1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/vmalloc.h> 12 #include <linux/kthread.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/dax.h> 16 #include <linux/pfn_t.h> 17 #include <linux/libnvdimm.h> 18 19 #define DM_MSG_PREFIX "writecache" 20 21 #define HIGH_WATERMARK 50 22 #define LOW_WATERMARK 45 23 #define MAX_WRITEBACK_JOBS 0 24 #define ENDIO_LATENCY 16 25 #define WRITEBACK_LATENCY 64 26 #define AUTOCOMMIT_BLOCKS_SSD 65536 27 #define AUTOCOMMIT_BLOCKS_PMEM 64 28 #define AUTOCOMMIT_MSEC 1000 29 #define MAX_AGE_DIV 16 30 #define MAX_AGE_UNSPECIFIED -1UL 31 32 #define BITMAP_GRANULARITY 65536 33 #if BITMAP_GRANULARITY < PAGE_SIZE 34 #undef BITMAP_GRANULARITY 35 #define BITMAP_GRANULARITY PAGE_SIZE 36 #endif 37 38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) 39 #define DM_WRITECACHE_HAS_PMEM 40 #endif 41 42 #ifdef DM_WRITECACHE_HAS_PMEM 43 #define pmem_assign(dest, src) \ 44 do { \ 45 typeof(dest) uniq = (src); \ 46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ 47 } while (0) 48 #else 49 #define pmem_assign(dest, src) ((dest) = (src)) 50 #endif 51 52 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) 53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 54 #endif 55 56 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 57 #define MEMORY_SUPERBLOCK_VERSION 1 58 59 struct wc_memory_entry { 60 __le64 original_sector; 61 __le64 seq_count; 62 }; 63 64 struct wc_memory_superblock { 65 union { 66 struct { 67 __le32 magic; 68 __le32 version; 69 __le32 block_size; 70 __le32 pad; 71 __le64 n_blocks; 72 __le64 seq_count; 73 }; 74 __le64 padding[8]; 75 }; 76 struct wc_memory_entry entries[0]; 77 }; 78 79 struct wc_entry { 80 struct rb_node rb_node; 81 struct list_head lru; 82 unsigned short wc_list_contiguous; 83 bool write_in_progress 84 #if BITS_PER_LONG == 64 85 :1 86 #endif 87 ; 88 unsigned long index 89 #if BITS_PER_LONG == 64 90 :47 91 #endif 92 ; 93 unsigned long age; 94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 95 uint64_t original_sector; 96 uint64_t seq_count; 97 #endif 98 }; 99 100 #ifdef DM_WRITECACHE_HAS_PMEM 101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) 102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua) 103 #else 104 #define WC_MODE_PMEM(wc) false 105 #define WC_MODE_FUA(wc) false 106 #endif 107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) 108 109 struct dm_writecache { 110 struct mutex lock; 111 struct list_head lru; 112 union { 113 struct list_head freelist; 114 struct { 115 struct rb_root freetree; 116 struct wc_entry *current_free; 117 }; 118 }; 119 struct rb_root tree; 120 121 size_t freelist_size; 122 size_t writeback_size; 123 size_t freelist_high_watermark; 124 size_t freelist_low_watermark; 125 unsigned long max_age; 126 127 unsigned uncommitted_blocks; 128 unsigned autocommit_blocks; 129 unsigned max_writeback_jobs; 130 131 int error; 132 133 unsigned long autocommit_jiffies; 134 struct timer_list autocommit_timer; 135 struct wait_queue_head freelist_wait; 136 137 struct timer_list max_age_timer; 138 139 atomic_t bio_in_progress[2]; 140 struct wait_queue_head bio_in_progress_wait[2]; 141 142 struct dm_target *ti; 143 struct dm_dev *dev; 144 struct dm_dev *ssd_dev; 145 sector_t start_sector; 146 void *memory_map; 147 uint64_t memory_map_size; 148 size_t metadata_sectors; 149 size_t n_blocks; 150 uint64_t seq_count; 151 void *block_start; 152 struct wc_entry *entries; 153 unsigned block_size; 154 unsigned char block_size_bits; 155 156 bool pmem_mode:1; 157 bool writeback_fua:1; 158 159 bool overwrote_committed:1; 160 bool memory_vmapped:1; 161 162 bool high_wm_percent_set:1; 163 bool low_wm_percent_set:1; 164 bool max_writeback_jobs_set:1; 165 bool autocommit_blocks_set:1; 166 bool autocommit_time_set:1; 167 bool writeback_fua_set:1; 168 bool flush_on_suspend:1; 169 bool cleaner:1; 170 171 unsigned writeback_all; 172 struct workqueue_struct *writeback_wq; 173 struct work_struct writeback_work; 174 struct work_struct flush_work; 175 176 struct dm_io_client *dm_io; 177 178 raw_spinlock_t endio_list_lock; 179 struct list_head endio_list; 180 struct task_struct *endio_thread; 181 182 struct task_struct *flush_thread; 183 struct bio_list flush_list; 184 185 struct dm_kcopyd_client *dm_kcopyd; 186 unsigned long *dirty_bitmap; 187 unsigned dirty_bitmap_size; 188 189 struct bio_set bio_set; 190 mempool_t copy_pool; 191 }; 192 193 #define WB_LIST_INLINE 16 194 195 struct writeback_struct { 196 struct list_head endio_entry; 197 struct dm_writecache *wc; 198 struct wc_entry **wc_list; 199 unsigned wc_list_n; 200 struct wc_entry *wc_list_inline[WB_LIST_INLINE]; 201 struct bio bio; 202 }; 203 204 struct copy_struct { 205 struct list_head endio_entry; 206 struct dm_writecache *wc; 207 struct wc_entry *e; 208 unsigned n_entries; 209 int error; 210 }; 211 212 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, 213 "A percentage of time allocated for data copying"); 214 215 static void wc_lock(struct dm_writecache *wc) 216 { 217 mutex_lock(&wc->lock); 218 } 219 220 static void wc_unlock(struct dm_writecache *wc) 221 { 222 mutex_unlock(&wc->lock); 223 } 224 225 #ifdef DM_WRITECACHE_HAS_PMEM 226 static int persistent_memory_claim(struct dm_writecache *wc) 227 { 228 int r; 229 loff_t s; 230 long p, da; 231 pfn_t pfn; 232 int id; 233 struct page **pages; 234 235 wc->memory_vmapped = false; 236 237 s = wc->memory_map_size; 238 p = s >> PAGE_SHIFT; 239 if (!p) { 240 r = -EINVAL; 241 goto err1; 242 } 243 if (p != s >> PAGE_SHIFT) { 244 r = -EOVERFLOW; 245 goto err1; 246 } 247 248 id = dax_read_lock(); 249 250 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); 251 if (da < 0) { 252 wc->memory_map = NULL; 253 r = da; 254 goto err2; 255 } 256 if (!pfn_t_has_page(pfn)) { 257 wc->memory_map = NULL; 258 r = -EOPNOTSUPP; 259 goto err2; 260 } 261 if (da != p) { 262 long i; 263 wc->memory_map = NULL; 264 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); 265 if (!pages) { 266 r = -ENOMEM; 267 goto err2; 268 } 269 i = 0; 270 do { 271 long daa; 272 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, 273 NULL, &pfn); 274 if (daa <= 0) { 275 r = daa ? daa : -EINVAL; 276 goto err3; 277 } 278 if (!pfn_t_has_page(pfn)) { 279 r = -EOPNOTSUPP; 280 goto err3; 281 } 282 while (daa-- && i < p) { 283 pages[i++] = pfn_t_to_page(pfn); 284 pfn.val++; 285 if (!(i & 15)) 286 cond_resched(); 287 } 288 } while (i < p); 289 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); 290 if (!wc->memory_map) { 291 r = -ENOMEM; 292 goto err3; 293 } 294 kvfree(pages); 295 wc->memory_vmapped = true; 296 } 297 298 dax_read_unlock(id); 299 300 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; 301 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; 302 303 return 0; 304 err3: 305 kvfree(pages); 306 err2: 307 dax_read_unlock(id); 308 err1: 309 return r; 310 } 311 #else 312 static int persistent_memory_claim(struct dm_writecache *wc) 313 { 314 BUG(); 315 } 316 #endif 317 318 static void persistent_memory_release(struct dm_writecache *wc) 319 { 320 if (wc->memory_vmapped) 321 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); 322 } 323 324 static struct page *persistent_memory_page(void *addr) 325 { 326 if (is_vmalloc_addr(addr)) 327 return vmalloc_to_page(addr); 328 else 329 return virt_to_page(addr); 330 } 331 332 static unsigned persistent_memory_page_offset(void *addr) 333 { 334 return (unsigned long)addr & (PAGE_SIZE - 1); 335 } 336 337 static void persistent_memory_flush_cache(void *ptr, size_t size) 338 { 339 if (is_vmalloc_addr(ptr)) 340 flush_kernel_vmap_range(ptr, size); 341 } 342 343 static void persistent_memory_invalidate_cache(void *ptr, size_t size) 344 { 345 if (is_vmalloc_addr(ptr)) 346 invalidate_kernel_vmap_range(ptr, size); 347 } 348 349 static struct wc_memory_superblock *sb(struct dm_writecache *wc) 350 { 351 return wc->memory_map; 352 } 353 354 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) 355 { 356 return &sb(wc)->entries[e->index]; 357 } 358 359 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) 360 { 361 return (char *)wc->block_start + (e->index << wc->block_size_bits); 362 } 363 364 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) 365 { 366 return wc->start_sector + wc->metadata_sectors + 367 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); 368 } 369 370 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) 371 { 372 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 373 return e->original_sector; 374 #else 375 return le64_to_cpu(memory_entry(wc, e)->original_sector); 376 #endif 377 } 378 379 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) 380 { 381 