1 /* 2 * Copyright (C) 2015 Google, Inc. 3 * 4 * Author: Sami Tolvanen <samitolvanen@google.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include "dm-verity-fec.h" 13 #include <linux/math64.h> 14 15 #define DM_MSG_PREFIX "verity-fec" 16 17 /* 18 * If error correction has been configured, returns true. 19 */ 20 bool verity_fec_is_enabled(struct dm_verity *v) 21 { 22 return v->fec && v->fec->dev; 23 } 24 25 /* 26 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable 27 * length fields. 28 */ 29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) 30 { 31 return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io); 32 } 33 34 /* 35 * Return an interleaved offset for a byte in RS block. 36 */ 37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset) 38 { 39 u32 mod; 40 41 mod = do_div(offset, v->fec->rsn); 42 return offset + mod * (v->fec->rounds << v->data_dev_block_bits); 43 } 44 45 /* 46 * Decode an RS block using Reed-Solomon. 47 */ 48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, 49 u8 *data, u8 *fec, int neras) 50 { 51 int i; 52 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; 53 54 for (i = 0; i < v->fec->roots; i++) 55 par[i] = fec[i]; 56 57 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, 58 fio->erasures, 0, NULL); 59 } 60 61 /* 62 * Read error-correcting codes for the requested RS block. Returns a pointer 63 * to the data block. Caller is responsible for releasing buf. 64 */ 65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, 66 unsigned *offset, struct dm_buffer **buf) 67 { 68 u64 position, block; 69 u8 *res; 70 71 position = (index + rsb) * v->fec->roots; 72 block = position >> v->data_dev_block_bits; 73 *offset = (unsigned)(position - (block << v->data_dev_block_bits)); 74 75 res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf); 76 if (IS_ERR(res)) { 77 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", 78 v->data_dev->name, (unsigned long long)rsb, 79 (unsigned long long)(v->fec->start + block), 80 PTR_ERR(res)); 81 *buf = NULL; 82 } 83 84 return res; 85 } 86 87 /* Loop over each preallocated buffer slot. */ 88 #define fec_for_each_prealloc_buffer(__i) \ 89 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) 90 91 /* Loop over each extra buffer slot. */ 92 #define fec_for_each_extra_buffer(io, __i) \ 93 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) 94 95 /* Loop over each allocated buffer. */ 96 #define fec_for_each_buffer(io, __i) \ 97 for (__i = 0; __i < (io)->nbufs; __i++) 98 99 /* Loop over each RS block in each allocated buffer. */ 100 #define fec_for_each_buffer_rs_block(io, __i, __j) \ 101 fec_for_each_buffer(io, __i) \ 102 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) 103 104 /* 105 * Return a pointer to the current RS block when called inside 106 * fec_for_each_buffer_rs_block. 107 */ 108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v, 109 struct dm_verity_fec_io *fio, 110 unsigned i, unsigned j) 111 { 112 return &fio->bufs[i][j * v->fec->rsn]; 113 } 114 115 /* 116 * Return an index to the current RS block when called inside 117 * fec_for_each_buffer_rs_block. 118 */ 119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j) 120 { 121 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; 122 } 123 124 /* 125 * Decode all RS blocks from buffers and copy corrected bytes into fio->output 126 * starting from block_offset. 127 */ 128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, 129 u64 rsb, int byte_index, unsigned block_offset, 130 int neras) 131 { 132 int r, corrected = 0, res; 133 struct dm_buffer *buf; 134 unsigned n, i, offset; 135 u8 *par, *block; 136 137 par = fec_read_parity(v, rsb, block_offset, &offset, &buf); 138 if (IS_ERR(par)) 139 return PTR_ERR(par); 140 141 /* 142 * Decode the RS blocks we have in bufs. Each RS block results in 143 * one corrected target byte and consumes fec->roots parity bytes. 