1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 #define MAX_AGE_DIV 16 30 #define MAX_AGE_UNSPECIFIED -1UL 31 32 #define BITMAP_GRANULARITY 65536 33 #if BITMAP_GRANULARITY < PAGE_SIZE 34 #undef BITMAP_GRANULARITY 35 #define BITMAP_GRANULARITY PAGE_SIZE 36 #endif 37 38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 39 #define DM_WRITECACHE_HAS_PMEM 40 #endif 41 42 #ifdef DM_WRITECACHE_HAS_PMEM 43 #define pmem_assign(dest, src) \ 44 do { \ 45 typeof(dest) uniq = (src); \ 46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 47 } while (0) 48 #else 49 #define pmem_assign(dest, src) ((dest) = (src)) 50 #endif 51 52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 54 #endif 55 56 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 57 #define MEMORY_SUPERBLOCK_VERSION 1 58 59 struct wc_memory_entry { 60 __le64 original_sector; 61 __le64 seq_count; 62 }; 63 64 struct wc_memory_superblock { 65 union { 66 struct { 67 __le32 magic; 68 __le32 version; 69 __le32 block_size; 70 __le32 pad; 71 __le64 n_blocks; 72 __le64 seq_count; 73 }; 74 __le64 padding[8]; 75 }; 76 struct wc_memory_entry entries[0]; 77 }; 78 79 struct wc_entry { 80 struct rb_node rb_node; 81 struct list_head lru; 82 unsigned short wc_list_contiguous; 83 bool write_in_progress 84 #if BITS_PER_LONG == 64 85 :1 86 #endif 87 ; 88 unsigned long index 89 #if BITS_PER_LONG == 64 90 :47 91 #endif 92 ; 93 unsigned long age; 94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 95 uint64_t original_sector; 96 uint64_t seq_count; 97 #endif 98 }; 99 100 #ifdef DM_WRITECACHE_HAS_PMEM 101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 103 #else 104 #define WC_MODE_PMEM(wc) false 105 #define WC_MODE_FUA(wc) false 106 #endif 107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 108 109 struct dm_writecache { 110 struct mutex lock; 111 struct list_head lru; 112 union { 113 struct list_head freelist; 114 struct { 115 struct rb_root freetree; 116 struct wc_entry *current_free; 117 }; 118 }; 119 struct rb_root tree; 120 121 size_t freelist_size; 122 size_t writeback_size; 123 size_t freelist_high_watermark; 124 size_t freelist_low_watermark; 125 unsigned long max_age; 126 127 unsigned uncommitted_blocks; 128 unsigned autocommit_blocks; 129 unsigned max_writeback_jobs; 130 131 int error; 132 133 unsigned long autocommit_jiffies; 134 struct timer_list autocommit_timer; 135 struct wait_queue_head freelist_wait; 136 137 struct timer_list max_age_timer; 138 139 atomic_t bio_in_progress[2]; 140 struct wait_queue_head bio_in_progress_wait[2]; 141 142 struct dm_target *ti; 143 struct dm_dev *dev; 144 struct dm_dev *ssd_dev; 145 sector_t start_sector; 146 void *memory_map; 147 uint64_t memory_map_size; 148 size_t metadata_sectors; 149 size_t n_blocks; 150 uint64_t seq_count; 151 void *block_start; 152 struct wc_entry *entries; 153 unsigned block_size; 154 unsigned char block_size_bits; 155 156 bool pmem_mode:1; 157 bool writeback_fua:1; 158 159 bool overwrote_committed:1; 160 bool memory_vmapped:1; 161 162 bool high_wm_percent_set:1; 163 bool low_wm_percent_set:1; 164 bool max_writeback_jobs_set:1; 165 bool autocommit_blocks_set:1; 166 bool autocommit_time_set:1; 167 bool writeback_fua_set:1; 168 bool flush_on_suspend:1; 169 bool cleaner:1; 170 171 unsigned writeback_all; 172 struct workqueue_struct *writeback_wq; 173 struct work_struct writeback_work; 174 struct work_struct flush_work; 175 176 struct dm_io_client *dm_io; 177 178 raw_spinlock_t endio_list_lock; 179 struct list_head endio_list; 180 struct task_struct *endio_thread; 181 182 struct task_struct *flush_thread; 183 struct bio_list flush_list; 184 185 struct dm_kcopyd_client *dm_kcopyd; 186 unsigned long *dirty_bitmap; 187 unsigned dirty_bitmap_size; 188 189 struct bio_set bio_set; 190 mempool_t copy_pool; 191 }; 192 193 #define WB_LIST_INLINE 16 194 195 struct writeback_struct { 196 struct list_head endio_entry; 197 struct dm_writecache *wc; 198 struct wc_entry **wc_list; 199 unsigned wc_list_n; 200 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 201 struct bio bio; 202 }; 203 204 struct copy_struct { 205 struct list_head endio_entry; 206 struct dm_writecache *wc; 207 struct wc_entry *e; 208 unsigned n_entries; 209 int error; 210 }; 211 212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 213 "A percentage of time allocated for data copying"); 214 215 static void wc_lock(struct dm_writecache *wc) 216 { 217 mutex_lock(&wc->lock); 218 } 219 220 static void wc_unlock(struct dm_writecache *wc) 221 { 222 mutex_unlock(&wc->lock); 223 } 224 225 #ifdef DM_WRITECACHE_HAS_PMEM 226 static int persistent_memory_claim(struct dm_writecache *wc) 227 { 228 int r; 229 loff_t s; 230 long p, da; 231 pfn_t pfn; 232 int id; 233 struct page **pages; 234 235 wc->memory_vmapped = false; 236 237 if (!wc->ssd_dev->dax_dev) { 238 r = -EOPNOTSUPP; 239 goto err1; 240 } 241 s = wc->memory_map_size; 242 p = s >> PAGE_SHIFT; 243 if (!p) { 244 r = -EINVAL; 245 goto err1; 246 } 247 if (p != s >> PAGE_SHIFT) { 248 r = -EOVERFLOW; 249 goto err1; 250 } 251 252 id = dax_read_lock(); 253 254 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 255 if (da < 0) { 256 wc->memory_map = NULL; 257 r = da; 258 goto err2; 259 } 260 if (!pfn_t_has_page(pfn)) { 261 wc->memory_map = NULL; 262 r = -EOPNOTSUPP; 263 goto err2; 264 } 265 if (da != p) { 266 long i; 267 wc->memory_map = NULL; 268 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 269 if (!pages) { 270 r = -ENOMEM; 271 goto err2; 272 } 273 i = 0; 274 do { 275 long daa; 276 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 277 NULL, &pfn); 278 if (daa <= 0) { 279 r = daa ? daa : -EINVAL; 280 goto err3; 281 } 282 if (!pfn_t_has_page(pfn)) { 283 r = -EOPNOTSUPP; 284 goto err3; 285 } 286 while (daa-- && i < p) { 287 pages[i++] = pfn_t_to_page(pfn); 288 pfn.val++; 289 } 290 } while (i < p); 291 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 292 if (!wc->memory_map) { 293 r = -ENOMEM; 294 goto err3; 295 } 296 kvfree(pages); 297 wc->memory_vmapped = true; 298 } 299 300 dax_read_unlock(id); 301 302 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 303 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 304 305 return 0; 306 err3: 307 kvfree(pages); 308 err2: 309 dax_read_unlock(id); 310 err1: 311 return r; 312 } 313 #else 314 static int persistent_memory_claim(struct dm_writecache *wc) 315 { 316 BUG(); 317 } 318 #endif 319 320 static void persistent_memory_release(struct dm_writecache *wc) 321 { 322 if (wc->memory_vmapped) 323 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 324 } 325 326 static struct page *persistent_memory_page(void *addr) 327 { 328 if (is_vmalloc_addr(addr)) 329 return vmalloc_to_page(addr); 330 else 331 return virt_to_page(addr); 332 } 333 334 static unsigned persistent_memory_page_offset(void *addr) 335 { 336 return (unsigned long)addr & (PAGE_SIZE - 1); 337 } 338 339 static void persistent_memory_flush_cache(void *ptr, size_t size) 340 { 341 if (is_vmalloc_addr(ptr)) 342 flush_kernel_vmap_range(ptr, size); 343 } 344 345 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 346 { 347 if (is_vmalloc_addr(ptr)) 348 invalidate_kernel_vmap_range(ptr, size); 349 } 350 351 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 352 { 353 return wc->memory_map; 354 } 355 356 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 357 { 358 return &sb(wc)->entries[e->index]; 359 } 360 361 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 362 { 363 return (char *)wc->block_start + (e->index << wc->block_size_bits); 364 } 365 366 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 367 { 368 return wc->start_sector + wc->metadata_sectors + 369 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 370 } 371 372 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 373 { 374 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 375 return e->original_sector; 376 #else 377 return le64_to_cpu(memory_entry(wc, e)->original_sector); 378 #endif 379 } 380 381 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 382 { 383 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 384 return e->seq_count; 385 #else 386 return le64_to_cpu(memory_entry(wc, e)->seq_count); 387 #endif 388 } 389 390 