1 /* 2 * Copyright (C) 2012 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 7 * 8 * This file is released under the GPLv2. 9 * 10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 12 * hash device. Setting this greatly improves performance when data and hash 13 * are on the same disk on different partitions on devices with poor random 14 * access behavior. 15 */ 16 17 #include "dm-verity.h" 18 #include "dm-verity-fec.h" 19 20 #include <linux/module.h> 21 #include <linux/reboot.h> 22 23 #define DM_MSG_PREFIX "verity" 24 25 #define DM_VERITY_ENV_LENGTH 42 26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 27 28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 29 30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 31 32 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 33 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 35 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once" 36 37 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC) 38 39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 40 41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR); 42 43 struct dm_verity_prefetch_work { 44 struct work_struct work; 45 struct dm_verity *v; 46 sector_t block; 47 unsigned n_blocks; 48 }; 49 50 /* 51 * Auxiliary structure appended to each dm-bufio buffer. If the value 52 * hash_verified is nonzero, hash of the block has been verified. 53 * 54 * The variable hash_verified is set to 0 when allocating the buffer, then 55 * it can be changed to 1 and it is never reset to 0 again. 56 * 57 * There is no lock around this value, a race condition can at worst cause 58 * that multiple processes verify the hash of the same buffer simultaneously 59 * and write 1 to hash_verified simultaneously. 60 * This condition is harmless, so we don't need locking. 61 */ 62 struct buffer_aux { 63 int hash_verified; 64 }; 65 66 /* 67 * Initialize struct buffer_aux for a freshly created buffer. 68 */ 69 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 70 { 71 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 72 73 aux->hash_verified = 0; 74 } 75 76 /* 77 * Translate input sector number to the sector number on the target device. 78 */ 79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 80 { 81 return v->data_start + dm_target_offset(v->ti, bi_sector); 82 } 83 84 /* 85 * Return hash position of a specified block at a specified tree level 86 * (0 is the lowest level). 87 * The lowest "hash_per_block_bits"-bits of the result denote hash position 88 * inside a hash block. The remaining bits denote location of the hash block. 89 */ 90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 91 int level) 92 { 93 return block >> (level * v->hash_per_block_bits); 94 } 95 96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req, 97 const u8 *data, size_t len, 98 struct crypto_wait *wait) 99 { 100 struct scatterlist sg; 101 102 sg_init_one(&sg, data, len); 103 ahash_request_set_crypt(req, &sg, NULL, len); 104 105 return crypto_wait_req(crypto_ahash_update(req), wait); 106 } 107 108 /* 109 * Wrapper for crypto_ahash_init, which handles verity salting. 110 */ 111 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req, 112 struct crypto_wait *wait) 113 { 114 int r; 115 116 ahash_request_set_tfm(req, v->tfm); 117 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | 118 CRYPTO_TFM_REQ_MAY_BACKLOG, 119 crypto_req_done, (void *)wait); 120 crypto_init_wait(wait); 121 122 r = crypto_wait_req(crypto_ahash_init(req), wait); 123 124 if (unlikely(r < 0)) { 125 DMERR("crypto_ahash_init failed: %d", r); 126 return r; 127 } 128 129 if (likely(v->salt_size && (v->version >= 1))) 130 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 131 132 return r; 133 } 134 135 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req, 136 u8 *digest, struct crypto_wait *wait) 137 { 138 int r; 139 140 if (unlikely(v->salt_size && (!v->version))) { 141 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 142 143 if (r < 0) { 144 DMERR("verity_hash_final failed updating salt: %d", r); 145 goto out; 146 } 147 } 148 149 ahash_request_set_crypt(req, NULL, digest, 0); 150 r = crypto_wait_req(crypto_ahash_final(req), wait); 151 out: 152 return r; 153 } 154 155 int verity_hash(struct dm_verity *v, struct ahash_request *req, 156 const u8 *data, size_t len, u8 *digest) 157 { 158 int r; 159 struct crypto_wait wait; 160 161 r = verity_hash_init(v, req, &wait); 162 if (unlikely(r < 0)) 163 goto out; 164 165 r = verity_hash_update(v, req, data, len, &wait); 166 if (unlikely(r < 0)) 167 goto out; 168 169 r = verity_hash_final(v, req, digest, &wait); 170 171 out: 172 return r; 173 } 174 175 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 176 sector_t *hash_block, unsigned *offset) 177 { 178 sector_t position = verity_position_at_level(v, block, level); 179 unsigned idx; 180 181 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 182 183 if (!offset) 184 return; 185 186 idx = position & ((1 << v->hash_per_block_bits) - 1); 187 if (!v->version) 188 *offset = idx * v->digest_size; 189 else 190 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 191 } 192 193 /* 194 * Handle verification errors. 195 */ 196 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 197 unsigned long long block) 198 { 199 char verity_env[DM_VERITY_ENV_LENGTH]; 200 char *envp[] = { verity_env, NULL }; 201 const char *type_str = ""; 202 struct mapped_device *md = dm_table_get_md(v->ti->table); 203 204 /* Corruption should be visible in device status in all modes */ 205 v->hash_failed = 1; 206 207 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 208 goto out; 209 210 v->corrupted_errs++; 211 212 switch (type) { 213 case DM_VERITY_BLOCK_TYPE_DATA: 214 type_str = "data"; 215 break; 216 case DM_VERITY_BLOCK_TYPE_METADATA: 217 type_str = "metadata"; 218 break; 219 default: 220 BUG(); 221 } 222 223 DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str, 224 block); 225 226 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) 227 DMERR("%s: reached maximum errors", v->data_dev->name); 228 229 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 230 DM_VERITY_ENV_VAR_NAME, type, block); 231 232 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 233 234 out: 235 if (v->mode == DM_VERITY_MODE_LOGGING) 236 return 0; 237 238 if (v->mode == DM_VERITY_MODE_RESTART) 239 kernel_restart("dm-verity device corrupted"); 240 241 return 1; 242 } 243 244 /* 245 * Verify hash of a metadata block pertaining to the specified data block 246 * ("block" argument) at a specified level ("level" argument). 247 * 248 * On successful return, verity_io_want_digest(v, io) contains the hash value 249 * for a lower tree level or for the data block (if we're at the lowest level). 250 * 251 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 252 * If "skip_unverified" is false, unverified buffer is hashed and verified 253 * against current value of verity_io_want_digest(v, io). 254 */ 255 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 256 sector_t block, int level, bool skip_unverified, 257 u8 *want_digest) 258 { 259 struct dm_buffer *buf; 260 struct buffer_aux *aux; 261 u8 *data; 262 int r; 263 sector_t hash_block; 264 unsigned offset; 265 266 verity_hash_at_level(v, block, level, &hash_block, &offset); 267 268 data = dm_bufio_read(v->bufio, hash_block, &buf); 269 if (IS_ERR(data)) 270 return PTR_ERR(data); 271 272 aux = dm_bufio_get_aux_data(buf); 273 274 if (!aux->hash_verified) { 275 if (skip_unverified) { 276 r = 1; 277 goto release_ret_r; 278 } 279 280 r = verity_hash(v, verity_io_hash_req(v, io), 281 data, 1 << v->hash_dev_block_bits, 282 verity_io_real_digest(v, io)); 283 if (unlikely(r < 0)) 284 goto release_ret_r; 285 286 if (likely(memcmp(verity_io_real_digest(v, io), want_digest, 287 v->digest_size) == 0)) 288 aux->hash_verified = 1; 289 else if (verity_fec_decode(v, io, 290 DM_VERITY_BLOCK_TYPE_METADATA, 291 hash_block, data, NULL) == 0) 292 aux->hash_verified = 1; 293 else if (verity_handle_err(v, 294 DM_VERITY_BLOCK_TYPE_METADATA, 295 hash_block)) { 296 r = -EIO; 297 goto release_ret_r; 298 } 299 } 300 301 data += offset; 302 memcpy(want_digest, data, v->digest_size); 303 r = 0; 304 305 release_ret_r: 306 dm_bufio_release(buf); 307 return r; 308 } 309 310 /* 311 * Find a hash for a given block, write it to digest and verify the integrity 312 * of the hash tree if necessary. 313 */ 314 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 315 sector_t block, u8 *digest, bool *is_zero) 316 { 317 int r = 0, i; 318 319 if (likely(v->levels)) { 320 /* 321 * First, we try to get the requested hash for 322 * the current block. If the hash block itself is 323 * verified, zero is returned. If it isn't, this 324 * function returns 1 and we fall back to whole 325 * chain verification. 326 */ 327 r = verity_verify_level(v, io, block, 0, true, digest); 328 if (likely(r <= 0)) 329 goto out; 330 } 331 332 memcpy(digest, v->root_digest, v->digest_size); 333 334 for (i = v->levels - 1; i >= 0; i--) { 335 r = verity_verify_level(v, io, block, i, false, digest); 336 if (unlikely(r)) 337 goto out; 338 } 339 out: 340 if (!r && v->zero_digest) 341 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 342 else 343 *is_zero = false; 344 345 return r; 346 } 347 348 /* 349 * Calculates the digest for the given bio 350 */ 351 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io, 352 struct bvec_iter *iter, struct crypto_wait *wait) 353 { 354 unsigned int todo = 1 << v->data_dev_block_bits; 355 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 356 struct scatterlist sg; 357 struct ahash_request *req = verity_io_hash_req(v, io); 358 359 do { 360 int r; 361 unsigned int len; 362 struct bio_vec bv = bio_iter_iovec(bio, *iter); 363 364 sg_init_table(&sg, 1); 365 366 len = bv.bv_len; 367 368 if (likely(len >= todo)) 369 len = todo; 370 /* 371 * Operating on a single page at a time looks suboptimal 372 * until you consider the typical block size is 4,096B. 373 * Going through this loops twice should be very rare. 374 */ 375 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset); 376 ahash_request_set_crypt(req, &sg, NULL, len); 377 r = crypto_wait_req(crypto_ahash_update(req), wait); 378 379 if (unlikely(r < 0)) { 380 DMERR("verity_for_io_block crypto op failed: %d", r); 381 return r; 382 } 383 384 bio_advance_iter(bio, iter, len); 385 todo -= len; 386 } while (todo); 387 388 return 0; 389 } 390 391 /* 392 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec 393 * starting from iter. 394 */ 395 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io, 396 struct bvec_iter *iter, 397 int (*process)(struct dm_verity *v, 398 struct dm_verity_io *io, u8 *data, 399 size_t len)) 400 { 401 unsigned todo = 1 << v->data_dev_block_bits; 402 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 403 404 do { 405 int r; 406 u8 *page; 407 unsigned len; 408 struct bio_vec bv = bio_iter_iovec(bio, *iter); 409 410 page = kmap_atomic(bv.bv_page); 411 len = bv.bv_len; 412 413 if (likely(len >= todo)) 414 len = todo; 415 416 r = process(v, io, page + bv.bv_offset, len); 417 kunmap_atomic(page); 418 419 if (r < 0) 420 return r; 421 422 bio_advance_iter(bio, iter, len); 423 todo -= len; 424 } while (todo); 425 426 return 0; 427 } 428 429 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io, 430 u8 *data, size_t len) 431 { 432 memset(data, 0, len); 433 return 0; 434 } 435 436 /* 437 * Moves the bio iter one data block forward. 