xref: /openbmc/linux/drivers/md/dm-writecache.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		0
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 #define MAX_AGE_DIV			16
30 #define MAX_AGE_UNSPECIFIED		-1UL
31 
32 #define BITMAP_GRANULARITY	65536
33 #if BITMAP_GRANULARITY < PAGE_SIZE
34 #undef BITMAP_GRANULARITY
35 #define BITMAP_GRANULARITY	PAGE_SIZE
36 #endif
37 
38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39 #define DM_WRITECACHE_HAS_PMEM
40 #endif
41 
42 #ifdef DM_WRITECACHE_HAS_PMEM
43 #define pmem_assign(dest, src)					\
44 do {								\
45 	typeof(dest) uniq = (src);				\
46 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
47 } while (0)
48 #else
49 #define pmem_assign(dest, src)	((dest) = (src))
50 #endif
51 
52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #endif
55 
56 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
57 #define MEMORY_SUPERBLOCK_VERSION	1
58 
59 struct wc_memory_entry {
60 	__le64 original_sector;
61 	__le64 seq_count;
62 };
63 
64 struct wc_memory_superblock {
65 	union {
66 		struct {
67 			__le32 magic;
68 			__le32 version;
69 			__le32 block_size;
70 			__le32 pad;
71 			__le64 n_blocks;
72 			__le64 seq_count;
73 		};
74 		__le64 padding[8];
75 	};
76 	struct wc_memory_entry entries[0];
77 };
78 
79 struct wc_entry {
80 	struct rb_node rb_node;
81 	struct list_head lru;
82 	unsigned short wc_list_contiguous;
83 	bool write_in_progress
84 #if BITS_PER_LONG == 64
85 		:1
86 #endif
87 	;
88 	unsigned long index
89 #if BITS_PER_LONG == 64
90 		:47
91 #endif
92 	;
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 
127 	unsigned uncommitted_blocks;
128 	unsigned autocommit_blocks;
129 	unsigned max_writeback_jobs;
130 
131 	int error;
132 
133 	unsigned long autocommit_jiffies;
134 	struct timer_list autocommit_timer;
135 	struct wait_queue_head freelist_wait;
136 
137 	struct timer_list max_age_timer;
138 
139 	atomic_t bio_in_progress[2];
140 	struct wait_queue_head bio_in_progress_wait[2];
141 
142 	struct dm_target *ti;
143 	struct dm_dev *dev;
144 	struct dm_dev *ssd_dev;
145 	sector_t start_sector;
146 	void *memory_map;
147 	uint64_t memory_map_size;
148 	size_t metadata_sectors;
149 	size_t n_blocks;
150 	uint64_t seq_count;
151 	void *block_start;
152 	struct wc_entry *entries;
153 	unsigned block_size;
154 	unsigned char block_size_bits;
155 
156 	bool pmem_mode:1;
157 	bool writeback_fua:1;
158 
159 	bool overwrote_committed:1;
160 	bool memory_vmapped:1;
161 
162 	bool high_wm_percent_set:1;
163 	bool low_wm_percent_set:1;
164 	bool max_writeback_jobs_set:1;
165 	bool autocommit_blocks_set:1;
166 	bool autocommit_time_set:1;
167 	bool writeback_fua_set:1;
168 	bool flush_on_suspend:1;
169 	bool cleaner:1;
170 
171 	unsigned writeback_all;
172 	struct workqueue_struct *writeback_wq;
173 	struct work_struct writeback_work;
174 	struct work_struct flush_work;
175 
176 	struct dm_io_client *dm_io;
177 
178 	raw_spinlock_t endio_list_lock;
179 	struct list_head endio_list;
180 	struct task_struct *endio_thread;
181 
182 	struct task_struct *flush_thread;
183 	struct bio_list flush_list;
184 
185 	struct dm_kcopyd_client *dm_kcopyd;
186 	unsigned long *dirty_bitmap;
187 	unsigned dirty_bitmap_size;
188 
189 	struct bio_set bio_set;
190 	mempool_t copy_pool;
191 };
192 
193 #define WB_LIST_INLINE		16
194 
195 struct writeback_struct {
196 	struct list_head endio_entry;
197 	struct dm_writecache *wc;
198 	struct wc_entry **wc_list;
199 	unsigned wc_list_n;
200 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
201 	struct bio bio;
202 };
203 
204 struct copy_struct {
205 	struct list_head endio_entry;
206 	struct dm_writecache *wc;
207 	struct wc_entry *e;
208 	unsigned n_entries;
209 	int error;
210 };
211 
212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
213 					    "A percentage of time allocated for data copying");
214 
215 static void wc_lock(struct dm_writecache *wc)
216 {
217 	mutex_lock(&wc->lock);
218 }
219 
220 static void wc_unlock(struct dm_writecache *wc)
221 {
222 	mutex_unlock(&wc->lock);
223 }
224 
225 #ifdef DM_WRITECACHE_HAS_PMEM
226 static int persistent_memory_claim(struct dm_writecache *wc)
227 {
228 	int r;
229 	loff_t s;
230 	long p, da;
231 	pfn_t pfn;
232 	int id;
233 	struct page **pages;
234 
235 	wc->memory_vmapped = false;
236 
237 	if (!wc->ssd_dev->dax_dev) {
238 		r = -EOPNOTSUPP;
239 		goto err1;
240 	}
241 	s = wc->memory_map_size;
242 	p = s >> PAGE_SHIFT;
243 	if (!p) {
244 		r = -EINVAL;
245 		goto err1;
246 	}
247 	if (p != s >> PAGE_SHIFT) {
248 		r = -EOVERFLOW;
249 		goto err1;
250 	}
251 
252 	id = dax_read_lock();
253 
254 	da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
255 	if (da < 0) {
256 		wc->memory_map = NULL;
257 		r = da;
258 		goto err2;
259 	}
260 	if (!pfn_t_has_page(pfn)) {
261 		wc->memory_map = NULL;
262 		r = -EOPNOTSUPP;
263 		goto err2;
264 	}
265 	if (da != p) {
266 		long i;
267 		wc->memory_map = NULL;
268 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
269 		if (!pages) {
270 			r = -ENOMEM;
271 			goto err2;
272 		}
273 		i = 0;
274 		do {
275 			long daa;
276 			daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
277 						NULL, &pfn);
278 			if (daa <= 0) {
279 				r = daa ? daa : -EINVAL;
280 				goto err3;
281 			}
282 			if (!pfn_t_has_page(pfn)) {
283 				r = -EOPNOTSUPP;
284 				goto err3;
285 			}
286 			while (daa-- && i < p) {
287 				pages[i++] = pfn_t_to_page(pfn);
288 				pfn.val++;
289 			}
290 		} while (i < p);
291 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
292 		if (!wc->memory_map) {
293 			r = -ENOMEM;
294 			goto err3;
295 		}
296 		kvfree(pages);
297 		wc->memory_vmapped = true;
298 	}
299 
300 	dax_read_unlock(id);
301 
302 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
303 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
304 
305 	return 0;
306 err3:
307 	kvfree(pages);
308 err2:
309 	dax_read_unlock(id);
310 err1:
311 	return r;
312 }
313 #else
314 static int persistent_memory_claim(struct dm_writecache *wc)
315 {
316 	BUG();
317 }
318 #endif
319 
320 static void persistent_memory_release(struct dm_writecache *wc)
321 {
322 	if (wc->memory_vmapped)
323 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
324 }
325 
326 static struct page *persistent_memory_page(void *addr)
327 {
328 	if (is_vmalloc_addr(addr))
329 		return vmalloc_to_page(addr);
330 	else
331 		return virt_to_page(addr);
332 }
333 
334 static unsigned persistent_memory_page_offset(void *addr)
335 {
336 	return (unsigned long)addr & (PAGE_SIZE - 1);
337 }
338 
339 static void persistent_memory_flush_cache(void *ptr, size_t size)
340 {
341 	if (is_vmalloc_addr(ptr))
342 		flush_kernel_vmap_range(ptr, size);
343 }
344 
345 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
346 {
347 	if (is_vmalloc_addr(ptr))
348 		invalidate_kernel_vmap_range(ptr, size);
349 }
350 
351 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
352 {
353 	return wc->memory_map;
354 }
355 
356 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
357 {
358 	return &sb(wc)->entries[e->index];
359 }
360 
361 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
362 {
363 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
364 }
365 
366 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
367 {
368 	return wc->start_sector + wc->metadata_sectors +
369 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
370 }
371 
372 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
373 {
374 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
375 	return e->original_sector;
376 #else
377 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
378 #endif
379 }
380 
381 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
382 {
383 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
384 	return e->seq_count;
385 #else
386 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
387 #endif
388 }
389 
390 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
391 {
392 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
393 	e->seq_count = -1;
394 #endif
395 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
396 }
397 
398 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
399 					    uint64_t original_sector, uint64_t seq_count)
400 {
401 	struct wc_memory_entry me;
402 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
403 	e->original_sector = original_sector;
404 	e->seq_count = seq_count;
405 #endif
406 	me.original_sector = cpu_to_le64(original_sector);
407 	me.seq_count = cpu_to_le64(seq_count);
408 	pmem_assign(*memory_entry(wc, e), me);
409 }
410 
411 #define writecache_error(wc, err, msg, arg...)				\
412 do {									\
413 	if (!cmpxchg(&(wc)->error, 0, err))				\
414 		DMERR(msg, ##arg);					\
415 	wake_up(&(wc)->freelist_wait);					\
416 } while (0)
417 
418 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
419 
420 static void writecache_flush_all_metadata(struct dm_writecache *wc)
