xref: /openbmc/linux/drivers/md/dm-verity-target.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21 
22 #define DM_MSG_PREFIX			"verity"
23 
24 #define DM_VERITY_ENV_LENGTH		42
25 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
26 
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
28 
29 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
30 
31 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
32 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
33 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
34 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
35 
36 #define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC + \
37 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
38 
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40 
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42 
43 struct dm_verity_prefetch_work {
44 	struct work_struct work;
45 	struct dm_verity *v;
46 	sector_t block;
47 	unsigned n_blocks;
48 };
49 
50 /*
51  * Auxiliary structure appended to each dm-bufio buffer. If the value
52  * hash_verified is nonzero, hash of the block has been verified.
53  *
54  * The variable hash_verified is set to 0 when allocating the buffer, then
55  * it can be changed to 1 and it is never reset to 0 again.
56  *
57  * There is no lock around this value, a race condition can at worst cause
58  * that multiple processes verify the hash of the same buffer simultaneously
59  * and write 1 to hash_verified simultaneously.
60  * This condition is harmless, so we don't need locking.
61  */
62 struct buffer_aux {
63 	int hash_verified;
64 };
65 
66 /*
67  * Initialize struct buffer_aux for a freshly created buffer.
68  */
69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72 
73 	aux->hash_verified = 0;
74 }
75 
76 /*
77  * Translate input sector number to the sector number on the target device.
78  */
79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 	return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83 
84 /*
85  * Return hash position of a specified block at a specified tree level
86  * (0 is the lowest level).
87  * The lowest "hash_per_block_bits"-bits of the result denote hash position
88  * inside a hash block. The remaining bits denote location of the hash block.
89  */
90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 					 int level)
92 {
93 	return block >> (level * v->hash_per_block_bits);
94 }
95 
96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97 				const u8 *data, size_t len,
98 				struct crypto_wait *wait)
99 {
100 	struct scatterlist sg;
101 
102 	if (likely(!is_vmalloc_addr(data))) {
103 		sg_init_one(&sg, data, len);
104 		ahash_request_set_crypt(req, &sg, NULL, len);
105 		return crypto_wait_req(crypto_ahash_update(req), wait);
106 	} else {
107 		do {
108 			int r;
109 			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
110 			flush_kernel_vmap_range((void *)data, this_step);
111 			sg_init_table(&sg, 1);
112 			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
113 			ahash_request_set_crypt(req, &sg, NULL, this_step);
114 			r = crypto_wait_req(crypto_ahash_update(req), wait);
115 			if (unlikely(r))
116 				return r;
117 			data += this_step;
118 			len -= this_step;
119 		} while (len);
120 		return 0;
121 	}
122 }
123 
124 /*
125  * Wrapper for crypto_ahash_init, which handles verity salting.
126  */
127 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
128 				struct crypto_wait *wait)
129 {
130 	int r;
131 
132 	ahash_request_set_tfm(req, v->tfm);
133 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
134 					CRYPTO_TFM_REQ_MAY_BACKLOG,
135 					crypto_req_done, (void *)wait);
136 	crypto_init_wait(wait);
137 
138 	r = crypto_wait_req(crypto_ahash_init(req), wait);
139 
140 	if (unlikely(r < 0)) {
141 		DMERR("crypto_ahash_init failed: %d", r);
142 		return r;
143 	}
144 
145 	if (likely(v->salt_size && (v->version >= 1)))
146 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
147 
148 	return r;
149 }
150 
151 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
152 			     u8 *digest, struct crypto_wait *wait)
153 {
154 	int r;
155 
156 	if (unlikely(v->salt_size && (!v->version))) {
157 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158 
159 		if (r < 0) {
160 			DMERR("verity_hash_final failed updating salt: %d", r);
161 			goto out;
162 		}
163 	}
164 
165 	ahash_request_set_crypt(req, NULL, digest, 0);
166 	r = crypto_wait_req(crypto_ahash_final(req), wait);
167 out:
168 	return r;
169 }
170 
171 int verity_hash(struct dm_verity *v, struct ahash_request *req,
172 		const u8 *data, size_t len, u8 *digest)
173 {
174 	int r;
175 	struct crypto_wait wait;
176 
177 	r = verity_hash_init(v, req, &wait);
178 	if (unlikely(r < 0))
179 		goto out;
180 
181 	r = verity_hash_update(v, req, data, len, &wait);
182 	if (unlikely(r < 0))
183 		goto out;
184 
185 	r = verity_hash_final(v, req, digest, &wait);
186 
187 out:
188 	return r;
189 }
190 
191 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
192 				 sector_t *hash_block, unsigned *offset)
193 {
194 	sector_t position = verity_position_at_level(v, block, level);
195 	unsigned idx;
196 
197 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
198 
199 	if (!offset)
200 		return;
201 
202 	idx = position & ((1 << v->hash_per_block_bits) - 1);
203 	if (!v->version)
204 		*offset = idx * v->digest_size;
205 	else
206 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
207 }
208 
209 /*
210  * Handle verification errors.
