = wc->endio_list;
1600 		list.next->prev = list.prev->next = &list;
1601 		INIT_LIST_HEAD(&wc->endio_list);
1602 		raw_spin_unlock_irq(&wc->endio_list_lock);
1603 
1604 		if (!WC_MODE_FUA(wc))
1605 			writecache_disk_flush(wc, wc->dev);
1606 
1607 		wc_lock(wc);
1608 
1609 		if (WC_MODE_PMEM(wc)) {
1610 			__writecache_endio_pmem(wc, &list);
1611 		} else {
1612 			__writecache_endio_ssd(wc, &list);
1613 			writecache_wait_for_ios(wc, READ);
1614 		}
1615 
1616 		writecache_commit_flushed(wc, false);
1617 
1618 		wc_unlock(wc);
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1625 {
1626 	struct dm_writecache *wc = wb->wc;
1627 	unsigned block_size = wc->block_size;
1628 	void *address = memory_data(wc, e);
1629 
1630 	persistent_memory_flush_cache(address, block_size);
1631 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1632 			    block_size, persistent_memory_page_offset(address)) != 0;
1633 }
1634 
1635 struct writeback_list {
1636 	struct list_head list;
1637 	size_t size;
1638 };
1639 
1640 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1641 {
1642 	if (unlikely(wc->max_writeback_jobs)) {
1643 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1644 			wc_lock(wc);
1645 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1646 				writecache_wait_on_freelist(wc);
1647 			wc_unlock(wc);
1648 		}
1649 	}
1650 	cond_resched();
1651 }
1652 
1653 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1654 {
1655 	struct wc_entry *e, *f;
1656 	struct bio *bio;
1657 	struct writeback_struct *wb;
1658 	unsigned max_pages;
1659 
1660 	while (wbl->size) {
1661 		wbl->size--;
1662 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1663 		list_del(&e->lru);
1664 
1665 		max_pages = e->wc_list_contiguous;
1666 
1667 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1668 		wb = container_of(bio, struct writeback_struct, bio);
1669 		wb->wc = wc;
1670 		bio->bi_end_io = writecache_writeback_endio;
1671 		bio_set_dev(bio, wc->dev->bdev);
1672 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1673 		if (max_pages <= WB_LIST_INLINE ||
1674 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1675 							   GFP_NOIO | __GFP_NORETRY |
1676 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1677 			wb->wc_list = wb->wc_list_inline;
1678 			max_pages = WB_LIST_INLINE;
1679 		}
1680 
1681 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1682 
1683 		wb->wc_list[0] = e;
1684 		wb->wc_list_n = 1;
1685 
1686 		while (wbl->size && wb->wc_list_n < max_pages) {
1687 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1688 			if (read_original_sector(wc, f) !=
1689 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1690 				break;
1691 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1692 				break;
1693 			wbl->size--;
1694 			list_del(&f->lru);
1695 			wb->wc_list[wb->wc_list_n++] = f;
1696 			e = f;
1697 		}
1698 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1699 		if (writecache_has_error(wc)) {
1700 			bio->bi_status = BLK_STS_IOERR;
1701 			bio_endio(bio);
1702 		} else {
1703 			submit_bio(bio);
1704 		}
1705 
1706 		__writeback_throttle(wc, wbl);
1707 	}
1708 }
1709 
1710 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1711 {
1712 	struct wc_entry *e, *f;
1713 	struct dm_io_region from, to;
1714 	struct copy_struct *c;
1715 
1716 	while (wbl->size) {
1717 		unsigned n_sectors;
1718 
1719 		wbl->size--;
1720 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1721 		list_del(&e->lru);
1722 
1723 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1724 
1725 		from.bdev = wc->ssd_dev->bdev;
