xref: /openbmc/linux/drivers/md/dm-verity-target.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21 
22 #define DM_MSG_PREFIX			"verity"
23 
24 #define DM_VERITY_ENV_LENGTH		42
25 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
26 
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
28 
29 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
30 
31 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
32 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
33 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
34 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
35 
36 #define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
37 
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39 
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41 
42 struct dm_verity_prefetch_work {
43 	struct work_struct work;
44 	struct dm_verity *v;
45 	sector_t block;
46 	unsigned n_blocks;
47 };
48 
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62 	int hash_verified;
63 };
64 
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71 
72 	aux->hash_verified = 0;
73 }
74 
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80 	return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82 
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90 					 int level)
91 {
92 	return block >> (level * v->hash_per_block_bits);
93 }
94 
95 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
96 				const u8 *data, size_t len,
97 				struct crypto_wait *wait)
98 {
99 	struct scatterlist sg;
100 
101 	if (likely(!is_vmalloc_addr(data))) {
102 		sg_init_one(&sg, data, len);
103 		ahash_request_set_crypt(req, &sg, NULL, len);
104 		return crypto_wait_req(crypto_ahash_update(req), wait);
105 	} else {
106 		do {
107 			int r;
108 			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
109 			flush_kernel_vmap_range((void *)data, this_step);
110 			sg_init_table(&sg, 1);
111 			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
112 			ahash_request_set_crypt(req, &sg, NULL, this_step);
113 			r = crypto_wait_req(crypto_ahash_update(req), wait);
114 			if (unlikely(r))
115 				return r;
116 			data += this_step;
117 			len -= this_step;
118 		} while (len);
119 		return 0;
120 	}
121 }
122 
123 /*
124  * Wrapper for crypto_ahash_init, which handles verity salting.
125  */
126 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
127 				struct crypto_wait *wait)
128 {
129 	int r;
130 
131 	ahash_request_set_tfm(req, v->tfm);
132 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
133 					CRYPTO_TFM_REQ_MAY_BACKLOG,
134 					crypto_req_done, (void *)wait);
135 	crypto_init_wait(wait);
136 
137 	r = crypto_wait_req(crypto_ahash_init(req), wait);
138 
139 	if (unlikely(r < 0)) {
140 		DMERR("crypto_ahash_init failed: %d", r);
141 		return r;
142 	}
143 
144 	if (likely(v->salt_size && (v->version >= 1)))
145 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
146 
147 	return r;
148 }
149 
150 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
151 			     u8 *digest, struct crypto_wait *wait)
152 {
153 	int r;
154 
155 	if (unlikely(v->salt_size && (!v->version))) {
156 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
157 
158 		if (r < 0) {
159 			DMERR("verity_hash_final failed updating salt: %d", r);
160 			goto out;
161 		}
162 	}
163 
164 	ahash_request_set_crypt(req, NULL, digest, 0);
165 	r = crypto_wait_req(crypto_ahash_final(req), wait);
166 out:
167 	return r;
168 }
169 
170 int verity_hash(struct dm_verity *v, struct ahash_request *req,
171 		const u8 *data, size_t len, u8 *digest)
172 {
173 	int r;
174 	struct crypto_wait wait;
175 
176 	r = verity_hash_init(v, req, &wait);
177 	if (unlikely(r < 0))
178 		goto out;
179 
180 	r = verity_hash_update(v, req, data, len, &wait);
181 	if (unlikely(r < 0))
182 		goto out;
183 
184 	r = verity_hash_final(v, req, digest, &wait);
185 
186 out:
187 	return r;
188 }
189 
190 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
191 				 sector_t *hash_block, unsigned *offset)
192 {
193 	sector_t position = verity_position_at_level(v, block, level);
194 	unsigned idx;
195 
196 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
197 
198 	if (!offset)
199 		return;
200 
201 	idx = position & ((1 << v->hash_per_block_bits) - 1);
202 	if (!v->version)
203 		*offset = idx * v->digest_size;
204 	else
205 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
206 }
207 
208 /*
209  * Handle verification errors.
