xref: /openbmc/linux/drivers/md/dm-writecache.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 #define MAX_AGE_DIV			16
30 #define MAX_AGE_UNSPECIFIED		-1UL
31 
32 #define BITMAP_GRANULARITY	65536
33 #if BITMAP_GRANULARITY < PAGE_SIZE
34 #undef BITMAP_GRANULARITY
35 #define BITMAP_GRANULARITY	PAGE_SIZE
36 #endif
37 
38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39 #define DM_WRITECACHE_HAS_PMEM
40 #endif
41 
42 #ifdef DM_WRITECACHE_HAS_PMEM
43 #define pmem_assign(dest, src)					\
44 do {								\
45 	typeof(dest) uniq = (src);				\
46 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
47 } while (0)
48 #else
49 #define pmem_assign(dest, src)	((dest) = (src))
50 #endif
51 
52 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #endif
55 
56 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
57 #define MEMORY_SUPERBLOCK_VERSION	1
58 
59 struct wc_memory_entry {
60 	__le64 original_sector;
61 	__le64 seq_count;
62 };
63 
64 struct wc_memory_superblock {
65 	union {
66 		struct {
67 			__le32 magic;
68 			__le32 version;
69 			__le32 block_size;
70 			__le32 pad;
71 			__le64 n_blocks;
72 			__le64 seq_count;
73 		};
74 		__le64 padding[8];
75 	};
76 	struct wc_memory_entry entries[];
77 };
78 
79 struct wc_entry {
80 	struct rb_node rb_node;
81 	struct list_head lru;
82 	unsigned short wc_list_contiguous;
83 	bool write_in_progress
84 #if BITS_PER_LONG == 64
85 		:1
86 #endif
87 	;
88 	unsigned long index
89 #if BITS_PER_LONG == 64
90 		:47
91 #endif
92 	;
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 
127 	unsigned uncommitted_blocks;
128 	unsigned autocommit_blocks;
129 	unsigned max_writeback_jobs;
130 
131 	int error;
132 
133 	unsigned long autocommit_jiffies;
134 	struct timer_list autocommit_timer;
135 	struct wait_queue_head freelist_wait;
136 
137 	struct timer_list max_age_timer;
138 
139 	atomic_t bio_in_progress[2];
140 	struct wait_queue_head bio_in_progress_wait[2];
141 
142 	struct dm_target *ti;
143 	struct dm_dev *dev;
144 	struct dm_dev *ssd_dev;
145 	sector_t start_sector;
146 	void *memory_map;
147 	uint64_t memory_map_size;
148 	size_t metadata_sectors;
149 	size_t n_blocks;
150 	uint64_t seq_count;
151 	sector_t data_device_sectors;
152 	void *block_start;
153 	struct wc_entry *entries;
154 	unsigned block_size;
155 	unsigned char block_size_bits;
156 
157 	bool pmem_mode:1;
158 	bool writeback_fua:1;
159 
160 	bool overwrote_committed:1;
161 	bool memory_vmapped:1;
162 
163 	bool start_sector_set:1;
164 	bool high_wm_percent_set:1;
165 	bool low_wm_percent_set:1;
166 	bool max_writeback_jobs_set:1;
167 	bool autocommit_blocks_set:1;
168 	bool autocommit_time_set:1;
169 	bool max_age_set:1;
170 	bool writeback_fua_set:1;
171 	bool flush_on_suspend:1;
172 	bool cleaner:1;
173 	bool cleaner_set:1;
174 
175 	unsigned high_wm_percent_value;
176 	unsigned low_wm_percent_value;
177 	unsigned autocommit_time_value;
178 	unsigned max_age_value;
179 
180 	unsigned writeback_all;
181 	struct workqueue_struct *writeback_wq;
182 	struct work_struct writeback_work;
183 	struct work_struct flush_work;
184 
185 	struct dm_io_client *dm_io;
186 
187 	raw_spinlock_t endio_list_lock;
188 	struct list_head endio_list;
189 	struct task_struct *endio_thread;
190 
191 	struct task_struct *flush_thread;
192 	struct bio_list flush_list;
193 
194 	struct dm_kcopyd_client *dm_kcopyd;
195 	unsigned long *dirty_bitmap;
196 	unsigned dirty_bitmap_size;
197 
198 	struct bio_set bio_set;
199 	mempool_t copy_pool;
200 };
201 
202 #define WB_LIST_INLINE		16
203 
204 struct writeback_struct {
205 	struct list_head endio_entry;
206 	struct dm_writecache *wc;
207 	struct wc_entry **wc_list;
208 	unsigned wc_list_n;
209 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
210 	struct bio bio;
211 };
212 
213 struct copy_struct {
214 	struct list_head endio_entry;
215 	struct dm_writecache *wc;
216 	struct wc_entry *e;
217 	unsigned n_entries;
218 	int error;
219 };
220 
221 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
222 					    "A percentage of time allocated for data copying");
223 
224 static void wc_lock(struct dm_writecache *wc)
225 {
226 	mutex_lock(&wc->lock);
227 }
228 
229 static void wc_unlock(struct dm_writecache *wc)
230 {
231 	mutex_unlock(&wc->lock);
232 }
233 
234 #ifdef DM_WRITECACHE_HAS_PMEM
235 static int persistent_memory_claim(struct dm_writecache *wc)
236 {
237 	int r;
238 	loff_t s;
239 	long p, da;
240 	pfn_t pfn;
241 	int id;
242 	struct page **pages;
243 	sector_t offset;
244 
245 	wc->memory_vmapped = false;
246 
247 	s = wc->memory_map_size;
248 	p = s >> PAGE_SHIFT;
249 	if (!p) {
250 		r = -EINVAL;
251 		goto err1;
252 	}
253 	if (p != s >> PAGE_SHIFT) {
254 		r = -EOVERFLOW;
255 		goto err1;
256 	}
257 
258 	offset = get_start_sect(wc->ssd_dev->bdev);
259 	if (offset & (PAGE_SIZE / 512 - 1)) {
260 		r = -EINVAL;
261 		goto err1;
262 	}
263 	offset >>= PAGE_SHIFT - 9;
264 
265 	id = dax_read_lock();
266 
267 	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
268 	if (da < 0) {
269 		wc->memory_map = NULL;
270 		r = da;
271 		goto err2;
272 	}
273 	if (!pfn_t_has_page(pfn)) {
274 		wc->memory_map = NULL;
275 		r = -EOPNOTSUPP;
276 		goto err2;
277 	}
278 	if (da != p) {
279 		long i;
280 		wc->memory_map = NULL;
281 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
282 		if (!pages) {
283 			r = -ENOMEM;
284 			goto err2;
285 		}
286 		i = 0;
287 		do {
288 			long daa;
289 			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
290 						NULL, &pfn);
291 			if (daa <= 0) {
292 				r = daa ? daa : -EINVAL;
293 				goto err3;
294 			}
295 			if (!pfn_t_has_page(pfn)) {
296 				r = -EOPNOTSUPP;
297 				goto err3;
298 			}
299 			while (daa-- && i < p) {
300 				pages[i++] = pfn_t_to_page(pfn);
301 				pfn.val++;
302 				if (!(i & 15))
303 					cond_resched();
304 			}
305 		} while (i < p);
306 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
307 		if (!wc->memory_map) {
308 			r = -ENOMEM;
309 			goto err3;
310 		}
311 		kvfree(pages);
312 		wc->memory_vmapped = true;
313 	}
314 
315 	dax_read_unlock(id);
316 
317 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
318 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
319 
320 	return 0;
321 err3:
322 	kvfree(pages);
323 err2:
324 	dax_read_unlock(id);
325 err1:
326 	return r;
327 }
328 #else
329 static int persistent_memory_claim(struct dm_writecache *wc)
330 {
331 	return -EOPNOTSUPP;
332 }
333 #endif
334 
335 static void persistent_memory_release(struct dm_writecache *wc)
336 {
337 	if (wc->memory_vmapped)
338 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
339 }
340 
341 static struct page *persistent_memory_page(void *addr)
342 {
343 	if (is_vmalloc_addr(addr))
344 		return vmalloc_to_page(addr);
345 	else
346 		return virt_to_page(addr);
347 }
348 
349 static unsigned persistent_memory_page_offset(void *addr)
350 {
351 	return (unsigned long)addr & (PAGE_SIZE - 1);
352 }
353 
354 static void persistent_memory_flush_cache(void *ptr, size_t size)
355 {
356 	if (is_vmalloc_addr(ptr))
357 		flush_kernel_vmap_range(ptr, size);
358 }
359 
360 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
361 {
362 	if (is_vmalloc_addr(ptr))
363 		invalidate_kernel_vmap_range(ptr, size);
364 }
365 
366 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
367 {
368 	return wc->memory_map;
369 }
370 
371 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
372 {
373 	return &sb(wc)->entries[e->index];
374 }
375 
376 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
377 {
378 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
379 }
380 
381 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
382 {
383 	return wc->start_sector + wc->metadata_sectors +
384 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
385 }
386 
387 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
388 {
389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
390 	return e->original_sector;
391 #else
392 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
393 #endif
394 }
395 
396 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
397 {
398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
399 	return e->seq_count;
400 #else
401 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
402 #endif
403 }
404 
405 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
406 {
407 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
408 	e->seq_count = -1;
409 #endif
410 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
411 }
412 
413 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
414 					    uint64_t original_sector, uint64_t seq_count)
415 {
416 	struct wc_memory_entry me;
417 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
418 	e->original_sector = original_sector;
419 	e->seq_count = seq_count;
420 #endif
421 	me.original_sector = cpu_to_le64(original_sector);
422 	me.seq_count = cpu_to_le64(seq_count);
423 	pmem_assign(*memory_entry(wc, e), me);
424 }
425 
426 #define writecache_error(wc, err, msg, arg...)				\
427 do {									\
428 	if (!cmpxchg(&(wc)->error, 0, err))				\
429 		DMERR(msg, ##arg);					\
