1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *data_dev; 235 struct block_device *md_dev; 236 struct dm_pool_metadata *pmd; 237 238 dm_block_t low_water_blocks; 239 uint32_t sectors_per_block; 240 int sectors_per_block_shift; 241 242 struct pool_features pf; 243 bool low_water_triggered:1; /* A dm event has been sent */ 244 bool suspended:1; 245 bool out_of_data_space:1; 246 247 struct dm_bio_prison *prison; 248 struct dm_kcopyd_client *copier; 249 250 struct work_struct worker; 251 struct workqueue_struct *wq; 252 struct throttle throttle; 253 struct delayed_work waker; 254 struct delayed_work no_space_timeout; 255 256 unsigned long last_commit_jiffies; 257 unsigned ref_count; 258 259 spinlock_t lock; 260 struct bio_list deferred_flush_bios; 261 struct bio_list deferred_flush_completions; 262 struct list_head prepared_mappings; 263 struct list_head prepared_discards; 264 struct list_head prepared_discards_pt2; 265 struct list_head active_thins; 266 267 struct dm_deferred_set *shared_read_ds; 268 struct dm_deferred_set *all_io_ds; 269 270 struct dm_thin_new_mapping *next_mapping; 271 272 process_bio_fn process_bio; 273 process_bio_fn process_discard; 274 275 process_cell_fn process_cell; 276 process_cell_fn process_discard_cell; 277 278 process_mapping_fn process_prepared_mapping; 279 process_mapping_fn process_prepared_discard; 280 process_mapping_fn process_prepared_discard_pt2; 281 282 struct dm_bio_prison_cell **cell_sort_array; 283 284 mempool_t mapping_pool; 285 286 struct bio flush_bio; 287 }; 288 289 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 290 291 static enum pool_mode get_pool_mode(struct pool *pool) 292 { 293 return pool->pf.mode; 294 } 295 296 static void notify_of_pool_mode_change(struct pool *pool) 297 { 298 const char *descs[] = { 299 "write", 300 "out-of-data-space", 301 "read-only", 302 "read-only", 303 "fail" 304 }; 305 const char *extra_desc = NULL; 306 enum pool_mode mode = get_pool_mode(pool); 307 308 if (mode == PM_OUT_OF_DATA_SPACE) { 309 if (!pool->pf.error_if_no_space) 310 extra_desc = " (queue IO)"; 311 else 312 extra_desc = " (error IO)"; 313 } 314 315 dm_table_event(pool->ti->table); 316 DMINFO("%s: switching pool to %s%s mode", 317 dm_device_name(pool->pool_md), 318 descs[(int)mode], extra_desc ? : ""); 319 } 320 321 /* 322 * Target context for a pool. 323 */ 324 struct pool_c { 325 struct dm_target *ti; 326 struct pool *pool; 327 struct dm_dev *data_dev; 328 struct dm_dev *metadata_dev; 329 struct dm_target_callbacks callbacks; 330 331 dm_block_t low_water_blocks; 332 struct pool_features requested_pf; /* Features requested during table load */ 333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 334 }; 335 336 /* 337 * Target context for a thin. 338 */ 339 struct thin_c { 340 struct list_head list; 341 struct dm_dev *pool_dev; 342 struct dm_dev *origin_dev; 343 sector_t origin_size; 344 dm_thin_id dev_id; 345 346 struct pool *pool; 347 struct dm_thin_device *td; 348 struct mapped_device *thin_md; 349 350 bool requeue_mode:1; 351 spinlock_t lock; 352 struct list_head deferred_cells; 353 struct bio_list deferred_bio_list; 354 struct bio_list retry_on_resume_list; 355 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 356 357 /* 358 * Ensures the thin is not destroyed until the worker has finished 359 * iterating the active_thins list. 360 */ 361 refcount_t refcount; 362 struct completion can_destroy; 363 }; 364 365 /*----------------------------------------------------------------*/ 366 367 static bool block_size_is_power_of_two(struct pool *pool) 368 { 369 return pool->sectors_per_block_shift >= 0; 370 } 371 372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 373 { 374 return block_size_is_power_of_two(pool) ? 375 (b << pool->sectors_per_block_shift) : 376 (b * pool->sectors_per_block); 377 } 378 379 /*----------------------------------------------------------------*/ 380 381 struct discard_op { 382 struct thin_c *tc; 383 struct blk_plug plug; 384 struct bio *parent_bio; 385 struct bio *bio; 386 }; 387 388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 389 { 390 BUG_ON(!parent); 391 392 op->tc = tc; 393 blk_start_plug(&op->plug); 394 op->parent_bio = parent; 395 op->bio = NULL; 396 } 397 398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 399 { 400 struct thin_c *tc = op->tc; 401 sector_t s = block_to_sectors(tc->pool, data_b); 402 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 403 404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 405 GFP_NOWAIT, 0, &op->bio); 406 } 407 408 static void end_discard(struct discard_op *op, int r) 409 { 410 if (op->bio) { 411 /* 412 * Even if one of the calls to issue_discard failed, we 413 * need to wait for the chain to complete. 414 */ 415 bio_chain(op->bio, op->parent_bio); 416 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 417 submit_bio(op->bio); 418 } 419 420 blk_finish_plug(&op->plug); 421 422 /* 423 * Even if r is set, there could be sub discards in flight that we 424 * need to wait for. 425 */ 426 if (r && !op->parent_bio->bi_status) 427 op->parent_bio->bi_status = errno_to_blk_status(r); 428 bio_endio(op->parent_bio); 429 } 430 431 /*----------------------------------------------------------------*/ 432 433 /* 434 * wake_worker() is used when new work is queued and when pool_resume is 435 * ready to continue deferred IO processing. 436 */ 437 static void wake_worker(struct pool *pool) 438 { 439 queue_work(pool->wq, &pool->worker); 440 } 441 442 /*----------------------------------------------------------------*/ 443 444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 445 struct dm_bio_prison_cell **cell_result) 446 { 447 int r; 448 struct dm_bio_prison_cell *cell_prealloc; 449 450 /* 451 * Allocate a cell from the prison's mempool. 452 * This might block but it can't fail. 453 */ 454 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 455 456 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 457 if (r) 458 /* 459 * We reused an old cell; we can get rid of 460 * the new one. 461 */ 462 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 463 464 return r; 465 } 466 467 static void cell_release(struct pool *pool, 468 struct dm_bio_prison_cell *cell, 469 struct bio_list *bios) 470 { 471 dm_cell_release(pool->prison, cell, bios); 472 dm_bio_prison_free_cell(pool->prison, cell); 473 } 474 475 static void cell_visit_release(struct pool *pool, 476 void (*fn)(void *, struct dm_bio_prison_cell *), 477 void *context, 478 struct dm_bio_prison_cell *cell) 479 { 480 dm_cell_visit_release(pool->prison, fn, context, cell); 481 dm_bio_prison_free_cell(pool->prison, cell); 482 } 483 484 static void cell_release_no_holder(struct pool *pool, 485 struct dm_bio_prison_cell *cell, 486 struct bio_list *bios) 487 { 488 dm_cell_release_no_holder(pool->prison, cell, bios); 489 dm_bio_prison_free_cell(pool->prison, cell); 490 } 491 492 static void cell_error_with_code(struct pool *pool, 493 struct dm_bio_prison_cell *cell, blk_status_t error_code) 494 { 495 dm_cell_error(pool->prison, cell, error_code); 496 dm_bio_prison_free_cell(pool->prison, cell); 497 } 498 499 static blk_status_t get_pool_io_error_code(struct pool *pool) 500 { 501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 502 } 503 504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 505 { 506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 507 } 508 509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 510 { 511 cell_error_with_code(pool, cell, 0); 512 } 513 514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 515 { 516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 517 } 518 519 /*----------------------------------------------------------------*/ 520 521 /* 522 * A global list of pools that uses a struct mapped_device as a key. 523 */ 524 static struct dm_thin_pool_table { 525 struct mutex mutex; 526 struct list_head pools; 527 } dm_thin_pool_table; 528 529 