1726 		from.sector = cache_sector(wc, e);
1727 		from.count = n_sectors;
1728 		to.bdev = wc->dev->bdev;
1729 		to.sector = read_original_sector(wc, e);
1730 		to.count = n_sectors;
1731 
1732 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1733 		c->wc = wc;
1734 		c->e = e;
1735 		c->n_entries = e->wc_list_contiguous;
1736 
1737 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1738 			wbl->size--;
1739 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1740 			BUG_ON(f != e + 1);
1741 			list_del(&f->lru);
1742 			e = f;
1743 		}
1744 
1745 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1746 
1747 		__writeback_throttle(wc, wbl);
1748 	}
1749 }
1750 
1751 static void writecache_writeback(struct work_struct *work)
1752 {
1753 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1754 	struct blk_plug plug;
1755 	struct wc_entry *f, *g, *e = NULL;
1756 	struct rb_node *node, *next_node;
1757 	struct list_head skipped;
1758 	struct writeback_list wbl;
1759 	unsigned long n_walked;
1760 
1761 	wc_lock(wc);
1762 restart:
1763 	if (writecache_has_error(wc)) {
1764 		wc_unlock(wc);
1765 		return;
1766 	}
1767 
1768 	if (unlikely(wc->writeback_all)) {
1769 		if (writecache_wait_for_writeback(wc))
1770 			goto restart;
1771 	}
1772 
1773 	if (wc->overwrote_committed) {
1774 		writecache_wait_for_ios(wc, WRITE);
1775 	}
1776 
1777 	n_walked = 0;
1778 	INIT_LIST_HEAD(&skipped);
1779 	INIT_LIST_HEAD(&wbl.list);
1780 	wbl.size = 0;
1781 	while (!list_empty(&wc->lru) &&
1782 	       (wc->writeback_all ||
1783 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1784 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1785 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1786 
1787 		n_walked++;
1788 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1789 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1790 			queue_work(wc->writeback_wq, &wc->writeback_work);
1791 			break;
1792 		}
1793 
1794 		if (unlikely(wc->writeback_all)) {
1795 			if (unlikely(!e)) {
1796 				writecache_flush(wc);
1797 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1798 			} else
1799 				e = g;
1800 		} else
1801 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1802 		BUG_ON(e->write_in_progress);
1803 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1804 			writecache_flush(wc);
1805 		}
1806 		node = rb_prev(&e->rb_node);
1807 		if (node) {
1808 			f = container_of(node, struct wc_entry, rb_node);
1809 			if (unlikely(read_original_sector(wc, f) ==
1810 				     read_original_sector(wc, e))) {
1811 				BUG_ON(!f->write_in_progress);
1812 				list_del(&e->lru);
1813 				list_add(&e->lru, &skipped);
1814 				cond_resched();
1815 				continue;
1816 			}
1817 		}
1818 		wc->writeback_size++;
1819 		list_del(&e->lru);
1820 		list_add(&e->lru, &wbl.list);
1821 		wbl.size++;
1822 		e->write_in_progress = true;
1823 		e->wc_list_contiguous = 1;
1824 
1825 		f = e;
1826 
1827 		while (1) {
1828 			next_node = rb_next(&f->rb_node);
1829 			if (unlikely(!next_node))
1830 				break;
1831 			g = container_of(next_node, struct wc_entry, rb_node);
1832 			if (unlikely(read_original_sector(wc, g) ==
1833 			    read_original_sector(wc, f))) {
1834 				f = g;
1835 				continue;
1836 			}
1837 			if (read_original_sector(wc, g) !=
1838 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1839 				break;
1840 			if (unlikely(g->write_in_progress))
1841 				break;
1842 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1843 				break;
1844 
1845 			if (!WC_MODE_PMEM(wc)) {
1846 				if (g != f + 1)
1847 					break;
1848 			}
1849 
