xref: /openbmc/linux/drivers/md/dm-verity-target.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16 
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19 
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 
23 #define DM_MSG_PREFIX			"verity"
24 
25 #define DM_VERITY_ENV_LENGTH		42
26 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
27 
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
29 
30 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
31 
32 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
33 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
35 
36 #define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
37 
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39 
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41 
42 struct dm_verity_prefetch_work {
43 	struct work_struct work;
44 	struct dm_verity *v;
45 	sector_t block;
46 	unsigned n_blocks;
47 };
48 
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62 	int hash_verified;
63 };
64 
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71 
72 	aux->hash_verified = 0;
73 }
74 
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80 	return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82 
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90 					 int level)
91 {
92 	return block >> (level * v->hash_per_block_bits);
93 }
94 
95 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
96 				const u8 *data, size_t len,
97 				struct crypto_wait *wait)
98 {
99 	struct scatterlist sg;
100 
101 	sg_init_one(&sg, data, len);
102 	ahash_request_set_crypt(req, &sg, NULL, len);
103 
104 	return crypto_wait_req(crypto_ahash_update(req), wait);
105 }
106 
107 /*
108  * Wrapper for crypto_ahash_init, which handles verity salting.
109  */
110 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
111 				struct crypto_wait *wait)
112 {
113 	int r;
114 
115 	ahash_request_set_tfm(req, v->tfm);
116 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
117 					CRYPTO_TFM_REQ_MAY_BACKLOG,
118 					crypto_req_done, (void *)wait);
119 	crypto_init_wait(wait);
120 
121 	r = crypto_wait_req(crypto_ahash_init(req), wait);
122 
123 	if (unlikely(r < 0)) {
124 		DMERR("crypto_ahash_init failed: %d", r);
125 		return r;
126 	}
127 
128 	if (likely(v->salt_size && (v->version >= 1)))
129 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
130 
131 	return r;
132 }
133 
134 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
135 			     u8 *digest, struct crypto_wait *wait)
136 {
137 	int r;
138 
139 	if (unlikely(v->salt_size && (!v->version))) {
140 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
141 
142 		if (r < 0) {
143 			DMERR("verity_hash_final failed updating salt: %d", r);
144 			goto out;
145 		}
146 	}
147 
148 	ahash_request_set_crypt(req, NULL, digest, 0);
149 	r = crypto_wait_req(crypto_ahash_final(req), wait);
150 out:
151 	return r;
152 }
153 
154 int verity_hash(struct dm_verity *v, struct ahash_request *req,
155 		const u8 *data, size_t len, u8 *digest)
156 {
157 	int r;
158 	struct crypto_wait wait;
159 
160 	r = verity_hash_init(v, req, &wait);
161 	if (unlikely(r < 0))
162 		goto out;
163 
164 	r = verity_hash_update(v, req, data, len, &wait);
165 	if (unlikely(r < 0))
166 		goto out;
167 
168 	r = verity_hash_final(v, req, digest, &wait);
169 
170 out:
171 	return r;
172 }
173 
174 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
175 				 sector_t *hash_block, unsigned *offset)
176 {
177 	sector_t position = verity_position_at_level(v, block, level);
178 	unsigned idx;
179 
180 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
181 
182 	if (!offset)
183 		return;
184 
185 	idx = position & ((1 << v->hash_per_block_bits) - 1);
186 	if (!v->version)
187 		*offset = idx * v->digest_size;
188 	else
189 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
190 }
191 
192 /*
193  * Handle verification errors.
194  */
195 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
196 			     unsigned long long block)
197 {
198 	char verity_env[DM_VERITY_ENV_LENGTH];
199 	char *envp[] = { verity_env, NULL };
200 	const char *type_str = "";
201 	struct mapped_device *md = dm_table_get_md(v->ti->table);
202 
203 	/* Corruption should be visible in device status in all modes */
204 	v->hash_failed = 1;
205 
206 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
207 		goto out;
208 
209 	v->corrupted_errs++;
210 
211 	switch (type) {
212 	case DM_VERITY_BLOCK_TYPE_DATA:
213 		type_str = "data";
214 		break;
215 	case DM_VERITY_BLOCK_TYPE_METADATA:
216 		type_str = "metadata";
217 		break;
218 	default:
219 		BUG();
220 	}
221 
222 	DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
223 		block);
224 
225 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
226 		DMERR("%s: reached maximum errors", v->data_dev->name);
227 
228 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
229 		DM_VERITY_ENV_VAR_NAME, type, block);
230 
231 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
232 
233 out:
234 	if (v->mode == DM_VERITY_MODE_LOGGING)
235 		return 0;
236 
237 	if (v->mode == DM_VERITY_MODE_RESTART)
238 		kernel_restart("dm-verity device corrupted");
239 
240 	return 1;
241 }
242 
243 /*
244  * Verify hash of a metadata block pertaining to the specified data block
245  * ("block" argument) at a specified level ("level" argument).