static void pool_table_init(void) 530 { 531 mutex_init(&dm_thin_pool_table.mutex); 532 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 533 } 534 535 static void pool_table_exit(void) 536 { 537 mutex_destroy(&dm_thin_pool_table.mutex); 538 } 539 540 static void __pool_table_insert(struct pool *pool) 541 { 542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 543 list_add(&pool->list, &dm_thin_pool_table.pools); 544 } 545 546 static void __pool_table_remove(struct pool *pool) 547 { 548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 549 list_del(&pool->list); 550 } 551 552 static struct pool *__pool_table_lookup(struct mapped_device *md) 553 { 554 struct pool *pool = NULL, *tmp; 555 556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 557 558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 559 if (tmp->pool_md == md) { 560 pool = tmp; 561 break; 562 } 563 } 564 565 return pool; 566 } 567 568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 569 { 570 struct pool *pool = NULL, *tmp; 571 572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 573 574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 575 if (tmp->md_dev == md_dev) { 576 pool = tmp; 577 break; 578 } 579 } 580 581 return pool; 582 } 583 584 /*----------------------------------------------------------------*/ 585 586 struct dm_thin_endio_hook { 587 struct thin_c *tc; 588 struct dm_deferred_entry *shared_read_entry; 589 struct dm_deferred_entry *all_io_entry; 590 struct dm_thin_new_mapping *overwrite_mapping; 591 struct rb_node rb_node; 592 struct dm_bio_prison_cell *cell; 593 }; 594 595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 596 { 597 bio_list_merge(bios, master); 598 bio_list_init(master); 599 } 600 601 static void error_bio_list(struct bio_list *bios, blk_status_t error) 602 { 603 struct bio *bio; 604 605 while ((bio = bio_list_pop(bios))) { 606 bio->bi_status = error; 607 bio_endio(bio); 608 } 609 } 610 611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 612 blk_status_t error) 613 { 614 struct bio_list bios; 615 616 bio_list_init(&bios); 617 618 spin_lock_irq(&tc->lock); 619 __merge_bio_list(&bios, master); 620 spin_unlock_irq(&tc->lock); 621 622 error_bio_list(&bios, error); 623 } 624 625 static void requeue_deferred_cells(struct thin_c *tc) 626 { 627 struct pool *pool = tc->pool; 628 struct list_head cells; 629 struct dm_bio_prison_cell *cell, *tmp; 630 631 INIT_LIST_HEAD(&cells); 632 633 spin_lock_irq(&tc->lock); 634 list_splice_init(&tc->deferred_cells, &cells); 635 spin_unlock_irq(&tc->lock); 636 637 list_for_each_entry_safe(cell, tmp, &cells, user_list) 638 cell_requeue(pool, cell); 639 } 640 641 static void requeue_io(struct thin_c *tc) 642 { 643 struct bio_list bios; 644 645 bio_list_init(&bios); 646 647 spin_lock_irq(&tc->lock); 648 __merge_bio_list(&bios, &tc->deferred_bio_list); 649 __merge_bio_list(&bios, &tc->retry_on_resume_list); 650 spin_unlock_irq(&tc->lock); 651 652 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 653 requeue_deferred_cells(tc); 654 } 655 656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 657 { 658 struct thin_c *tc; 659 660 rcu_read_lock(); 661 list_for_each_entry_rcu(tc, &pool->active_thins, list) 662 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 663 rcu_read_unlock(); 664 } 665 666 static void error_retry_list(struct pool *pool) 667 { 668 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 669 } 670 671 /* 672 * This section of code contains the logic for processing a thin device's IO. 673 * Much of the code depends on pool object resources (lists, workqueues, etc) 674 * but most is exclusively called from the thin target rather than the thin-pool 675 * target. 676 */ 677 678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 679 { 680 struct pool *pool = tc->pool; 681 sector_t block_nr = bio->bi_iter.bi_sector; 682 683 if (block_size_is_power_of_two(pool)) 684 block_nr >>= pool->sectors_per_block_shift; 685 else 686 (void) sector_div(block_nr, pool->sectors_per_block); 687 688 return block_nr; 689 } 690 691 /* 692 * Returns the _complete_ blocks that this bio covers. 693 */ 694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 695 dm_block_t *begin, dm_block_t *end) 696 { 697 struct pool *pool = tc->pool; 698 sector_t b = bio->bi_iter.bi_sector; 699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 700 701 b += pool->sectors_per_block - 1ull; /* so we round up */ 702 703 if (block_size_is_power_of_two(pool)) { 704 b >>= pool->sectors_per_block_shift; 705 e >>= pool->sectors_per_block_shift; 706 } else { 707 (void) sector_div(b, pool->sectors_per_block); 708 (void) sector_div(e, pool->sectors_per_block); 709 } 710 711 if (e < b) 712 /* Can happen if the bio is within a single block. */ 713 e = b; 714 715 *begin = b; 716 *end = e; 717 } 718 719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 720 { 721 struct pool *pool = tc->pool; 722 sector_t bi_sector = bio->bi_iter.bi_sector; 723 724 bio_set_dev(bio, tc->pool_dev->bdev); 725 if (block_size_is_power_of_two(pool)) 726 bio->bi_iter.bi_sector = 727 (block << pool->sectors_per_block_shift) | 728 (bi_sector & (pool->sectors_per_block - 1)); 729 else 730 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 731 sector_div(bi_sector, pool->sectors_per_block); 732 } 733 734 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 735 { 736 bio_set_dev(bio, tc->origin_dev->bdev); 737 } 738 739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 740 { 741 return op_is_flush(bio->bi_opf) && 742 dm_thin_changed_this_transaction(tc->td); 743 } 744 745 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 746 { 747 struct dm_thin_endio_hook *h; 748 749 if (bio_op(bio) == REQ_OP_DISCARD) 750 return; 751 752 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 753 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 754 } 755 756 static void issue(struct thin_c *tc, struct bio *bio) 757 { 758 struct pool *pool = tc->pool; 759 760 if (!bio_triggers_commit(tc, bio)) { 761 generic_make_request(bio); 762 return; 763 } 764 765 /* 766 * Complete bio with an error if earlier I/O caused changes to 767 * the metadata that can't be committed e.g, due to I/O errors 768 * on the metadata device. 769 */ 770 if (dm_thin_aborted_changes(tc->td)) { 771 bio_io_error(bio); 772 return; 773 } 774 775 /* 776 * Batch together any bios that trigger commits and then issue a 777 * single commit for them in process_deferred_bios(). 778 */ 779 spin_lock_irq(&pool->lock); 780 bio_list_add(&pool->deferred_flush_bios, bio); 781 spin_unlock_irq(&pool->lock); 782 } 783 784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 785 { 786 remap_to_origin(tc, bio); 787 issue(tc, bio); 788 } 789 790 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 791 dm_block_t block) 792 { 793 remap(tc, bio, block); 794 issue(tc, bio); 795 } 796 797 /*----------------------------------------------------------------*/ 798 799 /* 800 * Bio endio functions. 801 */ 802 struct dm_thin_new_mapping { 803 struct list_head list; 804 805 bool pass_discard:1; 806 bool maybe_shared:1; 807 808 /* 809 * Track quiescing, copying and zeroing preparation actions. When this 810 * counter hits zero the block is prepared and can be inserted into the 811 * btree. 812 */ 813 atomic_t prepare_actions; 814 815 blk_status_t status; 816 struct thin_c *tc; 817 dm_block_t virt_begin, virt_end; 818 dm_block_t data_block; 819 struct dm_bio_prison_cell *cell; 820 821 /* 822 * If the bio covers the whole area of a block then we can avoid 823 * zeroing or copying. Instead this bio is hooked. The bio will 824 * still be in the cell, so care has to be taken to avoid issuing 825 * the bio twice. 