144 */ 145 fec_for_each_buffer_rs_block(fio, n, i) { 146 block = fec_buffer_rs_block(v, fio, n, i); 147 res = fec_decode_rs8(v, fio, block, &par[offset], neras); 148 if (res < 0) { 149 r = res; 150 goto error; 151 } 152 153 corrected += res; 154 fio->output[block_offset] = block[byte_index]; 155 156 block_offset++; 157 if (block_offset >= 1 << v->data_dev_block_bits) 158 goto done; 159 160 /* read the next block when we run out of parity bytes */ 161 offset += v->fec->roots; 162 if (offset >= 1 << v->data_dev_block_bits) { 163 dm_bufio_release(buf); 164 165 par = fec_read_parity(v, rsb, block_offset, &offset, &buf); 166 if (IS_ERR(par)) 167 return PTR_ERR(par); 168 } 169 } 170 done: 171 r = corrected; 172 error: 173 dm_bufio_release(buf); 174 175 if (r < 0 && neras) 176 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", 177 v->data_dev->name, (unsigned long long)rsb, r); 178 else if (r > 0) 179 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", 180 v->data_dev->name, (unsigned long long)rsb, r); 181 182 return r; 183 } 184 185 /* 186 * Locate data block erasures using verity hashes. 187 */ 188 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, 189 u8 *want_digest, u8 *data) 190 { 191 if (unlikely(verity_hash(v, verity_io_hash_req(v, io), 192 data, 1 << v->data_dev_block_bits, 193 verity_io_real_digest(v, io)))) 194 return 0; 195 196 return memcmp(verity_io_real_digest(v, io), want_digest, 197 v->digest_size) != 0; 198 } 199 200 /* 201 * Read data blocks that are part of the RS block and deinterleave as much as 202 * fits into buffers. Check for erasure locations if @neras is non-NULL. 203 */ 204 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, 205 u64 rsb, u64 target, unsigned block_offset, 206 int *neras) 207 { 208 bool is_zero; 209 int i, j, target_index = -1; 210 struct dm_buffer *buf; 211 struct dm_bufio_client *bufio; 212 struct dm_verity_fec_io *fio = fec_io(io); 213 u64 block, ileaved; 214 u8 *bbuf, *rs_block; 215 u8 want_digest[HASH_MAX_DIGESTSIZE]; 216 unsigned n, k; 217 218 if (neras) 219 *neras = 0; 220 221 if (WARN_ON(v->digest_size > sizeof(want_digest))) 222 return -EINVAL; 223 224 /* 225 * read each of the rsn data blocks that are part of the RS block, and 226 * interleave contents to available bufs 227 */ 228 for (i = 0; i < v->fec->rsn; i++) { 229 ileaved = fec_interleave(v, rsb * v->fec->rsn + i); 230 231 /* 232 * target is the data block we want to correct, target_index is 233 * the index of this block within the rsn RS blocks 234 */ 235 if (ileaved == target) 236 target_index = i; 237 238 block = ileaved >> v->data_dev_block_bits; 239 bufio = v->fec->data_bufio; 240 241 if (block >= v->data_blocks) { 242 block -= v->data_blocks; 243 244 /* 245 * blocks outside the area were assumed to contain 246 * zeros when encoding data was generated 247 */ 248 if (unlikely(block >= v->fec->hash_blocks)) 249 continue; 250 251 block += v->hash_start; 252 bufio = v->bufio; 253 } 254 255 bbuf = dm_bufio_read(bufio, block, &buf); 256 if (IS_ERR(bbuf)) { 257 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", 258 v->data_dev->name, 259 (unsigned long long)rsb, 260 (unsigned long long)block, PTR_ERR(bbuf)); 261 262 /* assume the block is corrupted */ 263 if (neras && *neras <= v->fec->roots) 264 fio->erasures[(*neras)++] = i; 265 266 continue; 267 } 268 269 /* locate erasures if the block is on the data device */ 270 if (bufio == v->fec->data_bufio && 271 verity_hash_for_block(v, io, block, want_digest, 272 &is_zero) == 0) { 273 /* skip known zero blocks entirely */ 274 if (is_zero) 275 goto done; 276 277 /* 278 * skip if we have already found the theoretical 279 * maximum number (i.e. fec->roots) of erasures 280 */ 281 if (neras && *neras <= v->fec->roots && 282 fec_is_erasure(v, io, want_digest, bbuf)) 283 fio->erasures[(*neras)++] = i; 284 } 285 286 /* 287 * deinterleave and copy the bytes that fit into bufs, 288 * starting from block_offset 289 */ 290 fec_for_each_buffer_rs_block(fio, n, j) { 291 k = fec_buffer_rs_index(n, j) + block_offset; 292 293 if (k >= 1 << v->data_dev_block_bits) 294 goto done; 295 296 rs_block = fec_buffer_rs_block(v, fio, n, j); 297 rs_block[i] = bbuf[k]; 298 } 299 done: 300 dm_bufio_release(buf); 301 } 302 303 return target_index; 304 } 305 306 /* 307 * Allocate RS control structure and FEC buffers from preallocated mempools, 308 * and attempt to allocate as many extra buffers as available. 309 */ 310 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 311 { 312 unsigned n; 313 314 if (!fio->rs) 315 fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO); 316 317 fec_for_each_prealloc_buffer(n) { 318 if (fio->bufs[n]) 319 continue; 320 321 fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT); 322 if (unlikely(!fio->bufs[n])) { 323 DMERR("failed to allocate FEC buffer"); 324 return -ENOMEM; 325 } 326 } 327 328 /* try to allocate the maximum number of buffers */ 329 fec_for_each_extra_buffer(fio, n) { 330 if (fio->bufs[n]) 331 continue; 332 333 fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT); 334 /* we can manage with even one buffer if necessary */ 335 if (unlikely(!fio->bufs[n])) 336 break; 337 } 338 fio->nbufs = n; 339 340 if (!fio->output) 341 fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO); 342 343 return 0; 344 } 345 346 /* 347 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are 348 * zeroed before deinterleaving. 