421 {
422 	if (!WC_MODE_PMEM(wc))
423 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
424 }
425 
426 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
427 {
428 	if (!WC_MODE_PMEM(wc))
429 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
430 			  wc->dirty_bitmap);
431 }
432 
433 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
434 
435 struct io_notify {
436 	struct dm_writecache *wc;
437 	struct completion c;
438 	atomic_t count;
439 };
440 
441 static void writecache_notify_io(unsigned long error, void *context)
442 {
443 	struct io_notify *endio = context;
444 
445 	if (unlikely(error != 0))
446 		writecache_error(endio->wc, -EIO, "error writing metadata");
447 	BUG_ON(atomic_read(&endio->count) <= 0);
448 	if (atomic_dec_and_test(&endio->count))
449 		complete(&endio->c);
450 }
451 
452 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
453 {
454 	wait_event(wc->bio_in_progress_wait[direction],
455 		   !atomic_read(&wc->bio_in_progress[direction]));
456 }
457 
458 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
459 {
460 	struct dm_io_region region;
461 	struct dm_io_request req;
462 	struct io_notify endio = {
463 		wc,
464 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
465 		ATOMIC_INIT(1),
466 	};
467 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
468 	unsigned i = 0;
469 
470 	while (1) {
471 		unsigned j;
472 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
473 		if (unlikely(i == bitmap_bits))
474 			break;
475 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
476 
477 		region.bdev = wc->ssd_dev->bdev;
478 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
479 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
480 
481 		if (unlikely(region.sector >= wc->metadata_sectors))
482 			break;
483 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
484 			region.count = wc->metadata_sectors - region.sector;
485 
486 		region.sector += wc->start_sector;
487 		atomic_inc(&endio.count);
488 		req.bi_op = REQ_OP_WRITE;
489 		req.bi_op_flags = REQ_SYNC;
490 		req.mem.type = DM_IO_VMA;
491 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
492 		req.client = wc->dm_io;
493 		req.notify.fn = writecache_notify_io;
494 		req.notify.context = &endio;
495 
496 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
497 	        (void) dm_io(&req, 1, &region, NULL);
498 		i = j;
499 	}
500 
501 	writecache_notify_io(0, &endio);
502 	wait_for_completion_io(&endio.c);
503 
504 	if (wait_for_ios)
505 		writecache_wait_for_ios(wc, WRITE);
506 
507 	writecache_disk_flush(wc, wc->ssd_dev);
508 
509 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
510 }
511 
512 static void ssd_commit_superblock(struct dm_writecache *wc)
513 {
514 	int r;
515 	struct dm_io_region region;
516 	struct dm_io_request req;
517 
518 	region.bdev = wc->ssd_dev->bdev;
519 	region.sector = 0;
520 	region.count = PAGE_SIZE;
521 
522 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
523 		region.count = wc->metadata_sectors - region.sector;
524 
525 	region.sector += wc->start_sector;
526 
527 	req.bi_op = REQ_OP_WRITE;
528 	req.bi_op_flags = REQ_SYNC | REQ_FUA;
529 	req.mem.type = DM_IO_VMA;
530 	req.mem.ptr.vma = (char *)wc->memory_map;
531 	req.client = wc->dm_io;
532 	req.notify.fn = NULL;
533 	req.notify.context = NULL;
534 
535 	r = dm_io(&req, 1, &region, NULL);
536 	if (unlikely(r))
537 		writecache_error(wc, r, "error writing superblock");
538 }
539 
540 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
541 {
542 	if (WC_MODE_PMEM(wc))
543 		wmb();
544 	else
545 		ssd_commit_flushed(wc, wait_for_ios);
546 }
547 
548 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
549 {
550 	int r;
551 	struct dm_io_region region;
552 	struct dm_io_request req;
553 
554 	region.bdev = dev->bdev;
555 	region.sector = 0;
556 	region.count = 0;
557 	req.bi_op = REQ_OP_WRITE;
558 	req.bi_op_flags = REQ_PREFLUSH;
559 	req.mem.type = DM_IO_KMEM;
560 	req.mem.ptr.addr = NULL;
561 	req.client = wc->dm_io;
562 	req.notify.fn = NULL;
563 
564 	r = dm_io(&req, 1, &region, NULL);
565 	if (unlikely(r))
566 		writecache_error(wc, r, "error flushing metadata: %d", r);
567 }
568 
569 #define WFE_RETURN_FOLLOWING	1
570 #define WFE_LOWEST_SEQ		2
571 
572 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
573 					      uint64_t block, int flags)
574 {
575 	struct wc_entry *e;
576 	struct rb_node *node = wc->tree.rb_node;
577 
578 	if (unlikely(!node))
579 		return NULL;
580 
581 	while (1) {
582 		e = container_of(node, struct wc_entry, rb_node);
583 		if (read_original_sector(wc, e) == block)
584 			break;
585 
586 		node = (read_original_sector(wc, e) >= block ?
587 			e->rb_node.rb_left : e->rb_node.rb_right);
588 		if (unlikely(!node)) {
589 			if (!(flags & WFE_RETURN_FOLLOWING))
590 				return NULL;
591 			if (read_original_sector(wc, e) >= block) {
592 				return e;
593 			} else {
594 				node = rb_next(&e->rb_node);
595 				if (unlikely(!node))
596 					return NULL;
597 				e = container_of(node, struct wc_entry, rb_node);
598 				return e;
599 			}
600 		}
601 	}
602 
603 	while (1) {
604 		struct wc_entry *e2;
605 		if (flags & WFE_LOWEST_SEQ)
606 			node = rb_prev(&e->rb_node);
607 		else
608 			node = rb_next(&e->rb_node);
609 		if (unlikely(!node))
610 			return e;
611 		e2 = container_of(node, struct wc_entry, rb_node);
612 		if (read_original_sector(wc, e2) != block)
613 			return e;
614 		e = e2;
615 	}
616 }
617 
618 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
619 {
620 	struct wc_entry *e;
621 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
622 
623 	while (*node) {
624 		e = container_of(*node, struct wc_entry, rb_node);
625 		parent = &e->rb_node;
626 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
627 			node = &parent->rb_left;
628 		else
629 			node = &parent->rb_right;
630 	}
631 	rb_link_node(&ins->rb_node, parent, node);
632 	rb_insert_color(&ins->rb_node, &wc->tree);
633 	list_add(&ins->lru, &wc->lru);
634 	ins->age = jiffies;
635 }
636 
637 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
638 {
639 	list_del(&e->lru);
640 	rb_erase(&e->rb_node, &wc->tree);
641 }
642 
643 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
644 {
645 	if (WC_MODE_SORT_FREELIST(wc)) {
646 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
647 		if (unlikely(!*node))
648 			wc->current_free = e;
649 		while (*node) {
650 			parent = *node;
651 			if (&e->rb_node < *node)
652 				node = &parent->rb_left;
653 			else
654 				node = &parent->rb_right;
655 		}
656 		rb_link_node(&e->rb_node, parent, node);
657 		rb_insert_color(&e->rb_node, &wc->freetree);
658 	} else {
659 		list_add_tail(&e->lru, &wc->freelist);
660 	}
661 	wc->freelist_size++;
662 }
663 
664 static inline void writecache_verify_watermark(struct dm_writecache *wc)
665 {
666 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
667 		queue_work(wc->writeback_wq, &wc->writeback_work);
668 }
669 
670 static void writecache_max_age_timer(struct timer_list *t)
671 {
672 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
673 
674 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
675 		queue_work(wc->writeback_wq, &wc->writeback_work);
676 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
677 	}
678 }
679 
680 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
681 {
682 	struct wc_entry *e;
683 
684 	if (WC_MODE_SORT_FREELIST(wc)) {
685 		struct rb_node *next;
686 		if (unlikely(!wc->current_free))
687 			return NULL;
688 		e = wc->current_free;
689 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
690 			return NULL;
691 		next = rb_next(&e->rb_node);
692 		rb_erase(&e->rb_node, &wc->freetree);
693 		if (unlikely(!next))
694 			next = rb_first(&wc->freetree);
695 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
696 	} else {
697 		if (unlikely(list_empty(&wc->freelist)))
698 			return NULL;
699 		e = container_of(wc->freelist.next, struct wc_entry, lru);
700 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
701 			return NULL;
702 		list_del(&e->lru);
703 	}
704 	wc->freelist_size--;
705 
706 	writecache_verify_watermark(wc);
707 
708 	return e;
709 }
710 
711 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
712 {
713 	writecache_unlink(wc, e);
714 	writecache_add_to_freelist(wc, e);
715 	clear_seq_count(wc, e);
716 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
717 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
718 		wake_up(&wc->freelist_wait);
719 }
720 
721 static void writecache_wait_on_freelist(struct dm_writecache *wc)
722 {
723 	DEFINE_WAIT(wait);
724 
725 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
726 	wc_unlock(wc);
727 	io_schedule();
728 	finish_wait(&wc->freelist_wait, &wait);
729 	wc_lock(wc);
730 }
731 
732 static void writecache_poison_lists(struct dm_writecache *wc)
733 {
734 	/*
735 	 * Catch incorrect access to these values while the device is suspended.
