1 /* 2 * Copyright (C) 2012 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 7 * 8 * This file is released under the GPLv2. 9 * 10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 12 * hash device. Setting this greatly improves performance when data and hash 13 * are on the same disk on different partitions on devices with poor random 14 * access behavior. 15 */ 16 17 #include "dm-verity.h" 18 #include "dm-verity-fec.h" 19 20 #include <linux/module.h> 21 #include <linux/reboot.h> 22 23 #define DM_MSG_PREFIX "verity" 24 25 #define DM_VERITY_ENV_LENGTH 42 26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 27 28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 29 30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 31 32 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 33 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 35 36 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC) 37 38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 39 40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR); 41 42 struct dm_verity_prefetch_work { 43 struct work_struct work; 44 struct dm_verity *v; 45 sector_t block; 46 unsigned n_blocks; 47 }; 48 49 /* 50 * Auxiliary structure appended to each dm-bufio buffer. If the value 51 * hash_verified is nonzero, hash of the block has been verified. 52 * 53 * The variable hash_verified is set to 0 when allocating the buffer, then 54 * it can be changed to 1 and it is never reset to 0 again. 55 * 56 * There is no lock around this value, a race condition can at worst cause 57 * that multiple processes verify the hash of the same buffer simultaneously 58 * and write 1 to hash_verified simultaneously. 59 * This condition is harmless, so we don't need locking. 60 */ 61 struct buffer_aux { 62 int hash_verified; 63 }; 64 65 /* 66 * Initialize struct buffer_aux for a freshly created buffer. 67 */ 68 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 69 { 70 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 71 72 aux->hash_verified = 0; 73 } 74 75 /* 76 * Translate input sector number to the sector number on the target device. 77 */ 78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 79 { 80 return v->data_start + dm_target_offset(v->ti, bi_sector); 81 } 82 83 /* 84 * Return hash position of a specified block at a specified tree level 85 * (0 is the lowest level). 86 * The lowest "hash_per_block_bits"-bits of the result denote hash position 87 * inside a hash block. The remaining bits denote location of the hash block. 88 */ 89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 90 int level) 91 { 92 return block >> (level * v->hash_per_block_bits); 93 } 94 95 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req, 96 const u8 *data, size_t len, 97 struct crypto_wait *wait) 98 { 99 struct scatterlist sg; 100 101 sg_init_one(&sg, data, len); 102 ahash_request_set_crypt(req, &sg, NULL, len); 103 104 return crypto_wait_req(crypto_ahash_update(req), wait); 105 } 106 107 /* 108 * Wrapper for crypto_ahash_init, which handles verity salting. 109 */ 110 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req, 111 struct crypto_wait *wait) 112 { 113 int r; 114 115 ahash_request_set_tfm(req, v->tfm); 116 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | 117 CRYPTO_TFM_REQ_MAY_BACKLOG, 118 crypto_req_done, (void *)wait); 119 crypto_init_wait(wait); 120 121 r = crypto_wait_req(crypto_ahash_init(req), wait); 122 123 if (unlikely(r < 0)) { 124 DMERR("crypto_ahash_init failed: %d", r); 125 return r; 126 } 127 128 if (likely(v->salt_size && (v->version >= 1))) 129 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 130 131 return r; 132 } 133 134 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req, 135 u8 *digest, struct crypto_wait *wait) 136 { 137 int r; 138 139 if (unlikely(v->salt_size && (!v->version))) { 140 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 141 142 if (r < 0) { 143 DMERR("verity_hash_final failed updating salt: %d", r); 144 goto out; 145 } 146 } 147 148 ahash_request_set_crypt(req, NULL, digest, 0); 149 r = crypto_wait_req(crypto_ahash_final(req), wait); 150 out: 151 