xref: /openbmc/linux/drivers/md/dm-verity-target.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21 
22 #define DM_MSG_PREFIX			"verity"
23 
24 #define DM_VERITY_ENV_LENGTH		42
25 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
26 
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
28 
29 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
30 
31 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
32 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
33 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
36 
37 #define DM_VERITY_OPTS_MAX		(3 + DM_VERITY_OPTS_FEC + \
38 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
39 
40 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
41 
42 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
43 
44 struct dm_verity_prefetch_work {
45 	struct work_struct work;
46 	struct dm_verity *v;
47 	sector_t block;
48 	unsigned n_blocks;
49 };
50 
51 /*
52  * Auxiliary structure appended to each dm-bufio buffer. If the value
53  * hash_verified is nonzero, hash of the block has been verified.
54  *
55  * The variable hash_verified is set to 0 when allocating the buffer, then
56  * it can be changed to 1 and it is never reset to 0 again.
57  *
58  * There is no lock around this value, a race condition can at worst cause
59  * that multiple processes verify the hash of the same buffer simultaneously
60  * and write 1 to hash_verified simultaneously.
61  * This condition is harmless, so we don't need locking.
62  */
63 struct buffer_aux {
64 	int hash_verified;
65 };
66 
67 /*
68  * Initialize struct buffer_aux for a freshly created buffer.
69  */
70 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
71 {
72 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
73 
74 	aux->hash_verified = 0;
75 }
76 
77 /*
78  * Translate input sector number to the sector number on the target device.
79  */
80 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
81 {
82 	return v->data_start + dm_target_offset(v->ti, bi_sector);
83 }
84 
85 /*
86  * Return hash position of a specified block at a specified tree level
87  * (0 is the lowest level).
88  * The lowest "hash_per_block_bits"-bits of the result denote hash position
89  * inside a hash block. The remaining bits denote location of the hash block.
90  */
91 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
92 					 int level)
93 {
94 	return block >> (level * v->hash_per_block_bits);
95 }
96 
97 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
98 				const u8 *data, size_t len,
99 				struct crypto_wait *wait)
100 {
101 	struct scatterlist sg;
102 
103 	if (likely(!is_vmalloc_addr(data))) {
104 		sg_init_one(&sg, data, len);
105 		ahash_request_set_crypt(req, &sg, NULL, len);
106 		return crypto_wait_req(crypto_ahash_update(req), wait);
107 	} else {
108 		do {
109 			int r;
110 			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
111 			flush_kernel_vmap_range((void *)data, this_step);
112 			sg_init_table(&sg, 1);
113 			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
114 			ahash_request_set_crypt(req, &sg, NULL, this_step);
115 			r = crypto_wait_req(crypto_ahash_update(req), wait);
116 			if (unlikely(r))
117 				return r;
118 			data += this_step;
119 			len -= this_step;
120 		} while (len);
121 		return 0;
122 	}
123 }
124 
125 /*
126  * Wrapper for crypto_ahash_init, which handles verity salting.
127  */
128 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
129 				struct crypto_wait *wait)
130 {
131 	int r;
132 
133 	ahash_request_set_tfm(req, v->tfm);
134 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
135 					CRYPTO_TFM_REQ_MAY_BACKLOG,
136 					crypto_req_done, (void *)wait);
137 	crypto_init_wait(wait);
138 
139 	r = crypto_wait_req(crypto_ahash_init(req), wait);
140 
141 	if (unlikely(r < 0)) {
142 		DMERR("crypto_ahash_init failed: %d", r);
143 		return r;
144 	}
145 
146 	if (likely(v->salt_size && (v->version >= 1)))
147 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
148 
149 	return r;
150 }
151 
152 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
153 			     u8 *digest, struct crypto_wait *wait)
154 {
155 	int r;
156 
157 	if (unlikely(v->salt_size && (!v->version))) {
158 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
159 
160 		if (r < 0) {
161 			DMERR("verity_hash_final failed updating salt: %d", r);
162 			goto out;
163 		}
164 	}
165 
166 	ahash_request_set_crypt(req, NULL, digest, 0);
167 	r = crypto_wait_req(crypto_ahash_final(req), wait);
168 out:
169 	return r;
170 }
171 
172 int verity_hash(struct dm_verity *v, struct ahash_request *req,
173 		const u8 *data, size_t len, u8 *digest)
174 {
175 	int r;
176 	struct crypto_wait wait;
177 
178 	r = verity_hash_init(v, req, &wait);
179 	if (unlikely(r < 0))
180 		goto out;
181 
182 	r = verity_hash_update(v, req, data, len, &wait);
183 	if (unlikely(r < 0))
184 		goto out;
185 
186 	r = verity_hash_final(v, req, digest, &wait);
187 
188 out:
189 	return r;
190 }
191 
192 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
193 				 sector_t *hash_block, unsigned *offset)
194 {
195 	sector_t position = verity_position_at_level(v, block, level);
196 	unsigned idx;
197 
198 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
199 
200 	if (!offset)
201 		return;
202 
203 	idx = position & ((1 << v->hash_per_block_bits) - 1);
204 	if (!v->version)
205 		*offset = idx * v->digest_size;
206 	else
207 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
208 }
209 
210 /*
211  * Handle verification errors.