736 	 */
737 	memset(&wc->tree, -1, sizeof wc->tree);
738 	wc->lru.next = LIST_POISON1;
739 	wc->lru.prev = LIST_POISON2;
740 	wc->freelist.next = LIST_POISON1;
741 	wc->freelist.prev = LIST_POISON2;
742 }
743 
744 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
745 {
746 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
747 	if (WC_MODE_PMEM(wc))
748 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
749 }
750 
751 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
752 {
753 	return read_seq_count(wc, e) < wc->seq_count;
754 }
755 
756 static void writecache_flush(struct dm_writecache *wc)
757 {
758 	struct wc_entry *e, *e2;
759 	bool need_flush_after_free;
760 
761 	wc->uncommitted_blocks = 0;
762 	del_timer(&wc->autocommit_timer);
763 
764 	if (list_empty(&wc->lru))
765 		return;
766 
767 	e = container_of(wc->lru.next, struct wc_entry, lru);
768 	if (writecache_entry_is_committed(wc, e)) {
769 		if (wc->overwrote_committed) {
770 			writecache_wait_for_ios(wc, WRITE);
771 			writecache_disk_flush(wc, wc->ssd_dev);
772 			wc->overwrote_committed = false;
773 		}
774 		return;
775 	}
776 	while (1) {
777 		writecache_flush_entry(wc, e);
778 		if (unlikely(e->lru.next == &wc->lru))
779 			break;
780 		e2 = container_of(e->lru.next, struct wc_entry, lru);
781 		if (writecache_entry_is_committed(wc, e2))
782 			break;
783 		e = e2;
784 		cond_resched();
785 	}
786 	writecache_commit_flushed(wc, true);
787 
788 	wc->seq_count++;
789 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
790 	if (WC_MODE_PMEM(wc))
791 		writecache_commit_flushed(wc, false);
792 	else
793 		ssd_commit_superblock(wc);
794 
795 	wc->overwrote_committed = false;
796 
797 	need_flush_after_free = false;
798 	while (1) {
799 		/* Free another committed entry with lower seq-count */
800 		struct rb_node *rb_node = rb_prev(&e->rb_node);
801 
802 		if (rb_node) {
803 			e2 = container_of(rb_node, struct wc_entry, rb_node);
804 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
805 			    likely(!e2->write_in_progress)) {
806 				writecache_free_entry(wc, e2);
807 				need_flush_after_free = true;
808 			}
809 		}
810 		if (unlikely(e->lru.prev == &wc->lru))
811 			break;
812 		e = container_of(e->lru.prev, struct wc_entry, lru);
813 		cond_resched();
814 	}
815 
816 	if (need_flush_after_free)
817 		writecache_commit_flushed(wc, false);
818 }
819 
820 static void writecache_flush_work(struct work_struct *work)
821 {
822 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
823 
824 	wc_lock(wc);
825 	writecache_flush(wc);
826 	wc_unlock(wc);
827 }
828 
829 static void writecache_autocommit_timer(struct timer_list *t)
830 {
831 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
832 	if (!writecache_has_error(wc))
833 		queue_work(wc->writeback_wq, &wc->flush_work);
834 }
835 
836 static void writecache_schedule_autocommit(struct dm_writecache *wc)
837 {
838 	if (!timer_pending(&wc->autocommit_timer))
839 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
840 }
841 
842 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
843 {
844 	struct wc_entry *e;
845 	bool discarded_something = false;
846 
847 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
848 	if (unlikely(!e))
849 		return;
850 
851 	while (read_original_sector(wc, e) < end) {
852 		struct rb_node *node = rb_next(&e->rb_node);
853 
854 		if (likely(!e->write_in_progress)) {
855 			if (!discarded_something) {
856 				writecache_wait_for_ios(wc, READ);
857 				writecache_wait_for_ios(wc, WRITE);
858 				discarded_something = true;
859 			}
860 			writecache_free_entry(wc, e);
861 		}
862 
863 		if (unlikely(!node))
864 			break;
865 
866 		e = container_of(node, struct wc_entry, rb_node);
867 	}
868 
869 	if (discarded_something)
870 		writecache_commit_flushed(wc, false);
871 }
872 
873 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
874 {
875 	if (wc->writeback_size) {
876 		writecache_wait_on_freelist(wc);
877 		return true;
878 	}
879 	return false;
880 }
881 
882 static void writecache_suspend(struct dm_target *ti)
883 {
884 	struct dm_writecache *wc = ti->private;
885 	bool flush_on_suspend;
886 
887 	del_timer_sync(&wc->autocommit_timer);
888 	del_timer_sync(&wc->max_age_timer);
889 
890 	wc_lock(wc);
891 	writecache_flush(wc);
892 	flush_on_suspend = wc->flush_on_suspend;
893 	if (flush_on_suspend) {
894 		wc->flush_on_suspend = false;
895 		wc->writeback_all++;
896 		queue_work(wc->writeback_wq, &wc->writeback_work);
897 	}
898 	wc_unlock(wc);
899 
900 	drain_workqueue(wc->writeback_wq);
901 
902 	wc_lock(wc);
903 	if (flush_on_suspend)
904 		wc->writeback_all--;
905 	while (writecache_wait_for_writeback(wc));
906 
907 	if (WC_MODE_PMEM(wc))
908 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
909 
910 	writecache_poison_lists(wc);
911 
912 	wc_unlock(wc);
913 }
914 
915 static int writecache_alloc_entries(struct dm_writecache *wc)
916 {
917 	size_t b;
918 
919 	if (wc->entries)
920 		return 0;
921 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
922 	if (!wc->entries)
923 		return -ENOMEM;
924 	for (b = 0; b < wc->n_blocks; b++) {
925 		struct wc_entry *e = &wc->entries[b];
926 		e->index = b;
927 		e->write_in_progress = false;
928 		cond_resched();
929 	}
930 
931 	return 0;
932 }
933 
934 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
935 {
936 	struct dm_io_region region;
937 	struct dm_io_request req;
938 
939 	region.bdev = wc->ssd_dev->bdev;
940 	region.sector = wc->start_sector;
941 	region.count = n_sectors;
942 	req.bi_op = REQ_OP_READ;
943 	req.bi_op_flags = REQ_SYNC;
944 	req.mem.type = DM_IO_VMA;
945 	req.mem.ptr.vma = (char *)wc->memory_map;
946 	req.client = wc->dm_io;
947 	req.notify.fn = NULL;
948 
949 	return dm_io(&req, 1, &region, NULL);
950 }
951 
952 static void writecache_resume(struct dm_target *ti)
953 {
954 	struct dm_writecache *wc = ti->private;
955 	size_t b;
956 	bool need_flush = false;
957 	__le64 sb_seq_count;
958 	int r;
959 
960 	wc_lock(wc);
961 
962 	if (WC_MODE_PMEM(wc)) {
963 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
964 	} else {
965 		r = writecache_read_metadata(wc, wc->metadata_sectors);
966 		if (r) {
967 			size_t sb_entries_offset;
968 			writecache_error(wc, r, "unable to read metadata: %d", r);
969 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
970 			memset((char *)wc->memory_map + sb_entries_offset, -1,
971 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
972 		}
973 	}
974 
975 	wc->tree = RB_ROOT;
976 	INIT_LIST_HEAD(&wc->lru);
977 	if (WC_MODE_SORT_FREELIST(wc)) {
978 		wc->freetree = RB_ROOT;
979 		wc->current_free = NULL;
980 	} else {
981 		INIT_LIST_HEAD(&wc->freelist);
982 	}
983 	wc->freelist_size = 0;
984 
985 	r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
986 	if (r) {
987 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
988 		sb_seq_count = cpu_to_le64(0);
989 	}
990 	wc->seq_count = le64_to_cpu(sb_seq_count);
991 
992 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
993 	for (b = 0; b < wc->n_blocks; b++) {
994 		struct wc_entry *e = &wc->entries[b];
995 		struct wc_memory_entry wme;
996 		if (writecache_has_error(wc)) {
997 			e->original_sector = -1;
998 			e->seq_count = -1;
999 			continue;
1000 		}
1001 		r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
1002 		if (r) {
1003 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1004 					 (unsigned long)b, r);
1005 			e->original_sector = -1;
1006 			e->seq_count = -1;
1007 		} else {
1008 			e->original_sector = le64_to_cpu(wme.original_sector);
1009 			e->seq_count = le64_to_cpu(wme.seq_count);
1010 		}
1011 		cond_resched();
1012 	}
1013 #endif
1014 	for (b = 0; b < wc->n_blocks; b++) {
1015 		struct wc_entry *e = &wc->entries[b];
1016 		if (!writecache_entry_is_committed(wc, e)) {
1017 			if (read_seq_count(wc, e) != -1) {
1018 erase_this:
1019 				clear_seq_count(wc, e);
1020 				need_flush = true;
1021 			}
1022 			writecache_add_to_freelist(wc, e);
1023 		} else {
1024 			struct wc_entry *old;
1025 
1026 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1027 			if (!old) {
1028 				writecache_insert_entry(wc, e);
1029 			} else {
1030 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1031 					writecache_error(wc, -EINVAL,
1032 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1033 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1034 						 (unsigned long long)read_seq_count(wc, e));
1035 				}
1036 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1037 					goto erase_this;
1038 				} else {
1039 					writecache_free_entry(wc, old);
1040 					writecache_insert_entry(wc, e);