210  */
211 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
212 			     unsigned long long block)
213 {
214 	char verity_env[DM_VERITY_ENV_LENGTH];
215 	char *envp[] = { verity_env, NULL };
216 	const char *type_str = "";
217 	struct mapped_device *md = dm_table_get_md(v->ti->table);
218 
219 	/* Corruption should be visible in device status in all modes */
220 	v->hash_failed = 1;
221 
222 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
223 		goto out;
224 
225 	v->corrupted_errs++;
226 
227 	switch (type) {
228 	case DM_VERITY_BLOCK_TYPE_DATA:
229 		type_str = "data";
230 		break;
231 	case DM_VERITY_BLOCK_TYPE_METADATA:
232 		type_str = "metadata";
233 		break;
234 	default:
235 		BUG();
236 	}
237 
238 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
239 		    type_str, block);
240 
241 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
242 		DMERR("%s: reached maximum errors", v->data_dev->name);
243 
244 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
245 		DM_VERITY_ENV_VAR_NAME, type, block);
246 
247 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
248 
249 out:
250 	if (v->mode == DM_VERITY_MODE_LOGGING)
251 		return 0;
252 
253 	if (v->mode == DM_VERITY_MODE_RESTART)
254 		kernel_restart("dm-verity device corrupted");
255 
256 	return 1;
257 }
258 
259 /*
260  * Verify hash of a metadata block pertaining to the specified data block
261  * ("block" argument) at a specified level ("level" argument).
262  *
263  * On successful return, verity_io_want_digest(v, io) contains the hash value
264  * for a lower tree level or for the data block (if we're at the lowest level).
265  *
266  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
267  * If "skip_unverified" is false, unverified buffer is hashed and verified
268  * against current value of verity_io_want_digest(v, io).
269  */
270 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
271 			       sector_t block, int level, bool skip_unverified,
272 			       u8 *want_digest)
273 {
274 	struct dm_buffer *buf;
275 	struct buffer_aux *aux;
276 	u8 *data;
277 	int r;
278 	sector_t hash_block;
279 	unsigned offset;
280 
281 	verity_hash_at_level(v, block, level, &hash_block, &offset);
282 
283 	data = dm_bufio_read(v->bufio, hash_block, &buf);
284 	if (IS_ERR(data))
285 		return PTR_ERR(data);
286 
287 	aux = dm_bufio_get_aux_data(buf);
288 
289 	if (!aux->hash_verified) {
290 		if (skip_unverified) {
291 			r = 1;
292 			goto release_ret_r;
293 		}
294 
295 		r = verity_hash(v, verity_io_hash_req(v, io),
296 				data, 1 << v->hash_dev_block_bits,
297 				verity_io_real_digest(v, io));
298 		if (unlikely(r < 0))
299 			goto release_ret_r;
300 
301 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
302 				  v->digest_size) == 0))
303 			aux->hash_verified = 1;
304 		else if (verity_fec_decode(v, io,
305 					   DM_VERITY_BLOCK_TYPE_METADATA,
306 					   hash_block, data, NULL) == 0)
307 			aux->hash_verified = 1;
308 		else if (verity_handle_err(v,
309 					   DM_VERITY_BLOCK_TYPE_METADATA,
310 					   hash_block)) {
311 			r = -EIO;
312 			goto release_ret_r;
313 		}
314 	}
315 
316 	data += offset;
317 	memcpy(want_digest, data, v->digest_size);
318 	r = 0;
319 
320 release_ret_r:
321 	dm_bufio_release(buf);
322 	return r;
323 }
324 
325 /*
326  * Find a hash for a given block, write it to digest and verify the integrity
327  * of the hash tree if necessary.
328  */
329 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
330 			  sector_t block, u8 *digest, bool *is_zero)
331 {
332 	int r = 0, i;
333 
334 	if (likely(v->levels)) {
335 		/*
336 		 * First, we try to get the requested hash for
337 		 * the current block. If the hash block itself is
338 		 * verified, zero is returned. If it isn't, this
339 		 * function returns 1 and we fall back to whole
340 		 * chain verification.