211  */
212 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
213 			     unsigned long long block)
214 {
215 	char verity_env[DM_VERITY_ENV_LENGTH];
216 	char *envp[] = { verity_env, NULL };
217 	const char *type_str = "";
218 	struct mapped_device *md = dm_table_get_md(v->ti->table);
219 
220 	/* Corruption should be visible in device status in all modes */
221 	v->hash_failed = 1;
222 
223 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
224 		goto out;
225 
226 	v->corrupted_errs++;
227 
228 	switch (type) {
229 	case DM_VERITY_BLOCK_TYPE_DATA:
230 		type_str = "data";
231 		break;
232 	case DM_VERITY_BLOCK_TYPE_METADATA:
233 		type_str = "metadata";
234 		break;
235 	default:
236 		BUG();
237 	}
238 
239 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
240 		    type_str, block);
241 
242 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
243 		DMERR("%s: reached maximum errors", v->data_dev->name);
244 
245 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
246 		DM_VERITY_ENV_VAR_NAME, type, block);
247 
248 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
249 
250 out:
251 	if (v->mode == DM_VERITY_MODE_LOGGING)
252 		return 0;
253 
254 	if (v->mode == DM_VERITY_MODE_RESTART)
255 		kernel_restart("dm-verity device corrupted");
256 
257 	return 1;
258 }
259 
260 /*
261  * Verify hash of a metadata block pertaining to the specified data block
262  * ("block" argument) at a specified level ("level" argument).
263  *
264  * On successful return, verity_io_want_digest(v, io) contains the hash value
265  * for a lower tree level or for the data block (if we're at the lowest level).
266  *
267  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
268  * If "skip_unverified" is false, unverified buffer is hashed and verified
269  * against current value of verity_io_want_digest(v, io).
270  */
271 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
272 			       sector_t block, int level, bool skip_unverified,
273 			       u8 *want_digest)
274 {
275 	struct dm_buffer *buf;
276 	struct buffer_aux *aux;
277 	u8 *data;
278 	int r;
279 	sector_t hash_block;
280 	unsigned offset;
281 
282 	verity_hash_at_level(v, block, level, &hash_block, &offset);
283 
284 	data = dm_bufio_read(v->bufio, hash_block, &buf);
285 	if (IS_ERR(data))
286 		return PTR_ERR(data);
287 
288 	aux = dm_bufio_get_aux_data(buf);
289 
290 	if (!aux->hash_verified) {
291 		if (skip_unverified) {
292 			r = 1;
293 			goto release_ret_r;
294 		}
295 
296 		r = verity_hash(v, verity_io_hash_req(v, io),
297 				data, 1 << v->hash_dev_block_bits,
298 				verity_io_real_digest(v, io));
299 		if (unlikely(r < 0))
300 			goto release_ret_r;
301 
302 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
303 				  v->digest_size) == 0))
304 			aux->hash_verified = 1;
305 		else if (verity_fec_decode(v, io,
306 					   DM_VERITY_BLOCK_TYPE_METADATA,
307 					   hash_block, data, NULL) == 0)
308 			aux->hash_verified = 1;
309 		else if (verity_handle_err(v,
310 					   DM_VERITY_BLOCK_TYPE_METADATA,
311 					   hash_block)) {
312 			r = -EIO;
313 			goto release_ret_r;
314 		}
315 	}
316 
317 	data += offset;
318 	memcpy(want_digest, data, v->digest_size);
319 	r = 0;
320 
321 release_ret_r:
322 	dm_bufio_release(buf);
323 	return r;
324 }
325 
326 /*
327  * Find a hash for a given block, write it to digest and verify the integrity
328  * of the hash tree if necessary.