1850 			n_walked++;
1851 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1852 			//	break;
1853 
1854 			wc->writeback_size++;
1855 			list_del(&g->lru);
1856 			list_add(&g->lru, &wbl.list);
1857 			wbl.size++;
1858 			g->write_in_progress = true;
1859 			g->wc_list_contiguous = BIO_MAX_PAGES;
1860 			f = g;
1861 			e->wc_list_contiguous++;
1862 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1863 				if (unlikely(wc->writeback_all)) {
1864 					next_node = rb_next(&f->rb_node);
1865 					if (likely(next_node))
1866 						g = container_of(next_node, struct wc_entry, rb_node);
1867 				}
1868 				break;
1869 			}
1870 		}
1871 		cond_resched();
1872 	}
1873 
1874 	if (!list_empty(&skipped)) {
1875 		list_splice_tail(&skipped, &wc->lru);
1876 		/*
1877 		 * If we didn't do any progress, we must wait until some
1878 		 * writeback finishes to avoid burning CPU in a loop
1879 		 */
1880 		if (unlikely(!wbl.size))
1881 			writecache_wait_for_writeback(wc);
1882 	}
1883 
1884 	wc_unlock(wc);
1885 
1886 	blk_start_plug(&plug);
1887 
1888 	if (WC_MODE_PMEM(wc))
1889 		__writecache_writeback_pmem(wc, &wbl);
1890 	else
1891 		__writecache_writeback_ssd(wc, &wbl);
1892 
1893 	blk_finish_plug(&plug);
1894 
1895 	if (unlikely(wc->writeback_all)) {
1896 		wc_lock(wc);
1897 		while (writecache_wait_for_writeback(wc));
1898 		wc_unlock(wc);
1899 	}
1900 }
1901 
1902 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1903 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1904 {
1905 	uint64_t n_blocks, offset;
1906 	struct wc_entry e;
1907 
1908 	n_blocks = device_size;
1909 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1910 
1911 	while (1) {
1912 		if (!n_blocks)
1913 			return -ENOSPC;
1914 		/* Verify the following entries[n_blocks] won't overflow */
1915 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1916 				 sizeof(struct wc_memory_entry)))
1917 			return -EFBIG;
1918 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1919 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1920 		if (offset + n_blocks * block_size <= device_size)
1921 			break;
1922 		n_blocks--;
1923 	}
1924 
1925 	/* check if the bit field overflows */
1926 	e.index = n_blocks;
1927 	if (e.index != n_blocks)
1928 		return -EFBIG;
1929 
1930 	if (n_blocks_p)
1931 		*n_blocks_p = n_blocks;
1932 	if (n_metadata_blocks_p)
1933 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1934 	return 0;
1935 }
1936 
1937 static int init_memory(struct dm_writecache *wc)
1938 {
1939 	size_t b;
1940 	int r;
1941 
1942 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1943 	if (r)
1944 		return r;
1945 
1946 	r = writecache_alloc_entries(wc);
1947 	if (r)
1948 		return r;
1949 
1950 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1951 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1952 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1953 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1954 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1955 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1956 
1957 	for (b = 0; b < wc->n_blocks; b++) {
1958 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1959 		cond_resched();
1960 	}
1961 
1962 	writecache_flush_all_metadata(wc);
1963 	writecache_commit_flushed(wc, false);
1964 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1965 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1966 	writecache_commit_flushed(wc, false);
1967 
1968 	return 0;
1969 }
1970 
1971 static void writecache_dtr(struct dm_target *ti)
1972 {
1973 	struct dm_writecache *wc = ti->private;
1974 