246  *
247  * On successful return, verity_io_want_digest(v, io) contains the hash value
248  * for a lower tree level or for the data block (if we're at the lowest level).
249  *
250  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
251  * If "skip_unverified" is false, unverified buffer is hashed and verified
252  * against current value of verity_io_want_digest(v, io).
253  */
254 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
255 			       sector_t block, int level, bool skip_unverified,
256 			       u8 *want_digest)
257 {
258 	struct dm_buffer *buf;
259 	struct buffer_aux *aux;
260 	u8 *data;
261 	int r;
262 	sector_t hash_block;
263 	unsigned offset;
264 
265 	verity_hash_at_level(v, block, level, &hash_block, &offset);
266 
267 	data = dm_bufio_read(v->bufio, hash_block, &buf);
268 	if (IS_ERR(data))
269 		return PTR_ERR(data);
270 
271 	aux = dm_bufio_get_aux_data(buf);
272 
273 	if (!aux->hash_verified) {
274 		if (skip_unverified) {
275 			r = 1;
276 			goto release_ret_r;
277 		}
278 
279 		r = verity_hash(v, verity_io_hash_req(v, io),
280 				data, 1 << v->hash_dev_block_bits,
281 				verity_io_real_digest(v, io));
282 		if (unlikely(r < 0))
283 			goto release_ret_r;
284 
285 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
286 				  v->digest_size) == 0))
287 			aux->hash_verified = 1;
288 		else if (verity_fec_decode(v, io,
289 					   DM_VERITY_BLOCK_TYPE_METADATA,
290 					   hash_block, data, NULL) == 0)
291 			aux->hash_verified = 1;
292 		else if (verity_handle_err(v,
293 					   DM_VERITY_BLOCK_TYPE_METADATA,
294 					   hash_block)) {
295 			r = -EIO;
296 			goto release_ret_r;
297 		}
298 	}
299 
300 	data += offset;
301 	memcpy(want_digest, data, v->digest_size);
302 	r = 0;
303 
304 release_ret_r:
305 	dm_bufio_release(buf);
306 	return r;
307 }
308 
309 /*
310  * Find a hash for a given block, write it to digest and verify the integrity
311  * of the hash tree if necessary.
312  */
313 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
314 			  sector_t block, u8 *digest, bool *is_zero)
315 {
316 	int r = 0, i;
317 
318 	if (likely(v->levels)) {
319 		/*
320 		 * First, we try to get the requested hash for
321 		 * the current block. If the hash block itself is
322 		 * verified, zero is returned. If it isn't, this
323 		 * function returns 1 and we fall back to whole
324 		 * chain verification.
325 		 */
326 		r = verity_verify_level(v, io, block, 0, true, digest);
327 		if (likely(r <= 0))
328 			goto out;
329 	}
330 
331 	memcpy(digest, v->root_digest, v->digest_size);
332 
333 	for (i = v->levels - 1; i >= 0; i--) {
334 		r = verity_verify_level(v, io, block, i, false, digest);
335 		if (unlikely(r))
336 			goto out;
337 	}
338 out:
339 	if (!r && v->zero_digest)
340 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
341 	else
342 		*is_zero = false;
343 
344 	return r;
345 }
346 
347 /*
348  * Calculates the digest for the given bio
349  */
350 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
351 			struct bvec_iter *iter, struct crypto_wait *wait)
352 {
353 	unsigned int todo = 1 << v->data_dev_block_bits;
354 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
355 	struct scatterlist sg;
356 	struct ahash_request *req = verity_io_hash_req(v, io);
357 
358 	do {
359 		int r;
360 		unsigned int len;
361 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
362 
363 		sg_init_table(&sg, 1);
364 
365 		len = bv.bv_len;
366 
367 		if (likely(len >= todo))
368 			len = todo;
369 		/*
370 		 * Operating on a single page at a time looks suboptimal
371 		 * until you consider the typical block size is 4,096B.