329  */
330 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
331 			  sector_t block, u8 *digest, bool *is_zero)
332 {
333 	int r = 0, i;
334 
335 	if (likely(v->levels)) {
336 		/*
337 		 * First, we try to get the requested hash for
338 		 * the current block. If the hash block itself is
339 		 * verified, zero is returned. If it isn't, this
340 		 * function returns 1 and we fall back to whole
341 		 * chain verification.
342 		 */
343 		r = verity_verify_level(v, io, block, 0, true, digest);
344 		if (likely(r <= 0))
345 			goto out;
346 	}
347 
348 	memcpy(digest, v->root_digest, v->digest_size);
349 
350 	for (i = v->levels - 1; i >= 0; i--) {
351 		r = verity_verify_level(v, io, block, i, false, digest);
352 		if (unlikely(r))
353 			goto out;
354 	}
355 out:
356 	if (!r && v->zero_digest)
357 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
358 	else
359 		*is_zero = false;
360 
361 	return r;
362 }
363 
364 /*
365  * Calculates the digest for the given bio
366  */
367 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
368 			       struct bvec_iter *iter, struct crypto_wait *wait)
369 {
370 	unsigned int todo = 1 << v->data_dev_block_bits;
371 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
372 	struct scatterlist sg;
373 	struct ahash_request *req = verity_io_hash_req(v, io);
374 
375 	do {
376 		int r;
377 		unsigned int len;
378 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
379 
380 		sg_init_table(&sg, 1);
381 
382 		len = bv.bv_len;
383 
384 		if (likely(len >= todo))
385 			len = todo;
386 		/*
387 		 * Operating on a single page at a time looks suboptimal
388 		 * until you consider the typical block size is 4,096B.
389 		 * Going through this loops twice should be very rare.
390 		 */
391 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
392 		ahash_request_set_crypt(req, &sg, NULL, len);
393 		r = crypto_wait_req(crypto_ahash_update(req), wait);
394 
395 		if (unlikely(r < 0)) {
396 			DMERR("verity_for_io_block crypto op failed: %d", r);
397 			return r;
398 		}
399 
400 		bio_advance_iter(bio, iter, len);
401 		todo -= len;
402 	} while (todo);
403 
404 	return 0;
405 }
406 
407 /*
408  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
409  * starting from iter.
410  */
411 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
412 			struct bvec_iter *iter,
413 			int (*process)(struct dm_verity *v,
414 				       struct dm_verity_io *io, u8 *data,
415 				       size_t len))
416 {
417 	unsigned todo = 1 << v->data_dev_block_bits;
418 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
419 
420 	do {
421 		int r;
422 		u8 *page;
423 		unsigned len;
424 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
425 
426 		page = kmap_atomic(bv.bv_page);
427 		len = bv.bv_len;
428 
429 		if (likely(len >= todo))
430 			len = todo;
431 
432 		r = process(v, io, page + bv.bv_offset, len);
433 		kunmap_atomic(page);
434 
435 		if (r < 0)
436 			return r;
437 
438 		bio_advance_iter(bio, iter, len);
439 		todo -= len;
440 	} while (todo);
441 
442 	return 0;
443 }
444 
445 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
446 			  u8 *data, size_t len)
447 {
448 	memset(data, 0, len);
449 	return 0;
450 }
451 
452 /*
453  * Moves the bio iter one data block forward.
454  */
455 static inline void verity_bv_skip_block(struct dm_verity *v,
456 					struct dm_verity_io *io,
457 					struct bvec_iter *iter)
458 {
459 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
460 
461 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
462 }
463 
464 /*
465  * Verify one "dm_verity_io" structure.
466  */
467 static int verity_verify_io(struct dm_verity_io *io)
468 {
469 	bool is_zero;
470 	struct dm_verity *v = io->v;
471 	struct bvec_iter start;
472 	unsigned b;
473 	struct crypto_wait wait;
474 
475 	for (b = 0; b < io->n_blocks; b++) {
476 		int r;
477 		sector_t cur_block = io->block + b;
478 		struct ahash_request *req = verity_io_hash_req(v, io);
479 
480 		if (v->validated_blocks &&
481 		    likely(test_bit(cur_block, v->validated_blocks))) {
482 			verity_bv_skip_block(v, io, &io->iter);
483 			continue;
484 		}
485 
486 		r = verity_hash_for_block(v, io, cur_block,
487 					  verity_io_want_digest(v, io),
488 					  &is_zero);
489 		if (unlikely(r < 0))
490 			return r;
491 
492 		if (is_zero) {
493 			/*
494 			 * If we expect a zero block, don't validate, just
495 			 * return zeros.