341 		 */
342 		r = verity_verify_level(v, io, block, 0, true, digest);
343 		if (likely(r <= 0))
344 			goto out;
345 	}
346 
347 	memcpy(digest, v->root_digest, v->digest_size);
348 
349 	for (i = v->levels - 1; i >= 0; i--) {
350 		r = verity_verify_level(v, io, block, i, false, digest);
351 		if (unlikely(r))
352 			goto out;
353 	}
354 out:
355 	if (!r && v->zero_digest)
356 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
357 	else
358 		*is_zero = false;
359 
360 	return r;
361 }
362 
363 /*
364  * Calculates the digest for the given bio
365  */
366 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
367 			       struct bvec_iter *iter, struct crypto_wait *wait)
368 {
369 	unsigned int todo = 1 << v->data_dev_block_bits;
370 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
371 	struct scatterlist sg;
372 	struct ahash_request *req = verity_io_hash_req(v, io);
373 
374 	do {
375 		int r;
376 		unsigned int len;
377 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
378 
379 		sg_init_table(&sg, 1);
380 
381 		len = bv.bv_len;
382 
383 		if (likely(len >= todo))
384 			len = todo;
385 		/*
386 		 * Operating on a single page at a time looks suboptimal
387 		 * until you consider the typical block size is 4,096B.
388 		 * Going through this loops twice should be very rare.
389 		 */
390 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
391 		ahash_request_set_crypt(req, &sg, NULL, len);
392 		r = crypto_wait_req(crypto_ahash_update(req), wait);
393 
394 		if (unlikely(r < 0)) {
395 			DMERR("verity_for_io_block crypto op failed: %d", r);
396 			return r;
397 		}
398 
399 		bio_advance_iter(bio, iter, len);
400 		todo -= len;
401 	} while (todo);
402 
403 	return 0;
404 }
405 
406 /*
407  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
408  * starting from iter.
409  */
410 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
411 			struct bvec_iter *iter,
412 			int (*process)(struct dm_verity *v,
413 				       struct dm_verity_io *io, u8 *data,
414 				       size_t len))
415 {
416 	unsigned todo = 1 << v->data_dev_block_bits;
417 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
418 
419 	do {
420 		int r;
421 		u8 *page;
422 		unsigned len;
423 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
424 
425 		page = kmap_atomic(bv.bv_page);
426 		len = bv.bv_len;
427 
428 		if (likely(len >= todo))
429 			len = todo;
430 
431 		r = process(v, io, page + bv.bv_offset, len);
432 		kunmap_atomic(page);
433 
434 		if (r < 0)
435 			return r;
436 
437 		bio_advance_iter(bio, iter, len);
438 		todo -= len;
439 	} while (todo);
440 
441 	return 0;
442 }
443 
444 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
445 			  u8 *data, size_t len)
446 {
447 	memset(data, 0, len);
448 	return 0;
449 }
450 
451 /*
452  * Moves the bio iter one data block forward.
453  */
454 static inline void verity_bv_skip_block(struct dm_verity *v,
455 					struct dm_verity_io *io,
456 					struct bvec_iter *iter)
457 {
458 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
459 
460 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
461 }
462 
463 /*
464  * Verify one "dm_verity_io" structure.
465  */
466 static int verity_verify_io(struct dm_verity_io *io)
467 {
468 	bool is_zero;
469 	struct dm_verity *v = io->v;
470 	struct bvec_iter start;
471 	unsigned b;
472 	struct crypto_wait wait;
473 
474 	for (b = 0; b < io->n_blocks; b++) {
475 		int r;
476 		sector_t cur_block = io->block + b;
477 		struct ahash_request *req = verity_io_hash_req(v, io);
478 
479 		if (v->validated_blocks &&
480 		    likely(test_bit(cur_block, v->validated_blocks))) {
481 			verity_bv_skip_block(v, io, &io->iter);
482 			continue;
483 		}
484 
485 		r = verity_hash_for_block(v, io, cur_block,
486 					  verity_io_want_digest(v, io),
487 					  &is_zero);
488 		if (unlikely(r < 0))
489 			return r;
490 
491 		if (is_zero) {
492 			/*
493 			 * If we expect a zero block, don't validate, just
494 			 * return zeros.