1975 	if (!wc)
1976 		return;
1977 
1978 	if (wc->endio_thread)
1979 		kthread_stop(wc->endio_thread);
1980 
1981 	if (wc->flush_thread)
1982 		kthread_stop(wc->flush_thread);
1983 
1984 	bioset_exit(&wc->bio_set);
1985 
1986 	mempool_exit(&wc->copy_pool);
1987 
1988 	if (wc->writeback_wq)
1989 		destroy_workqueue(wc->writeback_wq);
1990 
1991 	if (wc->dev)
1992 		dm_put_device(ti, wc->dev);
1993 
1994 	if (wc->ssd_dev)
1995 		dm_put_device(ti, wc->ssd_dev);
1996 
1997 	if (wc->entries)
1998 		vfree(wc->entries);
1999 
2000 	if (wc->memory_map) {
2001 		if (WC_MODE_PMEM(wc))
2002 			persistent_memory_release(wc);
2003 		else
2004 			vfree(wc->memory_map);
2005 	}
2006 
2007 	if (wc->dm_kcopyd)
2008 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2009 
2010 	if (wc->dm_io)
2011 		dm_io_client_destroy(wc->dm_io);
2012 
2013 	if (wc->dirty_bitmap)
2014 		vfree(wc->dirty_bitmap);
2015 
2016 	kfree(wc);
2017 }
2018 
2019 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2020 {
2021 	struct dm_writecache *wc;
2022 	struct dm_arg_set as;
2023 	const char *string;
2024 	unsigned opt_params;
2025 	size_t offset, data_size;
2026 	int i, r;
2027 	char dummy;
2028 	int high_wm_percent = HIGH_WATERMARK;
2029 	int low_wm_percent = LOW_WATERMARK;
2030 	uint64_t x;
2031 	struct wc_memory_superblock s;
2032 
2033 	static struct dm_arg _args[] = {
2034 		{0, 10, "Invalid number of feature args"},
2035 	};
2036 
2037 	as.argc = argc;
2038 	as.argv = argv;
2039 
2040 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2041 	if (!wc) {
2042 		ti->error = "Cannot allocate writecache structure";
2043 		r = -ENOMEM;
2044 		goto bad;
2045 	}
2046 	ti->private = wc;
2047 	wc->ti = ti;
2048 
2049 	mutex_init(&wc->lock);
2050 	wc->max_age = MAX_AGE_UNSPECIFIED;
2051 	writecache_poison_lists(wc);
2052 	init_waitqueue_head(&wc->freelist_wait);
2053 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2054 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2055 
2056 	for (i = 0; i < 2; i++) {
2057 		atomic_set(&wc->bio_in_progress[i], 0);
2058 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2059 	}
2060 
2061 	wc->dm_io = dm_io_client_create();
2062 	if (IS_ERR(wc->dm_io)) {
2063 		r = PTR_ERR(wc->dm_io);
2064 		ti->error = "Unable to allocate dm-io client";
2065 		wc->dm_io = NULL;
2066 		goto bad;
2067 	}
2068 
2069 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2070 	if (!wc->writeback_wq) {
2071 		r = -ENOMEM;
2072 		ti->error = "Could not allocate writeback workqueue";
2073 		goto bad;
2074 	}
2075 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2076 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2077 
2078 	raw_spin_lock_init(&wc->endio_list_lock);
2079 	INIT_LIST_HEAD(&wc->endio_list);
2080 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2081 	if (IS_ERR(wc->endio_thread)) {
2082 		r = PTR_ERR(wc->endio_thread);
2083 		wc->endio_thread = NULL;
2084 		ti->error = "Couldn't spawn endio thread";
2085 		goto bad;
2086 	}
2087 	wake_up_process(wc->endio_thread);
2088 
2089 	/*
2090 	 * Parse the mode (pmem or ssd)
2091 	 */
2092 	string = dm_shift_arg(&as);
2093 	if (!string)
2094 		goto bad_arguments;
2095 
2096 	if (!strcasecmp(string, "s")) {
2097 		wc->pmem_mode = false;
2098 	} else if (!strcasecmp(string, "p")) {
2099 #ifdef DM_WRITECACHE_HAS_PMEM
2100 		wc->pmem_mode = true;
2101 		wc->writeback_fua = true;
2102 #else
2103 		/*
2104 		 * If the architecture doesn't support persistent memory or
2105 		 * the kernel doesn't support any DAX drivers, this driver can
2106 		 * only be used in SSD-only mode.