372 		 * Going through this loops twice should be very rare.
373 		 */
374 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
375 		ahash_request_set_crypt(req, &sg, NULL, len);
376 		r = crypto_wait_req(crypto_ahash_update(req), wait);
377 
378 		if (unlikely(r < 0)) {
379 			DMERR("verity_for_io_block crypto op failed: %d", r);
380 			return r;
381 		}
382 
383 		bio_advance_iter(bio, iter, len);
384 		todo -= len;
385 	} while (todo);
386 
387 	return 0;
388 }
389 
390 /*
391  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
392  * starting from iter.
393  */
394 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
395 			struct bvec_iter *iter,
396 			int (*process)(struct dm_verity *v,
397 				       struct dm_verity_io *io, u8 *data,
398 				       size_t len))
399 {
400 	unsigned todo = 1 << v->data_dev_block_bits;
401 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
402 
403 	do {
404 		int r;
405 		u8 *page;
406 		unsigned len;
407 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
408 
409 		page = kmap_atomic(bv.bv_page);
410 		len = bv.bv_len;
411 
412 		if (likely(len >= todo))
413 			len = todo;
414 
415 		r = process(v, io, page + bv.bv_offset, len);
416 		kunmap_atomic(page);
417 
418 		if (r < 0)
419 			return r;
420 
421 		bio_advance_iter(bio, iter, len);
422 		todo -= len;
423 	} while (todo);
424 
425 	return 0;
426 }
427 
428 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
429 			  u8 *data, size_t len)
430 {
431 	memset(data, 0, len);
432 	return 0;
433 }
434 
435 /*
436  * Verify one "dm_verity_io" structure.
437  */
438 static int verity_verify_io(struct dm_verity_io *io)
439 {
440 	bool is_zero;
441 	struct dm_verity *v = io->v;
442 	struct bvec_iter start;
443 	unsigned b;
444 	struct crypto_wait wait;
445 
446 	for (b = 0; b < io->n_blocks; b++) {
447 		int r;
448 		struct ahash_request *req = verity_io_hash_req(v, io);
449 
450 		r = verity_hash_for_block(v, io, io->block + b,
451 					  verity_io_want_digest(v, io),
452 					  &is_zero);
453 		if (unlikely(r < 0))
454 			return r;
455 
456 		if (is_zero) {
457 			/*
458 			 * If we expect a zero block, don't validate, just
459 			 * return zeros.
460 			 */
461 			r = verity_for_bv_block(v, io, &io->iter,
462 						verity_bv_zero);
463 			if (unlikely(r < 0))
464 				return r;
465 
466 			continue;
467 		}
468 
469 		r = verity_hash_init(v, req, &wait);
470 		if (unlikely(r < 0))
471 			return r;
472 
473 		start = io->iter;
474 		r = verity_for_io_block(v, io, &io->iter, &wait);
475 		if (unlikely(r < 0))
476 			return r;
477 
478 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
479 					&wait);
480 		if (unlikely(r < 0))
481 			return r;
482 
483 		if (likely(memcmp(verity_io_real_digest(v, io),
484 				  verity_io_want_digest(v, io), v->digest_size) == 0))
485 			continue;
486 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
487 					   io->block + b, NULL, &start) == 0)
488 			continue;
489 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
490 					   io->block + b))
491 			return -EIO;
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * End one "io" structure with a given error.
499  */
500 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
501 {
502 	struct dm_verity *v = io->v;
503 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
504 
505 	bio->bi_end_io = io->orig_bi_end_io;
506 	bio->bi_status = status;
507 
508 	verity_fec_finish_io(io);
509 
510 	bio_endio(bio);
511 }
512 
513 static void verity_work(struct work_struct *w)
514 {
515 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
516 
517 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
518 }
519 
520 static void verity_end_io(struct bio *bio)
521 {
522 	struct dm_verity_io *io = bio->bi_private;
523 
524 	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
525 		verity_finish_io(io, bio->bi_status);
526 		return;
527 	}
528 
529 	INIT_WORK(&io->work, verity_work);
530 	queue_work(io->v->verify_wq, &io->work);
531 }
532 
533 /*
534  * Prefetch buffers for the specified io.