212  */
213 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
214 			     unsigned long long block)
215 {
216 	char verity_env[DM_VERITY_ENV_LENGTH];
217 	char *envp[] = { verity_env, NULL };
218 	const char *type_str = "";
219 	struct mapped_device *md = dm_table_get_md(v->ti->table);
220 
221 	/* Corruption should be visible in device status in all modes */
222 	v->hash_failed = 1;
223 
224 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
225 		goto out;
226 
227 	v->corrupted_errs++;
228 
229 	switch (type) {
230 	case DM_VERITY_BLOCK_TYPE_DATA:
231 		type_str = "data";
232 		break;
233 	case DM_VERITY_BLOCK_TYPE_METADATA:
234 		type_str = "metadata";
235 		break;
236 	default:
237 		BUG();
238 	}
239 
240 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
241 		    type_str, block);
242 
243 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
244 		DMERR("%s: reached maximum errors", v->data_dev->name);
245 
246 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
247 		DM_VERITY_ENV_VAR_NAME, type, block);
248 
249 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
250 
251 out:
252 	if (v->mode == DM_VERITY_MODE_LOGGING)
253 		return 0;
254 
255 	if (v->mode == DM_VERITY_MODE_RESTART)
256 		kernel_restart("dm-verity device corrupted");
257 
258 	if (v->mode == DM_VERITY_MODE_PANIC)
259 		panic("dm-verity device corrupted");
260 
261 	return 1;
262 }
263 
264 /*
265  * Verify hash of a metadata block pertaining to the specified data block
266  * ("block" argument) at a specified level ("level" argument).
267  *
268  * On successful return, verity_io_want_digest(v, io) contains the hash value
269  * for a lower tree level or for the data block (if we're at the lowest level).
270  *
271  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
272  * If "skip_unverified" is false, unverified buffer is hashed and verified
273  * against current value of verity_io_want_digest(v, io).
274  */
275 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
276 			       sector_t block, int level, bool skip_unverified,
277 			       u8 *want_digest)
278 {
279 	struct dm_buffer *buf;
280 	struct buffer_aux *aux;
281 	u8 *data;
282 	int r;
283 	sector_t hash_block;
284 	unsigned offset;
285 
286 	verity_hash_at_level(v, block, level, &hash_block, &offset);
287 
288 	data = dm_bufio_read(v->bufio, hash_block, &buf);
289 	if (IS_ERR(data))
290 		return PTR_ERR(data);
291 
292 	aux = dm_bufio_get_aux_data(buf);
293 
294 	if (!aux->hash_verified) {
295 		if (skip_unverified) {
296 			r = 1;
297 			goto release_ret_r;
298 		}
299 
300 		r = verity_hash(v, verity_io_hash_req(v, io),
301 				data, 1 << v->hash_dev_block_bits,
302 				verity_io_real_digest(v, io));
303 		if (unlikely(r < 0))
304 			goto release_ret_r;
305 
306 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
307 				  v->digest_size) == 0))
308 			aux->hash_verified = 1;
309 		else if (verity_fec_decode(v, io,
310 					   DM_VERITY_BLOCK_TYPE_METADATA,
311 					   hash_block, data, NULL) == 0)
312 			aux->hash_verified = 1;
313 		else if (verity_handle_err(v,
314 					   DM_VERITY_BLOCK_TYPE_METADATA,
315 					   hash_block)) {
316 			r = -EIO;
317 			goto release_ret_r;
318 		}
319 	}
320 
321 	data += offset;
322 	memcpy(want_digest, data, v->digest_size);
323 	r = 0;
324 
325 release_ret_r:
326 	dm_bufio_release(buf);
327 	return r;
328 }
329 
330 /*
331  * Find a hash for a given block, write it to digest and verify the integrity
332  * of the hash tree if necessary.
333  */
334 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
335 			  sector_t block, u8 *digest, bool *is_zero)
336 {
337 	int r = 0, i;
338 
339 	if (likely(v->levels)) {
340 		/*
341 		 * First, we try to get the requested hash for
342 		 * the current block. If the hash block itself is
343 		 * verified, zero is returned. If it isn't, this
344 		 * function returns 1 and we fall back to whole
345 		 * chain verification.