826 */ 827 struct bio *bio; 828 bio_end_io_t *saved_bi_end_io; 829 }; 830 831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 832 { 833 struct pool *pool = m->tc->pool; 834 835 if (atomic_dec_and_test(&m->prepare_actions)) { 836 list_add_tail(&m->list, &pool->prepared_mappings); 837 wake_worker(pool); 838 } 839 } 840 841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 842 { 843 unsigned long flags; 844 struct pool *pool = m->tc->pool; 845 846 spin_lock_irqsave(&pool->lock, flags); 847 __complete_mapping_preparation(m); 848 spin_unlock_irqrestore(&pool->lock, flags); 849 } 850 851 static void copy_complete(int read_err, unsigned long write_err, void *context) 852 { 853 struct dm_thin_new_mapping *m = context; 854 855 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 856 complete_mapping_preparation(m); 857 } 858 859 static void overwrite_endio(struct bio *bio) 860 { 861 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 862 struct dm_thin_new_mapping *m = h->overwrite_mapping; 863 864 bio->bi_end_io = m->saved_bi_end_io; 865 866 m->status = bio->bi_status; 867 complete_mapping_preparation(m); 868 } 869 870 /*----------------------------------------------------------------*/ 871 872 /* 873 * Workqueue. 874 */ 875 876 /* 877 * Prepared mapping jobs. 878 */ 879 880 /* 881 * This sends the bios in the cell, except the original holder, back 882 * to the deferred_bios list. 883 */ 884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 885 { 886 struct pool *pool = tc->pool; 887 unsigned long flags; 888 int has_work; 889 890 spin_lock_irqsave(&tc->lock, flags); 891 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 892 has_work = !bio_list_empty(&tc->deferred_bio_list); 893 spin_unlock_irqrestore(&tc->lock, flags); 894 895 if (has_work) 896 wake_worker(pool); 897 } 898 899 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 900 901 struct remap_info { 902 struct thin_c *tc; 903 struct bio_list defer_bios; 904 struct bio_list issue_bios; 905 }; 906 907 static void __inc_remap_and_issue_cell(void *context, 908 struct dm_bio_prison_cell *cell) 909 { 910 struct remap_info *info = context; 911 struct bio *bio; 912 913 while ((bio = bio_list_pop(&cell->bios))) { 914 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 915 bio_list_add(&info->defer_bios, bio); 916 else { 917 inc_all_io_entry(info->tc->pool, bio); 918 919 /* 920 * We can't issue the bios with the bio prison lock 921 * held, so we add them to a list to issue on 922 * return from this function. 923 */ 924 bio_list_add(&info->issue_bios, bio); 925 } 926 } 927 } 928 929 static void inc_remap_and_issue_cell(struct thin_c *tc, 930 struct dm_bio_prison_cell *cell, 931 dm_block_t block) 932 { 933 struct bio *bio; 934 struct remap_info info; 935 936 info.tc = tc; 937 bio_list_init(&info.defer_bios); 938 bio_list_init(&info.issue_bios); 939 940 /* 941 * We have to be careful to inc any bios we're about to issue 942 * before the cell is released, and avoid a race with new bios 943 * being added to the cell. 944 */ 945 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 946 &info, cell); 947 948 while ((bio = bio_list_pop(&info.defer_bios))) 949 thin_defer_bio(tc, bio); 950 951 while ((bio = bio_list_pop(&info.issue_bios))) 952 remap_and_issue(info.tc, bio, block); 953 } 954 955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 956 { 957 cell_error(m->tc->pool, m->cell); 958 list_del(&m->list); 959 mempool_free(m, &m->tc->pool->mapping_pool); 960 } 961 962 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 963 { 964 struct pool *pool = tc->pool; 965 966 /* 967 * If the bio has the REQ_FUA flag set we must commit the metadata 968 * before signaling its completion. 969 */ 970 if (!bio_triggers_commit(tc, bio)) { 971 bio_endio(bio); 972 return; 973 } 974 975 /* 976 * Complete bio with an error if earlier I/O caused changes to the 977 * metadata that can't be committed, e.g, due to I/O errors on the 978 * metadata device. 979 */ 980 if (dm_thin_aborted_changes(tc->td)) { 981 bio_io_error(bio); 982 return; 983 } 984 985 /* 986 * Batch together any bios that trigger commits and then issue a 987 * single commit for them in process_deferred_bios(). 988 */ 989 spin_lock_irq(&pool->lock); 990 bio_list_add(&pool->deferred_flush_completions, bio); 991 spin_unlock_irq(&pool->lock); 992 } 993 994 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 995 { 996 struct thin_c *tc = m->tc; 997 struct pool *pool = tc->pool; 998 struct bio *bio = m->bio; 999 int r; 1000 1001 if (m->status) { 1002 cell_error(pool, m->cell); 1003 goto out; 1004 } 1005 1006 /* 1007 * Commit the prepared block into the mapping btree. 1008 * Any I/O for this block arriving after this point will get 1009 * remapped to it directly. 1010 */ 1011 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1012 if (r) { 1013 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1014 cell_error(pool, m->cell); 1015 goto out; 1016 } 1017 1018 /* 1019 * Release any bios held while the block was being provisioned. 1020 * If we are processing a write bio that completely covers the block, 1021 * we already processed it so can ignore it now when processing 1022 * the bios in the cell. 1023 */ 1024 if (bio) { 1025 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1026 complete_overwrite_bio(tc, bio); 1027 } else { 1028 inc_all_io_entry(tc->pool, m->cell->holder); 1029 remap_and_issue(tc, m->cell->holder, m->data_block); 1030 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1031 } 1032 1033 out: 1034 list_del(&m->list); 1035 mempool_free(m, &pool->mapping_pool); 1036 } 1037 1038 /*----------------------------------------------------------------*/ 1039 1040 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1041 { 1042 struct thin_c *tc = m->tc; 1043 if (m->cell) 1044 cell_defer_no_holder(tc, m->cell); 1045 mempool_free(m, &tc->pool->mapping_pool); 1046 } 1047 1048 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1049 { 1050 bio_io_error(m->bio); 1051 free_discard_mapping(m); 1052 } 1053 1054 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1055 { 1056 bio_endio(m->bio); 1057 free_discard_mapping(m); 1058 } 1059 1060 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1061 { 1062 int r; 1063 struct thin_c *tc = m->tc; 1064 1065 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1066 if (r) { 1067 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1068 bio_io_error(m->bio); 1069 } else 1070 bio_endio(m->bio); 1071 1072 cell_defer_no_holder(tc, m->cell); 1073 mempool_free(m, &tc->pool->mapping_pool); 1074 } 1075 1076 /*----------------------------------------------------------------*/ 1077 1078 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1079 struct bio *discard_parent) 1080 { 1081 /* 1082 * We've already unmapped this range of blocks, but before we 1083 * passdown we have to check that these blocks are now unused. 1084 */ 1085 int r = 0; 1086 bool shared = true; 1087 struct thin_c *tc = m->tc; 1088 struct pool *pool = tc->pool; 1089 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1090 struct discard_op op; 1091 1092 begin_discard(&op, tc, discard_parent); 1093 while (b != end) { 1094 /* find start of unmapped run */ 1095 for (; b < end; b++) { 1096 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1097 if (r) 1098 goto out; 1099 1100 if (!shared) 1101 break; 1102 } 1103 1104 if (b == end) 1105 break; 1106 1107 /* find end of run */ 1108 for (e = b + 1; e != end; e++) { 1109 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1110 if (r) 1111 goto out; 1112 1113 if (shared) 1114 break; 1115 } 1116 1117 r = issue_discard(&op, b, e); 1118 if (r) 1119 goto out; 1120 1121 b = e; 1122 } 1123 out: 1124 end_discard(&op, r); 1125 } 1126 1127 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1128 { 1129 unsigned long flags; 1130 struct pool *pool = m->tc->pool; 1131 1132 spin_lock_irqsave(&pool->lock, flags); 1133 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1134 spin_unlock_irqrestore(&pool->lock, flags); 1135 wake_worker(pool); 1136 } 1137 1138 static void passdown_endio(struct bio *bio) 1139 { 1140 /* 1141 * It doesn't matter if the passdown discard failed, we still want 1142 * to unmap (we ignore err). 