535  * The root buffer is not prefetched, it is assumed that it will be cached
536  * all the time.
537  */
538 static void verity_prefetch_io(struct work_struct *work)
539 {
540 	struct dm_verity_prefetch_work *pw =
541 		container_of(work, struct dm_verity_prefetch_work, work);
542 	struct dm_verity *v = pw->v;
543 	int i;
544 
545 	for (i = v->levels - 2; i >= 0; i--) {
546 		sector_t hash_block_start;
547 		sector_t hash_block_end;
548 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
549 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
550 		if (!i) {
551 			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
552 
553 			cluster >>= v->data_dev_block_bits;
554 			if (unlikely(!cluster))
555 				goto no_prefetch_cluster;
556 
557 			if (unlikely(cluster & (cluster - 1)))
558 				cluster = 1 << __fls(cluster);
559 
560 			hash_block_start &= ~(sector_t)(cluster - 1);
561 			hash_block_end |= cluster - 1;
562 			if (unlikely(hash_block_end >= v->hash_blocks))
563 				hash_block_end = v->hash_blocks - 1;
564 		}
565 no_prefetch_cluster:
566 		dm_bufio_prefetch(v->bufio, hash_block_start,
567 				  hash_block_end - hash_block_start + 1);
568 	}
569 
570 	kfree(pw);
571 }
572 
573 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
574 {
575 	struct dm_verity_prefetch_work *pw;
576 
577 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
578 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
579 
580 	if (!pw)
581 		return;
582 
583 	INIT_WORK(&pw->work, verity_prefetch_io);
584 	pw->v = v;
585 	pw->block = io->block;
586 	pw->n_blocks = io->n_blocks;
587 	queue_work(v->verify_wq, &pw->work);
588 }
589 
590 /*
591  * Bio map function. It allocates dm_verity_io structure and bio vector and
592  * fills them. Then it issues prefetches and the I/O.
593  */
594 static int verity_map(struct dm_target *ti, struct bio *bio)
595 {
596 	struct dm_verity *v = ti->private;
597 	struct dm_verity_io *io;
598 
599 	bio_set_dev(bio, v->data_dev->bdev);
600 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
601 
602 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
603 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
604 		DMERR_LIMIT("unaligned io");
605 		return DM_MAPIO_KILL;
606 	}
607 
608 	if (bio_end_sector(bio) >>
609 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
610 		DMERR_LIMIT("io out of range");
611 		return DM_MAPIO_KILL;
612 	}
613 
614 	if (bio_data_dir(bio) == WRITE)
615 		return DM_MAPIO_KILL;
616 
617 	io = dm_per_bio_data(bio, ti->per_io_data_size);
618 	io->v = v;
619 	io->orig_bi_end_io = bio->bi_end_io;
620 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
621 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
622 
623 	bio->bi_end_io = verity_end_io;
624 	bio->bi_private = io;
625 	io->iter = bio->bi_iter;
626 
627 	verity_fec_init_io(io);
628 
629 	verity_submit_prefetch(v, io);
630 
631 	generic_make_request(bio);
632 
633 	return DM_MAPIO_SUBMITTED;
634 }
635 
636 /*
637  * Status: V (valid) or C (corruption found)
638  */
639 static void verity_status(struct dm_target *ti, status_type_t type,
640 			  unsigned status_flags, char *result, unsigned maxlen)
641 {
642 	struct dm_verity *v = ti->private;
643 	unsigned args = 0;
644 	unsigned sz = 0;
645 	unsigned x;
646 
647 	switch (type) {
648 	case STATUSTYPE_INFO:
649 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
650 		break;
651 	case STATUSTYPE_TABLE:
652 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
653 			v->version,
654 			v->data_dev->name,
655 			v->hash_dev->name,
656 			1 << v->data_dev_block_bits,
657 			1 << v->hash_dev_block_bits,
658 			(unsigned long long)v->data_blocks,
659 			(unsigned long long)v->hash_start,
660 			v->alg_name
661 			);
662 		for (x = 0; x < v->digest_size; x++)
663 			DMEMIT("%02x", v->root_digest[x]);
664 		DMEMIT(" ");
665 		if (!v->salt_size)
666 			DMEMIT("-");
667 		else
668 			for (x = 0; x < v->salt_size; x++)
669 				DMEMIT("%02x", v->salt[x]);
670 		if (v->mode != DM_VERITY_MODE_EIO)
671 			args++;
672 		if (verity_fec_is_enabled(v))
673 			args += DM_VERITY_OPTS_FEC;
674 		if (v->zero_digest)