return r; 152 } 153 154 int verity_hash(struct dm_verity *v, struct ahash_request *req, 155 const u8 *data, size_t len, u8 *digest) 156 { 157 int r; 158 struct crypto_wait wait; 159 160 r = verity_hash_init(v, req, &wait); 161 if (unlikely(r < 0)) 162 goto out; 163 164 r = verity_hash_update(v, req, data, len, &wait); 165 if (unlikely(r < 0)) 166 goto out; 167 168 r = verity_hash_final(v, req, digest, &wait); 169 170 out: 171 return r; 172 } 173 174 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 175 sector_t *hash_block, unsigned *offset) 176 { 177 sector_t position = verity_position_at_level(v, block, level); 178 unsigned idx; 179 180 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 181 182 if (!offset) 183 return; 184 185 idx = position & ((1 << v->hash_per_block_bits) - 1); 186 if (!v->version) 187 *offset = idx * v->digest_size; 188 else 189 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 190 } 191 192 /* 193 * Handle verification errors. 194 */ 195 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 196 unsigned long long block) 197 { 198 char verity_env[DM_VERITY_ENV_LENGTH]; 199 char *envp[] = { verity_env, NULL }; 200 const char *type_str = ""; 201 struct mapped_device *md = dm_table_get_md(v->ti->table); 202 203 /* Corruption should be visible in device status in all modes */ 204 v->hash_failed = 1; 205 206 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 207 goto out; 208 209 v->corrupted_errs++; 210 211 switch (type) { 212 case DM_VERITY_BLOCK_TYPE_DATA: 213 type_str = "data"; 214 break; 215 case DM_VERITY_BLOCK_TYPE_METADATA: 216 type_str = "metadata"; 217 break; 218 default: 219 BUG(); 220 } 221 222 DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str, 223 block); 224 225 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) 226 DMERR("%s: reached maximum errors", v->data_dev->name); 227 228 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 229 DM_VERITY_ENV_VAR_NAME, type, block); 230 231 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 232 233 out: 234 if (v->mode == DM_VERITY_MODE_LOGGING) 235 return 0; 236 237 if (v->mode == DM_VERITY_MODE_RESTART) 238 kernel_restart("dm-verity device corrupted"); 239 240 return 1; 241 } 242 243 /* 244 * Verify hash of a metadata block pertaining to the specified data block 245 * ("block" argument) at a specified level ("level" argument). 246 * 247 * On successful return, verity_io_want_digest(v, io) contains the hash value 248 * for a lower tree level or for the data block (if we're at the lowest level). 249 * 250 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 251 * If "skip_unverified" is false, unverified buffer is hashed and verified 252 * against current value of verity_io_want_digest(v, io). 253 */ 254 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 255 sector_t block, int level, bool skip_unverified, 256 u8 *want_digest) 257 { 258 struct dm_buffer *buf; 259 struct buffer_aux *aux; 260 u8 *data; 261 int r; 262 sector_t hash_block; 263 unsigned offset; 264 265 verity_hash_at_level(v, block, level, &hash_block, &offset); 266 267 data = dm_bufio_read(v->bufio, hash_block, &buf); 268 if (IS_ERR(data)) 269 return PTR_ERR(data); 270 271 aux = dm_bufio_get_aux_data(buf); 272 273 if (!aux->hash_verified) { 274 if (skip_unverified) { 275 r = 1; 276 goto release_ret_r; 277 } 278 279 r = verity_hash(v, verity_io_hash_req(v, io), 280 data, 1 << v->hash_dev_block_bits, 281 verity_io_real_digest(v, io)); 282 if (unlikely(r < 0)) 283 goto release_ret_r; 284 285 if (likely(memcmp(verity_io_real_digest(v, io), want_digest, 286 v->digest_size) == 0)) 287 aux->hash_verified = 1; 288 else if (verity_fec_decode(v, io, 289 DM_VERITY_BLOCK_TYPE_METADATA, 290 hash_block, data, NULL) == 0) 291 aux->hash_verified = 1; 292 else if (verity_handle_err(v, 293 DM_VERITY_BLOCK_TYPE_METADATA, 294 hash_block)) { 295 r = -EIO; 296 goto release_ret_r; 297 } 298 } 299 300 data += offset; 301 memcpy(want_digest, data, v->digest_size); 302 r = 0; 303 304 release_ret_r: 305 dm_bufio_release(buf); 306 return r; 307 } 308 309 /* 310 * Find a hash for a given block, write it to digest and verify the integrity 311 * of the hash tree if necessary. 