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 382 return e->seq_count; 383 #else 384 return le64_to_cpu(memory_entry(wc, e)->seq_count); 385 #endif 386 } 387 388 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) 389 { 390 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 391 e->seq_count = -1; 392 #endif 393 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); 394 } 395 396 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, 397 uint64_t original_sector, uint64_t seq_count) 398 { 399 struct wc_memory_entry me; 400 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 401 e->original_sector = original_sector; 402 e->seq_count = seq_count; 403 #endif 404 me.original_sector = cpu_to_le64(original_sector); 405 me.seq_count = cpu_to_le64(seq_count); 406 pmem_assign(*memory_entry(wc, e), me); 407 } 408 409 #define writecache_error(wc, err, msg, arg...) \ 410 do { \ 411 if (!cmpxchg(&(wc)->error, 0, err)) \ 412 DMERR(msg, ##arg); \ 413 wake_up(&(wc)->freelist_wait); \ 414 } while (0) 415 416 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) 417 418 static void writecache_flush_all_metadata(struct dm_writecache *wc) 419 { 420 if (!WC_MODE_PMEM(wc)) 421 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); 422 } 423 424 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) 425 { 426 if (!WC_MODE_PMEM(wc)) 427 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, 428 wc->dirty_bitmap); 429 } 430 431 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); 432 433 struct io_notify { 434 struct dm_writecache *wc; 435 struct completion c; 436 atomic_t count; 437 }; 438 439 static void writecache_notify_io(unsigned long error, void *context) 440 { 441 struct io_notify *endio = context; 442 443 if (unlikely(error != 0)) 444 writecache_error(endio->wc, -EIO, "error writing metadata"); 445 BUG_ON(atomic_read(&endio->count) <= 0); 446 if (atomic_dec_and_test(&endio->count)) 447 complete(&endio->c); 448 } 449 450 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) 451 { 452 wait_event(wc->bio_in_progress_wait[direction], 453 !atomic_read(&wc->bio_in_progress[direction])); 454 } 455 456 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 457 { 458 struct dm_io_region region; 459 struct dm_io_request req; 460 struct io_notify endio = { 461 wc, 462 COMPLETION_INITIALIZER_ONSTACK(endio.c), 463 ATOMIC_INIT(1), 464 }; 465 unsigned bitmap_bits = wc->dirty_bitmap_size * 8; 466 unsigned i = 0; 467 468 while (1) { 469 unsigned j; 470 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); 471 if (unlikely(i == bitmap_bits)) 472 break; 473 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); 474 475 region.bdev = wc->ssd_dev->bdev; 476 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 477 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); 478 479 if (unlikely(region.sector >= wc->metadata_sectors)) 480 break; 481 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 482 region.count = wc->metadata_sectors - region.sector; 483 484 region.sector += wc->start_sector; 485 atomic_inc(&endio.count); 486 req.bi_op = REQ_OP_WRITE; 487 req.bi_op_flags = REQ_SYNC; 488 req.mem.type = DM_IO_VMA; 489 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; 490 req.client = wc->dm_io; 491 req.notify.fn = writecache_notify_io; 492 req.notify.context = &endio; 493 494 /* writing via async dm-io (implied by notify.fn above) won't return an error */ 495 (void) dm_io(&req, 1, ®ion, NULL); 496 i = j; 497 } 498 499 writecache_notify_io(0, &endio); 500 wait_for_completion_io(&endio.c); 501 502 if (wait_for_ios) 503 writecache_wait_for_ios(wc, WRITE); 504 505 writecache_disk_flush(wc, wc->ssd_dev); 506 507 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); 508 } 509 510 static void ssd_commit_superblock(struct dm_writecache *wc) 511 { 512 int r; 513 struct dm_io_region region; 514 struct dm_io_request req; 515 516 region.bdev = wc->ssd_dev->bdev; 517 region.sector = 0; 518 region.count = PAGE_SIZE; 519 520 if (unlikely(region.sector + region.count > wc->metadata_sectors)) 521 region.count = wc->metadata_sectors - region.sector; 522 523 region.sector += wc->start_sector; 524 525 req.bi_op = REQ_OP_WRITE; 526 req.bi_op_flags = REQ_SYNC | REQ_FUA; 527 req.mem.type = DM_IO_VMA; 528 req.mem.ptr.vma = (char *)wc->memory_map; 529 req.client = wc->dm_io; 530 req.notify.fn = NULL; 531 req.notify.context = NULL; 532 533 r = dm_io(&req, 1, ®ion, NULL); 534 if (unlikely(r)) 535 writecache_error(wc, r, "error writing superblock"); 536 } 537 538 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios) 539 { 540 if (WC_MODE_PMEM(wc)) 541 wmb(); 542 else 543 ssd_commit_flushed(wc, wait_for_ios); 544 } 545 546 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) 547 { 548 int r; 549 struct dm_io_region region; 550 struct dm_io_request req; 551 552 region.bdev = dev->bdev; 553 region.sector = 0; 554 region.count = 0; 555 req.bi_op = REQ_OP_WRITE; 556 req.bi_op_flags = REQ_PREFLUSH; 557 req.mem.type = DM_IO_KMEM; 558 req.mem.ptr.addr = NULL; 559 req.client = wc->dm_io; 560 req.notify.fn = NULL; 561 562 r = dm_io(&req, 1, ®ion, NULL); 563 if (unlikely(r)) 564 writecache_error(wc, r, "error flushing metadata: %d", r); 565 } 566 567 #define WFE_RETURN_FOLLOWING 1 568 #define WFE_LOWEST_SEQ 2 569 570 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, 571 uint64_t block, int flags) 572 { 573 struct wc_entry *e; 574 struct rb_node *node = wc->tree.rb_node; 575 576 if (unlikely(!node)) 577 return NULL; 578 579 while (1) { 580 e = container_of(node, struct wc_entry, rb_node); 581 if (read_original_sector(wc, e) == block) 582 break; 583 584 node = (read_original_sector(wc, e) >= block ? 585 e->rb_node.rb_left : e->rb_node.rb_right); 586 if (unlikely(!node)) { 587 if (!(flags & WFE_RETURN_FOLLOWING)) 588 return NULL; 589 if (read_original_sector(wc, e) >= block) { 590 return e; 591 } else { 592 node = rb_next(&e->rb_node); 593 if (unlikely(!node)) 594 return NULL; 595 e = container_of(node, struct wc_entry, rb_node); 596 return e; 597 } 598 } 599 } 600 601 while (1) { 602 struct wc_entry *e2; 603 if (flags & WFE_LOWEST_SEQ) 604 node = rb_prev(&e->rb_node); 605 else 606 node = rb_next(&e->rb_node); 607 if (unlikely(!node)) 608 return e; 609 e2 = container_of(node, struct wc_entry, rb_node); 610 if (read_original_sector(wc, e2) != block) 611 return e; 612 e = e2; 613 } 614 } 615 616 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) 617 { 618 struct wc_entry *e; 619 struct rb_node **node = &wc->tree.rb_node, *parent = NULL; 620 621 while (*node) { 622 e = container_of(*node, struct wc_entry, rb_node); 623 parent = &e->rb_node; 624 if (read_original_sector(wc, e) > read_original_sector(wc, ins)) 625 node = &parent->rb_left; 626 else 627 node = &parent->rb_right; 628 } 629 rb_link_node(&ins->rb_node, parent, node); 630 rb_insert_color(&ins->rb_node, &wc->tree); 631 list_add(&ins->lru, &wc->lru); 632 ins->age = jiffies; 633 } 634 635 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) 636 { 637 list_del(&e->lru); 638 rb_erase(&e->rb_node, &wc->tree); 639 } 640 641 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) 642 { 643 if (WC_MODE_SORT_FREELIST(wc)) { 644 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; 645 if (unlikely(!*node)) 646 wc->current_free = e; 647 while (*node) { 648 parent = *node; 649 if (&e->rb_node < *node) 650 node = &parent->rb_left; 651 else 652 node = &parent->rb_right; 653 } 654 rb_link_node(&e->rb_node, parent, node); 655 rb_insert_color(&e->rb_node, &wc->freetree); 656 } else { 657 list_add_tail(&e->lru, &wc->freelist); 658 } 659 wc->freelist_size++; 660 } 661 662 static inline void writecache_verify_watermark(struct dm_writecache *wc) 663 { 664 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) 665 queue_work(wc->writeback_wq, &wc->writeback_work); 666 } 667 668 static void writecache_max_age_timer(struct timer_list *t) 669 { 670 struct dm_writecache *wc = from_timer(wc, t, max_age_timer); 671 672 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) { 673 queue_work(wc->writeback_wq, &wc->writeback_work); 674 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 675 } 676 } 677 678 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector) 679 { 680 struct wc_entry *e; 681 682 if (WC_MODE_SORT_FREELIST(wc)) { 683 struct rb_node *next; 684 if (unlikely(!wc->current_free)) 685 return NULL; 686 e = wc->current_free; 687 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 688 return NULL; 689 next = rb_next(&e->rb_node); 690 rb_erase(&e->rb_node, &wc->freetree); 691 if (unlikely(!next)) 692 next = rb_first(&wc->freetree); 693 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; 694 } else { 695 if (unlikely(list_empty(&wc->freelist))) 696 return NULL; 697 e = container_of(wc->freelist.next, struct wc_entry, lru); 698 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector)) 699 return NULL; 700 list_del(&e->lru); 701 } 702 wc->freelist_size--; 703 704 writecache_verify_watermark(wc); 705 706 return e; 707 } 708 709 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) 710 { 711 writecache_unlink(wc, e); 712 writecache_add_to_freelist(wc, e); 713 clear_seq_count(wc, e); 714 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 715 if (unlikely(waitqueue_active(&wc->freelist_wait))) 716 wake_up(&wc->freelist_wait); 717 } 718 719 static void writecache_wait_on_freelist(struct dm_writecache *wc) 720 { 721 DEFINE_WAIT(wait); 722 723 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); 724 wc_unlock(wc); 725 io_schedule(); 726 finish_wait(&wc->freelist_wait, &wait); 727 wc_lock(wc); 728 } 729 730 static void writecache_poison_lists(struct dm_writecache *wc) 731 { 732 /* 733 * Catch incorrect access to these values while the device is suspended. 