2107 		 */
2108 		r = -EOPNOTSUPP;
2109 		ti->error = "Persistent memory or DAX not supported on this system";
2110 		goto bad;
2111 #endif
2112 	} else {
2113 		goto bad_arguments;
2114 	}
2115 
2116 	if (WC_MODE_PMEM(wc)) {
2117 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2118 				offsetof(struct writeback_struct, bio),
2119 				BIOSET_NEED_BVECS);
2120 		if (r) {
2121 			ti->error = "Could not allocate bio set";
2122 			goto bad;
2123 		}
2124 	} else {
2125 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2126 		if (r) {
2127 			ti->error = "Could not allocate mempool";
2128 			goto bad;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * Parse the origin data device
2134 	 */
2135 	string = dm_shift_arg(&as);
2136 	if (!string)
2137 		goto bad_arguments;
2138 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2139 	if (r) {
2140 		ti->error = "Origin data device lookup failed";
2141 		goto bad;
2142 	}
2143 
2144 	/*
2145 	 * Parse cache data device (be it pmem or ssd)
2146 	 */
2147 	string = dm_shift_arg(&as);
2148 	if (!string)
2149 		goto bad_arguments;
2150 
2151 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2152 	if (r) {
2153 		ti->error = "Cache data device lookup failed";
2154 		goto bad;
2155 	}
2156 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2157 
2158 	/*
2159 	 * Parse the cache block size
2160 	 */
2161 	string = dm_shift_arg(&as);
2162 	if (!string)
2163 		goto bad_arguments;
2164 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2165 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2166 	    (wc->block_size & (wc->block_size - 1))) {
2167 		r = -EINVAL;
2168 		ti->error = "Invalid block size";
2169 		goto bad;
2170 	}
2171 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2172 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2173 		r = -EINVAL;
2174 		ti->error = "Block size is smaller than device logical block size";
2175 		goto bad;
2176 	}
2177 	wc->block_size_bits = __ffs(wc->block_size);
2178 
2179 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2180 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2181 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2182 
2183 	/*
2184 	 * Parse optional arguments
2185 	 */
2186 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2187 	if (r)
2188 		goto bad;
2189 
2190 	while (opt_params) {
2191 		string = dm_shift_arg(&as), opt_params--;
2192 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2193 			unsigned long long start_sector;
2194 			string = dm_shift_arg(&as), opt_params--;
2195 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2196 				goto invalid_optional;
2197 			wc->start_sector = start_sector;
2198 			if (wc->start_sector != start_sector ||
2199 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2200 				goto invalid_optional;
2201 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2202 			string = dm_shift_arg(&as), opt_params--;
2203 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2204 				goto invalid_optional;
2205 			if (high_wm_percent < 0 || high_wm_percent > 100)
2206 				goto invalid_optional;
2207 			wc->high_wm_percent_set = true;
2208 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2209 			string = dm_shift_arg(&as), opt_params--;
2210 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2211 				goto invalid_optional;
2212 			if (low_wm_percent < 0 || low_wm_percent > 100)
2213 				goto invalid_optional;
2214 			wc->low_wm_percent_set = true;
2215 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2216 			string = dm_shift_arg(&as), opt_params--;
2217 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2218 				goto invalid_optional;
2219 			wc->max_writeback_jobs_set = true;
2220 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2221 			string = dm_shift_arg(&as), opt_params--;
2222 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2223 				goto invalid_optional;
2224 			wc->autocommit_blocks_set = true;
2225 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2226 			unsigned autocommit_msecs;
2227 			string = dm_shift_arg(&as), opt_params--;
2228 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2229 				goto invalid_optional;
2230 			if (autocommit_msecs > 3600000)
2231 				goto invalid_optional;
2232 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2233 			wc->autocommit_time_set = true;
2234 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2235 			unsigned max_age_msecs;
2236 			string = dm_shift_arg(&as), opt_params--;
2237 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2238 				goto invalid_optional;
2239 			if (max_age_msecs > 86400000)
2240 				goto invalid_optional;