495 			 */
496 			r = verity_for_bv_block(v, io, &io->iter,
497 						verity_bv_zero);
498 			if (unlikely(r < 0))
499 				return r;
500 
501 			continue;
502 		}
503 
504 		r = verity_hash_init(v, req, &wait);
505 		if (unlikely(r < 0))
506 			return r;
507 
508 		start = io->iter;
509 		r = verity_for_io_block(v, io, &io->iter, &wait);
510 		if (unlikely(r < 0))
511 			return r;
512 
513 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
514 					&wait);
515 		if (unlikely(r < 0))
516 			return r;
517 
518 		if (likely(memcmp(verity_io_real_digest(v, io),
519 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
520 			if (v->validated_blocks)
521 				set_bit(cur_block, v->validated_blocks);
522 			continue;
523 		}
524 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
525 					   cur_block, NULL, &start) == 0)
526 			continue;
527 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
528 					   cur_block))
529 			return -EIO;
530 	}
531 
532 	return 0;
533 }
534 
535 /*
536  * End one "io" structure with a given error.
537  */
538 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
539 {
540 	struct dm_verity *v = io->v;
541 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
542 
543 	bio->bi_end_io = io->orig_bi_end_io;
544 	bio->bi_status = status;
545 
546 	verity_fec_finish_io(io);
547 
548 	bio_endio(bio);
549 }
550 
551 static void verity_work(struct work_struct *w)
552 {
553 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
554 
555 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
556 }
557 
558 static void verity_end_io(struct bio *bio)
559 {
560 	struct dm_verity_io *io = bio->bi_private;
561 
562 	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
563 		verity_finish_io(io, bio->bi_status);
564 		return;
565 	}
566 
567 	INIT_WORK(&io->work, verity_work);
568 	queue_work(io->v->verify_wq, &io->work);
569 }
570 
571 /*
572  * Prefetch buffers for the specified io.
573  * The root buffer is not prefetched, it is assumed that it will be cached
574  * all the time.
575  */
576 static void verity_prefetch_io(struct work_struct *work)
577 {
578 	struct dm_verity_prefetch_work *pw =
579 		container_of(work, struct dm_verity_prefetch_work, work);
580 	struct dm_verity *v = pw->v;
581 	int i;
582 
583 	for (i = v->levels - 2; i >= 0; i--) {
584 		sector_t hash_block_start;
585 		sector_t hash_block_end;
586 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
587 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
588 		if (!i) {
589 			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
590 
591 			cluster >>= v->data_dev_block_bits;
592 			if (unlikely(!cluster))
593 				goto no_prefetch_cluster;
594 
595 			if (unlikely(cluster & (cluster - 1)))
596 				cluster = 1 << __fls(cluster);
597 
598 			hash_block_start &= ~(sector_t)(cluster - 1);
599 			hash_block_end |= cluster - 1;
600 			if (unlikely(hash_block_end >= v->hash_blocks))
601 				hash_block_end = v->hash_blocks - 1;
602 		}
603 no_prefetch_cluster:
604 		dm_bufio_prefetch(v->bufio, hash_block_start,
605 				  hash_block_end - hash_block_start + 1);
606 	}
607 
608 	kfree(pw);
609 }
610 
611 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
612 {
613 	struct dm_verity_prefetch_work *pw;
614 
615 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
616 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
617 
618 	if (!pw)
619 		return;
620 
621 	INIT_WORK(&pw->work, verity_prefetch_io);
622 	pw->v = v;
623 	pw->block = io->block;
624 	pw->n_blocks = io->n_blocks;
625 	queue_work(v->verify_wq, &pw->work);
626 }
627 
628 /*
629  * Bio map function. It allocates dm_verity_io structure and bio vector and
630  * fills them. Then it issues prefetches and the I/O.