430 	wake_up(&(wc)->freelist_wait);					\
431 } while (0)
432 
433 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
434 
435 static void writecache_flush_all_metadata(struct dm_writecache *wc)
436 {
437 	if (!WC_MODE_PMEM(wc))
438 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
439 }
440 
441 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
442 {
443 	if (!WC_MODE_PMEM(wc))
444 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
445 			  wc->dirty_bitmap);
446 }
447 
448 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
449 
450 struct io_notify {
451 	struct dm_writecache *wc;
452 	struct completion c;
453 	atomic_t count;
454 };
455 
456 static void writecache_notify_io(unsigned long error, void *context)
457 {
458 	struct io_notify *endio = context;
459 
460 	if (unlikely(error != 0))
461 		writecache_error(endio->wc, -EIO, "error writing metadata");
462 	BUG_ON(atomic_read(&endio->count) <= 0);
463 	if (atomic_dec_and_test(&endio->count))
464 		complete(&endio->c);
465 }
466 
467 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
468 {
469 	wait_event(wc->bio_in_progress_wait[direction],
470 		   !atomic_read(&wc->bio_in_progress[direction]));
471 }
472 
473 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
474 {
475 	struct dm_io_region region;
476 	struct dm_io_request req;
477 	struct io_notify endio = {
478 		wc,
479 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
480 		ATOMIC_INIT(1),
481 	};
482 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
483 	unsigned i = 0;
484 
485 	while (1) {
486 		unsigned j;
487 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
488 		if (unlikely(i == bitmap_bits))
489 			break;
490 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
491 
492 		region.bdev = wc->ssd_dev->bdev;
493 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
494 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
495 
496 		if (unlikely(region.sector >= wc->metadata_sectors))
497 			break;
498 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
499 			region.count = wc->metadata_sectors - region.sector;
500 
501 		region.sector += wc->start_sector;
502 		atomic_inc(&endio.count);
503 		req.bi_op = REQ_OP_WRITE;
504 		req.bi_op_flags = REQ_SYNC;
505 		req.mem.type = DM_IO_VMA;
506 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
507 		req.client = wc->dm_io;
508 		req.notify.fn = writecache_notify_io;
509 		req.notify.context = &endio;
510 
511 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
512 	        (void) dm_io(&req, 1, &region, NULL);
513 		i = j;
514 	}
515 
516 	writecache_notify_io(0, &endio);
517 	wait_for_completion_io(&endio.c);
518 
519 	if (wait_for_ios)
520 		writecache_wait_for_ios(wc, WRITE);
521 
522 	writecache_disk_flush(wc, wc->ssd_dev);
523 
524 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
525 }
526 
527 static void ssd_commit_superblock(struct dm_writecache *wc)
528 {
529 	int r;
530 	struct dm_io_region region;
531 	struct dm_io_request req;
532 
533 	region.bdev = wc->ssd_dev->bdev;
534 	region.sector = 0;
535 	region.count = PAGE_SIZE >> SECTOR_SHIFT;
536 
537 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
538 		region.count = wc->metadata_sectors - region.sector;
539 
540 	region.sector += wc->start_sector;
541 
542 	req.bi_op = REQ_OP_WRITE;
543 	req.bi_op_flags = REQ_SYNC | REQ_FUA;
544 	req.mem.type = DM_IO_VMA;
545 	req.mem.ptr.vma = (char *)wc->memory_map;
546 	req.client = wc->dm_io;
547 	req.notify.fn = NULL;
548 	req.notify.context = NULL;
549 
550 	r = dm_io(&req, 1, &region, NULL);
551 	if (unlikely(r))
552 		writecache_error(wc, r, "error writing superblock");
553 }
554 
555 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
556 {
557 	if (WC_MODE_PMEM(wc))
558 		pmem_wmb();
559 	else
560 		ssd_commit_flushed(wc, wait_for_ios);
561 }
562 
563 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
564 {
565 	int r;
566 	struct dm_io_region region;
567 	struct dm_io_request req;
568 
569 	region.bdev = dev->bdev;
570 	region.sector = 0;
571 	region.count = 0;
572 	req.bi_op = REQ_OP_WRITE;
573 	req.bi_op_flags = REQ_PREFLUSH;
574 	req.mem.type = DM_IO_KMEM;
575 	req.mem.ptr.addr = NULL;
576 	req.client = wc->dm_io;
577 	req.notify.fn = NULL;
578 
579 	r = dm_io(&req, 1, &region, NULL);
580 	if (unlikely(r))
581 		writecache_error(wc, r, "error flushing metadata: %d", r);
582 }
583 
584 #define WFE_RETURN_FOLLOWING	1
585 #define WFE_LOWEST_SEQ		2
586 
587 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
588 					      uint64_t block, int flags)
589 {
590 	struct wc_entry *e;
591 	struct rb_node *node = wc->tree.rb_node;
592 
593 	if (unlikely(!node))
594 		return NULL;
595 
596 	while (1) {
597 		e = container_of(node, struct wc_entry, rb_node);
598 		if (read_original_sector(wc, e) == block)
599 			break;
600 
601 		node = (read_original_sector(wc, e) >= block ?
602 			e->rb_node.rb_left : e->rb_node.rb_right);
603 		if (unlikely(!node)) {
604 			if (!(flags & WFE_RETURN_FOLLOWING))
605 				return NULL;
606 			if (read_original_sector(wc, e) >= block) {
607 				return e;
608 			} else {
609 				node = rb_next(&e->rb_node);
610 				if (unlikely(!node))
611 					return NULL;
612 				e = container_of(node, struct wc_entry, rb_node);
613 				return e;
614 			}
615 		}
616 	}
617 
618 	while (1) {
619 		struct wc_entry *e2;
620 		if (flags & WFE_LOWEST_SEQ)
621 			node = rb_prev(&e->rb_node);
622 		else
623 			node = rb_next(&e->rb_node);
624 		if (unlikely(!node))
625 			return e;
626 		e2 = container_of(node, struct wc_entry, rb_node);
627 		if (read_original_sector(wc, e2) != block)
628 			return e;
629 		e = e2;
630 	}
631 }
632 
633 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
634 {
635 	struct wc_entry *e;
636 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
637 
638 	while (*node) {
639 		e = container_of(*node, struct wc_entry, rb_node);
640 		parent = &e->rb_node;
641 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
642 			node = &parent->rb_left;
643 		else
644 			node = &parent->rb_right;
645 	}
646 	rb_link_node(&ins->rb_node, parent, node);
647 	rb_insert_color(&ins->rb_node, &wc->tree);
648 	list_add(&ins->lru, &wc->lru);
649 	ins->age = jiffies;
650 }
651 
652 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
653 {
654 	list_del(&e->lru);
655 	rb_erase(&e->rb_node, &wc->tree);
656 }
657 
658 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
659 {
660 	if (WC_MODE_SORT_FREELIST(wc)) {
661 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
662 		if (unlikely(!*node))
663 			wc->current_free = e;
664 		while (*node) {
665 			parent = *node;
666 			if (&e->rb_node < *node)
667 				node = &parent->rb_left;
668 			else
669 				node = &parent->rb_right;
670 		}
671 		rb_link_node(&e->rb_node, parent, node);
672 		rb_insert_color(&e->rb_node, &wc->freetree);
673 	} else {
674 		list_add_tail(&e->lru, &wc->freelist);
675 	}
676 	wc->freelist_size++;
677 }
678 
679 static inline void writecache_verify_watermark(struct dm_writecache *wc)
680 {
681 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
682 		queue_work(wc->writeback_wq, &wc->writeback_work);
683 }
684 
685 static void writecache_max_age_timer(struct timer_list *t)
686 {
687 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
688 
689 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
690 		queue_work(wc->writeback_wq, &wc->writeback_work);
691 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
692 	}
693 }
694 
695 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
696 {
697 	struct wc_entry *e;
698 
699 	if (WC_MODE_SORT_FREELIST(wc)) {
700 		struct rb_node *next;
701 		if (unlikely(!wc->current_free))
702 			return NULL;
703 		e = wc->current_free;
704 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
705 			return NULL;
706 		next = rb_next(&e->rb_node);
707 		rb_erase(&e->rb_node, &wc->freetree);
708 		if (unlikely(!next))
709 			next = rb_first(&wc->freetree);
710 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
711 	} else {
712 		if (unlikely(list_empty(&wc->freelist)))
713 			return NULL;
714 		e = container_of(wc->freelist.next, struct wc_entry, lru);
715 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
716 			return NULL;
717 		list_del(&e->lru);
718 	}
719 	wc->freelist_size--;
720 
721 	writecache_verify_watermark(wc);
722 
723 	return e;
724 }
725 
726 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
727 {
728 	writecache_unlink(wc, e);
729 	writecache_add_to_freelist(wc, e);
730 	clear_seq_count(wc, e);
731 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
732 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
733 		wake_up(&wc->freelist_wait);
734 }
735 
736 static void writecache_wait_on_freelist(struct dm_writecache *wc)
737 {
738 	DEFINE_WAIT(wait);
739 
740 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
741 	wc_unlock(wc);
742 	io_schedule();
743 	finish_wait(&wc->freelist_wait, &wait);
744 	wc_lock(wc);
745 }
746 
747 static void writecache_poison_lists(struct dm_writecache *wc)
748 {
749 	/*
750 	 * Catch incorrect access to these values while the device is suspended.
