xref: /openbmc/linux/drivers/md/dm-verity-target.c (revision a86854d0)
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16 
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19 
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 
23 #define DM_MSG_PREFIX			"verity"
24 
25 #define DM_VERITY_ENV_LENGTH		42
26 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
27 
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
29 
30 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
31 
32 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
33 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
36 
37 #define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
38 
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40 
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42 
43 struct dm_verity_prefetch_work {
44 	struct work_struct work;
45 	struct dm_verity *v;
46 	sector_t block;
47 	unsigned n_blocks;
48 };
49 
50 /*
51  * Auxiliary structure appended to each dm-bufio buffer. If the value
52  * hash_verified is nonzero, hash of the block has been verified.
53  *
54  * The variable hash_verified is set to 0 when allocating the buffer, then
55  * it can be changed to 1 and it is never reset to 0 again.
56  *
57  * There is no lock around this value, a race condition can at worst cause
58  * that multiple processes verify the hash of the same buffer simultaneously
59  * and write 1 to hash_verified simultaneously.
60  * This condition is harmless, so we don't need locking.
61  */
62 struct buffer_aux {
63 	int hash_verified;
64 };
65 
66 /*
67  * Initialize struct buffer_aux for a freshly created buffer.
68  */
69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72 
73 	aux->hash_verified = 0;
74 }
75 
76 /*
77  * Translate input sector number to the sector number on the target device.
78  */
79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 	return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83 
84 /*
85  * Return hash position of a specified block at a specified tree level
86  * (0 is the lowest level).
87  * The lowest "hash_per_block_bits"-bits of the result denote hash position
88  * inside a hash block. The remaining bits denote location of the hash block.
89  */
90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 					 int level)
92 {
93 	return block >> (level * v->hash_per_block_bits);
94 }
95 
96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97 				const u8 *data, size_t len,
98 				struct crypto_wait *wait)
99 {
100 	struct scatterlist sg;
101 
102 	sg_init_one(&sg, data, len);
103 	ahash_request_set_crypt(req, &sg, NULL, len);
104 
105 	return crypto_wait_req(crypto_ahash_update(req), wait);
106 }
107 
108 /*
109  * Wrapper for crypto_ahash_init, which handles verity salting.
110  */
111 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
112 				struct crypto_wait *wait)
113 {
114 	int r;
115 
116 	ahash_request_set_tfm(req, v->tfm);
117 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
118 					CRYPTO_TFM_REQ_MAY_BACKLOG,
119 					crypto_req_done, (void *)wait);
120 	crypto_init_wait(wait);
121 
122 	r = crypto_wait_req(crypto_ahash_init(req), wait);
123 
124 	if (unlikely(r < 0)) {
125 		DMERR("crypto_ahash_init failed: %d", r);
126 		return r;
127 	}
128 
129 	if (likely(v->salt_size && (v->version >= 1)))
130 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
131 
132 	return r;
133 }
134 
135 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
136 			     u8 *digest, struct crypto_wait *wait)
137 {
138 	int r;
139 
140 	if (unlikely(v->salt_size && (!v->version))) {
141 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
142 
143 		if (r < 0) {
144 			DMERR("verity_hash_final failed updating salt: %d", r);
145 			goto out;
146 		}
147 	}
148 
149 	ahash_request_set_crypt(req, NULL, digest, 0);
150 	r = crypto_wait_req(crypto_ahash_final(req), wait);
151 out:
152 	return r;
153 }
154 
155 int verity_hash(struct dm_verity *v, struct ahash_request *req,
156 		const u8 *data, size_t len, u8 *digest)
157 {
158 	int r;
159 	struct crypto_wait wait;
160 
161 	r = verity_hash_init(v, req, &wait);
162 	if (unlikely(r < 0))
163 		goto out;
164 
165 	r = verity_hash_update(v, req, data, len, &wait);
166 	if (unlikely(r < 0))
167 		goto out;
168 
169 	r = verity_hash_final(v, req, digest, &wait);
170 
171 out:
172 	return r;
173 }
174 
175 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
176 				 sector_t *hash_block, unsigned *offset)
177 {
178 	sector_t position = verity_position_at_level(v, block, level);
179 	unsigned idx;
180 
181 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
182 
183 	if (!offset)
184 		return;
185 
186 	idx = position & ((1 << v->hash_per_block_bits) - 1);
187 	if (!v->version)
188 		*offset = idx * v->digest_size;
189 	else
190 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
191 }
192 
193 /*
194  * Handle verification errors.