1143 */ 1144 queue_passdown_pt2(bio->bi_private); 1145 bio_put(bio); 1146 } 1147 1148 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1149 { 1150 int r; 1151 struct thin_c *tc = m->tc; 1152 struct pool *pool = tc->pool; 1153 struct bio *discard_parent; 1154 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1155 1156 /* 1157 * Only this thread allocates blocks, so we can be sure that the 1158 * newly unmapped blocks will not be allocated before the end of 1159 * the function. 1160 */ 1161 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1162 if (r) { 1163 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1164 bio_io_error(m->bio); 1165 cell_defer_no_holder(tc, m->cell); 1166 mempool_free(m, &pool->mapping_pool); 1167 return; 1168 } 1169 1170 /* 1171 * Increment the unmapped blocks. This prevents a race between the 1172 * passdown io and reallocation of freed blocks. 1173 */ 1174 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1175 if (r) { 1176 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1177 bio_io_error(m->bio); 1178 cell_defer_no_holder(tc, m->cell); 1179 mempool_free(m, &pool->mapping_pool); 1180 return; 1181 } 1182 1183 discard_parent = bio_alloc(GFP_NOIO, 1); 1184 if (!discard_parent) { 1185 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1186 dm_device_name(tc->pool->pool_md)); 1187 queue_passdown_pt2(m); 1188 1189 } else { 1190 discard_parent->bi_end_io = passdown_endio; 1191 discard_parent->bi_private = m; 1192 1193 if (m->maybe_shared) 1194 passdown_double_checking_shared_status(m, discard_parent); 1195 else { 1196 struct discard_op op; 1197 1198 begin_discard(&op, tc, discard_parent); 1199 r = issue_discard(&op, m->data_block, data_end); 1200 end_discard(&op, r); 1201 } 1202 } 1203 } 1204 1205 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1206 { 1207 int r; 1208 struct thin_c *tc = m->tc; 1209 struct pool *pool = tc->pool; 1210 1211 /* 1212 * The passdown has completed, so now we can decrement all those 1213 * unmapped blocks. 1214 */ 1215 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1216 m->data_block + (m->virt_end - m->virt_begin)); 1217 if (r) { 1218 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1219 bio_io_error(m->bio); 1220 } else 1221 bio_endio(m->bio); 1222 1223 cell_defer_no_holder(tc, m->cell); 1224 mempool_free(m, &pool->mapping_pool); 1225 } 1226 1227 static void process_prepared(struct pool *pool, struct list_head *head, 1228 process_mapping_fn *fn) 1229 { 1230 struct list_head maps; 1231 struct dm_thin_new_mapping *m, *tmp; 1232 1233 INIT_LIST_HEAD(&maps); 1234 spin_lock_irq(&pool->lock); 1235 list_splice_init(head, &maps); 1236 spin_unlock_irq(&pool->lock); 1237 1238 list_for_each_entry_safe(m, tmp, &maps, list) 1239 (*fn)(m); 1240 } 1241 1242 /* 1243 * Deferred bio jobs. 1244 */ 1245 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1246 { 1247 return bio->bi_iter.bi_size == 1248 (pool->sectors_per_block << SECTOR_SHIFT); 1249 } 1250 1251 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1252 { 1253 return (bio_data_dir(bio) == WRITE) && 1254 io_overlaps_block(pool, bio); 1255 } 1256 1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1258 bio_end_io_t *fn) 1259 { 1260 *save = bio->bi_end_io; 1261 bio->bi_end_io = fn; 1262 } 1263 1264 static int ensure_next_mapping(struct pool *pool) 1265 { 1266 if (pool->next_mapping) 1267 return 0; 1268 1269 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1270 1271 return pool->next_mapping ? 0 : -ENOMEM; 1272 } 1273 1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1275 { 1276 struct dm_thin_new_mapping *m = pool->next_mapping; 1277 1278 BUG_ON(!pool->next_mapping); 1279 1280 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1281 INIT_LIST_HEAD(&m->list); 1282 m->bio = NULL; 1283 1284 pool->next_mapping = NULL; 1285 1286 return m; 1287 } 1288 1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1290 sector_t begin, sector_t end) 1291 { 1292 struct dm_io_region to; 1293 1294 to.bdev = tc->pool_dev->bdev; 1295 to.sector = begin; 1296 to.count = end - begin; 1297 1298 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1299 } 1300 1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1302 dm_block_t data_begin, 1303 struct dm_thin_new_mapping *m) 1304 { 1305 struct pool *pool = tc->pool; 1306 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1307 1308 h->overwrite_mapping = m; 1309 m->bio = bio; 1310 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1311 inc_all_io_entry(pool, bio); 1312 remap_and_issue(tc, bio, data_begin); 1313 } 1314 1315 /* 1316 * A partial copy also needs to zero the uncopied region. 1317 */ 1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1319 struct dm_dev *origin, dm_block_t data_origin, 1320 dm_block_t data_dest, 1321 struct dm_bio_prison_cell *cell, struct bio *bio, 1322 sector_t len) 1323 { 1324 struct pool *pool = tc->pool; 1325 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1326 1327 m->tc = tc; 1328 m->virt_begin = virt_block; 1329 m->virt_end = virt_block + 1u; 1330 m->data_block = data_dest; 1331 m->cell = cell; 1332 1333 /* 1334 * quiesce action + copy action + an extra reference held for the 1335 * duration of this function (we may need to inc later for a 1336 * partial zero). 1337 */ 1338 atomic_set(&m->prepare_actions, 3); 1339 1340 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1341 complete_mapping_preparation(m); /* already quiesced */ 1342 1343 /* 1344 * IO to pool_dev remaps to the pool target's data_dev. 1345 * 1346 * If the whole block of data is being overwritten, we can issue the 1347 * bio immediately. Otherwise we use kcopyd to clone the data first. 1348 */ 1349 if (io_overwrites_block(pool, bio)) 1350 remap_and_issue_overwrite(tc, bio, data_dest, m); 1351 else { 1352 struct dm_io_region from, to; 1353 1354 from.bdev = origin->bdev; 1355 from.sector = data_origin * pool->sectors_per_block; 1356 from.count = len; 1357 1358 to.bdev = tc->pool_dev->bdev; 1359 to.sector = data_dest * pool->sectors_per_block; 1360 to.count = len; 1361 1362 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1363 0, copy_complete, m); 1364 1365 /* 1366 * Do we need to zero a tail region? 1367 */ 1368 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1369 atomic_inc(&m->prepare_actions); 1370 ll_zero(tc, m, 1371 data_dest * pool->sectors_per_block + len, 1372 (data_dest + 1) * pool->sectors_per_block); 1373 } 1374 } 1375 1376 complete_mapping_preparation(m); /* drop our ref */ 1377 } 1378 1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1380 dm_block_t data_origin, dm_block_t data_dest, 1381 struct dm_bio_prison_cell *cell, struct bio *bio) 1382 { 1383 schedule_copy(tc, virt_block, tc->pool_dev, 1384 data_origin, data_dest, cell, bio, 1385 tc->pool->sectors_per_block); 1386 } 1387 1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1389 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1390 struct bio *bio) 1391 { 1392 struct pool *pool = tc->pool; 1393 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1394 1395 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1396 m->tc = tc; 1397 m->virt_begin = virt_block; 1398 m->virt_end = virt_block + 1u; 1399 m->data_block = data_block; 1400 m->cell = cell; 1401 1402 /* 1403 * If the whole block of data is being overwritten or we are not 1404 * zeroing pre-existing data, we can issue the bio immediately. 1405 * Otherwise we use kcopyd to zero the data first. 