496 			 */
497 			r = verity_for_bv_block(v, io, &io->iter,
498 						verity_bv_zero);
499 			if (unlikely(r < 0))
500 				return r;
501 
502 			continue;
503 		}
504 
505 		r = verity_hash_init(v, req, &wait);
506 		if (unlikely(r < 0))
507 			return r;
508 
509 		start = io->iter;
510 		r = verity_for_io_block(v, io, &io->iter, &wait);
511 		if (unlikely(r < 0))
512 			return r;
513 
514 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
515 					&wait);
516 		if (unlikely(r < 0))
517 			return r;
518 
519 		if (likely(memcmp(verity_io_real_digest(v, io),
520 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
521 			if (v->validated_blocks)
522 				set_bit(cur_block, v->validated_blocks);
523 			continue;
524 		}
525 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
526 					   cur_block, NULL, &start) == 0)
527 			continue;
528 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
529 					   cur_block))
530 			return -EIO;
531 	}
532 
533 	return 0;
534 }
535 
536 /*
537  * End one "io" structure with a given error.
538  */
539 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
540 {
541 	struct dm_verity *v = io->v;
542 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
543 
544 	bio->bi_end_io = io->orig_bi_end_io;
545 	bio->bi_status = status;
546 
547 	verity_fec_finish_io(io);
548 
549 	bio_endio(bio);
550 }
551 
552 static void verity_work(struct work_struct *w)
553 {
554 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
555 
556 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
557 }
558 
559 static void verity_end_io(struct bio *bio)
560 {
561 	struct dm_verity_io *io = bio->bi_private;
562 
563 	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
564 		verity_finish_io(io, bio->bi_status);
565 		return;
566 	}
567 
568 	INIT_WORK(&io->work, verity_work);
569 	queue_work(io->v->verify_wq, &io->work);
570 }
571 
572 /*
573  * Prefetch buffers for the specified io.
574  * The root buffer is not prefetched, it is assumed that it will be cached
575  * all the time.
576  */
577 static void verity_prefetch_io(struct work_struct *work)
578 {
579 	struct dm_verity_prefetch_work *pw =
580 		container_of(work, struct dm_verity_prefetch_work, work);
581 	struct dm_verity *v = pw->v;
582 	int i;
583 
584 	for (i = v->levels - 2; i >= 0; i--) {
585 		sector_t hash_block_start;
586 		sector_t hash_block_end;
587 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
588 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
589 		if (!i) {
590 			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
591 
592 			cluster >>= v->data_dev_block_bits;
593 			if (unlikely(!cluster))
594 				goto no_prefetch_cluster;
595 
596 			if (unlikely(cluster & (cluster - 1)))
597 				cluster = 1 << __fls(cluster);
598 
599 			hash_block_start &= ~(sector_t)(cluster - 1);
600 			hash_block_end |= cluster - 1;
601 			if (unlikely(hash_block_end >= v->hash_blocks))
602 				hash_block_end = v->hash_blocks - 1;
603 		}
604 no_prefetch_cluster:
605 		dm_bufio_prefetch(v->bufio, hash_block_start,
606 				  hash_block_end - hash_block_start + 1);
607 	}
608 
609 	kfree(pw);
610 }
611 
612 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
613 {
614 	struct dm_verity_prefetch_work *pw;
615 
616 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
617 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
618 
619 	if (!pw)
620 		return;
621 
622 	INIT_WORK(&pw->work, verity_prefetch_io);
623 	pw->v = v;
624 	pw->block = io->block;
625 	pw->n_blocks = io->n_blocks;
626 	queue_work(v->verify_wq, &pw->work);
627 }
628 
629 /*
630  * Bio map function. It allocates dm_verity_io structure and bio vector and
631  * fills them. Then it issues prefetches and the I/O.