346 		 */
347 		r = verity_verify_level(v, io, block, 0, true, digest);
348 		if (likely(r <= 0))
349 			goto out;
350 	}
351 
352 	memcpy(digest, v->root_digest, v->digest_size);
353 
354 	for (i = v->levels - 1; i >= 0; i--) {
355 		r = verity_verify_level(v, io, block, i, false, digest);
356 		if (unlikely(r))
357 			goto out;
358 	}
359 out:
360 	if (!r && v->zero_digest)
361 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
362 	else
363 		*is_zero = false;
364 
365 	return r;
366 }
367 
368 /*
369  * Calculates the digest for the given bio
370  */
371 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
372 			       struct bvec_iter *iter, struct crypto_wait *wait)
373 {
374 	unsigned int todo = 1 << v->data_dev_block_bits;
375 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
376 	struct scatterlist sg;
377 	struct ahash_request *req = verity_io_hash_req(v, io);
378 
379 	do {
380 		int r;
381 		unsigned int len;
382 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
383 
384 		sg_init_table(&sg, 1);
385 
386 		len = bv.bv_len;
387 
388 		if (likely(len >= todo))
389 			len = todo;
390 		/*
391 		 * Operating on a single page at a time looks suboptimal
392 		 * until you consider the typical block size is 4,096B.
393 		 * Going through this loops twice should be very rare.
394 		 */
395 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
396 		ahash_request_set_crypt(req, &sg, NULL, len);
397 		r = crypto_wait_req(crypto_ahash_update(req), wait);
398 
399 		if (unlikely(r < 0)) {
400 			DMERR("verity_for_io_block crypto op failed: %d", r);
401 			return r;
402 		}
403 
404 		bio_advance_iter(bio, iter, len);
405 		todo -= len;
406 	} while (todo);
407 
408 	return 0;
409 }
410 
411 /*
412  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
413  * starting from iter.
414  */
415 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
416 			struct bvec_iter *iter,
417 			int (*process)(struct dm_verity *v,
418 				       struct dm_verity_io *io, u8 *data,
419 				       size_t len))
420 {
421 	unsigned todo = 1 << v->data_dev_block_bits;
422 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
423 
424 	do {
425 		int r;
426 		u8 *page;
427 		unsigned len;
428 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
429 
430 		page = kmap_atomic(bv.bv_page);
431 		len = bv.bv_len;
432 
433 		if (likely(len >= todo))
434 			len = todo;
435 
436 		r = process(v, io, page + bv.bv_offset, len);
437 		kunmap_atomic(page);
438 
439 		if (r < 0)
440 			return r;
441 
442 		bio_advance_iter(bio, iter, len);
443 		todo -= len;
444 	} while (todo);
445 
446 	return 0;
447 }
448 
449 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
450 			  u8 *data, size_t len)
451 {
452 	memset(data, 0, len);
453 	return 0;
454 }
455 
456 /*
457  * Moves the bio iter one data block forward.
458  */
459 static inline void verity_bv_skip_block(struct dm_verity *v,
460 					struct dm_verity_io *io,
461 					struct bvec_iter *iter)
462 {
463 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464 
465 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
466 }
467 
468 /*
469  * Verify one "dm_verity_io" structure.
470  */
471 static int verity_verify_io(struct dm_verity_io *io)
472 {
473 	bool is_zero;
474 	struct dm_verity *v = io->v;
475 	struct bvec_iter start;
476 	unsigned b;
477 	struct crypto_wait wait;
478 
479 	for (b = 0; b < io->n_blocks; b++) {
480 		int r;
481 		sector_t cur_block = io->block + b;
482 		struct ahash_request *req = verity_io_hash_req(v, io);
483 
484 		if (v->validated_blocks &&
485 		    likely(test_bit(cur_block, v->validated_blocks))) {
486 			verity_bv_skip_block(v, io, &io->iter);
487 			continue;
488 		}
489 
490 		r = verity_hash_for_block(v, io, cur_block,
491 					  verity_io_want_digest(v, io),
492 					  &is_zero);
493 		if (unlikely(r < 0))
494 			return r;
495 
496 		if (is_zero) {
497 			/*
498 			 * If we expect a zero block, don't validate, just
499 			 * return zeros.
500 			 */
501 			r = verity_for_bv_block(v, io, &io->iter,
502 						verity_bv_zero);
503 			if (unlikely(r < 0))
504 				return r;
505 
506 			continue;
507 		}
508 
509 		r = verity_hash_init(v, req, &wait);
510 		if (unlikely(r < 0))
511 			return r;
512 
513 		start = io->iter;
514 		r = verity_for_io_block(v, io, &io->iter, &wait);
515 		if (unlikely(r < 0))
516 			return r;
517 
518 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
519 					&wait);
520 		if (unlikely(r < 0))
521 			return r;
522 
523 		if (likely(memcmp(verity_io_real_digest(v, io),
524 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
525 			if (v->validated_blocks)
526 				set_bit(cur_block, v->validated_blocks);
527 			continue;
528 		}
529 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
530 					   cur_block, NULL, &start) == 0)
531 			continue;
532 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
533 					   cur_block))
534 			return -EIO;
535 	}
536 
537 	return 0;
538 }
539 
540 /*
541  * Skip verity work in response to I/O error when system is shutting down.