631  */
632 static int verity_map(struct dm_target *ti, struct bio *bio)
633 {
634 	struct dm_verity *v = ti->private;
635 	struct dm_verity_io *io;
636 
637 	bio_set_dev(bio, v->data_dev->bdev);
638 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
639 
640 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
641 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
642 		DMERR_LIMIT("unaligned io");
643 		return DM_MAPIO_KILL;
644 	}
645 
646 	if (bio_end_sector(bio) >>
647 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
648 		DMERR_LIMIT("io out of range");
649 		return DM_MAPIO_KILL;
650 	}
651 
652 	if (bio_data_dir(bio) == WRITE)
653 		return DM_MAPIO_KILL;
654 
655 	io = dm_per_bio_data(bio, ti->per_io_data_size);
656 	io->v = v;
657 	io->orig_bi_end_io = bio->bi_end_io;
658 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
659 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
660 
661 	bio->bi_end_io = verity_end_io;
662 	bio->bi_private = io;
663 	io->iter = bio->bi_iter;
664 
665 	verity_fec_init_io(io);
666 
667 	verity_submit_prefetch(v, io);
668 
669 	generic_make_request(bio);
670 
671 	return DM_MAPIO_SUBMITTED;
672 }
673 
674 /*
675  * Status: V (valid) or C (corruption found)
676  */
677 static void verity_status(struct dm_target *ti, status_type_t type,
678 			  unsigned status_flags, char *result, unsigned maxlen)
679 {
680 	struct dm_verity *v = ti->private;
681 	unsigned args = 0;
682 	unsigned sz = 0;
683 	unsigned x;
684 
685 	switch (type) {
686 	case STATUSTYPE_INFO:
687 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
688 		break;
689 	case STATUSTYPE_TABLE:
690 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
691 			v->version,
692 			v->data_dev->name,
693 			v->hash_dev->name,
694 			1 << v->data_dev_block_bits,
695 			1 << v->hash_dev_block_bits,
696 			(unsigned long long)v->data_blocks,
697 			(unsigned long long)v->hash_start,
698 			v->alg_name
699 			);
700 		for (x = 0; x < v->digest_size; x++)
701 			DMEMIT("%02x", v->root_digest[x]);
702 		DMEMIT(" ");
703 		if (!v->salt_size)
704 			DMEMIT("-");
705 		else
706 			for (x = 0; x < v->salt_size; x++)
707 				DMEMIT("%02x", v->salt[x]);
708 		if (v->mode != DM_VERITY_MODE_EIO)
709 			args++;
710 		if (verity_fec_is_enabled(v))
711 			args += DM_VERITY_OPTS_FEC;
712 		if (v->zero_digest)
713 			args++;
714 		if (v->validated_blocks)
715 			args++;
716 		if (!args)
717 			return;
718 		DMEMIT(" %u", args);
719 		if (v->mode != DM_VERITY_MODE_EIO) {
720 			DMEMIT(" ");
721 			switch (v->mode) {
722 			case DM_VERITY_MODE_LOGGING:
723 				DMEMIT(DM_VERITY_OPT_LOGGING);
724 				break;
725 			case DM_VERITY_MODE_RESTART:
726 				DMEMIT(DM_VERITY_OPT_RESTART);
727 				break;
728 			default:
729 				BUG();
730 			}
731 		}
732 		if (v->zero_digest)
733 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
734 		if (v->validated_blocks)
735 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
736 		sz = verity_fec_status_table(v, sz, result, maxlen);
737 		break;
738 	}
739 }
740 
741 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
742 {
743 	struct dm_verity *v = ti->private;
744 
745 	*bdev = v->data_dev->bdev;
746 
747 	if (v->data_start ||
748 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
749 		return 1;
750 	return 0;
751 }
752 
753 static int verity_iterate_devices(struct dm_target *ti,
754 				  iterate_devices_callout_fn fn, void *data)
755 {
756 	struct dm_verity *v = ti->private;
757 
758 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
759 }
760 
761 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
762 {
763 	struct dm_verity *v = ti->private;
764 
765 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
766 		limits->logical_block_size = 1 << v->data_dev_block_bits;
767 