632  */
633 static int verity_map(struct dm_target *ti, struct bio *bio)
634 {
635 	struct dm_verity *v = ti->private;
636 	struct dm_verity_io *io;
637 
638 	bio_set_dev(bio, v->data_dev->bdev);
639 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
640 
641 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
642 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
643 		DMERR_LIMIT("unaligned io");
644 		return DM_MAPIO_KILL;
645 	}
646 
647 	if (bio_end_sector(bio) >>
648 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
649 		DMERR_LIMIT("io out of range");
650 		return DM_MAPIO_KILL;
651 	}
652 
653 	if (bio_data_dir(bio) == WRITE)
654 		return DM_MAPIO_KILL;
655 
656 	io = dm_per_bio_data(bio, ti->per_io_data_size);
657 	io->v = v;
658 	io->orig_bi_end_io = bio->bi_end_io;
659 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
660 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
661 
662 	bio->bi_end_io = verity_end_io;
663 	bio->bi_private = io;
664 	io->iter = bio->bi_iter;
665 
666 	verity_fec_init_io(io);
667 
668 	verity_submit_prefetch(v, io);
669 
670 	generic_make_request(bio);
671 
672 	return DM_MAPIO_SUBMITTED;
673 }
674 
675 /*
676  * Status: V (valid) or C (corruption found)
677  */
678 static void verity_status(struct dm_target *ti, status_type_t type,
679 			  unsigned status_flags, char *result, unsigned maxlen)
680 {
681 	struct dm_verity *v = ti->private;
682 	unsigned args = 0;
683 	unsigned sz = 0;
684 	unsigned x;
685 
686 	switch (type) {
687 	case STATUSTYPE_INFO:
688 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
689 		break;
690 	case STATUSTYPE_TABLE:
691 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
692 			v->version,
693 			v->data_dev->name,
694 			v->hash_dev->name,
695 			1 << v->data_dev_block_bits,
696 			1 << v->hash_dev_block_bits,
697 			(unsigned long long)v->data_blocks,
698 			(unsigned long long)v->hash_start,
699 			v->alg_name
700 			);
701 		for (x = 0; x < v->digest_size; x++)
702 			DMEMIT("%02x", v->root_digest[x]);
703 		DMEMIT(" ");
704 		if (!v->salt_size)
705 			DMEMIT("-");
706 		else
707 			for (x = 0; x < v->salt_size; x++)
708 				DMEMIT("%02x", v->salt[x]);
709 		if (v->mode != DM_VERITY_MODE_EIO)
710 			args++;
711 		if (verity_fec_is_enabled(v))
712 			args += DM_VERITY_OPTS_FEC;
713 		if (v->zero_digest)
714 			args++;
715 		if (v->validated_blocks)
716 			args++;
717 		if (v->signature_key_desc)
718 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
719 		if (!args)
720 			return;
721 		DMEMIT(" %u", args);
722 		if (v->mode != DM_VERITY_MODE_EIO) {
723 			DMEMIT(" ");
724 			switch (v->mode) {
725 			case DM_VERITY_MODE_LOGGING:
726 				DMEMIT(DM_VERITY_OPT_LOGGING);
727 				break;
728 			case DM_VERITY_MODE_RESTART:
729 				DMEMIT(DM_VERITY_OPT_RESTART);
730 				break;
731 			default:
732 				BUG();
733 			}
734 		}
735 		if (v->zero_digest)
736 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
737 		if (v->validated_blocks)
738 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
739 		sz = verity_fec_status_table(v, sz, result, maxlen);
740 		if (v->signature_key_desc)
741 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
742 				" %s", v->signature_key_desc);
743 		break;
744 	}
745 }
746 
747 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
748 {
749 	struct dm_verity *v = ti->private;
750 
751 	*bdev = v->data_dev->bdev;
752 
753 	if (v->data_start ||
754 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
755 		return 1;
756 	return 0;
757 }
758 
759 static int verity_iterate_devices(struct dm_target *ti,
760 				  iterate_devices_callout_fn fn, void *data)
761 {
762 	struct dm_verity *v = ti->private;
763 
764 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
765 }
766 
767 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
768 {
769 	struct dm_verity *v = ti->private;
770 
771 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
772 		limits->logical_block_size = 1 << v->data_dev_block_bits;
773 
774 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