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 391 { 392 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 393 e->seq_count = -1; 394 #endif 395 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 396 } 397 398 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 399 uint64_t original_sector, uint64_t seq_count) 400 { 401 struct wc_memory_entry me; 402 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 403 e->original_sector = original_sector; 404 e->seq_count = seq_count; 405 #endif 406 me.original_sector = cpu_to_le64(original_sector); 407 me.seq_count = cpu_to_le64(seq_count); 408 pmem_assign(*memory_entry(wc, e), me); 409 } 410 411 #define writecache_error(wc, err, msg, arg...) \ 412 do { \ 413 if (!cmpxchg(&(wc)->error, 0, err)) \ 414 DMERR(msg, ##arg); \ 415 wake_up(&(wc)->freelist_wait); \ 416 } while (0) 417 418 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 419 420 static void writecache_flush_all_metadata(struct dm_writecache *wc) 421 { 422 if (!WC_MODE_PMEM(wc)) 423 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 424 } 425 426 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 427 { 428 if (!WC_MODE_PMEM(wc)) 429 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 430 wc->dirty_bitmap); 431 } 432 433 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 434 435 struct io_notify { 436 struct dm_writecache *wc; 437 struct completion c; 438 atomic_t count; 439 }; 440 441 static void writecache_notify_io(unsigned long error, void *context) 442 { 443 struct io_notify *endio = context; 444 445 if (unlikely(error != 0)) 446 writecache_error(endio->wc, -EIO, "error writing metadata"); 447 BUG_ON(atomic_read(&endio->count) <= 0); 448 if (atomic_dec_and_test(&endio->count)) 449 complete(&endio->c); 450 } 451 452 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 453 { 454 wait_event(wc->bio_in_progress_wait[direction], 455 !atomic_read(&wc->bio_in_progress[direction])); 456 } 457 458 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 459 { 460 struct dm_io_region region; 461 struct dm_io_request req; 462 struct io_notify endio = { 463 wc, 464 COMPLETION_INITIALIZER_ONSTACK(endio.c), 465 ATOMIC_INIT(1), 466 }; 467 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 468 unsigned i = 0; 469 470 while (1) { 471 unsigned j; 472 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 473 if (unlikely(i == bitmap_bits)) 474 break; 475 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 476 477 region.bdev = wc->ssd_dev->bdev; 478 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 479 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 480 481 if (unlikely(region.sector >= wc->metadata_sectors)) 482 break; 483 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 484 region.count = wc->metadata_sectors - region.sector; 485 486 region.sector += wc->start_sector; 487 atomic_inc(&endio.count); 488 req.bi_op = REQ_OP_WRITE; 489 req.bi_op_flags = REQ_SYNC; 490 req.mem.type = DM_IO_VMA; 491 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 492 req.client = wc->dm_io; 493 req.notify.fn = writecache_notify_io; 494 req.notify.context = &endio; 495 496 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 497 (void) dm_io(&req, 1, ®ion, NULL); 498 i = j; 499 } 500 501 writecache_notify_io(0, &endio); 502 wait_for_completion_io(&endio.c); 503 504 if (wait_for_ios) 505 writecache_wait_for_ios(wc, WRITE); 506 507 writecache_disk_flush(wc, wc->ssd_dev); 508 509 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 510 } 511 512 static void ssd_commit_superblock(struct dm_writecache *wc) 513 { 514 int r; 515 struct dm_io_region region; 516 struct dm_io_request req; 517 518 region.bdev = wc->ssd_dev->bdev; 519 region.sector = 0; 520 region.count = PAGE_SIZE; 521 522 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 523 region.count = wc->metadata_sectors - region.sector; 524 525 region.sector += wc->start_sector; 526 527 req.bi_op = REQ_OP_WRITE; 528 req.bi_op_flags = REQ_SYNC | REQ_FUA; 529 req.mem.type = DM_IO_VMA; 530 req.mem.ptr.vma = (char *)wc->memory_map; 531 req.client = wc->dm_io; 532 req.notify.fn = NULL; 533 req.notify.context = NULL; 534 535 r = dm_io(&req, 1, ®ion, NULL); 536 if (unlikely(r)) 537 writecache_error(wc, r, "error writing superblock"); 538 } 539 540 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 541 { 542 if (WC_MODE_PMEM(wc)) 543 wmb(); 544 else 545 ssd_commit_flushed(wc, wait_for_ios); 546 } 547 548 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 549 { 550 int r; 551 struct dm_io_region region; 552 struct dm_io_request req; 553 554 region.bdev = dev->bdev; 555 region.sector = 0; 556 region.count = 0; 557 req.bi_op = REQ_OP_WRITE; 558 req.bi_op_flags = REQ_PREFLUSH; 559 req.mem.type = DM_IO_KMEM; 560 req.mem.ptr.addr = NULL; 561 req.client = wc->dm_io; 562 req.notify.fn = NULL; 563 564 r = dm_io(&req, 1, ®ion, NULL); 565 if (unlikely(r)) 566 writecache_error(wc, r, "error flushing metadata: %d", r); 567 } 568 569 #define WFE_RETURN_FOLLOWING 1 570 #define WFE_LOWEST_SEQ 2 571 572 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 573 uint64_t block, int flags) 574 { 575 struct wc_entry *e; 576 struct rb_node *node = wc->tree.rb_node; 577 578 if (unlikely(!node)) 579 return NULL; 580 581 while (1) { 582 e = container_of(node, struct wc_entry, rb_node); 583 if (read_original_sector(wc, e) == block) 584 break; 585 586 node = (read_original_sector(wc, e) >= block ? 587 e->rb_node.rb_left : e->rb_node.rb_right); 588 if (unlikely(!node)) { 589 if (!(flags & WFE_RETURN_FOLLOWING)) 590 return NULL; 591 if (read_original_sector(wc, e) >= block) { 592 return e; 593 } else { 594 node = rb_next(&e->rb_node); 595 if (unlikely(!node)) 596 return NULL; 597 e = container_of(node, struct wc_entry, rb_node); 598 return e; 599 } 600 } 601 } 602 603 while (1) { 604 struct wc_entry *e2; 605 if (flags & WFE_LOWEST_SEQ) 606 node = rb_prev(&e->rb_node); 607 else 608 node = rb_next(&e->rb_node); 609 if (unlikely(!node)) 610 return e; 611 e2 = container_of(node, struct wc_entry, rb_node); 612 if (read_original_sector(wc, e2) != block) 613 return e; 614 e = e2; 615 } 616 } 617 618 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 619 { 620 struct wc_entry *e; 621 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 622 623 while (*node) { 624 e = container_of(*node, struct wc_entry, rb_node); 625 parent = &e->rb_node; 626 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 627 node = &parent->rb_left; 628 else 629 node = &parent->rb_right; 630 } 631 rb_link_node(&ins->rb_node, parent, node); 632 rb_insert_color(&ins->rb_node, &wc->tree); 633 list_add(&ins->lru, &wc->lru); 634 ins->age = jiffies; 635 } 636 637 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 638 { 639 list_del(&e->lru); 640 rb_erase(&e->rb_node, &wc->tree); 641 } 642 643 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 644 { 645 if (WC_MODE_SORT_FREELIST(wc)) { 646 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 647 if (unlikely(!*node)) 648 wc->current_free = e; 649 while (*node) { 650 parent = *node; 651 if (&e->rb_node < *node) 652 node = &parent->rb_left; 653 else 654 node = &parent->rb_right; 655 } 656 rb_link_node(&e->rb_node, parent, node); 657 rb_insert_color(&e->rb_node, &wc->freetree); 658 } else { 659 list_add_tail(&e->lru, &wc->freelist); 660 } 661 wc->freelist_size++; 662 } 663 664 static inline void writecache_verify_watermark(struct dm_writecache *wc) 665 { 666 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 667 queue_work(wc->writeback_wq, &wc->writeback_work); 668 } 669 670 static void writecache_max_age_timer(struct timer_list *t) 671 { 672 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 673 674 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 675 queue_work(wc->writeback_wq, &wc->writeback_work); 676 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 677 } 678 } 679 680 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 681 { 682 struct wc_entry *e; 683 684 if (WC_MODE_SORT_FREELIST(wc)) { 685 struct rb_node *next; 686 if (unlikely(!wc->current_free)) 687 return NULL; 688 e = wc->current_free; 689 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 690 return NULL; 691 next = rb_next(&e->rb_node); 692 rb_erase(&e->rb_node, &wc->freetree); 693 if (unlikely(!next)) 694 next = rb_first(&wc->freetree); 695 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 696 } else { 697 if (unlikely(list_empty(&wc->freelist))) 698 return NULL; 699 e = container_of(wc->freelist.next, struct wc_entry, lru); 700 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 701 return NULL; 702 list_del(&e->lru); 703 } 704 wc->freelist_size--; 705 706 writecache_verify_watermark(wc); 707 708 return e; 709 } 710 711 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 712 { 713 writecache_unlink(wc, e); 714 writecache_add_to_freelist(wc, e); 715 clear_seq_count(wc, e); 716 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 717 if (unlikely(waitqueue_active(&wc->freelist_wait))) 718 wake_up(&wc->freelist_wait); 719 } 720 721 static void writecache_wait_on_freelist(struct dm_writecache *wc) 722 { 723 DEFINE_WAIT(wait); 724 725 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 726 wc_unlock(wc); 727 io_schedule(); 728 finish_wait(&wc->freelist_wait, &wait); 729 wc_lock(wc); 730 } 731 732 static void writecache_poison_lists(struct dm_writecache *wc) 733 { 734 /* 735 * Catch incorrect access to these values while the device is suspended. 