xref: /openbmc/linux/drivers/md/dm-thin.c (revision fcc8487d)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct workqueue_struct *wq;
244 	struct throttle throttle;
245 	struct work_struct worker;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 	mempool_t *mapping_pool;
264 
265 	process_bio_fn process_bio;
266 	process_bio_fn process_discard;
267 
268 	process_cell_fn process_cell;
269 	process_cell_fn process_discard_cell;
270 
271 	process_mapping_fn process_prepared_mapping;
272 	process_mapping_fn process_prepared_discard;
273 	process_mapping_fn process_prepared_discard_pt2;
274 
275 	struct dm_bio_prison_cell **cell_sort_array;
276 };
277 
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280 
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285 	struct dm_target *ti;
286 	struct pool *pool;
287 	struct dm_dev *data_dev;
288 	struct dm_dev *metadata_dev;
289 	struct dm_target_callbacks callbacks;
290 
291 	dm_block_t low_water_blocks;
292 	struct pool_features requested_pf; /* Features requested during table load */
293 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295 
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300 	struct list_head list;
301 	struct dm_dev *pool_dev;
302 	struct dm_dev *origin_dev;
303 	sector_t origin_size;
304 	dm_thin_id dev_id;
305 
306 	struct pool *pool;
307 	struct dm_thin_device *td;
308 	struct mapped_device *thin_md;
309 
310 	bool requeue_mode:1;
311 	spinlock_t lock;
312 	struct list_head deferred_cells;
313 	struct bio_list deferred_bio_list;
314 	struct bio_list retry_on_resume_list;
315 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
316 
317 	/*
318 	 * Ensures the thin is not destroyed until the worker has finished
319 	 * iterating the active_thins list.
320 	 */
321 	atomic_t refcount;
322 	struct completion can_destroy;
323 };
324 
325 /*----------------------------------------------------------------*/
326 
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 	return pool->sectors_per_block_shift >= 0;
330 }
331 
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 	return block_size_is_power_of_two(pool) ?
335 		(b << pool->sectors_per_block_shift) :
336 		(b * pool->sectors_per_block);
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 struct discard_op {
342 	struct thin_c *tc;
343 	struct blk_plug plug;
344 	struct bio *parent_bio;
345 	struct bio *bio;
346 };
347 
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 	BUG_ON(!parent);
351 
352 	op->tc = tc;
353 	blk_start_plug(&op->plug);
354 	op->parent_bio = parent;
355 	op->bio = NULL;
356 }
357 
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 	struct thin_c *tc = op->tc;
361 	sector_t s = block_to_sectors(tc->pool, data_b);
362 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363 
364 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 				      GFP_NOWAIT, 0, &op->bio);
366 }
367 
368 static void end_discard(struct discard_op *op, int r)
369 {
370 	if (op->bio) {
371 		/*
372 		 * Even if one of the calls to issue_discard failed, we
373 		 * need to wait for the chain to complete.
374 		 */
375 		bio_chain(op->bio, op->parent_bio);
376 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 		submit_bio(op->bio);
378 	}
379 
380 	blk_finish_plug(&op->plug);
381 
382 	/*
383 	 * Even if r is set, there could be sub discards in flight that we
384 	 * need to wait for.
385 	 */
386 	if (r && !op->parent_bio->bi_error)
387 		op->parent_bio->bi_error = r;
388 	bio_endio(op->parent_bio);
389 }
390 
391 /*----------------------------------------------------------------*/
392 
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399 	queue_work(pool->wq, &pool->worker);
400 }
401 
402 /*----------------------------------------------------------------*/
403 
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 		      struct dm_bio_prison_cell **cell_result)
406 {
407 	int r;
408 	struct dm_bio_prison_cell *cell_prealloc;
409 
410 	/*
411 	 * Allocate a cell from the prison's mempool.
412 	 * This might block but it can't fail.
413 	 */
414 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415 
416 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 	if (r)
418 		/*
419 		 * We reused an old cell; we can get rid of
420 		 * the new one.
421 		 */
422 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423 
424 	return r;
425 }
426 
427 static void cell_release(struct pool *pool,
428 			 struct dm_bio_prison_cell *cell,
429 			 struct bio_list *bios)
430 {
431 	dm_cell_release(pool->prison, cell, bios);
432 	dm_bio_prison_free_cell(pool->prison, cell);
433 }
434 
435 static void cell_visit_release(struct pool *pool,
436 			       void (*fn)(void *, struct dm_bio_prison_cell *),
437 			       void *context,
438 			       struct dm_bio_prison_cell *cell)
439 {
440 	dm_cell_visit_release(pool->prison, fn, context, cell);
441 	dm_bio_prison_free_cell(pool->prison, cell);
442 }
443 
444 static void cell_release_no_holder(struct pool *pool,
445 				   struct dm_bio_prison_cell *cell,
446 				   struct bio_list *bios)
447 {
448 	dm_cell_release_no_holder(pool->prison, cell, bios);
449 	dm_bio_prison_free_cell(pool->prison, cell);
450 }
451 
452 static void cell_error_with_code(struct pool *pool,
453 				 struct dm_bio_prison_cell *cell, int error_code)
454 {
455 	dm_cell_error(pool->prison, cell, error_code);
456 	dm_bio_prison_free_cell(pool->prison, cell);
457 }
458 
459 static int get_pool_io_error_code(struct pool *pool)
460 {
461 	return pool->out_of_data_space ? -ENOSPC : -EIO;
462 }
463 
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 	int error = get_pool_io_error_code(pool);
467 
468 	cell_error_with_code(pool, cell, error);
469 }
470 
471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473 	cell_error_with_code(pool, cell, 0);
474 }
475 
476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479 }
480 
481 /*----------------------------------------------------------------*/
482 
483 /*
484  * A global list of pools that uses a struct mapped_device as a key.
485  */
486 static struct dm_thin_pool_table {
487 	struct mutex mutex;
488 	struct list_head pools;
489 } dm_thin_pool_table;
490 
491 static void pool_table_init(void)
492 {
493 	mutex_init(&dm_thin_pool_table.mutex);
494 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 }
496 
497 static void __pool_table_insert(struct pool *pool)
498 {
499 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500 	list_add(&pool->list, &dm_thin_pool_table.pools);
501 }
502 
503 static void __pool_table_remove(struct pool *pool)
504 {
505 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 	list_del(&pool->list);
507 }
508 
509 static struct pool *__pool_table_lookup(struct mapped_device *md)
510 {
511 	struct pool *pool = NULL, *tmp;
512 
513 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514 
515 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516 		if (tmp->pool_md == md) {
517 			pool = tmp;
518 			break;
519 		}
520 	}
521 
522 	return pool;
523 }
524 
525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526 {
527 	struct pool *pool = NULL, *tmp;
528 
529 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530 
531 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532 		if (tmp->md_dev == md_dev) {
533 			pool = tmp;
534 			break;
535 		}
536 	}
537 
538 	return pool;
539 }
540 
541 /*----------------------------------------------------------------*/
542 
543 struct dm_thin_endio_hook {
544 	struct thin_c *tc;
545 	struct dm_deferred_entry *shared_read_entry;
546 	struct dm_deferred_entry *all_io_entry;
547 	struct dm_thin_new_mapping *overwrite_mapping;
548 	struct rb_node rb_node;
549 	struct dm_bio_prison_cell *cell;
550 };
551 
552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553 {
554 	bio_list_merge(bios, master);
555 	bio_list_init(master);
556 }
557 
558 static void error_bio_list(struct bio_list *bios, int error)
559 {
560 	struct bio *bio;
561 
562 	while ((bio = bio_list_pop(bios))) {
563 		bio->bi_error = error;
564 		bio_endio(bio);
565 	}
566 }
567 
568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569 {
570 	struct bio_list bios;
571 	unsigned long flags;
572 
573 	bio_list_init(&bios);
574 
575 	spin_lock_irqsave(&tc->lock, flags);
576 	__merge_bio_list(&bios, master);
577 	spin_unlock_irqrestore(&tc->lock, flags);
578 
579 	error_bio_list(&bios, error);
580 }
581 
582 static void requeue_deferred_cells(struct thin_c *tc)
583 {
584 	struct pool *pool = tc->pool;
585 	unsigned long flags;
586 	struct list_head cells;
587 	struct dm_bio_prison_cell *cell, *tmp;
588 
589 	INIT_LIST_HEAD(&cells);
590 
591 	spin_lock_irqsave(&tc->lock, flags);
592 	list_splice_init(&tc->deferred_cells, &cells);
593 	spin_unlock_irqrestore(&tc->lock, flags);
594 
595 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
596 		cell_requeue(pool, cell);
597 }
598 
599 static void requeue_io(struct thin_c *tc)
600 {
601 	struct bio_list bios;
602 	unsigned long flags;
603 
604 	bio_list_init(&bios);
605 
606 	spin_lock_irqsave(&tc->lock, flags);
607 	__merge_bio_list(&bios, &tc->deferred_bio_list);
608 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
609 	spin_unlock_irqrestore(&tc->lock, flags);
610 
611 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
612 	requeue_deferred_cells(tc);
613 }
614 
615 static void error_retry_list_with_code(struct pool *pool, int error)
616 {
617 	struct thin_c *tc;
618 
619 	rcu_read_lock();
620 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
621 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622 	rcu_read_unlock();
623 }
624 
625 static void error_retry_list(struct pool *pool)
626 {
627 	int error = get_pool_io_error_code(pool);
628 
629 	error_retry_list_with_code(pool, error);
630 }
631 
632 /*
633  * This section of code contains the logic for processing a thin device's IO.
634  * Much of the code depends on pool object resources (lists, workqueues, etc)
635  * but most is exclusively called from the thin target rather than the thin-pool
636  * target.
637  */
638 
639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640 {
641 	struct pool *pool = tc->pool;
642 	sector_t block_nr = bio->bi_iter.bi_sector;
643 
644 	if (block_size_is_power_of_two(pool))
645 		block_nr >>= pool->sectors_per_block_shift;
646 	else
647 		(void) sector_div(block_nr, pool->sectors_per_block);
648 
649 	return block_nr;
650 }
651 
652 /*
653  * Returns the _complete_ blocks that this bio covers.
654  */
655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656 				dm_block_t *begin, dm_block_t *end)
657 {
658 	struct pool *pool = tc->pool;
659 	sector_t b = bio->bi_iter.bi_sector;
660 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661 
662 	b += pool->sectors_per_block - 1ull; /* so we round up */
663 
664 	if (block_size_is_power_of_two(pool)) {
665 		b >>= pool->sectors_per_block_shift;
666 		e >>= pool->sectors_per_block_shift;
667 	} else {
668 		(void) sector_div(b, pool->sectors_per_block);
669 		(void) sector_div(e, pool->sectors_per_block);
670 	}
671 
672 	if (e < b)
673 		/* Can happen if the bio is within a single block. */
674 		e = b;
675 
676 	*begin = b;
677 	*end = e;
678 }
679 
680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681 {
682 	struct pool *pool = tc->pool;
683 	sector_t bi_sector = bio->bi_iter.bi_sector;
684 
685 	bio->bi_bdev = tc->pool_dev->bdev;
686 	if (block_size_is_power_of_two(pool))
687 		bio->bi_iter.bi_sector =
688 			(block << pool->sectors_per_block_shift) |
689 			(bi_sector & (pool->sectors_per_block - 1));
690 	else
691 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692 				 sector_div(bi_sector, pool->sectors_per_block);
693 }
694 
695 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696 {
697 	bio->bi_bdev = tc->origin_dev->bdev;
698 }
699 
700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701 {
702 	return op_is_flush(bio->bi_opf) &&
703 		dm_thin_changed_this_transaction(tc->td);
704 }
705 
706 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707 {
708 	struct dm_thin_endio_hook *h;
709 
710 	if (bio_op(bio) == REQ_OP_DISCARD)
711 		return;
712 
713 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715 }
716 
717 static void issue(struct thin_c *tc, struct bio *bio)
718 {
719 	struct pool *pool = tc->pool;
720 	unsigned long flags;
721 
722 	if (!bio_triggers_commit(tc, bio)) {
723 		generic_make_request(bio);
724 		return;
725 	}
726 
727 	/*
728 	 * Complete bio with an error if earlier I/O caused changes to
729 	 * the metadata that can't be committed e.g, due to I/O errors
730 	 * on the metadata device.
731 	 */
732 	if (dm_thin_aborted_changes(tc->td)) {
733 		bio_io_error(bio);
734 		return;
735 	}
736 
737 	/*
738 	 * Batch together any bios that trigger commits and then issue a
739 	 * single commit for them in process_deferred_bios().
740 	 */
741 	spin_lock_irqsave(&pool->lock, flags);
742 	bio_list_add(&pool->deferred_flush_bios, bio);
743 	spin_unlock_irqrestore(&pool->lock, flags);
744 }
745 
746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747 {
748 	remap_to_origin(tc, bio);
749 	issue(tc, bio);
750 }
751 
752 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753 			    dm_block_t block)
754 {
755 	remap(tc, bio, block);
756 	issue(tc, bio);
757 }
758 
759 /*----------------------------------------------------------------*/
760 
761 /*
762  * Bio endio functions.
763  */
764 struct dm_thin_new_mapping {
765 	struct list_head list;
766 
767 	bool pass_discard:1;
768 	bool maybe_shared:1;
769 
770 	/*
771 	 * Track quiescing, copying and zeroing preparation actions.  When this
772 	 * counter hits zero the block is prepared and can be inserted into the
773 	 * btree.
774 	 */
775 	atomic_t prepare_actions;
776 
777 	int err;
778 	struct thin_c *tc;
779 	dm_block_t virt_begin, virt_end;
780 	dm_block_t data_block;
781 	struct dm_bio_prison_cell *cell;
782 
783 	/*
784 	 * If the bio covers the whole area of a block then we can avoid
785 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
786 	 * still be in the cell, so care has to be taken to avoid issuing
787 	 * the bio twice.
788 	 */
789 	struct bio *bio;
790 	bio_end_io_t *saved_bi_end_io;
791 };
792 
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794 {
795 	struct pool *pool = m->tc->pool;
796 
797 	if (atomic_dec_and_test(&m->prepare_actions)) {
798 		list_add_tail(&m->list, &pool->prepared_mappings);
799 		wake_worker(pool);
800 	}
801 }
802 
803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804 {
805 	unsigned long flags;
806 	struct pool *pool = m->tc->pool;
807 
808 	spin_lock_irqsave(&pool->lock, flags);
809 	__complete_mapping_preparation(m);
810 	spin_unlock_irqrestore(&pool->lock, flags);
811 }
812 
813 static void copy_complete(int read_err, unsigned long write_err, void *context)
814 {
815 	struct dm_thin_new_mapping *m = context;
816 
817 	m->err = read_err || write_err ? -EIO : 0;
818 	complete_mapping_preparation(m);
819 }
820 
821 static void overwrite_endio(struct bio *bio)
822 {
823 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
825 
826 	bio->bi_end_io = m->saved_bi_end_io;
827 
828 	m->err = bio->bi_error;
829 	complete_mapping_preparation(m);
830 }
831 
832 /*----------------------------------------------------------------*/
833 
834 /*
835  * Workqueue.