751 	 */
752 	memset(&wc->tree, -1, sizeof wc->tree);
753 	wc->lru.next = LIST_POISON1;
754 	wc->lru.prev = LIST_POISON2;
755 	wc->freelist.next = LIST_POISON1;
756 	wc->freelist.prev = LIST_POISON2;
757 }
758 
759 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
760 {
761 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
762 	if (WC_MODE_PMEM(wc))
763 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
764 }
765 
766 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
767 {
768 	return read_seq_count(wc, e) < wc->seq_count;
769 }
770 
771 static void writecache_flush(struct dm_writecache *wc)
772 {
773 	struct wc_entry *e, *e2;
774 	bool need_flush_after_free;
775 
776 	wc->uncommitted_blocks = 0;
777 	del_timer(&wc->autocommit_timer);
778 
779 	if (list_empty(&wc->lru))
780 		return;
781 
782 	e = container_of(wc->lru.next, struct wc_entry, lru);
783 	if (writecache_entry_is_committed(wc, e)) {
784 		if (wc->overwrote_committed) {
785 			writecache_wait_for_ios(wc, WRITE);
786 			writecache_disk_flush(wc, wc->ssd_dev);
787 			wc->overwrote_committed = false;
788 		}
789 		return;
790 	}
791 	while (1) {
792 		writecache_flush_entry(wc, e);
793 		if (unlikely(e->lru.next == &wc->lru))
794 			break;
795 		e2 = container_of(e->lru.next, struct wc_entry, lru);
796 		if (writecache_entry_is_committed(wc, e2))
797 			break;
798 		e = e2;
799 		cond_resched();
800 	}
801 	writecache_commit_flushed(wc, true);
802 
803 	wc->seq_count++;
804 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
805 	if (WC_MODE_PMEM(wc))
806 		writecache_commit_flushed(wc, false);
807 	else
808 		ssd_commit_superblock(wc);
809 
810 	wc->overwrote_committed = false;
811 
812 	need_flush_after_free = false;
813 	while (1) {
814 		/* Free another committed entry with lower seq-count */
815 		struct rb_node *rb_node = rb_prev(&e->rb_node);
816 
817 		if (rb_node) {
818 			e2 = container_of(rb_node, struct wc_entry, rb_node);
819 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
820 			    likely(!e2->write_in_progress)) {
821 				writecache_free_entry(wc, e2);
822 				need_flush_after_free = true;
823 			}
824 		}
825 		if (unlikely(e->lru.prev == &wc->lru))
826 			break;
827 		e = container_of(e->lru.prev, struct wc_entry, lru);
828 		cond_resched();
829 	}
830 
831 	if (need_flush_after_free)
832 		writecache_commit_flushed(wc, false);
833 }
834 
835 static void writecache_flush_work(struct work_struct *work)
836 {
837 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
838 
839 	wc_lock(wc);
840 	writecache_flush(wc);
841 	wc_unlock(wc);
842 }
843 
844 static void writecache_autocommit_timer(struct timer_list *t)
845 {
846 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
847 	if (!writecache_has_error(wc))
848 		queue_work(wc->writeback_wq, &wc->flush_work);
849 }
850 
851 static void writecache_schedule_autocommit(struct dm_writecache *wc)
852 {
853 	if (!timer_pending(&wc->autocommit_timer))
854 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
855 }
856 
857 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
858 {
859 	struct wc_entry *e;
860 	bool discarded_something = false;
861 
862 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
863 	if (unlikely(!e))
864 		return;
865 
866 	while (read_original_sector(wc, e) < end) {
867 		struct rb_node *node = rb_next(&e->rb_node);
868 
869 		if (likely(!e->write_in_progress)) {
870 			if (!discarded_something) {
871 				if (!WC_MODE_PMEM(wc)) {
872 					writecache_wait_for_ios(wc, READ);
873 					writecache_wait_for_ios(wc, WRITE);
874 				}
875 				discarded_something = true;
876 			}
877 			if (!writecache_entry_is_committed(wc, e))
878 				wc->uncommitted_blocks--;
879 			writecache_free_entry(wc, e);
880 		}
881 
882 		if (unlikely(!node))
883 			break;
884 
885 		e = container_of(node, struct wc_entry, rb_node);
886 	}
887 
888 	if (discarded_something)
889 		writecache_commit_flushed(wc, false);
890 }
891 
892 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
893 {
894 	if (wc->writeback_size) {
895 		writecache_wait_on_freelist(wc);
896 		return true;
897 	}
898 	return false;
899 }
900 
901 static void writecache_suspend(struct dm_target *ti)
902 {
903 	struct dm_writecache *wc = ti->private;
904 	bool flush_on_suspend;
905 
906 	del_timer_sync(&wc->autocommit_timer);
907 	del_timer_sync(&wc->max_age_timer);
908 
909 	wc_lock(wc);
910 	writecache_flush(wc);
911 	flush_on_suspend = wc->flush_on_suspend;
912 	if (flush_on_suspend) {
913 		wc->flush_on_suspend = false;
914 		wc->writeback_all++;
915 		queue_work(wc->writeback_wq, &wc->writeback_work);
916 	}
917 	wc_unlock(wc);
918 
919 	drain_workqueue(wc->writeback_wq);
920 
921 	wc_lock(wc);
922 	if (flush_on_suspend)
923 		wc->writeback_all--;
924 	while (writecache_wait_for_writeback(wc));
925 
926 	if (WC_MODE_PMEM(wc))
927 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
928 
929 	writecache_poison_lists(wc);
930 
931 	wc_unlock(wc);
932 }
933 
934 static int writecache_alloc_entries(struct dm_writecache *wc)
935 {
936 	size_t b;
937 
938 	if (wc->entries)
939 		return 0;
940 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
941 	if (!wc->entries)
942 		return -ENOMEM;
943 	for (b = 0; b < wc->n_blocks; b++) {
944 		struct wc_entry *e = &wc->entries[b];
945 		e->index = b;
946 		e->write_in_progress = false;
947 		cond_resched();
948 	}
949 
950 	return 0;
951 }
952 
953 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
954 {
955 	struct dm_io_region region;
956 	struct dm_io_request req;
957 
958 	region.bdev = wc->ssd_dev->bdev;
959 	region.sector = wc->start_sector;
960 	region.count = n_sectors;
961 	req.bi_op = REQ_OP_READ;
962 	req.bi_op_flags = REQ_SYNC;
963 	req.mem.type = DM_IO_VMA;
964 	req.mem.ptr.vma = (char *)wc->memory_map;
965 	req.client = wc->dm_io;
966 	req.notify.fn = NULL;
967 
968 	return dm_io(&req, 1, &region, NULL);
969 }
970 
971 static void writecache_resume(struct dm_target *ti)
972 {
973 	struct dm_writecache *wc = ti->private;
974 	size_t b;
975 	bool need_flush = false;
976 	__le64 sb_seq_count;
977 	int r;
978 
979 	wc_lock(wc);
980 
981 	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
982 
983 	if (WC_MODE_PMEM(wc)) {
984 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
985 	} else {
986 		r = writecache_read_metadata(wc, wc->metadata_sectors);
987 		if (r) {
988 			size_t sb_entries_offset;
989 			writecache_error(wc, r, "unable to read metadata: %d", r);
990 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
991 			memset((char *)wc->memory_map + sb_entries_offset, -1,
992 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
993 		}
994 	}
995 
996 	wc->tree = RB_ROOT;
997 	INIT_LIST_HEAD(&wc->lru);
998 	if (WC_MODE_SORT_FREELIST(wc)) {
999 		wc->freetree = RB_ROOT;
1000 		wc->current_free = NULL;
1001 	} else {
1002 		INIT_LIST_HEAD(&wc->freelist);
1003 	}
1004 	wc->freelist_size = 0;
1005 
1006 	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1007 			      sizeof(uint64_t));
1008 	if (r) {
1009 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1010 		sb_seq_count = cpu_to_le64(0);
1011 	}
1012 	wc->seq_count = le64_to_cpu(sb_seq_count);
1013 
1014 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1015 	for (b = 0; b < wc->n_blocks; b++) {
1016 		struct wc_entry *e = &wc->entries[b];
1017 		struct wc_memory_entry wme;
1018 		if (writecache_has_error(wc)) {
1019 			e->original_sector = -1;
1020 			e->seq_count = -1;
1021 			continue;
1022 		}
1023 		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1024 				      sizeof(struct wc_memory_entry));
1025 		if (r) {
1026 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1027 					 (unsigned long)b, r);
1028 			e->original_sector = -1;
1029 			e->seq_count = -1;
1030 		} else {
1031 			e->original_sector = le64_to_cpu(wme.original_sector);
1032 			e->seq_count = le64_to_cpu(wme.seq_count);
1033 		}
1034 		cond_resched();
1035 	}
1036 #endif
1037 	for (b = 0; b < wc->n_blocks; b++) {
1038 		struct wc_entry *e = &wc->entries[b];
1039 		if (!writecache_entry_is_committed(wc, e)) {
1040 			if (read_seq_count(wc, e) != -1) {
1041 erase_this:
1042 				clear_seq_count(wc, e);
1043 				need_flush = true;
1044 			}
1045 			writecache_add_to_freelist(wc, e);
1046 		} else {
1047 			struct wc_entry *old;
1048 
1049 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1050 			if (!old) {
1051 				writecache_insert_entry(wc, e);
1052 			} else {
1053 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1054 					writecache_error(wc, -EINVAL,
1055 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1056 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1057 						 (unsigned long long)read_seq_count(wc, e));
1058 				}
1059 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1060 					goto erase_this;
1061 				} else {
1062 					writecache_free_entry(wc, old);
1063 					writecache_insert_entry(wc, e);
1064 					need_flush = true;
1065 				}
1066 			}
1067 		}
1068 		cond_resched();