542  */
543 static inline bool verity_is_system_shutting_down(void)
544 {
545 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
546 		|| system_state == SYSTEM_RESTART;
547 }
548 
549 /*
550  * End one "io" structure with a given error.
551  */
552 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
553 {
554 	struct dm_verity *v = io->v;
555 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
556 
557 	bio->bi_end_io = io->orig_bi_end_io;
558 	bio->bi_status = status;
559 
560 	verity_fec_finish_io(io);
561 
562 	bio_endio(bio);
563 }
564 
565 static void verity_work(struct work_struct *w)
566 {
567 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
568 
569 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
570 }
571 
572 static void verity_end_io(struct bio *bio)
573 {
574 	struct dm_verity_io *io = bio->bi_private;
575 
576 	if (bio->bi_status &&
577 	    (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
578 		verity_finish_io(io, bio->bi_status);
579 		return;
580 	}
581 
582 	INIT_WORK(&io->work, verity_work);
583 	queue_work(io->v->verify_wq, &io->work);
584 }
585 
586 /*
587  * Prefetch buffers for the specified io.
588  * The root buffer is not prefetched, it is assumed that it will be cached
589  * all the time.
590  */
591 static void verity_prefetch_io(struct work_struct *work)
592 {
593 	struct dm_verity_prefetch_work *pw =
594 		container_of(work, struct dm_verity_prefetch_work, work);
595 	struct dm_verity *v = pw->v;
596 	int i;
597 
598 	for (i = v->levels - 2; i >= 0; i--) {
599 		sector_t hash_block_start;
600 		sector_t hash_block_end;
601 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
602 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
603 		if (!i) {
604 			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
605 
606 			cluster >>= v->data_dev_block_bits;
607 			if (unlikely(!cluster))
608 				goto no_prefetch_cluster;
609 
610 			if (unlikely(cluster & (cluster - 1)))
611 				cluster = 1 << __fls(cluster);
612 
613 			hash_block_start &= ~(sector_t)(cluster - 1);
614 			hash_block_end |= cluster - 1;
615 			if (unlikely(hash_block_end >= v->hash_blocks))
616 				hash_block_end = v->hash_blocks - 1;
617 		}
618 no_prefetch_cluster:
619 		dm_bufio_prefetch(v->bufio, hash_block_start,
620 				  hash_block_end - hash_block_start + 1);
621 	}
622 
623 	kfree(pw);
624 }
625 
626 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
627 {
628 	sector_t block = io->block;
629 	unsigned int n_blocks = io->n_blocks;
630 	struct dm_verity_prefetch_work *pw;
631 
632 	if (v->validated_blocks) {
633 		while (n_blocks && test_bit(block, v->validated_blocks)) {
634 			block++;
635 			n_blocks--;
636 		}
637 		while (n_blocks && test_bit(block + n_blocks - 1,
638 					    v->validated_blocks))
639 			n_blocks--;
640 		if (!n_blocks)
641 			return;
642 	}
643 
644 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
645 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
646 
647 	if (!pw)
648 		return;
649 
650 	INIT_WORK(&pw->work, verity_prefetch_io);
651 	pw->v = v;
652 	pw->block = block;
653 	pw->n_blocks = n_blocks;
654 	queue_work(v->verify_wq, &pw->work);
655 }
656 
657 /*
658  * Bio map function. It allocates dm_verity_io structure and bio vector and
659  * fills them. Then it issues prefetches and the I/O.