2241 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2242 		} else if (!strcasecmp(string, "cleaner")) {
2243 			wc->cleaner = true;
2244 		} else if (!strcasecmp(string, "fua")) {
2245 			if (WC_MODE_PMEM(wc)) {
2246 				wc->writeback_fua = true;
2247 				wc->writeback_fua_set = true;
2248 			} else goto invalid_optional;
2249 		} else if (!strcasecmp(string, "nofua")) {
2250 			if (WC_MODE_PMEM(wc)) {
2251 				wc->writeback_fua = false;
2252 				wc->writeback_fua_set = true;
2253 			} else goto invalid_optional;
2254 		} else {
2255 invalid_optional:
2256 			r = -EINVAL;
2257 			ti->error = "Invalid optional argument";
2258 			goto bad;
2259 		}
2260 	}
2261 
2262 	if (high_wm_percent < low_wm_percent) {
2263 		r = -EINVAL;
2264 		ti->error = "High watermark must be greater than or equal to low watermark";
2265 		goto bad;
2266 	}
2267 
2268 	if (WC_MODE_PMEM(wc)) {
2269 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2270 			r = -EOPNOTSUPP;
2271 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2272 			goto bad;
2273 		}
2274 
2275 		r = persistent_memory_claim(wc);
2276 		if (r) {
2277 			ti->error = "Unable to map persistent memory for cache";
2278 			goto bad;
2279 		}
2280 	} else {
2281 		size_t n_blocks, n_metadata_blocks;
2282 		uint64_t n_bitmap_bits;
2283 
2284 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2285 
2286 		bio_list_init(&wc->flush_list);
2287 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2288 		if (IS_ERR(wc->flush_thread)) {
2289 			r = PTR_ERR(wc->flush_thread);
2290 			wc->flush_thread = NULL;
2291 			ti->error = "Couldn't spawn flush thread";
2292 			goto bad;
2293 		}
2294 		wake_up_process(wc->flush_thread);
2295 
2296 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2297 					  &n_blocks, &n_metadata_blocks);
2298 		if (r) {
2299 			ti->error = "Invalid device size";
2300 			goto bad;
2301 		}
2302 
2303 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2304 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2305 		/* this is limitation of test_bit functions */
2306 		if (n_bitmap_bits > 1U << 31) {
2307 			r = -EFBIG;
2308 			ti->error = "Invalid device size";
2309 			goto bad;
2310 		}
2311 
2312 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2313 		if (!wc->memory_map) {
2314 			r = -ENOMEM;
2315 			ti->error = "Unable to allocate memory for metadata";
2316 			goto bad;
2317 		}
2318 
2319 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2320 		if (IS_ERR(wc->dm_kcopyd)) {
2321 			r = PTR_ERR(wc->dm_kcopyd);
2322 			ti->error = "Unable to allocate dm-kcopyd client";
2323 			wc->dm_kcopyd = NULL;
2324 			goto bad;
2325 		}
2326 
2327 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2328 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2329 			BITS_PER_LONG * sizeof(unsigned long);
2330 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2331 		if (!wc->dirty_bitmap) {
2332 			r = -ENOMEM;
2333 			ti->error = "Unable to allocate dirty bitmap";
2334 			goto bad;
2335 		}
2336 
2337 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2338 		if (r) {
2339 			ti->error = "Unable to read first block of metadata";
2340 			goto bad;
2341 		}
2342 	}
2343 
2344 	r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2345 	if (r) {
2346 		ti->error = "Hardware memory error when reading superblock";
2347 		goto bad;
2348 	}
2349 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2350 		r = init_memory(wc);
2351 		if (r) {
2352 			ti->error = "Unable to initialize device";
2353 			goto bad;
2354 		}
2355 		r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2356 		if (r) {
2357 			ti->error = "Hardware memory error when reading superblock";
2358 			goto bad;
2359 		}
2360 	}
2361 
2362 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2363 		ti->error = "Invalid magic in the superblock";
2364 		r = -EINVAL;
2365 		goto bad;
2366 	}
2367 
2368 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2369 		ti->error = "Invalid version in the superblock";
2370 		r = -EINVAL;
2371 		goto bad;
2372 	}
2373 
2374 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2375 		ti->error = "Block size does not match superblock";
2376 		r = -EINVAL;
2377 		goto bad;
2378 	}
2379 
2380 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2381 
2382 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2383 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2384 overflow:
2385 		ti->error = "Overflow in size calculation";
2386 		r = -EINVAL;
2387 		goto bad;
2388 	}
2389 	offset += sizeof(struct wc_memory_superblock);
2390 	if (offset < sizeof(struct wc_memory_superblock))
2391 		goto overflow;
2392 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2393 	data_size = wc->n_blocks * (size_t)wc->block_size;