1069 	}
1070 
1071 	if (need_flush) {
1072 		writecache_flush_all_metadata(wc);
1073 		writecache_commit_flushed(wc, false);
1074 	}
1075 
1076 	writecache_verify_watermark(wc);
1077 
1078 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1079 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1080 
1081 	wc_unlock(wc);
1082 }
1083 
1084 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1085 {
1086 	if (argc != 1)
1087 		return -EINVAL;
1088 
1089 	wc_lock(wc);
1090 	if (dm_suspended(wc->ti)) {
1091 		wc_unlock(wc);
1092 		return -EBUSY;
1093 	}
1094 	if (writecache_has_error(wc)) {
1095 		wc_unlock(wc);
1096 		return -EIO;
1097 	}
1098 
1099 	writecache_flush(wc);
1100 	wc->writeback_all++;
1101 	queue_work(wc->writeback_wq, &wc->writeback_work);
1102 	wc_unlock(wc);
1103 
1104 	flush_workqueue(wc->writeback_wq);
1105 
1106 	wc_lock(wc);
1107 	wc->writeback_all--;
1108 	if (writecache_has_error(wc)) {
1109 		wc_unlock(wc);
1110 		return -EIO;
1111 	}
1112 	wc_unlock(wc);
1113 
1114 	return 0;
1115 }
1116 
1117 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1118 {
1119 	if (argc != 1)
1120 		return -EINVAL;
1121 
1122 	wc_lock(wc);
1123 	wc->flush_on_suspend = true;
1124 	wc_unlock(wc);
1125 
1126 	return 0;
1127 }
1128 
1129 static void activate_cleaner(struct dm_writecache *wc)
1130 {
1131 	wc->flush_on_suspend = true;
1132 	wc->cleaner = true;
1133 	wc->freelist_high_watermark = wc->n_blocks;
1134 	wc->freelist_low_watermark = wc->n_blocks;
1135 }
1136 
1137 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1138 {
1139 	if (argc != 1)
1140 		return -EINVAL;
1141 
1142 	wc_lock(wc);
1143 	activate_cleaner(wc);
1144 	if (!dm_suspended(wc->ti))
1145 		writecache_verify_watermark(wc);
1146 	wc_unlock(wc);
1147 
1148 	return 0;
1149 }
1150 
1151 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1152 			      char *result, unsigned maxlen)
1153 {
1154 	int r = -EINVAL;
1155 	struct dm_writecache *wc = ti->private;
1156 
1157 	if (!strcasecmp(argv[0], "flush"))
1158 		r = process_flush_mesg(argc, argv, wc);
1159 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1160 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1161 	else if (!strcasecmp(argv[0], "cleaner"))
1162 		r = process_cleaner_mesg(argc, argv, wc);
1163 	else
1164 		DMERR("unrecognised message received: %s", argv[0]);
1165 
1166 	return r;
1167 }
1168 
1169 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1170 {
1171 	/*
1172 	 * clflushopt performs better with block size 1024, 2048, 4096
1173 	 * non-temporal stores perform better with block size 512
1174 	 *
1175 	 * block size   512             1024            2048            4096
1176 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1177 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1178 	 *
1179 	 * We see that movnti performs better for 512-byte blocks, and
1180 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1181 	 * prefer clflushopt for sizes >= 768.
1182 	 *
1183 	 * NOTE: this happens to be the case now (with dm-writecache's single
1184 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1185 	 * enabled to use movdir64b which might invalidate this performance
1186 	 * advantage seen with cache-allocating-writes plus flushing.
1187 	 */
1188 #ifdef CONFIG_X86
1189 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1190 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1191 	    likely(size >= 768)) {
1192 		do {
1193 			memcpy((void *)dest, (void *)source, 64);
1194 			clflushopt((void *)dest);
1195 			dest += 64;
1196 			source += 64;
1197 			size -= 64;
1198 		} while (size >= 64);
1199 		return;
1200 	}
1201 #endif
1202 	memcpy_flushcache(dest, source, size);
1203 }
1204 
1205 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1206 {
1207 	void *buf;
1208 	unsigned long flags;
1209 	unsigned size;
1210 	int rw = bio_data_dir(bio);
1211 	unsigned remaining_size = wc->block_size;
1212 
1213 	do {
1214 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1215 		buf = bvec_kmap_irq(&bv, &flags);
1216 		size = bv.bv_len;
1217 		if (unlikely(size > remaining_size))
1218 			size = remaining_size;
1219 
1220 		if (rw == READ) {
1221 			int r;
1222 			r = copy_mc_to_kernel(buf, data, size);
1223 			flush_dcache_page(bio_page(bio));
1224 			if (unlikely(r)) {
1225 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1226 				bio->bi_status = BLK_STS_IOERR;
1227 			}
1228 		} else {
1229 			flush_dcache_page(bio_page(bio));
1230 			memcpy_flushcache_optimized(data, buf, size);
1231 		}
1232 
1233 		bvec_kunmap_irq(buf, &flags);
1234 
1235 		data = (char *)data + size;
1236 		remaining_size -= size;
1237 		bio_advance(bio, size);
1238 	} while (unlikely(remaining_size));
1239 }
1240 
1241 static int writecache_flush_thread(void *data)
1242 {
1243 	struct dm_writecache *wc = data;
1244 
1245 	while (1) {
1246 		struct bio *bio;
1247 
1248 		wc_lock(wc);
1249 		bio = bio_list_pop(&wc->flush_list);
1250 		if (!bio) {
1251 			set_current_state(TASK_INTERRUPTIBLE);
1252 			wc_unlock(wc);
1253 
1254 			if (unlikely(kthread_should_stop())) {
1255 				set_current_state(TASK_RUNNING);
1256 				break;
1257 			}
1258 
1259 			schedule();
1260 			continue;
1261 		}
1262 
1263 		if (bio_op(bio) == REQ_OP_DISCARD) {
1264 			writecache_discard(wc, bio->bi_iter.bi_sector,
1265 					   bio_end_sector(bio));
1266 			wc_unlock(wc);
1267 			bio_set_dev(bio, wc->dev->bdev);
1268 			submit_bio_noacct(bio);
1269 		} else {
1270 			writecache_flush(wc);
1271 			wc_unlock(wc);
1272 			if (writecache_has_error(wc))
1273 				bio->bi_status = BLK_STS_IOERR;
1274 			bio_endio(bio);
1275 		}
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1282 {
1283 	if (bio_list_empty(&wc->flush_list))
1284 		wake_up_process(wc->flush_thread);
1285 	bio_list_add(&wc->flush_list, bio);
1286 }
1287 
1288 static int writecache_map(struct dm_target *ti, struct bio *bio)
1289 {
1290 	struct wc_entry *e;
1291 	struct dm_writecache *wc = ti->private;
1292 
1293 	bio->bi_private = NULL;
1294 
1295 	wc_lock(wc);
1296 
1297 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1298 		if (writecache_has_error(wc))
1299 			goto unlock_error;
1300 		if (WC_MODE_PMEM(wc)) {
1301 			writecache_flush(wc);
1302 			if (writecache_has_error(wc))
1303 				goto unlock_error;
1304 			goto unlock_submit;
1305 		} else {
1306 			writecache_offload_bio(wc, bio);
1307 			goto unlock_return;
1308 		}
1309 	}
1310 
1311 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1312 
1313 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1314 				(wc->block_size / 512 - 1)) != 0)) {
1315 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1316 		      (unsigned long long)bio->bi_iter.bi_sector,
1317 		      bio->bi_iter.bi_size, wc->block_size);
1318 		goto unlock_error;
1319 	}
1320 
1321 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1322 		if (writecache_has_error(wc))
1323 			goto unlock_error;
1324 		if (WC_MODE_PMEM(wc)) {
1325 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1326 			goto unlock_remap_origin;
1327 		} else {
1328 			writecache_offload_bio(wc, bio);
1329 			goto unlock_return;
1330 		}
1331 	}
1332 
1333 	if (bio_data_dir(bio) == READ) {
1334 read_next_block:
1335 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1336 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1337 			if (WC_MODE_PMEM(wc)) {
1338 				bio_copy_block(wc, bio, memory_data(wc, e));
1339 				if (bio->bi_iter.bi_size)
1340 					goto read_next_block;
1341 				goto unlock_submit;
1342 			} else {
1343 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1344 				bio_set_dev(bio, wc->ssd_dev->bdev);
1345 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1346 				if (!writecache_entry_is_committed(wc, e))
1347 					writecache_wait_for_ios(wc, WRITE);
1348 				goto unlock_remap;
1349 			}
1350 		} else {
1351 			if (e) {
1352 				sector_t next_boundary =
1353 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1354 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1355 					dm_accept_partial_bio(bio, next_boundary);
1356 				}
1357 			}
1358 			goto unlock_remap_origin;
1359 		}
1360 	} else {
1361 		do {
1362 			bool found_entry = false;
1363 			if (writecache_has_error(wc))
1364 				goto unlock_error;
1365 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1366 			if (e) {
1367 				if (!writecache_entry_is_committed(wc, e))
1368 					goto bio_copy;
1369 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1370 					wc->overwrote_committed = true;
1371 					goto bio_copy;
1372 				}
1373 				found_entry = true;
1374 			} else {
1375 				if (unlikely(wc->cleaner))
1376 					goto direct_write;
1377 			}
1378 			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1379 			if (unlikely(!e)) {
1380 				if (!found_entry) {
1381 direct_write:
1382 					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1383 					if (e) {
1384 						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1385 						BUG_ON(!next_boundary);