438 */ 439 static inline void verity_bv_skip_block(struct dm_verity *v, 440 struct dm_verity_io *io, 441 struct bvec_iter *iter) 442 { 443 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 444 445 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits); 446 } 447 448 /* 449 * Verify one "dm_verity_io" structure. 450 */ 451 static int verity_verify_io(struct dm_verity_io *io) 452 { 453 bool is_zero; 454 struct dm_verity *v = io->v; 455 struct bvec_iter start; 456 unsigned b; 457 struct crypto_wait wait; 458 459 for (b = 0; b < io->n_blocks; b++) { 460 int r; 461 sector_t cur_block = io->block + b; 462 struct ahash_request *req = verity_io_hash_req(v, io); 463 464 if (v->validated_blocks && 465 likely(test_bit(cur_block, v->validated_blocks))) { 466 verity_bv_skip_block(v, io, &io->iter); 467 continue; 468 } 469 470 r = verity_hash_for_block(v, io, cur_block, 471 verity_io_want_digest(v, io), 472 &is_zero); 473 if (unlikely(r < 0)) 474 return r; 475 476 if (is_zero) { 477 /* 478 * If we expect a zero block, don't validate, just 479 * return zeros. 480 */ 481 r = verity_for_bv_block(v, io, &io->iter, 482 verity_bv_zero); 483 if (unlikely(r < 0)) 484 return r; 485 486 continue; 487 } 488 489 r = verity_hash_init(v, req, &wait); 490 if (unlikely(r < 0)) 491 return r; 492 493 start = io->iter; 494 r = verity_for_io_block(v, io, &io->iter, &wait); 495 if (unlikely(r < 0)) 496 return r; 497 498 r = verity_hash_final(v, req, verity_io_real_digest(v, io), 499 &wait); 500 if (unlikely(r < 0)) 501 return r; 502 503 if (likely(memcmp(verity_io_real_digest(v, io), 504 verity_io_want_digest(v, io), v->digest_size) == 0)) { 505 if (v->validated_blocks) 506 set_bit(cur_block, v->validated_blocks); 507 continue; 508 } 509 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, 510 cur_block, NULL, &start) == 0) 511 continue; 512 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, 513 cur_block)) 514 return -EIO; 515 } 516 517 return 0; 518 } 519 520 /* 521 * End one "io" structure with a given error. 522 */ 523 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) 524 { 525 struct dm_verity *v = io->v; 526 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 527 528 bio->bi_end_io = io->orig_bi_end_io; 529 bio->bi_status = status; 530 531 verity_fec_finish_io(io); 532 533 bio_endio(bio); 534 } 535 536 static void verity_work(struct work_struct *w) 537 { 538 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 539 540 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); 541 } 542 543 static void verity_end_io(struct bio *bio) 544 { 545 struct dm_verity_io *io = bio->bi_private; 546 547 if (bio->bi_status && !verity_fec_is_enabled(io->v)) { 548 verity_finish_io(io, bio->bi_status); 549 return; 550 } 551 552 INIT_WORK(&io->work, verity_work); 553 queue_work(io->v->verify_wq, &io->work); 554 } 555 556 /* 557 * Prefetch buffers for the specified io. 558 * The root buffer is not prefetched, it is assumed that it will be cached 559 * all the time. 560 */ 561 static void verity_prefetch_io(struct work_struct *work) 562 { 563 struct dm_verity_prefetch_work *pw = 564 container_of(work, struct dm_verity_prefetch_work, work); 565 struct dm_verity *v = pw->v; 566 int i; 567 568 for (i = v->levels - 2; i >= 0; i--) { 569 sector_t hash_block_start; 570 sector_t hash_block_end; 571 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 572 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 573 if (!i) { 574 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster); 575 576 cluster >>= v->data_dev_block_bits; 577 if (unlikely(!cluster)) 578 goto no_prefetch_cluster; 579 580 if (unlikely(cluster & (cluster - 1))) 581 cluster = 1 << __fls(cluster); 582 583 hash_block_start &= ~(sector_t)(cluster - 1); 584 