xref: /openbmc/linux/drivers/md/dm-verity-fec.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2015 Google, Inc.
4  *
5  * Author: Sami Tolvanen <samitolvanen@google.com>
6  */
7 
8 #include "dm-verity-fec.h"
9 #include <linux/math64.h>
10 
11 #define DM_MSG_PREFIX	"verity-fec"
12 
13 /*
14  * If error correction has been configured, returns true.
15  */
16 bool verity_fec_is_enabled(struct dm_verity *v)
17 {
18 	return v->fec && v->fec->dev;
19 }
20 
21 /*
22  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
23  * length fields.
24  */
25 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
26 {
27 	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
28 }
29 
30 /*
31  * Return an interleaved offset for a byte in RS block.
32  */
33 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
34 {
35 	u32 mod;
36 
37 	mod = do_div(offset, v->fec->rsn);
38 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
39 }
40 
41 /*
42  * Decode an RS block using Reed-Solomon.
43  */
44 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
45 			  u8 *data, u8 *fec, int neras)
46 {
47 	int i;
48 	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
49 
50 	for (i = 0; i < v->fec->roots; i++)
51 		par[i] = fec[i];
52 
53 	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
54 			  fio->erasures, 0, NULL);
55 }
56 
57 /*
58  * Read error-correcting codes for the requested RS block. Returns a pointer
59  * to the data block. Caller is responsible for releasing buf.
60  */
61 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
62 			   unsigned *offset, struct dm_buffer **buf)
63 {
64 	u64 position, block, rem;
65 	u8 *res;
66 
67 	position = (index + rsb) * v->fec->roots;
68 	block = div64_u64_rem(position, v->fec->roots << SECTOR_SHIFT, &rem);
69 	*offset = (unsigned)rem;
70 
71 	res = dm_bufio_read(v->fec->bufio, block, buf);
72 	if (IS_ERR(res)) {
73 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
74 		      v->data_dev->name, (unsigned long long)rsb,
75 		      (unsigned long long)block, PTR_ERR(res));
76 		*buf = NULL;
77 	}
78 
79 	return res;
80 }
81 
82 /* Loop over each preallocated buffer slot. */
83 #define fec_for_each_prealloc_buffer(__i) \
84 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
85 
86 /* Loop over each extra buffer slot. */
87 #define fec_for_each_extra_buffer(io, __i) \
88 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
89 
90 /* Loop over each allocated buffer. */
91 #define fec_for_each_buffer(io, __i) \
92 	for (__i = 0; __i < (io)->nbufs; __i++)
93 
94 /* Loop over each RS block in each allocated buffer. */
95 #define fec_for_each_buffer_rs_block(io, __i, __j) \
96 	fec_for_each_buffer(io, __i) \
97 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
98 
99 /*
100  * Return a pointer to the current RS block when called inside
101  * fec_for_each_buffer_rs_block.
102  */
103 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
104 				      struct dm_verity_fec_io *fio,
105 				      unsigned i, unsigned j)
106 {
107 	return &fio->bufs[i][j * v->fec->rsn];
108 }
109 
110 /*
111  * Return an index to the current RS block when called inside
112  * fec_for_each_buffer_rs_block.
113  */
114 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
115 {
116 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
117 }
118 
119 /*
120  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
121  * starting from block_offset.
122  */
123 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
124 			   u64 rsb, int byte_index, unsigned block_offset,
125 			   int neras)
126 {
127 	int r, corrected = 0, res;
128 	struct dm_buffer *buf;
129 	unsigned n, i, offset;
130 	u8 *par, *block;
131 
132 	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
133 	if (IS_ERR(par))
134 		return PTR_ERR(par);
135 
136 	/*
137 	 * Decode the RS blocks we have in bufs. Each RS block results in
138 	 * one corrected target byte and consumes fec->roots parity bytes.
139 	 */
140 	fec_for_each_buffer_rs_block(fio, n, i) {
141 		block = fec_buffer_rs_block(v, fio, n, i);
142 		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
143 		if (res < 0) {
144 			r = res;
145 			goto error;
146 		}
147 
148 		corrected += res;
149 		fio->output[block_offset] = block[byte_index];
150 
151 		block_offset++;
152 		if (block_offset >= 1 << v->data_dev_block_bits)
153 			goto done;
154 
155 		/* read the next block when we run out of parity bytes */
156 		offset += v->fec->roots;
157 		if (offset >= v->fec->roots << SECTOR_SHIFT) {
158 			dm_bufio_release(buf);
159 
160 			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
161 			if (IS_ERR(par))
162 				return PTR_ERR(par);
163 		}
164 	}
165 done:
166 	r = corrected;
167 error:
168 	dm_bufio_release(buf);
169 
170 	if (r < 0 && neras)
171 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
172 			    v->data_dev->name, (unsigned long long)rsb, r);
173 	else if (r > 0)
174 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
175 			     v->data_dev->name, (unsigned long long)rsb, r);
176 
177 	return r;
178 }
179 
180 /*
181  * Locate data block erasures using verity hashes.