1386 						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1387 							dm_accept_partial_bio(bio, next_boundary);
1388 						}
1389 					}
1390 					goto unlock_remap_origin;
1391 				}
1392 				writecache_wait_on_freelist(wc);
1393 				continue;
1394 			}
1395 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1396 			writecache_insert_entry(wc, e);
1397 			wc->uncommitted_blocks++;
1398 bio_copy:
1399 			if (WC_MODE_PMEM(wc)) {
1400 				bio_copy_block(wc, bio, memory_data(wc, e));
1401 			} else {
1402 				unsigned bio_size = wc->block_size;
1403 				sector_t start_cache_sec = cache_sector(wc, e);
1404 				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1405 
1406 				while (bio_size < bio->bi_iter.bi_size) {
1407 					struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1408 					if (!f)
1409 						break;
1410 					write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1411 									(bio_size >> SECTOR_SHIFT), wc->seq_count);
1412 					writecache_insert_entry(wc, f);
1413 					wc->uncommitted_blocks++;
1414 					bio_size += wc->block_size;
1415 					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1416 				}
1417 
1418 				bio_set_dev(bio, wc->ssd_dev->bdev);
1419 				bio->bi_iter.bi_sector = start_cache_sec;
1420 				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1421 
1422 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1423 					wc->uncommitted_blocks = 0;
1424 					queue_work(wc->writeback_wq, &wc->flush_work);
1425 				} else {
1426 					writecache_schedule_autocommit(wc);
1427 				}
1428 				goto unlock_remap;
1429 			}
1430 		} while (bio->bi_iter.bi_size);
1431 
1432 		if (unlikely(bio->bi_opf & REQ_FUA ||
1433 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1434 			writecache_flush(wc);
1435 		else
1436 			writecache_schedule_autocommit(wc);
1437 		goto unlock_submit;
1438 	}
1439 
1440 unlock_remap_origin:
1441 	bio_set_dev(bio, wc->dev->bdev);
1442 	wc_unlock(wc);
1443 	return DM_MAPIO_REMAPPED;
1444 
1445 unlock_remap:
1446 	/* make sure that writecache_end_io decrements bio_in_progress: */
1447 	bio->bi_private = (void *)1;
1448 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1449 	wc_unlock(wc);
1450 	return DM_MAPIO_REMAPPED;
1451 
1452 unlock_submit:
1453 	wc_unlock(wc);
1454 	bio_endio(bio);
1455 	return DM_MAPIO_SUBMITTED;
1456 
1457 unlock_return:
1458 	wc_unlock(wc);
1459 	return DM_MAPIO_SUBMITTED;
1460 
1461 unlock_error:
1462 	wc_unlock(wc);
1463 	bio_io_error(bio);
1464 	return DM_MAPIO_SUBMITTED;
1465 }
1466 
1467 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1468 {
1469 	struct dm_writecache *wc = ti->private;
1470 
1471 	if (bio->bi_private != NULL) {
1472 		int dir = bio_data_dir(bio);
1473 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1474 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1475 				wake_up(&wc->bio_in_progress_wait[dir]);
1476 	}
1477 	return 0;
1478 }
1479 
1480 static int writecache_iterate_devices(struct dm_target *ti,
1481 				      iterate_devices_callout_fn fn, void *data)
1482 {
1483 	struct dm_writecache *wc = ti->private;
1484 
1485 	return fn(ti, wc->dev, 0, ti->len, data);
1486 }
1487 
1488 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1489 {
1490 	struct dm_writecache *wc = ti->private;
1491 
1492 	if (limits->logical_block_size < wc->block_size)
1493 		limits->logical_block_size = wc->block_size;
1494 
1495 	if (limits->physical_block_size < wc->block_size)
1496 		limits->physical_block_size = wc->block_size;
1497 
1498 	if (limits->io_min < wc->block_size)
1499 		limits->io_min = wc->block_size;
1500 }
1501 
1502 
1503 static void writecache_writeback_endio(struct bio *bio)
1504 {
1505 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1506 	struct dm_writecache *wc = wb->wc;
1507 	unsigned long flags;
1508 
1509 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1510 	if (unlikely(list_empty(&wc->endio_list)))
1511 		wake_up_process(wc->endio_thread);
1512 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1513 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1514 }
1515 
1516 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1517 {
1518 	struct copy_struct *c = ptr;
1519 	struct dm_writecache *wc = c->wc;
1520 
1521 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1522 
1523 	raw_spin_lock_irq(&wc->endio_list_lock);
1524 	if (unlikely(list_empty(&wc->endio_list)))
1525 		wake_up_process(wc->endio_thread);
1526 	list_add_tail(&c->endio_entry, &wc->endio_list);
1527 	raw_spin_unlock_irq(&wc->endio_list_lock);
1528 }
1529 
1530 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1531 {
1532 	unsigned i;
1533 	struct writeback_struct *wb;
1534 	struct wc_entry *e;
1535 	unsigned long n_walked = 0;
1536 
1537 	do {
1538 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1539 		list_del(&wb->endio_entry);
1540 
1541 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1542 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1543 					"write error %d", wb->bio.bi_status);
1544 		i = 0;
1545 		do {
1546 			e = wb->wc_list[i];
1547 			BUG_ON(!e->write_in_progress);
1548 			e->write_in_progress = false;
1549 			INIT_LIST_HEAD(&e->lru);
1550 			if (!writecache_has_error(wc))
1551 				writecache_free_entry(wc, e);
1552 			BUG_ON(!wc->writeback_size);
1553 			wc->writeback_size--;
1554 			n_walked++;
1555 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1556 				writecache_commit_flushed(wc, false);
1557 				wc_unlock(wc);
1558 				wc_lock(wc);
1559 				n_walked = 0;
1560 			}
1561 		} while (++i < wb->wc_list_n);
1562 
1563 		if (wb->wc_list != wb->wc_list_inline)
1564 			kfree(wb->wc_list);
1565 		bio_put(&wb->bio);
1566 	} while (!list_empty(list));
1567 }
1568 
1569 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1570 {
1571 	struct copy_struct *c;
1572 	struct wc_entry *e;
1573 
1574 	do {
1575 		c = list_entry(list->next, struct copy_struct, endio_entry);
1576 		list_del(&c->endio_entry);
1577 
1578 		if (unlikely(c->error))
1579 			writecache_error(wc, c->error, "copy error");
1580 
1581 		e = c->e;
1582 		do {
1583 			BUG_ON(!e->write_in_progress);
1584 			e->write_in_progress = false;
1585 			INIT_LIST_HEAD(&e->lru);
1586 			if (!writecache_has_error(wc))
1587 				writecache_free_entry(wc, e);
1588 
1589 			BUG_ON(!wc->writeback_size);
1590 			wc->writeback_size--;
1591 			e++;
1592 		} while (--c->n_entries);
1593 		mempool_free(c, &wc->copy_pool);
1594 	} while (!list_empty(list));
1595 }
1596 
1597 static int writecache_endio_thread(void *data)
1598 {
1599 	struct dm_writecache *wc = data;
1600 
1601 	while (1) {
1602 		struct list_head list;
1603 
1604 		raw_spin_lock_irq(&wc->endio_list_lock);
1605 		if (!list_empty(&wc->endio_list))
1606 			goto pop_from_list;
1607 		set_current_state(TASK_INTERRUPTIBLE);
1608 		raw_spin_unlock_irq(&wc->endio_list_lock);
1609 
1610 		if (unlikely(kthread_should_stop())) {
1611 			set_current_state(TASK_RUNNING);
1612 			break;
1613 		}
1614 
1615 		schedule();
1616 
1617 		continue;
1618 
1619 pop_from_list:
1620 		list = wc->endio_list;
1621 		list.next->prev = list.prev->next = &list;
1622 		INIT_LIST_HEAD(&wc->endio_list);
1623 		raw_spin_unlock_irq(&wc->endio_list_lock);
1624 
1625 		if (!WC_MODE_FUA(wc))
1626 			writecache_disk_flush(wc, wc->dev);
1627 
1628 		wc_lock(wc);
1629 
1630 		if (WC_MODE_PMEM(wc)) {
1631 			__writecache_endio_pmem(wc, &list);
1632 		} else {
1633 			__writecache_endio_ssd(wc, &list);
1634 			writecache_wait_for_ios(wc, READ);
1635 		}
1636 
1637 		writecache_commit_flushed(wc, false);
1638 
1639 		wc_unlock(wc);
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1646 {
1647 	struct dm_writecache *wc = wb->wc;
1648 	unsigned block_size = wc->block_size;
1649 	void *address = memory_data(wc, e);
1650 
1651 	persistent_memory_flush_cache(address, block_size);
1652 
1653 	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1654 		return true;
1655 
1656 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1657 			    block_size, persistent_memory_page_offset(address)) != 0;
1658 }
1659 
1660 struct writeback_list {
1661 	struct list_head list;
1662 	size_t size;
1663 };
1664 
1665 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1666 {
1667 	if (unlikely(wc->max_writeback_jobs)) {
1668 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1669 			wc_lock(wc);
1670 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1671 				writecache_wait_on_freelist(wc);
1672 			wc_unlock(wc);
1673 		}
1674 	}
1675 	cond_resched();
1676 }
1677 
1678 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1679 {
1680 	struct wc_entry *e, *f;
1681 	struct bio *bio;
1682 	struct writeback_struct *wb;
1683 	unsigned max_pages;
1684 
1685 	while (wbl->size) {
1686 		wbl->size--;
1687 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1688 		list_del(&e->lru);
1689 
1690 		max_pages = e->wc_list_contiguous;
1691 
1692 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1693 		wb = container_of(bio, struct writeback_struct, bio);