349 */ 350 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 351 { 352 unsigned n; 353 354 fec_for_each_buffer(fio, n) 355 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); 356 357 memset(fio->erasures, 0, sizeof(fio->erasures)); 358 } 359 360 /* 361 * Decode all RS blocks in a single data block and return the target block 362 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses 363 * hashes to locate erasures. 364 */ 365 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, 366 struct dm_verity_fec_io *fio, u64 rsb, u64 offset, 367 bool use_erasures) 368 { 369 int r, neras = 0; 370 unsigned pos; 371 372 r = fec_alloc_bufs(v, fio); 373 if (unlikely(r < 0)) 374 return r; 375 376 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { 377 fec_init_bufs(v, fio); 378 379 r = fec_read_bufs(v, io, rsb, offset, pos, 380 use_erasures ? &neras : NULL); 381 if (unlikely(r < 0)) 382 return r; 383 384 r = fec_decode_bufs(v, fio, rsb, r, pos, neras); 385 if (r < 0) 386 return r; 387 388 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; 389 } 390 391 /* Always re-validate the corrected block against the expected hash */ 392 r = verity_hash(v, verity_io_hash_req(v, io), fio->output, 393 1 << v->data_dev_block_bits, 394 verity_io_real_digest(v, io)); 395 if (unlikely(r < 0)) 396 return r; 397 398 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), 399 v->digest_size)) { 400 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", 401 v->data_dev->name, (unsigned long long)rsb, neras); 402 return -EILSEQ; 403 } 404 405 return 0; 406 } 407 408 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, 409 size_t len) 410 { 411 struct dm_verity_fec_io *fio = fec_io(io); 412 413 memcpy(data, &fio->output[fio->output_pos], len); 414 fio->output_pos += len; 415 416 return 0; 417 } 418 419 /* 420 * Correct errors in a block. Copies corrected block to dest if non-NULL, 421 * otherwise to a bio_vec starting from iter. 422 */ 423 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, 424 enum verity_block_type type, sector_t block, u8 *dest, 425 struct bvec_iter *iter) 426 { 427 int r; 428 struct dm_verity_fec_io *fio = fec_io(io); 429 u64 offset, res, rsb; 430 431 if (!verity_fec_is_enabled(v)) 432 return -EOPNOTSUPP; 433 434 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { 435 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); 436 return -EIO; 437 } 438 439 fio->level++; 440 441 if (type == DM_VERITY_BLOCK_TYPE_METADATA) 442 block += v->data_blocks; 443 444 /* 445 * For RS(M, N), the continuous FEC data is divided into blocks of N 446 * bytes. Since block size may not be divisible by N, the last block 447 * is zero padded when decoding. 448 * 449 * Each byte of the block is covered by a different RS(M, N) code, 450 * and each code is interleaved over N blocks to make it less likely 451 * that bursty corruption will leave us in unrecoverable state. 452 */ 453 454 offset = block << v->data_dev_block_bits; 455 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); 456 457 /* 458 * The base RS block we can feed to the interleaver to find out all 459 * blocks required for decoding. 460 */ 461 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); 462 463 /* 464 * Locating erasures is slow, so attempt to recover the block without 465 * them first. Do a second attempt with erasures if the corruption is 466 * bad enough. 