1406 */ 1407 if (pool->pf.zero_new_blocks) { 1408 if (io_overwrites_block(pool, bio)) 1409 remap_and_issue_overwrite(tc, bio, data_block, m); 1410 else 1411 ll_zero(tc, m, data_block * pool->sectors_per_block, 1412 (data_block + 1) * pool->sectors_per_block); 1413 } else 1414 process_prepared_mapping(m); 1415 } 1416 1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1418 dm_block_t data_dest, 1419 struct dm_bio_prison_cell *cell, struct bio *bio) 1420 { 1421 struct pool *pool = tc->pool; 1422 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1423 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1424 1425 if (virt_block_end <= tc->origin_size) 1426 schedule_copy(tc, virt_block, tc->origin_dev, 1427 virt_block, data_dest, cell, bio, 1428 pool->sectors_per_block); 1429 1430 else if (virt_block_begin < tc->origin_size) 1431 schedule_copy(tc, virt_block, tc->origin_dev, 1432 virt_block, data_dest, cell, bio, 1433 tc->origin_size - virt_block_begin); 1434 1435 else 1436 schedule_zero(tc, virt_block, data_dest, cell, bio); 1437 } 1438 1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1440 1441 static void requeue_bios(struct pool *pool); 1442 1443 static bool is_read_only_pool_mode(enum pool_mode mode) 1444 { 1445 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1446 } 1447 1448 static bool is_read_only(struct pool *pool) 1449 { 1450 return is_read_only_pool_mode(get_pool_mode(pool)); 1451 } 1452 1453 static void check_for_metadata_space(struct pool *pool) 1454 { 1455 int r; 1456 const char *ooms_reason = NULL; 1457 dm_block_t nr_free; 1458 1459 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1460 if (r) 1461 ooms_reason = "Could not get free metadata blocks"; 1462 else if (!nr_free) 1463 ooms_reason = "No free metadata blocks"; 1464 1465 if (ooms_reason && !is_read_only(pool)) { 1466 DMERR("%s", ooms_reason); 1467 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1468 } 1469 } 1470 1471 static void check_for_data_space(struct pool *pool) 1472 { 1473 int r; 1474 dm_block_t nr_free; 1475 1476 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1477 return; 1478 1479 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1480 if (r) 1481 return; 1482 1483 if (nr_free) { 1484 set_pool_mode(pool, PM_WRITE); 1485 requeue_bios(pool); 1486 } 1487 } 1488 1489 /* 1490 * A non-zero return indicates read_only or fail_io mode. 1491 * Many callers don't care about the return value. 1492 */ 1493 static int commit(struct pool *pool) 1494 { 1495 int r; 1496 1497 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1498 return -EINVAL; 1499 1500 r = dm_pool_commit_metadata(pool->pmd); 1501 if (r) 1502 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1503 else { 1504 check_for_metadata_space(pool); 1505 check_for_data_space(pool); 1506 } 1507 1508 return r; 1509 } 1510 1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1512 { 1513 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1514 DMWARN("%s: reached low water mark for data device: sending event.", 1515 dm_device_name(pool->pool_md)); 1516 spin_lock_irq(&pool->lock); 1517 pool->low_water_triggered = true; 1518 spin_unlock_irq(&pool->lock); 1519 dm_table_event(pool->ti->table); 1520 } 1521 } 1522 1523 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1524 { 1525 int r; 1526 dm_block_t free_blocks; 1527 struct pool *pool = tc->pool; 1528 1529 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1530 return -EINVAL; 1531 1532 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1533 if (r) { 1534 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1535 return r; 1536 } 1537 1538 check_low_water_mark(pool, free_blocks); 1539 1540 if (!free_blocks) { 1541 /* 1542 * Try to commit to see if that will free up some 1543 * more space. 1544 */ 1545 r = commit(pool); 1546 if (r) 1547 return r; 1548 1549 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1550 if (r) { 1551 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1552 return r; 1553 } 1554 1555 if (!free_blocks) { 1556 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1557 return -ENOSPC; 1558 } 1559 } 1560 1561 r = dm_pool_alloc_data_block(pool->pmd, result); 1562 if (r) { 1563 if (r == -ENOSPC) 1564 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1565 else 1566 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1567 return r; 1568 } 1569 1570 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1571 if (r) { 1572 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1573 return r; 1574 } 1575 1576 if (!free_blocks) { 1577 /* Let's commit before we use up the metadata reserve. */ 1578 r = commit(pool); 1579 if (r) 1580 return r; 1581 } 1582 1583 return 0; 1584 } 1585 1586 /* 1587 * If we have run out of space, queue bios until the device is 1588 * resumed, presumably after having been reloaded with more space. 1589 */ 1590 static void retry_on_resume(struct bio *bio) 1591 { 1592 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1593 struct thin_c *tc = h->tc; 1594 1595 spin_lock_irq(&tc->lock); 1596 bio_list_add(&tc->retry_on_resume_list, bio); 1597 spin_unlock_irq(&tc->lock); 1598 } 1599 1600 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1601 { 1602 enum pool_mode m = get_pool_mode(pool); 1603 1604 switch (m) { 1605 case PM_WRITE: 1606 /* Shouldn't get here */ 1607 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1608 return BLK_STS_IOERR; 1609 1610 case PM_OUT_OF_DATA_SPACE: 1611 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1612 1613 case PM_OUT_OF_METADATA_SPACE: 1614 case PM_READ_ONLY: 1615 case PM_FAIL: 1616 return BLK_STS_IOERR; 1617 default: 1618 /* Shouldn't get here */ 1619 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1620 return BLK_STS_IOERR; 1621 } 1622 } 1623 1624 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1625 { 1626 blk_status_t error = should_error_unserviceable_bio(pool); 1627 1628 if (error) { 1629 bio->bi_status = error; 1630 bio_endio(bio); 1631 } else 1632 retry_on_resume(bio); 1633 } 1634 1635 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1636 { 1637 struct bio *bio; 1638 struct bio_list bios; 1639 blk_status_t error; 1640 1641 error = should_error_unserviceable_bio(pool); 1642 if (error) { 1643 cell_error_with_code(pool, cell, error); 1644 return; 1645 } 1646 1647 bio_list_init(&bios); 1648 cell_release(pool, cell, &bios); 1649 1650 while ((bio = bio_list_pop(&bios))) 1651 retry_on_resume(bio); 1652 } 1653 1654 static void process_discard_cell_no_passdown(struct thin_c *tc, 1655 struct dm_bio_prison_cell *virt_cell) 1656 { 1657 struct pool *pool = tc->pool; 1658 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1659 1660 /* 1661 * We don't need to lock the data blocks, since there's no 1662 * passdown. We only lock data blocks for allocation and breaking sharing. 1663 */ 1664 m->tc = tc; 1665 m->virt_begin = virt_cell->key.block_begin; 1666 m->virt_end = virt_cell->key.block_end; 1667 m->cell = virt_cell; 1668 m->bio = virt_cell->holder; 1669 1670 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1671 pool->process_prepared_discard(m); 1672 } 1673 1674 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1675 struct bio *bio) 1676 { 1677 struct pool *pool = tc->pool; 1678 1679 int r; 1680 bool maybe_shared; 1681 struct dm_cell_key data_key; 1682 struct dm_bio_prison_cell *data_cell; 1683 struct dm_thin_new_mapping *m; 1684 dm_block_t virt_begin, virt_end, data_begin; 1685 1686 while (begin != end) { 1687 r = ensure_next_mapping(pool); 1688 if (r) 1689 /* we did our best */ 1690 return; 1691 1692 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1693 &data_begin, &maybe_shared); 1694 if (r) 1695 /* 1696 * Silently fail, letting any mappings we've 1697 * created complete. 1698 */ 1699 break; 1700 1701 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1702 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1703 /* contention, we'll give up with this range */ 1704 begin = virt_end; 1705 continue; 1706 } 1707 1708 /* 1709 * IO may still be going to the destination block. We must 1710 * quiesce before we can do the removal. 1711 */ 1712 m = get_next_mapping(pool); 1713 m->tc = tc; 1714 m->maybe_shared = maybe_shared; 1715 m->virt_begin = virt_begin; 1716 m->virt_end = virt_end; 1717 m->data_block = data_begin; 1718 m->cell = data_cell; 1719 m->bio = bio; 1720 1721 /* 1722 * The parent bio must not complete before sub discard bios are 1723 * chained to it (see end_discard's bio_chain)! 