1694 		wb->wc = wc;
1695 		bio->bi_end_io = writecache_writeback_endio;
1696 		bio_set_dev(bio, wc->dev->bdev);
1697 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1698 		if (max_pages <= WB_LIST_INLINE ||
1699 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1700 							   GFP_NOIO | __GFP_NORETRY |
1701 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1702 			wb->wc_list = wb->wc_list_inline;
1703 			max_pages = WB_LIST_INLINE;
1704 		}
1705 
1706 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1707 
1708 		wb->wc_list[0] = e;
1709 		wb->wc_list_n = 1;
1710 
1711 		while (wbl->size && wb->wc_list_n < max_pages) {
1712 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1713 			if (read_original_sector(wc, f) !=
1714 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1715 				break;
1716 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1717 				break;
1718 			wbl->size--;
1719 			list_del(&f->lru);
1720 			wb->wc_list[wb->wc_list_n++] = f;
1721 			e = f;
1722 		}
1723 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1724 		if (writecache_has_error(wc)) {
1725 			bio->bi_status = BLK_STS_IOERR;
1726 			bio_endio(bio);
1727 		} else if (unlikely(!bio_sectors(bio))) {
1728 			bio->bi_status = BLK_STS_OK;
1729 			bio_endio(bio);
1730 		} else {
1731 			submit_bio(bio);
1732 		}
1733 
1734 		__writeback_throttle(wc, wbl);
1735 	}
1736 }
1737 
1738 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1739 {
1740 	struct wc_entry *e, *f;
1741 	struct dm_io_region from, to;
1742 	struct copy_struct *c;
1743 
1744 	while (wbl->size) {
1745 		unsigned n_sectors;
1746 
1747 		wbl->size--;
1748 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1749 		list_del(&e->lru);
1750 
1751 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1752 
1753 		from.bdev = wc->ssd_dev->bdev;
1754 		from.sector = cache_sector(wc, e);
1755 		from.count = n_sectors;
1756 		to.bdev = wc->dev->bdev;
1757 		to.sector = read_original_sector(wc, e);
1758 		to.count = n_sectors;
1759 
1760 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1761 		c->wc = wc;
1762 		c->e = e;
1763 		c->n_entries = e->wc_list_contiguous;
1764 
1765 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1766 			wbl->size--;
1767 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1768 			BUG_ON(f != e + 1);
1769 			list_del(&f->lru);
1770 			e = f;
1771 		}
1772 
1773 		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1774 			if (to.sector >= wc->data_device_sectors) {
1775 				writecache_copy_endio(0, 0, c);
1776 				continue;
1777 			}
1778 			from.count = to.count = wc->data_device_sectors - to.sector;
1779 		}
1780 
1781 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1782 
1783 		__writeback_throttle(wc, wbl);
1784 	}
1785 }
1786 
1787 static void writecache_writeback(struct work_struct *work)
1788 {
1789 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1790 	struct blk_plug plug;
1791 	struct wc_entry *f, *g, *e = NULL;
1792 	struct rb_node *node, *next_node;
1793 	struct list_head skipped;
1794 	struct writeback_list wbl;
1795 	unsigned long n_walked;
1796 
1797 	wc_lock(wc);
1798 restart:
1799 	if (writecache_has_error(wc)) {
1800 		wc_unlock(wc);
1801 		return;
1802 	}
1803 
1804 	if (unlikely(wc->writeback_all)) {
1805 		if (writecache_wait_for_writeback(wc))
1806 			goto restart;
1807 	}
1808 
1809 	if (wc->overwrote_committed) {
1810 		writecache_wait_for_ios(wc, WRITE);
1811 	}
1812 
1813 	n_walked = 0;
1814 	INIT_LIST_HEAD(&skipped);
1815 	INIT_LIST_HEAD(&wbl.list);
1816 	wbl.size = 0;
1817 	while (!list_empty(&wc->lru) &&
1818 	       (wc->writeback_all ||
1819 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1820 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1821 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1822 
1823 		n_walked++;
1824 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1825 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1826 			queue_work(wc->writeback_wq, &wc->writeback_work);
1827 			break;
1828 		}
1829 
1830 		if (unlikely(wc->writeback_all)) {
1831 			if (unlikely(!e)) {
1832 				writecache_flush(wc);
1833 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1834 			} else
1835 				e = g;
1836 		} else
1837 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1838 		BUG_ON(e->write_in_progress);
1839 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1840 			writecache_flush(wc);
1841 		}
1842 		node = rb_prev(&e->rb_node);
1843 		if (node) {
1844 			f = container_of(node, struct wc_entry, rb_node);
1845 			if (unlikely(read_original_sector(wc, f) ==
1846 				     read_original_sector(wc, e))) {
1847 				BUG_ON(!f->write_in_progress);
1848 				list_del(&e->lru);
1849 				list_add(&e->lru, &skipped);
1850 				cond_resched();
1851 				continue;
1852 			}
1853 		}
1854 		wc->writeback_size++;
1855 		list_del(&e->lru);
1856 		list_add(&e->lru, &wbl.list);
1857 		wbl.size++;
1858 		e->write_in_progress = true;
1859 		e->wc_list_contiguous = 1;
1860 
1861 		f = e;
1862 
1863 		while (1) {
1864 			next_node = rb_next(&f->rb_node);
1865 			if (unlikely(!next_node))
1866 				break;
1867 			g = container_of(next_node, struct wc_entry, rb_node);
1868 			if (unlikely(read_original_sector(wc, g) ==
1869 			    read_original_sector(wc, f))) {
1870 				f = g;
1871 				continue;
1872 			}
1873 			if (read_original_sector(wc, g) !=
1874 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1875 				break;
1876 			if (unlikely(g->write_in_progress))
1877 				break;
1878 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1879 				break;
1880 
1881 			if (!WC_MODE_PMEM(wc)) {
1882 				if (g != f + 1)
1883 					break;
1884 			}
1885 
1886 			n_walked++;
1887 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1888 			//	break;
1889 
1890 			wc->writeback_size++;
1891 			list_del(&g->lru);
1892 			list_add(&g->lru, &wbl.list);
1893 			wbl.size++;
1894 			g->write_in_progress = true;
1895 			g->wc_list_contiguous = BIO_MAX_VECS;
1896 			f = g;
1897 			e->wc_list_contiguous++;
1898 			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
1899 				if (unlikely(wc->writeback_all)) {
1900 					next_node = rb_next(&f->rb_node);
1901 					if (likely(next_node))
1902 						g = container_of(next_node, struct wc_entry, rb_node);
1903 				}
1904 				break;
1905 			}
1906 		}
1907 		cond_resched();
1908 	}
1909 
1910 	if (!list_empty(&skipped)) {
1911 		list_splice_tail(&skipped, &wc->lru);
1912 		/*
1913 		 * If we didn't do any progress, we must wait until some
1914 		 * writeback finishes to avoid burning CPU in a loop
1915 		 */
1916 		if (unlikely(!wbl.size))
1917 			writecache_wait_for_writeback(wc);
1918 	}
1919 
1920 	wc_unlock(wc);
1921 
1922 	blk_start_plug(&plug);
1923 
1924 	if (WC_MODE_PMEM(wc))
1925 		__writecache_writeback_pmem(wc, &wbl);
1926 	else
1927 		__writecache_writeback_ssd(wc, &wbl);
1928 
1929 	blk_finish_plug(&plug);
1930 
1931 	if (unlikely(wc->writeback_all)) {
1932 		wc_lock(wc);
1933 		while (writecache_wait_for_writeback(wc));
1934 		wc_unlock(wc);
1935 	}
1936 }
1937 
1938 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1939 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1940 {
1941 	uint64_t n_blocks, offset;
1942 	struct wc_entry e;
1943 
1944 	n_blocks = device_size;
1945 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1946 
1947 	while (1) {
1948 		if (!n_blocks)
1949 			return -ENOSPC;
1950 		/* Verify the following entries[n_blocks] won't overflow */
1951 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1952 				 sizeof(struct wc_memory_entry)))
1953 			return -EFBIG;
1954 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1955 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1956 		if (offset + n_blocks * block_size <= device_size)
1957 			break;
1958 		n_blocks--;
1959 	}
1960 
1961 	/* check if the bit field overflows */
1962 	e.index = n_blocks;
1963 	if (e.index != n_blocks)
1964 		return -EFBIG;
1965 
1966 	if (n_blocks_p)
1967 		*n_blocks_p = n_blocks;
1968 	if (n_metadata_blocks_p)
1969 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1970 	return 0;
1971 }
1972 
1973 static int init_memory(struct dm_writecache *wc)
1974 {
1975 	size_t b;
1976 	int r;
1977 
1978 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1979 	if (r)
1980 		return r;
1981 
1982 	r = writecache_alloc_entries(wc);
1983 	if (r)
1984 		return r;
1985 
1986 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1987 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1988 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1989 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1990 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1991 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1992 
1993 	for (b = 0; b < wc->n_blocks; b++) {
1994 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1995 		cond_resched();
1996 	}
1997 
1998 	writecache_flush_all_metadata(wc);
1999 	writecache_commit_flushed(wc, false);