195  */
196 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
197 			     unsigned long long block)
198 {
199 	char verity_env[DM_VERITY_ENV_LENGTH];
200 	char *envp[] = { verity_env, NULL };
201 	const char *type_str = "";
202 	struct mapped_device *md = dm_table_get_md(v->ti->table);
203 
204 	/* Corruption should be visible in device status in all modes */
205 	v->hash_failed = 1;
206 
207 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
208 		goto out;
209 
210 	v->corrupted_errs++;
211 
212 	switch (type) {
213 	case DM_VERITY_BLOCK_TYPE_DATA:
214 		type_str = "data";
215 		break;
216 	case DM_VERITY_BLOCK_TYPE_METADATA:
217 		type_str = "metadata";
218 		break;
219 	default:
220 		BUG();
221 	}
222 
223 	DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
224 		block);
225 
226 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
227 		DMERR("%s: reached maximum errors", v->data_dev->name);
228 
229 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
230 		DM_VERITY_ENV_VAR_NAME, type, block);
231 
232 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
233 
234 out:
235 	if (v->mode == DM_VERITY_MODE_LOGGING)
236 		return 0;
237 
238 	if (v->mode == DM_VERITY_MODE_RESTART)
239 		kernel_restart("dm-verity device corrupted");
240 
241 	return 1;
242 }
243 
244 /*
245  * Verify hash of a metadata block pertaining to the specified data block
246  * ("block" argument) at a specified level ("level" argument).
247  *
248  * On successful return, verity_io_want_digest(v, io) contains the hash value
249  * for a lower tree level or for the data block (if we're at the lowest level).
250  *
251  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
252  * If "skip_unverified" is false, unverified buffer is hashed and verified
253  * against current value of verity_io_want_digest(v, io).
254  */
255 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
256 			       sector_t block, int level, bool skip_unverified,
257 			       u8 *want_digest)
258 {
259 	struct dm_buffer *buf;
260 	struct buffer_aux *aux;
261 	u8 *data;
262 	int r;
263 	sector_t hash_block;
264 	unsigned offset;
265 
266 	verity_hash_at_level(v, block, level, &hash_block, &offset);
267 
268 	data = dm_bufio_read(v->bufio, hash_block, &buf);
269 	if (IS_ERR(data))
270 		return PTR_ERR(data);
271 
272 	aux = dm_bufio_get_aux_data(buf);
273 
274 	if (!aux->hash_verified) {
275 		if (skip_unverified) {
276 			r = 1;
277 			goto release_ret_r;
278 		}
279 
280 		r = verity_hash(v, verity_io_hash_req(v, io),
281 				data, 1 << v->hash_dev_block_bits,
282 				verity_io_real_digest(v, io));
283 		if (unlikely(r < 0))
284 			goto release_ret_r;
285 
286 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
287 				  v->digest_size) == 0))
288 			aux->hash_verified = 1;
289 		else if (verity_fec_decode(v, io,
290 					   DM_VERITY_BLOCK_TYPE_METADATA,
291 					   hash_block, data, NULL) == 0)
292 			aux->hash_verified = 1;
293 		else if (verity_handle_err(v,
294 					   DM_VERITY_BLOCK_TYPE_METADATA,
295 					   hash_block)) {
296 			r = -EIO;
297 			goto release_ret_r;
298 		}
299 	}
300 
301 	data += offset;
302 	memcpy(want_digest, data, v->digest_size);
303 	r = 0;
304 
305 release_ret_r:
306 	dm_bufio_release(buf);
307 	return r;
308 }
309 
310 /*
311  * Find a hash for a given block, write it to digest and verify the integrity
312  * of the hash tree if necessary.