836  */
837 
838 /*
839  * Prepared mapping jobs.
840  */
841 
842 /*
843  * This sends the bios in the cell, except the original holder, back
844  * to the deferred_bios list.
845  */
846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848 	struct pool *pool = tc->pool;
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&tc->lock, flags);
852 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853 	spin_unlock_irqrestore(&tc->lock, flags);
854 
855 	wake_worker(pool);
856 }
857 
858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859 
860 struct remap_info {
861 	struct thin_c *tc;
862 	struct bio_list defer_bios;
863 	struct bio_list issue_bios;
864 };
865 
866 static void __inc_remap_and_issue_cell(void *context,
867 				       struct dm_bio_prison_cell *cell)
868 {
869 	struct remap_info *info = context;
870 	struct bio *bio;
871 
872 	while ((bio = bio_list_pop(&cell->bios))) {
873 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
874 			bio_list_add(&info->defer_bios, bio);
875 		else {
876 			inc_all_io_entry(info->tc->pool, bio);
877 
878 			/*
879 			 * We can't issue the bios with the bio prison lock
880 			 * held, so we add them to a list to issue on
881 			 * return from this function.
882 			 */
883 			bio_list_add(&info->issue_bios, bio);
884 		}
885 	}
886 }
887 
888 static void inc_remap_and_issue_cell(struct thin_c *tc,
889 				     struct dm_bio_prison_cell *cell,
890 				     dm_block_t block)
891 {
892 	struct bio *bio;
893 	struct remap_info info;
894 
895 	info.tc = tc;
896 	bio_list_init(&info.defer_bios);
897 	bio_list_init(&info.issue_bios);
898 
899 	/*
900 	 * We have to be careful to inc any bios we're about to issue
901 	 * before the cell is released, and avoid a race with new bios
902 	 * being added to the cell.
903 	 */
904 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
905 			   &info, cell);
906 
907 	while ((bio = bio_list_pop(&info.defer_bios)))
908 		thin_defer_bio(tc, bio);
909 
910 	while ((bio = bio_list_pop(&info.issue_bios)))
911 		remap_and_issue(info.tc, bio, block);
912 }
913 
914 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
915 {
916 	cell_error(m->tc->pool, m->cell);
917 	list_del(&m->list);
918 	mempool_free(m, m->tc->pool->mapping_pool);
919 }
920 
921 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
922 {
923 	struct thin_c *tc = m->tc;
924 	struct pool *pool = tc->pool;
925 	struct bio *bio = m->bio;
926 	int r;
927 
928 	if (m->err) {
929 		cell_error(pool, m->cell);
930 		goto out;
931 	}
932 
933 	/*
934 	 * Commit the prepared block into the mapping btree.
935 	 * Any I/O for this block arriving after this point will get
936 	 * remapped to it directly.
937 	 */
938 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
939 	if (r) {
940 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
941 		cell_error(pool, m->cell);
942 		goto out;
943 	}
944 
945 	/*
946 	 * Release any bios held while the block was being provisioned.
947 	 * If we are processing a write bio that completely covers the block,
948 	 * we already processed it so can ignore it now when processing
949 	 * the bios in the cell.
950 	 */
951 	if (bio) {
952 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
953 		bio_endio(bio);
954 	} else {
955 		inc_all_io_entry(tc->pool, m->cell->holder);
956 		remap_and_issue(tc, m->cell->holder, m->data_block);
957 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
958 	}
959 
960 out:
961 	list_del(&m->list);
962 	mempool_free(m, pool->mapping_pool);
963 }
964 
965 /*----------------------------------------------------------------*/
966 
967 static void free_discard_mapping(struct dm_thin_new_mapping *m)
968 {
969 	struct thin_c *tc = m->tc;
970 	if (m->cell)
971 		cell_defer_no_holder(tc, m->cell);
972 	mempool_free(m, tc->pool->mapping_pool);
973 }
974 
975 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
976 {
977 	bio_io_error(m->bio);
978 	free_discard_mapping(m);
979 }
980 
981 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
982 {
983 	bio_endio(m->bio);
984 	free_discard_mapping(m);
985 }
986 
987 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
988 {
989 	int r;
990 	struct thin_c *tc = m->tc;
991 
992 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
993 	if (r) {
994 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
995 		bio_io_error(m->bio);
996 	} else
997 		bio_endio(m->bio);
998 
999 	cell_defer_no_holder(tc, m->cell);
1000 	mempool_free(m, tc->pool->mapping_pool);
1001 }
1002 
1003 /*----------------------------------------------------------------*/
1004 
1005 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1006 						   struct bio *discard_parent)
1007 {
1008 	/*
1009 	 * We've already unmapped this range of blocks, but before we
1010 	 * passdown we have to check that these blocks are now unused.
1011 	 */
1012 	int r = 0;
1013 	bool used = true;
1014 	struct thin_c *tc = m->tc;
1015 	struct pool *pool = tc->pool;
1016 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017 	struct discard_op op;
1018 
1019 	begin_discard(&op, tc, discard_parent);
1020 	while (b != end) {
1021 		/* find start of unmapped run */
1022 		for (; b < end; b++) {
1023 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1024 			if (r)
1025 				goto out;
1026 
1027 			if (!used)
1028 				break;
1029 		}
1030 
1031 		if (b == end)
1032 			break;
1033 
1034 		/* find end of run */
1035 		for (e = b + 1; e != end; e++) {
1036 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1037 			if (r)
1038 				goto out;
1039 
1040 			if (used)
1041 				break;
1042 		}
1043 
1044 		r = issue_discard(&op, b, e);
1045 		if (r)
1046 			goto out;
1047 
1048 		b = e;
1049 	}
1050 out:
1051 	end_discard(&op, r);
1052 }
1053 
1054 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1055 {
1056 	unsigned long flags;
1057 	struct pool *pool = m->tc->pool;
1058 
1059 	spin_lock_irqsave(&pool->lock, flags);
1060 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1061 	spin_unlock_irqrestore(&pool->lock, flags);
1062 	wake_worker(pool);
1063 }
1064 
1065 static void passdown_endio(struct bio *bio)
1066 {
1067 	/*
1068 	 * It doesn't matter if the passdown discard failed, we still want
1069 	 * to unmap (we ignore err).
1070 	 */
1071 	queue_passdown_pt2(bio->bi_private);
1072 	bio_put(bio);
1073 }
1074 
1075 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076 {
1077 	int r;
1078 	struct thin_c *tc = m->tc;
1079 	struct pool *pool = tc->pool;
1080 	struct bio *discard_parent;
1081 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082 
1083 	/*
1084 	 * Only this thread allocates blocks, so we can be sure that the
1085 	 * newly unmapped blocks will not be allocated before the end of
1086 	 * the function.
1087 	 */
1088 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089 	if (r) {
1090 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091 		bio_io_error(m->bio);
1092 		cell_defer_no_holder(tc, m->cell);
1093 		mempool_free(m, pool->mapping_pool);
1094 		return;
1095 	}
1096 
1097 	discard_parent = bio_alloc(GFP_NOIO, 1);
1098 	if (!discard_parent) {
1099 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100 		       dm_device_name(tc->pool->pool_md));
1101 		queue_passdown_pt2(m);
1102 
1103 	} else {
1104 		discard_parent->bi_end_io = passdown_endio;
1105 		discard_parent->bi_private = m;
1106 
1107 		if (m->maybe_shared)
1108 			passdown_double_checking_shared_status(m, discard_parent);
1109 		else {
1110 			struct discard_op op;
1111 
1112 			begin_discard(&op, tc, discard_parent);
1113 			r = issue_discard(&op, m->data_block, data_end);
1114 			end_discard(&op, r);
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * Increment the unmapped blocks.  This prevents a race between the
1120 	 * passdown io and reallocation of freed blocks.
1121 	 */
1122 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1123 	if (r) {
1124 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1125 		bio_io_error(m->bio);
1126 		cell_defer_no_holder(tc, m->cell);
1127 		mempool_free(m, pool->mapping_pool);
1128 		return;
1129 	}
1130 }
1131 
1132 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133 {
1134 	int r;
1135 	struct thin_c *tc = m->tc;
1136 	struct pool *pool = tc->pool;
1137 
1138 	/*
1139 	 * The passdown has completed, so now we can decrement all those
1140 	 * unmapped blocks.
1141 	 */
1142 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143 				   m->data_block + (m->virt_end - m->virt_begin));
1144 	if (r) {
1145 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146 		bio_io_error(m->bio);
1147 	} else
1148 		bio_endio(m->bio);
1149 
1150 	cell_defer_no_holder(tc, m->cell);
1151 	mempool_free(m, pool->mapping_pool);
1152 }
1153 
1154 static void process_prepared(struct pool *pool, struct list_head *head,
1155 			     process_mapping_fn *fn)
1156 {
1157 	unsigned long flags;
1158 	struct list_head maps;
1159 	struct dm_thin_new_mapping *m, *tmp;
1160 
1161 	INIT_LIST_HEAD(&maps);
1162 	spin_lock_irqsave(&pool->lock, flags);
1163 	list_splice_init(head, &maps);
1164 	spin_unlock_irqrestore(&pool->lock, flags);
1165 
1166 	list_for_each_entry_safe(m, tmp, &maps, list)
1167 		(*fn)(m);
1168 }
1169 
1170 /*
1171  * Deferred bio jobs.
1172  */
1173 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174 {
1175 	return bio->bi_iter.bi_size ==
1176 		(pool->sectors_per_block << SECTOR_SHIFT);
1177 }
1178 
1179 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180 {
1181 	return (bio_data_dir(bio) == WRITE) &&
1182 		io_overlaps_block(pool, bio);
1183 }
1184 
1185 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186 			       bio_end_io_t *fn)
1187 {
1188 	*save = bio->bi_end_io;
1189 	bio->bi_end_io = fn;
1190 }
1191 
1192 static int ensure_next_mapping(struct pool *pool)
1193 {
1194 	if (pool->next_mapping)
1195 		return 0;
1196 
1197 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198 
1199 	return pool->next_mapping ? 0 : -ENOMEM;
1200 }
1201 
1202 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203 {
1204 	struct dm_thin_new_mapping *m = pool->next_mapping;
1205 
1206 	BUG_ON(!pool->next_mapping);
1207 
1208 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209 	INIT_LIST_HEAD(&m->list);
1210 	m->bio = NULL;
1211 
1212 	pool->next_mapping = NULL;
1213 
1214 	return m;
1215 }
1216 
1217 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218 		    sector_t begin, sector_t end)
1219 {
1220 	int r;
1221 	struct dm_io_region to;
1222 
1223 	to.bdev = tc->pool_dev->bdev;
1224 	to.sector = begin;
1225 	to.count = end - begin;
1226 
1227 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228 	if (r < 0) {
1229 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1230 		copy_complete(1, 1, m);
1231 	}
1232 }
1233 
1234 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235 				      dm_block_t data_begin,
1236 				      struct dm_thin_new_mapping *m)
1237 {
1238 	struct pool *pool = tc->pool;
1239 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240 
1241 	h->overwrite_mapping = m;
1242 	m->bio = bio;
1243 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244 	inc_all_io_entry(pool, bio);
1245 	remap_and_issue(tc, bio, data_begin);
1246 }
1247 
1248 /*
1249  * A partial copy also needs to zero the uncopied region.
1250  */
1251 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252 			  struct dm_dev *origin, dm_block_t data_origin,
1253 			  dm_block_t data_dest,
1254 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1255 			  sector_t len)
1256 {
1257 	int r;
1258 	struct pool *pool = tc->pool;
1259 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260 
1261 	m->tc = tc;
1262 	m->virt_begin = virt_block;
1263 	m->virt_end = virt_block + 1u;
1264 	m->data_block = data_dest;
1265 	m->cell = cell;
1266 
1267 	/*
1268 	 * quiesce action + copy action + an extra reference held for the
1269 	 * duration of this function (we may need to inc later for a
1270 	 * partial zero).
1271 	 */
1272 	atomic_set(&m->prepare_actions, 3);
1273 
1274 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275 		complete_mapping_preparation(m); /* already quiesced */
1276 
1277 	/*
1278 	 * IO to pool_dev remaps to the pool target's data_dev.
1279 	 *
1280 	 * If the whole block of data is being overwritten, we can issue the
1281 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1282 	 */
1283 	if (io_overwrites_block(pool, bio))
1284 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1285 	else {
1286 		struct dm_io_region from, to;
1287 
1288 		from.bdev = origin->bdev;
1289 		from.sector = data_origin * pool->sectors_per_block;
1290 		from.count = len;
1291 
1292 		to.bdev = tc->pool_dev->bdev;
1293 		to.sector = data_dest * pool->sectors_per_block;
1294 		to.count = len;
1295 
1296 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297 				   0, copy_complete, m);
1298 		if (r < 0) {
1299 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1300 			copy_complete(1, 1, m);
1301 
1302 			/*
1303 			 * We allow the zero to be issued, to simplify the
1304 			 * error path.  Otherwise we'd need to start
1305 			 * worrying about decrementing the prepare_actions
1306 			 * counter.
1307 			 */
1308 		}
1309 
1310 		/*
1311 		 * Do we need to zero a tail region?
1312 		 */
1313 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314 			atomic_inc(&m->prepare_actions);
1315 			ll_zero(tc, m,
1316 				data_dest * pool->sectors_per_block + len,
1317 				(data_dest + 1) * pool->sectors_per_block);
1318 		}
1319 	}
1320 
1321 	complete_mapping_preparation(m); /* drop our ref */
1322 }
1323 
1324 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325 				   dm_block_t data_origin, dm_block_t data_dest,
1326 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1327 {
1328 	schedule_copy(tc, virt_block, tc->pool_dev,
1329 		      data_origin, data_dest, cell, bio,
1330 		      tc->pool->sectors_per_block);
1331 }
1332 
1333 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335 			  struct bio *bio)
1336 {
1337 	struct pool *pool = tc->pool;
1338 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339 
1340 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341 	m->tc = tc;
1342 	m->virt_begin = virt_block;
1343 	m->virt_end = virt_block + 1u;
1344 	m->data_block = data_block;
1345 	m->cell = cell;
1346 
1347 	/*
1348 	 * If the whole block of data is being overwritten or we are not
1349 	 * zeroing pre-existing data, we can issue the bio immediately.
1350 	 * Otherwise we use kcopyd to zero the data first.