2000 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2001 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2002 	writecache_commit_flushed(wc, false);
2003 
2004 	return 0;
2005 }
2006 
2007 static void writecache_dtr(struct dm_target *ti)
2008 {
2009 	struct dm_writecache *wc = ti->private;
2010 
2011 	if (!wc)
2012 		return;
2013 
2014 	if (wc->endio_thread)
2015 		kthread_stop(wc->endio_thread);
2016 
2017 	if (wc->flush_thread)
2018 		kthread_stop(wc->flush_thread);
2019 
2020 	bioset_exit(&wc->bio_set);
2021 
2022 	mempool_exit(&wc->copy_pool);
2023 
2024 	if (wc->writeback_wq)
2025 		destroy_workqueue(wc->writeback_wq);
2026 
2027 	if (wc->dev)
2028 		dm_put_device(ti, wc->dev);
2029 
2030 	if (wc->ssd_dev)
2031 		dm_put_device(ti, wc->ssd_dev);
2032 
2033 	vfree(wc->entries);
2034 
2035 	if (wc->memory_map) {
2036 		if (WC_MODE_PMEM(wc))
2037 			persistent_memory_release(wc);
2038 		else
2039 			vfree(wc->memory_map);
2040 	}
2041 
2042 	if (wc->dm_kcopyd)
2043 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2044 
2045 	if (wc->dm_io)
2046 		dm_io_client_destroy(wc->dm_io);
2047 
2048 	vfree(wc->dirty_bitmap);
2049 
2050 	kfree(wc);
2051 }
2052 
2053 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2054 {
2055 	struct dm_writecache *wc;
2056 	struct dm_arg_set as;
2057 	const char *string;
2058 	unsigned opt_params;
2059 	size_t offset, data_size;
2060 	int i, r;
2061 	char dummy;
2062 	int high_wm_percent = HIGH_WATERMARK;
2063 	int low_wm_percent = LOW_WATERMARK;
2064 	uint64_t x;
2065 	struct wc_memory_superblock s;
2066 
2067 	static struct dm_arg _args[] = {
2068 		{0, 16, "Invalid number of feature args"},
2069 	};
2070 
2071 	as.argc = argc;
2072 	as.argv = argv;
2073 
2074 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2075 	if (!wc) {
2076 		ti->error = "Cannot allocate writecache structure";
2077 		r = -ENOMEM;
2078 		goto bad;
2079 	}
2080 	ti->private = wc;
2081 	wc->ti = ti;
2082 
2083 	mutex_init(&wc->lock);
2084 	wc->max_age = MAX_AGE_UNSPECIFIED;
2085 	writecache_poison_lists(wc);
2086 	init_waitqueue_head(&wc->freelist_wait);
2087 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2088 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2089 
2090 	for (i = 0; i < 2; i++) {
2091 		atomic_set(&wc->bio_in_progress[i], 0);
2092 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2093 	}
2094 
2095 	wc->dm_io = dm_io_client_create();
2096 	if (IS_ERR(wc->dm_io)) {
2097 		r = PTR_ERR(wc->dm_io);
2098 		ti->error = "Unable to allocate dm-io client";
2099 		wc->dm_io = NULL;
2100 		goto bad;
2101 	}
2102 
2103 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2104 	if (!wc->writeback_wq) {
2105 		r = -ENOMEM;
2106 		ti->error = "Could not allocate writeback workqueue";
2107 		goto bad;
2108 	}
2109 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2110 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2111 
2112 	raw_spin_lock_init(&wc->endio_list_lock);
2113 	INIT_LIST_HEAD(&wc->endio_list);
2114 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2115 	if (IS_ERR(wc->endio_thread)) {
2116 		r = PTR_ERR(wc->endio_thread);
2117 		wc->endio_thread = NULL;
2118 		ti->error = "Couldn't spawn endio thread";
2119 		goto bad;
2120 	}
2121 	wake_up_process(wc->endio_thread);
2122 
2123 	/*
2124 	 * Parse the mode (pmem or ssd)
2125 	 */
2126 	string = dm_shift_arg(&as);
2127 	if (!string)
2128 		goto bad_arguments;
2129 
2130 	if (!strcasecmp(string, "s")) {
2131 		wc->pmem_mode = false;
2132 	} else if (!strcasecmp(string, "p")) {
2133 #ifdef DM_WRITECACHE_HAS_PMEM
2134 		wc->pmem_mode = true;
2135 		wc->writeback_fua = true;
2136 #else
2137 		/*
2138 		 * If the architecture doesn't support persistent memory or
2139 		 * the kernel doesn't support any DAX drivers, this driver can
2140 		 * only be used in SSD-only mode.
2141 		 */
2142 		r = -EOPNOTSUPP;
2143 		ti->error = "Persistent memory or DAX not supported on this system";
2144 		goto bad;
2145 #endif
2146 	} else {
2147 		goto bad_arguments;
2148 	}
2149 
2150 	if (WC_MODE_PMEM(wc)) {
2151 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2152 				offsetof(struct writeback_struct, bio),
2153 				BIOSET_NEED_BVECS);
2154 		if (r) {
2155 			ti->error = "Could not allocate bio set";
2156 			goto bad;
2157 		}
2158 	} else {
2159 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2160 		if (r) {
2161 			ti->error = "Could not allocate mempool";
2162 			goto bad;
2163 		}
2164 	}
2165 
2166 	/*
2167 	 * Parse the origin data device
2168 	 */
2169 	string = dm_shift_arg(&as);
2170 	if (!string)
2171 		goto bad_arguments;
2172 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2173 	if (r) {
2174 		ti->error = "Origin data device lookup failed";
2175 		goto bad;
2176 	}
2177 
2178 	/*
2179 	 * Parse cache data device (be it pmem or ssd)
2180 	 */
2181 	string = dm_shift_arg(&as);
2182 	if (!string)
2183 		goto bad_arguments;
2184 
2185 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2186 	if (r) {
2187 		ti->error = "Cache data device lookup failed";
2188 		goto bad;
2189 	}
2190 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2191 
2192 	/*
2193 	 * Parse the cache block size
2194 	 */
2195 	string = dm_shift_arg(&as);
2196 	if (!string)
2197 		goto bad_arguments;
2198 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2199 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2200 	    (wc->block_size & (wc->block_size - 1))) {
2201 		r = -EINVAL;
2202 		ti->error = "Invalid block size";
2203 		goto bad;
2204 	}
2205 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2206 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2207 		r = -EINVAL;
2208 		ti->error = "Block size is smaller than device logical block size";
2209 		goto bad;
2210 	}
2211 	wc->block_size_bits = __ffs(wc->block_size);
2212 
2213 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2214 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2215 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2216 
2217 	/*
2218 	 * Parse optional arguments
2219 	 */
2220 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2221 	if (r)
2222 		goto bad;
2223 
2224 	while (opt_params) {
2225 		string = dm_shift_arg(&as), opt_params--;
2226 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2227 			unsigned long long start_sector;
2228 			string = dm_shift_arg(&as), opt_params--;
2229 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2230 				goto invalid_optional;
2231 			wc->start_sector = start_sector;
2232 			wc->start_sector_set = true;
2233 			if (wc->start_sector != start_sector ||
2234 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2235 				goto invalid_optional;
2236 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2237 			string = dm_shift_arg(&as), opt_params--;
2238 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2239 				goto invalid_optional;
2240 			if (high_wm_percent < 0 || high_wm_percent > 100)
2241 				goto invalid_optional;
2242 			wc->high_wm_percent_value = high_wm_percent;
2243 			wc->high_wm_percent_set = true;
2244 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2245 			string = dm_shift_arg(&as), opt_params--;
2246 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2247 				goto invalid_optional;
2248 			if (low_wm_percent < 0 || low_wm_percent > 100)
2249 				goto invalid_optional;
2250 			wc->low_wm_percent_value = low_wm_percent;
2251 			wc->low_wm_percent_set = true;
2252 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2253 			string = dm_shift_arg(&as), opt_params--;
2254 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2255 				goto invalid_optional;
2256 			wc->max_writeback_jobs_set = true;
2257 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2258 			string = dm_shift_arg(&as), opt_params--;
2259 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2260 				goto invalid_optional;
2261 			wc->autocommit_blocks_set = true;
2262 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2263 			unsigned autocommit_msecs;
2264 			string = dm_shift_arg(&as), opt_params--;
2265 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2266 				goto invalid_optional;
2267 			if (autocommit_msecs > 3600000)
2268 				goto invalid_optional;
2269 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2270 			wc->autocommit_time_value = autocommit_msecs;
2271 			wc->autocommit_time_set = true;
2272 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2273 			unsigned max_age_msecs;
2274 			string = dm_shift_arg(&as), opt_params--;
2275 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2276 				goto invalid_optional;
2277 			if (max_age_msecs > 86400000)
2278 				goto invalid_optional;
2279 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2280 			wc->max_age_set = true;
2281 			wc->max_age_value = max_age_msecs;
2282 		} else if (!strcasecmp(string, "cleaner")) {
2283 			wc->cleaner_set = true;
2284 			wc->cleaner = true;
2285 		} else if (!strcasecmp(string, "fua")) {