313  */
314 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
315 			  sector_t block, u8 *digest, bool *is_zero)
316 {
317 	int r = 0, i;
318 
319 	if (likely(v->levels)) {
320 		/*
321 		 * First, we try to get the requested hash for
322 		 * the current block. If the hash block itself is
323 		 * verified, zero is returned. If it isn't, this
324 		 * function returns 1 and we fall back to whole
325 		 * chain verification.
326 		 */
327 		r = verity_verify_level(v, io, block, 0, true, digest);
328 		if (likely(r <= 0))
329 			goto out;
330 	}
331 
332 	memcpy(digest, v->root_digest, v->digest_size);
333 
334 	for (i = v->levels - 1; i >= 0; i--) {
335 		r = verity_verify_level(v, io, block, i, false, digest);
336 		if (unlikely(r))
337 			goto out;
338 	}
339 out:
340 	if (!r && v->zero_digest)
341 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
342 	else
343 		*is_zero = false;
344 
345 	return r;
346 }
347 
348 /*
349  * Calculates the digest for the given bio
350  */
351 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
352 			       struct bvec_iter *iter, struct crypto_wait *wait)
353 {
354 	unsigned int todo = 1 << v->data_dev_block_bits;
355 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
356 	struct scatterlist sg;
357 	struct ahash_request *req = verity_io_hash_req(v, io);
358 
359 	do {
360 		int r;
361 		unsigned int len;
362 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
363 
364 		sg_init_table(&sg, 1);
365 
366 		len = bv.bv_len;
367 
368 		if (likely(len >= todo))
369 			len = todo;
370 		/*
371 		 * Operating on a single page at a time looks suboptimal
372 		 * until you consider the typical block size is 4,096B.
373 		 * Going through this loops twice should be very rare.
374 		 */
375 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
376 		ahash_request_set_crypt(req, &sg, NULL, len);
377 		r = crypto_wait_req(crypto_ahash_update(req), wait);
378 
379 		if (unlikely(r < 0)) {
380 			DMERR("verity_for_io_block crypto op failed: %d", r);
381 			return r;
382 		}
383 
384 		bio_advance_iter(bio, iter, len);
385 		todo -= len;
386 	} while (todo);
387 
388 	return 0;
389 }
390 
391 /*
392  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
393  * starting from iter.
394  */
395 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
396 			struct bvec_iter *iter,
397 			int (*process)(struct dm_verity *v,
398 				       struct dm_verity_io *io, u8 *data,
399 				       size_t len))
400 {
401 	unsigned todo = 1 << v->data_dev_block_bits;
402 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
403 
404 	do {
405 		int r;
406 		u8 *page;
407 		unsigned len;
408 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
409 
410 		page = kmap_atomic(bv.bv_page);
411 		len = bv.bv_len;
412 
413 		if (likely(len >= todo))
414 			len = todo;
415 
416 		r = process(v, io, page + bv.bv_offset, len);
417 		kunmap_atomic(page);
418 
419 		if (r < 0)
420 			return r;
421 
422 		bio_advance_iter(bio, iter, len);
423 		todo -= len;
424 	} while (todo);
425 
426 	return 0;
427 }
428 
429 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
430 			  u8 *data, size_t len)
431 {
432 	memset(data, 0, len);
433 	return 0;
434 }
435 
436 /*
437  * Moves the bio iter one data block forward.
438  */
439 static inline void verity_bv_skip_block(struct dm_verity *v,
440 					struct dm_verity_io *io,
441 					struct bvec_iter *iter)
442 {
443 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
444 
445 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
446 }
447 
448 /*
449  * Verify one "dm_verity_io" structure.