1351 	 */
1352 	if (pool->pf.zero_new_blocks) {
1353 		if (io_overwrites_block(pool, bio))
1354 			remap_and_issue_overwrite(tc, bio, data_block, m);
1355 		else
1356 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1357 				(data_block + 1) * pool->sectors_per_block);
1358 	} else
1359 		process_prepared_mapping(m);
1360 }
1361 
1362 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363 				   dm_block_t data_dest,
1364 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1365 {
1366 	struct pool *pool = tc->pool;
1367 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369 
1370 	if (virt_block_end <= tc->origin_size)
1371 		schedule_copy(tc, virt_block, tc->origin_dev,
1372 			      virt_block, data_dest, cell, bio,
1373 			      pool->sectors_per_block);
1374 
1375 	else if (virt_block_begin < tc->origin_size)
1376 		schedule_copy(tc, virt_block, tc->origin_dev,
1377 			      virt_block, data_dest, cell, bio,
1378 			      tc->origin_size - virt_block_begin);
1379 
1380 	else
1381 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1382 }
1383 
1384 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385 
1386 static void check_for_space(struct pool *pool)
1387 {
1388 	int r;
1389 	dm_block_t nr_free;
1390 
1391 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392 		return;
1393 
1394 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395 	if (r)
1396 		return;
1397 
1398 	if (nr_free)
1399 		set_pool_mode(pool, PM_WRITE);
1400 }
1401 
1402 /*
1403  * A non-zero return indicates read_only or fail_io mode.
1404  * Many callers don't care about the return value.
1405  */
1406 static int commit(struct pool *pool)
1407 {
1408 	int r;
1409 
1410 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1411 		return -EINVAL;
1412 
1413 	r = dm_pool_commit_metadata(pool->pmd);
1414 	if (r)
1415 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416 	else
1417 		check_for_space(pool);
1418 
1419 	return r;
1420 }
1421 
1422 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423 {
1424 	unsigned long flags;
1425 
1426 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427 		DMWARN("%s: reached low water mark for data device: sending event.",
1428 		       dm_device_name(pool->pool_md));
1429 		spin_lock_irqsave(&pool->lock, flags);
1430 		pool->low_water_triggered = true;
1431 		spin_unlock_irqrestore(&pool->lock, flags);
1432 		dm_table_event(pool->ti->table);
1433 	}
1434 }
1435 
1436 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437 {
1438 	int r;
1439 	dm_block_t free_blocks;
1440 	struct pool *pool = tc->pool;
1441 
1442 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443 		return -EINVAL;
1444 
1445 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446 	if (r) {
1447 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448 		return r;
1449 	}
1450 
1451 	check_low_water_mark(pool, free_blocks);
1452 
1453 	if (!free_blocks) {
1454 		/*
1455 		 * Try to commit to see if that will free up some
1456 		 * more space.
1457 		 */
1458 		r = commit(pool);
1459 		if (r)
1460 			return r;
1461 
1462 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463 		if (r) {
1464 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465 			return r;
1466 		}
1467 
1468 		if (!free_blocks) {
1469 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470 			return -ENOSPC;
1471 		}
1472 	}
1473 
1474 	r = dm_pool_alloc_data_block(pool->pmd, result);
1475 	if (r) {
1476 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477 		return r;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * If we have run out of space, queue bios until the device is
1485  * resumed, presumably after having been reloaded with more space.
1486  */
1487 static void retry_on_resume(struct bio *bio)
1488 {
1489 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490 	struct thin_c *tc = h->tc;
1491 	unsigned long flags;
1492 
1493 	spin_lock_irqsave(&tc->lock, flags);
1494 	bio_list_add(&tc->retry_on_resume_list, bio);
1495 	spin_unlock_irqrestore(&tc->lock, flags);
1496 }
1497 
1498 static int should_error_unserviceable_bio(struct pool *pool)
1499 {
1500 	enum pool_mode m = get_pool_mode(pool);
1501 
1502 	switch (m) {
1503 	case PM_WRITE:
1504 		/* Shouldn't get here */
1505 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506 		return -EIO;
1507 
1508 	case PM_OUT_OF_DATA_SPACE:
1509 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510 
1511 	case PM_READ_ONLY:
1512 	case PM_FAIL:
1513 		return -EIO;
1514 	default:
1515 		/* Shouldn't get here */
1516 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517 		return -EIO;
1518 	}
1519 }
1520 
1521 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522 {
1523 	int error = should_error_unserviceable_bio(pool);
1524 
1525 	if (error) {
1526 		bio->bi_error = error;
1527 		bio_endio(bio);
1528 	} else
1529 		retry_on_resume(bio);
1530 }
1531 
1532 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533 {
1534 	struct bio *bio;
1535 	struct bio_list bios;
1536 	int error;
1537 
1538 	error = should_error_unserviceable_bio(pool);
1539 	if (error) {
1540 		cell_error_with_code(pool, cell, error);
1541 		return;
1542 	}
1543 
1544 	bio_list_init(&bios);
1545 	cell_release(pool, cell, &bios);
1546 
1547 	while ((bio = bio_list_pop(&bios)))
1548 		retry_on_resume(bio);
1549 }
1550 
1551 static void process_discard_cell_no_passdown(struct thin_c *tc,
1552 					     struct dm_bio_prison_cell *virt_cell)
1553 {
1554 	struct pool *pool = tc->pool;
1555 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556 
1557 	/*
1558 	 * We don't need to lock the data blocks, since there's no
1559 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1560 	 */
1561 	m->tc = tc;
1562 	m->virt_begin = virt_cell->key.block_begin;
1563 	m->virt_end = virt_cell->key.block_end;
1564 	m->cell = virt_cell;
1565 	m->bio = virt_cell->holder;
1566 
1567 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568 		pool->process_prepared_discard(m);
1569 }
1570 
1571 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572 				 struct bio *bio)
1573 {
1574 	struct pool *pool = tc->pool;
1575 
1576 	int r;
1577 	bool maybe_shared;
1578 	struct dm_cell_key data_key;
1579 	struct dm_bio_prison_cell *data_cell;
1580 	struct dm_thin_new_mapping *m;
1581 	dm_block_t virt_begin, virt_end, data_begin;
1582 
1583 	while (begin != end) {
1584 		r = ensure_next_mapping(pool);
1585 		if (r)
1586 			/* we did our best */
1587 			return;
1588 
1589 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590 					      &data_begin, &maybe_shared);
1591 		if (r)
1592 			/*
1593 			 * Silently fail, letting any mappings we've
1594 			 * created complete.
1595 			 */
1596 			break;
1597 
1598 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600 			/* contention, we'll give up with this range */
1601 			begin = virt_end;
1602 			continue;
1603 		}
1604 
1605 		/*
1606 		 * IO may still be going to the destination block.  We must
1607 		 * quiesce before we can do the removal.
1608 		 */
1609 		m = get_next_mapping(pool);
1610 		m->tc = tc;
1611 		m->maybe_shared = maybe_shared;
1612 		m->virt_begin = virt_begin;
1613 		m->virt_end = virt_end;
1614 		m->data_block = data_begin;
1615 		m->cell = data_cell;
1616 		m->bio = bio;
1617 
1618 		/*
1619 		 * The parent bio must not complete before sub discard bios are
1620 		 * chained to it (see end_discard's bio_chain)!
1621 		 *
1622 		 * This per-mapping bi_remaining increment is paired with
1623 		 * the implicit decrement that occurs via bio_endio() in
1624 		 * end_discard().
1625 		 */
1626 		bio_inc_remaining(bio);
1627 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628 			pool->process_prepared_discard(m);
1629 
1630 		begin = virt_end;
1631 	}
1632 }
1633 
1634 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635 {
1636 	struct bio *bio = virt_cell->holder;
1637 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638 
1639 	/*
1640 	 * The virt_cell will only get freed once the origin bio completes.
1641 	 * This means it will remain locked while all the individual
1642 	 * passdown bios are in flight.
1643 	 */
1644 	h->cell = virt_cell;
1645 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646 
1647 	/*
1648 	 * We complete the bio now, knowing that the bi_remaining field
1649 	 * will prevent completion until the sub range discards have
1650 	 * completed.
1651 	 */
1652 	bio_endio(bio);
1653 }
1654 
1655 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656 {
1657 	dm_block_t begin, end;
1658 	struct dm_cell_key virt_key;
1659 	struct dm_bio_prison_cell *virt_cell;
1660 
1661 	get_bio_block_range(tc, bio, &begin, &end);
1662 	if (begin == end) {
1663 		/*
1664 		 * The discard covers less than a block.
1665 		 */
1666 		bio_endio(bio);
1667 		return;
1668 	}
1669 
1670 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672 		/*
1673 		 * Potential starvation issue: We're relying on the
1674 		 * fs/application being well behaved, and not trying to
1675 		 * send IO to a region at the same time as discarding it.
1676 		 * If they do this persistently then it's possible this
1677 		 * cell will never be granted.
1678 		 */
1679 		return;
1680 
1681 	tc->pool->process_discard_cell(tc, virt_cell);
1682 }
1683 
1684 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685 			  struct dm_cell_key *key,
1686 			  struct dm_thin_lookup_result *lookup_result,
1687 			  struct dm_bio_prison_cell *cell)
1688 {
1689 	int r;
1690 	dm_block_t data_block;
1691 	struct pool *pool = tc->pool;
1692 
1693 	r = alloc_data_block(tc, &data_block);
1694 	switch (r) {
1695 	case 0:
1696 		schedule_internal_copy(tc, block, lookup_result->block,
1697 				       data_block, cell, bio);
1698 		break;
1699 
1700 	case -ENOSPC:
1701 		retry_bios_on_resume(pool, cell);
1702 		break;
1703 
1704 	default:
1705 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706 			    __func__, r);
1707 		cell_error(pool, cell);
1708 		break;
1709 	}
1710 }
1711 
1712 static void __remap_and_issue_shared_cell(void *context,
1713 					  struct dm_bio_prison_cell *cell)
1714 {
1715 	struct remap_info *info = context;
1716 	struct bio *bio;
1717 
1718 	while ((bio = bio_list_pop(&cell->bios))) {
1719 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1720 		    bio_op(bio) == REQ_OP_DISCARD)
1721 			bio_list_add(&info->defer_bios, bio);
1722 		else {
1723 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1724 
1725 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1726 			inc_all_io_entry(info->tc->pool, bio);
1727 			bio_list_add(&info->issue_bios, bio);
1728 		}
1729 	}
1730 }
1731 
1732 static void remap_and_issue_shared_cell(struct thin_c *tc,
1733 					struct dm_bio_prison_cell *cell,
1734 					dm_block_t block)
1735 {
1736 	struct bio *bio;
1737 	struct remap_info info;
1738 
1739 	info.tc = tc;
1740 	bio_list_init(&info.defer_bios);
1741 	bio_list_init(&info.issue_bios);
1742 
1743 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1744 			   &info, cell);
1745 
1746 	while ((bio = bio_list_pop(&info.defer_bios)))
1747 		thin_defer_bio(tc, bio);
1748 
1749 	while ((bio = bio_list_pop(&info.issue_bios)))
1750 		remap_and_issue(tc, bio, block);
1751 }
1752 
1753 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1754 			       dm_block_t block,
1755 			       struct dm_thin_lookup_result *lookup_result,
1756 			       struct dm_bio_prison_cell *virt_cell)
1757 {
1758 	struct dm_bio_prison_cell *data_cell;
1759 	struct pool *pool = tc->pool;
1760 	struct dm_cell_key key;
1761 
1762 	/*
1763 	 * If cell is already occupied, then sharing is already in the process
1764 	 * of being broken so we have nothing further to do here.
1765 	 */
1766 	build_data_key(tc->td, lookup_result->block, &key);
1767 	if (bio_detain(pool, &key, bio, &data_cell)) {
1768 		cell_defer_no_holder(tc, virt_cell);
1769 		return;
1770 	}
1771 
1772 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1773 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1774 		cell_defer_no_holder(tc, virt_cell);
1775 	} else {
1776 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1777 
1778 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1779 		inc_all_io_entry(pool, bio);
1780 		remap_and_issue(tc, bio, lookup_result->block);
1781 
1782 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1783 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1784 	}
1785 }
1786 
1787 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1788 			    struct dm_bio_prison_cell *cell)
1789 {
1790 	int r;
1791 	dm_block_t data_block;
1792 	struct pool *pool = tc->pool;
1793 
1794 	/*
1795 	 * Remap empty bios (flushes) immediately, without provisioning.
1796 	 */
1797 	if (!bio->bi_iter.bi_size) {
1798 		inc_all_io_entry(pool, bio);
1799 		cell_defer_no_holder(tc, cell);
1800 
1801 		remap_and_issue(tc, bio, 0);
1802 		return;
1803 	}
1804 
1805 	/*
1806 	 * Fill read bios with zeroes and complete them immediately.
1807 	 */
1808 	if (bio_data_dir(bio) == READ) {
1809 		zero_fill_bio(bio);
1810 		cell_defer_no_holder(tc, cell);
1811 		bio_endio(bio);
1812 		return;
1813 	}
1814 
1815 	r = alloc_data_block(tc, &data_block);
1816 	switch (r) {
1817 	case 0:
1818 		if (tc->origin_dev)
1819 			schedule_external_copy(tc, block, data_block, cell, bio);
1820 		else
1821 			schedule_zero(tc, block, data_block, cell, bio);
1822 		break;
1823 
1824 	case -ENOSPC:
1825 		retry_bios_on_resume(pool, cell);
1826 		break;
1827 
1828 	default:
1829 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1830 			    __func__, r);
1831 		cell_error(pool, cell);
1832 		break;
1833 	}
1834 }
1835 
1836 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1837 {
1838 	int r;
1839 	struct pool *pool = tc->pool;
1840 	struct bio *bio = cell->holder;
1841 	dm_block_t block = get_bio_block(tc, bio);
1842 	struct dm_thin_lookup_result lookup_result;
1843 
1844 	if (tc->requeue_mode) {
1845 		cell_requeue(pool, cell);
1846 		return;
1847 	}
1848 
1849 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1850 	switch (r) {
1851 	case 0:
1852 		if (lookup_result.shared)
1853 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1854 		else {
1855 			inc_all_io_entry(pool, bio);
1856 			remap_and_issue(tc, bio, lookup_result.block);
1857 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1858 		}
1859 		break;
1860 
1861 	case -ENODATA:
1862 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1863 			inc_all_io_entry(pool, bio);
1864 			cell_defer_no_holder(tc, cell);
1865 
1866 			if (bio_end_sector(bio) <= tc->origin_size)
1867 				remap_to_origin_and_issue(tc, bio);
1868 
1869 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1870 				zero_fill_bio(bio);
1871 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1872 				remap_to_origin_and_issue(tc, bio);
1873 
1874 			} else {
1875 				zero_fill_bio(bio);
1876 				bio_endio(bio);
1877 			}
1878 		} else
1879 			provision_block(tc, bio, block, cell);
1880 		break;
1881 
1882 	default:
1883 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1884 			    __func__, r);
1885 		cell_defer_no_holder(tc, cell);
1886 		bio_io_error(bio);
1887 		break;
1888 	}
1889 }
1890 
1891 static void process_bio(struct thin_c *tc, struct bio *bio)
1892 {
1893 	struct pool *pool = tc->pool;
1894 	dm_block_t block = get_bio_block(tc, bio);
1895 	struct dm_bio_prison_cell *cell;
1896 	struct dm_cell_key key;
1897 
1898 	/*
1899 	 * If cell is already occupied, then the block is already
1900 	 * being provisioned so we have nothing further to do here.