312 */ 313 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 314 sector_t block, u8 *digest, bool *is_zero) 315 { 316 int r = 0, i; 317 318 if (likely(v->levels)) { 319 /* 320 * First, we try to get the requested hash for 321 * the current block. If the hash block itself is 322 * verified, zero is returned. If it isn't, this 323 * function returns 1 and we fall back to whole 324 * chain verification. 325 */ 326 r = verity_verify_level(v, io, block, 0, true, digest); 327 if (likely(r <= 0)) 328 goto out; 329 } 330 331 memcpy(digest, v->root_digest, v->digest_size); 332 333 for (i = v->levels - 1; i >= 0; i--) { 334 r = verity_verify_level(v, io, block, i, false, digest); 335 if (unlikely(r)) 336 goto out; 337 } 338 out: 339 if (!r && v->zero_digest) 340 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 341 else 342 *is_zero = false; 343 344 return r; 345 } 346 347 /* 348 * Calculates the digest for the given bio 349 */ 350 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io, 351 struct bvec_iter *iter, struct crypto_wait *wait) 352 { 353 unsigned int todo = 1 << v->data_dev_block_bits; 354 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 355 struct scatterlist sg; 356 struct ahash_request *req = verity_io_hash_req(v, io); 357 358 do { 359 int r; 360 unsigned int len; 361 struct bio_vec bv = bio_iter_iovec(bio, *iter); 362 363 sg_init_table(&sg, 1); 364 365 len = bv.bv_len; 366 367 if (likely(len >= todo)) 368 len = todo; 369 /* 370 * Operating on a single page at a time looks suboptimal 371 * until you consider the typical block size is 4,096B. 372 * Going through this loops twice should be very rare. 373 */ 374 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset); 375 ahash_request_set_crypt(req, &sg, NULL, len); 376 r = crypto_wait_req(crypto_ahash_update(req), wait); 377 378 if (unlikely(r < 0)) { 379 DMERR("verity_for_io_block crypto op failed: %d", r); 380 return r; 381 } 382 383 bio_advance_iter(bio, iter, len); 384 todo -= len; 385 } while (todo); 386 387 return 0; 388 } 389 390 /* 391 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec 392 * starting from iter. 393 */ 394 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io, 395 struct bvec_iter *iter, 396 int (*process)(struct dm_verity *v, 397 struct dm_verity_io *io, u8 *data, 398 size_t len)) 399 { 400 unsigned todo = 1 << v->data_dev_block_bits; 401 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 402 403 do { 404 int r; 405 u8 *page; 406 unsigned len; 407 struct bio_vec bv = bio_iter_iovec(bio, *iter); 408 409 page = kmap_atomic(bv.bv_page); 410 len = bv.bv_len; 411 412 if (likely(len >= todo)) 413 len = todo; 414 415 r = process(v, io, page + bv.bv_offset, len); 416 kunmap_atomic(page); 417 418 if (r < 0) 419 return r; 420 421 bio_advance_iter(bio, iter, len); 422 todo -= len; 423 } while (todo); 424 425 return 0; 426 } 427 428 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io, 429 u8 *data, size_t len) 430 { 431 memset(data, 0, len); 432 return 0; 433 } 434 435 /* 436 * Verify one "dm_verity_io" structure. 437 */ 438 static int verity_verify_io(struct dm_verity_io *io) 439 { 440 bool is_zero; 441 struct dm_verity *v = io->v; 442 struct bvec_iter start; 443 unsigned b; 444 struct crypto_wait wait; 445 446 for (b = 0; b < io->n_blocks; b++) { 447 int r; 448 struct ahash_request *req = verity_io_hash_req(v, io); 449 450 r = verity_hash_for_block(v, io, io->block + b, 451 verity_io_want_digest(v, io), 452 &is_zero); 453 if (unlikely(r < 0)) 454 return r; 455 456 if (is_zero) { 457 /* 458 * If we expect a zero block, don't validate, just 459 * return zeros. 460 */ 461 r = verity_for_bv_block(v, io, &io->iter, 462 verity_bv_zero); 463 if (unlikely(r < 0)) 464 return r; 465 466 continue; 467 } 468 469 r = verity_hash_init(v, req, &wait); 470 if (unlikely(r < 0)) 471 return r; 472 473 start = io->iter; 474 r = verity_for_io_block(v, io, &io->iter, &wait); 475 if (unlikely(r < 0)) 476 return r; 477 478 r = verity_hash_final(v, req, verity_io_real_digest(v, io), 479 &wait); 480 if (unlikely(r < 0)) 481 return r; 482 483 if (likely(memcmp(verity_io_real_digest(v, io), 484 verity_io_want_digest(v, io), v->digest_size) == 0)) 485 continue; 486 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, 487 io->block + b, NULL, &start) == 0) 488 continue; 489 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, 490 io->block + b)) 491 return -EIO; 492 } 493 494 return 0; 495 } 496 497 /* 498 * End one "io" structure with a given error. 