775 		limits->physical_block_size = 1 << v->data_dev_block_bits;
776 
777 	blk_limits_io_min(limits, limits->logical_block_size);
778 }
779 
780 static void verity_dtr(struct dm_target *ti)
781 {
782 	struct dm_verity *v = ti->private;
783 
784 	if (v->verify_wq)
785 		destroy_workqueue(v->verify_wq);
786 
787 	if (v->bufio)
788 		dm_bufio_client_destroy(v->bufio);
789 
790 	kvfree(v->validated_blocks);
791 	kfree(v->salt);
792 	kfree(v->root_digest);
793 	kfree(v->zero_digest);
794 
795 	if (v->tfm)
796 		crypto_free_ahash(v->tfm);
797 
798 	kfree(v->alg_name);
799 
800 	if (v->hash_dev)
801 		dm_put_device(ti, v->hash_dev);
802 
803 	if (v->data_dev)
804 		dm_put_device(ti, v->data_dev);
805 
806 	verity_fec_dtr(v);
807 
808 	kfree(v->signature_key_desc);
809 
810 	kfree(v);
811 }
812 
813 static int verity_alloc_most_once(struct dm_verity *v)
814 {
815 	struct dm_target *ti = v->ti;
816 
817 	/* the bitset can only handle INT_MAX blocks */
818 	if (v->data_blocks > INT_MAX) {
819 		ti->error = "device too large to use check_at_most_once";
820 		return -E2BIG;
821 	}
822 
823 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
824 				       sizeof(unsigned long),
825 				       GFP_KERNEL);
826 	if (!v->validated_blocks) {
827 		ti->error = "failed to allocate bitset for check_at_most_once";
828 		return -ENOMEM;
829 	}
830 
831 	return 0;
832 }
833 
834 static int verity_alloc_zero_digest(struct dm_verity *v)
835 {
836 	int r = -ENOMEM;
837 	struct ahash_request *req;
838 	u8 *zero_data;
839 
840 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
841 
842 	if (!v->zero_digest)
843 		return r;
844 
845 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
846 
847 	if (!req)
848 		return r; /* verity_dtr will free zero_digest */
849 
850 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
851 
852 	if (!zero_data)
853 		goto out;
854 
855 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
856 			v->zero_digest);
857 
858 out:
859 	kfree(req);
860 	kfree(zero_data);
861 
862 	return r;
863 }
864 
865 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
866 				 struct dm_verity_sig_opts *verify_args)
867 {
868 	int r;
869 	unsigned argc;
870 	struct dm_target *ti = v->ti;
871 	const char *arg_name;
872 
873 	static const struct dm_arg _args[] = {
874 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
875 	};
876 
877 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
878 	if (r)
879 		return -EINVAL;
880 
881 	if (!argc)
882 		return 0;
883 
884 	do {
885 		arg_name = dm_shift_arg(as);
886 		argc--;
887 
888 		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
889 			v->mode = DM_VERITY_MODE_LOGGING;
890 			continue;
891 
892 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
893 			v->mode = DM_VERITY_MODE_RESTART;
894 			continue;
895 
896 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
897 			r = verity_alloc_zero_digest(v);
898 			if (r) {
899 				ti->error = "Cannot allocate zero digest";
900 				return r;
901 			}
902 			continue;
903 
904 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
905 			r = verity_alloc_most_once(v);
906 			if (r)
907 				return r;
908 			continue;
909 
910 		} else if (verity_is_fec_opt_arg(arg_name)) {
911 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
912 			if (r)
913 				return r;
914 			continue;
915 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
916 			r = verity_verify_sig_parse_opt_args(as, v,
917 							     verify_args,
918 							     &argc, arg_name);
919 			if (r)
920 				return r;
921 			continue;
922 
923 		}
924 
925 		ti->error = "Unrecognized verity feature request";
926 		return -EINVAL;
927 	} while (argc && !r);
928 
929 	return r;
930 }
931 
932 /*
933  * Target parameters:
934  *	<version>	The current format is version 1.
935  *			Vsn 0 is compatible with original Chromium OS releases.
936  *	<data device>
937  *	<hash device>
938  *	<data block size>
939  *	<hash block size>
940  *	<the number of data blocks>
941  *	<hash start block>
942  *	<algorithm>
943  *	<digest>
944  *	<salt>		Hex string or "-" if no salt.