182  */
183 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
184 			  u8 *want_digest, u8 *data)
185 {
186 	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
187 				 data, 1 << v->data_dev_block_bits,
188 				 verity_io_real_digest(v, io))))
189 		return 0;
190 
191 	return memcmp(verity_io_real_digest(v, io), want_digest,
192 		      v->digest_size) != 0;
193 }
194 
195 /*
196  * Read data blocks that are part of the RS block and deinterleave as much as
197  * fits into buffers. Check for erasure locations if @neras is non-NULL.
198  */
199 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
200 			 u64 rsb, u64 target, unsigned block_offset,
201 			 int *neras)
202 {
203 	bool is_zero;
204 	int i, j, target_index = -1;
205 	struct dm_buffer *buf;
206 	struct dm_bufio_client *bufio;
207 	struct dm_verity_fec_io *fio = fec_io(io);
208 	u64 block, ileaved;
209 	u8 *bbuf, *rs_block;
210 	u8 want_digest[HASH_MAX_DIGESTSIZE];
211 	unsigned n, k;
212 
213 	if (neras)
214 		*neras = 0;
215 
216 	if (WARN_ON(v->digest_size > sizeof(want_digest)))
217 		return -EINVAL;
218 
219 	/*
220 	 * read each of the rsn data blocks that are part of the RS block, and
221 	 * interleave contents to available bufs
222 	 */
223 	for (i = 0; i < v->fec->rsn; i++) {
224 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
225 
226 		/*
227 		 * target is the data block we want to correct, target_index is
228 		 * the index of this block within the rsn RS blocks
229 		 */
230 		if (ileaved == target)
231 			target_index = i;
232 
233 		block = ileaved >> v->data_dev_block_bits;
234 		bufio = v->fec->data_bufio;
235 
236 		if (block >= v->data_blocks) {
237 			block -= v->data_blocks;
238 
239 			/*
240 			 * blocks outside the area were assumed to contain
241 			 * zeros when encoding data was generated
242 			 */
243 			if (unlikely(block >= v->fec->hash_blocks))
244 				continue;
245 
246 			block += v->hash_start;
247 			bufio = v->bufio;
248 		}
249 
250 		bbuf = dm_bufio_read(bufio, block, &buf);
251 		if (IS_ERR(bbuf)) {
252 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
253 				     v->data_dev->name,
254 				     (unsigned long long)rsb,
255 				     (unsigned long long)block, PTR_ERR(bbuf));
256 
257 			/* assume the block is corrupted */
258 			if (neras && *neras <= v->fec->roots)
259 				fio->erasures[(*neras)++] = i;
260 
261 			continue;
262 		}
263 
264 		/* locate erasures if the block is on the data device */
265 		if (bufio == v->fec->data_bufio &&
266 		    verity_hash_for_block(v, io, block, want_digest,
267 					  &is_zero) == 0) {
268 			/* skip known zero blocks entirely */
269 			if (is_zero)
270 				goto done;
271 
272 			/*
273 			 * skip if we have already found the theoretical
274 			 * maximum number (i.e. fec->roots) of erasures
275 			 */
276 			if (neras && *neras <= v->fec->roots &&
277 			    fec_is_erasure(v, io, want_digest, bbuf))
278 				fio->erasures[(*neras)++] = i;
279 		}
280 
281 		/*
282 		 * deinterleave and copy the bytes that fit into bufs,
283 		 * starting from block_offset
284 		 */
285 		fec_for_each_buffer_rs_block(fio, n, j) {
286 			k = fec_buffer_rs_index(n, j) + block_offset;
287 
288 			if (k >= 1 << v->data_dev_block_bits)
289 				goto done;
290 
291 			rs_block = fec_buffer_rs_block(v, fio, n, j);
292 			rs_block[i] = bbuf[k];
293 		}
294 done:
295 		dm_bufio_release(buf);
296 	}
297 
298 	return target_index;
299 }
300 
301 /*
302  * Allocate RS control structure and FEC buffers from preallocated mempools,
303  * and attempt to allocate as many extra buffers as available.