1901 	 */
1902 	build_virtual_key(tc->td, block, &key);
1903 	if (bio_detain(pool, &key, bio, &cell))
1904 		return;
1905 
1906 	process_cell(tc, cell);
1907 }
1908 
1909 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1910 				    struct dm_bio_prison_cell *cell)
1911 {
1912 	int r;
1913 	int rw = bio_data_dir(bio);
1914 	dm_block_t block = get_bio_block(tc, bio);
1915 	struct dm_thin_lookup_result lookup_result;
1916 
1917 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1918 	switch (r) {
1919 	case 0:
1920 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1921 			handle_unserviceable_bio(tc->pool, bio);
1922 			if (cell)
1923 				cell_defer_no_holder(tc, cell);
1924 		} else {
1925 			inc_all_io_entry(tc->pool, bio);
1926 			remap_and_issue(tc, bio, lookup_result.block);
1927 			if (cell)
1928 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1929 		}
1930 		break;
1931 
1932 	case -ENODATA:
1933 		if (cell)
1934 			cell_defer_no_holder(tc, cell);
1935 		if (rw != READ) {
1936 			handle_unserviceable_bio(tc->pool, bio);
1937 			break;
1938 		}
1939 
1940 		if (tc->origin_dev) {
1941 			inc_all_io_entry(tc->pool, bio);
1942 			remap_to_origin_and_issue(tc, bio);
1943 			break;
1944 		}
1945 
1946 		zero_fill_bio(bio);
1947 		bio_endio(bio);
1948 		break;
1949 
1950 	default:
1951 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1952 			    __func__, r);
1953 		if (cell)
1954 			cell_defer_no_holder(tc, cell);
1955 		bio_io_error(bio);
1956 		break;
1957 	}
1958 }
1959 
1960 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1961 {
1962 	__process_bio_read_only(tc, bio, NULL);
1963 }
1964 
1965 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1966 {
1967 	__process_bio_read_only(tc, cell->holder, cell);
1968 }
1969 
1970 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1971 {
1972 	bio_endio(bio);
1973 }
1974 
1975 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1976 {
1977 	bio_io_error(bio);
1978 }
1979 
1980 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1981 {
1982 	cell_success(tc->pool, cell);
1983 }
1984 
1985 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1986 {
1987 	cell_error(tc->pool, cell);
1988 }
1989 
1990 /*
1991  * FIXME: should we also commit due to size of transaction, measured in
1992  * metadata blocks?
1993  */
1994 static int need_commit_due_to_time(struct pool *pool)
1995 {
1996 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1997 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1998 }
1999 
2000 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2001 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2002 
2003 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2004 {
2005 	struct rb_node **rbp, *parent;
2006 	struct dm_thin_endio_hook *pbd;
2007 	sector_t bi_sector = bio->bi_iter.bi_sector;
2008 
2009 	rbp = &tc->sort_bio_list.rb_node;
2010 	parent = NULL;
2011 	while (*rbp) {
2012 		parent = *rbp;
2013 		pbd = thin_pbd(parent);
2014 
2015 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2016 			rbp = &(*rbp)->rb_left;
2017 		else
2018 			rbp = &(*rbp)->rb_right;
2019 	}
2020 
2021 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2022 	rb_link_node(&pbd->rb_node, parent, rbp);
2023 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2024 }
2025 
2026 static void __extract_sorted_bios(struct thin_c *tc)
2027 {
2028 	struct rb_node *node;
2029 	struct dm_thin_endio_hook *pbd;
2030 	struct bio *bio;
2031 
2032 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2033 		pbd = thin_pbd(node);
2034 		bio = thin_bio(pbd);
2035 
2036 		bio_list_add(&tc->deferred_bio_list, bio);
2037 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2038 	}
2039 
2040 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2041 }
2042 
2043 static void __sort_thin_deferred_bios(struct thin_c *tc)
2044 {
2045 	struct bio *bio;
2046 	struct bio_list bios;
2047 
2048 	bio_list_init(&bios);
2049 	bio_list_merge(&bios, &tc->deferred_bio_list);
2050 	bio_list_init(&tc->deferred_bio_list);
2051 
2052 	/* Sort deferred_bio_list using rb-tree */
2053 	while ((bio = bio_list_pop(&bios)))
2054 		__thin_bio_rb_add(tc, bio);
2055 
2056 	/*
2057 	 * Transfer the sorted bios in sort_bio_list back to
2058 	 * deferred_bio_list to allow lockless submission of
2059 	 * all bios.
2060 	 */
2061 	__extract_sorted_bios(tc);
2062 }
2063 
2064 static void process_thin_deferred_bios(struct thin_c *tc)
2065 {
2066 	struct pool *pool = tc->pool;
2067 	unsigned long flags;
2068 	struct bio *bio;
2069 	struct bio_list bios;
2070 	struct blk_plug plug;
2071 	unsigned count = 0;
2072 
2073 	if (tc->requeue_mode) {
2074 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2075 		return;
2076 	}
2077 
2078 	bio_list_init(&bios);
2079 
2080 	spin_lock_irqsave(&tc->lock, flags);
2081 
2082 	if (bio_list_empty(&tc->deferred_bio_list)) {
2083 		spin_unlock_irqrestore(&tc->lock, flags);
2084 		return;
2085 	}
2086 
2087 	__sort_thin_deferred_bios(tc);
2088 
2089 	bio_list_merge(&bios, &tc->deferred_bio_list);
2090 	bio_list_init(&tc->deferred_bio_list);
2091 
2092 	spin_unlock_irqrestore(&tc->lock, flags);
2093 
2094 	blk_start_plug(&plug);
2095 	while ((bio = bio_list_pop(&bios))) {
2096 		/*
2097 		 * If we've got no free new_mapping structs, and processing
2098 		 * this bio might require one, we pause until there are some
2099 		 * prepared mappings to process.
2100 		 */
2101 		if (ensure_next_mapping(pool)) {
2102 			spin_lock_irqsave(&tc->lock, flags);
2103 			bio_list_add(&tc->deferred_bio_list, bio);
2104 			bio_list_merge(&tc->deferred_bio_list, &bios);
2105 			spin_unlock_irqrestore(&tc->lock, flags);
2106 			break;
2107 		}
2108 
2109 		if (bio_op(bio) == REQ_OP_DISCARD)
2110 			pool->process_discard(tc, bio);
2111 		else
2112 			pool->process_bio(tc, bio);
2113 
2114 		if ((count++ & 127) == 0) {
2115 			throttle_work_update(&pool->throttle);
2116 			dm_pool_issue_prefetches(pool->pmd);
2117 		}
2118 	}
2119 	blk_finish_plug(&plug);
2120 }
2121 
2122 static int cmp_cells(const void *lhs, const void *rhs)
2123 {
2124 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2125 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2126 
2127 	BUG_ON(!lhs_cell->holder);
2128 	BUG_ON(!rhs_cell->holder);
2129 
2130 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2131 		return -1;
2132 
2133 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2134 		return 1;
2135 
2136 	return 0;
2137 }
2138 
2139 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2140 {
2141 	unsigned count = 0;
2142 	struct dm_bio_prison_cell *cell, *tmp;
2143 
2144 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2145 		if (count >= CELL_SORT_ARRAY_SIZE)
2146 			break;
2147 
2148 		pool->cell_sort_array[count++] = cell;
2149 		list_del(&cell->user_list);
2150 	}
2151 
2152 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2153 
2154 	return count;
2155 }
2156 
2157 static void process_thin_deferred_cells(struct thin_c *tc)
2158 {
2159 	struct pool *pool = tc->pool;
2160 	unsigned long flags;
2161 	struct list_head cells;
2162 	struct dm_bio_prison_cell *cell;
2163 	unsigned i, j, count;
2164 
2165 	INIT_LIST_HEAD(&cells);
2166 
2167 	spin_lock_irqsave(&tc->lock, flags);
2168 	list_splice_init(&tc->deferred_cells, &cells);
2169 	spin_unlock_irqrestore(&tc->lock, flags);
2170 
2171 	if (list_empty(&cells))
2172 		return;
2173 
2174 	do {
2175 		count = sort_cells(tc->pool, &cells);
2176 
2177 		for (i = 0; i < count; i++) {
2178 			cell = pool->cell_sort_array[i];
2179 			BUG_ON(!cell->holder);
2180 
2181 			/*
2182 			 * If we've got no free new_mapping structs, and processing
2183 			 * this bio might require one, we pause until there are some
2184 			 * prepared mappings to process.
2185 			 */
2186 			if (ensure_next_mapping(pool)) {
2187 				for (j = i; j < count; j++)
2188 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2189 
2190 				spin_lock_irqsave(&tc->lock, flags);
2191 				list_splice(&cells, &tc->deferred_cells);
2192 				spin_unlock_irqrestore(&tc->lock, flags);
2193 				return;
2194 			}
2195 
2196 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2197 				pool->process_discard_cell(tc, cell);
2198 			else
2199 				pool->process_cell(tc, cell);
2200 		}
2201 	} while (!list_empty(&cells));
2202 }
2203 
2204 static void thin_get(struct thin_c *tc);
2205 static void thin_put(struct thin_c *tc);
2206 
2207 /*
2208  * We can't hold rcu_read_lock() around code that can block.  So we
2209  * find a thin with the rcu lock held; bump a refcount; then drop
2210  * the lock.
2211  */
2212 static struct thin_c *get_first_thin(struct pool *pool)
2213 {
2214 	struct thin_c *tc = NULL;
2215 
2216 	rcu_read_lock();
2217 	if (!list_empty(&pool->active_thins)) {
2218 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2219 		thin_get(tc);
2220 	}
2221 	rcu_read_unlock();
2222 
2223 	return tc;
2224 }
2225 
2226 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2227 {
2228 	struct thin_c *old_tc = tc;
2229 
2230 	rcu_read_lock();
2231 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2232 		thin_get(tc);
2233 		thin_put(old_tc);
2234 		rcu_read_unlock();
2235 		return tc;
2236 	}
2237 	thin_put(old_tc);
2238 	rcu_read_unlock();
2239 
2240 	return NULL;
2241 }
2242 
2243 static void process_deferred_bios(struct pool *pool)
2244 {
2245 	unsigned long flags;
2246 	struct bio *bio;
2247 	struct bio_list bios;
2248 	struct thin_c *tc;
2249 
2250 	tc = get_first_thin(pool);
2251 	while (tc) {
2252 		process_thin_deferred_cells(tc);
2253 		process_thin_deferred_bios(tc);
2254 		tc = get_next_thin(pool, tc);
2255 	}
2256 
2257 	/*
2258 	 * If there are any deferred flush bios, we must commit
2259 	 * the metadata before issuing them.
2260 	 */
2261 	bio_list_init(&bios);
2262 	spin_lock_irqsave(&pool->lock, flags);
2263 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2264 	bio_list_init(&pool->deferred_flush_bios);
2265 	spin_unlock_irqrestore(&pool->lock, flags);
2266 
2267 	if (bio_list_empty(&bios) &&
2268 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2269 		return;
2270 
2271 	if (commit(pool)) {
2272 		while ((bio = bio_list_pop(&bios)))
2273 			bio_io_error(bio);
2274 		return;
2275 	}
2276 	pool->last_commit_jiffies = jiffies;
2277 
2278 	while ((bio = bio_list_pop(&bios)))
2279 		generic_make_request(bio);
2280 }
2281 
2282 static void do_worker(struct work_struct *ws)
2283 {
2284 	struct pool *pool = container_of(ws, struct pool, worker);
2285 
2286 	throttle_work_start(&pool->throttle);
2287 	dm_pool_issue_prefetches(pool->pmd);
2288 	throttle_work_update(&pool->throttle);
2289 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2290 	throttle_work_update(&pool->throttle);
2291 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2292 	throttle_work_update(&pool->throttle);
2293 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2294 	throttle_work_update(&pool->throttle);
2295 	process_deferred_bios(pool);
2296 	throttle_work_complete(&pool->throttle);
2297 }
2298 
2299 /*
2300  * We want to commit periodically so that not too much
2301  * unwritten data builds up.
2302  */
2303 static void do_waker(struct work_struct *ws)
2304 {
2305 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2306 	wake_worker(pool);
2307 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2308 }
2309 
2310 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2311 
2312 /*
2313  * We're holding onto IO to allow userland time to react.  After the
2314  * timeout either the pool will have been resized (and thus back in
2315  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2316  */
2317 static void do_no_space_timeout(struct work_struct *ws)
2318 {
2319 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2320 					 no_space_timeout);
2321 
2322 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2323 		pool->pf.error_if_no_space = true;
2324 		notify_of_pool_mode_change_to_oods(pool);
2325 		error_retry_list_with_code(pool, -ENOSPC);
2326 	}
2327 }
2328 
2329 /*----------------------------------------------------------------*/
2330 
2331 struct pool_work {
2332 	struct work_struct worker;
2333 	struct completion complete;
2334 };
2335 
2336 static struct pool_work *to_pool_work(struct work_struct *ws)
2337 {
2338 	return container_of(ws, struct pool_work, worker);
2339 }
2340 
2341 static void pool_work_complete(struct pool_work *pw)
2342 {
2343 	complete(&pw->complete);
2344 }
2345 
2346 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2347 			   void (*fn)(struct work_struct *))
2348 {
2349 	INIT_WORK_ONSTACK(&pw->worker, fn);
2350 	init_completion(&pw->complete);
2351 	queue_work(pool->wq, &pw->worker);
2352 	wait_for_completion(&pw->complete);
2353 }
2354 
2355 /*----------------------------------------------------------------*/
2356 
2357 struct noflush_work {
2358 	struct pool_work pw;
2359 	struct thin_c *tc;
2360 };
2361 
2362 static struct noflush_work *to_noflush(struct work_struct *ws)
2363 {
2364 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2365 }
2366 
2367 static void do_noflush_start(struct work_struct *ws)
2368 {
2369 	struct noflush_work *w = to_noflush(ws);
2370 	w->tc->requeue_mode = true;
2371 	requeue_io(w->tc);
2372 	pool_work_complete(&w->pw);
2373 }
2374 
2375 static void do_noflush_stop(struct work_struct *ws)
2376 {
2377 	struct noflush_work *w = to_noflush(ws);
2378 	w->tc->requeue_mode = false;
2379 	pool_work_complete(&w->pw);
2380 }
2381 
2382 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2383 {
2384 	struct noflush_work w;
2385 
2386 	w.tc = tc;
2387 	pool_work_wait(&w.pw, tc->pool, fn);
2388 }
2389 
2390 /*----------------------------------------------------------------*/
2391 
2392 static enum pool_mode get_pool_mode(struct pool *pool)
2393 {
2394 	return pool->pf.mode;
2395 }
2396 
2397 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2398 {
2399 	dm_table_event(pool->ti->table);
2400 	DMINFO("%s: switching pool to %s mode",
2401 	       dm_device_name(pool->pool_md), new_mode);
2402 }
2403 
2404 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2405 {
2406 	if (!pool->pf.error_if_no_space)
2407 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2408 	else
2409 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2410 }
2411 
2412 static bool passdown_enabled(struct pool_c *pt)
2413 {
2414 	return pt->adjusted_pf.discard_passdown;
2415 }
2416 
2417 static void set_discard_callbacks(struct pool *pool)
2418 {
2419 	struct pool_c *pt = pool->ti->private;
2420 
2421 	if (passdown_enabled(pt)) {
2422 		pool->process_discard_cell = process_discard_cell_passdown;
2423 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2424 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2425 	} else {
2426 		pool->process_discard_cell = process_discard_cell_no_passdown;
2427 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2428 	}
2429 }
2430 
2431 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2432 {
2433 	struct pool_c *pt = pool->ti->private;
2434 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2435 	enum pool_mode old_mode = get_pool_mode(pool);
2436 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2437 
2438 	/*
2439 	 * Never allow the pool to transition to PM_WRITE mode if user
2440 	 * intervention is required to verify metadata and data consistency.