945  */
946 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
947 {
948 	struct dm_verity *v;
949 	struct dm_verity_sig_opts verify_args = {0};
950 	struct dm_arg_set as;
951 	unsigned int num;
952 	unsigned long long num_ll;
953 	int r;
954 	int i;
955 	sector_t hash_position;
956 	char dummy;
957 	char *root_hash_digest_to_validate;
958 
959 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
960 	if (!v) {
961 		ti->error = "Cannot allocate verity structure";
962 		return -ENOMEM;
963 	}
964 	ti->private = v;
965 	v->ti = ti;
966 
967 	r = verity_fec_ctr_alloc(v);
968 	if (r)
969 		goto bad;
970 
971 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
972 		ti->error = "Device must be readonly";
973 		r = -EINVAL;
974 		goto bad;
975 	}
976 
977 	if (argc < 10) {
978 		ti->error = "Not enough arguments";
979 		r = -EINVAL;
980 		goto bad;
981 	}
982 
983 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
984 	    num > 1) {
985 		ti->error = "Invalid version";
986 		r = -EINVAL;
987 		goto bad;
988 	}
989 	v->version = num;
990 
991 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
992 	if (r) {
993 		ti->error = "Data device lookup failed";
994 		goto bad;
995 	}
996 
997 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
998 	if (r) {
999 		ti->error = "Hash device lookup failed";
1000 		goto bad;
1001 	}
1002 
1003 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1004 	    !num || (num & (num - 1)) ||
1005 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1006 	    num > PAGE_SIZE) {
1007 		ti->error = "Invalid data device block size";
1008 		r = -EINVAL;
1009 		goto bad;
1010 	}
1011 	v->data_dev_block_bits = __ffs(num);
1012 
1013 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1014 	    !num || (num & (num - 1)) ||
1015 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1016 	    num > INT_MAX) {
1017 		ti->error = "Invalid hash device block size";
1018 		r = -EINVAL;
1019 		goto bad;
1020 	}
1021 	v->hash_dev_block_bits = __ffs(num);
1022 
1023 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1024 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1025 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1026 		ti->error = "Invalid data blocks";
1027 		r = -EINVAL;
1028 		goto bad;
1029 	}
1030 	v->data_blocks = num_ll;
1031 
1032 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1033 		ti->error = "Data device is too small";
1034 		r = -EINVAL;
1035 		goto bad;
1036 	}
1037 
1038 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1039 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1040 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1041 		ti->error = "Invalid hash start";
1042 		r = -EINVAL;
1043 		goto bad;
1044 	}
1045 	v->hash_start = num_ll;
1046 
1047 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1048 	if (!v->alg_name) {
1049 		ti->error = "Cannot allocate algorithm name";
1050 		r = -ENOMEM;
1051 		goto bad;
1052 	}
1053 
1054 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1055 	if (IS_ERR(v->tfm)) {
1056 		ti->error = "Cannot initialize hash function";
1057 		r = PTR_ERR(v->tfm);
1058 		v->tfm = NULL;
1059 		goto bad;
1060 	}
1061 
1062 	/*
1063 	 * dm-verity performance can vary greatly depending on which hash
1064 	 * algorithm implementation is used.  Help people debug performance
1065 	 * problems by logging the ->cra_driver_name.