1041 					need_flush = true;
1042 				}
1043 			}
1044 		}
1045 		cond_resched();
1046 	}
1047 
1048 	if (need_flush) {
1049 		writecache_flush_all_metadata(wc);
1050 		writecache_commit_flushed(wc, false);
1051 	}
1052 
1053 	writecache_verify_watermark(wc);
1054 
1055 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1056 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1057 
1058 	wc_unlock(wc);
1059 }
1060 
1061 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1062 {
1063 	if (argc != 1)
1064 		return -EINVAL;
1065 
1066 	wc_lock(wc);
1067 	if (dm_suspended(wc->ti)) {
1068 		wc_unlock(wc);
1069 		return -EBUSY;
1070 	}
1071 	if (writecache_has_error(wc)) {
1072 		wc_unlock(wc);
1073 		return -EIO;
1074 	}
1075 
1076 	writecache_flush(wc);
1077 	wc->writeback_all++;
1078 	queue_work(wc->writeback_wq, &wc->writeback_work);
1079 	wc_unlock(wc);
1080 
1081 	flush_workqueue(wc->writeback_wq);
1082 
1083 	wc_lock(wc);
1084 	wc->writeback_all--;
1085 	if (writecache_has_error(wc)) {
1086 		wc_unlock(wc);
1087 		return -EIO;
1088 	}
1089 	wc_unlock(wc);
1090 
1091 	return 0;
1092 }
1093 
1094 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1095 {
1096 	if (argc != 1)
1097 		return -EINVAL;
1098 
1099 	wc_lock(wc);
1100 	wc->flush_on_suspend = true;
1101 	wc_unlock(wc);
1102 
1103 	return 0;
1104 }
1105 
1106 static void activate_cleaner(struct dm_writecache *wc)
1107 {
1108 	wc->flush_on_suspend = true;
1109 	wc->cleaner = true;
1110 	wc->freelist_high_watermark = wc->n_blocks;
1111 	wc->freelist_low_watermark = wc->n_blocks;
1112 }
1113 
1114 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1115 {
1116 	if (argc != 1)
1117 		return -EINVAL;
1118 
1119 	wc_lock(wc);
1120 	activate_cleaner(wc);
1121 	if (!dm_suspended(wc->ti))
1122 		writecache_verify_watermark(wc);
1123 	wc_unlock(wc);
1124 
1125 	return 0;
1126 }
1127 
1128 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1129 			      char *result, unsigned maxlen)
1130 {
1131 	int r = -EINVAL;
1132 	struct dm_writecache *wc = ti->private;
1133 
1134 	if (!strcasecmp(argv[0], "flush"))
1135 		r = process_flush_mesg(argc, argv, wc);
1136 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1137 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1138 	else if (!strcasecmp(argv[0], "cleaner"))
1139 		r = process_cleaner_mesg(argc, argv, wc);
1140 	else
1141 		DMERR("unrecognised message received: %s", argv[0]);
1142 
1143 	return r;
1144 }
1145 
1146 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1147 {
1148 	void *buf;
1149 	unsigned long flags;
1150 	unsigned size;
1151 	int rw = bio_data_dir(bio);
1152 	unsigned remaining_size = wc->block_size;
1153 
1154 	do {
1155 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1156 		buf = bvec_kmap_irq(&bv, &flags);
1157 		size = bv.bv_len;
1158 		if (unlikely(size > remaining_size))
1159 			size = remaining_size;
1160 
1161 		if (rw == READ) {
1162 			int r;
1163 			r = memcpy_mcsafe(buf, data, size);
1164 			flush_dcache_page(bio_page(bio));
1165 			if (unlikely(r)) {
1166 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1167 				bio->bi_status = BLK_STS_IOERR;
1168 			}
1169 		} else {
1170 			flush_dcache_page(bio_page(bio));
1171 			memcpy_flushcache(data, buf, size);
1172 		}
1173 
1174 		bvec_kunmap_irq(buf, &flags);
1175 
1176 		data = (char *)data + size;
1177 		remaining_size -= size;
1178 		bio_advance(bio, size);
1179 	} while (unlikely(remaining_size));
1180 }
1181 
1182 static int writecache_flush_thread(void *data)
1183 {
1184 	struct dm_writecache *wc = data;
1185 
1186 	while (1) {
1187 		struct bio *bio;
1188 
1189 		wc_lock(wc);
1190 		bio = bio_list_pop(&wc->flush_list);
1191 		if (!bio) {
1192 			set_current_state(TASK_INTERRUPTIBLE);
1193 			wc_unlock(wc);
1194 
1195 			if (unlikely(kthread_should_stop())) {
1196 				set_current_state(TASK_RUNNING);
1197 				break;
1198 			}
1199 
1200 			schedule();
1201 			continue;
1202 		}
1203 
1204 		if (bio_op(bio) == REQ_OP_DISCARD) {
1205 			writecache_discard(wc, bio->bi_iter.bi_sector,
1206 					   bio_end_sector(bio));
1207 			wc_unlock(wc);
1208 			bio_set_dev(bio, wc->dev->bdev);
1209 			generic_make_request(bio);
1210 		} else {
1211 			writecache_flush(wc);
1212 			wc_unlock(wc);
1213 			if (writecache_has_error(wc))
1214 				bio->bi_status = BLK_STS_IOERR;
1215 			bio_endio(bio);
1216 		}
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1223 {
1224 	if (bio_list_empty(&wc->flush_list))
1225 		wake_up_process(wc->flush_thread);
1226 	bio_list_add(&wc->flush_list, bio);
1227 }
1228 
1229 static int writecache_map(struct dm_target *ti, struct bio *bio)
1230 {
1231 	struct wc_entry *e;
1232 	struct dm_writecache *wc = ti->private;
1233 
1234 	bio->bi_private = NULL;
1235 
1236 	wc_lock(wc);
1237 
1238 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1239 		if (writecache_has_error(wc))
1240 			goto unlock_error;
1241 		if (WC_MODE_PMEM(wc)) {
1242 			writecache_flush(wc);
1243 			if (writecache_has_error(wc))
1244 				goto unlock_error;
1245 			goto unlock_submit;
1246 		} else {
1247 			writecache_offload_bio(wc, bio);
1248 			goto unlock_return;
1249 		}
1250 	}
1251 
1252 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1253 
1254 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1255 				(wc->block_size / 512 - 1)) != 0)) {
1256 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1257 		      (unsigned long long)bio->bi_iter.bi_sector,
1258 		      bio->bi_iter.bi_size, wc->block_size);
1259 		goto unlock_error;
1260 	}
1261 
1262 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1263 		if (writecache_has_error(wc))
1264 			goto unlock_error;
1265 		if (WC_MODE_PMEM(wc)) {
1266 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1267 			goto unlock_remap_origin;
1268 		} else {
1269 			writecache_offload_bio(wc, bio);
1270 			goto unlock_return;
1271 		}
1272 	}
1273 
1274 	if (bio_data_dir(bio) == READ) {
1275 read_next_block:
1276 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1277 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1278 			if (WC_MODE_PMEM(wc)) {
1279 				bio_copy_block(wc, bio, memory_data(wc, e));
1280 				if (bio->bi_iter.bi_size)
1281 					goto read_next_block;
1282 				goto unlock_submit;
1283 			} else {
1284 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1285 				bio_set_dev(bio, wc->ssd_dev->bdev);
1286 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1287 				if (!writecache_entry_is_committed(wc, e))
1288 					writecache_wait_for_ios(wc, WRITE);
1289 				goto unlock_remap;
1290 			}
1291 		} else {
1292 			if (e) {
1293 				sector_t next_boundary =
1294 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1295 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1296 					dm_accept_partial_bio(bio, next_boundary);
1297 				}
1298 			}
1299 			goto unlock_remap_origin;
1300 		}
1301 	} else {
1302 		do {
1303 			bool found_entry = false;
1304 			if (writecache_has_error(wc))
1305 				goto unlock_error;
1306 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1307 			if (e) {
1308 				if (!writecache_entry_is_committed(wc, e))
1309 					goto bio_copy;
1310 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1311 					wc->overwrote_committed = true;
1312 					goto bio_copy;
1313 				}
1314 				found_entry = true;
1315 			} else {
1316 				if (unlikely(wc->cleaner))
1317 					goto direct_write;
1318 			}
1319 			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1320 			if (unlikely(!e)) {
1321 				if (!found_entry) {
1322 direct_write:
1323 					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1324 					if (e) {
1325 						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1326 						BUG_ON(!next_boundary);
1327 						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1328 							dm_accept_partial_bio(bio, next_boundary);
1329 						}
1330 					}
1331 					goto unlock_remap_origin;
1332 				}
1333 				writecache_wait_on_freelist(wc);
1334 				continue;
1335 			}
1336 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1337 			writecache_insert_entry(wc, e);
1338 			wc->uncommitted_blocks++;
1339 bio_copy:
1340 			if (WC_MODE_PMEM(wc)) {
1341 				bio_copy_block(wc, bio, memory_data(wc, e));
1342 			} else {
1343 				unsigned bio_size = wc->block_size;
1344 				sector_t start_cache_sec = cache_sector(wc, e);
1345 				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1346 
1347 				while (bio_size < bio->bi_iter.bi_size) {
1348 					struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1349 					if (!f)
1350 						break;
1351 					write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1352 									(bio_size >> SECTOR_SHIFT), wc->seq_count);