2394 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2395 	    (offset + data_size < offset))
2396 		goto overflow;
2397 	if (offset + data_size > wc->memory_map_size) {
2398 		ti->error = "Memory area is too small";
2399 		r = -EINVAL;
2400 		goto bad;
2401 	}
2402 
2403 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2404 	wc->block_start = (char *)sb(wc) + offset;
2405 
2406 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2407 	x += 50;
2408 	do_div(x, 100);
2409 	wc->freelist_high_watermark = x;
2410 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2411 	x += 50;
2412 	do_div(x, 100);
2413 	wc->freelist_low_watermark = x;
2414 
2415 	if (wc->cleaner)
2416 		activate_cleaner(wc);
2417 
2418 	r = writecache_alloc_entries(wc);
2419 	if (r) {
2420 		ti->error = "Cannot allocate memory";
2421 		goto bad;
2422 	}
2423 
2424 	ti->num_flush_bios = 1;
2425 	ti->flush_supported = true;
2426 	ti->num_discard_bios = 1;
2427 
2428 	if (WC_MODE_PMEM(wc))
2429 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2430 
2431 	return 0;
2432 
2433 bad_arguments:
2434 	r = -EINVAL;
2435 	ti->error = "Bad arguments";
2436 bad:
2437 	writecache_dtr(ti);
2438 	return r;
2439 }
2440 
2441 static void writecache_status(struct dm_target *ti, status_type_t type,
2442 			      unsigned status_flags, char *result, unsigned maxlen)
2443 {
2444 	struct dm_writecache *wc = ti->private;
2445 	unsigned extra_args;
2446 	unsigned sz = 0;
2447 	uint64_t x;
2448 
2449 	switch (type) {
2450 	case STATUSTYPE_INFO:
2451 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2452 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2453 		       (unsigned long long)wc->writeback_size);
2454 		break;
2455 	case STATUSTYPE_TABLE:
2456 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2457 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2458 		extra_args = 0;
2459 		if (wc->start_sector)
2460 			extra_args += 2;
2461 		if (wc->high_wm_percent_set && !wc->cleaner)
2462 			extra_args += 2;
2463 		if (wc->low_wm_percent_set && !wc->cleaner)
2464 			extra_args += 2;
2465 		if (wc->max_writeback_jobs_set)
2466 			extra_args += 2;
2467 		if (wc->autocommit_blocks_set)
2468 			extra_args += 2;
2469 		if (wc->autocommit_time_set)
2470 			extra_args += 2;
2471 		if (wc->cleaner)
2472 			extra_args++;
2473 		if (wc->writeback_fua_set)
2474 			extra_args++;
2475 
2476 		DMEMIT("%u", extra_args);
2477 		if (wc->start_sector)
2478 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2479 		if (wc->high_wm_percent_set && !wc->cleaner) {
2480 			x = (uint64_t)wc->freelist_high_watermark * 100;
2481 			x += wc->n_blocks / 2;
2482 			do_div(x, (size_t)wc->n_blocks);
2483 			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2484 		}
2485 		if (wc->low_wm_percent_set && !wc->cleaner) {
2486 			x = (uint64_t)wc->freelist_low_watermark * 100;
2487 			x += wc->n_blocks / 2;
2488 			do_div(x, (size_t)wc->n_blocks);
2489 			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2490 		}
2491 		if (wc->max_writeback_jobs_set)
2492 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2493 		if (wc->autocommit_blocks_set)
2494 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2495 		if (wc->autocommit_time_set)
2496 			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2497 		if (wc->max_age != MAX_AGE_UNSPECIFIED)
2498 			DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age));
2499 		if (wc->cleaner)
2500 			DMEMIT(" cleaner");
2501 		if (wc->writeback_fua_set)
2502 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2503 		break;
2504 	}
2505 }
2506 
2507 static struct target_type writecache_target = {
2508 	.name			= "writecache",
2509 	.version		= {1, 3, 0},
2510 	.module			= THIS_MODULE,
2511 	.ctr			= writecache_ctr,
2512 	.dtr			= writecache_dtr,
2513 	.status			= writecache_status,
2514 	.postsuspend		= writecache_suspend,
2515 	.resume			= writecache_resume,
2516 	.message		= writecache_message,
2517 	.map			= writecache_map,
2518 	.end_io			= writecache_end_io,
2519 	.iterate_devices	= writecache_iterate_devices,
2520 	.io_hints		= writecache_io_hints,
2521 };
2522 
2523 static int __init dm_writecache_init(void)
2524 {
2525 	int r;
2526 
2527 	r = dm_register_target(&writecache_target);
2528 	if (r < 0) {
2529 		DMERR("register failed %d", r);
2530 		return r;
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 static void __exit dm_writecache_exit(void)
2537 {
2538 	dm_unregister_target(&writecache_target);
2539 }
2540 
2541 module_init(dm_writecache_init);
2542 module_exit(dm_writecache_exit);
2543 
2544 MODULE_DESCRIPTION(DM_NAME " writecache target");
2545 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2546 MODULE_LICENSE("GPL");
2547