660  */
661 static int verity_map(struct dm_target *ti, struct bio *bio)
662 {
663 	struct dm_verity *v = ti->private;
664 	struct dm_verity_io *io;
665 
666 	bio_set_dev(bio, v->data_dev->bdev);
667 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
668 
669 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
670 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
671 		DMERR_LIMIT("unaligned io");
672 		return DM_MAPIO_KILL;
673 	}
674 
675 	if (bio_end_sector(bio) >>
676 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
677 		DMERR_LIMIT("io out of range");
678 		return DM_MAPIO_KILL;
679 	}
680 
681 	if (bio_data_dir(bio) == WRITE)
682 		return DM_MAPIO_KILL;
683 
684 	io = dm_per_bio_data(bio, ti->per_io_data_size);
685 	io->v = v;
686 	io->orig_bi_end_io = bio->bi_end_io;
687 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
688 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
689 
690 	bio->bi_end_io = verity_end_io;
691 	bio->bi_private = io;
692 	io->iter = bio->bi_iter;
693 
694 	verity_fec_init_io(io);
695 
696 	verity_submit_prefetch(v, io);
697 
698 	submit_bio_noacct(bio);
699 
700 	return DM_MAPIO_SUBMITTED;
701 }
702 
703 /*
704  * Status: V (valid) or C (corruption found)
705  */
706 static void verity_status(struct dm_target *ti, status_type_t type,
707 			  unsigned status_flags, char *result, unsigned maxlen)
708 {
709 	struct dm_verity *v = ti->private;
710 	unsigned args = 0;
711 	unsigned sz = 0;
712 	unsigned x;
713 
714 	switch (type) {
715 	case STATUSTYPE_INFO:
716 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
717 		break;
718 	case STATUSTYPE_TABLE:
719 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
720 			v->version,
721 			v->data_dev->name,
722 			v->hash_dev->name,
723 			1 << v->data_dev_block_bits,
724 			1 << v->hash_dev_block_bits,
725 			(unsigned long long)v->data_blocks,
726 			(unsigned long long)v->hash_start,
727 			v->alg_name
728 			);
729 		for (x = 0; x < v->digest_size; x++)
730 			DMEMIT("%02x", v->root_digest[x]);
731 		DMEMIT(" ");
732 		if (!v->salt_size)
733 			DMEMIT("-");
734 		else
735 			for (x = 0; x < v->salt_size; x++)
736 				DMEMIT("%02x", v->salt[x]);
737 		if (v->mode != DM_VERITY_MODE_EIO)
738 			args++;
739 		if (verity_fec_is_enabled(v))
740 			args += DM_VERITY_OPTS_FEC;
741 		if (v->zero_digest)
742 			args++;
743 		if (v->validated_blocks)
744 			args++;
745 		if (v->signature_key_desc)
746 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
747 		if (!args)
748 			return;
749 		DMEMIT(" %u", args);
750 		if (v->mode != DM_VERITY_MODE_EIO) {
751 			DMEMIT(" ");
752 			switch (v->mode) {
753 			case DM_VERITY_MODE_LOGGING:
754 				DMEMIT(DM_VERITY_OPT_LOGGING);
755 				break;
756 			case DM_VERITY_MODE_RESTART:
757 				DMEMIT(DM_VERITY_OPT_RESTART);
758 				break;
759 			case DM_VERITY_MODE_PANIC:
760 				DMEMIT(DM_VERITY_OPT_PANIC);
761 				break;
762 			default:
763 				BUG();
764 			}
765 		}
766 		if (v->zero_digest)
767 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
768 		if (v->validated_blocks)
769 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
770 		sz = verity_fec_status_table(v, sz, result, maxlen);
771 		if (v->signature_key_desc)
772 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
773 				" %s", v->signature_key_desc);
774 		break;
775 
776 	case STATUSTYPE_IMA:
777 		DMEMIT_TARGET_NAME_VERSION(ti->type);
778 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
779 		DMEMIT(",verity_version=%u", v->version);
780 		DMEMIT(",data_device_name=%s", v->data_dev->name);
781 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
782 		DMEMIT(",verity_algorithm=%s", v->alg_name);
783 
784 		DMEMIT(",root_digest=");
785 		for (x = 0; x < v->digest_size; x++)
786 			DMEMIT("%02x", v->root_digest[x]);
787 
788 		DMEMIT(",salt=");
789 		if (!v->salt_size)
790 			DMEMIT("-");
791 		else
792 			for (x = 0; x < v->salt_size; x++)
793 				DMEMIT("%02x", v->salt[x]);
794 
795 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
796 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
797 		if (v->signature_key_desc)
798 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
799 
800 		if (v->mode != DM_VERITY_MODE_EIO) {
801 			DMEMIT(",verity_mode=");
802 			switch (v->mode) {
803 			case DM_VERITY_MODE_LOGGING:
804 				DMEMIT(DM_VERITY_OPT_LOGGING);
805 				break;
806 			case DM_VERITY_MODE_RESTART:
807 				DMEMIT(DM_VERITY_OPT_RESTART);
808 				break;
809 			case DM_VERITY_MODE_PANIC:
810 				DMEMIT(DM_VERITY_OPT_PANIC);
811 				break;
812 			default:
813 				DMEMIT("invalid");
814 			}
815 		}
816 		DMEMIT(";");
817 		break;
818 	}
819 }
820 
821 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
822 {
823 	struct dm_verity *v = ti->private;
824 
825 	*bdev = v->data_dev->bdev;
826 
827 	if (v->data_start ||
828 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
829 		return 1;
830 	return 0;
831 }
832 
833 static int verity_iterate_devices(struct dm_target *ti,