734 */ 735 memset(&wc->tree, -1, sizeof wc->tree); 736 wc->lru.next = LIST_POISON1; 737 wc->lru.prev = LIST_POISON2; 738 wc->freelist.next = LIST_POISON1; 739 wc->freelist.prev = LIST_POISON2; 740 } 741 742 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) 743 { 744 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 745 if (WC_MODE_PMEM(wc)) 746 writecache_flush_region(wc, memory_data(wc, e), wc->block_size); 747 } 748 749 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) 750 { 751 return read_seq_count(wc, e) < wc->seq_count; 752 } 753 754 static void writecache_flush(struct dm_writecache *wc) 755 { 756 struct wc_entry *e, *e2; 757 bool need_flush_after_free; 758 759 wc->uncommitted_blocks = 0; 760 del_timer(&wc->autocommit_timer); 761 762 if (list_empty(&wc->lru)) 763 return; 764 765 e = container_of(wc->lru.next, struct wc_entry, lru); 766 if (writecache_entry_is_committed(wc, e)) { 767 if (wc->overwrote_committed) { 768 writecache_wait_for_ios(wc, WRITE); 769 writecache_disk_flush(wc, wc->ssd_dev); 770 wc->overwrote_committed = false; 771 } 772 return; 773 } 774 while (1) { 775 writecache_flush_entry(wc, e); 776 if (unlikely(e->lru.next == &wc->lru)) 777 break; 778 e2 = container_of(e->lru.next, struct wc_entry, lru); 779 if (writecache_entry_is_committed(wc, e2)) 780 break; 781 e = e2; 782 cond_resched(); 783 } 784 writecache_commit_flushed(wc, true); 785 786 wc->seq_count++; 787 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); 788 if (WC_MODE_PMEM(wc)) 789 writecache_commit_flushed(wc, false); 790 else 791 ssd_commit_superblock(wc); 792 793 wc->overwrote_committed = false; 794 795 need_flush_after_free = false; 796 while (1) { 797 /* Free another committed entry with lower seq-count */ 798 struct rb_node *rb_node = rb_prev(&e->rb_node); 799 800 if (rb_node) { 801 e2 = container_of(rb_node, struct wc_entry, rb_node); 802 if (read_original_sector(wc, e2) == read_original_sector(wc, e) && 803 likely(!e2->write_in_progress)) { 804 writecache_free_entry(wc, e2); 805 need_flush_after_free = true; 806 } 807 } 808 if (unlikely(e->lru.prev == &wc->lru)) 809 break; 810 e = container_of(e->lru.prev, struct wc_entry, lru); 811 cond_resched(); 812 } 813 814 if (need_flush_after_free) 815 writecache_commit_flushed(wc, false); 816 } 817 818 static void writecache_flush_work(struct work_struct *work) 819 { 820 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); 821 822 wc_lock(wc); 823 writecache_flush(wc); 824 wc_unlock(wc); 825 } 826 827 static void writecache_autocommit_timer(struct timer_list *t) 828 { 829 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); 830 if (!writecache_has_error(wc)) 831 queue_work(wc->writeback_wq, &wc->flush_work); 832 } 833 834 static void writecache_schedule_autocommit(struct dm_writecache *wc) 835 { 836 if (!timer_pending(&wc->autocommit_timer)) 837 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); 838 } 839 840 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) 841 { 842 struct wc_entry *e; 843 bool discarded_something = false; 844 845 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); 846 if (unlikely(!e)) 847 return; 848 849 while (read_original_sector(wc, e) < end) { 850 struct rb_node *node = rb_next(&e->rb_node); 851 852 if (likely(!e->write_in_progress)) { 853 if (!discarded_something) { 854 if (!WC_MODE_PMEM(wc)) { 855 writecache_wait_for_ios(wc, READ); 856 writecache_wait_for_ios(wc, WRITE); 857 } 858 discarded_something = true; 859 } 860 if (!writecache_entry_is_committed(wc, e)) 861 wc->uncommitted_blocks--; 862 writecache_free_entry(wc, e); 863 } 864 865 if (unlikely(!node)) 866 break; 867 868 e = container_of(node, struct wc_entry, rb_node); 869 } 870 871 if (discarded_something) 872 writecache_commit_flushed(wc, false); 873 } 874 875 static bool writecache_wait_for_writeback(struct dm_writecache *wc) 876 { 877 if (wc->writeback_size) { 878 writecache_wait_on_freelist(wc); 879 return true; 880 } 881 return false; 882 } 883 884 static void writecache_suspend(struct dm_target *ti) 885 { 886 struct dm_writecache *wc = ti->private; 887 bool flush_on_suspend; 888 889 del_timer_sync(&wc->autocommit_timer); 890 del_timer_sync(&wc->max_age_timer); 891 892 wc_lock(wc); 893 writecache_flush(wc); 894 flush_on_suspend = wc->flush_on_suspend; 895 if (flush_on_suspend) { 896 wc->flush_on_suspend = false; 897 wc->writeback_all++; 898 queue_work(wc->writeback_wq, &wc->writeback_work); 899 } 900 wc_unlock(wc); 901 902 drain_workqueue(wc->writeback_wq); 903 904 wc_lock(wc); 905 if (flush_on_suspend) 906 wc->writeback_all--; 907 while (writecache_wait_for_writeback(wc)); 908 909 if (WC_MODE_PMEM(wc)) 910 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 911 912 writecache_poison_lists(wc); 913 914 wc_unlock(wc); 915 } 916 917 static int writecache_alloc_entries(struct dm_writecache *wc) 918 { 919 size_t b; 920 921 if (wc->entries) 922 return 0; 923 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); 924 if (!wc->entries) 925 return -ENOMEM; 926 for (b = 0; b < wc->n_blocks; b++) { 927 struct wc_entry *e = &wc->entries[b]; 928 e->index = b; 929 e->write_in_progress = false; 930 cond_resched(); 931 } 932 933 return 0; 934 } 935 936 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors) 937 { 938 struct dm_io_region region; 939 struct dm_io_request req; 940 941 region.bdev = wc->ssd_dev->bdev; 942 region.sector = wc->start_sector; 943 region.count = n_sectors; 944 req.bi_op = REQ_OP_READ; 945 req.bi_op_flags = REQ_SYNC; 946 req.mem.type = DM_IO_VMA; 947 req.mem.ptr.vma = (char *)wc->memory_map; 948 req.client = wc->dm_io; 949 req.notify.fn = NULL; 950 951 return dm_io(&req, 1, ®ion, NULL); 952 } 953 954 static void writecache_resume(struct dm_target *ti) 955 { 956 struct dm_writecache *wc = ti->private; 957 size_t b; 958 bool need_flush = false; 959 __le64 sb_seq_count; 960 int r; 961 962 wc_lock(wc); 963 964 if (WC_MODE_PMEM(wc)) { 965 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); 966 } else { 967 r = writecache_read_metadata(wc, wc->metadata_sectors); 968 if (r) { 969 size_t sb_entries_offset; 970 writecache_error(wc, r, "unable to read metadata: %d", r); 971 sb_entries_offset = offsetof(struct wc_memory_superblock, entries); 972 memset((char *)wc->memory_map + sb_entries_offset, -1, 973 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset); 974 } 975 } 976 977 wc->tree = RB_ROOT; 978 INIT_LIST_HEAD(&wc->lru); 979 if (WC_MODE_SORT_FREELIST(wc)) { 980 wc->freetree = RB_ROOT; 981 wc->current_free = NULL; 982 } else { 983 INIT_LIST_HEAD(&wc->freelist); 984 } 985 wc->freelist_size = 0; 986 987 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); 988 if (r) { 989 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); 990 sb_seq_count = cpu_to_le64(0); 991 } 992 wc->seq_count = le64_to_cpu(sb_seq_count); 993 994 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS 995 for (b = 0; b < wc->n_blocks; b++) { 996 struct wc_entry *e = &wc->entries[b]; 997 struct wc_memory_entry wme; 998 if (writecache_has_error(wc)) { 999 e->original_sector = -1; 1000 e->seq_count = -1; 1001 continue; 1002 } 1003 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); 1004 if (r) { 1005 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", 1006 (unsigned long)b, r); 1007 e->original_sector = -1; 1008 e->seq_count = -1; 1009 } else { 1010 e->original_sector = le64_to_cpu(wme.original_sector); 1011 e->seq_count = le64_to_cpu(wme.seq_count); 1012 } 1013 cond_resched(); 1014 } 1015 #endif 1016 for (b = 0; b < wc->n_blocks; b++) { 1017 struct wc_entry *e = &wc->entries[b]; 1018 if (!writecache_entry_is_committed(wc, e)) { 1019 if (read_seq_count(wc, e) != -1) { 1020 erase_this: 1021 clear_seq_count(wc, e); 1022 need_flush = true; 1023 } 1024 writecache_add_to_freelist(wc, e); 1025 } else { 1026 struct wc_entry *old; 1027 1028 old = writecache_find_entry(wc, read_original_sector(wc, e), 0); 1029 if (!old) { 1030 writecache_insert_entry(wc, e); 1031 } else { 1032 if (read_seq_count(wc, old) == read_seq_count(wc, e)) { 1033 writecache_error(wc, -EINVAL, 1034 "two identical entries, position %llu, sector %llu, sequence %llu", 1035 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), 1036 (unsigned long long)read_seq_count(wc, e)); 1037 } 1038 if (read_seq_count(wc, old) > read_seq_count(wc, e)) { 1039 goto erase_this; 1040 } else { 1041 writecache_free_entry(wc, old); 1042 writecache_insert_entry(wc, e); 1043 need_flush = true; 1044 } 1045 } 1046 } 1047 cond_resched(); 1048 } 1049 1050 if (need_flush) { 1051 writecache_flush_all_metadata(wc); 1052 writecache_commit_flushed(wc, false); 1053 } 1054 1055 writecache_verify_watermark(wc); 1056 1057 if (wc->max_age != MAX_AGE_UNSPECIFIED) 1058 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV); 1059 1060 wc_unlock(wc); 1061 } 1062 1063 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1064 { 1065 if (argc != 1) 1066 return -EINVAL; 1067 1068 wc_lock(wc); 1069 if (dm_suspended(wc->ti)) { 1070 wc_unlock(wc); 1071 return -EBUSY; 1072 } 1073 if (writecache_has_error(wc)) { 1074 wc_unlock(wc); 1075 return -EIO; 1076 } 1077 1078 writecache_flush(wc); 1079 wc->writeback_all++; 1080 queue_work(wc->writeback_wq, &wc->writeback_work); 1081 wc_unlock(wc); 1082 1083 flush_workqueue(wc->writeback_wq); 1084 1085 wc_lock(wc); 1086 wc->writeback_all--; 1087 if (writecache_has_error(wc)) { 1088 wc_unlock(wc); 1089 return -EIO; 1090 } 1091 wc_unlock(wc); 1092 1093 return 0; 1094 } 1095 1096 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1097 { 1098 if (argc != 1) 1099 return -EINVAL; 1100 1101 wc_lock(wc); 1102 wc->flush_on_suspend = true; 1103 wc_unlock(wc); 1104 1105 return 0; 1106 } 1107 1108 static void activate_cleaner(struct dm_writecache *wc) 1109 { 1110 wc->flush_on_suspend = true; 1111 wc->cleaner = true; 1112 wc->freelist_high_watermark = wc->n_blocks; 1113 wc->freelist_low_watermark = wc->n_blocks; 1114 } 1115 1116 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc) 1117 { 1118 if (argc != 1) 1119 return -EINVAL; 1120 1121 wc_lock(wc); 1122 activate_cleaner(wc); 1123 if (!dm_suspended(wc->ti)) 1124 writecache_verify_watermark(wc); 1125 wc_unlock(wc); 1126 1127 return 0; 1128 } 1129 1130 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, 1131 char *result, unsigned maxlen) 1132 { 1133 int r = -EINVAL; 1134 struct dm_writecache *wc = ti->private; 1135 1136 if (!strcasecmp(argv[0], "flush")) 1137 r = process_flush_mesg(argc, argv, wc); 1138 else if (!strcasecmp(argv[0], "flush_on_suspend")) 1139 r = process_flush_on_suspend_mesg(argc, argv, wc); 1140 else if (!strcasecmp(argv[0], "cleaner")) 1141 r = process_cleaner_mesg(argc, argv, wc); 1142 else 1143 DMERR("unrecognised message received: %s", argv[0]); 1144 1145 return r; 1146 } 1147 1148 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size) 1149 { 1150 /* 1151 * clflushopt performs better with block size 1024, 2048, 4096 1152 * non-temporal stores perform better with block size 512 1153 * 1154 * block size 512 1024 2048 4096 1155 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s 1156 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s 1157 * 1158 * We see that movnti performs better for 512-byte blocks, and 1159 * clflushopt performs better for 1024-byte and larger blocks. So, we 1160 * prefer clflushopt for sizes >= 768. 1161 * 1162 * NOTE: this happens to be the case now (with dm-writecache's single 1163 * threaded model) but re-evaluate this once memcpy_flushcache() is 1164 * enabled to use movdir64b which might invalidate this performance 1165 * advantage seen with cache-allocating-writes plus flushing. 1166 */ 1167 #ifdef CONFIG_X86 1168 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && 1169 likely(boot_cpu_data.x86_clflush_size == 64) && 1170 likely(size >= 768)) { 1171 do { 1172 memcpy((void *)dest, (void *)source, 64); 1173 clflushopt((void *)dest); 1174 dest += 64; 1175 source += 64; 1176 size -= 64; 1177 } while (size >= 64); 1178 return; 1179 } 1180 #endif 1181 memcpy_flushcache(dest, source, size); 1182 } 1183 1184 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) 1185 { 1186 void *buf; 1187 unsigned long flags; 1188 unsigned size; 1189 int rw = bio_data_dir(bio); 1190 unsigned remaining_size = wc->block_size; 1191 1192 do { 1193 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); 1194 buf = bvec_kmap_irq(&bv, &flags); 1195 size = bv.bv_len; 1196 if (unlikely(size > remaining_size)) 1197 size = remaining_size; 1198 1199 if (rw == READ) { 1200 int r; 1201 r = memcpy_mcsafe(buf, data, size); 1202 flush_dcache_page(bio_page(bio)); 1203 if (unlikely(r)) { 1204 writecache_error(wc, r, "hardware memory error when reading data: %d", r); 1205 bio->bi_status = BLK_STS_IOERR; 1206 } 1207 } else { 1208 flush_dcache_page(bio_page(bio)); 1209 memcpy_flushcache_optimized(data, buf, size); 1210 } 1211 1212 bvec_kunmap_irq(buf, &flags); 1213 1214 data = (char *)data + size; 1215 remaining_size -= size; 1216 bio_advance(bio, size); 1217 } while (unlikely(remaining_size)); 1218 } 1219 1220 static int writecache_flush_thread(void *data) 1221 { 1222 struct dm_writecache *wc = data; 1223 1224 while (1) { 1225 struct bio *bio; 1226 1227 wc_lock(wc); 1228 bio = bio_list_pop(&wc->flush_list); 1229 if (!bio) { 1230 set_current_state(TASK_INTERRUPTIBLE); 1231 wc_unlock(wc); 1232 1233 if (unlikely(kthread_should_stop())) { 1234 set_current_state(TASK_RUNNING); 1235 break; 1236 } 1237 1238 schedule(); 1239 continue; 1240 } 1241 1242 if (bio_op(bio) == REQ_OP_DISCARD) { 1243 writecache_discard(wc, bio->bi_iter.bi_sector, 1244 bio_end_sector(bio)); 1245 wc_unlock(wc); 1246 bio_set_dev(bio, wc->dev->bdev); 1247 generic_make_request(bio); 1248 } else { 1249 writecache_flush(wc); 1250 wc_unlock(wc); 1251 if (writecache_has_error(wc)) 1252 bio->bi_status = BLK_STS_IOERR; 1253 bio_endio(bio); 1254 } 1255 } 1256 1257 return 0; 1258 } 1259 1260 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) 1261 { 1262 if (bio_list_empty(&wc->flush_list)) 1263 wake_up_process(wc->flush_thread); 1264 bio_list_add(&wc->flush_list, bio); 1265 } 1266 1267 static int writecache_map(struct dm_target *ti, struct bio *bio) 1268 { 1269 struct wc_entry *e; 1270 struct dm_writecache *wc = ti->private; 1271 1272 bio->bi_private = NULL; 1273 1274 wc_lock(wc); 1275 1276 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1277 if (writecache_has_error(wc)) 1278 goto unlock_error; 1279 if (WC_MODE_PMEM(wc)) { 1280 writecache_flush(wc); 1281 if (writecache_has_error(wc)) 1282 goto unlock_error; 1283 goto unlock_submit; 1284 } else { 1285 writecache_offload_bio(wc, bio); 1286 goto unlock_return; 1287 } 1288 } 1289 1290 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1291 1292 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 1293 (wc->block_size / 512 - 1)) != 0)) { 1294 DMERR("I/O is not aligned, sector %llu, size %u, block size %u", 1295 (unsigned long long)bio->bi_iter.bi_sector, 1296 bio->bi_iter.bi_size, wc->block_size); 1297 goto unlock_error; 1298 } 1299 1300 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 1301 if (writecache_has_error(wc)) 1302 goto unlock_error; 1303 if (WC_MODE_PMEM(wc)) { 1304 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); 1305 goto unlock_remap_origin; 1306 } else { 1307 writecache_offload_bio(wc, bio); 1308 goto unlock_return; 1309 } 1310 } 1311 1312 if (bio_data_dir(bio) == READ) { 1313 read_next_block: 1314 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1315 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { 1316 if (WC_MODE_PMEM(wc)) { 1317 bio_copy_block(wc, bio, memory_data(wc, e)); 1318 if (bio->bi_iter.bi_size) 1319 goto read_next_block; 1320 goto unlock_submit; 1321 } else { 1322 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); 1323 bio_set_dev(bio, wc->ssd_dev->bdev); 1324 bio->bi_iter.bi_sector = cache_sector(wc, e); 1325 if (!writecache_entry_is_committed(wc, e)) 1326 writecache_wait_for_ios(wc, WRITE); 1327 goto unlock_remap; 1328 } 1329 } else { 1330 if (e) { 1331 sector_t next_boundary = 1332 read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1333 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1334 dm_accept_partial_bio(bio, next_boundary); 1335 } 1336 } 1337 goto unlock_remap_origin; 1338 } 1339 } else { 1340 do { 1341 bool found_entry = false; 1342 if (writecache_has_error(wc)) 1343 goto unlock_error; 1344 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); 1345 if (e) { 1346 if (!writecache_entry_is_committed(wc, e)) 1347 goto bio_copy; 1348 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { 1349 wc->overwrote_committed = true; 1350 goto bio_copy; 1351 } 1352 found_entry = true; 1353 } else { 1354 if (unlikely(wc->cleaner)) 1355 goto direct_write; 1356 } 1357 e = writecache_pop_from_freelist(wc, (sector_t)-1); 1358 if (unlikely(!e)) { 1359 if (!found_entry) { 1360 direct_write: 1361 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); 1362 if (e) { 1363 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; 1364 BUG_ON(!next_boundary); 1365 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { 1366 dm_accept_partial_bio(bio, next_boundary); 1367 } 1368 } 1369 goto unlock_remap_origin; 1370 } 1371 writecache_wait_on_freelist(wc); 1372 continue; 1373 } 1374 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); 1375 writecache_insert_entry(wc, e); 1376 wc->uncommitted_blocks++; 1377 bio_copy: 1378 if (WC_MODE_PMEM(wc)) { 1379 bio_copy_block(wc, bio, memory_data(wc, e)); 1380 } else { 1381 unsigned bio_size = wc->block_size; 1382 sector_t start_cache_sec = cache_sector(wc, e); 1383 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); 1384 1385 while (bio_size < bio->bi_iter.bi_size) { 1386 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec); 1387 if (!f) 1388 break; 1389 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector + 1390 (bio_size >> SECTOR_SHIFT), wc->seq_count); 1391 writecache_insert_entry(wc, f); 1392 wc->uncommitted_blocks++; 1393 bio_size += wc->block_size; 1394 current_cache_sec += wc->block_size >> SECTOR_SHIFT; 1395 } 1396 1397 bio_set_dev(bio, wc->ssd_dev->bdev); 1398 bio->bi_iter.bi_sector = start_cache_sec; 1399 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT); 1400 1401 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { 1402 wc->uncommitted_blocks = 0; 1403 queue_work(wc->writeback_wq, &wc->flush_work); 1404 } else { 1405 writecache_schedule_autocommit(wc); 1406 } 1407 goto unlock_remap; 1408 } 1409 } while (bio->bi_iter.bi_size); 1410 1411 if (unlikely(bio->bi_opf & REQ_FUA || 1412 wc->uncommitted_blocks >= wc->autocommit_blocks)) 1413 writecache_flush(wc); 1414 else 1415 writecache_schedule_autocommit(wc); 1416 goto unlock_submit; 1417 } 1418 1419 unlock_remap_origin: 1420 bio_set_dev(bio, wc->dev->bdev); 1421 wc_unlock(wc); 1422 return DM_MAPIO_REMAPPED; 1423 1424 unlock_remap: 1425 /* make sure that writecache_end_io decrements bio_in_progress: */ 1426 bio->bi_private = (void *)1; 1427 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); 1428 wc_unlock(wc); 1429 return DM_MAPIO_REMAPPED; 1430 1431 unlock_submit: 1432 wc_unlock(wc); 1433 bio_endio(bio); 1434 return DM_MAPIO_SUBMITTED; 1435 1436 unlock_return: 1437 wc_unlock(wc); 1438 return DM_MAPIO_SUBMITTED; 1439 1440 unlock_error: 1441 wc_unlock(wc); 1442 bio_io_error(bio); 1443 return DM_MAPIO_SUBMITTED; 1444 } 1445 1446 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 1447 { 1448 struct dm_writecache *wc = ti->private; 1449 1450 if (bio->bi_private != NULL) { 1451 int dir = bio_data_dir(bio); 1452 if (atomic_dec_and_test(&wc->bio_in_progress[dir])) 1453 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) 1454 wake_up(&wc->bio_in_progress_wait[dir]); 1455 } 1456 return 0; 1457 } 1458 1459 static int writecache_iterate_devices(struct dm_target *ti, 1460 iterate_devices_callout_fn fn, void *data) 1461 { 1462 struct dm_writecache *wc = ti->private; 1463 1464 return fn(ti, wc->dev, 0, ti->len, data); 1465 } 1466 1467 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) 1468 { 1469 struct dm_writecache *wc = ti->private; 1470 1471 if (limits->logical_block_size < wc->block_size) 1472 limits->logical_block_size = wc->block_size; 1473 1474 if (limits->physical_block_size < wc->block_size) 1475 limits->physical_block_size = wc->block_size; 1476 1477 if (limits->io_min < wc->block_size) 1478 limits->io_min = wc->block_size; 1479 } 1480 1481 1482 static void writecache_writeback_endio(struct bio *bio) 1483 { 1484 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); 1485 struct dm_writecache *wc = wb->wc; 1486 unsigned long flags; 1487 1488 raw_spin_lock_irqsave(&wc->endio_list_lock, flags); 1489 if (unlikely(list_empty(&wc->endio_list))) 1490 wake_up_process(wc->endio_thread); 1491 list_add_tail(&wb->endio_entry, &wc->endio_list); 1492 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); 1493 } 1494 1495 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) 1496 { 1497 struct copy_struct *c = ptr; 1498 struct dm_writecache *wc = c->wc; 1499 1500 c->error = likely(!(read_err | write_err)) ? 0 : -EIO; 1501 1502 raw_spin_lock_irq(&wc->endio_list_lock); 1503 if (unlikely(list_empty(&wc->endio_list))) 1504 wake_up_process(wc->endio_thread); 1505 list_add_tail(&c->endio_entry, &wc->endio_list); 1506 raw_spin_unlock_irq(&wc->endio_list_lock); 1507 } 1508 1509 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) 1510 { 1511 unsigned i; 1512 struct writeback_struct *wb; 1513 struct wc_entry *e; 1514 unsigned long n_walked = 0; 1515 1516 do { 1517 wb = list_entry(list->next, struct writeback_struct, endio_entry); 1518 list_del(&wb->endio_entry); 1519 1520 if (unlikely(wb->bio.bi_status != BLK_STS_OK)) 1521 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), 1522 "write error %d", wb->bio.bi_status); 1523 i = 0; 1524 do { 1525 e = wb->wc_list[i]; 1526 BUG_ON(!e->write_in_progress); 1527 e->write_in_progress = false; 1528 INIT_LIST_HEAD(&e->lru); 1529 if (!writecache_has_error(wc)) 1530 writecache_free_entry(wc, e); 1531 BUG_ON(!wc->writeback_size); 1532 wc->writeback_size--; 1533 n_walked++; 1534 if (unlikely(n_walked >= ENDIO_LATENCY)) { 1535 writecache_commit_flushed(wc, false); 1536 wc_unlock(wc); 1537 wc_lock(wc); 1538 n_walked = 0; 1539 } 1540 } while (++i < wb->wc_list_n); 1541 1542 if (wb->wc_list != wb->wc_list_inline) 1543 kfree(wb->wc_list); 1544 bio_put(&wb->bio); 1545 } while (!list_empty(list)); 1546 } 1547 1548 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) 1549 { 1550 struct copy_struct *c; 1551 struct wc_entry *e; 1552 1553 do { 1554 c = list_entry(list->next, struct copy_struct, endio_entry); 1555 list_del(&c->endio_entry); 1556 1557 if (unlikely(c->error)) 1558 writecache_error(wc, c->error, "copy error"); 1559 1560 e = c->e; 1561 do { 1562 BUG_ON(!e->write_in_progress); 1563 e->write_in_progress = false; 1564 INIT_LIST_HEAD(&e->lru); 1565 if (!writecache_has_error(wc)) 1566 writecache_free_entry(wc, e); 1567 1568 BUG_ON(!wc->writeback_size); 1569 wc->writeback_size--; 1570 e++; 1571 } while (--c->n_entries); 1572 mempool_free(c, &wc->copy_pool); 1573 } while (!list_empty(list)); 1574 } 1575 1576 static int writecache_endio_thread(void *data) 1577 { 1578 struct dm_writecache *wc = data; 1579 1580 while (1) { 1581 struct list_head list; 1582 1583 raw_spin_lock_irq(&wc->endio_list_lock); 1584 if (!list_empty(&wc->endio_list)) 1585 goto pop_from_list; 1586 set_current_state(TASK_INTERRUPTIBLE); 1587 raw_spin_unlock_irq(&wc->endio_list_lock); 1588 1589 if (unlikely(kthread_should_stop())) { 1590 set_current_state(TASK_RUNNING); 1591 break; 1592 } 1593 1594 schedule(); 1595 1596 continue; 1597 1598 pop_from_list: 1599 list = wc->endio_list; 1600 list.next->prev = list.prev->next = &list; 1601 INIT_LIST_HEAD(&wc->endio_list); 1602 raw_spin_unlock_irq(&wc->endio_list_lock); 1603 1604 if (!WC_MODE_FUA(wc)) 1605 writecache_disk_flush(wc, wc->dev); 1606 1607 wc_lock(wc); 1608 1609 if (WC_MODE_PMEM(wc)) { 1610 __writecache_endio_pmem(wc, &list); 1611 } else { 1612 __writecache_endio_ssd(wc, &list); 1613 writecache_wait_for_ios(wc, READ); 1614 } 1615 1616 writecache_commit_flushed(wc, false); 1617 1618 wc_unlock(wc); 1619 } 1620 1621 return 0; 1622 } 1623 1624 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) 1625 { 1626 struct dm_writecache *wc = wb->wc; 1627 unsigned block_size = wc->block_size; 1628 void *address = memory_data(wc, e); 1629 1630 persistent_memory_flush_cache(address, block_size); 1631 return bio_add_page(&wb->bio, persistent_memory_page(address), 1632 block_size, persistent_memory_page_offset(address)) != 0; 1633 } 1634 1635 struct writeback_list { 1636 struct list_head list; 1637 size_t size; 1638 }; 1639 1640 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) 1641 { 1642 if (unlikely(wc->max_writeback_jobs)) { 1643 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { 1644 wc_lock(wc); 1645 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) 1646 writecache_wait_on_freelist(wc); 1647 wc_unlock(wc); 1648 } 1649 } 1650 cond_resched(); 1651 } 1652 1653 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) 1654 { 1655 struct wc_entry *e, *f; 1656 struct bio *bio; 1657 struct writeback_struct *wb; 1658 unsigned max_pages; 1659 1660 while (wbl->size) { 1661 wbl->size--; 1662 e = container_of(wbl->list.prev, struct wc_entry, lru); 1663 list_del(&e->lru); 1664 1665 max_pages = e->wc_list_contiguous; 1666 1667 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); 1668 wb = container_of(bio, struct writeback_struct, bio); 1669 wb->wc = wc; 1670 bio->bi_end_io = writecache_writeback_endio; 1671 bio_set_dev(bio, wc->dev->bdev); 1672 bio->bi_iter.bi_sector = read_original_sector(wc, e); 1673 if (max_pages <= WB_LIST_INLINE || 1674 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), 1675 GFP_NOIO | __GFP_NORETRY | 1676 __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 1677 wb->wc_list = wb->wc_list_inline; 1678 max_pages = WB_LIST_INLINE; 1679 } 1680 1681 BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); 1682 1683 wb->wc_list[0] = e; 1684 wb->wc_list_n = 1; 1685 1686 while (wbl->size && wb->wc_list_n < max_pages) { 1687 f = container_of(wbl->list.prev, struct wc_entry, lru); 1688 if (read_original_sector(wc, f) != 1689 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) 1690 break; 1691 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) 1692 break; 1693 wbl->size--; 1694 list_del(&f->lru); 1695 wb->wc_list[wb->wc_list_n++] = f; 1696 e = f; 1697 } 1698 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); 1699 if (writecache_has_error(wc)) { 1700 bio->bi_status = BLK_STS_IOERR; 1701 bio_endio(bio); 1702 } else { 1703 submit_bio(bio); 1704 } 1705 1706 __writeback_throttle(wc, wbl); 1707 } 1708 } 1709 1710 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) 1711 { 1712 struct wc_entry *e, *f; 1713 struct dm_io_region from, to; 1714 struct copy_struct *c; 1715 1716 while (wbl->size) { 1717 unsigned n_sectors; 1718 1719 wbl->size--; 1720 e = container_of(wbl->list.prev, struct wc_entry, lru); 1721 list_del(&e->lru); 1722 1723 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); 1724 1725 from.bdev = wc->ssd_dev->bdev; 1726 from.sector = cache_sector(wc, e); 1727 from.count = n_sectors; 1728 to.bdev = wc->dev->bdev; 1729 to.sector = read_original_sector(wc, e); 1730 to.count = n_sectors; 1731 1732 c = mempool_alloc(&wc->copy_pool, GFP_NOIO); 1733 c->wc = wc; 1734 c->e = e; 1735 c->n_entries = e->wc_list_contiguous; 1736 1737 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { 1738 wbl->size--; 1739 f = container_of(wbl->list.prev, struct wc_entry, lru); 1740 BUG_ON(f != e + 1); 1741 list_del(&f->lru); 1742 e = f; 1743 } 1744 1745 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); 1746 1747 __writeback_throttle(wc, wbl); 1748 } 1749 } 1750 1751 static void writecache_writeback(struct work_struct *work) 1752 { 1753 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); 1754 struct blk_plug plug; 1755 struct wc_entry *f, *uninitialized_var(g), *e = NULL; 1756 struct rb_node *node, *next_node; 1757 struct list_head skipped; 1758 struct writeback_list wbl; 1759 unsigned long n_walked; 1760 1761 wc_lock(wc); 1762 restart: 1763 if (writecache_has_error(wc)) { 1764 wc_unlock(wc); 1765 return; 1766 } 1767 1768 if (unlikely(wc->writeback_all)) { 1769 if (writecache_wait_for_writeback(wc)) 1770 goto restart; 1771 } 1772 1773 if (wc->overwrote_committed) { 1774 writecache_wait_for_ios(wc, WRITE); 1775 } 1776 1777 n_walked = 0; 1778 INIT_LIST_HEAD(&skipped); 1779 INIT_LIST_HEAD(&wbl.list); 1780 wbl.size = 0; 1781 while (!list_empty(&wc->lru) && 1782 (wc->writeback_all || 1783 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark || 1784 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >= 1785 wc->max_age - wc->max_age / MAX_AGE_DIV))) { 1786 1787 n_walked++; 1788 if (unlikely(n_walked > WRITEBACK_LATENCY) && 1789 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { 1790 queue_work(wc->writeback_wq, &wc->writeback_work); 1791 break; 1792 } 1793 1794 if (unlikely(wc->writeback_all)) { 1795 if (unlikely(!e)) { 1796 writecache_flush(wc); 1797 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node); 1798 } else 1799 e = g; 1800 } else 1801 e = container_of(wc->lru.prev, struct wc_entry, lru); 1802 BUG_ON(e->write_in_progress); 1803 if (unlikely(!writecache_entry_is_committed(wc, e))) { 1804 writecache_flush(wc); 1805 } 1806 node = rb_prev(&e->rb_node); 1807 if (node) { 1808 f = container_of(node, struct wc_entry, rb_node); 1809 if (unlikely(read_original_sector(wc, f) == 1810 read_original_sector(wc, e))) { 1811 BUG_ON(!f->write_in_progress); 1812 list_del(&e->lru); 1813 list_add(&e->lru, &skipped); 1814 cond_resched(); 1815 continue; 1816 } 1817 } 1818 wc->writeback_size++; 1819 list_del(&e->lru); 1820 list_add(&e->lru, &wbl.list); 1821 wbl.size++; 1822 e->write_in_progress = true; 1823 e->wc_list_contiguous = 1; 1824 1825 f = e; 1826 1827 while (1) { 1828 next_node = rb_next(&f->rb_node); 1829 if (unlikely(!next_node)) 1830 break; 1831 g = container_of(next_node, struct wc_entry, rb_node); 1832 if (unlikely(read_original_sector(wc, g) == 1833 read_original_sector(wc, f))) { 1834 f = g; 1835 continue; 1836 } 1837 if (read_original_sector(wc, g) != 1838 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) 1839 break; 1840 if (unlikely(g->write_in_progress)) 1841 break; 1842 if (unlikely(!writecache_entry_is_committed(wc, g))) 1843 break; 1844 1845 if (!WC_MODE_PMEM(wc)) { 1846 if (g != f + 1) 1847 break; 1848 } 1849 1850 n_walked++; 1851 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) 1852 // break; 1853 1854 wc->writeback_size++; 1855 list_del(&g->lru); 1856 list_add(&g->lru, &wbl.list); 1857 wbl.size++; 1858 g->write_in_progress = true; 1859 g->wc_list_contiguous = BIO_MAX_PAGES; 1860 f = g; 1861 e->wc_list_contiguous++; 1862 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) { 1863 if (unlikely(wc->writeback_all)) { 1864 next_node = rb_next(&f->rb_node); 1865 if (likely(next_node)) 1866 g = container_of(next_node, struct wc_entry, rb_node); 1867 } 1868 break; 1869 } 1870 } 1871 cond_resched(); 1872 } 1873 1874 if (!list_empty(&skipped)) { 1875 list_splice_tail(&skipped, &wc->lru); 1876 /* 1877 * If we didn't do any progress, we must wait until some 1878 * writeback finishes to avoid burning CPU in a loop 1879 */ 1880 if (unlikely(!wbl.size)) 1881 writecache_wait_for_writeback(wc); 1882 } 1883 1884 wc_unlock(wc); 1885 1886 blk_start_plug(&plug); 1887 1888 if (WC_MODE_PMEM(wc)) 1889 __writecache_writeback_pmem(wc, &wbl); 1890 else 1891 __writecache_writeback_ssd(wc, &wbl); 1892 1893 blk_finish_plug(&plug); 1894 1895 if (unlikely(wc->writeback_all)) { 1896 wc_lock(wc); 1897 while (writecache_wait_for_writeback(wc)); 1898 wc_unlock(wc); 1899 } 1900 } 1901 1902 static int calculate_memory_size(uint64_t device_size, unsigned block_size, 1903 size_t *n_blocks_p, size_t *n_metadata_blocks_p) 1904 { 1905 uint64_t n_blocks, offset; 1906 struct wc_entry e; 1907 1908 n_blocks = device_size; 1909 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); 1910 1911 while (1) { 1912 if (!n_blocks) 1913 return -ENOSPC; 1914 /* Verify the following entries[n_blocks] won't overflow */ 1915 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / 1916 sizeof(struct wc_memory_entry))) 1917 return -EFBIG; 1918 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); 1919 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); 1920 if (offset + n_blocks * block_size <= device_size) 1921 break; 1922 n_blocks--; 1923 } 1924 1925 /* check if the bit field overflows */ 1926 e.index = n_blocks; 1927 if (e.index != n_blocks) 1928 return -EFBIG; 1929 1930 if (n_blocks_p) 1931 *n_blocks_p = n_blocks; 1932 if (n_metadata_blocks_p) 1933 *n_metadata_blocks_p = offset >> __ffs(block_size); 1934 return 0; 1935 } 1936 1937 static int init_memory(struct dm_writecache *wc) 1938 { 1939 size_t b; 1940 int r; 1941 1942 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); 1943 if (r) 1944 return r; 1945 1946 r = writecache_alloc_entries(wc); 1947 if (r) 1948 return r; 1949 1950 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) 1951 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); 1952 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); 1953 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); 1954 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); 1955 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); 1956 1957 