hash_block_end |= cluster - 1; 585 if (unlikely(hash_block_end >= v->hash_blocks)) 586 hash_block_end = v->hash_blocks - 1; 587 } 588 no_prefetch_cluster: 589 dm_bufio_prefetch(v->bufio, hash_block_start, 590 hash_block_end - hash_block_start + 1); 591 } 592 593 kfree(pw); 594 } 595 596 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io) 597 { 598 struct dm_verity_prefetch_work *pw; 599 600 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 601 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 602 603 if (!pw) 604 return; 605 606 INIT_WORK(&pw->work, verity_prefetch_io); 607 pw->v = v; 608 pw->block = io->block; 609 pw->n_blocks = io->n_blocks; 610 queue_work(v->verify_wq, &pw->work); 611 } 612 613 /* 614 * Bio map function. It allocates dm_verity_io structure and bio vector and 615 * fills them. Then it issues prefetches and the I/O. 616 */ 617 static int verity_map(struct dm_target *ti, struct bio *bio) 618 { 619 struct dm_verity *v = ti->private; 620 struct dm_verity_io *io; 621 622 bio_set_dev(bio, v->data_dev->bdev); 623 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 624 625 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 626 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 627 DMERR_LIMIT("unaligned io"); 628 return DM_MAPIO_KILL; 629 } 630 631 if (bio_end_sector(bio) >> 632 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 633 DMERR_LIMIT("io out of range"); 634 return DM_MAPIO_KILL; 635 } 636 637 if (bio_data_dir(bio) == WRITE) 638 return DM_MAPIO_KILL; 639 640 io = dm_per_bio_data(bio, ti->per_io_data_size); 641 io->v = v; 642 io->orig_bi_end_io = bio->bi_end_io; 643 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 644 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 645 646 bio->bi_end_io = verity_end_io; 647 bio->bi_private = io; 648 io->iter = bio->bi_iter; 649 650 verity_fec_init_io(io); 651 652 verity_submit_prefetch(v, io); 653 654 generic_make_request(bio); 655 656 return DM_MAPIO_SUBMITTED; 657 } 658 659 /* 660 * Status: V (valid) or C (corruption found) 661 */ 662 static void verity_status(struct dm_target *ti, status_type_t type, 663 unsigned status_flags, char *result, unsigned maxlen) 664 { 665 struct dm_verity *v = ti->private; 666 unsigned args = 0; 667 unsigned sz = 0; 668 unsigned x; 669 670 switch (type) { 671 case STATUSTYPE_INFO: 672 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 673 break; 674 case STATUSTYPE_TABLE: 675 DMEMIT("%u %s %s %u %u %llu %llu %s ", 676 v->version, 677 v->data_dev->name, 678 v->hash_dev->name, 679 1 << v->data_dev_block_bits, 680 1 << v->hash_dev_block_bits, 681 (unsigned long long)v->data_blocks, 682 (unsigned long long)v->hash_start, 683 v->alg_name 684 ); 685 for (x = 0; x < v->digest_size; x++) 686 DMEMIT("%02x", v->root_digest[x]); 687 DMEMIT(" "); 688 if (!v->salt_size) 689 DMEMIT("-"); 690 else 691 for (x = 0; x < v->salt_size; x++) 692 DMEMIT("%02x", v->salt[x]); 693 if (v->mode != DM_VERITY_MODE_EIO) 694 args++; 695 if (verity_fec_is_enabled(v)) 696 args += DM_VERITY_OPTS_FEC; 697 if (v->zero_digest) 698 args++; 699 if (v->validated_blocks) 700 args++; 701 if (!args) 702 return; 703 DMEMIT(" %u", args); 704 if (v->mode != DM_VERITY_MODE_EIO) { 705 DMEMIT(" "); 706 switch (v->mode) { 707 case DM_VERITY_MODE_LOGGING: 708 DMEMIT(DM_VERITY_OPT_LOGGING); 709 break; 710 case DM_VERITY_MODE_RESTART: 711 DMEMIT(DM_VERITY_OPT_RESTART); 712 break; 713 default: 714 BUG(); 715 } 716 } 717 if (v->zero_digest) 718 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 719 if (v->validated_blocks) 720 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE); 721 sz = verity_fec_status_table(v, sz, result, maxlen); 722 break; 723 } 724 } 725 726 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) 727 { 728 struct dm_verity *v = ti->private; 