304  */
305 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
306 {
307 	unsigned n;
308 
309 	if (!fio->rs)
310 		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
311 
312 	fec_for_each_prealloc_buffer(n) {
313 		if (fio->bufs[n])
314 			continue;
315 
316 		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
317 		if (unlikely(!fio->bufs[n])) {
318 			DMERR("failed to allocate FEC buffer");
319 			return -ENOMEM;
320 		}
321 	}
322 
323 	/* try to allocate the maximum number of buffers */
324 	fec_for_each_extra_buffer(fio, n) {
325 		if (fio->bufs[n])
326 			continue;
327 
328 		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
329 		/* we can manage with even one buffer if necessary */
330 		if (unlikely(!fio->bufs[n]))
331 			break;
332 	}
333 	fio->nbufs = n;
334 
335 	if (!fio->output)
336 		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
337 
338 	return 0;
339 }
340 
341 /*
342  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
343  * zeroed before deinterleaving.
344  */
345 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
346 {
347 	unsigned n;
348 
349 	fec_for_each_buffer(fio, n)
350 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
351 
352 	memset(fio->erasures, 0, sizeof(fio->erasures));
353 }
354 
355 /*
356  * Decode all RS blocks in a single data block and return the target block
357  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
358  * hashes to locate erasures.
359  */
360 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
361 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
362 			  bool use_erasures)
363 {
364 	int r, neras = 0;
365 	unsigned pos;
366 
367 	r = fec_alloc_bufs(v, fio);
368 	if (unlikely(r < 0))
369 		return r;
370 
371 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
372 		fec_init_bufs(v, fio);
373 
374 		r = fec_read_bufs(v, io, rsb, offset, pos,
375 				  use_erasures ? &neras : NULL);
376 		if (unlikely(r < 0))
377 			return r;
378 
379 		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
380 		if (r < 0)
381 			return r;
382 
383 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
384 	}
385 
386 	/* Always re-validate the corrected block against the expected hash */
387 	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
388 			1 << v->data_dev_block_bits,
389 			verity_io_real_digest(v, io));
390 	if (unlikely(r < 0))
391 		return r;
392 
393 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
394 		   v->digest_size)) {
395 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
396 			    v->data_dev->name, (unsigned long long)rsb, neras);
397 		return -EILSEQ;
398 	}
399 
400 	return 0;
401 }
402 
403 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
404 		       size_t len)
405 {
406 	struct dm_verity_fec_io *fio = fec_io(io);
407 
408 	memcpy(data, &fio->output[fio->output_pos], len);
409 	fio->output_pos += len;
410 
411 	return 0;
412 }
413 
414 /*
415  * Correct errors in a block. Copies corrected block to dest if non-NULL,
416  * otherwise to a bio_vec starting from iter.
417  */
418 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
419 		      enum verity_block_type type, sector_t block, u8 *dest,
420 		      struct bvec_iter *iter)
421 {
422 	int r;
423 	struct dm_verity_fec_io *fio = fec_io(io);
424 	u64 offset, res, rsb;
425 
426 	if (!verity_fec_is_enabled(v))
427 		return -EOPNOTSUPP;
428 
429 	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
430 		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
431 		return -EIO;
432 	}
433 
434 	fio->level++;
435 
436 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
437 		block = block - v->hash_start + v->data_blocks;
438 
439 	/*
440 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
441 	 * bytes. Since block size may not be divisible by N, the last block
442 	 * is zero padded when decoding.
443 	 *
444 	 * Each byte of the block is covered by a different RS(M, N) code,
445 	 * and each code is interleaved over N blocks to make it less likely
446 	 * that bursty corruption will leave us in unrecoverable state.
447 	 */
448 
449 	offset = block << v->data_dev_block_bits;
450 	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
451 
452 	/*
453 	 * The base RS block we can feed to the interleaver to find out all
454 	 * blocks required for decoding.
455 	 */
456 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
457 
458 	/*
459 	 * Locating erasures is slow, so attempt to recover the block without
460 	 * them first. Do a second attempt with erasures if the corruption is
461 	 * bad enough.
462 	 */
463 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
464 	if (r < 0) {
465 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
466 		if (r < 0)
467 			goto done;
468 	}
469 
470 	if (dest)
471 		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
472 	else if (iter) {
473 		fio->output_pos = 0;
474 		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
475 	}
476 
477 done:
478 	fio->level--;
479 	return r;
480 }
481 
482 /*
483  * Clean up per-bio data.