834 				  iterate_devices_callout_fn fn, void *data)
835 {
836 	struct dm_verity *v = ti->private;
837 
838 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
839 }
840 
841 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
842 {
843 	struct dm_verity *v = ti->private;
844 
845 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
846 		limits->logical_block_size = 1 << v->data_dev_block_bits;
847 
848 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
849 		limits->physical_block_size = 1 << v->data_dev_block_bits;
850 
851 	blk_limits_io_min(limits, limits->logical_block_size);
852 }
853 
854 static void verity_dtr(struct dm_target *ti)
855 {
856 	struct dm_verity *v = ti->private;
857 
858 	if (v->verify_wq)
859 		destroy_workqueue(v->verify_wq);
860 
861 	if (v->bufio)
862 		dm_bufio_client_destroy(v->bufio);
863 
864 	kvfree(v->validated_blocks);
865 	kfree(v->salt);
866 	kfree(v->root_digest);
867 	kfree(v->zero_digest);
868 
869 	if (v->tfm)
870 		crypto_free_ahash(v->tfm);
871 
872 	kfree(v->alg_name);
873 
874 	if (v->hash_dev)
875 		dm_put_device(ti, v->hash_dev);
876 
877 	if (v->data_dev)
878 		dm_put_device(ti, v->data_dev);
879 
880 	verity_fec_dtr(v);
881 
882 	kfree(v->signature_key_desc);
883 
884 	kfree(v);
885 }
886 
887 static int verity_alloc_most_once(struct dm_verity *v)
888 {
889 	struct dm_target *ti = v->ti;
890 
891 	/* the bitset can only handle INT_MAX blocks */
892 	if (v->data_blocks > INT_MAX) {
893 		ti->error = "device too large to use check_at_most_once";
894 		return -E2BIG;
895 	}
896 
897 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
898 				       sizeof(unsigned long),
899 				       GFP_KERNEL);
900 	if (!v->validated_blocks) {
901 		ti->error = "failed to allocate bitset for check_at_most_once";
902 		return -ENOMEM;
903 	}
904 
905 	return 0;
906 }
907 
908 static int verity_alloc_zero_digest(struct dm_verity *v)
909 {
910 	int r = -ENOMEM;
911 	struct ahash_request *req;
912 	u8 *zero_data;
913 
914 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
915 
916 	if (!v->zero_digest)
917 		return r;
918 
919 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
920 
921 	if (!req)
922 		return r; /* verity_dtr will free zero_digest */
923 
924 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
925 
926 	if (!zero_data)
927 		goto out;
928 
929 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
930 			v->zero_digest);
931 
932 out:
933 	kfree(req);
934 	kfree(zero_data);
935 
936 	return r;
937 }
938 
939 static inline bool verity_is_verity_mode(const char *arg_name)
940 {
941 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
942 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
943 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
944 }
945 
946 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
947 {
948 	if (v->mode)
949 		return -EINVAL;
950 
951 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
952 		v->mode = DM_VERITY_MODE_LOGGING;
953 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
954 		v->mode = DM_VERITY_MODE_RESTART;
955 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
956 		v->mode = DM_VERITY_MODE_PANIC;
957 
958 	return 0;
959 }
960 
961 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
962 				 struct dm_verity_sig_opts *verify_args)
963 {
964 	int r;
965 	unsigned argc;
966 	struct dm_target *ti = v->ti;
967 	const char *arg_name;
968 
969 	static const struct dm_arg _args[] = {
970 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
971 	};
972 
973 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
974 	if (r)
975 		return -EINVAL;
976 
977 	if (!argc)
978 		return 0;
979 
980 	do {
981 		arg_name = dm_shift_arg(as);
982 		argc--;
983 
984 		if (verity_is_verity_mode(arg_name)) {
985 			r = verity_parse_verity_mode(v, arg_name);
986 			if (r) {
987 				ti->error = "Conflicting error handling parameters";
988 				return r;
989 			}
990 			continue;
991 
992 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
993 			r = verity_alloc_zero_digest(v);
994 			if (r) {
995 				ti->error = "Cannot allocate zero digest";
996 				return r;
997 			}
998 			continue;
999 
1000 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1001 			r = verity_alloc_most_once(v);
1002 			if (r)
1003 				return r;
1004 			continue;
1005 
1006 		} else if (verity_is_fec_opt_arg(arg_name)) {
1007 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1008 			if (r)
1009 				return r;
1010 			continue;
1011 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1012 			r = verity_verify_sig_parse_opt_args(as, v,
1013 							     verify_args,
1014 							     &argc, arg_name);
1015 			if (r)
1016 				return r;
1017 			continue;
1018 
1019 		}
1020 
1021 		ti->error = "Unrecognized verity feature request";
1022 		return -EINVAL;
1023 	} while (argc && !r);
1024 
1025 	return r;
1026 }
1027 
1028 /*
1029  * Target parameters:
1030  *	<version>	The current format is version 1.