450  */
451 static int verity_verify_io(struct dm_verity_io *io)
452 {
453 	bool is_zero;
454 	struct dm_verity *v = io->v;
455 	struct bvec_iter start;
456 	unsigned b;
457 	struct crypto_wait wait;
458 
459 	for (b = 0; b < io->n_blocks; b++) {
460 		int r;
461 		sector_t cur_block = io->block + b;
462 		struct ahash_request *req = verity_io_hash_req(v, io);
463 
464 		if (v->validated_blocks &&
465 		    likely(test_bit(cur_block, v->validated_blocks))) {
466 			verity_bv_skip_block(v, io, &io->iter);
467 			continue;
468 		}
469 
470 		r = verity_hash_for_block(v, io, cur_block,
471 					  verity_io_want_digest(v, io),
472 					  &is_zero);
473 		if (unlikely(r < 0))
474 			return r;
475 
476 		if (is_zero) {
477 			/*
478 			 * If we expect a zero block, don't validate, just
479 			 * return zeros.
480 			 */
481 			r = verity_for_bv_block(v, io, &io->iter,
482 						verity_bv_zero);
483 			if (unlikely(r < 0))
484 				return r;
485 
486 			continue;
487 		}
488 
489 		r = verity_hash_init(v, req, &wait);
490 		if (unlikely(r < 0))
491 			return r;
492 
493 		start = io->iter;
494 		r = verity_for_io_block(v, io, &io->iter, &wait);
495 		if (unlikely(r < 0))
496 			return r;
497 
498 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
499 					&wait);
500 		if (unlikely(r < 0))
501 			return r;
502 
503 		if (likely(memcmp(verity_io_real_digest(v, io),
504 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
505 			if (v->validated_blocks)
506 				set_bit(cur_block, v->validated_blocks);
507 			continue;
508 		}
509 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
510 					   cur_block, NULL, &start) == 0)
511 			continue;
512 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
513 					   cur_block))
514 			return -EIO;
515 	}
516 
517 	return 0;
518 }
519 
520 /*
521  * End one "io" structure with a given error.
522  */
523 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
524 {
525 	struct dm_verity *v = io->v;
526 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
527 
528 	bio->bi_end_io = io->orig_bi_end_io;
529 	bio->bi_status = status;
530 
531 	verity_fec_finish_io(io);
532 
533 	bio_endio(bio);
534 }
535 
536 static void verity_work(struct work_struct *w)
537 {
538 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
539 
540 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
541 }
542 
543 static void verity_end_io(struct bio *bio)
544 {
545 	struct dm_verity_io *io = bio->bi_private;
546 
547 	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
548 		verity_finish_io(io, bio->bi_status);
549 		return;
550 	}
551 
552 	INIT_WORK(&io->work, verity_work);
553 	queue_work(io->v->verify_wq, &io->work);
554 }
555 
556 /*
557  * Prefetch buffers for the specified io.
558  * The root buffer is not prefetched, it is assumed that it will be cached
559  * all the time.
560  */
561 static void verity_prefetch_io(struct work_struct *work)
562 {
563 	struct dm_verity_prefetch_work *pw =
564 		container_of(work, struct dm_verity_prefetch_work, work);
565 	struct dm_verity *v = pw->v;
566 	int i;
567 
568 	for (i = v->levels - 2; i >= 0; i--) {
569 		sector_t hash_block_start;
570 		sector_t hash_block_end;
571 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
572 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
573 		if (!i) {
574 			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
575 
576 			cluster >>= v->data_dev_block_bits;
577 			if (unlikely(!cluster))
578 				goto no_prefetch_cluster;
579 
580 			if (unlikely(cluster & (cluster - 1)))
581 				cluster = 1 << __fls(cluster);
582 
583 			hash_block_start &= ~(sector_t)(cluster - 1);
584 			hash_block_end |= cluster - 1;
585 			if (unlikely(hash_block_end >= v->hash_blocks))
586 				hash_block_end = v->hash_blocks - 1;
587 		}
588 no_prefetch_cluster:
589 		dm_bufio_prefetch(v->bufio, hash_block_start,
590 				  hash_block_end - hash_block_start + 1);
591 	}
592 
593 	kfree(pw);
594 }
595 
596 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
597 {
598 	struct dm_verity_prefetch_work *pw;
599 
600 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
601 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
602 
603 	if (!pw)
604 		return;
605 
606 	INIT_WORK(&pw->work, verity_prefetch_io);
607 	pw->v = v;
608 	pw->block = io->block;
609 	pw->n_blocks = io->n_blocks;
610 	queue_work(v->verify_wq, &pw->work);
611 }
612 
613 /*
614  * Bio map function. It allocates dm_verity_io structure and bio vector and
615  * fills them. Then it issues prefetches and the I/O.