736 */ 737 memset(&wc->tree, -1, sizeof wc->tree); 738 wc->lru.next = LIST_POISON1; 739 wc->lru.prev = LIST_POISON2; 740 wc->freelist.next = LIST_POISON1; 741 wc->freelist.prev = LIST_POISON2; 742 } 743 744 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 745 { 746 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 747 if (WC_MODE_PMEM(wc)) 748 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 749 } 750 751 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 752 { 753 return read_seq_count(wc, e) < wc->seq_count; 754 } 755 756 static void writecache_flush(struct dm_writecache *wc) 757 { 758 struct wc_entry *e, *e2; 759 bool need_flush_after_free; 760 761 wc->uncommitted_blocks = 0; 762 del_timer(&wc->autocommit_timer); 763 764 if (list_empty(&wc->lru)) 765 return; 766 767 e = container_of(wc->lru.next, struct wc_entry, lru); 768 if (writecache_entry_is_committed(wc, e)) { 769 if (wc->overwrote_committed) { 770 writecache_wait_for_ios(wc, WRITE); 771 writecache_disk_flush(wc, wc->ssd_dev); 772 wc->overwrote_committed = false; 773 } 774 return; 775 } 776 while (1) { 777 writecache_flush_entry(wc, e); 778 if (unlikely(e->lru.next == &wc->lru)) 779 break; 780 e2 = container_of(e->lru.next, struct wc_entry, lru); 781 if (writecache_entry_is_committed(wc, e2)) 782 break; 783 e = e2; 784 cond_resched(); 785 } 786 writecache_commit_flushed(wc, true); 787 788 wc->seq_count++; 789 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 790 if (WC_MODE_PMEM(wc)) 791 writecache_commit_flushed(wc, false); 792 else 793 ssd_commit_superblock(wc); 794 795 wc->overwrote_committed = false; 796 797 need_flush_after_free = false; 798 while (1) { 799 /* Free another committed entry with lower seq-count */ 800 struct rb_node *rb_node = rb_prev(&e->rb_node); 801 802 if (rb_node) { 803 e2 = container_of(rb_node, struct wc_entry, rb_node); 804 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 805 likely(!e2->write_in_progress)) { 806 writecache_free_entry(wc, e2); 807 need_flush_after_free = true; 808 } 809 } 810 if (unlikely(e->lru.prev == &wc->lru)) 811 break; 812 e = container_of(e->lru.prev, struct wc_entry, lru); 813 cond_resched(); 814 } 815 816 if (need_flush_after_free) 817 writecache_commit_flushed(wc, false); 818 } 819 820 static void writecache_flush_work(struct work_struct *work) 821 { 822 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 823 824 wc_lock(wc); 825 writecache_flush(wc); 826 wc_unlock(wc); 827 } 828 829 static void writecache_autocommit_timer(struct timer_list *t) 830 { 831 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 832 if (!writecache_has_error(wc)) 833 queue_work(wc->writeback_wq, &wc->flush_work); 834 } 835 836 static void writecache_schedule_autocommit(struct dm_writecache *wc) 837 { 838 if (!timer_pending(&wc->autocommit_timer)) 839 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 840 } 841 842 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 843 { 844 struct wc_entry *e; 845 bool discarded_something = false; 846 847 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 848 if (unlikely(!e)) 849 return; 850 851 while (read_original_sector(wc, e) < end) { 852 struct rb_node *node = rb_next(&e->rb_node); 853 854 if (likely(!e->write_in_progress)) { 855 if (!discarded_something) { 856 writecache_wait_for_ios(wc, READ); 857 writecache_wait_for_ios(wc, WRITE); 858 discarded_something = true; 859 } 860 writecache_free_entry(wc, e); 861 } 862 863 if (unlikely(!node)) 864 break; 865 866 e = container_of(node, struct wc_entry, rb_node); 867 } 868 869 if (discarded_something) 870 writecache_commit_flushed(wc, false); 871 } 872 873 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 874 { 875 if (wc->writeback_size) { 876 writecache_wait_on_freelist(wc); 877 return true; 878 } 879 return false; 880 } 881 882 static void writecache_suspend(struct dm_target *ti) 883 { 884 struct dm_writecache *wc = ti->private; 885 bool flush_on_suspend; 886 887 del_timer_sync(&wc->autocommit_timer); 888 del_timer_sync(&wc->max_age_timer); 889 890 wc_lock(wc); 891 writecache_flush(wc); 892 flush_on_suspend = wc->flush_on_suspend; 893 if (flush_on_suspend) { 894 wc->flush_on_suspend = false; 895 wc->writeback_all++; 896 queue_work(wc->writeback_wq, &wc->writeback_work); 897 } 898 wc_unlock(wc); 899 900 drain_workqueue(wc->writeback_wq); 901 902 wc_lock(wc); 903 if (flush_on_suspend) 904 wc->writeback_all--; 905 while (writecache_wait_for_writeback(wc)); 906 907 if (WC_MODE_PMEM(wc)) 908 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 909 910 writecache_poison_lists(wc); 911 912 wc_unlock(wc); 913 } 914 915 static int writecache_alloc_entries(struct dm_writecache *wc) 916 { 917 size_t b; 918 919 if (wc->entries) 920 return 0; 921 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 922 if (!wc->entries) 923 return -ENOMEM; 924 for (b = 0; b < wc->n_blocks; b++) { 925 struct wc_entry *e = &wc->entries[b]; 926 e->index = b; 927 e->write_in_progress = false; 928 cond_resched(); 929 } 930 931 return 0; 932 } 933 934 static void writecache_resume(struct dm_target *ti) 935 { 936 struct dm_writecache *wc = ti->private; 937 size_t b; 938 bool need_flush = false; 939 __le64 sb_seq_count; 940 int r; 941 942 wc_lock(wc); 943 944 if (WC_MODE_PMEM(wc)) 945 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 946 947 wc->tree = RB_ROOT; 948 INIT_LIST_HEAD(&wc->lru); 949 if (WC_MODE_SORT_FREELIST(wc)) { 950 wc->freetree = RB_ROOT; 951 wc->current_free = NULL; 952 } else { 953 INIT_LIST_HEAD(&wc->freelist); 954 } 955 wc->freelist_size = 0; 956 957 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 958 if (r) { 959 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 960 sb_seq_count = cpu_to_le64(0); 961 } 962 wc->seq_count = le64_to_cpu(sb_seq_count); 963 964 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 965 for (b = 0; b < wc->n_blocks; b++) { 966 struct wc_entry *e = &wc->entries[b]; 967 struct wc_memory_entry wme; 968 if (writecache_has_error(wc)) { 969 e->original_sector = -1; 970 e->seq_count = -1; 971 continue; 972 } 973 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 974 if (r) { 975 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 976 (unsigned long)b, r); 977 e->original_sector = -1; 978 e->seq_count = -1; 979 } else { 980 e->original_sector = le64_to_cpu(wme.original_sector); 981 e->seq_count = le64_to_cpu(wme.seq_count); 982 } 983 cond_resched(); 984 } 985 #endif 986 for (b = 0; b < wc->n_blocks; b++) { 987 struct wc_entry *e = &wc->entries[b]; 988 if (!writecache_entry_is_committed(wc, e)) { 989 if (read_seq_count(wc, e) != -1) { 990 erase_this: 991 clear_seq_count(wc, e); 992 need_flush = true; 993 } 994 writecache_add_to_freelist(wc, e); 995 } else { 996 struct wc_entry *old; 997 998 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 999 if (!old) { 1000 writecache_insert_entry(wc, e); 1001 } else { 1002 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1003 writecache_error(wc, -EINVAL, 1004 "two identical entries, position %llu, sector %llu, sequence %llu", 1005 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1006 (unsigned long long)read_seq_count(wc, e)); 1007 } 1008 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1009 goto erase_this; 1010 } else { 1011 writecache_free_entry(wc, old); 1012 writecache_insert_entry(wc, e); 1013 need_flush = true; 1014 } 1015 } 1016 } 1017 cond_resched(); 1018 } 1019 1020 if (need_flush) { 1021 writecache_flush_all_metadata(wc); 1022 writecache_commit_flushed(wc, false); 1023 } 1024 1025 writecache_verify_watermark(wc); 1026 1027 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1028 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1029 1030 wc_unlock(wc); 1031 } 1032 1033 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1034 { 1035 if (argc != 1) 1036 return -EINVAL; 1037 1038 wc_lock(wc); 1039 if (dm_suspended(wc->ti)) { 1040 wc_unlock(wc); 1041 return -EBUSY; 1042 } 1043 if (writecache_has_error(wc)) { 1044 wc_unlock(wc); 1045 return -EIO; 1046 } 1047 1048 writecache_flush(wc); 1049 wc->writeback_all++; 1050 queue_work(wc->writeback_wq, &wc->writeback_work); 1051 wc_unlock(wc); 1052 1053 flush_workqueue(wc->writeback_wq); 1054 1055 wc_lock(wc); 1056 wc->writeback_all--; 1057 if (writecache_has_error(wc)) { 1058 wc_unlock(wc); 1059 return -EIO; 1060 } 1061 wc_unlock(wc); 1062 1063 return 0; 1064 } 1065 1066 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1067 { 1068 if (argc != 1) 1069 return -EINVAL; 1070 1071 wc_lock(wc); 1072 wc->flush_on_suspend = true; 1073 wc_unlock(wc); 1074 1075 return 0; 1076 } 1077 1078 static void activate_cleaner(struct dm_writecache *wc) 1079 { 1080 wc->flush_on_suspend = true; 1081 wc->cleaner = true; 1082 wc->freelist_high_watermark = wc->n_blocks; 1083 wc->freelist_low_watermark = wc->n_blocks; 1084 } 1085 1086 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1087 { 1088 if (argc != 1) 1089 return -EINVAL; 1090 1091 wc_lock(wc); 1092 activate_cleaner(wc); 1093 if (!dm_suspended(wc->ti)) 1094 writecache_verify_watermark(wc); 1095 wc_unlock(wc); 1096 1097 return 0; 1098 } 1099 1100 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1101 char *result, unsigned maxlen) 1102 { 1103 int r = -EINVAL; 1104 struct dm_writecache *wc = ti->private; 1105 1106 if (!strcasecmp(argv[0], "flush")) 1107 r = process_flush_mesg(argc, argv, wc); 1108 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1109 r = process_flush_on_suspend_mesg(argc, argv, wc); 1110 else if (!strcasecmp(argv[0], "cleaner")) 1111 r = process_cleaner_mesg(argc, argv, wc); 1112 else 1113 DMERR("unrecognised message received: %s", argv[0]); 1114 1115 return r; 1116 } 1117 1118 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1119 { 1120 void *buf; 1121 unsigned long flags; 1122 unsigned size; 1123 int rw = bio_data_dir(bio); 1124 unsigned remaining_size = wc->block_size; 1125 1126 do { 1127 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1128 buf = bvec_kmap_irq(&bv, &flags); 1129 size = bv.bv_len; 1130 if (unlikely(size > remaining_size)) 1131 size = remaining_size; 1132 1133 if (rw == READ) { 1134 int r; 1135 r = memcpy_mcsafe(buf, data, size); 1136 flush_dcache_page(bio_page(bio)); 1137 if (unlikely(r)) { 1138 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1139 bio->bi_status = BLK_STS_IOERR; 1140 } 1141 } else { 1142 flush_dcache_page(bio_page(bio)); 1143 memcpy_flushcache(data, buf, size); 1144 } 1145 1146 bvec_kunmap_irq(buf, &flags); 1147 1148 data = (char *)data + size; 1149 remaining_size -= size; 1150 bio_advance(bio, size); 1151 } while (unlikely(remaining_size)); 1152 } 1153 1154 static int writecache_flush_thread(void *data) 1155 { 1156 struct dm_writecache *wc = data; 1157 1158 while (1) { 1159 struct bio *bio; 1160 1161 wc_lock(wc); 1162 bio = bio_list_pop(&wc->flush_list); 1163 if (!bio) { 1164 set_current_state(TASK_INTERRUPTIBLE); 1165 wc_unlock(wc); 1166 1167 if (unlikely(kthread_should_stop())) { 1168 set_current_state(TASK_RUNNING); 1169 break; 1170 } 1171 1172 schedule(); 1173 continue; 1174 } 1175 1176 if (bio_op(bio) == REQ_OP_DISCARD) { 1177 writecache_discard(wc, bio->bi_iter.bi_sector, 1178 bio_end_sector(bio)); 1179 wc_unlock(wc); 1180 bio_set_dev(bio, wc->dev->bdev); 1181 generic_make_request(bio); 1182 } else { 1183 writecache_flush(wc); 1184 wc_unlock(wc); 1185 if (writecache_has_error(wc)) 1186 bio->bi_status = BLK_STS_IOERR; 1187 bio_endio(bio); 1188 } 1189 } 1190 1191 return 0; 1192 } 1193 1194 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1195 { 1196 if (bio_list_empty(&wc->flush_list)) 1197 wake_up_process(wc->flush_thread); 1198 bio_list_add(&wc->flush_list, bio); 1199 } 1200 1201 static int writecache_map(struct dm_target *ti, struct bio *bio) 1202 { 1203 struct wc_entry *e; 1204 struct dm_writecache *wc = ti->private; 1205 1206 bio->bi_private = NULL; 1207 1208 wc_lock(wc); 1209 1210 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1211 if (writecache_has_error(wc)) 1212 goto unlock_error; 1213 if (WC_MODE_PMEM(wc)) { 1214 writecache_flush(wc); 1215 if (writecache_has_error(wc)) 1216 goto unlock_error; 1217 goto unlock_submit; 1218 } else { 1219 writecache_offload_bio(wc, bio); 1220 goto unlock_return; 1221 } 1222 } 1223 1224 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1225 1226 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1227 (wc->block_size / 512 - 1)) != 0)) { 1228 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1229 (unsigned long long)bio->bi_iter.bi_sector, 1230 bio->bi_iter.bi_size, wc->block_size); 1231 goto unlock_error; 1232 } 1233 1234 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1235 if (writecache_has_error(wc)) 1236 goto unlock_error; 1237 if (WC_MODE_PMEM(wc)) { 1238 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1239 goto unlock_remap_origin; 1240 } else { 1241 writecache_offload_bio(wc, bio); 1242 goto unlock_return; 1243 } 1244 } 1245 1246 if (bio_data_dir(bio) == READ) { 1247 read_next_block: 1248 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1249 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1250 if (WC_MODE_PMEM(wc)) { 1251 bio_copy_block(wc, bio, memory_data(wc, e)); 1252 if (bio->bi_iter.bi_size) 1253 goto read_next_block; 1254 goto unlock_submit; 1255 } else { 1256 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1257 bio_set_dev(bio, wc->ssd_dev->bdev); 1258 bio->bi_iter.bi_sector = cache_sector(wc, e); 1259 if (!writecache_entry_is_committed(wc, e)) 1260 writecache_wait_for_ios(wc, WRITE); 1261 goto unlock_remap; 1262 } 1263 } else { 1264 if (e) { 1265 sector_t next_boundary = 1266 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1267 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1268 dm_accept_partial_bio(bio, next_boundary); 1269 } 1270 } 1271 goto unlock_remap_origin; 1272 } 1273 } else { 1274 do { 1275 bool found_entry = false; 1276 if (writecache_has_error(wc)) 1277 goto unlock_error; 1278 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1279 if (e) { 1280 if (!writecache_entry_is_committed(wc, e)) 1281 goto bio_copy; 1282 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1283 wc->overwrote_committed = true; 1284 goto bio_copy; 1285 } 1286 found_entry = true; 1287 } else { 1288 if (unlikely(wc->cleaner)) 1289 goto direct_write; 1290 } 1291 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1292 if (unlikely(!e)) { 1293 if (!found_entry) { 1294 direct_write: 1295 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1296 if (e) { 1297 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1298 BUG_ON(!next_boundary); 1299 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1300 dm_accept_partial_bio(bio, next_boundary); 1301 } 1302 } 1303 goto unlock_remap_origin; 1304 } 1305 writecache_wait_on_freelist(wc); 1306 continue; 1307 } 1308 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1309 writecache_insert_entry(wc, e); 1310 wc->uncommitted_blocks++; 1311 bio_copy: 1312 if (WC_MODE_PMEM(wc)) { 1313 bio_copy_block(wc, bio, memory_data(wc, e)); 1314 } else { 1315 unsigned bio_size = wc->block_size; 1316 sector_t start_cache_sec = cache_sector(wc, e); 1317 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1318 1319 while (bio_size < bio->bi_iter.bi_size) { 1320 