2441 	 */
2442 	if (new_mode == PM_WRITE && needs_check) {
2443 		DMERR("%s: unable to switch pool to write mode until repaired.",
2444 		      dm_device_name(pool->pool_md));
2445 		if (old_mode != new_mode)
2446 			new_mode = old_mode;
2447 		else
2448 			new_mode = PM_READ_ONLY;
2449 	}
2450 	/*
2451 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2452 	 * not going to recover without a thin_repair.	So we never let the
2453 	 * pool move out of the old mode.
2454 	 */
2455 	if (old_mode == PM_FAIL)
2456 		new_mode = old_mode;
2457 
2458 	switch (new_mode) {
2459 	case PM_FAIL:
2460 		if (old_mode != new_mode)
2461 			notify_of_pool_mode_change(pool, "failure");
2462 		dm_pool_metadata_read_only(pool->pmd);
2463 		pool->process_bio = process_bio_fail;
2464 		pool->process_discard = process_bio_fail;
2465 		pool->process_cell = process_cell_fail;
2466 		pool->process_discard_cell = process_cell_fail;
2467 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2468 		pool->process_prepared_discard = process_prepared_discard_fail;
2469 
2470 		error_retry_list(pool);
2471 		break;
2472 
2473 	case PM_READ_ONLY:
2474 		if (old_mode != new_mode)
2475 			notify_of_pool_mode_change(pool, "read-only");
2476 		dm_pool_metadata_read_only(pool->pmd);
2477 		pool->process_bio = process_bio_read_only;
2478 		pool->process_discard = process_bio_success;
2479 		pool->process_cell = process_cell_read_only;
2480 		pool->process_discard_cell = process_cell_success;
2481 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2482 		pool->process_prepared_discard = process_prepared_discard_success;
2483 
2484 		error_retry_list(pool);
2485 		break;
2486 
2487 	case PM_OUT_OF_DATA_SPACE:
2488 		/*
2489 		 * Ideally we'd never hit this state; the low water mark
2490 		 * would trigger userland to extend the pool before we
2491 		 * completely run out of data space.  However, many small
2492 		 * IOs to unprovisioned space can consume data space at an
2493 		 * alarming rate.  Adjust your low water mark if you're
2494 		 * frequently seeing this mode.
2495 		 */
2496 		if (old_mode != new_mode)
2497 			notify_of_pool_mode_change_to_oods(pool);
2498 		pool->out_of_data_space = true;
2499 		pool->process_bio = process_bio_read_only;
2500 		pool->process_discard = process_discard_bio;
2501 		pool->process_cell = process_cell_read_only;
2502 		pool->process_prepared_mapping = process_prepared_mapping;
2503 		set_discard_callbacks(pool);
2504 
2505 		if (!pool->pf.error_if_no_space && no_space_timeout)
2506 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2507 		break;
2508 
2509 	case PM_WRITE:
2510 		if (old_mode != new_mode)
2511 			notify_of_pool_mode_change(pool, "write");
2512 		pool->out_of_data_space = false;
2513 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2514 		dm_pool_metadata_read_write(pool->pmd);
2515 		pool->process_bio = process_bio;
2516 		pool->process_discard = process_discard_bio;
2517 		pool->process_cell = process_cell;
2518 		pool->process_prepared_mapping = process_prepared_mapping;
2519 		set_discard_callbacks(pool);
2520 		break;
2521 	}
2522 
2523 	pool->pf.mode = new_mode;
2524 	/*
2525 	 * The pool mode may have changed, sync it so bind_control_target()
2526 	 * doesn't cause an unexpected mode transition on resume.
2527 	 */
2528 	pt->adjusted_pf.mode = new_mode;
2529 }
2530 
2531 static void abort_transaction(struct pool *pool)
2532 {
2533 	const char *dev_name = dm_device_name(pool->pool_md);
2534 
2535 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2536 	if (dm_pool_abort_metadata(pool->pmd)) {
2537 		DMERR("%s: failed to abort metadata transaction", dev_name);
2538 		set_pool_mode(pool, PM_FAIL);
2539 	}
2540 
2541 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2542 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2543 		set_pool_mode(pool, PM_FAIL);
2544 	}
2545 }
2546 
2547 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2548 {
2549 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2550 		    dm_device_name(pool->pool_md), op, r);
2551 
2552 	abort_transaction(pool);
2553 	set_pool_mode(pool, PM_READ_ONLY);
2554 }
2555 
2556 /*----------------------------------------------------------------*/
2557 
2558 /*
2559  * Mapping functions.
2560  */
2561 
2562 /*
2563  * Called only while mapping a thin bio to hand it over to the workqueue.
2564  */
2565 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2566 {
2567 	unsigned long flags;
2568 	struct pool *pool = tc->pool;
2569 
2570 	spin_lock_irqsave(&tc->lock, flags);
2571 	bio_list_add(&tc->deferred_bio_list, bio);
2572 	spin_unlock_irqrestore(&tc->lock, flags);
2573 
2574 	wake_worker(pool);
2575 }
2576 
2577 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2578 {
2579 	struct pool *pool = tc->pool;
2580 
2581 	throttle_lock(&pool->throttle);
2582 	thin_defer_bio(tc, bio);
2583 	throttle_unlock(&pool->throttle);
2584 }
2585 
2586 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2587 {
2588 	unsigned long flags;
2589 	struct pool *pool = tc->pool;
2590 
2591 	throttle_lock(&pool->throttle);
2592 	spin_lock_irqsave(&tc->lock, flags);
2593 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2594 	spin_unlock_irqrestore(&tc->lock, flags);
2595 	throttle_unlock(&pool->throttle);
2596 
2597 	wake_worker(pool);
2598 }
2599 
2600 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2601 {
2602 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2603 
2604 	h->tc = tc;
2605 	h->shared_read_entry = NULL;
2606 	h->all_io_entry = NULL;
2607 	h->overwrite_mapping = NULL;
2608 	h->cell = NULL;
2609 }
2610 
2611 /*
2612  * Non-blocking function called from the thin target's map function.
2613  */
2614 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2615 {
2616 	int r;
2617 	struct thin_c *tc = ti->private;
2618 	dm_block_t block = get_bio_block(tc, bio);
2619 	struct dm_thin_device *td = tc->td;
2620 	struct dm_thin_lookup_result result;
2621 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2622 	struct dm_cell_key key;
2623 
2624 	thin_hook_bio(tc, bio);
2625 
2626 	if (tc->requeue_mode) {
2627 		bio->bi_error = DM_ENDIO_REQUEUE;
2628 		bio_endio(bio);
2629 		return DM_MAPIO_SUBMITTED;
2630 	}
2631 
2632 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2633 		bio_io_error(bio);
2634 		return DM_MAPIO_SUBMITTED;
2635 	}
2636 
2637 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2638 		thin_defer_bio_with_throttle(tc, bio);
2639 		return DM_MAPIO_SUBMITTED;
2640 	}
2641 
2642 	/*
2643 	 * We must hold the virtual cell before doing the lookup, otherwise
2644 	 * there's a race with discard.
2645 	 */
2646 	build_virtual_key(tc->td, block, &key);
2647 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2648 		return DM_MAPIO_SUBMITTED;
2649 
2650 	r = dm_thin_find_block(td, block, 0, &result);
2651 
2652 	/*
2653 	 * Note that we defer readahead too.
2654 	 */
2655 	switch (r) {
2656 	case 0:
2657 		if (unlikely(result.shared)) {
2658 			/*
2659 			 * We have a race condition here between the
2660 			 * result.shared value returned by the lookup and
2661 			 * snapshot creation, which may cause new
2662 			 * sharing.
2663 			 *
2664 			 * To avoid this always quiesce the origin before
2665 			 * taking the snap.  You want to do this anyway to
2666 			 * ensure a consistent application view
2667 			 * (i.e. lockfs).
2668 			 *
2669 			 * More distant ancestors are irrelevant. The
2670 			 * shared flag will be set in their case.
2671 			 */
2672 			thin_defer_cell(tc, virt_cell);
2673 			return DM_MAPIO_SUBMITTED;
2674 		}
2675 
2676 		build_data_key(tc->td, result.block, &key);
2677 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2678 			cell_defer_no_holder(tc, virt_cell);
2679 			return DM_MAPIO_SUBMITTED;
2680 		}
2681 
2682 		inc_all_io_entry(tc->pool, bio);
2683 		cell_defer_no_holder(tc, data_cell);
2684 		cell_defer_no_holder(tc, virt_cell);
2685 
2686 		remap(tc, bio, result.block);
2687 		return DM_MAPIO_REMAPPED;
2688 
2689 	case -ENODATA:
2690 	case -EWOULDBLOCK:
2691 		thin_defer_cell(tc, virt_cell);
2692 		return DM_MAPIO_SUBMITTED;
2693 
2694 	default:
2695 		/*
2696 		 * Must always call bio_io_error on failure.
2697 		 * dm_thin_find_block can fail with -EINVAL if the
2698 		 * pool is switched to fail-io mode.
2699 		 */
2700 		bio_io_error(bio);
2701 		cell_defer_no_holder(tc, virt_cell);
2702 		return DM_MAPIO_SUBMITTED;
2703 	}
2704 }
2705 
2706 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2707 {
2708 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2709 	struct request_queue *q;
2710 
2711 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2712 		return 1;
2713 
2714 	q = bdev_get_queue(pt->data_dev->bdev);
2715 	return bdi_congested(q->backing_dev_info, bdi_bits);
2716 }
2717 
2718 static void requeue_bios(struct pool *pool)
2719 {
2720 	unsigned long flags;
2721 	struct thin_c *tc;
2722 
2723 	rcu_read_lock();
2724 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2725 		spin_lock_irqsave(&tc->lock, flags);
2726 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2727 		bio_list_init(&tc->retry_on_resume_list);
2728 		spin_unlock_irqrestore(&tc->lock, flags);
2729 	}
2730 	rcu_read_unlock();
2731 }
2732 
2733 /*----------------------------------------------------------------
2734  * Binding of control targets to a pool object
2735  *--------------------------------------------------------------*/
2736 static bool data_dev_supports_discard(struct pool_c *pt)
2737 {
2738 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2739 
2740 	return q && blk_queue_discard(q);
2741 }
2742 
2743 static bool is_factor(sector_t block_size, uint32_t n)
2744 {
2745 	return !sector_div(block_size, n);
2746 }
2747 
2748 /*
2749  * If discard_passdown was enabled verify that the data device
2750  * supports discards.  Disable discard_passdown if not.
2751  */
2752 static void disable_passdown_if_not_supported(struct pool_c *pt)
2753 {
2754 	struct pool *pool = pt->pool;
2755 	struct block_device *data_bdev = pt->data_dev->bdev;
2756 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2757 	const char *reason = NULL;
2758 	char buf[BDEVNAME_SIZE];
2759 
2760 	if (!pt->adjusted_pf.discard_passdown)
2761 		return;
2762 
2763 	if (!data_dev_supports_discard(pt))
2764 		reason = "discard unsupported";
2765 
2766 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2767 		reason = "max discard sectors smaller than a block";
2768 
2769 	if (reason) {
2770 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2771 		pt->adjusted_pf.discard_passdown = false;
2772 	}
2773 }
2774 
2775 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2776 {
2777 	struct pool_c *pt = ti->private;
2778 
2779 	/*
2780 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2781 	 */
2782 	enum pool_mode old_mode = get_pool_mode(pool);
2783 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2784 
2785 	/*
2786 	 * Don't change the pool's mode until set_pool_mode() below.
2787 	 * Otherwise the pool's process_* function pointers may
2788 	 * not match the desired pool mode.
2789 	 */
2790 	pt->adjusted_pf.mode = old_mode;
2791 
2792 	pool->ti = ti;
2793 	pool->pf = pt->adjusted_pf;
2794 	pool->low_water_blocks = pt->low_water_blocks;
2795 
2796 	set_pool_mode(pool, new_mode);
2797 
2798 	return 0;
2799 }
2800 
2801 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2802 {
2803 	if (pool->ti == ti)
2804 		pool->ti = NULL;
2805 }
2806 
2807 /*----------------------------------------------------------------
2808  * Pool creation
2809  *--------------------------------------------------------------*/
2810 /* Initialize pool features. */
2811 static void pool_features_init(struct pool_features *pf)
2812 {
2813 	pf->mode = PM_WRITE;
2814 	pf->zero_new_blocks = true;
2815 	pf->discard_enabled = true;
2816 	pf->discard_passdown = true;
2817 	pf->error_if_no_space = false;
2818 }
2819 
2820 static void __pool_destroy(struct pool *pool)
2821 {
2822 	__pool_table_remove(pool);
2823 
2824 	vfree(pool->cell_sort_array);
2825 	if (dm_pool_metadata_close(pool->pmd) < 0)
2826 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2827 
2828 	dm_bio_prison_destroy(pool->prison);
2829 	dm_kcopyd_client_destroy(pool->copier);
2830 
2831 	if (pool->wq)
2832 		destroy_workqueue(pool->wq);
2833 
2834 	if (pool->next_mapping)
2835 		mempool_free(pool->next_mapping, pool->mapping_pool);
2836 	mempool_destroy(pool->mapping_pool);
2837 	dm_deferred_set_destroy(pool->shared_read_ds);
2838 	dm_deferred_set_destroy(pool->all_io_ds);
2839 	kfree(pool);
2840 }
2841 
2842 static struct kmem_cache *_new_mapping_cache;
2843 
2844 static struct pool *pool_create(struct mapped_device *pool_md,
2845 				struct block_device *metadata_dev,
2846 				unsigned long block_size,
2847 				int read_only, char **error)
2848 {
2849 	int r;
2850 	void *err_p;
2851 	struct pool *pool;
2852 	struct dm_pool_metadata *pmd;
2853 	bool format_device = read_only ? false : true;
2854 
2855 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2856 	if (IS_ERR(pmd)) {
2857 		*error = "Error creating metadata object";
2858 		return (struct pool *)pmd;
2859 	}
2860 
2861 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2862 	if (!pool) {
2863 		*error = "Error allocating memory for pool";
2864 		err_p = ERR_PTR(-ENOMEM);
2865 		goto bad_pool;
2866 	}
2867 
2868 	pool->pmd = pmd;
2869 	pool->sectors_per_block = block_size;
2870 	if (block_size & (block_size - 1))
2871 		pool->sectors_per_block_shift = -1;
2872 	else
2873 		pool->sectors_per_block_shift = __ffs(block_size);
2874 	pool->low_water_blocks = 0;
2875 	pool_features_init(&pool->pf);
2876 	pool->prison = dm_bio_prison_create();
2877 	if (!pool->prison) {
2878 		*error = "Error creating pool's bio prison";
2879 		err_p = ERR_PTR(-ENOMEM);
2880 		goto bad_prison;
2881 	}
2882 
2883 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2884 	if (IS_ERR(pool->copier)) {
2885 		r = PTR_ERR(pool->copier);
2886 		*error = "Error creating pool's kcopyd client";
2887 		err_p = ERR_PTR(r);
2888 		goto bad_kcopyd_client;
2889 	}
2890 
2891 	/*
2892 	 * Create singlethreaded workqueue that will service all devices
2893 	 * that use this metadata.