1353 					writecache_insert_entry(wc, f);
1354 					wc->uncommitted_blocks++;
1355 					bio_size += wc->block_size;
1356 					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1357 				}
1358 
1359 				bio_set_dev(bio, wc->ssd_dev->bdev);
1360 				bio->bi_iter.bi_sector = start_cache_sec;
1361 				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1362 
1363 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1364 					wc->uncommitted_blocks = 0;
1365 					queue_work(wc->writeback_wq, &wc->flush_work);
1366 				} else {
1367 					writecache_schedule_autocommit(wc);
1368 				}
1369 				goto unlock_remap;
1370 			}
1371 		} while (bio->bi_iter.bi_size);
1372 
1373 		if (unlikely(bio->bi_opf & REQ_FUA ||
1374 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1375 			writecache_flush(wc);
1376 		else
1377 			writecache_schedule_autocommit(wc);
1378 		goto unlock_submit;
1379 	}
1380 
1381 unlock_remap_origin:
1382 	bio_set_dev(bio, wc->dev->bdev);
1383 	wc_unlock(wc);
1384 	return DM_MAPIO_REMAPPED;
1385 
1386 unlock_remap:
1387 	/* make sure that writecache_end_io decrements bio_in_progress: */
1388 	bio->bi_private = (void *)1;
1389 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1390 	wc_unlock(wc);
1391 	return DM_MAPIO_REMAPPED;
1392 
1393 unlock_submit:
1394 	wc_unlock(wc);
1395 	bio_endio(bio);
1396 	return DM_MAPIO_SUBMITTED;
1397 
1398 unlock_return:
1399 	wc_unlock(wc);
1400 	return DM_MAPIO_SUBMITTED;
1401 
1402 unlock_error:
1403 	wc_unlock(wc);
1404 	bio_io_error(bio);
1405 	return DM_MAPIO_SUBMITTED;
1406 }
1407 
1408 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1409 {
1410 	struct dm_writecache *wc = ti->private;
1411 
1412 	if (bio->bi_private != NULL) {
1413 		int dir = bio_data_dir(bio);
1414 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1415 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1416 				wake_up(&wc->bio_in_progress_wait[dir]);
1417 	}
1418 	return 0;
1419 }
1420 
1421 static int writecache_iterate_devices(struct dm_target *ti,
1422 				      iterate_devices_callout_fn fn, void *data)
1423 {
1424 	struct dm_writecache *wc = ti->private;
1425 
1426 	return fn(ti, wc->dev, 0, ti->len, data);
1427 }
1428 
1429 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1430 {
1431 	struct dm_writecache *wc = ti->private;
1432 
1433 	if (limits->logical_block_size < wc->block_size)
1434 		limits->logical_block_size = wc->block_size;
1435 
1436 	if (limits->physical_block_size < wc->block_size)
1437 		limits->physical_block_size = wc->block_size;
1438 
1439 	if (limits->io_min < wc->block_size)
1440 		limits->io_min = wc->block_size;
1441 }
1442 
1443 
1444 static void writecache_writeback_endio(struct bio *bio)
1445 {
1446 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1447 	struct dm_writecache *wc = wb->wc;
1448 	unsigned long flags;
1449 
1450 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1451 	if (unlikely(list_empty(&wc->endio_list)))
1452 		wake_up_process(wc->endio_thread);
1453 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1454 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1455 }
1456 
1457 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1458 {
1459 	struct copy_struct *c = ptr;
1460 	struct dm_writecache *wc = c->wc;
1461 
1462 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1463 
1464 	raw_spin_lock_irq(&wc->endio_list_lock);
1465 	if (unlikely(list_empty(&wc->endio_list)))
1466 		wake_up_process(wc->endio_thread);
1467 	list_add_tail(&c->endio_entry, &wc->endio_list);
1468 	raw_spin_unlock_irq(&wc->endio_list_lock);
1469 }
1470 
1471 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1472 {
1473 	unsigned i;
1474 	struct writeback_struct *wb;
1475 	struct wc_entry *e;
1476 	unsigned long n_walked = 0;
1477 
1478 	do {
1479 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1480 		list_del(&wb->endio_entry);
1481 
1482 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1483 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1484 					"write error %d", wb->bio.bi_status);
1485 		i = 0;
1486 		do {
1487 			e = wb->wc_list[i];
1488 			BUG_ON(!e->write_in_progress);
1489 			e->write_in_progress = false;
1490 			INIT_LIST_HEAD(&e->lru);
1491 			if (!writecache_has_error(wc))
1492 				writecache_free_entry(wc, e);
1493 			BUG_ON(!wc->writeback_size);
1494 			wc->writeback_size--;
1495 			n_walked++;
1496 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1497 				writecache_commit_flushed(wc, false);
1498 				wc_unlock(wc);
1499 				wc_lock(wc);
1500 				n_walked = 0;
1501 			}
1502 		} while (++i < wb->wc_list_n);
1503 
1504 		if (wb->wc_list != wb->wc_list_inline)
1505 			kfree(wb->wc_list);
1506 		bio_put(&wb->bio);
1507 	} while (!list_empty(list));
1508 }
1509 
1510 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1511 {
1512 	struct copy_struct *c;
1513 	struct wc_entry *e;
1514 
1515 	do {
1516 		c = list_entry(list->next, struct copy_struct, endio_entry);
1517 		list_del(&c->endio_entry);
1518 
1519 		if (unlikely(c->error))
1520 			writecache_error(wc, c->error, "copy error");
1521 
1522 		e = c->e;
1523 		do {
1524 			BUG_ON(!e->write_in_progress);
1525 			e->write_in_progress = false;
1526 			INIT_LIST_HEAD(&e->lru);
1527 			if (!writecache_has_error(wc))
1528 				writecache_free_entry(wc, e);
1529 
1530 			BUG_ON(!wc->writeback_size);
1531 			wc->writeback_size--;
1532 			e++;
1533 		} while (--c->n_entries);
1534 		mempool_free(c, &wc->copy_pool);
1535 	} while (!list_empty(list));
1536 }
1537 
1538 static int writecache_endio_thread(void *data)
1539 {
1540 	struct dm_writecache *wc = data;
1541 
1542 	while (1) {
1543 		struct list_head list;
1544 
1545 		raw_spin_lock_irq(&wc->endio_list_lock);
1546 		if (!list_empty(&wc->endio_list))
1547 			goto pop_from_list;
1548 		set_current_state(TASK_INTERRUPTIBLE);
1549 		raw_spin_unlock_irq(&wc->endio_list_lock);
1550 
1551 		if (unlikely(kthread_should_stop())) {
1552 			set_current_state(TASK_RUNNING);
1553 			break;
1554 		}
1555 
1556 		schedule();
1557 
1558 		continue;
1559 
1560 pop_from_list:
1561 		list = wc->endio_list;
1562 		list.next->prev = list.prev->next = &list;
1563 		INIT_LIST_HEAD(&wc->endio_list);
1564 		raw_spin_unlock_irq(&wc->endio_list_lock);
1565 
1566 		if (!WC_MODE_FUA(wc))
1567 			writecache_disk_flush(wc, wc->dev);
1568 
1569 		wc_lock(wc);
1570 
1571 		if (WC_MODE_PMEM(wc)) {
1572 			__writecache_endio_pmem(wc, &list);
1573 		} else {
1574 			__writecache_endio_ssd(wc, &list);
1575 			writecache_wait_for_ios(wc, READ);
1576 		}
1577 
1578 		writecache_commit_flushed(wc, false);
1579 
1580 		wc_unlock(wc);
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1587 {
1588 	struct dm_writecache *wc = wb->wc;
1589 	unsigned block_size = wc->block_size;
1590 	void *address = memory_data(wc, e);
1591 
1592 	persistent_memory_flush_cache(address, block_size);
1593 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1594 			    block_size, persistent_memory_page_offset(address)) != 0;
1595 }
1596 
1597 struct writeback_list {
1598 	struct list_head list;
1599 	size_t size;
1600 };
1601 
1602 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1603 {
1604 	if (unlikely(wc->max_writeback_jobs)) {
1605 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1606 			wc_lock(wc);
1607 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1608 				writecache_wait_on_freelist(wc);
1609 			wc_unlock(wc);
1610 		}
1611 	}
1612 	cond_resched();
1613 }
1614 
1615 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1616 {
1617 	struct wc_entry *e, *f;
1618 	struct bio *bio;
1619 	struct writeback_struct *wb;
1620 	unsigned max_pages;
1621 
1622 	while (wbl->size) {
1623 		wbl->size--;
1624 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1625 		list_del(&e->lru);
1626 
1627 		max_pages = e->wc_list_contiguous;
1628 
1629 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1630 		wb = container_of(bio, struct writeback_struct, bio);
1631 		wb->wc = wc;
1632 		bio->bi_end_io = writecache_writeback_endio;
1633 		bio_set_dev(bio, wc->dev->bdev);
1634 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1635 		if (max_pages <= WB_LIST_INLINE ||
1636 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1637 							   GFP_NOIO | __GFP_NORETRY |
1638 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1639 			wb->wc_list = wb->wc_list_inline;
1640 			max_pages = WB_LIST_INLINE;
1641 		}
1642 
1643 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1644 
1645 		wb->wc_list[0] = e;
1646 		wb->wc_list_n = 1;
1647 