for (b = 0; b < wc->n_blocks; b++) { 1958 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); 1959 cond_resched(); 1960 } 1961 1962 writecache_flush_all_metadata(wc); 1963 writecache_commit_flushed(wc, false); 1964 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); 1965 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); 1966 writecache_commit_flushed(wc, false); 1967 1968 return 0; 1969 } 1970 1971 static void writecache_dtr(struct dm_target *ti) 1972 { 1973 struct dm_writecache *wc = ti->private; 1974 1975 if (!wc) 1976 return; 1977 1978 if (wc->endio_thread) 1979 kthread_stop(wc->endio_thread); 1980 1981 if (wc->flush_thread) 1982 kthread_stop(wc->flush_thread); 1983 1984 bioset_exit(&wc->bio_set); 1985 1986 mempool_exit(&wc->copy_pool); 1987 1988 if (wc->writeback_wq) 1989 destroy_workqueue(wc->writeback_wq); 1990 1991 if (wc->dev) 1992 dm_put_device(ti, wc->dev); 1993 1994 if (wc->ssd_dev) 1995 dm_put_device(ti, wc->ssd_dev); 1996 1997 if (wc->entries) 1998 vfree(wc->entries); 1999 2000 if (wc->memory_map) { 2001 if (WC_MODE_PMEM(wc)) 2002 persistent_memory_release(wc); 2003 else 2004 vfree(wc->memory_map); 2005 } 2006 2007 if (wc->dm_kcopyd) 2008 dm_kcopyd_client_destroy(wc->dm_kcopyd); 2009 2010 if (wc->dm_io) 2011 dm_io_client_destroy(wc->dm_io); 2012 2013 if (wc->dirty_bitmap) 2014 vfree(wc->dirty_bitmap); 2015 2016 kfree(wc); 2017 } 2018 2019 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2020 { 2021 struct dm_writecache *wc; 2022 struct dm_arg_set as; 2023 const char *string; 2024 unsigned opt_params; 2025 size_t offset, data_size; 2026 int i, r; 2027 char dummy; 2028 int high_wm_percent = HIGH_WATERMARK; 2029 int low_wm_percent = LOW_WATERMARK; 2030 uint64_t x; 2031 struct wc_memory_superblock s; 2032 2033 static struct dm_arg _args[] = { 2034 {0, 10, "Invalid number of feature args"}, 2035 }; 2036 2037 as.argc = argc; 2038 as.argv = argv; 2039 2040 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); 2041 if (!wc) { 2042 ti->error = "Cannot allocate writecache structure"; 2043 r = -ENOMEM; 2044 goto bad; 2045 } 2046 ti->private = wc; 2047 wc->ti = ti; 2048 2049 mutex_init(&wc->lock); 2050 wc->max_age = MAX_AGE_UNSPECIFIED; 2051 writecache_poison_lists(wc); 2052 init_waitqueue_head(&wc->freelist_wait); 2053 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); 2054 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0); 2055 2056 for (i = 0; i < 2; i++) { 2057 atomic_set(&wc->bio_in_progress[i], 0); 2058 init_waitqueue_head(&wc->bio_in_progress_wait[i]); 2059 } 2060 2061 wc->dm_io = dm_io_client_create(); 2062 if (IS_ERR(wc->dm_io)) { 2063 r = PTR_ERR(wc->dm_io); 2064 ti->error = "Unable to allocate dm-io client"; 2065 wc->dm_io = NULL; 2066 goto bad; 2067 } 2068 2069 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); 2070 if (!wc->writeback_wq) { 2071 r = -ENOMEM; 2072 ti->error = "Could not allocate writeback workqueue"; 2073 goto bad; 2074 } 2075 INIT_WORK(&wc->writeback_work, writecache_writeback); 2076 INIT_WORK(&wc->flush_work, writecache_flush_work); 2077 2078 raw_spin_lock_init(&wc->endio_list_lock); 2079 INIT_LIST_HEAD(&wc->endio_list); 2080 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); 2081 if (IS_ERR(wc->endio_thread)) { 2082 r = PTR_ERR(wc->endio_thread); 2083 wc->endio_thread = NULL; 2084 ti->error = "Couldn't spawn endio thread"; 2085 goto bad; 2086 } 2087 wake_up_process(wc->endio_thread); 2088 2089 /* 2090 * Parse the mode (pmem or ssd) 2091 */ 2092 string = dm_shift_arg(&as); 2093 if (!string) 2094 goto bad_arguments; 2095 2096 if (!strcasecmp(string, "s")) { 2097 wc->pmem_mode = false; 2098 } else if (!strcasecmp(string, "p")) { 2099 #ifdef DM_WRITECACHE_HAS_PMEM 2100 wc->pmem_mode = true; 2101 wc->writeback_fua = true; 2102 #else 2103 /* 2104 * If the architecture doesn't support persistent memory or 2105 * the kernel doesn't support any DAX drivers, this driver can 2106 * only be used in SSD-only mode. 2107 */ 2108 r = -EOPNOTSUPP; 2109 ti->error = "Persistent memory or DAX not supported on this system"; 2110 goto bad; 2111 #endif 2112 } else { 2113 goto bad_arguments; 2114 } 2115 2116 if (WC_MODE_PMEM(wc)) { 2117 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, 2118 offsetof(struct writeback_struct, bio), 2119 BIOSET_NEED_BVECS); 2120 if (r) { 2121 ti->error = "Could not allocate bio set"; 2122 goto bad; 2123 } 2124 } else { 2125 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); 2126 if (r) { 2127 ti->error = "Could not allocate mempool"; 2128 goto bad; 2129 } 2130 } 2131 2132 /* 2133 * Parse the origin data device 2134 */ 2135 string = dm_shift_arg(&as); 2136 if (!string) 2137 goto bad_arguments; 2138 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); 2139 if (r) { 2140 ti->error = "Origin data device lookup failed"; 2141 goto bad; 2142 } 2143 2144 /* 2145 * Parse cache data device (be it pmem or ssd) 2146 */ 2147 string = dm_shift_arg(&as); 2148 if (!string) 2149 goto bad_arguments; 2150 2151 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); 2152 if (r) { 2153 ti->error = "Cache data device lookup failed"; 2154 goto bad; 2155 } 2156 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); 2157 2158 /* 2159 * Parse the cache block size 2160 */ 2161 string = dm_shift_arg(&as); 2162 if (!string) 2163 goto bad_arguments; 2164 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || 2165 wc->block_size < 512 || wc->block_size > PAGE_SIZE || 2166 (wc->block_size & (wc->block_size - 1))) { 2167 r = -EINVAL; 2168 ti->error = "Invalid block size"; 2169 goto bad; 2170 } 2171 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) || 2172 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) { 2173 r = -EINVAL; 2174 ti->error = "Block size is smaller than device logical block size"; 2175 goto bad; 2176 } 2177 wc->block_size_bits = __ffs(wc->block_size); 2178 2179 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; 2180 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; 2181 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); 2182 2183 /* 2184 * Parse optional arguments 2185 */ 2186 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2187 if (r) 2188 goto bad; 2189 2190 while (opt_params) { 2191 string = dm_shift_arg(&as), opt_params--; 2192 if (!strcasecmp(string, "start_sector") && opt_params >= 1) { 2193 unsigned long long start_sector; 2194 string = dm_shift_arg(&as), opt_params--; 2195 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) 2196 goto invalid_optional; 2197 wc->start_sector = start_sector; 2198 if (wc->start_sector != start_sector || 2199 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) 2200 goto invalid_optional; 2201 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { 2202 string = dm_shift_arg(&as), opt_params--; 2203 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) 2204 goto invalid_optional; 2205 if (high_wm_percent < 0 || high_wm_percent > 100) 2206 goto invalid_optional; 2207 wc->high_wm_percent_set = true; 2208 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { 2209 string = dm_shift_arg(&as), opt_params--; 2210 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) 2211 goto invalid_optional; 2212 if (low_wm_percent < 0 || low_wm_percent > 100) 2213 goto invalid_optional; 2214 wc->low_wm_percent_set = true; 2215 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { 2216 string = dm_shift_arg(&as), opt_params--; 2217 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) 2218 goto invalid_optional; 2219 wc->max_writeback_jobs_set = true; 2220 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { 2221 string = dm_shift_arg(&as), opt_params--; 2222 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) 2223 goto invalid_optional; 2224 wc->autocommit_blocks_set = true; 2225 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { 2226 unsigned autocommit_msecs; 2227 string = dm_shift_arg(&as), opt_params--; 2228 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) 2229 goto invalid_optional; 2230 if (autocommit_msecs > 3600000) 2231 goto invalid_optional; 2232 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); 2233 wc->autocommit_time_set = true; 2234 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) { 2235 unsigned max_age_msecs; 2236 string = dm_shift_arg(&as), opt_params--; 2237 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1) 2238 goto invalid_optional; 2239 if (max_age_msecs > 86400000) 2240 goto invalid_optional; 2241 wc->max_age = msecs_to_jiffies(max_age_msecs); 2242 } else if (!strcasecmp(string, "cleaner")) { 2243 wc->cleaner = true; 2244 } else if (!strcasecmp(string, "fua")) { 2245 if (WC_MODE_PMEM(wc)) { 2246 