2894 	 */
2895 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2896 	if (!pool->wq) {
2897 		*error = "Error creating pool's workqueue";
2898 		err_p = ERR_PTR(-ENOMEM);
2899 		goto bad_wq;
2900 	}
2901 
2902 	throttle_init(&pool->throttle);
2903 	INIT_WORK(&pool->worker, do_worker);
2904 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2905 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2906 	spin_lock_init(&pool->lock);
2907 	bio_list_init(&pool->deferred_flush_bios);
2908 	INIT_LIST_HEAD(&pool->prepared_mappings);
2909 	INIT_LIST_HEAD(&pool->prepared_discards);
2910 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2911 	INIT_LIST_HEAD(&pool->active_thins);
2912 	pool->low_water_triggered = false;
2913 	pool->suspended = true;
2914 	pool->out_of_data_space = false;
2915 
2916 	pool->shared_read_ds = dm_deferred_set_create();
2917 	if (!pool->shared_read_ds) {
2918 		*error = "Error creating pool's shared read deferred set";
2919 		err_p = ERR_PTR(-ENOMEM);
2920 		goto bad_shared_read_ds;
2921 	}
2922 
2923 	pool->all_io_ds = dm_deferred_set_create();
2924 	if (!pool->all_io_ds) {
2925 		*error = "Error creating pool's all io deferred set";
2926 		err_p = ERR_PTR(-ENOMEM);
2927 		goto bad_all_io_ds;
2928 	}
2929 
2930 	pool->next_mapping = NULL;
2931 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2932 						      _new_mapping_cache);
2933 	if (!pool->mapping_pool) {
2934 		*error = "Error creating pool's mapping mempool";
2935 		err_p = ERR_PTR(-ENOMEM);
2936 		goto bad_mapping_pool;
2937 	}
2938 
2939 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2940 	if (!pool->cell_sort_array) {
2941 		*error = "Error allocating cell sort array";
2942 		err_p = ERR_PTR(-ENOMEM);
2943 		goto bad_sort_array;
2944 	}
2945 
2946 	pool->ref_count = 1;
2947 	pool->last_commit_jiffies = jiffies;
2948 	pool->pool_md = pool_md;
2949 	pool->md_dev = metadata_dev;
2950 	__pool_table_insert(pool);
2951 
2952 	return pool;
2953 
2954 bad_sort_array:
2955 	mempool_destroy(pool->mapping_pool);
2956 bad_mapping_pool:
2957 	dm_deferred_set_destroy(pool->all_io_ds);
2958 bad_all_io_ds:
2959 	dm_deferred_set_destroy(pool->shared_read_ds);
2960 bad_shared_read_ds:
2961 	destroy_workqueue(pool->wq);
2962 bad_wq:
2963 	dm_kcopyd_client_destroy(pool->copier);
2964 bad_kcopyd_client:
2965 	dm_bio_prison_destroy(pool->prison);
2966 bad_prison:
2967 	kfree(pool);
2968 bad_pool:
2969 	if (dm_pool_metadata_close(pmd))
2970 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2971 
2972 	return err_p;
2973 }
2974 
2975 static void __pool_inc(struct pool *pool)
2976 {
2977 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2978 	pool->ref_count++;
2979 }
2980 
2981 static void __pool_dec(struct pool *pool)
2982 {
2983 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2984 	BUG_ON(!pool->ref_count);
2985 	if (!--pool->ref_count)
2986 		__pool_destroy(pool);
2987 }
2988 
2989 static struct pool *__pool_find(struct mapped_device *pool_md,
2990 				struct block_device *metadata_dev,
2991 				unsigned long block_size, int read_only,
2992 				char **error, int *created)
2993 {
2994 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2995 
2996 	if (pool) {
2997 		if (pool->pool_md != pool_md) {
2998 			*error = "metadata device already in use by a pool";
2999 			return ERR_PTR(-EBUSY);
3000 		}
3001 		__pool_inc(pool);
3002 
3003 	} else {
3004 		pool = __pool_table_lookup(pool_md);
3005 		if (pool) {
3006 			if (pool->md_dev != metadata_dev) {
3007 				*error = "different pool cannot replace a pool";
3008 				return ERR_PTR(-EINVAL);
3009 			}
3010 			__pool_inc(pool);
3011 
3012 		} else {
3013 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3014 			*created = 1;
3015 		}
3016 	}
3017 
3018 	return pool;
3019 }
3020 
3021 /*----------------------------------------------------------------
3022  * Pool target methods
3023  *--------------------------------------------------------------*/
3024 static void pool_dtr(struct dm_target *ti)
3025 {
3026 	struct pool_c *pt = ti->private;
3027 
3028 	mutex_lock(&dm_thin_pool_table.mutex);
3029 
3030 	unbind_control_target(pt->pool, ti);
3031 	__pool_dec(pt->pool);
3032 	dm_put_device(ti, pt->metadata_dev);
3033 	dm_put_device(ti, pt->data_dev);
3034 	kfree(pt);
3035 
3036 	mutex_unlock(&dm_thin_pool_table.mutex);
3037 }
3038 
3039 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3040 			       struct dm_target *ti)
3041 {
3042 	int r;
3043 	unsigned argc;
3044 	const char *arg_name;
3045 
3046 	static struct dm_arg _args[] = {
3047 		{0, 4, "Invalid number of pool feature arguments"},
3048 	};
3049 
3050 	/*
3051 	 * No feature arguments supplied.
3052 	 */
3053 	if (!as->argc)
3054 		return 0;
3055 
3056 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3057 	if (r)
3058 		return -EINVAL;
3059 
3060 	while (argc && !r) {
3061 		arg_name = dm_shift_arg(as);
3062 		argc--;
3063 
3064 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3065 			pf->zero_new_blocks = false;
3066 
3067 		else if (!strcasecmp(arg_name, "ignore_discard"))
3068 			pf->discard_enabled = false;
3069 
3070 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3071 			pf->discard_passdown = false;
3072 
3073 		else if (!strcasecmp(arg_name, "read_only"))
3074 			pf->mode = PM_READ_ONLY;
3075 
3076 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3077 			pf->error_if_no_space = true;
3078 
3079 		else {
3080 			ti->error = "Unrecognised pool feature requested";
3081 			r = -EINVAL;
3082 			break;
3083 		}
3084 	}
3085 
3086 	return r;
3087 }
3088 
3089 static void metadata_low_callback(void *context)
3090 {
3091 	struct pool *pool = context;
3092 
3093 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3094 	       dm_device_name(pool->pool_md));
3095 
3096 	dm_table_event(pool->ti->table);
3097 }
3098 
3099 static sector_t get_dev_size(struct block_device *bdev)
3100 {
3101 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3102 }
3103 
3104 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3105 {
3106 	sector_t metadata_dev_size = get_dev_size(bdev);
3107 	char buffer[BDEVNAME_SIZE];
3108 
3109 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3110 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3111 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3112 }
3113 
3114 static sector_t get_metadata_dev_size(struct block_device *bdev)
3115 {
3116 	sector_t metadata_dev_size = get_dev_size(bdev);
3117 
3118 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3119 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3120 
3121 	return metadata_dev_size;
3122 }
3123 
3124 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3125 {
3126 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3127 
3128 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3129 
3130 	return metadata_dev_size;
3131 }
3132 
3133 /*
3134  * When a metadata threshold is crossed a dm event is triggered, and
3135  * userland should respond by growing the metadata device.  We could let
3136  * userland set the threshold, like we do with the data threshold, but I'm
3137  * not sure they know enough to do this well.
3138  */
3139 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3140 {
3141 	/*
3142 	 * 4M is ample for all ops with the possible exception of thin
3143 	 * device deletion which is harmless if it fails (just retry the
3144 	 * delete after you've grown the device).
3145 	 */
3146 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3147 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3148 }
3149 
3150 /*
3151  * thin-pool <metadata dev> <data dev>
3152  *	     <data block size (sectors)>
3153  *	     <low water mark (blocks)>
3154  *	     [<#feature args> [<arg>]*]
3155  *
3156  * Optional feature arguments are:
3157  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3158  *	     ignore_discard: disable discard
3159  *	     no_discard_passdown: don't pass discards down to the data device
3160  *	     read_only: Don't allow any changes to be made to the pool metadata.
3161  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3162  */
3163 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3164 {
3165 	int r, pool_created = 0;
3166 	struct pool_c *pt;
3167 	struct pool *pool;
3168 	struct pool_features pf;
3169 	struct dm_arg_set as;
3170 	struct dm_dev *data_dev;
3171 	unsigned long block_size;
3172 	dm_block_t low_water_blocks;
3173 	struct dm_dev *metadata_dev;
3174 	fmode_t metadata_mode;
3175 
3176 	/*
3177 	 * FIXME Remove validation from scope of lock.
3178 	 */
3179 	mutex_lock(&dm_thin_pool_table.mutex);
3180 
3181 	if (argc < 4) {
3182 		ti->error = "Invalid argument count";
3183 		r = -EINVAL;
3184 		goto out_unlock;
3185 	}
3186 
3187 	as.argc = argc;
3188 	as.argv = argv;
3189 
3190 	/*
3191 	 * Set default pool features.
3192 	 */
3193 	pool_features_init(&pf);
3194 
3195 	dm_consume_args(&as, 4);
3196 	r = parse_pool_features(&as, &pf, ti);
3197 	if (r)
3198 		goto out_unlock;
3199 
3200 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3201 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3202 	if (r) {
3203 		ti->error = "Error opening metadata block device";
3204 		goto out_unlock;
3205 	}
3206 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3207 
3208 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3209 	if (r) {
3210 		ti->error = "Error getting data device";
3211 		goto out_metadata;
3212 	}
3213 
3214 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3215 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3216 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3217 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3218 		ti->error = "Invalid block size";
3219 		r = -EINVAL;
3220 		goto out;
3221 	}
3222 
3223 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3224 		ti->error = "Invalid low water mark";
3225 		r = -EINVAL;
3226 		goto out;
3227 	}
3228 
3229 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3230 	if (!pt) {
3231 		r = -ENOMEM;
3232 		goto out;
3233 	}
3234 
3235 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3236 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3237 	if (IS_ERR(pool)) {
3238 		r = PTR_ERR(pool);
3239 		goto out_free_pt;
3240 	}
3241 
3242 	/*
3243 	 * 'pool_created' reflects whether this is the first table load.
3244 	 * Top level discard support is not allowed to be changed after
3245 	 * initial load.  This would require a pool reload to trigger thin
3246 	 * device changes.
3247 	 */
3248 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3249 		ti->error = "Discard support cannot be disabled once enabled";
3250 		r = -EINVAL;
3251 		goto out_flags_changed;
3252 	}
3253 
3254 	pt->pool = pool;
3255 	pt->ti = ti;
3256 	pt->metadata_dev = metadata_dev;
3257 	pt->data_dev = data_dev;
3258 	pt->low_water_blocks = low_water_blocks;
3259 	pt->adjusted_pf = pt->requested_pf = pf;
3260 	ti->num_flush_bios = 1;
3261 
3262 	/*
3263 	 * Only need to enable discards if the pool should pass
3264 	 * them down to the data device.  The thin device's discard
3265 	 * processing will cause mappings to be removed from the btree.
3266 	 */
3267 	if (pf.discard_enabled && pf.discard_passdown) {
3268 		ti->num_discard_bios = 1;
3269 
3270 		/*
3271 		 * Setting 'discards_supported' circumvents the normal
3272 		 * stacking of discard limits (this keeps the pool and
3273 		 * thin devices' discard limits consistent).
3274 		 */
3275 		ti->discards_supported = true;
3276 	}
3277 	ti->private = pt;
3278 
3279 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3280 						calc_metadata_threshold(pt),
3281 						metadata_low_callback,
3282 						pool);
3283 	if (r)
3284 		goto out_flags_changed;
3285 
3286 	pt->callbacks.congested_fn = pool_is_congested;
3287 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3288 
3289 	mutex_unlock(&dm_thin_pool_table.mutex);
3290 
3291 	return 0;
3292 
3293 out_flags_changed:
3294 	__pool_dec(pool);
3295 out_free_pt:
3296 	kfree(pt);
3297 out:
3298 	dm_put_device(ti, data_dev);
3299 out_metadata:
3300 	dm_put_device(ti, metadata_dev);
3301 out_unlock:
3302 	mutex_unlock(&dm_thin_pool_table.mutex);
3303 
3304 	return r;
3305 }
3306 
3307 static int pool_map(struct dm_target *ti, struct bio *bio)
3308 {
3309 	int r;
3310 	struct pool_c *pt = ti->private;
3311 	struct pool *pool = pt->pool;
3312 	unsigned long flags;
3313 
3314 	/*
3315 	 * As this is a singleton target, ti->begin is always zero.