484  */
485 void verity_fec_finish_io(struct dm_verity_io *io)
486 {
487 	unsigned n;
488 	struct dm_verity_fec *f = io->v->fec;
489 	struct dm_verity_fec_io *fio = fec_io(io);
490 
491 	if (!verity_fec_is_enabled(io->v))
492 		return;
493 
494 	mempool_free(fio->rs, &f->rs_pool);
495 
496 	fec_for_each_prealloc_buffer(n)
497 		mempool_free(fio->bufs[n], &f->prealloc_pool);
498 
499 	fec_for_each_extra_buffer(fio, n)
500 		mempool_free(fio->bufs[n], &f->extra_pool);
501 
502 	mempool_free(fio->output, &f->output_pool);
503 }
504 
505 /*
506  * Initialize per-bio data.
507  */
508 void verity_fec_init_io(struct dm_verity_io *io)
509 {
510 	struct dm_verity_fec_io *fio = fec_io(io);
511 
512 	if (!verity_fec_is_enabled(io->v))
513 		return;
514 
515 	fio->rs = NULL;
516 	memset(fio->bufs, 0, sizeof(fio->bufs));
517 	fio->nbufs = 0;
518 	fio->output = NULL;
519 	fio->level = 0;
520 }
521 
522 /*
523  * Append feature arguments and values to the status table.
524  */
525 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
526 				 char *result, unsigned maxlen)
527 {
528 	if (!verity_fec_is_enabled(v))
529 		return sz;
530 
531 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
532 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
533 	       DM_VERITY_OPT_FEC_START " %llu "
534 	       DM_VERITY_OPT_FEC_ROOTS " %d",
535 	       v->fec->dev->name,
536 	       (unsigned long long)v->fec->blocks,
537 	       (unsigned long long)v->fec->start,
538 	       v->fec->roots);
539 
540 	return sz;
541 }
542 
543 void verity_fec_dtr(struct dm_verity *v)
544 {
545 	struct dm_verity_fec *f = v->fec;
546 
547 	if (!verity_fec_is_enabled(v))
548 		goto out;
549 
550 	mempool_exit(&f->rs_pool);
551 	mempool_exit(&f->prealloc_pool);
552 	mempool_exit(&f->extra_pool);
553 	mempool_exit(&f->output_pool);
554 	kmem_cache_destroy(f->cache);
555 
556 	if (f->data_bufio)
557 		dm_bufio_client_destroy(f->data_bufio);
558 	if (f->bufio)
559 		dm_bufio_client_destroy(f->bufio);
560 
561 	if (f->dev)
562 		dm_put_device(v->ti, f->dev);
563 out:
564 	kfree(f);
565 	v->fec = NULL;
566 }
567 
568 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
569 {
570 	struct dm_verity *v = (struct dm_verity *)pool_data;
571 
572 	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
573 }
574 
575 static void fec_rs_free(void *element, void *pool_data)
576 {
577 	struct rs_control *rs = (struct rs_control *)element;
578 
579 	if (rs)
580 		free_rs(rs);
581 }
582 
583 bool verity_is_fec_opt_arg(const char *arg_name)
584 {
585 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
586 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
587 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
588 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
589 }
590 
591 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
592 			      unsigned *argc, const char *arg_name)
593 {
594 	int r;
595 	struct dm_target *ti = v->ti;
596 	const char *arg_value;
597 	unsigned long long num_ll;
598 	unsigned char num_c;
599 	char dummy;
600 
601 	if (!*argc) {
602 		ti->error = "FEC feature arguments require a value";
603 		return -EINVAL;
604 	}
605 
606 	arg_value = dm_shift_arg(as);
607 	(*argc)--;
608 
609 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
610 		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
611 		if (r) {
612 			ti->error = "FEC device lookup failed";
613 			return r;
614 		}
615 
616 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
617 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
618 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
619 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
620 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
621 			return -EINVAL;
622 		}
623 		v->fec->blocks = num_ll;
624 
625 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
626 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
627 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
628 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
629 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
630 			return -EINVAL;
631 		}
632 		v->fec->start = num_ll;
633 
634 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
635 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
636 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
637 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
638 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
639 			return -EINVAL;
640 		}
641 		v->fec->roots = num_c;
642 
643 	} else {
644 		ti->error = "Unrecognized verity FEC feature request";
645 		return -EINVAL;
646 	}
647 
648 	return 0;
649 }
650 
651 /*
652  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
653  */
654 int verity_fec_ctr_alloc(struct dm_verity *v)
655 {
656 	struct dm_verity_fec *f;
657 
658 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
659 	if (!f) {
660 		v->ti->error = "Cannot allocate FEC structure";
661 		return -ENOMEM;
662 	}
663 	v->fec = f;
664 
665 	return 0;
666 }
667 
668 /*
669  * Validate arguments and preallocate memory. Must be called after arguments
670  * have been parsed using verity_fec_parse_opt_args.