675 			args++;
676 		if (!args)
677 			return;
678 		DMEMIT(" %u", args);
679 		if (v->mode != DM_VERITY_MODE_EIO) {
680 			DMEMIT(" ");
681 			switch (v->mode) {
682 			case DM_VERITY_MODE_LOGGING:
683 				DMEMIT(DM_VERITY_OPT_LOGGING);
684 				break;
685 			case DM_VERITY_MODE_RESTART:
686 				DMEMIT(DM_VERITY_OPT_RESTART);
687 				break;
688 			default:
689 				BUG();
690 			}
691 		}
692 		if (v->zero_digest)
693 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
694 		sz = verity_fec_status_table(v, sz, result, maxlen);
695 		break;
696 	}
697 }
698 
699 static int verity_prepare_ioctl(struct dm_target *ti,
700 		struct block_device **bdev, fmode_t *mode)
701 {
702 	struct dm_verity *v = ti->private;
703 
704 	*bdev = v->data_dev->bdev;
705 
706 	if (v->data_start ||
707 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
708 		return 1;
709 	return 0;
710 }
711 
712 static int verity_iterate_devices(struct dm_target *ti,
713 				  iterate_devices_callout_fn fn, void *data)
714 {
715 	struct dm_verity *v = ti->private;
716 
717 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
718 }
719 
720 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
721 {
722 	struct dm_verity *v = ti->private;
723 
724 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
725 		limits->logical_block_size = 1 << v->data_dev_block_bits;
726 
727 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
728 		limits->physical_block_size = 1 << v->data_dev_block_bits;
729 
730 	blk_limits_io_min(limits, limits->logical_block_size);
731 }
732 
733 static void verity_dtr(struct dm_target *ti)
734 {
735 	struct dm_verity *v = ti->private;
736 
737 	if (v->verify_wq)
738 		destroy_workqueue(v->verify_wq);
739 
740 	if (v->bufio)
741 		dm_bufio_client_destroy(v->bufio);
742 
743 	kfree(v->salt);
744 	kfree(v->root_digest);
745 	kfree(v->zero_digest);
746 
747 	if (v->tfm)
748 		crypto_free_ahash(v->tfm);
749 
750 	kfree(v->alg_name);
751 
752 	if (v->hash_dev)
753 		dm_put_device(ti, v->hash_dev);
754 
755 	if (v->data_dev)
756 		dm_put_device(ti, v->data_dev);
757 
758 	verity_fec_dtr(v);
759 
760 	kfree(v);
761 }
762 
763 static int verity_alloc_zero_digest(struct dm_verity *v)
764 {
765 	int r = -ENOMEM;
766 	struct ahash_request *req;
767 	u8 *zero_data;
768 
769 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
770 
771 	if (!v->zero_digest)
772 		return r;
773 
774 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
775 
776 	if (!req)
777 		return r; /* verity_dtr will free zero_digest */
778 
779 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
780 
781 	if (!zero_data)
782 		goto out;
783 
784 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
785 			v->zero_digest);
786 
787 out:
788 	kfree(req);
789 	kfree(zero_data);
790 
791 	return r;
792 }
793 
794 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
795 {
796 	int r;
797 	unsigned argc;
798 	struct dm_target *ti = v->ti;
799 	const char *arg_name;
800 
801 	static const struct dm_arg _args[] = {
802 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
803 	};
804 
805 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
806 	if (r)
807 		return -EINVAL;
808 
809 	if (!argc)
810 		return 0;
811 
812 	do {
813 		arg_name = dm_shift_arg(as);
814 		argc--;
815 
816 		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
817 			v->mode = DM_VERITY_MODE_LOGGING;
818 			continue;
819 
820 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
821 			v->mode = DM_VERITY_MODE_RESTART;
822 			continue;
823 
824 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
825 			r = verity_alloc_zero_digest(v);
826 			if (r) {
827 				ti->error = "Cannot allocate zero digest";
828 				return r;
829 			}
830 			continue;
831 
832 		} else if (verity_is_fec_opt_arg(arg_name)) {
833 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
834 			if (r)
835 				return r;
836 			continue;
837 		}
838 
839 		ti->error = "Unrecognized verity feature request";
840 		return -EINVAL;
841 	} while (argc && !r);
842 
843 	return r;
844 }
845 
846 /*
847  * Target parameters:
848  *	<version>	The current format is version 1.