1724 * 1725 * This per-mapping bi_remaining increment is paired with 1726 * the implicit decrement that occurs via bio_endio() in 1727 * end_discard(). 1728 */ 1729 bio_inc_remaining(bio); 1730 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1731 pool->process_prepared_discard(m); 1732 1733 begin = virt_end; 1734 } 1735 } 1736 1737 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1738 { 1739 struct bio *bio = virt_cell->holder; 1740 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1741 1742 /* 1743 * The virt_cell will only get freed once the origin bio completes. 1744 * This means it will remain locked while all the individual 1745 * passdown bios are in flight. 1746 */ 1747 h->cell = virt_cell; 1748 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1749 1750 /* 1751 * We complete the bio now, knowing that the bi_remaining field 1752 * will prevent completion until the sub range discards have 1753 * completed. 1754 */ 1755 bio_endio(bio); 1756 } 1757 1758 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1759 { 1760 dm_block_t begin, end; 1761 struct dm_cell_key virt_key; 1762 struct dm_bio_prison_cell *virt_cell; 1763 1764 get_bio_block_range(tc, bio, &begin, &end); 1765 if (begin == end) { 1766 /* 1767 * The discard covers less than a block. 1768 */ 1769 bio_endio(bio); 1770 return; 1771 } 1772 1773 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1774 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1775 /* 1776 * Potential starvation issue: We're relying on the 1777 * fs/application being well behaved, and not trying to 1778 * send IO to a region at the same time as discarding it. 1779 * If they do this persistently then it's possible this 1780 * cell will never be granted. 1781 */ 1782 return; 1783 1784 tc->pool->process_discard_cell(tc, virt_cell); 1785 } 1786 1787 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1788 struct dm_cell_key *key, 1789 struct dm_thin_lookup_result *lookup_result, 1790 struct dm_bio_prison_cell *cell) 1791 { 1792 int r; 1793 dm_block_t data_block; 1794 struct pool *pool = tc->pool; 1795 1796 r = alloc_data_block(tc, &data_block); 1797 switch (r) { 1798 case 0: 1799 schedule_internal_copy(tc, block, lookup_result->block, 1800 data_block, cell, bio); 1801 break; 1802 1803 case -ENOSPC: 1804 retry_bios_on_resume(pool, cell); 1805 break; 1806 1807 default: 1808 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1809 __func__, r); 1810 cell_error(pool, cell); 1811 break; 1812 } 1813 } 1814 1815 static void __remap_and_issue_shared_cell(void *context, 1816 struct dm_bio_prison_cell *cell) 1817 { 1818 struct remap_info *info = context; 1819 struct bio *bio; 1820 1821 while ((bio = bio_list_pop(&cell->bios))) { 1822 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1823 bio_op(bio) == REQ_OP_DISCARD) 1824 bio_list_add(&info->defer_bios, bio); 1825 else { 1826 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1827 1828 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1829 inc_all_io_entry(info->tc->pool, bio); 1830 bio_list_add(&info->issue_bios, bio); 1831 } 1832 } 1833 } 1834 1835 static void remap_and_issue_shared_cell(struct thin_c *tc, 1836 struct dm_bio_prison_cell *cell, 1837 dm_block_t block) 1838 { 1839 struct bio *bio; 1840 struct remap_info info; 1841 1842 info.tc = tc; 1843 bio_list_init(&info.defer_bios); 1844 bio_list_init(&info.issue_bios); 1845 1846 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1847 &info, cell); 1848 1849 while ((bio = bio_list_pop(&info.defer_bios))) 1850 thin_defer_bio(tc, bio); 1851 1852 while ((bio = bio_list_pop(&info.issue_bios))) 1853 remap_and_issue(tc, bio, block); 1854 } 1855 1856 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1857 dm_block_t block, 1858 struct dm_thin_lookup_result *lookup_result, 1859 struct dm_bio_prison_cell *virt_cell) 1860 { 1861 struct dm_bio_prison_cell *data_cell; 1862 struct pool *pool = tc->pool; 1863 struct dm_cell_key key; 1864 1865 /* 1866 * If cell is already occupied, then sharing is already in the process 1867 * of being broken so we have nothing further to do here. 1868 */ 1869 build_data_key(tc->td, lookup_result->block, &key); 1870 if (bio_detain(pool, &key, bio, &data_cell)) { 1871 cell_defer_no_holder(tc, virt_cell); 1872 return; 1873 } 1874 1875 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1876 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1877 cell_defer_no_holder(tc, virt_cell); 1878 } else { 1879 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1880 1881 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1882 inc_all_io_entry(pool, bio); 1883 remap_and_issue(tc, bio, lookup_result->block); 1884 1885 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1886 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1887 } 1888 } 1889 1890 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1891 struct dm_bio_prison_cell *cell) 1892 { 1893 int r; 1894 dm_block_t data_block; 1895 struct pool *pool = tc->pool; 1896 1897 /* 1898 * Remap empty bios (flushes) immediately, without provisioning. 1899 */ 1900 if (!bio->bi_iter.bi_size) { 1901 inc_all_io_entry(pool, bio); 1902 cell_defer_no_holder(tc, cell); 1903 1904 remap_and_issue(tc, bio, 0); 1905 return; 1906 } 1907 1908 /* 1909 * Fill read bios with zeroes and complete them immediately. 1910 */ 1911 if (bio_data_dir(bio) == READ) { 1912 zero_fill_bio(bio); 1913 cell_defer_no_holder(tc, cell); 1914 bio_endio(bio); 1915 return; 1916 } 1917 1918 r = alloc_data_block(tc, &data_block); 1919 switch (r) { 1920 case 0: 1921 if (tc->origin_dev) 1922 schedule_external_copy(tc, block, data_block, cell, bio); 1923 else 1924 schedule_zero(tc, block, data_block, cell, bio); 1925 break; 1926 1927 case -ENOSPC: 1928 retry_bios_on_resume(pool, cell); 1929 break; 1930 1931 default: 1932 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1933 __func__, r); 1934 cell_error(pool, cell); 1935 break; 1936 } 1937 } 1938 1939 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1940 { 1941 int r; 1942 struct pool *pool = tc->pool; 1943 struct bio *bio = cell->holder; 1944 dm_block_t block = get_bio_block(tc, bio); 1945 struct dm_thin_lookup_result lookup_result; 1946 1947 if (tc->requeue_mode) { 1948 cell_requeue(pool, cell); 1949 return; 1950 } 1951 1952 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1953 switch (r) { 1954 case 0: 1955 if (lookup_result.shared) 1956 process_shared_bio(tc, bio, block, &lookup_result, cell); 1957 else { 1958 inc_all_io_entry(pool, bio); 1959 remap_and_issue(tc, bio, lookup_result.block); 1960 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1961 } 1962 break; 1963 1964 case -ENODATA: 1965 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1966 inc_all_io_entry(pool, bio); 1967 cell_defer_no_holder(tc, cell); 1968 1969 if (bio_end_sector(bio) <= tc->origin_size) 1970 remap_to_origin_and_issue(tc, bio); 1971 1972 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1973 zero_fill_bio(bio); 1974 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1975 remap_to_origin_and_issue(tc, bio); 1976 1977 } else { 1978 zero_fill_bio(bio); 1979 bio_endio(bio); 1980 } 1981 } else 1982 provision_block(tc, bio, block, cell); 1983 break; 1984 1985 default: 1986 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1987 __func__, r); 1988 cell_defer_no_holder(tc, cell); 1989 bio_io_error(bio); 1990 break; 1991 } 1992 } 1993 1994 static void process_bio(struct thin_c *tc, struct bio *bio) 1995 { 1996 struct pool *pool = tc->pool; 1997 dm_block_t block = get_bio_block(tc, bio); 1998 struct dm_bio_prison_cell *cell; 1999 struct dm_cell_key key; 2000 2001 /* 2002 * If cell is already occupied, then the block is already 2003 * being provisioned so we have nothing further to do here. 2004 */ 2005 build_virtual_key(tc->td, block, &key); 