499 */ 500 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) 501 { 502 struct dm_verity *v = io->v; 503 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 504 505 bio->bi_end_io = io->orig_bi_end_io; 506 bio->bi_status = status; 507 508 verity_fec_finish_io(io); 509 510 bio_endio(bio); 511 } 512 513 static void verity_work(struct work_struct *w) 514 { 515 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 516 517 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); 518 } 519 520 static void verity_end_io(struct bio *bio) 521 { 522 struct dm_verity_io *io = bio->bi_private; 523 524 if (bio->bi_status && !verity_fec_is_enabled(io->v)) { 525 verity_finish_io(io, bio->bi_status); 526 return; 527 } 528 529 INIT_WORK(&io->work, verity_work); 530 queue_work(io->v->verify_wq, &io->work); 531 } 532 533 /* 534 * Prefetch buffers for the specified io. 535 * The root buffer is not prefetched, it is assumed that it will be cached 536 * all the time. 537 */ 538 static void verity_prefetch_io(struct work_struct *work) 539 { 540 struct dm_verity_prefetch_work *pw = 541 container_of(work, struct dm_verity_prefetch_work, work); 542 struct dm_verity *v = pw->v; 543 int i; 544 545 for (i = v->levels - 2; i >= 0; i--) { 546 sector_t hash_block_start; 547 sector_t hash_block_end; 548 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 549 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 550 if (!i) { 551 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster); 552 553 cluster >>= v->data_dev_block_bits; 554 if (unlikely(!cluster)) 555 goto no_prefetch_cluster; 556 557 if (unlikely(cluster & (cluster - 1))) 558 cluster = 1 << __fls(cluster); 559 560 hash_block_start &= ~(sector_t)(cluster - 1); 561 hash_block_end |= cluster - 1; 562 if (unlikely(hash_block_end >= v->hash_blocks)) 563 hash_block_end = v->hash_blocks - 1; 564 } 565 no_prefetch_cluster: 566 dm_bufio_prefetch(v->bufio, hash_block_start, 567 hash_block_end - hash_block_start + 1); 568 } 569 570 kfree(pw); 571 } 572 573 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io) 574 { 575 struct dm_verity_prefetch_work *pw; 576 577 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 578 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 579 580 if (!pw) 581 return; 582 583 INIT_WORK(&pw->work, verity_prefetch_io); 584 pw->v = v; 585 pw->block = io->block; 586 pw->n_blocks = io->n_blocks; 587 queue_work(v->verify_wq, &pw->work); 588 } 589 590 /* 591 * Bio map function. It allocates dm_verity_io structure and bio vector and 592 * fills them. Then it issues prefetches and the I/O. 593 */ 594 static int verity_map(struct dm_target *ti, struct bio *bio) 595 { 596 struct dm_verity *v = ti->private; 597 struct dm_verity_io *io; 598 599 bio_set_dev(bio, v->data_dev->bdev); 600 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 601 602 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 603 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 604 DMERR_LIMIT("unaligned io"); 605 return DM_MAPIO_KILL; 606 } 607 608 if (bio_end_sector(bio) >> 609 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 610 DMERR_LIMIT("io out of range"); 611 return DM_MAPIO_KILL; 612 } 613 614 if (bio_data_dir(bio) == WRITE) 615 return DM_MAPIO_KILL; 616 617 io = dm_per_bio_data(bio, ti->per_io_data_size); 618 io->v = v; 619 io->orig_bi_end_io = bio->bi_end_io; 620 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 621 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 622 623 bio->bi_end_io = verity_end_io; 624 bio->bi_private = io; 625 io->iter = bio->bi_iter; 626 627 verity_fec_init_io(io); 628 629 verity_submit_prefetch(v, io); 630 631 generic_make_request(bio); 632 633 return