2286 			if (WC_MODE_PMEM(wc)) {
2287 				wc->writeback_fua = true;
2288 				wc->writeback_fua_set = true;
2289 			} else goto invalid_optional;
2290 		} else if (!strcasecmp(string, "nofua")) {
2291 			if (WC_MODE_PMEM(wc)) {
2292 				wc->writeback_fua = false;
2293 				wc->writeback_fua_set = true;
2294 			} else goto invalid_optional;
2295 		} else {
2296 invalid_optional:
2297 			r = -EINVAL;
2298 			ti->error = "Invalid optional argument";
2299 			goto bad;
2300 		}
2301 	}
2302 
2303 	if (high_wm_percent < low_wm_percent) {
2304 		r = -EINVAL;
2305 		ti->error = "High watermark must be greater than or equal to low watermark";
2306 		goto bad;
2307 	}
2308 
2309 	if (WC_MODE_PMEM(wc)) {
2310 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2311 			r = -EOPNOTSUPP;
2312 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2313 			goto bad;
2314 		}
2315 
2316 		r = persistent_memory_claim(wc);
2317 		if (r) {
2318 			ti->error = "Unable to map persistent memory for cache";
2319 			goto bad;
2320 		}
2321 	} else {
2322 		size_t n_blocks, n_metadata_blocks;
2323 		uint64_t n_bitmap_bits;
2324 
2325 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2326 
2327 		bio_list_init(&wc->flush_list);
2328 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2329 		if (IS_ERR(wc->flush_thread)) {
2330 			r = PTR_ERR(wc->flush_thread);
2331 			wc->flush_thread = NULL;
2332 			ti->error = "Couldn't spawn flush thread";
2333 			goto bad;
2334 		}
2335 		wake_up_process(wc->flush_thread);
2336 
2337 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2338 					  &n_blocks, &n_metadata_blocks);
2339 		if (r) {
2340 			ti->error = "Invalid device size";
2341 			goto bad;
2342 		}
2343 
2344 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2345 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2346 		/* this is limitation of test_bit functions */
2347 		if (n_bitmap_bits > 1U << 31) {
2348 			r = -EFBIG;
2349 			ti->error = "Invalid device size";
2350 			goto bad;
2351 		}
2352 
2353 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2354 		if (!wc->memory_map) {
2355 			r = -ENOMEM;
2356 			ti->error = "Unable to allocate memory for metadata";
2357 			goto bad;
2358 		}
2359 
2360 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2361 		if (IS_ERR(wc->dm_kcopyd)) {
2362 			r = PTR_ERR(wc->dm_kcopyd);
2363 			ti->error = "Unable to allocate dm-kcopyd client";
2364 			wc->dm_kcopyd = NULL;
2365 			goto bad;
2366 		}
2367 
2368 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2369 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2370 			BITS_PER_LONG * sizeof(unsigned long);
2371 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2372 		if (!wc->dirty_bitmap) {
2373 			r = -ENOMEM;
2374 			ti->error = "Unable to allocate dirty bitmap";
2375 			goto bad;
2376 		}
2377 
2378 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2379 		if (r) {
2380 			ti->error = "Unable to read first block of metadata";
2381 			goto bad;
2382 		}
2383 	}
2384 
2385 	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2386 	if (r) {
2387 		ti->error = "Hardware memory error when reading superblock";
2388 		goto bad;
2389 	}
2390 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2391 		r = init_memory(wc);
2392 		if (r) {
2393 			ti->error = "Unable to initialize device";
2394 			goto bad;
2395 		}
2396 		r = copy_mc_to_kernel(&s, sb(wc),
2397 				      sizeof(struct wc_memory_superblock));
2398 		if (r) {
2399 			ti->error = "Hardware memory error when reading superblock";
2400 			goto bad;
2401 		}
2402 	}
2403 
2404 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2405 		ti->error = "Invalid magic in the superblock";
2406 		r = -EINVAL;
2407 		goto bad;
2408 	}
2409 
2410 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2411 		ti->error = "Invalid version in the superblock";
2412 		r = -EINVAL;
2413 		goto bad;
2414 	}
2415 
2416 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2417 		ti->error = "Block size does not match superblock";
2418 		r = -EINVAL;
2419 		goto bad;
2420 	}
2421 
2422 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2423 
2424 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2425 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2426 overflow:
2427 		ti->error = "Overflow in size calculation";
2428 		r = -EINVAL;
2429 		goto bad;
2430 	}
2431 	offset += sizeof(struct wc_memory_superblock);
2432 	if (offset < sizeof(struct wc_memory_superblock))
2433 		goto overflow;
2434 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2435 	data_size = wc->n_blocks * (size_t)wc->block_size;
2436 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2437 	    (offset + data_size < offset))
2438 		goto overflow;
2439 	if (offset + data_size > wc->memory_map_size) {
2440 		ti->error = "Memory area is too small";
2441 		r = -EINVAL;
2442 		goto bad;
2443 	}
2444 
2445 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2446 	wc->block_start = (char *)sb(wc) + offset;
2447 
2448 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2449 	x += 50;
2450 	do_div(x, 100);
2451 	wc->freelist_high_watermark = x;
2452 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2453 	x += 50;
2454 	do_div(x, 100);
2455 	wc->freelist_low_watermark = x;
2456 
2457 	if (wc->cleaner)
2458 		activate_cleaner(wc);
2459 
2460 	r = writecache_alloc_entries(wc);
2461 	if (r) {
2462 		ti->error = "Cannot allocate memory";
2463 		goto bad;
2464 	}
2465 
2466 	ti->num_flush_bios = 1;
2467 	ti->flush_supported = true;
2468 	ti->num_discard_bios = 1;
2469 
2470 	if (WC_MODE_PMEM(wc))
2471 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2472 
2473 	return 0;
2474 
2475 bad_arguments:
2476 	r = -EINVAL;
2477 	ti->error = "Bad arguments";
2478 bad:
2479 	writecache_dtr(ti);
2480 	return r;
2481 }
2482 
2483 static void writecache_status(struct dm_target *ti, status_type_t type,
2484 			      unsigned status_flags, char *result, unsigned maxlen)
2485 {
2486 	struct dm_writecache *wc = ti->private;
2487 	unsigned extra_args;
2488 	unsigned sz = 0;
2489 
2490 	switch (type) {
2491 	case STATUSTYPE_INFO:
2492 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2493 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2494 		       (unsigned long long)wc->writeback_size);
2495 		break;
2496 	case STATUSTYPE_TABLE:
2497 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2498 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2499 		extra_args = 0;
2500 		if (wc->start_sector_set)
2501 			extra_args += 2;
2502 		if (wc->high_wm_percent_set)
2503 			extra_args += 2;
2504 		if (wc->low_wm_percent_set)
2505 			extra_args += 2;
2506 		if (wc->max_writeback_jobs_set)
2507 			extra_args += 2;
2508 		if (wc->autocommit_blocks_set)
2509 			extra_args += 2;
2510 		if (wc->autocommit_time_set)
2511 			extra_args += 2;
2512 		if (wc->max_age_set)
2513 			extra_args += 2;
2514 		if (wc->cleaner_set)
2515 			extra_args++;
2516 		if (wc->writeback_fua_set)
2517 			extra_args++;
2518 
2519 		DMEMIT("%u", extra_args);
2520 		if (wc->start_sector_set)
2521 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2522 		if (wc->high_wm_percent_set)
2523 			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2524 		if (wc->low_wm_percent_set)
2525 			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2526 		if (wc->max_writeback_jobs_set)
2527 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2528 		if (wc->autocommit_blocks_set)
2529 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2530 		if (wc->autocommit_time_set)
2531 			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2532 		if (wc->max_age_set)
2533 			DMEMIT(" max_age %u", wc->max_age_value);
2534 		if (wc->cleaner_set)
2535 			DMEMIT(" cleaner");
2536 		if (wc->writeback_fua_set)
2537 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2538 		break;
2539 	}
2540 }
2541 
2542 static struct target_type writecache_target = {
2543 	.name			= "writecache",
2544 	.version		= {1, 4, 0},
2545 	.module			= THIS_MODULE,
2546 	.ctr			= writecache_ctr,
2547 	.dtr			= writecache_dtr,
2548 	.status			= writecache_status,
2549 	.postsuspend		= writecache_suspend,
2550 	.resume			= writecache_resume,
2551 	.message		= writecache_message,
2552 	.map			= writecache_map,
2553 	.end_io			= writecache_end_io,
2554 	.iterate_devices	= writecache_iterate_devices,
2555 	.io_hints		= writecache_io_hints,
2556 };
2557 
2558 static int __init dm_writecache_init(void)
2559 {
2560 	int r;
2561 
2562 	r = dm_register_target(&writecache_target);
2563 	if (r < 0) {
2564 		DMERR("register failed %d", r);
2565 		return r;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static void __exit dm_writecache_exit(void)
2572 {
2573 	dm_unregister_target(&writecache_target);
2574 }
2575 
2576 module_init(dm_writecache_init);
2577 module_exit(dm_writecache_exit);
2578 
2579 MODULE_DESCRIPTION(DM_NAME " writecache target");
2580 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2581 MODULE_LICENSE("GPL");
2582