467 */ 468 r = fec_decode_rsb(v, io, fio, rsb, offset, false); 469 if (r < 0) { 470 r = fec_decode_rsb(v, io, fio, rsb, offset, true); 471 if (r < 0) 472 goto done; 473 } 474 475 if (dest) 476 memcpy(dest, fio->output, 1 << v->data_dev_block_bits); 477 else if (iter) { 478 fio->output_pos = 0; 479 r = verity_for_bv_block(v, io, iter, fec_bv_copy); 480 } 481 482 done: 483 fio->level--; 484 return r; 485 } 486 487 /* 488 * Clean up per-bio data. 489 */ 490 void verity_fec_finish_io(struct dm_verity_io *io) 491 { 492 unsigned n; 493 struct dm_verity_fec *f = io->v->fec; 494 struct dm_verity_fec_io *fio = fec_io(io); 495 496 if (!verity_fec_is_enabled(io->v)) 497 return; 498 499 mempool_free(fio->rs, &f->rs_pool); 500 501 fec_for_each_prealloc_buffer(n) 502 mempool_free(fio->bufs[n], &f->prealloc_pool); 503 504 fec_for_each_extra_buffer(fio, n) 505 mempool_free(fio->bufs[n], &f->extra_pool); 506 507 mempool_free(fio->output, &f->output_pool); 508 } 509 510 /* 511 * Initialize per-bio data. 512 */ 513 void verity_fec_init_io(struct dm_verity_io *io) 514 { 515 struct dm_verity_fec_io *fio = fec_io(io); 516 517 if (!verity_fec_is_enabled(io->v)) 518 return; 519 520 fio->rs = NULL; 521 memset(fio->bufs, 0, sizeof(fio->bufs)); 522 fio->nbufs = 0; 523 fio->output = NULL; 524 fio->level = 0; 525 } 526 527 /* 528 * Append feature arguments and values to the status table. 529 */ 530 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz, 531 char *result, unsigned maxlen) 532 { 533 if (!verity_fec_is_enabled(v)) 534 return sz; 535 536 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " 537 DM_VERITY_OPT_FEC_BLOCKS " %llu " 538 DM_VERITY_OPT_FEC_START " %llu " 539 DM_VERITY_OPT_FEC_ROOTS " %d", 540 v->fec->dev->name, 541 (unsigned long long)v->fec->blocks, 542 (unsigned long long)v->fec->start, 543 v->fec->roots); 544 545 return sz; 546 } 547 548 void verity_fec_dtr(struct dm_verity *v) 549 { 550 struct dm_verity_fec *f = v->fec; 551 552 if (!verity_fec_is_enabled(v)) 553 goto out; 554 555 mempool_exit(&f->rs_pool); 556 mempool_exit(&f->prealloc_pool); 557 mempool_exit(&f->extra_pool); 558 kmem_cache_destroy(f->cache); 559 560 if (f->data_bufio) 561 dm_bufio_client_destroy(f->data_bufio); 562 if (f->bufio) 563 dm_bufio_client_destroy(f->bufio); 564 565 if (f->dev) 566 dm_put_device(v->ti, f->dev); 567 out: 568 kfree(f); 569 v->fec = NULL; 570 } 571 572 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) 573 { 574 struct dm_verity *v = (struct dm_verity *)pool_data; 575 576 return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask); 577 } 578 579 static void fec_rs_free(void *element, void *pool_data) 580 { 581 struct rs_control *rs = (struct rs_control *)element; 582 583 if (rs) 584 free_rs(rs); 585 } 586 587 bool verity_is_fec_opt_arg(const char *arg_name) 588 { 589 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || 590 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || 591 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || 592 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); 593 } 594 595 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 596 unsigned *argc, const char *arg_name) 597 { 598 int r; 599 struct dm_target *ti = v->ti; 600 const char *arg_value; 601 unsigned long long num_ll; 602 unsigned char num_c; 603 char dummy; 604 605 if (!*argc) { 606 ti->error = "FEC feature arguments require a value"; 607 return -EINVAL; 608 } 609 610 arg_value = dm_shift_arg(as); 611 (*argc)--; 612 613 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { 614 r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev); 615 if (r) { 616 ti->error = "FEC device lookup failed"; 617 return r; 618 } 619 620 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { 621 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 622 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 623 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 624 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 625 return -EINVAL; 626 } 627 v->fec->blocks = num_ll; 628 629 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { 630 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 631 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> 632 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 633 ti->error = "Invalid " DM_VERITY_OPT_FEC_START; 634 return -EINVAL; 635 } 636 v->fec->start = num_ll; 637 638 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { 639 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || 640 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || 641 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { 642 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; 643 return -EINVAL; 644 } 645 v->fec->roots = num_c; 646 647 } else { 648 ti->error = "Unrecognized verity FEC feature request"; 649 return -EINVAL; 650 } 651 652 return 0; 653 } 654 655 /* 656 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. 