768 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
769 		limits->physical_block_size = 1 << v->data_dev_block_bits;
770 
771 	blk_limits_io_min(limits, limits->logical_block_size);
772 }
773 
774 static void verity_dtr(struct dm_target *ti)
775 {
776 	struct dm_verity *v = ti->private;
777 
778 	if (v->verify_wq)
779 		destroy_workqueue(v->verify_wq);
780 
781 	if (v->bufio)
782 		dm_bufio_client_destroy(v->bufio);
783 
784 	kvfree(v->validated_blocks);
785 	kfree(v->salt);
786 	kfree(v->root_digest);
787 	kfree(v->zero_digest);
788 
789 	if (v->tfm)
790 		crypto_free_ahash(v->tfm);
791 
792 	kfree(v->alg_name);
793 
794 	if (v->hash_dev)
795 		dm_put_device(ti, v->hash_dev);
796 
797 	if (v->data_dev)
798 		dm_put_device(ti, v->data_dev);
799 
800 	verity_fec_dtr(v);
801 
802 	kfree(v);
803 }
804 
805 static int verity_alloc_most_once(struct dm_verity *v)
806 {
807 	struct dm_target *ti = v->ti;
808 
809 	/* the bitset can only handle INT_MAX blocks */
810 	if (v->data_blocks > INT_MAX) {
811 		ti->error = "device too large to use check_at_most_once";
812 		return -E2BIG;
813 	}
814 
815 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
816 				       sizeof(unsigned long),
817 				       GFP_KERNEL);
818 	if (!v->validated_blocks) {
819 		ti->error = "failed to allocate bitset for check_at_most_once";
820 		return -ENOMEM;
821 	}
822 
823 	return 0;
824 }
825 
826 static int verity_alloc_zero_digest(struct dm_verity *v)
827 {
828 	int r = -ENOMEM;
829 	struct ahash_request *req;
830 	u8 *zero_data;
831 
832 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
833 
834 	if (!v->zero_digest)
835 		return r;
836 
837 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
838 
839 	if (!req)
840 		return r; /* verity_dtr will free zero_digest */
841 
842 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
843 
844 	if (!zero_data)
845 		goto out;
846 
847 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
848 			v->zero_digest);
849 
850 out:
851 	kfree(req);
852 	kfree(zero_data);
853 
854 	return r;
855 }
856 
857 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
858 {
859 	int r;
860 	unsigned argc;
861 	struct dm_target *ti = v->ti;
862 	const char *arg_name;
863 
864 	static const struct dm_arg _args[] = {
865 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
866 	};
867 
868 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
869 	if (r)
870 		return -EINVAL;
871 
872 	if (!argc)
873 		return 0;
874 
875 	do {
876 		arg_name = dm_shift_arg(as);
877 		argc--;
878 
879 		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
880 			v->mode = DM_VERITY_MODE_LOGGING;
881 			continue;
882 
883 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
884 			v->mode = DM_VERITY_MODE_RESTART;
885 			continue;
886 
887 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
888 			r = verity_alloc_zero_digest(v);
889 			if (r) {
890 				ti->error = "Cannot allocate zero digest";
891 				return r;
892 			}
893 			continue;
894 
895 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
896 			r = verity_alloc_most_once(v);
897 			if (r)
898 				return r;
899 			continue;
900 
901 		} else if (verity_is_fec_opt_arg(arg_name)) {
902 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
903 			if (r)
904 				return r;
905 			continue;
906 		}
907 
908 		ti->error = "Unrecognized verity feature request";
909 		return -EINVAL;
910 	} while (argc && !r);
911 
912 	return r;
913 }
914 
915 /*
916  * Target parameters:
917  *	<version>	The current format is version 1.
918  *			Vsn 0 is compatible with original Chromium OS releases.
919  *	<data device>
920  *	<hash device>
921  *	<data block size>
922  *	<hash block size>
923  *	<the number of data blocks>
924  *	<hash start block>
925  *	<algorithm>
926  *	<digest>
927  *	<salt>		Hex string or "-" if no salt.