729 730 *bdev = v->data_dev->bdev; 731 732 if (v->data_start || 733 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT) 734 return 1; 735 return 0; 736 } 737 738 static int verity_iterate_devices(struct dm_target *ti, 739 iterate_devices_callout_fn fn, void *data) 740 { 741 struct dm_verity *v = ti->private; 742 743 return fn(ti, v->data_dev, v->data_start, ti->len, data); 744 } 745 746 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 747 { 748 struct dm_verity *v = ti->private; 749 750 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 751 limits->logical_block_size = 1 << v->data_dev_block_bits; 752 753 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 754 limits->physical_block_size = 1 << v->data_dev_block_bits; 755 756 blk_limits_io_min(limits, limits->logical_block_size); 757 } 758 759 static void verity_dtr(struct dm_target *ti) 760 { 761 struct dm_verity *v = ti->private; 762 763 if (v->verify_wq) 764 destroy_workqueue(v->verify_wq); 765 766 if (v->bufio) 767 dm_bufio_client_destroy(v->bufio); 768 769 kvfree(v->validated_blocks); 770 kfree(v->salt); 771 kfree(v->root_digest); 772 kfree(v->zero_digest); 773 774 if (v->tfm) 775 crypto_free_ahash(v->tfm); 776 777 kfree(v->alg_name); 778 779 if (v->hash_dev) 780 dm_put_device(ti, v->hash_dev); 781 782 if (v->data_dev) 783 dm_put_device(ti, v->data_dev); 784 785 verity_fec_dtr(v); 786 787 kfree(v); 788 } 789 790 static int verity_alloc_most_once(struct dm_verity *v) 791 { 792 struct dm_target *ti = v->ti; 793 794 /* the bitset can only handle INT_MAX blocks */ 795 if (v->data_blocks > INT_MAX) { 796 ti->error = "device too large to use check_at_most_once"; 797 return -E2BIG; 798 } 799 800 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks), 801 sizeof(unsigned long), 802 GFP_KERNEL); 803 if (!v->validated_blocks) { 804 ti->error = "failed to allocate bitset for check_at_most_once"; 805 return -ENOMEM; 806 } 807 808 return 0; 809 } 810 811 static int verity_alloc_zero_digest(struct dm_verity *v) 812 { 813 int r = -ENOMEM; 814 struct ahash_request *req; 815 u8 *zero_data; 816 817 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 818 819 if (!v->zero_digest) 820 return r; 821 822 req = kmalloc(v->ahash_reqsize, GFP_KERNEL); 823 824 if (!req) 825 return r; /* verity_dtr will free zero_digest */ 826 827 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 828 829 if (!zero_data) 830 goto out; 831 832 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits, 833 v->zero_digest); 834 835 out: 836 kfree(req); 837 kfree(zero_data); 838 839 return r; 840 } 841 842 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v) 843 { 844 int r; 845 unsigned argc; 846 struct dm_target *ti = v->ti; 847 const char *arg_name; 848 849 static const struct dm_arg _args[] = { 850 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 851 }; 852 853 r = dm_read_arg_group(_args, as, &argc, &ti->error); 854 if (r) 855 return -EINVAL; 856 857 if (!argc) 858 return 0; 859 860 do { 861 arg_name = dm_shift_arg(as); 862 argc--; 863 864 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) { 865 v->mode = DM_VERITY_MODE_LOGGING; 866 continue; 867 868 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) { 869 v->mode = DM_VERITY_MODE_RESTART; 870 continue; 871 872 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 873 r = verity_alloc_zero_digest(v); 874 if (r) { 875 ti->error = "Cannot allocate zero digest"; 876 return r; 877 } 878 continue; 879 880 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) { 881 r = verity_alloc_most_once(v); 882 if (r) 883 return r; 884 continue; 885 886 } else if (verity_is_fec_opt_arg(arg_name)) { 887 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 888 if (r) 889 return r; 890 continue; 891 } 892 893 ti->error = "Unrecognized verity feature request"; 894 return -EINVAL; 895 } while (argc && !r); 896 897 return r; 898 } 899 900 /* 901 * Target parameters: 902 * <version> The current format is version 1. 