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1321 if (!f) 1322 break; 1323 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1324 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1325 writecache_insert_entry(wc, f); 1326 wc->uncommitted_blocks++; 1327 bio_size += wc->block_size; 1328 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1329 } 1330 1331 bio_set_dev(bio, wc->ssd_dev->bdev); 1332 bio->bi_iter.bi_sector = start_cache_sec; 1333 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1334 1335 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1336 wc->uncommitted_blocks = 0; 1337 queue_work(wc->writeback_wq, &wc->flush_work); 1338 } else { 1339 writecache_schedule_autocommit(wc); 1340 } 1341 goto unlock_remap; 1342 } 1343 } while (bio->bi_iter.bi_size); 1344 1345 if (unlikely(bio->bi_opf & REQ_FUA || 1346 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1347 writecache_flush(wc); 1348 else 1349 writecache_schedule_autocommit(wc); 1350 goto unlock_submit; 1351 } 1352 1353 unlock_remap_origin: 1354 bio_set_dev(bio, wc->dev->bdev); 1355 wc_unlock(wc); 1356 return DM_MAPIO_REMAPPED; 1357 1358 unlock_remap: 1359 /* make sure that writecache_end_io decrements bio_in_progress: */ 1360 bio->bi_private = (void *)1; 1361 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1362 wc_unlock(wc); 1363 return DM_MAPIO_REMAPPED; 1364 1365 unlock_submit: 1366 wc_unlock(wc); 1367 bio_endio(bio); 1368 return DM_MAPIO_SUBMITTED; 1369 1370 unlock_return: 1371 wc_unlock(wc); 1372 return DM_MAPIO_SUBMITTED; 1373 1374 unlock_error: 1375 wc_unlock(wc); 1376 bio_io_error(bio); 1377 return DM_MAPIO_SUBMITTED; 1378 } 1379 1380 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1381 { 1382 struct dm_writecache *wc = ti->private; 1383 1384 if (bio->bi_private != NULL) { 1385 int dir = bio_data_dir(bio); 1386 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1387 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1388 wake_up(&wc->bio_in_progress_wait[dir]); 1389 } 1390 return 0; 1391 } 1392 1393 static int writecache_iterate_devices(struct dm_target *ti, 1394 iterate_devices_callout_fn fn, void *data) 1395 { 1396 struct dm_writecache *wc = ti->private; 1397 1398 return fn(ti, wc->dev, 0, ti->len, data); 1399 } 1400 1401 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1402 { 1403 struct dm_writecache *wc = ti->private; 1404 1405 if (limits->logical_block_size < wc->block_size) 1406 limits->logical_block_size = wc->block_size; 1407 1408 if (limits->physical_block_size < wc->block_size) 1409 limits->physical_block_size = wc->block_size; 1410 1411 if (limits->io_min < wc->block_size) 1412 limits->io_min = wc->block_size; 1413 } 1414 1415 1416 static void writecache_writeback_endio(struct bio *bio) 1417 { 1418 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1419 struct dm_writecache *wc = wb->wc; 1420 unsigned long flags; 1421 1422 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1423 if (unlikely(list_empty(&wc->endio_list))) 1424 wake_up_process(wc->endio_thread); 1425 list_add_tail(&wb->endio_entry, &wc->endio_list); 1426 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1427 } 1428 1429 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1430 { 1431 struct copy_struct *c = ptr; 1432 struct dm_writecache *wc = c->wc; 1433 1434 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1435 1436 raw_spin_lock_irq(&wc->endio_list_lock); 1437 if (unlikely(list_empty(&wc->endio_list))) 1438 wake_up_process(wc->endio_thread); 1439 list_add_tail(&c->endio_entry, &wc->endio_list); 1440 raw_spin_unlock_irq(&wc->endio_list_lock); 1441 } 1442 1443 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1444 { 1445 unsigned i; 1446 struct writeback_struct *wb; 1447 struct wc_entry *e; 1448 unsigned long n_walked = 0; 1449 1450 do { 1451 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1452 list_del(&wb->endio_entry); 1453 1454 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1455 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1456 "write error %d", wb->bio.bi_status); 1457 i = 0; 1458 do { 1459 e = wb->wc_list[i]; 1460 BUG_ON(!e->write_in_progress); 1461 e->write_in_progress = false; 1462 INIT_LIST_HEAD(&e->lru); 1463 if (!writecache_has_error(wc)) 1464 writecache_free_entry(wc, e); 1465 BUG_ON(!wc->writeback_size); 1466 wc->writeback_size--; 1467 n_walked++; 1468 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1469 writecache_commit_flushed(wc, false); 1470 wc_unlock(wc); 1471 wc_lock(wc); 1472 n_walked = 0; 1473 } 1474 } while (++i < wb->wc_list_n); 1475 1476 if (wb->wc_list != wb->wc_list_inline) 1477 kfree(wb->wc_list); 1478 bio_put(&wb->bio); 1479 } while (!list_empty(list)); 1480 } 1481 1482 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1483 { 1484 struct copy_struct *c; 1485 struct wc_entry *e; 1486 1487 do { 1488 c = list_entry(list->next, struct copy_struct, endio_entry); 1489 list_del(&c->endio_entry); 1490 1491 if (unlikely(c->error)) 1492 writecache_error(wc, c->error, "copy error"); 1493 1494 e = c->e; 1495 do { 1496 BUG_ON(!e->write_in_progress); 1497 e->write_in_progress = false; 1498 INIT_LIST_HEAD(&e->lru); 1499 if (!writecache_has_error(wc)) 1500 writecache_free_entry(wc, e); 1501 1502 BUG_ON(!wc->writeback_size); 1503 wc->writeback_size--; 1504 e++; 1505 } while (--c->n_entries); 1506 mempool_free(c, &wc->copy_pool); 1507 } while (!list_empty(list)); 1508 } 1509 1510 static int writecache_endio_thread(void *data) 1511 { 1512 struct dm_writecache *wc = data; 1513 1514 while (1) { 1515 struct list_head list; 1516 1517 raw_spin_lock_irq(&wc->endio_list_lock); 1518 if (!list_empty(&wc->endio_list)) 1519 goto pop_from_list; 1520 set_current_state(TASK_INTERRUPTIBLE); 1521 raw_spin_unlock_irq(&wc->endio_list_lock); 1522 1523 if (unlikely(kthread_should_stop())) { 1524 set_current_state(TASK_RUNNING); 1525 break; 1526 } 1527 1528 schedule(); 1529 1530 continue; 1531 1532 pop_from_list: 1533 list = wc->endio_list; 1534 list.next->prev = list.prev->next = &list; 1535 INIT_LIST_HEAD(&wc->endio_list); 1536 raw_spin_unlock_irq(&wc->endio_list_lock); 1537 1538 if (!WC_MODE_FUA(wc)) 1539 writecache_disk_flush(wc, wc->dev); 1540 1541 wc_lock(wc); 1542 1543 if (WC_MODE_PMEM(wc)) { 1544 __writecache_endio_pmem(wc, &list); 1545 } else { 1546 __writecache_endio_ssd(wc, &list); 1547 writecache_wait_for_ios(wc, READ); 1548 } 1549 1550 writecache_commit_flushed(wc, false); 1551 1552 wc_unlock(wc); 1553 } 1554 1555 return 0; 1556 } 1557 1558 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1559 { 1560 struct dm_writecache *wc = wb->wc; 1561 unsigned block_size = wc->block_size; 1562 void *address = memory_data(wc, e); 1563 1564 persistent_memory_flush_cache(address, block_size); 1565 return bio_add_page(&wb->bio, persistent_memory_page(address), 1566 block_size, persistent_memory_page_offset(address)) != 0; 1567 } 1568 1569 struct writeback_list { 1570 struct list_head list; 1571 size_t size; 1572 }; 1573 1574 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1575 { 1576 if (unlikely(wc->max_writeback_jobs)) { 1577 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1578 wc_lock(wc); 1579 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1580 writecache_wait_on_freelist(wc); 1581 wc_unlock(wc); 1582 } 1583 } 1584 cond_resched(); 1585 } 1586 1587 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1588 { 1589 struct wc_entry *e, *f; 1590 struct bio *bio; 1591 struct writeback_struct *wb; 1592 unsigned max_pages; 1593 1594 while (wbl->size) { 1595 wbl->size--; 1596 e = container_of(wbl->list.prev, struct wc_entry, lru); 1597 list_del(&e->lru); 1598 1599 max_pages = e->wc_list_contiguous; 1600 1601 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1602 wb = container_of(bio, struct writeback_struct, bio); 1603 wb->wc = wc; 1604 bio->bi_end_io = writecache_writeback_endio; 1605 bio_set_dev(bio, wc->dev->bdev); 1606 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1607 if (max_pages <= WB_LIST_INLINE || 1608 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1609 GFP_NOIO | __GFP_NORETRY | 1610 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1611 wb->wc_list = wb->wc_list_inline; 1612 max_pages = WB_LIST_INLINE; 1613 } 1614 1615 