849  *			Vsn 0 is compatible with original Chromium OS releases.
850  *	<data device>
851  *	<hash device>
852  *	<data block size>
853  *	<hash block size>
854  *	<the number of data blocks>
855  *	<hash start block>
856  *	<algorithm>
857  *	<digest>
858  *	<salt>		Hex string or "-" if no salt.
859  */
860 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
861 {
862 	struct dm_verity *v;
863 	struct dm_arg_set as;
864 	unsigned int num;
865 	unsigned long long num_ll;
866 	int r;
867 	int i;
868 	sector_t hash_position;
869 	char dummy;
870 
871 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
872 	if (!v) {
873 		ti->error = "Cannot allocate verity structure";
874 		return -ENOMEM;
875 	}
876 	ti->private = v;
877 	v->ti = ti;
878 
879 	r = verity_fec_ctr_alloc(v);
880 	if (r)
881 		goto bad;
882 
883 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
884 		ti->error = "Device must be readonly";
885 		r = -EINVAL;
886 		goto bad;
887 	}
888 
889 	if (argc < 10) {
890 		ti->error = "Not enough arguments";
891 		r = -EINVAL;
892 		goto bad;
893 	}
894 
895 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
896 	    num > 1) {
897 		ti->error = "Invalid version";
898 		r = -EINVAL;
899 		goto bad;
900 	}
901 	v->version = num;
902 
903 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
904 	if (r) {
905 		ti->error = "Data device lookup failed";
906 		goto bad;
907 	}
908 
909 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
910 	if (r) {
911 		ti->error = "Hash device lookup failed";
912 		goto bad;
913 	}
914 
915 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
916 	    !num || (num & (num - 1)) ||
917 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
918 	    num > PAGE_SIZE) {
919 		ti->error = "Invalid data device block size";
920 		r = -EINVAL;
921 		goto bad;
922 	}
923 	v->data_dev_block_bits = __ffs(num);
924 
925 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
926 	    !num || (num & (num - 1)) ||
927 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
928 	    num > INT_MAX) {
929 		ti->error = "Invalid hash device block size";
930 		r = -EINVAL;
931 		goto bad;
932 	}
933 	v->hash_dev_block_bits = __ffs(num);
934 
935 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
936 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
937 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
938 		ti->error = "Invalid data blocks";
939 		r = -EINVAL;
940 		goto bad;
941 	}
942 	v->data_blocks = num_ll;
943 
944 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
945 		ti->error = "Data device is too small";
946 		r = -EINVAL;
947 		goto bad;
948 	}
949 
950 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
951 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
952 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
953 		ti->error = "Invalid hash start";
954 		r = -EINVAL;
955 		goto bad;
956 	}
957 	v->hash_start = num_ll;
958 
959 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
960 	if (!v->alg_name) {
961 		ti->error = "Cannot allocate algorithm name";
962 		r = -ENOMEM;
963 		goto bad;
964 	}
965 
966 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
967 	if (IS_ERR(v->tfm)) {
968 		ti->error = "Cannot initialize hash function";
969 		r = PTR_ERR(v->tfm);
970 		v->tfm = NULL;
971 		goto bad;
972 	}
973 	v->digest_size = crypto_ahash_digestsize(v->tfm);
974 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
975 		ti->error = "Digest size too big";
976 		r = -EINVAL;
977 		goto bad;
978 	}
979 	v->ahash_reqsize = sizeof(struct ahash_request) +
980 		crypto_ahash_reqsize(v->tfm);
981 
982 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
983 	if (!v->root_digest) {
984 		ti->error = "Cannot allocate root digest";
985 		r = -ENOMEM;
986 		goto bad;
987 	}
988 	if (strlen(argv[8]) != v->digest_size * 2 ||
989 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