1031  *			Vsn 0 is compatible with original Chromium OS releases.
1032  *	<data device>
1033  *	<hash device>
1034  *	<data block size>
1035  *	<hash block size>
1036  *	<the number of data blocks>
1037  *	<hash start block>
1038  *	<algorithm>
1039  *	<digest>
1040  *	<salt>		Hex string or "-" if no salt.
1041  */
1042 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1043 {
1044 	struct dm_verity *v;
1045 	struct dm_verity_sig_opts verify_args = {0};
1046 	struct dm_arg_set as;
1047 	unsigned int num;
1048 	unsigned long long num_ll;
1049 	int r;
1050 	int i;
1051 	sector_t hash_position;
1052 	char dummy;
1053 	char *root_hash_digest_to_validate;
1054 
1055 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1056 	if (!v) {
1057 		ti->error = "Cannot allocate verity structure";
1058 		return -ENOMEM;
1059 	}
1060 	ti->private = v;
1061 	v->ti = ti;
1062 
1063 	r = verity_fec_ctr_alloc(v);
1064 	if (r)
1065 		goto bad;
1066 
1067 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1068 		ti->error = "Device must be readonly";
1069 		r = -EINVAL;
1070 		goto bad;
1071 	}
1072 
1073 	if (argc < 10) {
1074 		ti->error = "Not enough arguments";
1075 		r = -EINVAL;
1076 		goto bad;
1077 	}
1078 
1079 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1080 	    num > 1) {
1081 		ti->error = "Invalid version";
1082 		r = -EINVAL;
1083 		goto bad;
1084 	}
1085 	v->version = num;
1086 
1087 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1088 	if (r) {
1089 		ti->error = "Data device lookup failed";
1090 		goto bad;
1091 	}
1092 
1093 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1094 	if (r) {
1095 		ti->error = "Hash device lookup failed";
1096 		goto bad;
1097 	}
1098 
1099 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1100 	    !num || (num & (num - 1)) ||
1101 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1102 	    num > PAGE_SIZE) {
1103 		ti->error = "Invalid data device block size";
1104 		r = -EINVAL;
1105 		goto bad;
1106 	}
1107 	v->data_dev_block_bits = __ffs(num);
1108 
1109 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1110 	    !num || (num & (num - 1)) ||
1111 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1112 	    num > INT_MAX) {
1113 		ti->error = "Invalid hash device block size";
1114 		r = -EINVAL;
1115 		goto bad;
1116 	}
1117 	v->hash_dev_block_bits = __ffs(num);
1118 
1119 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1120 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1121 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1122 		ti->error = "Invalid data blocks";
1123 		r = -EINVAL;
1124 		goto bad;
1125 	}
1126 	v->data_blocks = num_ll;
1127 
1128 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1129 		ti->error = "Data device is too small";
1130 		r = -EINVAL;
1131 		goto bad;
1132 	}
1133 
1134 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1135 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1136 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1137 		ti->error = "Invalid hash start";
1138 		r = -EINVAL;
1139 		goto bad;
1140 	}
1141 	v->hash_start = num_ll;
1142 
1143 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1144 	if (!v->alg_name) {
1145 		ti->error = "Cannot allocate algorithm name";
1146 		r = -ENOMEM;
1147 		goto bad;
1148 	}
1149 
1150 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1151 	if (IS_ERR(v->tfm)) {
1152 		ti->error = "Cannot initialize hash function";
1153 		r = PTR_ERR(v->tfm);
1154 		v->tfm = NULL;
1155 		goto bad;
1156 	}
1157 
1158 	/*
1159 	 * dm-verity performance can vary greatly depending on which hash
1160 	 * algorithm implementation is used.  Help people debug performance
1161 	 * problems by logging the ->cra_driver_name.