903 * Vsn 0 is compatible with original Chromium OS releases. 904 * <data device> 905 * <hash device> 906 * <data block size> 907 * <hash block size> 908 * <the number of data blocks> 909 * <hash start block> 910 * <algorithm> 911 * <digest> 912 * <salt> Hex string or "-" if no salt. 913 */ 914 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) 915 { 916 struct dm_verity *v; 917 struct dm_arg_set as; 918 unsigned int num; 919 unsigned long long num_ll; 920 int r; 921 int i; 922 sector_t hash_position; 923 char dummy; 924 925 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 926 if (!v) { 927 ti->error = "Cannot allocate verity structure"; 928 return -ENOMEM; 929 } 930 ti->private = v; 931 v->ti = ti; 932 933 r = verity_fec_ctr_alloc(v); 934 if (r) 935 goto bad; 936 937 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) { 938 ti->error = "Device must be readonly"; 939 r = -EINVAL; 940 goto bad; 941 } 942 943 if (argc < 10) { 944 ti->error = "Not enough arguments"; 945 r = -EINVAL; 946 goto bad; 947 } 948 949 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 950 num > 1) { 951 ti->error = "Invalid version"; 952 r = -EINVAL; 953 goto bad; 954 } 955 v->version = num; 956 957 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev); 958 if (r) { 959 ti->error = "Data device lookup failed"; 960 goto bad; 961 } 962 963 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev); 964 if (r) { 965 ti->error = "Hash device lookup failed"; 966 goto bad; 967 } 968 969 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 970 !num || (num & (num - 1)) || 971 num < bdev_logical_block_size(v->data_dev->bdev) || 972 num > PAGE_SIZE) { 973 ti->error = "Invalid data device block size"; 974 r = -EINVAL; 975 goto bad; 976 } 977 v->data_dev_block_bits = __ffs(num); 978 979 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 980 !num || (num & (num - 1)) || 981 num < bdev_logical_block_size(v->hash_dev->bdev) || 982 num > INT_MAX) { 983 ti->error = "Invalid hash device block size"; 984 r = -EINVAL; 985 goto bad; 986 } 987 v->hash_dev_block_bits = __ffs(num); 988 989 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 990 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 991 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 992 ti->error = "Invalid data blocks"; 993 r = -EINVAL; 994 goto bad; 995 } 996 v->data_blocks = num_ll; 997 998 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 999 ti->error = "Data device is too small"; 1000 r = -EINVAL; 1001 goto bad; 1002 } 1003 1004 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 1005 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 1006 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1007 ti->error = "Invalid hash start"; 1008 r = -EINVAL; 1009 goto bad; 1010 } 1011 v->hash_start = num_ll; 1012 1013 v->alg_name = kstrdup(argv[7], GFP_KERNEL); 1014 if (!v->alg_name) { 1015 ti->error = "Cannot allocate algorithm name"; 1016 r = -ENOMEM; 1017 goto bad; 1018 } 1019 1020 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0); 1021 if (IS_ERR(v->tfm)) { 1022 ti->error = "Cannot initialize hash function"; 1023 r = PTR_ERR(v->tfm); 1024 v->tfm = NULL; 1025 goto bad; 1026 } 1027 v->digest_size = crypto_ahash_digestsize(v->tfm); 1028 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 1029 ti->error = "Digest size too big"; 1030 r = -EINVAL; 1031 goto bad; 1032 } 1033 v->ahash_reqsize = sizeof(struct ahash_request) + 1034 crypto_ahash_reqsize(v->tfm); 1035 1036 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 1037 if (!v->root_digest) { 1038 ti->error = "Cannot allocate root digest"; 1039 r = -ENOMEM; 1040 