990 		ti->error = "Invalid root digest";
991 		r = -EINVAL;
992 		goto bad;
993 	}
994 
995 	if (strcmp(argv[9], "-")) {
996 		v->salt_size = strlen(argv[9]) / 2;
997 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
998 		if (!v->salt) {
999 			ti->error = "Cannot allocate salt";
1000 			r = -ENOMEM;
1001 			goto bad;
1002 		}
1003 		if (strlen(argv[9]) != v->salt_size * 2 ||
1004 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1005 			ti->error = "Invalid salt";
1006 			r = -EINVAL;
1007 			goto bad;
1008 		}
1009 	}
1010 
1011 	argv += 10;
1012 	argc -= 10;
1013 
1014 	/* Optional parameters */
1015 	if (argc) {
1016 		as.argc = argc;
1017 		as.argv = argv;
1018 
1019 		r = verity_parse_opt_args(&as, v);
1020 		if (r < 0)
1021 			goto bad;
1022 	}
1023 
1024 	v->hash_per_block_bits =
1025 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1026 
1027 	v->levels = 0;
1028 	if (v->data_blocks)
1029 		while (v->hash_per_block_bits * v->levels < 64 &&
1030 		       (unsigned long long)(v->data_blocks - 1) >>
1031 		       (v->hash_per_block_bits * v->levels))
1032 			v->levels++;
1033 
1034 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1035 		ti->error = "Too many tree levels";
1036 		r = -E2BIG;
1037 		goto bad;
1038 	}
1039 
1040 	hash_position = v->hash_start;
1041 	for (i = v->levels - 1; i >= 0; i--) {
1042 		sector_t s;
1043 		v->hash_level_block[i] = hash_position;
1044 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1045 					>> ((i + 1) * v->hash_per_block_bits);
1046 		if (hash_position + s < hash_position) {
1047 			ti->error = "Hash device offset overflow";
1048 			r = -E2BIG;
1049 			goto bad;
1050 		}
1051 		hash_position += s;
1052 	}
1053 	v->hash_blocks = hash_position;
1054 
1055 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1056 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1057 		dm_bufio_alloc_callback, NULL);
1058 	if (IS_ERR(v->bufio)) {
1059 		ti->error = "Cannot initialize dm-bufio";
1060 		r = PTR_ERR(v->bufio);
1061 		v->bufio = NULL;
1062 		goto bad;
1063 	}
1064 
1065 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1066 		ti->error = "Hash device is too small";
1067 		r = -E2BIG;
1068 		goto bad;
1069 	}
1070 
1071 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1072 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1073 	if (!v->verify_wq) {
1074 		ti->error = "Cannot allocate workqueue";
1075 		r = -ENOMEM;
1076 		goto bad;
1077 	}
1078 
1079 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1080 				v->ahash_reqsize + v->digest_size * 2;
1081 
1082 	r = verity_fec_ctr(v);
1083 	if (r)
1084 		goto bad;
1085 
1086 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1087 				       __alignof__(struct dm_verity_io));
1088 
1089 	return 0;
1090 
1091 bad:
1092 	verity_dtr(ti);
1093 
1094 	return r;
1095 }
1096 
1097 static struct target_type verity_target = {
1098 	.name		= "verity",
1099 	.version	= {1, 3, 0},
1100 	.module		= THIS_MODULE,
1101 	.ctr		= verity_ctr,
1102 	.dtr		= verity_dtr,
1103 	.map		= verity_map,
1104 	.status		= verity_status,
1105 	.prepare_ioctl	= verity_prepare_ioctl,
1106 	.iterate_devices = verity_iterate_devices,
1107 	.io_hints	= verity_io_hints,
1108 };
1109 
1110 static int __init dm_verity_init(void)
1111 {
1112 	int r;
1113 
1114 	r = dm_register_target(&verity_target);
1115 	if (r < 0)
1116 		DMERR("register failed %d", r);
1117 
1118 	return r;
1119 }
1120 
1121 static void __exit dm_verity_exit(void)
1122 {
1123 	dm_unregister_target(&verity_target);
1124 }
1125 
1126 module_init(dm_verity_init);
1127 module_exit(dm_verity_exit);
1128 
1129 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1130 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1131 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1132 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1133 MODULE_LICENSE("GPL");
1134