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1616 1617 wb->wc_list[0] = e; 1618 wb->wc_list_n = 1; 1619 1620 while (wbl->size && wb->wc_list_n < max_pages) { 1621 f = container_of(wbl->list.prev, struct wc_entry, lru); 1622 if (read_original_sector(wc, f) != 1623 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1624 break; 1625 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1626 break; 1627 wbl->size--; 1628 list_del(&f->lru); 1629 wb->wc_list[wb->wc_list_n++] = f; 1630 e = f; 1631 } 1632 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1633 if (writecache_has_error(wc)) { 1634 bio->bi_status = BLK_STS_IOERR; 1635 bio_endio(bio); 1636 } else { 1637 submit_bio(bio); 1638 } 1639 1640 __writeback_throttle(wc, wbl); 1641 } 1642 } 1643 1644 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1645 { 1646 struct wc_entry *e, *f; 1647 struct dm_io_region from, to; 1648 struct copy_struct *c; 1649 1650 while (wbl->size) { 1651 unsigned n_sectors; 1652 1653 wbl->size--; 1654 e = container_of(wbl->list.prev, struct wc_entry, lru); 1655 list_del(&e->lru); 1656 1657 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1658 1659 from.bdev = wc->ssd_dev->bdev; 1660 from.sector = cache_sector(wc, e); 1661 from.count = n_sectors; 1662 to.bdev = wc->dev->bdev; 1663 to.sector = read_original_sector(wc, e); 1664 to.count = n_sectors; 1665 1666 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1667 c->wc = wc; 1668 c->e = e; 1669 c->n_entries = e->wc_list_contiguous; 1670 1671 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1672 wbl->size--; 1673 f = container_of(wbl->list.prev, struct wc_entry, lru); 1674 BUG_ON(f != e + 1); 1675 list_del(&f->lru); 1676 e = f; 1677 } 1678 1679 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1680 1681 __writeback_throttle(wc, wbl); 1682 } 1683 } 1684 1685 static void writecache_writeback(struct work_struct *work) 1686 { 1687 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1688 struct blk_plug plug; 1689 struct wc_entry *f, *uninitialized_var(g), *e = NULL; 1690 struct rb_node *node, *next_node; 1691 struct list_head skipped; 1692 struct writeback_list wbl; 1693 unsigned long n_walked; 1694 1695 wc_lock(wc); 1696 restart: 1697 if (writecache_has_error(wc)) { 1698 wc_unlock(wc); 1699 return; 1700 } 1701 1702 if (unlikely(wc->writeback_all)) { 1703 if (writecache_wait_for_writeback(wc)) 1704 goto restart; 1705 } 1706 1707 if (wc->overwrote_committed) { 1708 writecache_wait_for_ios(wc, WRITE); 1709 } 1710 1711 n_walked = 0; 1712 INIT_LIST_HEAD(&skipped); 1713 INIT_LIST_HEAD(&wbl.list); 1714 wbl.size = 0; 1715 while (!list_empty(&wc->lru) && 1716 (wc->writeback_all || 1717 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1718 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1719 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1720 1721 n_walked++; 1722 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1723 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1724 queue_work(wc->writeback_wq, &wc->writeback_work); 1725 break; 1726 } 1727 1728 if (unlikely(wc->writeback_all)) { 1729 if (unlikely(!e)) { 1730 writecache_flush(wc); 1731 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1732 } else 1733 e = g; 1734 } else 1735 e = container_of(wc->lru.prev, struct wc_entry, lru); 1736 BUG_ON(e->write_in_progress); 1737 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1738 writecache_flush(wc); 1739 } 1740 node = rb_prev(&e->rb_node); 1741 if (node) { 1742 f = container_of(node, struct wc_entry, rb_node); 1743 if (unlikely(read_original_sector(wc, f) == 1744 read_original_sector(wc, e))) { 1745 BUG_ON(!f->write_in_progress); 1746 list_del(&e->lru); 1747 list_add(&e->lru, &skipped); 1748 cond_resched(); 1749 continue; 1750 } 1751 } 1752 wc->writeback_size++; 1753 list_del(&e->lru); 1754 list_add(&e->lru, &wbl.list); 1755 wbl.size++; 1756 e->write_in_progress = true; 1757 e->wc_list_contiguous = 1; 1758 1759 f = e; 1760 1761 while (1) { 1762 next_node = rb_next(&f->rb_node); 1763 if (unlikely(!next_node)) 1764 break; 1765 g = container_of(next_node, struct wc_entry, rb_node); 1766 if (unlikely(read_original_sector(wc, g) == 1767 read_original_sector(wc, f))) { 1768 f = g; 1769 continue; 1770 } 1771 if (read_original_sector(wc, g) != 1772 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1773 break; 1774 if (unlikely(g->write_in_progress)) 1775 break; 1776 if (unlikely(!writecache_entry_is_committed(wc, g))) 1777 break; 1778 1779 if (!WC_MODE_PMEM(wc)) { 1780 if (g != f + 1) 1781 break; 1782 } 1783 1784 n_walked++; 1785 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1786 // break; 1787 1788 wc->writeback_size++; 1789 list_del(&g->lru); 1790 list_add(&g->lru, &wbl.list); 1791 wbl.size++; 1792 g->write_in_progress = true; 1793 g->wc_list_contiguous = BIO_MAX_PAGES; 1794 f = g; 1795 e->wc_list_contiguous++; 1796 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1797 if (unlikely(wc->writeback_all)) { 1798 next_node = rb_next(&f->rb_node); 1799 if (likely(next_node)) 1800 g = container_of(next_node, struct wc_entry, rb_node); 1801 } 1802 break; 1803 } 1804 } 1805 cond_resched(); 1806 } 1807 1808 if (!list_empty(&skipped)) { 1809 list_splice_tail(&skipped, &wc->lru); 1810 /* 1811 * If we didn't do any progress, we must wait until some 1812 * writeback finishes to avoid burning CPU in a loop 1813 */ 1814 if (unlikely(!wbl.size)) 1815 writecache_wait_for_writeback(wc); 1816 } 1817 1818 wc_unlock(wc); 1819 1820 blk_start_plug(&plug); 1821 1822 if (WC_MODE_PMEM(wc)) 1823 __writecache_writeback_pmem(wc, &wbl); 1824 else 1825 __writecache_writeback_ssd(wc, &wbl); 1826 1827 blk_finish_plug(&plug); 1828 1829 if (unlikely(wc->writeback_all)) { 1830 wc_lock(wc); 1831 while (writecache_wait_for_writeback(wc)); 1832 wc_unlock(wc); 1833 } 1834 } 1835 1836 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1837 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1838 { 1839 uint64_t n_blocks, offset; 1840 struct wc_entry e; 1841 1842 n_blocks = device_size; 1843 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1844 1845 while (1) { 1846 if (!n_blocks) 1847 return -ENOSPC; 1848 /* Verify the following entries[n_blocks] won't overflow */ 1849 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1850 sizeof(struct wc_memory_entry))) 1851 return -EFBIG; 1852 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1853 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1854 if (offset + n_blocks * block_size <= device_size) 1855 break; 1856 n_blocks--; 1857 } 1858 1859 /* check if the bit field overflows */ 1860 e.index = n_blocks; 1861 if (e.index != n_blocks) 1862 return -EFBIG; 1863 1864 if (n_blocks_p) 1865 *n_blocks_p = n_blocks; 1866 if (n_metadata_blocks_p) 1867 *n_metadata_blocks_p = offset >> __ffs(block_size); 1868 return 0; 1869 } 1870 1871 static int init_memory(struct dm_writecache *wc) 1872 { 1873 size_t b; 1874 int r; 1875 1876 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1877 if (r) 1878 return r; 1879 1880 r = writecache_alloc_entries(wc); 1881 if (r) 1882 return r; 1883 1884 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1885 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1886 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1887 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1888 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1889 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1890 1891 for (b = 0; b < wc->n_blocks; b++) { 1892 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1893 cond_resched(); 1894 } 1895 1896 writecache_flush_all_metadata(wc); 1897 writecache_commit_flushed(wc, false); 1898 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1899 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1900 writecache_commit_flushed(wc, false); 1901 1902 return 0; 1903 } 1904 1905 static void writecache_dtr(struct dm_target *ti) 1906 { 1907 struct dm_writecache *wc = ti->private; 1908 1909 if (!wc) 1910 return; 1911 1912 if (wc->endio_thread) 1913 kthread_stop(wc->endio_thread); 1914 1915 if (wc->flush_thread) 1916 kthread_stop(wc->flush_thread); 1917 1918 bioset_exit(&wc->bio_set); 1919 1920 mempool_exit(&wc->copy_pool); 1921 1922 if (wc->writeback_wq) 