2006 if (bio_detain(pool, &key, bio, &cell)) 2007 return; 2008 2009 process_cell(tc, cell); 2010 } 2011 2012 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2013 struct dm_bio_prison_cell *cell) 2014 { 2015 int r; 2016 int rw = bio_data_dir(bio); 2017 dm_block_t block = get_bio_block(tc, bio); 2018 struct dm_thin_lookup_result lookup_result; 2019 2020 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2021 switch (r) { 2022 case 0: 2023 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2024 handle_unserviceable_bio(tc->pool, bio); 2025 if (cell) 2026 cell_defer_no_holder(tc, cell); 2027 } else { 2028 inc_all_io_entry(tc->pool, bio); 2029 remap_and_issue(tc, bio, lookup_result.block); 2030 if (cell) 2031 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2032 } 2033 break; 2034 2035 case -ENODATA: 2036 if (cell) 2037 cell_defer_no_holder(tc, cell); 2038 if (rw != READ) { 2039 handle_unserviceable_bio(tc->pool, bio); 2040 break; 2041 } 2042 2043 if (tc->origin_dev) { 2044 inc_all_io_entry(tc->pool, bio); 2045 remap_to_origin_and_issue(tc, bio); 2046 break; 2047 } 2048 2049 zero_fill_bio(bio); 2050 bio_endio(bio); 2051 break; 2052 2053 default: 2054 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2055 __func__, r); 2056 if (cell) 2057 cell_defer_no_holder(tc, cell); 2058 bio_io_error(bio); 2059 break; 2060 } 2061 } 2062 2063 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2064 { 2065 __process_bio_read_only(tc, bio, NULL); 2066 } 2067 2068 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2069 { 2070 __process_bio_read_only(tc, cell->holder, cell); 2071 } 2072 2073 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2074 { 2075 bio_endio(bio); 2076 } 2077 2078 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2079 { 2080 bio_io_error(bio); 2081 } 2082 2083 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2084 { 2085 cell_success(tc->pool, cell); 2086 } 2087 2088 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2089 { 2090 cell_error(tc->pool, cell); 2091 } 2092 2093 /* 2094 * FIXME: should we also commit due to size of transaction, measured in 2095 * metadata blocks? 2096 */ 2097 static int need_commit_due_to_time(struct pool *pool) 2098 { 2099 return !time_in_range(jiffies, pool->last_commit_jiffies, 2100 pool->last_commit_jiffies + COMMIT_PERIOD); 2101 } 2102 2103 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2104 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2105 2106 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2107 { 2108 struct rb_node **rbp, *parent; 2109 struct dm_thin_endio_hook *pbd; 2110 sector_t bi_sector = bio->bi_iter.bi_sector; 2111 2112 rbp = &tc->sort_bio_list.rb_node; 2113 parent = NULL; 2114 while (*rbp) { 2115 parent = *rbp; 2116 pbd = thin_pbd(parent); 2117 2118 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2119 rbp = &(*rbp)->rb_left; 2120 else 2121 rbp = &(*rbp)->rb_right; 2122 } 2123 2124 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2125 rb_link_node(&pbd->rb_node, parent, rbp); 2126 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2127 } 2128 2129 static void __extract_sorted_bios(struct thin_c *tc) 2130 { 2131 struct rb_node *node; 2132 struct dm_thin_endio_hook *pbd; 2133 struct bio *bio; 2134 2135 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2136 pbd = thin_pbd(node); 2137 bio = thin_bio(pbd); 2138 2139 bio_list_add(&tc->deferred_bio_list, bio); 2140 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2141 } 2142 2143 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2144 } 2145 2146 static void __sort_thin_deferred_bios(struct thin_c *tc) 2147 { 2148 struct bio *bio; 2149 struct bio_list bios; 2150 2151 bio_list_init(&bios); 2152 bio_list_merge(&bios, &tc->deferred_bio_list); 2153 bio_list_init(&tc->deferred_bio_list); 2154 2155 /* Sort deferred_bio_list using rb-tree */ 2156 while ((bio = bio_list_pop(&bios))) 2157 __thin_bio_rb_add(tc, bio); 2158 2159 /* 2160 * Transfer the sorted bios in sort_bio_list back to 2161 * deferred_bio_list to allow lockless submission of 2162 * all bios. 2163 */ 2164 __extract_sorted_bios(tc); 2165 } 2166 2167 static void process_thin_deferred_bios(struct thin_c *tc) 2168 { 2169 struct pool *pool = tc->pool; 2170 struct bio *bio; 2171 struct bio_list bios; 2172 struct blk_plug plug; 2173 unsigned count = 0; 2174 2175 if (tc->requeue_mode) { 2176 error_thin_bio_list(tc, &tc->deferred_bio_list, 2177 BLK_STS_DM_REQUEUE); 2178 return; 2179 } 2180 2181 bio_list_init(&bios); 2182 2183 spin_lock_irq(&tc->lock); 2184 2185 if (bio_list_empty(&tc->deferred_bio_list)) { 2186 spin_unlock_irq(&tc->lock); 2187 return; 2188 } 2189 2190 __sort_thin_deferred_bios(tc); 2191 2192 bio_list_merge(&bios, &tc->deferred_bio_list); 2193 bio_list_init(&tc->deferred_bio_list); 2194 2195 spin_unlock_irq(&tc->lock); 2196 2197 blk_start_plug(&plug); 2198 while ((bio = bio_list_pop(&bios))) { 2199 /* 2200 * If we've got no free new_mapping structs, and processing 2201 * this bio might require one, we pause until there are some 2202 * prepared mappings to process. 2203 */ 2204 if (ensure_next_mapping(pool)) { 2205 spin_lock_irq(&tc->lock); 2206 bio_list_add(&tc->deferred_bio_list, bio); 2207 bio_list_merge(&tc->deferred_bio_list, &bios); 2208 spin_unlock_irq(&tc->lock); 2209 break; 2210 } 2211 2212 if (bio_op(bio) == REQ_OP_DISCARD) 2213 pool->process_discard(tc, bio); 2214 else 2215 pool->process_bio(tc, bio); 2216 2217 if ((count++ & 127) == 0) { 2218 throttle_work_update(&pool->throttle); 2219 dm_pool_issue_prefetches(pool->pmd); 2220 } 2221 } 2222 blk_finish_plug(&plug); 2223 } 2224 2225 static int cmp_cells(const void *lhs, const void *rhs) 2226 { 2227 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2228 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2229 2230 BUG_ON(!lhs_cell->holder); 2231 BUG_ON(!rhs_cell->holder); 2232 2233 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2234 return -1; 2235 2236 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2237 return 1; 2238 2239 return 0; 2240 } 2241 2242 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2243 { 2244 unsigned count = 0; 2245 struct dm_bio_prison_cell *cell, *tmp; 2246 2247 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2248 if (count >= CELL_SORT_ARRAY_SIZE) 2249 break; 2250 2251 pool->cell_sort_array[count++] = cell; 2252 list_del(&cell->user_list); 2253 } 2254 2255 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2256 2257 return count; 2258 } 2259 2260 static void process_thin_deferred_cells(struct thin_c *tc) 2261 { 2262 struct pool *pool = tc->pool; 2263 struct list_head cells; 2264 struct dm_bio_prison_cell *cell; 2265 unsigned i, j, count; 2266 2267 INIT_LIST_HEAD(&cells); 2268 2269 spin_lock_irq(&tc->lock); 2270 list_splice_init(&tc->deferred_cells, &cells); 2271 spin_unlock_irq(&tc->lock); 2272 2273 if (list_empty(&cells)) 2274 return; 2275 2276 do { 2277 count = sort_cells(tc->pool, &cells); 2278 2279 for (i = 0; i < count; i++) { 2280 cell = pool->cell_sort_array[i]; 2281 BUG_ON(!cell->holder); 2282 2283 /* 2284 * If we've got no free new_mapping structs, and processing 2285 * this bio might require one, we pause until there are some 2286 * prepared mappings to process. 