1648 		while (wbl->size && wb->wc_list_n < max_pages) {
1649 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1650 			if (read_original_sector(wc, f) !=
1651 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1652 				break;
1653 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1654 				break;
1655 			wbl->size--;
1656 			list_del(&f->lru);
1657 			wb->wc_list[wb->wc_list_n++] = f;
1658 			e = f;
1659 		}
1660 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1661 		if (writecache_has_error(wc)) {
1662 			bio->bi_status = BLK_STS_IOERR;
1663 			bio_endio(bio);
1664 		} else {
1665 			submit_bio(bio);
1666 		}
1667 
1668 		__writeback_throttle(wc, wbl);
1669 	}
1670 }
1671 
1672 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1673 {
1674 	struct wc_entry *e, *f;
1675 	struct dm_io_region from, to;
1676 	struct copy_struct *c;
1677 
1678 	while (wbl->size) {
1679 		unsigned n_sectors;
1680 
1681 		wbl->size--;
1682 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1683 		list_del(&e->lru);
1684 
1685 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1686 
1687 		from.bdev = wc->ssd_dev->bdev;
1688 		from.sector = cache_sector(wc, e);
1689 		from.count = n_sectors;
1690 		to.bdev = wc->dev->bdev;
1691 		to.sector = read_original_sector(wc, e);
1692 		to.count = n_sectors;
1693 
1694 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1695 		c->wc = wc;
1696 		c->e = e;
1697 		c->n_entries = e->wc_list_contiguous;
1698 
1699 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1700 			wbl->size--;
1701 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1702 			BUG_ON(f != e + 1);
1703 			list_del(&f->lru);
1704 			e = f;
1705 		}
1706 
1707 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1708 
1709 		__writeback_throttle(wc, wbl);
1710 	}
1711 }
1712 
1713 static void writecache_writeback(struct work_struct *work)
1714 {
1715 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1716 	struct blk_plug plug;
1717 	struct wc_entry *f, *uninitialized_var(g), *e = NULL;
1718 	struct rb_node *node, *next_node;
1719 	struct list_head skipped;
1720 	struct writeback_list wbl;
1721 	unsigned long n_walked;
1722 
1723 	wc_lock(wc);
1724 restart:
1725 	if (writecache_has_error(wc)) {
1726 		wc_unlock(wc);
1727 		return;
1728 	}
1729 
1730 	if (unlikely(wc->writeback_all)) {
1731 		if (writecache_wait_for_writeback(wc))
1732 			goto restart;
1733 	}
1734 
1735 	if (wc->overwrote_committed) {
1736 		writecache_wait_for_ios(wc, WRITE);
1737 	}
1738 
1739 	n_walked = 0;
1740 	INIT_LIST_HEAD(&skipped);
1741 	INIT_LIST_HEAD(&wbl.list);
1742 	wbl.size = 0;
1743 	while (!list_empty(&wc->lru) &&
1744 	       (wc->writeback_all ||
1745 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1746 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1747 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1748 
1749 		n_walked++;
1750 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1751 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1752 			queue_work(wc->writeback_wq, &wc->writeback_work);
1753 			break;
1754 		}
1755 
1756 		if (unlikely(wc->writeback_all)) {
1757 			if (unlikely(!e)) {
1758 				writecache_flush(wc);
1759 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1760 			} else
1761 				e = g;
1762 		} else
1763 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1764 		BUG_ON(e->write_in_progress);
1765 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1766 			writecache_flush(wc);
1767 		}
1768 		node = rb_prev(&e->rb_node);
1769 		if (node) {
1770 			f = container_of(node, struct wc_entry, rb_node);
1771 			if (unlikely(read_original_sector(wc, f) ==
1772 				     read_original_sector(wc, e))) {
1773 				BUG_ON(!f->write_in_progress);
1774 				list_del(&e->lru);
1775 				list_add(&e->lru, &skipped);
1776 				cond_resched();
1777 				continue;
1778 			}
1779 		}
1780 		wc->writeback_size++;
1781 		list_del(&e->lru);
1782 		list_add(&e->lru, &wbl.list);
1783 		wbl.size++;
1784 		e->write_in_progress = true;
1785 		e->wc_list_contiguous = 1;
1786 
1787 		f = e;
1788 
1789 		while (1) {
1790 			next_node = rb_next(&f->rb_node);
1791 			if (unlikely(!next_node))
1792 				break;
1793 			g = container_of(next_node, struct wc_entry, rb_node);
1794 			if (unlikely(read_original_sector(wc, g) ==
1795 			    read_original_sector(wc, f))) {
1796 				f = g;
1797 				continue;
1798 			}
1799 			if (read_original_sector(wc, g) !=
1800 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1801 				break;
1802 			if (unlikely(g->write_in_progress))
1803 				break;
1804 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1805 				break;
1806 
1807 			if (!WC_MODE_PMEM(wc)) {
1808 				if (g != f + 1)
1809 					break;
1810 			}
1811 
1812 			n_walked++;
1813 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1814 			//	break;
1815 
1816 			wc->writeback_size++;
1817 			list_del(&g->lru);
1818 			list_add(&g->lru, &wbl.list);
1819 			wbl.size++;
1820 			g->write_in_progress = true;
1821 			g->wc_list_contiguous = BIO_MAX_PAGES;
1822 			f = g;
1823 			e->wc_list_contiguous++;
1824 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1825 				if (unlikely(wc->writeback_all)) {
1826 					next_node = rb_next(&f->rb_node);
1827 					if (likely(next_node))
1828 						g = container_of(next_node, struct wc_entry, rb_node);
1829 				}
1830 				break;
1831 			}
1832 		}
1833 		cond_resched();
1834 	}
1835 
1836 	if (!list_empty(&skipped)) {
1837 		list_splice_tail(&skipped, &wc->lru);
1838 		/*
1839 		 * If we didn't do any progress, we must wait until some
1840 		 * writeback finishes to avoid burning CPU in a loop
1841 		 */
1842 		if (unlikely(!wbl.size))
1843 			writecache_wait_for_writeback(wc);
1844 	}
1845 
1846 	wc_unlock(wc);
1847 
1848 	blk_start_plug(&plug);
1849 
1850 	if (WC_MODE_PMEM(wc))
1851 		__writecache_writeback_pmem(wc, &wbl);
1852 	else
1853 		__writecache_writeback_ssd(wc, &wbl);
1854 
1855 	blk_finish_plug(&plug);
1856 
1857 	if (unlikely(wc->writeback_all)) {
1858 		wc_lock(wc);
1859 		while (writecache_wait_for_writeback(wc));
1860 		wc_unlock(wc);
1861 	}
1862 }
1863 
1864 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1865 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1866 {
1867 	uint64_t n_blocks, offset;
1868 	struct wc_entry e;
1869 
1870 	n_blocks = device_size;
1871 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1872 
1873 	while (1) {
1874 		if (!n_blocks)
1875 			return -ENOSPC;
1876 		/* Verify the following entries[n_blocks] won't overflow */
1877 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1878 				 sizeof(struct wc_memory_entry)))
1879 			return -EFBIG;
1880 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1881 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1882 		if (offset + n_blocks * block_size <= device_size)
1883 			break;
1884 		n_blocks--;
1885 	}
1886 
1887 	/* check if the bit field overflows */
1888 	e.index = n_blocks;
1889 	if (e.index != n_blocks)
1890 		return -EFBIG;
1891 
1892 	if (n_blocks_p)
1893 		*n_blocks_p = n_blocks;
1894 	if (n_metadata_blocks_p)
1895 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1896 	return 0;
1897 }
1898 
1899 static int init_memory(struct dm_writecache *wc)
1900 {
1901 	size_t b;
1902 	int r;
1903 
1904 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1905 	if (r)
1906 		return r;
1907 
1908 	r = writecache_alloc_entries(wc);
1909 	if (r)
1910 		return r;
1911 
1912 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1913 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1914 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1915 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1916 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1917 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1918 
1919 	for (b = 0; b < wc->n_blocks; b++) {
1920 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1921 		cond_resched();
1922 	}
1923 
1924 	writecache_flush_all_metadata(wc);
1925 	writecache_commit_flushed(wc, false);
1926 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1927 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1928 	writecache_commit_flushed(wc, false);
1929 
1930 	return 0;
1931 }
1932 
1933 static void writecache_dtr(struct dm_target *ti)
1934 {
1935 	struct dm_writecache *wc = ti->private;
1936 
1937 	if (!wc)
1938 		return;
1939 
1940 	if (wc->endio_thread)
1941 		kthread_stop(wc->endio_thread);
1942 
1943 	if (wc->flush_thread)
1944 		kthread_stop(wc->flush_thread);
1945 
1946 	bioset_exit(&wc->bio_set);
1947 
1948 	mempool_exit(&wc->copy_pool);
1949 
1950 	if (wc->writeback_wq)