616  */
617 static int verity_map(struct dm_target *ti, struct bio *bio)
618 {
619 	struct dm_verity *v = ti->private;
620 	struct dm_verity_io *io;
621 
622 	bio_set_dev(bio, v->data_dev->bdev);
623 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
624 
625 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
626 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
627 		DMERR_LIMIT("unaligned io");
628 		return DM_MAPIO_KILL;
629 	}
630 
631 	if (bio_end_sector(bio) >>
632 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
633 		DMERR_LIMIT("io out of range");
634 		return DM_MAPIO_KILL;
635 	}
636 
637 	if (bio_data_dir(bio) == WRITE)
638 		return DM_MAPIO_KILL;
639 
640 	io = dm_per_bio_data(bio, ti->per_io_data_size);
641 	io->v = v;
642 	io->orig_bi_end_io = bio->bi_end_io;
643 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
644 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
645 
646 	bio->bi_end_io = verity_end_io;
647 	bio->bi_private = io;
648 	io->iter = bio->bi_iter;
649 
650 	verity_fec_init_io(io);
651 
652 	verity_submit_prefetch(v, io);
653 
654 	generic_make_request(bio);
655 
656 	return DM_MAPIO_SUBMITTED;
657 }
658 
659 /*
660  * Status: V (valid) or C (corruption found)
661  */
662 static void verity_status(struct dm_target *ti, status_type_t type,
663 			  unsigned status_flags, char *result, unsigned maxlen)
664 {
665 	struct dm_verity *v = ti->private;
666 	unsigned args = 0;
667 	unsigned sz = 0;
668 	unsigned x;
669 
670 	switch (type) {
671 	case STATUSTYPE_INFO:
672 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
673 		break;
674 	case STATUSTYPE_TABLE:
675 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
676 			v->version,
677 			v->data_dev->name,
678 			v->hash_dev->name,
679 			1 << v->data_dev_block_bits,
680 			1 << v->hash_dev_block_bits,
681 			(unsigned long long)v->data_blocks,
682 			(unsigned long long)v->hash_start,
683 			v->alg_name
684 			);
685 		for (x = 0; x < v->digest_size; x++)
686 			DMEMIT("%02x", v->root_digest[x]);
687 		DMEMIT(" ");
688 		if (!v->salt_size)
689 			DMEMIT("-");
690 		else
691 			for (x = 0; x < v->salt_size; x++)
692 				DMEMIT("%02x", v->salt[x]);
693 		if (v->mode != DM_VERITY_MODE_EIO)
694 			args++;
695 		if (verity_fec_is_enabled(v))
696 			args += DM_VERITY_OPTS_FEC;
697 		if (v->zero_digest)
698 			args++;
699 		if (v->validated_blocks)
700 			args++;
701 		if (!args)
702 			return;
703 		DMEMIT(" %u", args);
704 		if (v->mode != DM_VERITY_MODE_EIO) {
705 			DMEMIT(" ");
706 			switch (v->mode) {
707 			case DM_VERITY_MODE_LOGGING:
708 				DMEMIT(DM_VERITY_OPT_LOGGING);
709 				break;
710 			case DM_VERITY_MODE_RESTART:
711 				DMEMIT(DM_VERITY_OPT_RESTART);
712 				break;
713 			default:
714 				BUG();
715 			}
716 		}
717 		if (v->zero_digest)
718 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
719 		if (v->validated_blocks)
720 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
721 		sz = verity_fec_status_table(v, sz, result, maxlen);
722 		break;
723 	}
724 }
725 
726 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
727 {
728 	struct dm_verity *v = ti->private;
729 
730 	*bdev = v->data_dev->bdev;
731 
732 	if (v->data_start ||
733 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
734 		return 1;
735 	return 0;
736 }
737 
738 static int verity_iterate_devices(struct dm_target *ti,
739 				  iterate_devices_callout_fn fn, void *data)
740 {
741 	struct dm_verity *v = ti->private;
742 
743 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
744 }
745 
746 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
747 {
748 	struct dm_verity *v = ti->private;
749 