928  */
929 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
930 {
931 	struct dm_verity *v;
932 	struct dm_arg_set as;
933 	unsigned int num;
934 	unsigned long long num_ll;
935 	int r;
936 	int i;
937 	sector_t hash_position;
938 	char dummy;
939 
940 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
941 	if (!v) {
942 		ti->error = "Cannot allocate verity structure";
943 		return -ENOMEM;
944 	}
945 	ti->private = v;
946 	v->ti = ti;
947 
948 	r = verity_fec_ctr_alloc(v);
949 	if (r)
950 		goto bad;
951 
952 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
953 		ti->error = "Device must be readonly";
954 		r = -EINVAL;
955 		goto bad;
956 	}
957 
958 	if (argc < 10) {
959 		ti->error = "Not enough arguments";
960 		r = -EINVAL;
961 		goto bad;
962 	}
963 
964 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
965 	    num > 1) {
966 		ti->error = "Invalid version";
967 		r = -EINVAL;
968 		goto bad;
969 	}
970 	v->version = num;
971 
972 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
973 	if (r) {
974 		ti->error = "Data device lookup failed";
975 		goto bad;
976 	}
977 
978 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
979 	if (r) {
980 		ti->error = "Hash device lookup failed";
981 		goto bad;
982 	}
983 
984 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
985 	    !num || (num & (num - 1)) ||
986 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
987 	    num > PAGE_SIZE) {
988 		ti->error = "Invalid data device block size";
989 		r = -EINVAL;
990 		goto bad;
991 	}
992 	v->data_dev_block_bits = __ffs(num);
993 
994 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
995 	    !num || (num & (num - 1)) ||
996 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
997 	    num > INT_MAX) {
998 		ti->error = "Invalid hash device block size";
999 		r = -EINVAL;
1000 		goto bad;
1001 	}
1002 	v->hash_dev_block_bits = __ffs(num);
1003 
1004 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1005 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1006 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1007 		ti->error = "Invalid data blocks";
1008 		r = -EINVAL;
1009 		goto bad;
1010 	}
1011 	v->data_blocks = num_ll;
1012 
1013 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1014 		ti->error = "Data device is too small";
1015 		r = -EINVAL;
1016 		goto bad;
1017 	}
1018 
1019 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1020 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1021 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1022 		ti->error = "Invalid hash start";
1023 		r = -EINVAL;
1024 		goto bad;
1025 	}
1026 	v->hash_start = num_ll;
1027 
1028 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1029 	if (!v->alg_name) {
1030 		ti->error = "Cannot allocate algorithm name";
1031 		r = -ENOMEM;
1032 		goto bad;
1033 	}
1034 
1035 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1036 	if (IS_ERR(v->tfm)) {
1037 		ti->error = "Cannot initialize hash function";
1038 		r = PTR_ERR(v->tfm);
1039 		v->tfm = NULL;
1040 		goto bad;
1041 	}
1042 
1043 	/*
1044 	 * dm-verity performance can vary greatly depending on which hash
1045 	 * algorithm implementation is used.  Help people debug performance
1046 	 * problems by logging the ->cra_driver_name.