wc->writeback_fua = true; 2247 wc->writeback_fua_set = true; 2248 } else goto invalid_optional; 2249 } else if (!strcasecmp(string, "nofua")) { 2250 if (WC_MODE_PMEM(wc)) { 2251 wc->writeback_fua = false; 2252 wc->writeback_fua_set = true; 2253 } else goto invalid_optional; 2254 } else { 2255 invalid_optional: 2256 r = -EINVAL; 2257 ti->error = "Invalid optional argument"; 2258 goto bad; 2259 } 2260 } 2261 2262 if (high_wm_percent < low_wm_percent) { 2263 r = -EINVAL; 2264 ti->error = "High watermark must be greater than or equal to low watermark"; 2265 goto bad; 2266 } 2267 2268 if (WC_MODE_PMEM(wc)) { 2269 r = persistent_memory_claim(wc); 2270 if (r) { 2271 ti->error = "Unable to map persistent memory for cache"; 2272 goto bad; 2273 } 2274 } else { 2275 size_t n_blocks, n_metadata_blocks; 2276 uint64_t n_bitmap_bits; 2277 2278 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; 2279 2280 bio_list_init(&wc->flush_list); 2281 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); 2282 if (IS_ERR(wc->flush_thread)) { 2283 r = PTR_ERR(wc->flush_thread); 2284 wc->flush_thread = NULL; 2285 ti->error = "Couldn't spawn flush thread"; 2286 goto bad; 2287 } 2288 wake_up_process(wc->flush_thread); 2289 2290 r = calculate_memory_size(wc->memory_map_size, wc->block_size, 2291 &n_blocks, &n_metadata_blocks); 2292 if (r) { 2293 ti->error = "Invalid device size"; 2294 goto bad; 2295 } 2296 2297 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + 2298 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; 2299 /* this is limitation of test_bit functions */ 2300 if (n_bitmap_bits > 1U << 31) { 2301 r = -EFBIG; 2302 ti->error = "Invalid device size"; 2303 goto bad; 2304 } 2305 2306 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); 2307 if (!wc->memory_map) { 2308 r = -ENOMEM; 2309 ti->error = "Unable to allocate memory for metadata"; 2310 goto bad; 2311 } 2312 2313 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2314 if (IS_ERR(wc->dm_kcopyd)) { 2315 r = PTR_ERR(wc->dm_kcopyd); 2316 ti->error = "Unable to allocate dm-kcopyd client"; 2317 wc->dm_kcopyd = NULL; 2318 goto bad; 2319 } 2320 2321 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); 2322 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / 2323 BITS_PER_LONG * sizeof(unsigned long); 2324 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); 2325 if (!wc->dirty_bitmap) { 2326 r = -ENOMEM; 2327 ti->error = "Unable to allocate dirty bitmap"; 2328 goto bad; 2329 } 2330 2331 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT); 2332 if (r) { 2333 ti->error = "Unable to read first block of metadata"; 2334 goto bad; 2335 } 2336 } 2337 2338 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2339 if (r) { 2340 ti->error = "Hardware memory error when reading superblock"; 2341 goto bad; 2342 } 2343 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { 2344 r = init_memory(wc); 2345 if (r) { 2346 ti->error = "Unable to initialize device"; 2347 goto bad; 2348 } 2349 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); 2350 if (r) { 2351 ti->error = "Hardware memory error when reading superblock"; 2352 goto bad; 2353 } 2354 } 2355 2356 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { 2357 ti->error = "Invalid magic in the superblock"; 2358 r = -EINVAL; 2359 goto bad; 2360 } 2361 2362 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { 2363 ti->error = "Invalid version in the superblock"; 2364 r = -EINVAL; 2365 goto bad; 2366 } 2367 2368 if (le32_to_cpu(s.block_size) != wc->block_size) { 2369 ti->error = "Block size does not match superblock"; 2370 r = -EINVAL; 2371 goto bad; 2372 } 2373 2374 wc->n_blocks = le64_to_cpu(s.n_blocks); 2375 2376 offset = wc->n_blocks * sizeof(struct wc_memory_entry); 2377 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { 2378 overflow: 2379 ti->error = "Overflow in size calculation"; 2380 r = -EINVAL; 2381 goto bad; 2382 } 2383 offset += sizeof(struct wc_memory_superblock); 2384 if (offset < sizeof(struct wc_memory_superblock)) 2385 goto overflow; 2386 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); 2387 data_size = wc->n_blocks * (size_t)wc->block_size; 2388 if (!offset || (data_size / wc->block_size != wc->n_blocks) || 2389 (offset + data_size < offset)) 2390 goto overflow; 2391 if (offset + data_size > wc->memory_map_size) { 2392 ti->error = "Memory area is too small"; 2393 r = -EINVAL; 2394 goto bad; 2395 } 2396 2397 wc->metadata_sectors = offset >> SECTOR_SHIFT; 2398 wc->block_start = (char *)sb(wc) + offset; 2399 2400 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); 2401 x += 50; 2402 do_div(x, 100); 2403 wc->freelist_high_watermark = x; 2404 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); 2405 x += 50; 2406 do_div(x, 100); 2407 wc->freelist_low_watermark = x; 2408 2409 if (wc->cleaner) 2410 activate_cleaner(wc); 2411 2412 r = writecache_alloc_entries(wc); 2413 if (r) { 2414 ti->error = "Cannot allocate memory"; 2415 goto bad; 2416 } 2417 2418 ti->num_flush_bios = 1; 2419 ti->flush_supported = true; 2420 ti->num_discard_bios = 1; 2421 2422 if (WC_MODE_PMEM(wc)) 2423 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); 2424 2425 return 0; 2426 2427 bad_arguments: 2428 r = -EINVAL; 2429 ti->error = "Bad arguments"; 2430 bad: 2431 writecache_dtr(ti); 2432 return r; 2433 } 2434 2435 static void writecache_status(struct dm_target *ti, status_type_t type, 2436 unsigned status_flags, char *result, unsigned maxlen) 2437 { 2438 struct dm_writecache *wc = ti->private; 2439 unsigned extra_args; 2440 unsigned sz = 0; 2441 uint64_t x; 2442 2443 switch (type) { 2444 case STATUSTYPE_INFO: 2445 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), 2446 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, 2447 (unsigned long long)wc->writeback_size); 2448 break; 2449 case STATUSTYPE_TABLE: 2450 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', 2451 wc->dev->name, wc->ssd_dev->name, wc->block_size); 2452 extra_args = 0; 2453 if (wc->start_sector) 2454 extra_args += 2; 2455 if (wc->high_wm_percent_set && !wc->cleaner) 2456 extra_args += 2; 2457 if (wc->low_wm_percent_set && !wc->cleaner) 2458 extra_args += 2; 2459 if (wc->max_writeback_jobs_set) 2460 extra_args += 2; 2461 if (wc->autocommit_blocks_set) 2462 extra_args += 2; 2463 if (wc->autocommit_time_set) 2464 extra_args += 2; 2465 if (wc->cleaner) 2466 extra_args++; 2467 if (wc->writeback_fua_set) 2468 extra_args++; 2469 2470 DMEMIT("%u", extra_args); 2471 if (wc->start_sector) 2472 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); 2473 if (wc->high_wm_percent_set && !wc->cleaner) { 2474 x = (uint64_t)wc->freelist_high_watermark * 100; 2475 x += wc->n_blocks / 2; 2476 do_div(x, (size_t)wc->n_blocks); 2477 DMEMIT(" high_watermark %u", 100 - (unsigned)x); 2478 } 2479 if (wc->low_wm_percent_set && !wc->cleaner) { 2480 x = (uint64_t)wc->freelist_low_watermark * 100; 2481 x += wc->n_blocks / 2; 2482 do_div(x, (size_t)wc->n_blocks); 2483 DMEMIT(" low_watermark %u", 100 - (unsigned)x); 2484 } 2485 if (wc->max_writeback_jobs_set) 2486 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); 2487 if (wc->autocommit_blocks_set) 2488 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); 2489 if (wc->autocommit_time_set) 2490 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); 2491 if (wc->max_age != MAX_AGE_UNSPECIFIED) 2492 DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age)); 2493 if (wc->cleaner) 2494 DMEMIT(" cleaner"); 2495 if (wc->writeback_fua_set) 2496 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); 2497 break; 2498 } 2499 } 2500 2501 static struct target_type writecache_target = { 2502 .name = "writecache", 2503 .version = {1, 3, 0}, 2504 .module = THIS_MODULE, 2505 .ctr = writecache_ctr, 2506 .dtr = writecache_dtr, 2507 .status = writecache_status, 2508 .postsuspend = writecache_suspend, 2509 .resume = writecache_resume, 2510 .message = writecache_message, 2511 .map = writecache_map, 2512 .end_io = writecache_end_io, 2513 .iterate_devices = writecache_iterate_devices, 2514 .io_hints = writecache_io_hints, 2515 }; 2516 2517 static int __init dm_writecache_init(void) 2518 { 2519 int r; 2520 2521 r = dm_register_target(&writecache_target); 2522 if (r < 0) { 2523 DMERR("register failed %d", r); 2524 return r; 2525 } 2526 2527 return 0; 2528 } 2529 2530 static void __exit dm_writecache_exit(void) 2531 { 2532 dm_unregister_target(&writecache_target); 2533 } 2534 2535 module_init(dm_writecache_init); 2536 module_exit(dm_writecache_exit); 2537 2538 MODULE_DESCRIPTION(DM_NAME " writecache target"); 2539 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2540 MODULE_LICENSE("GPL"); 2541