750 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
751 		limits->logical_block_size = 1 << v->data_dev_block_bits;
752 
753 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
754 		limits->physical_block_size = 1 << v->data_dev_block_bits;
755 
756 	blk_limits_io_min(limits, limits->logical_block_size);
757 }
758 
759 static void verity_dtr(struct dm_target *ti)
760 {
761 	struct dm_verity *v = ti->private;
762 
763 	if (v->verify_wq)
764 		destroy_workqueue(v->verify_wq);
765 
766 	if (v->bufio)
767 		dm_bufio_client_destroy(v->bufio);
768 
769 	kvfree(v->validated_blocks);
770 	kfree(v->salt);
771 	kfree(v->root_digest);
772 	kfree(v->zero_digest);
773 
774 	if (v->tfm)
775 		crypto_free_ahash(v->tfm);
776 
777 	kfree(v->alg_name);
778 
779 	if (v->hash_dev)
780 		dm_put_device(ti, v->hash_dev);
781 
782 	if (v->data_dev)
783 		dm_put_device(ti, v->data_dev);
784 
785 	verity_fec_dtr(v);
786 
787 	kfree(v);
788 }
789 
790 static int verity_alloc_most_once(struct dm_verity *v)
791 {
792 	struct dm_target *ti = v->ti;
793 
794 	/* the bitset can only handle INT_MAX blocks */
795 	if (v->data_blocks > INT_MAX) {
796 		ti->error = "device too large to use check_at_most_once";
797 		return -E2BIG;
798 	}
799 
800 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
801 				       sizeof(unsigned long),
802 				       GFP_KERNEL);
803 	if (!v->validated_blocks) {
804 		ti->error = "failed to allocate bitset for check_at_most_once";
805 		return -ENOMEM;
806 	}
807 
808 	return 0;
809 }
810 
811 static int verity_alloc_zero_digest(struct dm_verity *v)
812 {
813 	int r = -ENOMEM;
814 	struct ahash_request *req;
815 	u8 *zero_data;
816 
817 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
818 
819 	if (!v->zero_digest)
820 		return r;
821 
822 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
823 
824 	if (!req)
825 		return r; /* verity_dtr will free zero_digest */
826 
827 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
828 
829 	if (!zero_data)
830 		goto out;
831 
832 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
833 			v->zero_digest);
834 
835 out:
836 	kfree(req);
837 	kfree(zero_data);
838 
839 	return r;
840 }
841 
842 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
843 {
844 	int r;
845 	unsigned argc;
846 	struct dm_target *ti = v->ti;
847 	const char *arg_name;
848 
849 	static const struct dm_arg _args[] = {
850 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
851 	};
852 
853 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
854 	if (r)
855 		return -EINVAL;
856 
857 	if (!argc)
858 		return 0;
859 
860 	do {
861 		arg_name = dm_shift_arg(as);
862 		argc--;
863 
864 		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
865 			v->mode = DM_VERITY_MODE_LOGGING;
866 			continue;
867 
868 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
869 			v->mode = DM_VERITY_MODE_RESTART;
870 			continue;
871 
872 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
873 			r = verity_alloc_zero_digest(v);
874 			if (r) {
875 				ti->error = "Cannot allocate zero digest";
876 				return r;
877 			}
878 			continue;
879 
880 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
881 			r = verity_alloc_most_once(v);
882 			if (r)
883 				return r;
884 			continue;
885 
886 		} else if (verity_is_fec_opt_arg(arg_name)) {
887 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
888 			if (r)
889 				return r;
890 			continue;
891 		}
892 
893 		ti->error = "Unrecognized verity feature request";
894 		return -EINVAL;
895 	} while (argc && !r);
896 
897 	return r;
898 }
899 
900 /*
901  * Target parameters:
902  *	<version>	The current format is version 1.