1923 destroy_workqueue(wc->writeback_wq); 1924 1925 if (wc->dev) 1926 dm_put_device(ti, wc->dev); 1927 1928 if (wc->ssd_dev) 1929 dm_put_device(ti, wc->ssd_dev); 1930 1931 if (wc->entries) 1932 vfree(wc->entries); 1933 1934 if (wc->memory_map) { 1935 if (WC_MODE_PMEM(wc)) 1936 persistent_memory_release(wc); 1937 else 1938 vfree(wc->memory_map); 1939 } 1940 1941 if (wc->dm_kcopyd) 1942 dm_kcopyd_client_destroy(wc->dm_kcopyd); 1943 1944 if (wc->dm_io) 1945 dm_io_client_destroy(wc->dm_io); 1946 1947 if (wc->dirty_bitmap) 1948 vfree(wc->dirty_bitmap); 1949 1950 kfree(wc); 1951 } 1952 1953 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 1954 { 1955 struct dm_writecache *wc; 1956 struct dm_arg_set as; 1957 const char *string; 1958 unsigned opt_params; 1959 size_t offset, data_size; 1960 int i, r; 1961 char dummy; 1962 int high_wm_percent = HIGH_WATERMARK; 1963 int low_wm_percent = LOW_WATERMARK; 1964 uint64_t x; 1965 struct wc_memory_superblock s; 1966 1967 static struct dm_arg _args[] = { 1968 {0, 10, "Invalid number of feature args"}, 1969 }; 1970 1971 as.argc = argc; 1972 as.argv = argv; 1973 1974 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 1975 if (!wc) { 1976 ti->error = "Cannot allocate writecache structure"; 1977 r = -ENOMEM; 1978 goto bad; 1979 } 1980 ti->private = wc; 1981 wc->ti = ti; 1982 1983 mutex_init(&wc->lock); 1984 wc->max_age = MAX_AGE_UNSPECIFIED; 1985 writecache_poison_lists(wc); 1986 init_waitqueue_head(&wc->freelist_wait); 1987 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 1988 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 1989 1990 for (i = 0; i < 2; i++) { 1991 atomic_set(&wc->bio_in_progress[i], 0); 1992 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 1993 } 1994 1995 wc->dm_io = dm_io_client_create(); 1996 if (IS_ERR(wc->dm_io)) { 1997 r = PTR_ERR(wc->dm_io); 1998 ti->error = "Unable to allocate dm-io client"; 1999 wc->dm_io = NULL; 2000 goto bad; 2001 } 2002 2003 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2004 if (!wc->writeback_wq) { 2005 r = -ENOMEM; 2006 ti->error = "Could not allocate writeback workqueue"; 2007 goto bad; 2008 } 2009 INIT_WORK(&wc->writeback_work, writecache_writeback); 2010 INIT_WORK(&wc->flush_work, writecache_flush_work); 2011 2012 raw_spin_lock_init(&wc->endio_list_lock); 2013 INIT_LIST_HEAD(&wc->endio_list); 2014 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2015 if (IS_ERR(wc->endio_thread)) { 2016 r = PTR_ERR(wc->endio_thread); 2017 wc->endio_thread = NULL; 2018 ti->error = "Couldn't spawn endio thread"; 2019 goto bad; 2020 } 2021 wake_up_process(wc->endio_thread); 2022 2023 /* 2024 * Parse the mode (pmem or ssd) 2025 */ 2026 string = dm_shift_arg(&as); 2027 if (!string) 2028 goto bad_arguments; 2029 2030 if (!strcasecmp(string, "s")) { 2031 wc->pmem_mode = false; 2032 } else if (!strcasecmp(string, "p")) { 2033 #ifdef DM_WRITECACHE_HAS_PMEM 2034 wc->pmem_mode = true; 2035 wc->writeback_fua = true; 2036 #else 2037 /* 2038 * If the architecture doesn't support persistent memory or 2039 * the kernel doesn't support any DAX drivers, this driver can 2040 * only be used in SSD-only mode. 2041 */ 2042 r = -EOPNOTSUPP; 2043 ti->error = "Persistent memory or DAX not supported on this system"; 2044 goto bad; 2045 #endif 2046 } else { 2047 goto bad_arguments; 2048 } 2049 2050 if (WC_MODE_PMEM(wc)) { 2051 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2052 offsetof(struct writeback_struct, bio), 2053 BIOSET_NEED_BVECS); 2054 if (r) { 2055 ti->error = "Could not allocate bio set"; 2056 goto bad; 2057 } 2058 } else { 2059 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2060 if (r) { 2061 ti->error = "Could not allocate mempool"; 2062 goto bad; 2063 } 2064 } 2065 2066 /* 2067 * Parse the origin data device 2068 */ 2069 string = dm_shift_arg(&as); 2070 if (!string) 2071 goto bad_arguments; 2072 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2073 if (r) { 2074 ti->error = "Origin data device lookup failed"; 2075 goto bad; 2076 } 2077 2078 /* 2079 * Parse cache data device (be it pmem or ssd) 2080 */ 2081 string = dm_shift_arg(&as); 2082 if (!string) 2083 goto bad_arguments; 2084 2085 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2086 if (r) { 2087 ti->error = "Cache data device lookup failed"; 2088 goto bad; 2089 } 2090 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2091 2092 /* 2093 * Parse the cache block size 2094 */ 2095 string = dm_shift_arg(&as); 2096 if (!string) 2097 goto bad_arguments; 2098 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2099 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2100 (wc->block_size & (wc->block_size - 1))) { 2101 r = -EINVAL; 2102 ti->error = "Invalid block size"; 2103 goto bad; 2104 } 2105 wc->block_size_bits = __ffs(wc->block_size); 2106 2107 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2108 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2109 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2110 2111 /* 2112 * Parse optional arguments 2113 */ 2114 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2115 if (r) 2116 goto bad; 2117 2118 while (opt_params) { 2119 string = dm_shift_arg(&as), opt_params--; 2120 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2121 unsigned long long start_sector; 2122 string = dm_shift_arg(&as), opt_params--; 2123 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2124 goto invalid_optional; 2125 wc->start_sector = start_sector; 2126 if (wc->start_sector != start_sector || 2127 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2128 goto invalid_optional; 2129 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2130 string = dm_shift_arg(&as), opt_params--; 2131 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2132 goto invalid_optional; 2133 if (high_wm_percent < 0 || high_wm_percent > 100) 2134 goto invalid_optional; 2135 wc->high_wm_percent_set = true; 2136 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2137 string = dm_shift_arg(&as), opt_params--; 2138 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2139 goto invalid_optional; 2140 if (low_wm_percent < 0 || low_wm_percent > 100) 2141 goto invalid_optional; 2142 wc->low_wm_percent_set = true; 2143 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2144 string = dm_shift_arg(&as), opt_params--; 2145 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2146 goto invalid_optional; 2147 wc->max_writeback_jobs_set = true; 2148 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2149 string = dm_shift_arg(&as), opt_params--; 2150 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2151 goto invalid_optional; 2152 wc->autocommit_blocks_set = true; 2153 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2154 unsigned autocommit_msecs; 2155 string = dm_shift_arg(&as), opt_params--; 2156 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2157 goto invalid_optional; 2158 if (autocommit_msecs > 3600000) 2159 goto invalid_optional; 2160 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2161 wc->autocommit_time_set = true; 2162 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2163 unsigned max_age_msecs; 2164 string = dm_shift_arg(&as), opt_params--; 2165 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2166 goto invalid_optional; 2167 if (max_age_msecs > 86400000) 2168 goto invalid_optional; 2169 wc->max_age = msecs_to_jiffies(max_age_msecs); 2170 } else if (!strcasecmp(string, "cleaner")) { 2171 wc->cleaner = true; 2172 } else if (!strcasecmp(string, "fua")) { 2173 if (WC_MODE_PMEM(wc)) { 2174 wc->writeback_fua = true; 2175 wc->writeback_fua_set = true; 2176 } else goto invalid_optional; 2177 } else if (!strcasecmp(string, "nofua")) { 2178 if (WC_MODE_PMEM(wc)) { 2179 wc->writeback_fua = false; 2180 wc->writeback_fua_set = true; 2181 } else goto invalid_optional; 2182 } else { 2183 invalid_optional: 2184 r = -EINVAL; 2185 ti->error = "Invalid optional argument"; 2186 goto bad; 2187 } 2188 } 2189 2190 if (high_wm_percent < low_wm_percent) { 2191 r = -EINVAL; 2192 ti->error = "High watermark must be greater than or equal to low watermark"; 2193 goto bad; 2194 } 2195 2196 if (WC_MODE_PMEM(wc)) { 2197 r = persistent_memory_claim(wc); 2198 if (r) { 2199 ti->error = "Unable to map