1047 	 */
1048 	DMINFO("%s using implementation \"%s\"", v->alg_name,
1049 	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1050 
1051 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1052 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1053 		ti->error = "Digest size too big";
1054 		r = -EINVAL;
1055 		goto bad;
1056 	}
1057 	v->ahash_reqsize = sizeof(struct ahash_request) +
1058 		crypto_ahash_reqsize(v->tfm);
1059 
1060 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1061 	if (!v->root_digest) {
1062 		ti->error = "Cannot allocate root digest";
1063 		r = -ENOMEM;
1064 		goto bad;
1065 	}
1066 	if (strlen(argv[8]) != v->digest_size * 2 ||
1067 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1068 		ti->error = "Invalid root digest";
1069 		r = -EINVAL;
1070 		goto bad;
1071 	}
1072 
1073 	if (strcmp(argv[9], "-")) {
1074 		v->salt_size = strlen(argv[9]) / 2;
1075 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1076 		if (!v->salt) {
1077 			ti->error = "Cannot allocate salt";
1078 			r = -ENOMEM;
1079 			goto bad;
1080 		}
1081 		if (strlen(argv[9]) != v->salt_size * 2 ||
1082 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1083 			ti->error = "Invalid salt";
1084 			r = -EINVAL;
1085 			goto bad;
1086 		}
1087 	}
1088 
1089 	argv += 10;
1090 	argc -= 10;
1091 
1092 	/* Optional parameters */
1093 	if (argc) {
1094 		as.argc = argc;
1095 		as.argv = argv;
1096 
1097 		r = verity_parse_opt_args(&as, v);
1098 		if (r < 0)
1099 			goto bad;
1100 	}
1101 
1102 	v->hash_per_block_bits =
1103 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1104 
1105 	v->levels = 0;
1106 	if (v->data_blocks)
1107 		while (v->hash_per_block_bits * v->levels < 64 &&
1108 		       (unsigned long long)(v->data_blocks - 1) >>
1109 		       (v->hash_per_block_bits * v->levels))
1110 			v->levels++;
1111 
1112 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1113 		ti->error = "Too many tree levels";
1114 		r = -E2BIG;
1115 		goto bad;
1116 	}
1117 
1118 	hash_position = v->hash_start;
1119 	for (i = v->levels - 1; i >= 0; i--) {
1120 		sector_t s;
1121 		v->hash_level_block[i] = hash_position;
1122 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1123 					>> ((i + 1) * v->hash_per_block_bits);
1124 		if (hash_position + s < hash_position) {
1125 			ti->error = "Hash device offset overflow";
1126 			r = -E2BIG;
1127 			goto bad;
1128 		}
1129 		hash_position += s;
1130 	}
1131 	v->hash_blocks = hash_position;
1132 
1133 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1134 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1135 		dm_bufio_alloc_callback, NULL);
1136 	if (IS_ERR(v->bufio)) {
1137 		ti->error = "Cannot initialize dm-bufio";
1138 		r = PTR_ERR(v->bufio);
1139 		v->bufio = NULL;
1140 		goto bad;
1141 	}
1142 
1143 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1144 		ti->error = "Hash device is too small";
1145 		r = -E2BIG;
1146 		goto bad;
1147 	}
1148 
1149 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1150 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1151 	if (!v->verify_wq) {
1152 		ti->error = "Cannot allocate workqueue";
1153 		r = -ENOMEM;
1154 		goto bad;
1155 	}
1156 
1157 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1158 				v->ahash_reqsize + v->digest_size * 2;
1159 
1160 	r = verity_fec_ctr(v);
1161 	if (r)
1162 		goto bad;
1163 
1164 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1165 				       __alignof__(struct dm_verity_io));
1166 
1167 	return 0;
1168 
1169 bad:
1170 	verity_dtr(ti);
1171 
1172 	return r;
1173 }
1174 
1175 static struct target_type verity_target = {
1176 	.name		= "verity",
1177 	.version	= {1, 4, 0},
1178 	.module		= THIS_MODULE,
1179 	.ctr		= verity_ctr,
1180 	.dtr		= verity_dtr,
1181 	.map		= verity_map,
1182 	.status		= verity_status,
1183 	.prepare_ioctl	= verity_prepare_ioctl,
1184 	.iterate_devices = verity_iterate_devices,
1185 	.io_hints	= verity_io_hints,
1186 };
1187 
1188 static int __init dm_verity_init(void)
1189 {
1190 	int r;
1191 
1192 	r = dm_register_target(&verity_target);
1193 	if (r < 0)
1194 		DMERR("register failed %d", r);
1195 
1196 	return r;
1197 }
1198 
1199 static void __exit dm_verity_exit(void)
1200 {
1201 	dm_unregister_target(&verity_target);
1202 }
1203 
1204 module_init(dm_verity_init);
1205 module_exit(dm_verity_exit);
1206 
1207 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1208 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1209 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1210 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1211 MODULE_LICENSE("GPL");
1212