903  *			Vsn 0 is compatible with original Chromium OS releases.
904  *	<data device>
905  *	<hash device>
906  *	<data block size>
907  *	<hash block size>
908  *	<the number of data blocks>
909  *	<hash start block>
910  *	<algorithm>
911  *	<digest>
912  *	<salt>		Hex string or "-" if no salt.
913  */
914 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
915 {
916 	struct dm_verity *v;
917 	struct dm_arg_set as;
918 	unsigned int num;
919 	unsigned long long num_ll;
920 	int r;
921 	int i;
922 	sector_t hash_position;
923 	char dummy;
924 
925 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
926 	if (!v) {
927 		ti->error = "Cannot allocate verity structure";
928 		return -ENOMEM;
929 	}
930 	ti->private = v;
931 	v->ti = ti;
932 
933 	r = verity_fec_ctr_alloc(v);
934 	if (r)
935 		goto bad;
936 
937 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
938 		ti->error = "Device must be readonly";
939 		r = -EINVAL;
940 		goto bad;
941 	}
942 
943 	if (argc < 10) {
944 		ti->error = "Not enough arguments";
945 		r = -EINVAL;
946 		goto bad;
947 	}
948 
949 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
950 	    num > 1) {
951 		ti->error = "Invalid version";
952 		r = -EINVAL;
953 		goto bad;
954 	}
955 	v->version = num;
956 
957 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
958 	if (r) {
959 		ti->error = "Data device lookup failed";
960 		goto bad;
961 	}
962 
963 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
964 	if (r) {
965 		ti->error = "Hash device lookup failed";
966 		goto bad;
967 	}
968 
969 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
970 	    !num || (num & (num - 1)) ||
971 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
972 	    num > PAGE_SIZE) {
973 		ti->error = "Invalid data device block size";
974 		r = -EINVAL;
975 		goto bad;
976 	}
977 	v->data_dev_block_bits = __ffs(num);
978 
979 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
980 	    !num || (num & (num - 1)) ||
981 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
982 	    num > INT_MAX) {
983 		ti->error = "Invalid hash device block size";
984 		r = -EINVAL;
985 		goto bad;
986 	}
987 	v->hash_dev_block_bits = __ffs(num);
988 
989 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
990 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
991 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
992 		ti->error = "Invalid data blocks";
993 		r = -EINVAL;
994 		goto bad;
995 	}
996 	v->data_blocks = num_ll;
997 
998 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
999 		ti->error = "Data device is too small";
1000 		r = -EINVAL;
1001 		goto bad;
1002 	}
1003 
1004 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1005 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1006 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1007 		ti->error = "Invalid hash start";
1008 		r = -EINVAL;
1009 		goto bad;
1010 	}
1011 	v->hash_start = num_ll;
1012 
1013 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1014 	if (!v->alg_name) {
1015 		ti->error = "Cannot allocate algorithm name";
1016 		r = -ENOMEM;
1017 		goto bad;
1018 	}
1019 
1020 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1021 	if (IS_ERR(v->tfm)) {
1022 		ti->error = "Cannot initialize hash function";
1023 		r = PTR_ERR(v->tfm);
1024 		v->tfm = NULL;
1025 		goto bad;
1026 	}
1027 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1028 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1029 		ti->error = "Digest size too big";
1030 		r = -EINVAL;
1031 		goto bad;
1032 	}
1033 	v->ahash_reqsize = sizeof(struct ahash_request) +
1034 		crypto_ahash_reqsize(v->tfm);
1035 
1036 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1037 	if (!v->root_digest) {
1038 		ti->error = "Cannot allocate root digest";
1039 		r = -ENOMEM;
1040 		goto bad;
1041 	}
1042 	if (strlen(argv[8]) != v->digest_size * 2 ||