DM_MAPIO_SUBMITTED; 634 } 635 636 /* 637 * Status: V (valid) or C (corruption found) 638 */ 639 static void verity_status(struct dm_target *ti, status_type_t type, 640 unsigned status_flags, char *result, unsigned maxlen) 641 { 642 struct dm_verity *v = ti->private; 643 unsigned args = 0; 644 unsigned sz = 0; 645 unsigned x; 646 647 switch (type) { 648 case STATUSTYPE_INFO: 649 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 650 break; 651 case STATUSTYPE_TABLE: 652 DMEMIT("%u %s %s %u %u %llu %llu %s ", 653 v->version, 654 v->data_dev->name, 655 v->hash_dev->name, 656 1 << v->data_dev_block_bits, 657 1 << v->hash_dev_block_bits, 658 (unsigned long long)v->data_blocks, 659 (unsigned long long)v->hash_start, 660 v->alg_name 661 ); 662 for (x = 0; x < v->digest_size; x++) 663 DMEMIT("%02x", v->root_digest[x]); 664 DMEMIT(" "); 665 if (!v->salt_size) 666 DMEMIT("-"); 667 else 668 for (x = 0; x < v->salt_size; x++) 669 DMEMIT("%02x", v->salt[x]); 670 if (v->mode != DM_VERITY_MODE_EIO) 671 args++; 672 if (verity_fec_is_enabled(v)) 673 args += DM_VERITY_OPTS_FEC; 674 if (v->zero_digest) 675 args++; 676 if (!args) 677 return; 678 DMEMIT(" %u", args); 679 if (v->mode != DM_VERITY_MODE_EIO) { 680 DMEMIT(" "); 681 switch (v->mode) { 682 case DM_VERITY_MODE_LOGGING: 683 DMEMIT(DM_VERITY_OPT_LOGGING); 684 break; 685 case DM_VERITY_MODE_RESTART: 686 DMEMIT(DM_VERITY_OPT_RESTART); 687 break; 688 default: 689 BUG(); 690 } 691 } 692 if (v->zero_digest) 693 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 694 sz = verity_fec_status_table(v, sz, result, maxlen); 695 break; 696 } 697 } 698 699 static int verity_prepare_ioctl(struct dm_target *ti, 700 struct block_device **bdev, fmode_t *mode) 701 { 702 struct dm_verity *v = ti->private; 703 704 *bdev = v->data_dev->bdev; 705 706 if (v->data_start || 707 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT) 708 return 1; 709 return 0; 710 } 711 712 static int verity_iterate_devices(struct dm_target *ti, 713 iterate_devices_callout_fn fn, void *data) 714 { 715 struct dm_verity *v = ti->private; 716 717 return fn(ti, v->data_dev, v->data_start, ti->len, data); 718 } 719 720 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 721 { 722 struct dm_verity *v = ti->private; 723 724 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 725 limits->logical_block_size = 1 << v->data_dev_block_bits; 726 727 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 728 limits->physical_block_size = 1 << v->data_dev_block_bits; 729 730 blk_limits_io_min(limits, limits->logical_block_size); 731 } 732 733 static void verity_dtr(struct dm_target *ti) 734 { 735 struct dm_verity *v = ti->private; 736 737 if (v->verify_wq) 738 destroy_workqueue(v->verify_wq); 739 740 if (v->bufio) 741 dm_bufio_client_destroy(v->bufio); 742 743 kfree(v->salt); 744 kfree(v->root_digest); 745 kfree(v->zero_digest); 746 747 if (v->tfm) 748 crypto_free_ahash(v->tfm); 749 750 kfree(v->alg_name); 751 752 if (v->hash_dev) 753 dm_put_device(ti, v->hash_dev); 754 755 if (v->data_dev) 756 dm_put_device(ti, v->data_dev); 757 758 verity_fec_dtr(v); 759 760 kfree(v); 761 } 762 763 static int verity_alloc_zero_digest(struct dm_verity *v) 764 { 765 int r = -ENOMEM; 766 struct ahash_request *req; 767 u8 *zero_data; 768 769 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 770 771 if (!v->zero_digest) 772 return r; 773 774 req = kmalloc(v->ahash_reqsize, GFP_KERNEL); 775 776 if (!req) 777 return r; /* verity_dtr will free zero_digest */ 778 779 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 780 781 if (!zero_data) 782 goto out; 783 784 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits, 785 v->zero_digest); 786 787 out: 788 kfree(req); 789 kfree(zero_data); 790 791 return r; 792 } 793 794 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v) 795 { 796 int r; 797 unsigned argc; 798 struct dm_target *ti = v->ti; 799 const char *arg_name; 800 801 static const struct dm_arg _args[] = { 802 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 803 }; 804 805 r = dm_read_arg_group(_args, as, &argc, &ti->error); 806 if (r) 807 return -EINVAL; 808 809 if (!argc) 810 return 0; 811 812 do { 813 arg_name = dm_shift_arg(as); 814 argc--; 815 816 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) { 817 v->mode = DM_VERITY_MODE_LOGGING; 818 continue; 819 820 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) { 821 v->mode = DM_VERITY_MODE_RESTART; 822 continue; 823 824 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 825 r = verity_alloc_zero_digest(v); 826 if (r) { 827 ti->error = "Cannot allocate zero digest"; 828 return r; 829 } 830 continue; 831 832 } else if (verity_is_fec_opt_arg(arg_name)) { 833 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 834 if (r) 835 return r; 836 continue; 837 } 838 839 ti->error = "Unrecognized verity feature request"; 840 return -EINVAL; 841 } while (argc && !r); 842 843 return r; 844 } 845 846 /* 847 * Target parameters: 848 * <version> The current format is version 1. 849 * Vsn 0 is compatible with original Chromium OS releases. 850 * <data device> 851 * <hash device> 852 * <data block size> 853 * <hash block size> 854 * <the number of data blocks> 855 * <hash start block> 856 * <algorithm> 857 * <digest> 858 * <salt> Hex string or "-" if no salt. 859 */ 860 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) 861 { 862 struct dm_verity *v; 863 struct dm_arg_set as; 864 unsigned int num; 865 unsigned long long num_ll; 866 int r; 867 int i; 868 sector_t hash_position; 869 char dummy; 870 871 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 872 if (!v) { 873 ti->error = "Cannot allocate verity structure"; 874 return -ENOMEM; 875 } 876 ti->private = v; 877 v->ti = ti; 878 879 r = verity_fec_ctr_alloc(v); 880 if (r) 881 goto bad; 882 883 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) { 884 ti->error = "Device must be readonly"; 885 r = -EINVAL; 886 goto bad; 887 } 888 889 if (argc < 10) { 890 ti->error = "Not enough arguments"; 891 r = -EINVAL; 892 goto bad; 893 } 894 895 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 896 num > 1) { 897 ti->error = "Invalid version"; 898 r = -EINVAL; 899 goto bad; 900 } 901 v->version = num; 902 903 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev); 904 if (r) { 905 ti->error = "Data device lookup failed"; 906 goto bad; 907 } 908 909 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev); 910 if (r) { 911 ti->error = "Hash device lookup failed"; 912 goto bad; 913 } 914 915 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 916 !num || (num & (num - 1)) || 917 num < bdev_logical_block_size(v->data_dev->bdev) || 918 num > PAGE_SIZE) { 919 ti->error = "Invalid data device block size"; 920 r = -EINVAL; 921 goto bad; 922 } 923 v->data_dev_block_bits = __ffs(num); 924 925 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 926 !num || (num & (num - 1)) || 927 num < bdev_logical_block_size(v->hash_dev->bdev) || 928 num > INT_MAX) { 929 ti->error = "Invalid hash device block size"; 930 r = -EINVAL; 931 goto bad; 932 } 933 v->hash_dev_block_bits = __ffs(num); 934 935 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 936 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 937 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 938 ti->error = "Invalid data blocks"; 939 r = -EINVAL; 940 goto bad; 941 } 942 v->data_blocks = num_ll; 943 944 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 945 ti->error = "Data device is too small"; 946 r = -EINVAL; 947 goto bad; 948 } 949 950 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 951 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 952 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 953 ti->error = "Invalid hash start"; 954 r = -EINVAL; 955 goto bad; 956 } 957 v->hash_start = num_ll; 958 959 v->alg_name = kstrdup(argv[7], GFP_KERNEL); 960 if (!v->alg_name) { 961 ti->error = "Cannot allocate algorithm name"; 962 r = -ENOMEM; 963 goto bad; 964 } 965 966 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0); 967 if (IS_ERR(v->tfm)) { 968 ti->error = "Cannot initialize hash function"; 969 r = PTR_ERR(v->tfm); 970 v->tfm = NULL; 971 goto bad; 972 } 973 v->digest_size = crypto_ahash_digestsize(v->tfm); 974 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 