1162 	 */
1163 	DMINFO("%s using implementation \"%s\"", v->alg_name,
1164 	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1165 
1166 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1167 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1168 		ti->error = "Digest size too big";
1169 		r = -EINVAL;
1170 		goto bad;
1171 	}
1172 	v->ahash_reqsize = sizeof(struct ahash_request) +
1173 		crypto_ahash_reqsize(v->tfm);
1174 
1175 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1176 	if (!v->root_digest) {
1177 		ti->error = "Cannot allocate root digest";
1178 		r = -ENOMEM;
1179 		goto bad;
1180 	}
1181 	if (strlen(argv[8]) != v->digest_size * 2 ||
1182 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1183 		ti->error = "Invalid root digest";
1184 		r = -EINVAL;
1185 		goto bad;
1186 	}
1187 	root_hash_digest_to_validate = argv[8];
1188 
1189 	if (strcmp(argv[9], "-")) {
1190 		v->salt_size = strlen(argv[9]) / 2;
1191 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1192 		if (!v->salt) {
1193 			ti->error = "Cannot allocate salt";
1194 			r = -ENOMEM;
1195 			goto bad;
1196 		}
1197 		if (strlen(argv[9]) != v->salt_size * 2 ||
1198 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1199 			ti->error = "Invalid salt";
1200 			r = -EINVAL;
1201 			goto bad;
1202 		}
1203 	}
1204 
1205 	argv += 10;
1206 	argc -= 10;
1207 
1208 	/* Optional parameters */
1209 	if (argc) {
1210 		as.argc = argc;
1211 		as.argv = argv;
1212 
1213 		r = verity_parse_opt_args(&as, v, &verify_args);
1214 		if (r < 0)
1215 			goto bad;
1216 	}
1217 
1218 	/* Root hash signature is  a optional parameter*/
1219 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1220 				    strlen(root_hash_digest_to_validate),
1221 				    verify_args.sig,
1222 				    verify_args.sig_size);
1223 	if (r < 0) {
1224 		ti->error = "Root hash verification failed";
1225 		goto bad;
1226 	}
1227 	v->hash_per_block_bits =
1228 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1229 
1230 	v->levels = 0;
1231 	if (v->data_blocks)
1232 		while (v->hash_per_block_bits * v->levels < 64 &&
1233 		       (unsigned long long)(v->data_blocks - 1) >>
1234 		       (v->hash_per_block_bits * v->levels))
1235 			v->levels++;
1236 
1237 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1238 		ti->error = "Too many tree levels";
1239 		r = -E2BIG;
1240 		goto bad;
1241 	}
1242 
1243 	hash_position = v->hash_start;
1244 	for (i = v->levels - 1; i >= 0; i--) {
1245 		sector_t s;
1246 		v->hash_level_block[i] = hash_position;
1247 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1248 					>> ((i + 1) * v->hash_per_block_bits);
1249 		if (hash_position + s < hash_position) {
1250 			ti->error = "Hash device offset overflow";
1251 			r = -E2BIG;
1252 			goto bad;
1253 		}
1254 		hash_position += s;
1255 	}
1256 	v->hash_blocks = hash_position;
1257 
1258 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1259 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1260 		dm_bufio_alloc_callback, NULL);
1261 	if (IS_ERR(v->bufio)) {
1262 		ti->error = "Cannot initialize dm-bufio";
1263 		r = PTR_ERR(v->bufio);
1264 		v->bufio = NULL;
1265 		goto bad;
1266 	}
1267 
1268 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1269 		ti->error = "Hash device is too small";
1270 		r = -E2BIG;
1271 		goto bad;
1272 	}
1273 
1274 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1275 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1276 	if (!v->verify_wq) {
1277 		ti->error = "Cannot allocate workqueue";
1278 		r = -ENOMEM;
1279 		goto bad;
1280 	}
1281 
1282 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1283 				v->ahash_reqsize + v->digest_size * 2;
1284 
1285 	r = verity_fec_ctr(v);
1286 	if (r)
1287 		goto bad;
1288 
1289 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1290 				       __alignof__(struct dm_verity_io));
1291 
1292 	verity_verify_sig_opts_cleanup(&verify_args);
1293 
1294 	return 0;
1295 
1296 bad:
1297 
1298 	verity_verify_sig_opts_cleanup(&verify_args);
1299 	verity_dtr(ti);
1300 
1301 	return r;
1302 }
1303 
1304 static struct target_type verity_target = {
1305 	.name		= "verity",
1306 	.version	= {1, 8, 0},
1307 	.module		= THIS_MODULE,
1308 	.ctr		= verity_ctr,
1309 	.dtr		= verity_dtr,
1310 	.map		= verity_map,
1311 	.status		= verity_status,
1312 	.prepare_ioctl	= verity_prepare_ioctl,
1313 	.iterate_devices = verity_iterate_devices,
1314 	.io_hints	= verity_io_hints,
1315 };
1316 
1317 static int __init dm_verity_init(void)
1318 {
1319 	int r;
1320 
1321 	r = dm_register_target(&verity_target);
1322 	if (r < 0)
1323 		DMERR("register failed %d", r);
1324 
1325 	return r;
1326 }
1327 
1328 static void __exit dm_verity_exit(void)
1329 {
1330 	dm_unregister_target(&verity_target);
1331 }
1332 
1333 module_init(dm_verity_init);
1334 module_exit(dm_verity_exit);
1335 
1336 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1337 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1338 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1339 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1340 MODULE_LICENSE("GPL");
1341