1043 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1044 		ti->error = "Invalid root digest";
1045 		r = -EINVAL;
1046 		goto bad;
1047 	}
1048 
1049 	if (strcmp(argv[9], "-")) {
1050 		v->salt_size = strlen(argv[9]) / 2;
1051 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1052 		if (!v->salt) {
1053 			ti->error = "Cannot allocate salt";
1054 			r = -ENOMEM;
1055 			goto bad;
1056 		}
1057 		if (strlen(argv[9]) != v->salt_size * 2 ||
1058 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1059 			ti->error = "Invalid salt";
1060 			r = -EINVAL;
1061 			goto bad;
1062 		}
1063 	}
1064 
1065 	argv += 10;
1066 	argc -= 10;
1067 
1068 	/* Optional parameters */
1069 	if (argc) {
1070 		as.argc = argc;
1071 		as.argv = argv;
1072 
1073 		r = verity_parse_opt_args(&as, v);
1074 		if (r < 0)
1075 			goto bad;
1076 	}
1077 
1078 	v->hash_per_block_bits =
1079 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1080 
1081 	v->levels = 0;
1082 	if (v->data_blocks)
1083 		while (v->hash_per_block_bits * v->levels < 64 &&
1084 		       (unsigned long long)(v->data_blocks - 1) >>
1085 		       (v->hash_per_block_bits * v->levels))
1086 			v->levels++;
1087 
1088 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1089 		ti->error = "Too many tree levels";
1090 		r = -E2BIG;
1091 		goto bad;
1092 	}
1093 
1094 	hash_position = v->hash_start;
1095 	for (i = v->levels - 1; i >= 0; i--) {
1096 		sector_t s;
1097 		v->hash_level_block[i] = hash_position;
1098 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1099 					>> ((i + 1) * v->hash_per_block_bits);
1100 		if (hash_position + s < hash_position) {
1101 			ti->error = "Hash device offset overflow";
1102 			r = -E2BIG;
1103 			goto bad;
1104 		}
1105 		hash_position += s;
1106 	}
1107 	v->hash_blocks = hash_position;
1108 
1109 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1110 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1111 		dm_bufio_alloc_callback, NULL);
1112 	if (IS_ERR(v->bufio)) {
1113 		ti->error = "Cannot initialize dm-bufio";
1114 		r = PTR_ERR(v->bufio);
1115 		v->bufio = NULL;
1116 		goto bad;
1117 	}
1118 
1119 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1120 		ti->error = "Hash device is too small";
1121 		r = -E2BIG;
1122 		goto bad;
1123 	}
1124 
1125 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1126 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1127 	if (!v->verify_wq) {
1128 		ti->error = "Cannot allocate workqueue";
1129 		r = -ENOMEM;
1130 		goto bad;
1131 	}
1132 
1133 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1134 				v->ahash_reqsize + v->digest_size * 2;
1135 
1136 	r = verity_fec_ctr(v);
1137 	if (r)
1138 		goto bad;
1139 
1140 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1141 				       __alignof__(struct dm_verity_io));
1142 
1143 	return 0;
1144 
1145 bad:
1146 	verity_dtr(ti);
1147 
1148 	return r;
1149 }
1150 
1151 static struct target_type verity_target = {
1152 	.name		= "verity",
1153 	.version	= {1, 4, 0},
1154 	.module		= THIS_MODULE,
1155 	.ctr		= verity_ctr,
1156 	.dtr		= verity_dtr,
1157 	.map		= verity_map,
1158 	.status		= verity_status,
1159 	.prepare_ioctl	= verity_prepare_ioctl,
1160 	.iterate_devices = verity_iterate_devices,
1161 	.io_hints	= verity_io_hints,
1162 };
1163 
1164 static int __init dm_verity_init(void)
1165 {
1166 	int r;
1167 
1168 	r = dm_register_target(&verity_target);
1169 	if (r < 0)
1170 		DMERR("register failed %d", r);
1171 
1172 	return r;
1173 }
1174 
1175 static void __exit dm_verity_exit(void)
1176 {
1177 	dm_unregister_target(&verity_target);
1178 }
1179 
1180 module_init(dm_verity_init);
1181 module_exit(dm_verity_exit);
1182 
1183 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1184 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1185 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1186 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1187 MODULE_LICENSE("GPL");
1188