persistent memory for cache"; 2200 goto bad; 2201 } 2202 } else { 2203 struct dm_io_region region; 2204 struct dm_io_request req; 2205 size_t n_blocks, n_metadata_blocks; 2206 uint64_t n_bitmap_bits; 2207 2208 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2209 2210 bio_list_init(&wc->flush_list); 2211 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2212 if (IS_ERR(wc->flush_thread)) { 2213 r = PTR_ERR(wc->flush_thread); 2214 wc->flush_thread = NULL; 2215 ti->error = "Couldn't spawn flush thread"; 2216 goto bad; 2217 } 2218 wake_up_process(wc->flush_thread); 2219 2220 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2221 &n_blocks, &n_metadata_blocks); 2222 if (r) { 2223 ti->error = "Invalid device size"; 2224 goto bad; 2225 } 2226 2227 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2228 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2229 /* this is limitation of test_bit functions */ 2230 if (n_bitmap_bits > 1U << 31) { 2231 r = -EFBIG; 2232 ti->error = "Invalid device size"; 2233 goto bad; 2234 } 2235 2236 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2237 if (!wc->memory_map) { 2238 r = -ENOMEM; 2239 ti->error = "Unable to allocate memory for metadata"; 2240 goto bad; 2241 } 2242 2243 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2244 if (IS_ERR(wc->dm_kcopyd)) { 2245 r = PTR_ERR(wc->dm_kcopyd); 2246 ti->error = "Unable to allocate dm-kcopyd client"; 2247 wc->dm_kcopyd = NULL; 2248 goto bad; 2249 } 2250 2251 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2252 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2253 BITS_PER_LONG * sizeof(unsigned long); 2254 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2255 if (!wc->dirty_bitmap) { 2256 r = -ENOMEM; 2257 ti->error = "Unable to allocate dirty bitmap"; 2258 goto bad; 2259 } 2260 2261 region.bdev = wc->ssd_dev->bdev; 2262 region.sector = wc->start_sector; 2263 region.count = wc->metadata_sectors; 2264 req.bi_op = REQ_OP_READ; 2265 req.bi_op_flags = REQ_SYNC; 2266 req.mem.type = DM_IO_VMA; 2267 req.mem.ptr.vma = (char *)wc->memory_map; 2268 req.client = wc->dm_io; 2269 req.notify.fn = NULL; 2270 2271 r = dm_io(&req, 1, ®ion, NULL); 2272 if (r) { 2273 ti->error = "Unable to read metadata"; 2274 goto bad; 2275 } 2276 } 2277 2278 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2279 if (r) { 2280 ti->error = "Hardware memory error when reading superblock"; 2281 goto bad; 2282 } 2283 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2284 r = init_memory(wc); 2285 if (r) { 2286 ti->error = "Unable to initialize device"; 2287 goto bad; 2288 } 2289 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2290 if (r) { 2291 ti->error = "Hardware memory error when reading superblock"; 2292 goto bad; 2293 } 2294 } 2295 2296 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2297 ti->error = "Invalid magic in the superblock"; 2298 r = -EINVAL; 2299 goto bad; 2300 } 2301 2302 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2303 ti->error = "Invalid version in the superblock"; 2304 r = -EINVAL; 2305 goto bad; 2306 } 2307 2308 if (le32_to_cpu(s.block_size) != wc->block_size) { 2309 ti->error = "Block size does not match superblock"; 2310 r = -EINVAL; 2311 goto bad; 2312 } 2313 2314 wc->n_blocks = le64_to_cpu(s.n_blocks); 2315 2316 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2317 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2318 overflow: 2319 ti->error = "Overflow in size calculation"; 2320 r = -EINVAL; 2321 goto bad; 2322 } 2323 offset += sizeof(struct wc_memory_superblock); 2324 if (offset < sizeof(struct wc_memory_superblock)) 2325 goto overflow; 2326 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2327 data_size = wc->n_blocks * (size_t)wc->block_size; 2328 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2329 (offset + data_size < offset)) 2330 goto overflow; 2331 if (offset + data_size > wc->memory_map_size) { 2332 ti->error = "Memory area is too small"; 2333 r = -EINVAL; 2334 goto bad; 2335 } 2336 2337 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2338 wc->block_start = (char *)sb(wc) + offset; 2339 2340 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2341 x += 50; 2342 do_div(x, 100); 2343 wc->freelist_high_watermark = x; 2344 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2345 x += 50; 2346 do_div(x, 100); 2347 wc->freelist_low_watermark = x; 2348 2349 if (wc->cleaner) 2350 activate_cleaner(wc); 2351 2352 r = writecache_alloc_entries(wc); 2353 if (r) { 2354 ti->error = "Cannot allocate memory"; 2355 goto bad; 2356 } 2357 2358 ti->num_flush_bios = 1; 2359 ti->flush_supported = true; 2360 ti->num_discard_bios = 1; 2361 2362 if (WC_MODE_PMEM(wc)) 2363 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2364 2365 return 0; 2366 2367 bad_arguments: 2368 r = -EINVAL; 2369 ti->error = "Bad arguments"; 2370 bad: 2371 writecache_dtr(ti); 2372 return r; 2373 } 2374 2375 static void writecache_status(struct dm_target *ti, status_type_t type, 2376 unsigned status_flags, char *result, unsigned maxlen) 2377 { 2378 struct dm_writecache *wc = ti->private; 2379 unsigned extra_args; 2380 unsigned sz = 0; 2381 uint64_t x; 2382 2383 switch (type) { 2384 case STATUSTYPE_INFO: 2385 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2386 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2387 (unsigned long long)wc->writeback_size); 2388 break; 2389 case STATUSTYPE_TABLE: 2390 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2391 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2392 extra_args = 0; 2393 if (wc->start_sector) 2394 extra_args += 2; 2395 if (wc->high_wm_percent_set && !wc->cleaner) 2396 extra_args += 2; 2397 if (wc->low_wm_percent_set && !wc->cleaner) 2398 extra_args += 2; 2399 if (wc->max_writeback_jobs_set) 2400 extra_args += 2; 2401 if (wc->autocommit_blocks_set) 2402 extra_args += 2; 2403 if (wc->autocommit_time_set) 2404 extra_args += 2; 2405 if (wc->cleaner) 2406 extra_args++; 2407 if (wc->writeback_fua_set) 2408 extra_args++; 2409 2410 DMEMIT("%u", extra_args); 2411 if (wc->start_sector) 2412 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2413 if (wc->high_wm_percent_set && !wc->cleaner) { 2414 x = (uint64_t)wc->freelist_high_watermark * 100; 2415 x += wc->n_blocks / 2; 2416 do_div(x, (size_t)wc->n_blocks); 2417 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2418 } 2419 if (wc->low_wm_percent_set && !wc->cleaner) { 2420 x = (uint64_t)wc->freelist_low_watermark * 100; 2421 x += wc->n_blocks / 2; 2422 do_div(x, (size_t)wc->n_blocks); 2423 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2424 } 2425 if (wc->max_writeback_jobs_set) 2426 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2427 if (wc->autocommit_blocks_set) 2428 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2429 if (wc->autocommit_time_set) 2430 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2431 if (wc->max_age != MAX_AGE_UNSPECIFIED) 2432 DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age)); 2433 if (wc->cleaner) 2434 DMEMIT(" cleaner"); 2435 if (wc->writeback_fua_set) 2436 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2437 break; 2438 } 2439 } 2440 2441 static struct target_type writecache_target = { 2442 .name = "writecache", 2443 .version = {1, 3, 0}, 2444 .module = THIS_MODULE, 2445 .ctr = writecache_ctr, 2446 .dtr = writecache_dtr, 2447 .status = writecache_status, 2448 .postsuspend = writecache_suspend, 2449 .resume = writecache_resume, 2450 .message = writecache_message, 2451 .map = writecache_map, 2452 .end_io = writecache_end_io, 2453 .iterate_devices = writecache_iterate_devices, 2454 .io_hints = writecache_io_hints, 2455 }; 2456 2457 static int __init dm_writecache_init(void) 2458 { 2459 int r; 2460 2461 r = dm_register_target(&writecache_target); 2462 if (r < 0) { 2463 DMERR("register failed %d", r); 2464 return r; 2465 } 2466 2467 return 0; 2468 } 2469 2470 static void __exit dm_writecache_exit(void) 2471 { 2472 dm_unregister_target(&writecache_target); 2473 } 2474 2475 module_init(dm_writecache_init); 2476 module_exit(dm_writecache_exit); 2477 2478 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2479 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2480 MODULE_LICENSE("GPL"); 2481