1066 	 */
1067 	DMINFO("%s using implementation \"%s\"", v->alg_name,
1068 	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1069 
1070 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1071 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1072 		ti->error = "Digest size too big";
1073 		r = -EINVAL;
1074 		goto bad;
1075 	}
1076 	v->ahash_reqsize = sizeof(struct ahash_request) +
1077 		crypto_ahash_reqsize(v->tfm);
1078 
1079 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1080 	if (!v->root_digest) {
1081 		ti->error = "Cannot allocate root digest";
1082 		r = -ENOMEM;
1083 		goto bad;
1084 	}
1085 	if (strlen(argv[8]) != v->digest_size * 2 ||
1086 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1087 		ti->error = "Invalid root digest";
1088 		r = -EINVAL;
1089 		goto bad;
1090 	}
1091 	root_hash_digest_to_validate = argv[8];
1092 
1093 	if (strcmp(argv[9], "-")) {
1094 		v->salt_size = strlen(argv[9]) / 2;
1095 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1096 		if (!v->salt) {
1097 			ti->error = "Cannot allocate salt";
1098 			r = -ENOMEM;
1099 			goto bad;
1100 		}
1101 		if (strlen(argv[9]) != v->salt_size * 2 ||
1102 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1103 			ti->error = "Invalid salt";
1104 			r = -EINVAL;
1105 			goto bad;
1106 		}
1107 	}
1108 
1109 	argv += 10;
1110 	argc -= 10;
1111 
1112 	/* Optional parameters */
1113 	if (argc) {
1114 		as.argc = argc;
1115 		as.argv = argv;
1116 
1117 		r = verity_parse_opt_args(&as, v, &verify_args);
1118 		if (r < 0)
1119 			goto bad;
1120 	}
1121 
1122 	/* Root hash signature is  a optional parameter*/
1123 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1124 				    strlen(root_hash_digest_to_validate),
1125 				    verify_args.sig,
1126 				    verify_args.sig_size);
1127 	if (r < 0) {
1128 		ti->error = "Root hash verification failed";
1129 		goto bad;
1130 	}
1131 	v->hash_per_block_bits =
1132 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1133 
1134 	v->levels = 0;
1135 	if (v->data_blocks)
1136 		while (v->hash_per_block_bits * v->levels < 64 &&
1137 		       (unsigned long long)(v->data_blocks - 1) >>
1138 		       (v->hash_per_block_bits * v->levels))
1139 			v->levels++;
1140 
1141 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1142 		ti->error = "Too many tree levels";
1143 		r = -E2BIG;
1144 		goto bad;
1145 	}
1146 
1147 	hash_position = v->hash_start;
1148 	for (i = v->levels - 1; i >= 0; i--) {
1149 		sector_t s;
1150 		v->hash_level_block[i] = hash_position;
1151 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1152 					>> ((i + 1) * v->hash_per_block_bits);
1153 		if (hash_position + s < hash_position) {
1154 			ti->error = "Hash device offset overflow";
1155 			r = -E2BIG;
1156 			goto bad;
1157 		}
1158 		hash_position += s;
1159 	}
1160 	v->hash_blocks = hash_position;
1161 
1162 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1163 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1164 		dm_bufio_alloc_callback, NULL);
1165 	if (IS_ERR(v->bufio)) {
1166 		ti->error = "Cannot initialize dm-bufio";
1167 		r = PTR_ERR(v->bufio);
1168 		v->bufio = NULL;
1169 		goto bad;
1170 	}
1171 
1172 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1173 		ti->error = "Hash device is too small";
1174 		r = -E2BIG;
1175 		goto bad;
1176 	}
1177 
1178 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1179 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1180 	if (!v->verify_wq) {
1181 		ti->error = "Cannot allocate workqueue";
1182 		r = -ENOMEM;
1183 		goto bad;
1184 	}
1185 
1186 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1187 				v->ahash_reqsize + v->digest_size * 2;
1188 
1189 	r = verity_fec_ctr(v);
1190 	if (r)
1191 		goto bad;
1192 
1193 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1194 				       __alignof__(struct dm_verity_io));
1195 
1196 	verity_verify_sig_opts_cleanup(&verify_args);
1197 
1198 	return 0;
1199 
1200 bad:
1201 
1202 	verity_verify_sig_opts_cleanup(&verify_args);
1203 	verity_dtr(ti);
1204 
1205 	return r;
1206 }
1207 
1208 static struct target_type verity_target = {
1209 	.name		= "verity",
1210 	.version	= {1, 5, 0},
1211 	.module		= THIS_MODULE,
1212 	.ctr		= verity_ctr,
1213 	.dtr		= verity_dtr,
1214 	.map		= verity_map,
1215 	.status		= verity_status,
1216 	.prepare_ioctl	= verity_prepare_ioctl,
1217 	.iterate_devices = verity_iterate_devices,
1218 	.io_hints	= verity_io_hints,
1219 };
1220 
1221 static int __init dm_verity_init(void)
1222 {
1223 	int r;
1224 
1225 	r = dm_register_target(&verity_target);
1226 	if (r < 0)
1227 		DMERR("register failed %d", r);
1228 
1229 	return r;
1230 }
1231 
1232 static void __exit dm_verity_exit(void)
1233 {
1234 	dm_unregister_target(&verity_target);
1235 }
1236 
1237 module_init(dm_verity_init);
1238 module_exit(dm_verity_exit);
1239 
1240 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1241 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1242 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1243 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1244 MODULE_LICENSE("GPL");
1245