975 ti->error = "Digest size too big"; 976 r = -EINVAL; 977 goto bad; 978 } 979 v->ahash_reqsize = sizeof(struct ahash_request) + 980 crypto_ahash_reqsize(v->tfm); 981 982 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 983 if (!v->root_digest) { 984 ti->error = "Cannot allocate root digest"; 985 r = -ENOMEM; 986 goto bad; 987 } 988 if (strlen(argv[8]) != v->digest_size * 2 || 989 hex2bin(v->root_digest, argv[8], v->digest_size)) { 990 ti->error = "Invalid root digest"; 991 r = -EINVAL; 992 goto bad; 993 } 994 995 if (strcmp(argv[9], "-")) { 996 v->salt_size = strlen(argv[9]) / 2; 997 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 998 if (!v->salt) { 999 ti->error = "Cannot allocate salt"; 1000 r = -ENOMEM; 1001 goto bad; 1002 } 1003 if (strlen(argv[9]) != v->salt_size * 2 || 1004 hex2bin(v->salt, argv[9], v->salt_size)) { 1005 ti->error = "Invalid salt"; 1006 r = -EINVAL; 1007 goto bad; 1008 } 1009 } 1010 1011 argv += 10; 1012 argc -= 10; 1013 1014 /* Optional parameters */ 1015 if (argc) { 1016 as.argc = argc; 1017 as.argv = argv; 1018 1019 r = verity_parse_opt_args(&as, v); 1020 if (r < 0) 1021 goto bad; 1022 } 1023 1024 v->hash_per_block_bits = 1025 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1026 1027 v->levels = 0; 1028 if (v->data_blocks) 1029 while (v->hash_per_block_bits * v->levels < 64 && 1030 (unsigned long long)(v->data_blocks - 1) >> 1031 (v->hash_per_block_bits * v->levels)) 1032 v->levels++; 1033 1034 if (v->levels > DM_VERITY_MAX_LEVELS) { 1035 ti->error = "Too many tree levels"; 1036 r = -E2BIG; 1037 goto bad; 1038 } 1039 1040 hash_position = v->hash_start; 1041 for (i = v->levels - 1; i >= 0; i--) { 1042 sector_t s; 1043 v->hash_level_block[i] = hash_position; 1044 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1045 >> ((i + 1) * v->hash_per_block_bits); 1046 if (hash_position + s < hash_position) { 1047 ti->error = "Hash device offset overflow"; 1048 r = -E2BIG; 1049 goto bad; 1050 } 1051 hash_position += s; 1052 } 1053 v->hash_blocks = hash_position; 1054 1055 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1056 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1057 dm_bufio_alloc_callback, NULL); 1058 if (IS_ERR(v->bufio)) { 1059 ti->error = "Cannot initialize dm-bufio"; 1060 r = PTR_ERR(v->bufio); 1061 v->bufio = NULL; 1062 goto bad; 1063 } 1064 1065 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1066 ti->error = "Hash device is too small"; 1067 r = -E2BIG; 1068 goto bad; 1069 } 1070 1071 /* WQ_UNBOUND greatly improves performance when running on ramdisk */ 1072 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus()); 1073 if (!v->verify_wq) { 1074 ti->error = "Cannot allocate workqueue"; 1075 r = -ENOMEM; 1076 goto bad; 1077 } 1078 1079 ti->per_io_data_size = sizeof(struct dm_verity_io) + 1080 v->ahash_reqsize + v->digest_size * 2; 1081 1082 r = verity_fec_ctr(v); 1083 if (r) 1084 goto bad; 1085 1086 ti->per_io_data_size = roundup(ti->per_io_data_size, 1087 __alignof__(struct dm_verity_io)); 1088 1089 return 0; 1090 1091 bad: 1092 verity_dtr(ti); 1093 1094 return r; 1095 } 1096 1097 static struct target_type verity_target = { 1098 .name = "verity", 1099 .version = {1, 3, 0}, 1100 .module = THIS_MODULE, 1101 .ctr = verity_ctr, 1102 .dtr = verity_dtr, 1103 .map = verity_map, 1104 .status = verity_status, 1105 .prepare_ioctl = verity_prepare_ioctl, 1106 .iterate_devices = verity_iterate_devices, 1107 .io_hints = verity_io_hints, 1108 }; 1109 1110 static int __init dm_verity_init(void) 1111 { 1112 int r; 1113 1114 r = dm_register_target(&verity_target); 1115 if (r < 0) 1116 DMERR("register failed %d", r); 1117 1118 return r; 1119 } 1120 1121 static void __exit dm_verity_exit(void) 1122 { 1123 dm_unregister_target(&verity_target); 1124 } 1125 1126 module_init(dm_verity_init); 1127 module_exit(dm_verity_exit); 1128 1129 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1130 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1131 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1132 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1133 MODULE_LICENSE("GPL"); 1134