1951 		destroy_workqueue(wc->writeback_wq);
1952 
1953 	if (wc->dev)
1954 		dm_put_device(ti, wc->dev);
1955 
1956 	if (wc->ssd_dev)
1957 		dm_put_device(ti, wc->ssd_dev);
1958 
1959 	if (wc->entries)
1960 		vfree(wc->entries);
1961 
1962 	if (wc->memory_map) {
1963 		if (WC_MODE_PMEM(wc))
1964 			persistent_memory_release(wc);
1965 		else
1966 			vfree(wc->memory_map);
1967 	}
1968 
1969 	if (wc->dm_kcopyd)
1970 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
1971 
1972 	if (wc->dm_io)
1973 		dm_io_client_destroy(wc->dm_io);
1974 
1975 	if (wc->dirty_bitmap)
1976 		vfree(wc->dirty_bitmap);
1977 
1978 	kfree(wc);
1979 }
1980 
1981 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1982 {
1983 	struct dm_writecache *wc;
1984 	struct dm_arg_set as;
1985 	const char *string;
1986 	unsigned opt_params;
1987 	size_t offset, data_size;
1988 	int i, r;
1989 	char dummy;
1990 	int high_wm_percent = HIGH_WATERMARK;
1991 	int low_wm_percent = LOW_WATERMARK;
1992 	uint64_t x;
1993 	struct wc_memory_superblock s;
1994 
1995 	static struct dm_arg _args[] = {
1996 		{0, 10, "Invalid number of feature args"},
1997 	};
1998 
1999 	as.argc = argc;
2000 	as.argv = argv;
2001 
2002 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2003 	if (!wc) {
2004 		ti->error = "Cannot allocate writecache structure";
2005 		r = -ENOMEM;
2006 		goto bad;
2007 	}
2008 	ti->private = wc;
2009 	wc->ti = ti;
2010 
2011 	mutex_init(&wc->lock);
2012 	wc->max_age = MAX_AGE_UNSPECIFIED;
2013 	writecache_poison_lists(wc);
2014 	init_waitqueue_head(&wc->freelist_wait);
2015 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2016 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2017 
2018 	for (i = 0; i < 2; i++) {
2019 		atomic_set(&wc->bio_in_progress[i], 0);
2020 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2021 	}
2022 
2023 	wc->dm_io = dm_io_client_create();
2024 	if (IS_ERR(wc->dm_io)) {
2025 		r = PTR_ERR(wc->dm_io);
2026 		ti->error = "Unable to allocate dm-io client";
2027 		wc->dm_io = NULL;
2028 		goto bad;
2029 	}
2030 
2031 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2032 	if (!wc->writeback_wq) {
2033 		r = -ENOMEM;
2034 		ti->error = "Could not allocate writeback workqueue";
2035 		goto bad;
2036 	}
2037 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2038 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2039 
2040 	raw_spin_lock_init(&wc->endio_list_lock);
2041 	INIT_LIST_HEAD(&wc->endio_list);
2042 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2043 	if (IS_ERR(wc->endio_thread)) {
2044 		r = PTR_ERR(wc->endio_thread);
2045 		wc->endio_thread = NULL;
2046 		ti->error = "Couldn't spawn endio thread";
2047 		goto bad;
2048 	}
2049 	wake_up_process(wc->endio_thread);
2050 
2051 	/*
2052 	 * Parse the mode (pmem or ssd)
2053 	 */
2054 	string = dm_shift_arg(&as);
2055 	if (!string)
2056 		goto bad_arguments;
2057 
2058 	if (!strcasecmp(string, "s")) {
2059 		wc->pmem_mode = false;
2060 	} else if (!strcasecmp(string, "p")) {
2061 #ifdef DM_WRITECACHE_HAS_PMEM
2062 		wc->pmem_mode = true;
2063 		wc->writeback_fua = true;
2064 #else
2065 		/*
2066 		 * If the architecture doesn't support persistent memory or
2067 		 * the kernel doesn't support any DAX drivers, this driver can
2068 		 * only be used in SSD-only mode.
2069 		 */
2070 		r = -EOPNOTSUPP;
2071 		ti->error = "Persistent memory or DAX not supported on this system";
2072 		goto bad;
2073 #endif
2074 	} else {
2075 		goto bad_arguments;
2076 	}
2077 
2078 	if (WC_MODE_PMEM(wc)) {
2079 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2080 				offsetof(struct writeback_struct, bio),
2081 				BIOSET_NEED_BVECS);
2082 		if (r) {
2083 			ti->error = "Could not allocate bio set";
2084 			goto bad;
2085 		}
2086 	} else {
2087 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2088 		if (r) {
2089 			ti->error = "Could not allocate mempool";
2090 			goto bad;
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * Parse the origin data device
2096 	 */
2097 	string = dm_shift_arg(&as);
2098 	if (!string)
2099 		goto bad_arguments;
2100 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2101 	if (r) {
2102 		ti->error = "Origin data device lookup failed";
2103 		goto bad;
2104 	}
2105 
2106 	/*
2107 	 * Parse cache data device (be it pmem or ssd)
2108 	 */
2109 	string = dm_shift_arg(&as);
2110 	if (!string)
2111 		goto bad_arguments;
2112 
2113 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2114 	if (r) {
2115 		ti->error = "Cache data device lookup failed";
2116 		goto bad;
2117 	}
2118 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2119 
2120 	/*
2121 	 * Parse the cache block size
2122 	 */
2123 	string = dm_shift_arg(&as);
2124 	if (!string)
2125 		goto bad_arguments;
2126 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2127 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2128 	    (wc->block_size & (wc->block_size - 1))) {
2129 		r = -EINVAL;
2130 		ti->error = "Invalid block size";
2131 		goto bad;
2132 	}
2133 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2134 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2135 		r = -EINVAL;
2136 		ti->error = "Block size is smaller than device logical block size";
2137 		goto bad;
2138 	}
2139 	wc->block_size_bits = __ffs(wc->block_size);
2140 
2141 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2142 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2143 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2144 
2145 	/*
2146 	 * Parse optional arguments
2147 	 */
2148 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2149 	if (r)
2150 		goto bad;
2151 
2152 	while (opt_params) {
2153 		string = dm_shift_arg(&as), opt_params--;
2154 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2155 			unsigned long long start_sector;
2156 			string = dm_shift_arg(&as), opt_params--;
2157 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2158 				goto invalid_optional;
2159 			wc->start_sector = start_sector;
2160 			if (wc->start_sector != start_sector ||
2161 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2162 				goto invalid_optional;
2163 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2164 			string = dm_shift_arg(&as), opt_params--;
2165 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2166 				goto invalid_optional;
2167 			if (high_wm_percent < 0 || high_wm_percent > 100)
2168 				goto invalid_optional;
2169 			wc->high_wm_percent_set = true;
2170 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2171 			string = dm_shift_arg(&as), opt_params--;
2172 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2173 				goto invalid_optional;
2174 			if (low_wm_percent < 0 || low_wm_percent > 100)
2175 				goto invalid_optional;
2176 			wc->low_wm_percent_set = true;
2177 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2178 			string = dm_shift_arg(&as), opt_params--;
2179 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2180 				goto invalid_optional;
2181 			wc->max_writeback_jobs_set = true;
2182 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2183 			string = dm_shift_arg(&as), opt_params--;
2184 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2185 				goto invalid_optional;
2186 			wc->autocommit_blocks_set = true;
2187 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2188 			unsigned autocommit_msecs;
2189 			string = dm_shift_arg(&as), opt_params--;
2190 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2191 				goto invalid_optional;
2192 			if (autocommit_msecs > 3600000)
2193 				goto invalid_optional;
2194 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2195 			wc->autocommit_time_set = true;
2196 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2197 			unsigned max_age_msecs;
2198 			string = dm_shift_arg(&as), opt_params--;
2199 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2200 				goto invalid_optional;
2201 			if (max_age_msecs > 86400000)
2202 				goto invalid_optional;
2203 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2204 		} else if (!strcasecmp(string, "cleaner")) {
2205 			wc->cleaner = true;
2206 		} else if (!strcasecmp(string, "fua")) {
2207 			if (WC_MODE_PMEM(wc)) {
2208 				wc->writeback_fua = true;
2209 				wc->writeback_fua_set = true;
2210 			} else goto invalid_optional;
2211 		} else if (!strcasecmp(string, "nofua")) {
2212 			if (WC_MODE_PMEM(wc)) {
2213 				wc->writeback_fua = false;
2214 				wc->writeback_fua_set = true;
2215 			} else goto invalid_optional;
2216 		} else {
2217 invalid_optional:
2218 			r = -EINVAL;
2219 			ti->error = "Invalid optional argument";
2220 			goto bad;
2221 		}
2222 	}
2223 