goto bad; 1041 } 1042 if (strlen(argv[8]) != v->digest_size * 2 || 1043 hex2bin(v->root_digest, argv[8], v->digest_size)) { 1044 ti->error = "Invalid root digest"; 1045 r = -EINVAL; 1046 goto bad; 1047 } 1048 1049 if (strcmp(argv[9], "-")) { 1050 v->salt_size = strlen(argv[9]) / 2; 1051 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 1052 if (!v->salt) { 1053 ti->error = "Cannot allocate salt"; 1054 r = -ENOMEM; 1055 goto bad; 1056 } 1057 if (strlen(argv[9]) != v->salt_size * 2 || 1058 hex2bin(v->salt, argv[9], v->salt_size)) { 1059 ti->error = "Invalid salt"; 1060 r = -EINVAL; 1061 goto bad; 1062 } 1063 } 1064 1065 argv += 10; 1066 argc -= 10; 1067 1068 /* Optional parameters */ 1069 if (argc) { 1070 as.argc = argc; 1071 as.argv = argv; 1072 1073 r = verity_parse_opt_args(&as, v); 1074 if (r < 0) 1075 goto bad; 1076 } 1077 1078 v->hash_per_block_bits = 1079 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1080 1081 v->levels = 0; 1082 if (v->data_blocks) 1083 while (v->hash_per_block_bits * v->levels < 64 && 1084 (unsigned long long)(v->data_blocks - 1) >> 1085 (v->hash_per_block_bits * v->levels)) 1086 v->levels++; 1087 1088 if (v->levels > DM_VERITY_MAX_LEVELS) { 1089 ti->error = "Too many tree levels"; 1090 r = -E2BIG; 1091 goto bad; 1092 } 1093 1094 hash_position = v->hash_start; 1095 for (i = v->levels - 1; i >= 0; i--) { 1096 sector_t s; 1097 v->hash_level_block[i] = hash_position; 1098 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1099 >> ((i + 1) * v->hash_per_block_bits); 1100 if (hash_position + s < hash_position) { 1101 ti->error = "Hash device offset overflow"; 1102 r = -E2BIG; 1103 goto bad; 1104 } 1105 hash_position += s; 1106 } 1107 v->hash_blocks = hash_position; 1108 1109 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1110 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1111 dm_bufio_alloc_callback, NULL); 1112 if (IS_ERR(v->bufio)) { 1113 ti->error = "Cannot initialize dm-bufio"; 1114 r = PTR_ERR(v->bufio); 1115 v->bufio = NULL; 1116 goto bad; 1117 } 1118 1119 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1120 ti->error = "Hash device is too small"; 1121 r = -E2BIG; 1122 goto bad; 1123 } 1124 1125 /* WQ_UNBOUND greatly improves performance when running on ramdisk */ 1126 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus()); 1127 if (!v->verify_wq) { 1128 ti->error = "Cannot allocate workqueue"; 1129 r = -ENOMEM; 1130 goto bad; 1131 } 1132 1133 ti->per_io_data_size = sizeof(struct dm_verity_io) + 1134 v->ahash_reqsize + v->digest_size * 2; 1135 1136 r = verity_fec_ctr(v); 1137 if (r) 1138 goto bad; 1139 1140 ti->per_io_data_size = roundup(ti->per_io_data_size, 1141 __alignof__(struct dm_verity_io)); 1142 1143 return 0; 1144 1145 bad: 1146 verity_dtr(ti); 1147 1148 return r; 1149 } 1150 1151 static struct target_type verity_target = { 1152 .name = "verity", 1153 .version = {1, 4, 0}, 1154 .module = THIS_MODULE, 1155 .ctr = verity_ctr, 1156 .dtr = verity_dtr, 1157 .map = verity_map, 1158 .status = verity_status, 1159 .prepare_ioctl = verity_prepare_ioctl, 1160 .iterate_devices = verity_iterate_devices, 1161 .io_hints = verity_io_hints, 1162 }; 1163 1164 static int __init dm_verity_init(void) 1165 { 1166 int r; 1167 1168 r = dm_register_target(&verity_target); 1169 if (r < 0) 1170 DMERR("register failed %d", r); 1171 1172 return r; 1173 } 1174 1175 static void __exit dm_verity_exit(void) 1176 { 1177 dm_unregister_target(&verity_target); 1178 } 1179 1180 module_init(dm_verity_init); 1181 module_exit(dm_verity_exit); 1182 1183 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1184 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1185 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1186 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1187 MODULE_LICENSE("GPL"); 1188