3316 	 */
3317 	spin_lock_irqsave(&pool->lock, flags);
3318 	bio->bi_bdev = pt->data_dev->bdev;
3319 	r = DM_MAPIO_REMAPPED;
3320 	spin_unlock_irqrestore(&pool->lock, flags);
3321 
3322 	return r;
3323 }
3324 
3325 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326 {
3327 	int r;
3328 	struct pool_c *pt = ti->private;
3329 	struct pool *pool = pt->pool;
3330 	sector_t data_size = ti->len;
3331 	dm_block_t sb_data_size;
3332 
3333 	*need_commit = false;
3334 
3335 	(void) sector_div(data_size, pool->sectors_per_block);
3336 
3337 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3338 	if (r) {
3339 		DMERR("%s: failed to retrieve data device size",
3340 		      dm_device_name(pool->pool_md));
3341 		return r;
3342 	}
3343 
3344 	if (data_size < sb_data_size) {
3345 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3346 		      dm_device_name(pool->pool_md),
3347 		      (unsigned long long)data_size, sb_data_size);
3348 		return -EINVAL;
3349 
3350 	} else if (data_size > sb_data_size) {
3351 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3352 			DMERR("%s: unable to grow the data device until repaired.",
3353 			      dm_device_name(pool->pool_md));
3354 			return 0;
3355 		}
3356 
3357 		if (sb_data_size)
3358 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3359 			       dm_device_name(pool->pool_md),
3360 			       sb_data_size, (unsigned long long)data_size);
3361 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3362 		if (r) {
3363 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3364 			return r;
3365 		}
3366 
3367 		*need_commit = true;
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374 {
3375 	int r;
3376 	struct pool_c *pt = ti->private;
3377 	struct pool *pool = pt->pool;
3378 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3379 
3380 	*need_commit = false;
3381 
3382 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3383 
3384 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3385 	if (r) {
3386 		DMERR("%s: failed to retrieve metadata device size",
3387 		      dm_device_name(pool->pool_md));
3388 		return r;
3389 	}
3390 
3391 	if (metadata_dev_size < sb_metadata_dev_size) {
3392 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3393 		      dm_device_name(pool->pool_md),
3394 		      metadata_dev_size, sb_metadata_dev_size);
3395 		return -EINVAL;
3396 
3397 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3398 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3399 			DMERR("%s: unable to grow the metadata device until repaired.",
3400 			      dm_device_name(pool->pool_md));
3401 			return 0;
3402 		}
3403 
3404 		warn_if_metadata_device_too_big(pool->md_dev);
3405 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3406 		       dm_device_name(pool->pool_md),
3407 		       sb_metadata_dev_size, metadata_dev_size);
3408 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3409 		if (r) {
3410 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3411 			return r;
3412 		}
3413 
3414 		*need_commit = true;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 /*
3421  * Retrieves the number of blocks of the data device from
3422  * the superblock and compares it to the actual device size,
3423  * thus resizing the data device in case it has grown.
3424  *
3425  * This both copes with opening preallocated data devices in the ctr
3426  * being followed by a resume
3427  * -and-
3428  * calling the resume method individually after userspace has
3429  * grown the data device in reaction to a table event.
3430  */
3431 static int pool_preresume(struct dm_target *ti)
3432 {
3433 	int r;
3434 	bool need_commit1, need_commit2;
3435 	struct pool_c *pt = ti->private;
3436 	struct pool *pool = pt->pool;
3437 
3438 	/*
3439 	 * Take control of the pool object.
3440 	 */
3441 	r = bind_control_target(pool, ti);
3442 	if (r)
3443 		return r;
3444 
3445 	r = maybe_resize_data_dev(ti, &need_commit1);
3446 	if (r)
3447 		return r;
3448 
3449 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3450 	if (r)
3451 		return r;
3452 
3453 	if (need_commit1 || need_commit2)
3454 		(void) commit(pool);
3455 
3456 	return 0;
3457 }
3458 
3459 static void pool_suspend_active_thins(struct pool *pool)
3460 {
3461 	struct thin_c *tc;
3462 
3463 	/* Suspend all active thin devices */
3464 	tc = get_first_thin(pool);
3465 	while (tc) {
3466 		dm_internal_suspend_noflush(tc->thin_md);
3467 		tc = get_next_thin(pool, tc);
3468 	}
3469 }
3470 
3471 static void pool_resume_active_thins(struct pool *pool)
3472 {
3473 	struct thin_c *tc;
3474 
3475 	/* Resume all active thin devices */
3476 	tc = get_first_thin(pool);
3477 	while (tc) {
3478 		dm_internal_resume(tc->thin_md);
3479 		tc = get_next_thin(pool, tc);
3480 	}
3481 }
3482 
3483 static void pool_resume(struct dm_target *ti)
3484 {
3485 	struct pool_c *pt = ti->private;
3486 	struct pool *pool = pt->pool;
3487 	unsigned long flags;
3488 
3489 	/*
3490 	 * Must requeue active_thins' bios and then resume
3491 	 * active_thins _before_ clearing 'suspend' flag.
3492 	 */
3493 	requeue_bios(pool);
3494 	pool_resume_active_thins(pool);
3495 
3496 	spin_lock_irqsave(&pool->lock, flags);
3497 	pool->low_water_triggered = false;
3498 	pool->suspended = false;
3499 	spin_unlock_irqrestore(&pool->lock, flags);
3500 
3501 	do_waker(&pool->waker.work);
3502 }
3503 
3504 static void pool_presuspend(struct dm_target *ti)
3505 {
3506 	struct pool_c *pt = ti->private;
3507 	struct pool *pool = pt->pool;
3508 	unsigned long flags;
3509 
3510 	spin_lock_irqsave(&pool->lock, flags);
3511 	pool->suspended = true;
3512 	spin_unlock_irqrestore(&pool->lock, flags);
3513 
3514 	pool_suspend_active_thins(pool);
3515 }
3516 
3517 static void pool_presuspend_undo(struct dm_target *ti)
3518 {
3519 	struct pool_c *pt = ti->private;
3520 	struct pool *pool = pt->pool;
3521 	unsigned long flags;
3522 
3523 	pool_resume_active_thins(pool);
3524 
3525 	spin_lock_irqsave(&pool->lock, flags);
3526 	pool->suspended = false;
3527 	spin_unlock_irqrestore(&pool->lock, flags);
3528 }
3529 
3530 static void pool_postsuspend(struct dm_target *ti)
3531 {
3532 	struct pool_c *pt = ti->private;
3533 	struct pool *pool = pt->pool;
3534 
3535 	cancel_delayed_work_sync(&pool->waker);
3536 	cancel_delayed_work_sync(&pool->no_space_timeout);
3537 	flush_workqueue(pool->wq);
3538 	(void) commit(pool);
3539 }
3540 
3541 static int check_arg_count(unsigned argc, unsigned args_required)
3542 {
3543 	if (argc != args_required) {
3544 		DMWARN("Message received with %u arguments instead of %u.",
3545 		       argc, args_required);
3546 		return -EINVAL;
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3553 {
3554 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3555 	    *dev_id <= MAX_DEV_ID)
3556 		return 0;
3557 
3558 	if (warning)
3559 		DMWARN("Message received with invalid device id: %s", arg);
3560 
3561 	return -EINVAL;
3562 }
3563 
3564 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3565 {
3566 	dm_thin_id dev_id;
3567 	int r;
3568 
3569 	r = check_arg_count(argc, 2);
3570 	if (r)
3571 		return r;
3572 
3573 	r = read_dev_id(argv[1], &dev_id, 1);
3574 	if (r)
3575 		return r;
3576 
3577 	r = dm_pool_create_thin(pool->pmd, dev_id);
3578 	if (r) {
3579 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3580 		       argv[1]);
3581 		return r;
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 {
3589 	dm_thin_id dev_id;
3590 	dm_thin_id origin_dev_id;
3591 	int r;
3592 
3593 	r = check_arg_count(argc, 3);
3594 	if (r)
3595 		return r;
3596 
3597 	r = read_dev_id(argv[1], &dev_id, 1);
3598 	if (r)
3599 		return r;
3600 
3601 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3602 	if (r)
3603 		return r;
3604 
3605 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3606 	if (r) {
3607 		DMWARN("Creation of new snapshot %s of device %s failed.",
3608 		       argv[1], argv[2]);
3609 		return r;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617 	dm_thin_id dev_id;
3618 	int r;
3619 
3620 	r = check_arg_count(argc, 2);
3621 	if (r)
3622 		return r;
3623 
3624 	r = read_dev_id(argv[1], &dev_id, 1);
3625 	if (r)
3626 		return r;
3627 
3628 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3629 	if (r)
3630 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3631 
3632 	return r;
3633 }
3634 
3635 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3636 {
3637 	dm_thin_id old_id, new_id;
3638 	int r;
3639 
3640 	r = check_arg_count(argc, 3);
3641 	if (r)
3642 		return r;
3643 
3644 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3645 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3646 		return -EINVAL;
3647 	}
3648 
3649 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3650 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3651 		return -EINVAL;
3652 	}
3653 
3654 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3655 	if (r) {
3656 		DMWARN("Failed to change transaction id from %s to %s.",
3657 		       argv[1], argv[2]);
3658 		return r;
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3665 {
3666 	int r;
3667 
3668 	r = check_arg_count(argc, 1);
3669 	if (r)
3670 		return r;
3671 
3672 	(void) commit(pool);
3673 
3674 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3675 	if (r)
3676 		DMWARN("reserve_metadata_snap message failed.");
3677 
3678 	return r;
3679 }
3680 
3681 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3682 {
3683 	int r;
3684 
3685 	r = check_arg_count(argc, 1);
3686 	if (r)
3687 		return r;
3688 
3689 	r = dm_pool_release_metadata_snap(pool->pmd);
3690 	if (r)
3691 		DMWARN("release_metadata_snap message failed.");
3692 
3693 	return r;
3694 }
3695 
3696 /*
3697  * Messages supported:
3698  *   create_thin	<dev_id>
3699  *   create_snap	<dev_id> <origin_id>
3700  *   delete		<dev_id>
3701  *   set_transaction_id <current_trans_id> <new_trans_id>
3702  *   reserve_metadata_snap
3703  *   release_metadata_snap
3704  */
3705 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3706 {
3707 	int r = -EINVAL;
3708 	struct pool_c *pt = ti->private;
3709 	struct pool *pool = pt->pool;
3710 
3711 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3712 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3713 		      dm_device_name(pool->pool_md));
3714 		return -EOPNOTSUPP;
3715 	}
3716 
3717 	if (!strcasecmp(argv[0], "create_thin"))
3718 		r = process_create_thin_mesg(argc, argv, pool);
3719 
3720 	else if (!strcasecmp(argv[0], "create_snap"))
3721 		r = process_create_snap_mesg(argc, argv, pool);
3722 
3723 	else if (!strcasecmp(argv[0], "delete"))
3724 		r = process_delete_mesg(argc, argv, pool);
3725 
3726 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3727 		r = process_set_transaction_id_mesg(argc, argv, pool);
3728 
3729 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3730 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731 
3732 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3733 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3734 
3735 	else
3736 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3737 
3738 	if (!r)
3739 		(void) commit(pool);
3740 
3741 	return r;
3742 }
3743 
3744 static void emit_flags(struct pool_features *pf, char *result,
3745 		       unsigned sz, unsigned maxlen)
3746 {
3747 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3748 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3749 		pf->error_if_no_space;
3750 	DMEMIT("%u ", count);
3751 
3752 	if (!pf->zero_new_blocks)
3753 		DMEMIT("skip_block_zeroing ");
3754 
3755 	if (!pf->discard_enabled)
3756 		DMEMIT("ignore_discard ");
3757 
3758 	if (!pf->discard_passdown)
3759 		DMEMIT("no_discard_passdown ");
3760 
3761 	if (pf->mode == PM_READ_ONLY)
3762 		DMEMIT("read_only ");
3763 
3764 	if (pf->error_if_no_space)
3765 		DMEMIT("error_if_no_space ");
3766 }
3767 
3768 /*
3769  * Status line is:
3770  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3771  *    <used data sectors>/<total data sectors> <held metadata root>
3772  *    <pool mode> <discard config> <no space config> <needs_check>
3773  */
3774 static void pool_status(struct dm_target *ti, status_type_t type,
3775 			unsigned status_flags, char *result, unsigned maxlen)
3776 {
3777 	int r;
3778 	unsigned sz = 0;
3779 	uint64_t transaction_id;
3780 	dm_block_t nr_free_blocks_data;
3781 	dm_block_t nr_free_blocks_metadata;
3782 	dm_block_t nr_blocks_data;
3783 	dm_block_t nr_blocks_metadata;
3784 	dm_block_t held_root;
3785 	char buf[BDEVNAME_SIZE];
3786 	char buf2[BDEVNAME_SIZE];
3787 	struct pool_c *pt = ti->private;
3788 	struct pool *pool = pt->pool;
3789 
3790 	switch (type) {
3791 	case STATUSTYPE_INFO:
3792 		if (get_pool_mode(pool) == PM_FAIL) {
3793 			DMEMIT("Fail");
3794 			break;
3795 		}
3796 
3797 		/* Commit to ensure statistics aren't out-of-date */
3798 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3799 			(void) commit(pool);
3800 
3801 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802 		if (r) {
3803 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3804 			      dm_device_name(pool->pool_md), r);
3805 			goto err;
3806 		}
3807 
3808 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809 		if (r) {
3810 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3811 			      dm_device_name(pool->pool_md), r);
3812 			goto err;
3813 		}
3814 
3815 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816 		if (r) {
3817 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3818 			      dm_device_name(pool->pool_md), r);
3819 			goto err;
3820 		}
3821 
3822 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823 		if (r) {
3824 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3825 			      dm_device_name(pool->pool_md), r);
3826 			goto err;
3827 		}
3828 
3829 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830 		if (r) {
3831 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3832 			      dm_device_name(pool->pool_md), r);
3833 			goto err;
3834 		}
3835 
3836 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837 		if (r) {
3838 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3839 			      dm_device_name(pool->pool_md), r);
3840 			goto err;
3841 		}
3842 
3843 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3844 		       (unsigned long long)transaction_id,
3845 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3846 		       (unsigned long long)nr_blocks_metadata,
3847 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3848 		       (unsigned long long)nr_blocks_data);
3849 
3850 		if (held_root)
3851 			DMEMIT("%llu ", held_root);
3852 		else
3853 			DMEMIT("- ");
3854 
3855 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3856 			DMEMIT("out_of_data_space ");
3857 		else if (pool->pf.mode == PM_READ_ONLY)
3858 			DMEMIT("ro ");
3859 		else
3860 			DMEMIT("rw ");
3861 
3862 		if (!pool->pf.discard_enabled)
3863 			DMEMIT("ignore_discard ");
3864 		else if (pool->pf.discard_passdown)
3865 			DMEMIT("discard_passdown ");
3866 		else
3867 			DMEMIT("no_discard_passdown ");
3868 
3869 		if (pool->pf.error_if_no_space)
3870 			DMEMIT("error_if_no_space ");
3871 		else
3872 			DMEMIT("queue_if_no_space ");
3873 
3874 		if (dm_pool_metadata_needs_check(pool->pmd))
3875 			DMEMIT("needs_check ");
3876 		else
3877 			DMEMIT("- ");
3878 
3879 		break;
3880 
3881 	case STATUSTYPE_TABLE:
3882 		DMEMIT("%s %s %lu %llu ",
3883 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3884 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3885 		       (unsigned long)pool->sectors_per_block,
3886 		       (unsigned long long)pt->low_water_blocks);
3887 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3888 		break;
3889 	}
3890 	return;
3891 
3892 err:
3893 	DMEMIT("Error");
3894 }
3895 
3896 static int pool_iterate_devices(struct dm_target *ti,
3897 				iterate_devices_callout_fn fn, void *data)
3898 {
3899 	struct pool_c *pt = ti->private;
3900 
3901 	return fn(ti, pt->data_dev, 0, ti->len, data);
3902 }
3903 
3904 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3905 {
3906 	struct pool_c *pt = ti->private;
3907 	struct pool *pool = pt->pool;
3908 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3909 
3910 	/*
3911 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3912 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3913 	 * This is especially beneficial when the pool's data device is a RAID
3914 	 * device that has a full stripe width that matches pool->sectors_per_block
3915 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3916 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3917 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3918 	 */
3919 	if (limits->max_sectors < pool->sectors_per_block) {
3920 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3921 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3922 				limits->max_sectors--;
3923 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3924 		}
3925 	}
3926 
3927 	/*
3928 	 * If the system-determined stacked limits are compatible with the
3929 	 * pool's blocksize (io_opt is a factor) do not override them.