671  */
672 int verity_fec_ctr(struct dm_verity *v)
673 {
674 	struct dm_verity_fec *f = v->fec;
675 	struct dm_target *ti = v->ti;
676 	u64 hash_blocks, fec_blocks;
677 	int ret;
678 
679 	if (!verity_fec_is_enabled(v)) {
680 		verity_fec_dtr(v);
681 		return 0;
682 	}
683 
684 	/*
685 	 * FEC is computed over data blocks, possible metadata, and
686 	 * hash blocks. In other words, FEC covers total of fec_blocks
687 	 * blocks consisting of the following:
688 	 *
689 	 *  data blocks | hash blocks | metadata (optional)
690 	 *
691 	 * We allow metadata after hash blocks to support a use case
692 	 * where all data is stored on the same device and FEC covers
693 	 * the entire area.
694 	 *
695 	 * If metadata is included, we require it to be available on the
696 	 * hash device after the hash blocks.
697 	 */
698 
699 	hash_blocks = v->hash_blocks - v->hash_start;
700 
701 	/*
702 	 * Require matching block sizes for data and hash devices for
703 	 * simplicity.
704 	 */
705 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
706 		ti->error = "Block sizes must match to use FEC";
707 		return -EINVAL;
708 	}
709 
710 	if (!f->roots) {
711 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
712 		return -EINVAL;
713 	}
714 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
715 
716 	if (!f->blocks) {
717 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
718 		return -EINVAL;
719 	}
720 
721 	f->rounds = f->blocks;
722 	if (sector_div(f->rounds, f->rsn))
723 		f->rounds++;
724 
725 	/*
726 	 * Due to optional metadata, f->blocks can be larger than
727 	 * data_blocks and hash_blocks combined.
728 	 */
729 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
730 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
731 		return -EINVAL;
732 	}
733 
734 	/*
735 	 * Metadata is accessed through the hash device, so we require
736 	 * it to be large enough.
737 	 */
738 	f->hash_blocks = f->blocks - v->data_blocks;
739 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
740 		ti->error = "Hash device is too small for "
741 			DM_VERITY_OPT_FEC_BLOCKS;
742 		return -E2BIG;
743 	}
744 
745 	f->bufio = dm_bufio_client_create(f->dev->bdev,
746 					  f->roots << SECTOR_SHIFT,
747 					  1, 0, NULL, NULL);
748 	if (IS_ERR(f->bufio)) {
749 		ti->error = "Cannot initialize FEC bufio client";
750 		return PTR_ERR(f->bufio);
751 	}
752 
753 	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
754 
755 	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
756 	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
757 		ti->error = "FEC device is too small";
758 		return -E2BIG;
759 	}
760 
761 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
762 					       1 << v->data_dev_block_bits,
763 					       1, 0, NULL, NULL);
764 	if (IS_ERR(f->data_bufio)) {
765 		ti->error = "Cannot initialize FEC data bufio client";
766 		return PTR_ERR(f->data_bufio);
767 	}
768 
769 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
770 		ti->error = "Data device is too small";
771 		return -E2BIG;
772 	}
773 
774 	/* Preallocate an rs_control structure for each worker thread */
775 	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
776 			   fec_rs_free, (void *) v);
777 	if (ret) {
778 		ti->error = "Cannot allocate RS pool";
779 		return ret;
780 	}
781 
782 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
783 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
784 				     0, 0, NULL);
785 	if (!f->cache) {
786 		ti->error = "Cannot create FEC buffer cache";
787 		return -ENOMEM;
788 	}
789 
790 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
791 	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
792 				     DM_VERITY_FEC_BUF_PREALLOC,
793 				     f->cache);
794 	if (ret) {
795 		ti->error = "Cannot allocate FEC buffer prealloc pool";
796 		return ret;
797 	}
798 
799 	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
800 	if (ret) {
801 		ti->error = "Cannot allocate FEC buffer extra pool";
802 		return ret;
803 	}
804 
805 	/* Preallocate an output buffer for each thread */
806 	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
807 					1 << v->data_dev_block_bits);
808 	if (ret) {
809 		ti->error = "Cannot allocate FEC output pool";
810 		return ret;
811 	}
812 
813 	/* Reserve space for our per-bio data */
814 	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
815 
816 	return 0;
817 }
818