657 */ 658 int verity_fec_ctr_alloc(struct dm_verity *v) 659 { 660 struct dm_verity_fec *f; 661 662 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); 663 if (!f) { 664 v->ti->error = "Cannot allocate FEC structure"; 665 return -ENOMEM; 666 } 667 v->fec = f; 668 669 return 0; 670 } 671 672 /* 673 * Validate arguments and preallocate memory. Must be called after arguments 674 * have been parsed using verity_fec_parse_opt_args. 675 */ 676 int verity_fec_ctr(struct dm_verity *v) 677 { 678 struct dm_verity_fec *f = v->fec; 679 struct dm_target *ti = v->ti; 680 u64 hash_blocks; 681 int ret; 682 683 if (!verity_fec_is_enabled(v)) { 684 verity_fec_dtr(v); 685 return 0; 686 } 687 688 /* 689 * FEC is computed over data blocks, possible metadata, and 690 * hash blocks. In other words, FEC covers total of fec_blocks 691 * blocks consisting of the following: 692 * 693 * data blocks | hash blocks | metadata (optional) 694 * 695 * We allow metadata after hash blocks to support a use case 696 * where all data is stored on the same device and FEC covers 697 * the entire area. 698 * 699 * If metadata is included, we require it to be available on the 700 * hash device after the hash blocks. 701 */ 702 703 hash_blocks = v->hash_blocks - v->hash_start; 704 705 /* 706 * Require matching block sizes for data and hash devices for 707 * simplicity. 708 */ 709 if (v->data_dev_block_bits != v->hash_dev_block_bits) { 710 ti->error = "Block sizes must match to use FEC"; 711 return -EINVAL; 712 } 713 714 if (!f->roots) { 715 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; 716 return -EINVAL; 717 } 718 f->rsn = DM_VERITY_FEC_RSM - f->roots; 719 720 if (!f->blocks) { 721 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; 722 return -EINVAL; 723 } 724 725 f->rounds = f->blocks; 726 if (sector_div(f->rounds, f->rsn)) 727 f->rounds++; 728 729 /* 730 * Due to optional metadata, f->blocks can be larger than 731 * data_blocks and hash_blocks combined. 732 */ 733 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { 734 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 735 return -EINVAL; 736 } 737 738 /* 739 * Metadata is accessed through the hash device, so we require 740 * it to be large enough. 741 */ 742 f->hash_blocks = f->blocks - v->data_blocks; 743 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { 744 ti->error = "Hash device is too small for " 745 DM_VERITY_OPT_FEC_BLOCKS; 746 return -E2BIG; 747 } 748 749 f->bufio = dm_bufio_client_create(f->dev->bdev, 750 1 << v->data_dev_block_bits, 751 1, 0, NULL, NULL); 752 if (IS_ERR(f->bufio)) { 753 ti->error = "Cannot initialize FEC bufio client"; 754 return PTR_ERR(f->bufio); 755 } 756 757 if (dm_bufio_get_device_size(f->bufio) < 758 ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) { 759 ti->error = "FEC device is too small"; 760 return -E2BIG; 761 } 762 763 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, 764 1 << v->data_dev_block_bits, 765 1, 0, NULL, NULL); 766 if (IS_ERR(f->data_bufio)) { 767 ti->error = "Cannot initialize FEC data bufio client"; 768 return PTR_ERR(f->data_bufio); 769 } 770 771 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { 772 ti->error = "Data device is too small"; 773 return -E2BIG; 774 } 775 776 /* Preallocate an rs_control structure for each worker thread */ 777 ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc, 778 fec_rs_free, (void *) v); 779 if (ret) { 780 ti->error = "Cannot allocate RS pool"; 781 return ret; 782 } 783 784 f->cache = kmem_cache_create("dm_verity_fec_buffers", 785 f->rsn << DM_VERITY_FEC_BUF_RS_BITS, 786 0, 0, NULL); 787 if (!f->cache) { 788 ti->error = "Cannot create FEC buffer cache"; 789 return -ENOMEM; 790 } 791 792 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ 793 ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() * 794 DM_VERITY_FEC_BUF_PREALLOC, 795 f->cache); 796 if (ret) { 797 ti->error = "Cannot allocate FEC buffer prealloc pool"; 798 return ret; 799 } 800 801 ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache); 802 if (ret) { 803 ti->error = "Cannot allocate FEC buffer extra pool"; 804 return ret; 805 } 806 807 /* Preallocate an output buffer for each thread */ 808 ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(), 809 1 << v->data_dev_block_bits); 810 if (ret) { 811 ti->error = "Cannot allocate FEC output pool"; 812 return ret; 813 } 814 815 /* Reserve space for our per-bio data */ 816 ti->per_io_data_size += sizeof(struct dm_verity_fec_io); 817 818 return 0; 819 } 820