3930 	 */
3931 	if (io_opt_sectors < pool->sectors_per_block ||
3932 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3933 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3934 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3935 		else
3936 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3937 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938 	}
3939 
3940 	/*
3941 	 * pt->adjusted_pf is a staging area for the actual features to use.
3942 	 * They get transferred to the live pool in bind_control_target()
3943 	 * called from pool_preresume().
3944 	 */
3945 	if (!pt->adjusted_pf.discard_enabled) {
3946 		/*
3947 		 * Must explicitly disallow stacking discard limits otherwise the
3948 		 * block layer will stack them if pool's data device has support.
3949 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3950 		 * user to see that, so make sure to set all discard limits to 0.
3951 		 */
3952 		limits->discard_granularity = 0;
3953 		return;
3954 	}
3955 
3956 	disable_passdown_if_not_supported(pt);
3957 
3958 	/*
3959 	 * The pool uses the same discard limits as the underlying data
3960 	 * device.  DM core has already set this up.
3961 	 */
3962 }
3963 
3964 static struct target_type pool_target = {
3965 	.name = "thin-pool",
3966 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3967 		    DM_TARGET_IMMUTABLE,
3968 	.version = {1, 19, 0},
3969 	.module = THIS_MODULE,
3970 	.ctr = pool_ctr,
3971 	.dtr = pool_dtr,
3972 	.map = pool_map,
3973 	.presuspend = pool_presuspend,
3974 	.presuspend_undo = pool_presuspend_undo,
3975 	.postsuspend = pool_postsuspend,
3976 	.preresume = pool_preresume,
3977 	.resume = pool_resume,
3978 	.message = pool_message,
3979 	.status = pool_status,
3980 	.iterate_devices = pool_iterate_devices,
3981 	.io_hints = pool_io_hints,
3982 };
3983 
3984 /*----------------------------------------------------------------
3985  * Thin target methods
3986  *--------------------------------------------------------------*/
3987 static void thin_get(struct thin_c *tc)
3988 {
3989 	atomic_inc(&tc->refcount);
3990 }
3991 
3992 static void thin_put(struct thin_c *tc)
3993 {
3994 	if (atomic_dec_and_test(&tc->refcount))
3995 		complete(&tc->can_destroy);
3996 }
3997 
3998 static void thin_dtr(struct dm_target *ti)
3999 {
4000 	struct thin_c *tc = ti->private;
4001 	unsigned long flags;
4002 
4003 	spin_lock_irqsave(&tc->pool->lock, flags);
4004 	list_del_rcu(&tc->list);
4005 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4006 	synchronize_rcu();
4007 
4008 	thin_put(tc);
4009 	wait_for_completion(&tc->can_destroy);
4010 
4011 	mutex_lock(&dm_thin_pool_table.mutex);
4012 
4013 	__pool_dec(tc->pool);
4014 	dm_pool_close_thin_device(tc->td);
4015 	dm_put_device(ti, tc->pool_dev);
4016 	if (tc->origin_dev)
4017 		dm_put_device(ti, tc->origin_dev);
4018 	kfree(tc);
4019 
4020 	mutex_unlock(&dm_thin_pool_table.mutex);
4021 }
4022 
4023 /*
4024  * Thin target parameters:
4025  *
4026  * <pool_dev> <dev_id> [origin_dev]
4027  *
4028  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4029  * dev_id: the internal device identifier
4030  * origin_dev: a device external to the pool that should act as the origin
4031  *
4032  * If the pool device has discards disabled, they get disabled for the thin
4033  * device as well.
4034  */
4035 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4036 {
4037 	int r;
4038 	struct thin_c *tc;
4039 	struct dm_dev *pool_dev, *origin_dev;
4040 	struct mapped_device *pool_md;
4041 	unsigned long flags;
4042 
4043 	mutex_lock(&dm_thin_pool_table.mutex);
4044 
4045 	if (argc != 2 && argc != 3) {
4046 		ti->error = "Invalid argument count";
4047 		r = -EINVAL;
4048 		goto out_unlock;
4049 	}
4050 
4051 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4052 	if (!tc) {
4053 		ti->error = "Out of memory";
4054 		r = -ENOMEM;
4055 		goto out_unlock;
4056 	}
4057 	tc->thin_md = dm_table_get_md(ti->table);
4058 	spin_lock_init(&tc->lock);
4059 	INIT_LIST_HEAD(&tc->deferred_cells);
4060 	bio_list_init(&tc->deferred_bio_list);
4061 	bio_list_init(&tc->retry_on_resume_list);
4062 	tc->sort_bio_list = RB_ROOT;
4063 
4064 	if (argc == 3) {
4065 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4066 		if (r) {
4067 			ti->error = "Error opening origin device";
4068 			goto bad_origin_dev;
4069 		}
4070 		tc->origin_dev = origin_dev;
4071 	}
4072 
4073 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4074 	if (r) {
4075 		ti->error = "Error opening pool device";
4076 		goto bad_pool_dev;
4077 	}
4078 	tc->pool_dev = pool_dev;
4079 
4080 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4081 		ti->error = "Invalid device id";
4082 		r = -EINVAL;
4083 		goto bad_common;
4084 	}
4085 
4086 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4087 	if (!pool_md) {
4088 		ti->error = "Couldn't get pool mapped device";
4089 		r = -EINVAL;
4090 		goto bad_common;
4091 	}
4092 
4093 	tc->pool = __pool_table_lookup(pool_md);
4094 	if (!tc->pool) {
4095 		ti->error = "Couldn't find pool object";
4096 		r = -EINVAL;
4097 		goto bad_pool_lookup;
4098 	}
4099 	__pool_inc(tc->pool);
4100 
4101 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4102 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4103 		r = -EINVAL;
4104 		goto bad_pool;
4105 	}
4106 
4107 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4108 	if (r) {
4109 		ti->error = "Couldn't open thin internal device";
4110 		goto bad_pool;
4111 	}
4112 
4113 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4114 	if (r)
4115 		goto bad;
4116 
4117 	ti->num_flush_bios = 1;
4118 	ti->flush_supported = true;
4119 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4120 
4121 	/* In case the pool supports discards, pass them on. */
4122 	if (tc->pool->pf.discard_enabled) {
4123 		ti->discards_supported = true;
4124 		ti->num_discard_bios = 1;
4125 		ti->split_discard_bios = false;
4126 	}
4127 
4128 	mutex_unlock(&dm_thin_pool_table.mutex);
4129 
4130 	spin_lock_irqsave(&tc->pool->lock, flags);
4131 	if (tc->pool->suspended) {
4132 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4133 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4134 		ti->error = "Unable to activate thin device while pool is suspended";
4135 		r = -EINVAL;
4136 		goto bad;
4137 	}
4138 	atomic_set(&tc->refcount, 1);
4139 	init_completion(&tc->can_destroy);
4140 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4141 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4142 	/*
4143 	 * This synchronize_rcu() call is needed here otherwise we risk a
4144 	 * wake_worker() call finding no bios to process (because the newly
4145 	 * added tc isn't yet visible).  So this reduces latency since we
4146 	 * aren't then dependent on the periodic commit to wake_worker().
4147 	 */
4148 	synchronize_rcu();
4149 
4150 	dm_put(pool_md);
4151 
4152 	return 0;
4153 
4154 bad:
4155 	dm_pool_close_thin_device(tc->td);
4156 bad_pool:
4157 	__pool_dec(tc->pool);
4158 bad_pool_lookup:
4159 	dm_put(pool_md);
4160 bad_common:
4161 	dm_put_device(ti, tc->pool_dev);
4162 bad_pool_dev:
4163 	if (tc->origin_dev)
4164 		dm_put_device(ti, tc->origin_dev);
4165 bad_origin_dev:
4166 	kfree(tc);
4167 out_unlock:
4168 	mutex_unlock(&dm_thin_pool_table.mutex);
4169 
4170 	return r;
4171 }
4172 
4173 static int thin_map(struct dm_target *ti, struct bio *bio)
4174 {
4175 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4176 
4177 	return thin_bio_map(ti, bio);
4178 }
4179 
4180 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4181 {
4182 	unsigned long flags;
4183 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4184 	struct list_head work;
4185 	struct dm_thin_new_mapping *m, *tmp;
4186 	struct pool *pool = h->tc->pool;
4187 
4188 	if (h->shared_read_entry) {
4189 		INIT_LIST_HEAD(&work);
4190 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4191 
4192 		spin_lock_irqsave(&pool->lock, flags);
4193 		list_for_each_entry_safe(m, tmp, &work, list) {
4194 			list_del(&m->list);
4195 			__complete_mapping_preparation(m);
4196 		}
4197 		spin_unlock_irqrestore(&pool->lock, flags);
4198 	}
4199 
4200 	if (h->all_io_entry) {
4201 		INIT_LIST_HEAD(&work);
4202 		dm_deferred_entry_dec(h->all_io_entry, &work);
4203 		if (!list_empty(&work)) {
4204 			spin_lock_irqsave(&pool->lock, flags);
4205 			list_for_each_entry_safe(m, tmp, &work, list)
4206 				list_add_tail(&m->list, &pool->prepared_discards);
4207 			spin_unlock_irqrestore(&pool->lock, flags);
4208 			wake_worker(pool);
4209 		}
4210 	}
4211 
4212 	if (h->cell)
4213 		cell_defer_no_holder(h->tc, h->cell);
4214 
4215 	return 0;
4216 }
4217 
4218 static void thin_presuspend(struct dm_target *ti)
4219 {
4220 	struct thin_c *tc = ti->private;
4221 
4222 	if (dm_noflush_suspending(ti))
4223 		noflush_work(tc, do_noflush_start);
4224 }
4225 
4226 static void thin_postsuspend(struct dm_target *ti)
4227 {
4228 	struct thin_c *tc = ti->private;
4229 
4230 	/*
4231 	 * The dm_noflush_suspending flag has been cleared by now, so
4232 	 * unfortunately we must always run this.
4233 	 */
4234 	noflush_work(tc, do_noflush_stop);
4235 }
4236 
4237 static int thin_preresume(struct dm_target *ti)
4238 {
4239 	struct thin_c *tc = ti->private;
4240 
4241 	if (tc->origin_dev)
4242 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4243 
4244 	return 0;
4245 }
4246 
4247 /*
4248  * <nr mapped sectors> <highest mapped sector>
4249  */
4250 static void thin_status(struct dm_target *ti, status_type_t type,
4251 			unsigned status_flags, char *result, unsigned maxlen)
4252 {
4253 	int r;
4254 	ssize_t sz = 0;
4255 	dm_block_t mapped, highest;
4256 	char buf[BDEVNAME_SIZE];
4257 	struct thin_c *tc = ti->private;
4258 
4259 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4260 		DMEMIT("Fail");
4261 		return;
4262 	}
4263 
4264 	if (!tc->td)
4265 		DMEMIT("-");
4266 	else {
4267 		switch (type) {
4268 		case STATUSTYPE_INFO:
4269 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4270 			if (r) {
4271 				DMERR("dm_thin_get_mapped_count returned %d", r);
4272 				goto err;
4273 			}
4274 
4275 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4276 			if (r < 0) {
4277 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4278 				goto err;
4279 			}
4280 
4281 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4282 			if (r)
4283 				DMEMIT("%llu", ((highest + 1) *
4284 						tc->pool->sectors_per_block) - 1);
4285 			else
4286 				DMEMIT("-");
4287 			break;
4288 
4289 		case STATUSTYPE_TABLE:
4290 			DMEMIT("%s %lu",
4291 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4292 			       (unsigned long) tc->dev_id);
4293 			if (tc->origin_dev)
4294 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4295 			break;
4296 		}
4297 	}
4298 
4299 	return;
4300 
4301 err:
4302 	DMEMIT("Error");
4303 }
4304 
4305 static int thin_iterate_devices(struct dm_target *ti,
4306 				iterate_devices_callout_fn fn, void *data)
4307 {
4308 	sector_t blocks;
4309 	struct thin_c *tc = ti->private;
4310 	struct pool *pool = tc->pool;
4311 
4312 	/*
4313 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4314 	 * we follow a more convoluted path through to the pool's target.
4315 	 */
4316 	if (!pool->ti)
4317 		return 0;	/* nothing is bound */
4318 
4319 	blocks = pool->ti->len;
4320 	(void) sector_div(blocks, pool->sectors_per_block);
4321 	if (blocks)
4322 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4323 
4324 	return 0;
4325 }
4326 
4327 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4328 {
4329 	struct thin_c *tc = ti->private;
4330 	struct pool *pool = tc->pool;
4331 
4332 	if (!pool->pf.discard_enabled)
4333 		return;
4334 
4335 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4336 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4337 }
4338 
4339 static struct target_type thin_target = {
4340 	.name = "thin",
4341 	.version = {1, 19, 0},
4342 	.module	= THIS_MODULE,
4343 	.ctr = thin_ctr,
4344 	.dtr = thin_dtr,
4345 	.map = thin_map,
4346 	.end_io = thin_endio,
4347 	.preresume = thin_preresume,
4348 	.presuspend = thin_presuspend,
4349 	.postsuspend = thin_postsuspend,
4350 	.status = thin_status,
4351 	.iterate_devices = thin_iterate_devices,
4352 	.io_hints = thin_io_hints,
4353 };
4354 
4355 /*----------------------------------------------------------------*/
4356 
4357 static int __init dm_thin_init(void)
4358 {
4359 	int r;
4360 
4361 	pool_table_init();
4362 
4363 	r = dm_register_target(&thin_target);
4364 	if (r)
4365 		return r;
4366 
4367 	r = dm_register_target(&pool_target);
4368 	if (r)
4369 		goto bad_pool_target;
4370 
4371 	r = -ENOMEM;
4372 
4373 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4374 	if (!_new_mapping_cache)
4375 		goto bad_new_mapping_cache;
4376 
4377 	return 0;
4378 
4379 bad_new_mapping_cache:
4380 	dm_unregister_target(&pool_target);
4381 bad_pool_target:
4382 	dm_unregister_target(&thin_target);
4383 
4384 	return r;
4385 }
4386 
4387 static void dm_thin_exit(void)
4388 {
4389 	dm_unregister_target(&thin_target);
4390 	dm_unregister_target(&pool_target);
4391 
4392 	kmem_cache_destroy(_new_mapping_cache);
4393 }
4394 
4395 module_init(dm_thin_init);
4396 module_exit(dm_thin_exit);
4397 
4398 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4399 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4400 
4401 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4402 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4403 MODULE_LICENSE("GPL");
4404