2224 	if (high_wm_percent < low_wm_percent) {
2225 		r = -EINVAL;
2226 		ti->error = "High watermark must be greater than or equal to low watermark";
2227 		goto bad;
2228 	}
2229 
2230 	if (WC_MODE_PMEM(wc)) {
2231 		r = persistent_memory_claim(wc);
2232 		if (r) {
2233 			ti->error = "Unable to map persistent memory for cache";
2234 			goto bad;
2235 		}
2236 	} else {
2237 		size_t n_blocks, n_metadata_blocks;
2238 		uint64_t n_bitmap_bits;
2239 
2240 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2241 
2242 		bio_list_init(&wc->flush_list);
2243 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2244 		if (IS_ERR(wc->flush_thread)) {
2245 			r = PTR_ERR(wc->flush_thread);
2246 			wc->flush_thread = NULL;
2247 			ti->error = "Couldn't spawn flush thread";
2248 			goto bad;
2249 		}
2250 		wake_up_process(wc->flush_thread);
2251 
2252 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2253 					  &n_blocks, &n_metadata_blocks);
2254 		if (r) {
2255 			ti->error = "Invalid device size";
2256 			goto bad;
2257 		}
2258 
2259 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2260 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2261 		/* this is limitation of test_bit functions */
2262 		if (n_bitmap_bits > 1U << 31) {
2263 			r = -EFBIG;
2264 			ti->error = "Invalid device size";
2265 			goto bad;
2266 		}
2267 
2268 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2269 		if (!wc->memory_map) {
2270 			r = -ENOMEM;
2271 			ti->error = "Unable to allocate memory for metadata";
2272 			goto bad;
2273 		}
2274 
2275 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2276 		if (IS_ERR(wc->dm_kcopyd)) {
2277 			r = PTR_ERR(wc->dm_kcopyd);
2278 			ti->error = "Unable to allocate dm-kcopyd client";
2279 			wc->dm_kcopyd = NULL;
2280 			goto bad;
2281 		}
2282 
2283 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2284 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2285 			BITS_PER_LONG * sizeof(unsigned long);
2286 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2287 		if (!wc->dirty_bitmap) {
2288 			r = -ENOMEM;
2289 			ti->error = "Unable to allocate dirty bitmap";
2290 			goto bad;
2291 		}
2292 
2293 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2294 		if (r) {
2295 			ti->error = "Unable to read first block of metadata";
2296 			goto bad;
2297 		}
2298 	}
2299 
2300 	r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2301 	if (r) {
2302 		ti->error = "Hardware memory error when reading superblock";
2303 		goto bad;
2304 	}
2305 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2306 		r = init_memory(wc);
2307 		if (r) {
2308 			ti->error = "Unable to initialize device";
2309 			goto bad;
2310 		}
2311 		r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2312 		if (r) {
2313 			ti->error = "Hardware memory error when reading superblock";
2314 			goto bad;
2315 		}
2316 	}
2317 
2318 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2319 		ti->error = "Invalid magic in the superblock";
2320 		r = -EINVAL;
2321 		goto bad;
2322 	}
2323 
2324 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2325 		ti->error = "Invalid version in the superblock";
2326 		r = -EINVAL;
2327 		goto bad;
2328 	}
2329 
2330 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2331 		ti->error = "Block size does not match superblock";
2332 		r = -EINVAL;
2333 		goto bad;
2334 	}
2335 
2336 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2337 
2338 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2339 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2340 overflow:
2341 		ti->error = "Overflow in size calculation";
2342 		r = -EINVAL;
2343 		goto bad;
2344 	}
2345 	offset += sizeof(struct wc_memory_superblock);
2346 	if (offset < sizeof(struct wc_memory_superblock))
2347 		goto overflow;
2348 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2349 	data_size = wc->n_blocks * (size_t)wc->block_size;
2350 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2351 	    (offset + data_size < offset))
2352 		goto overflow;
2353 	if (offset + data_size > wc->memory_map_size) {
2354 		ti->error = "Memory area is too small";
2355 		r = -EINVAL;
2356 		goto bad;
2357 	}
2358 
2359 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2360 	wc->block_start = (char *)sb(wc) + offset;
2361 
2362 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2363 	x += 50;
2364 	do_div(x, 100);
2365 	wc->freelist_high_watermark = x;
2366 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2367 	x += 50;
2368 	do_div(x, 100);
2369 	wc->freelist_low_watermark = x;
2370 
2371 	if (wc->cleaner)
2372 		activate_cleaner(wc);
2373 
2374 	r = writecache_alloc_entries(wc);
2375 	if (r) {
2376 		ti->error = "Cannot allocate memory";
2377 		goto bad;
2378 	}
2379 
2380 	ti->num_flush_bios = 1;
2381 	ti->flush_supported = true;
2382 	ti->num_discard_bios = 1;
2383 
2384 	if (WC_MODE_PMEM(wc))
2385 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2386 
2387 	return 0;
2388 
2389 bad_arguments:
2390 	r = -EINVAL;
2391 	ti->error = "Bad arguments";
2392 bad:
2393 	writecache_dtr(ti);
2394 	return r;
2395 }
2396 
2397 static void writecache_status(struct dm_target *ti, status_type_t type,
2398 			      unsigned status_flags, char *result, unsigned maxlen)
2399 {
2400 	struct dm_writecache *wc = ti->private;
2401 	unsigned extra_args;
2402 	unsigned sz = 0;
2403 	uint64_t x;
2404 
2405 	switch (type) {
2406 	case STATUSTYPE_INFO:
2407 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2408 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2409 		       (unsigned long long)wc->writeback_size);
2410 		break;
2411 	case STATUSTYPE_TABLE:
2412 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2413 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2414 		extra_args = 0;
2415 		if (wc->start_sector)
2416 			extra_args += 2;
2417 		if (wc->high_wm_percent_set && !wc->cleaner)
2418 			extra_args += 2;
2419 		if (wc->low_wm_percent_set && !wc->cleaner)
2420 			extra_args += 2;
2421 		if (wc->max_writeback_jobs_set)
2422 			extra_args += 2;
2423 		if (wc->autocommit_blocks_set)
2424 			extra_args += 2;
2425 		if (wc->autocommit_time_set)
2426 			extra_args += 2;
2427 		if (wc->cleaner)
2428 			extra_args++;
2429 		if (wc->writeback_fua_set)
2430 			extra_args++;
2431 
2432 		DMEMIT("%u", extra_args);
2433 		if (wc->start_sector)
2434 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2435 		if (wc->high_wm_percent_set && !wc->cleaner) {
2436 			x = (uint64_t)wc->freelist_high_watermark * 100;
2437 			x += wc->n_blocks / 2;
2438 			do_div(x, (size_t)wc->n_blocks);
2439 			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2440 		}
2441 		if (wc->low_wm_percent_set && !wc->cleaner) {
2442 			x = (uint64_t)wc->freelist_low_watermark * 100;
2443 			x += wc->n_blocks / 2;
2444 			do_div(x, (size_t)wc->n_blocks);
2445 			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2446 		}
2447 		if (wc->max_writeback_jobs_set)
2448 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2449 		if (wc->autocommit_blocks_set)
2450 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2451 		if (wc->autocommit_time_set)
2452 			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2453 		if (wc->max_age != MAX_AGE_UNSPECIFIED)
2454 			DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age));
2455 		if (wc->cleaner)
2456 			DMEMIT(" cleaner");
2457 		if (wc->writeback_fua_set)
2458 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2459 		break;
2460 	}
2461 }
2462 
2463 static struct target_type writecache_target = {
2464 	.name			= "writecache",
2465 	.version		= {1, 3, 0},
2466 	.module			= THIS_MODULE,
2467 	.ctr			= writecache_ctr,
2468 	.dtr			= writecache_dtr,
2469 	.status			= writecache_status,
2470 	.postsuspend		= writecache_suspend,
2471 	.resume			= writecache_resume,
2472 	.message		= writecache_message,
2473 	.map			= writecache_map,
2474 	.end_io			= writecache_end_io,
2475 	.iterate_devices	= writecache_iterate_devices,
2476 	.io_hints		= writecache_io_hints,
2477 };
2478 
2479 static int __init dm_writecache_init(void)
2480 {
2481 	int r;
2482 
2483 	r = dm_register_target(&writecache_target);
2484 	if (r < 0) {
2485 		DMERR("register failed %d", r);
2486 		return r;
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 static void __exit dm_writecache_exit(void)
2493 {
2494 	dm_unregister_target(&writecache_target);
2495 }
2496 
2497 module_init(dm_writecache_init);
2498 module_exit(dm_writecache_exit);
2499 
2500 MODULE_DESCRIPTION(DM_NAME " writecache target");
2501 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2502 MODULE_LICENSE("GPL");
2503