2287 */ 2288 if (ensure_next_mapping(pool)) { 2289 for (j = i; j < count; j++) 2290 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2291 2292 spin_lock_irq(&tc->lock); 2293 list_splice(&cells, &tc->deferred_cells); 2294 spin_unlock_irq(&tc->lock); 2295 return; 2296 } 2297 2298 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2299 pool->process_discard_cell(tc, cell); 2300 else 2301 pool->process_cell(tc, cell); 2302 } 2303 } while (!list_empty(&cells)); 2304 } 2305 2306 static void thin_get(struct thin_c *tc); 2307 static void thin_put(struct thin_c *tc); 2308 2309 /* 2310 * We can't hold rcu_read_lock() around code that can block. So we 2311 * find a thin with the rcu lock held; bump a refcount; then drop 2312 * the lock. 2313 */ 2314 static struct thin_c *get_first_thin(struct pool *pool) 2315 { 2316 struct thin_c *tc = NULL; 2317 2318 rcu_read_lock(); 2319 if (!list_empty(&pool->active_thins)) { 2320 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2321 thin_get(tc); 2322 } 2323 rcu_read_unlock(); 2324 2325 return tc; 2326 } 2327 2328 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2329 { 2330 struct thin_c *old_tc = tc; 2331 2332 rcu_read_lock(); 2333 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2334 thin_get(tc); 2335 thin_put(old_tc); 2336 rcu_read_unlock(); 2337 return tc; 2338 } 2339 thin_put(old_tc); 2340 rcu_read_unlock(); 2341 2342 return NULL; 2343 } 2344 2345 static void process_deferred_bios(struct pool *pool) 2346 { 2347 struct bio *bio; 2348 struct bio_list bios, bio_completions; 2349 struct thin_c *tc; 2350 2351 tc = get_first_thin(pool); 2352 while (tc) { 2353 process_thin_deferred_cells(tc); 2354 process_thin_deferred_bios(tc); 2355 tc = get_next_thin(pool, tc); 2356 } 2357 2358 /* 2359 * If there are any deferred flush bios, we must commit the metadata 2360 * before issuing them or signaling their completion. 2361 */ 2362 bio_list_init(&bios); 2363 bio_list_init(&bio_completions); 2364 2365 spin_lock_irq(&pool->lock); 2366 bio_list_merge(&bios, &pool->deferred_flush_bios); 2367 bio_list_init(&pool->deferred_flush_bios); 2368 2369 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2370 bio_list_init(&pool->deferred_flush_completions); 2371 spin_unlock_irq(&pool->lock); 2372 2373 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2374 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2375 return; 2376 2377 if (commit(pool)) { 2378 bio_list_merge(&bios, &bio_completions); 2379 2380 while ((bio = bio_list_pop(&bios))) 2381 bio_io_error(bio); 2382 return; 2383 } 2384 pool->last_commit_jiffies = jiffies; 2385 2386 while ((bio = bio_list_pop(&bio_completions))) 2387 bio_endio(bio); 2388 2389 while ((bio = bio_list_pop(&bios))) { 2390 /* 2391 * The data device was flushed as part of metadata commit, 2392 * so complete redundant flushes immediately. 2393 */ 2394 if (bio->bi_opf & REQ_PREFLUSH) 2395 bio_endio(bio); 2396 else 2397 generic_make_request(bio); 2398 } 2399 } 2400 2401 static void do_worker(struct work_struct *ws) 2402 { 2403 struct pool *pool = container_of(ws, struct pool, worker); 2404 2405 throttle_work_start(&pool->throttle); 2406 dm_pool_issue_prefetches(pool->pmd); 2407 throttle_work_update(&pool->throttle); 2408 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2409 throttle_work_update(&pool->throttle); 2410 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2411 throttle_work_update(&pool->throttle); 2412 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2413 throttle_work_update(&pool->throttle); 2414 process_deferred_bios(pool); 2415 throttle_work_complete(&pool->throttle); 2416 } 2417 2418 /* 2419 * We want to commit periodically so that not too much 2420 * unwritten data builds up. 2421 */ 2422 static void do_waker(struct work_struct *ws) 2423 { 2424 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2425 wake_worker(pool); 2426 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2427 } 2428 2429 /* 2430 * We're holding onto IO to allow userland time to react. After the 2431 * timeout either the pool will have been resized (and thus back in 2432 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2433 */ 2434 static void do_no_space_timeout(struct work_struct *ws) 2435 { 2436 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2437 no_space_timeout); 2438 2439 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2440 pool->pf.error_if_no_space = true; 2441 notify_of_pool_mode_change(pool); 2442 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2443 } 2444 } 2445 2446 /*----------------------------------------------------------------*/ 2447 2448 struct pool_work { 2449 struct work_struct worker; 2450 struct completion complete; 2451 }; 2452 2453 static struct pool_work *to_pool_work(struct work_struct *ws) 2454 { 2455 return container_of(ws, struct pool_work, worker); 2456 } 2457 2458 static void pool_work_complete(struct pool_work *pw) 2459 { 2460 complete(&pw->complete); 2461 } 2462 2463 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2464 void (*fn)(struct work_struct *)) 2465 { 2466 INIT_WORK_ONSTACK(&pw->worker, fn); 2467 init_completion(&pw->complete); 2468 queue_work(pool->wq, &pw->worker); 2469 wait_for_completion(&pw->complete); 2470 } 2471 2472 /*----------------------------------------------------------------*/ 2473 2474 struct noflush_work { 2475 struct pool_work pw; 2476 struct thin_c *tc; 2477 }; 2478 2479 static struct noflush_work *to_noflush(struct work_struct *ws) 2480 { 2481 return container_of(to_pool_work(ws), struct noflush_work, pw); 2482 } 2483 2484 static void do_noflush_start(struct work_struct *ws) 2485 { 2486 struct noflush_work *w = to_noflush(ws); 2487 w->tc->requeue_mode = true; 2488 requeue_io(w->tc); 2489 pool_work_complete(&w->pw); 2490 } 2491 2492 static void do_noflush_stop(struct work_struct *ws) 2493 { 2494 struct noflush_work *w = to_noflush(ws); 2495 w->tc->requeue_mode = false; 2496 pool_work_complete(&w->pw); 2497 } 2498 2499 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2500 { 2501 struct noflush_work w; 2502 2503 w.tc = tc; 2504 pool_work_wait(&w.pw, tc->pool, fn); 2505 } 2506 2507 /*----------------------------------------------------------------*/ 2508 2509 static bool passdown_enabled(struct pool_c *pt) 2510 { 2511 return pt->adjusted_pf.discard_passdown; 2512 } 2513 2514 static void set_discard_callbacks(struct pool *pool) 2515 { 2516 struct pool_c *pt = pool->ti->private; 2517 2518 if (passdown_enabled(pt)) { 2519 pool->process_discard_cell = process_discard_cell_passdown; 2520 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2521 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2522 } else { 2523 pool->process_discard_cell = process_discard_cell_no_passdown; 2524 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2525 } 2526 } 2527 2528 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2529 { 2530 struct pool_c *pt = pool->ti->private; 2531 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2532 enum pool_mode old_mode = get_pool_mode(pool); 2533 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2534 2535 /* 2536 * Never allow the pool to transition to PM_WRITE mode if user 2537 * intervention is required to verify metadata and data consistency. 2538 */ 2539 if (new_mode == PM_WRITE && needs_check) { 2540 DMERR("%s: unable to switch pool to write mode until repaired.", 2541 dm_device_name(pool->pool_md)); 2542 if (old_mode != new_mode) 2543 new_mode = old_mode; 2544 else 2545 new_mode = PM_READ_ONLY; 2546 } 2547 /* 2548 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2549 * not going to recover without a thin_repair. So we never let the 2550 * pool move out of the old mode. 2551 */ 2552 if (old_mode == PM_FAIL) 2553 new_mode = old_mode; 2554 2555 switch (new_mode) { 2556 case PM_FAIL: 2557 dm_pool_metadata_read_only(pool->pmd); 2558 pool->process_bio = process_bio_fail; 2559 pool->process_discard = process_bio_fail; 2560 pool->process_cell = process_cell_fail; 2561 pool->process_discard_cell = process_cell_fail; 2562 pool->process_prepared_mapping = process_prepared_mapping_fail; 2563 pool->process_prepared_discard = process_prepared_discard_fail; 2564 2565 error_retry_list(pool); 2566 break; 2567 2568 case PM_OUT_OF_METADATA_SPACE: 2569 case PM_READ_ONLY: 2570 dm_pool_metadata_read_only(pool->pmd); 2571 pool->process_bio = process_bio_read_only; 2572 pool->process_discard = process_bio_success; 2573 pool->process_cell = process_cell_read_only; 2574 pool->process_discard_cell = process_cell_success; 2575 pool->process_prepared_mapping = process_prepared_mapping_fail; 2576 pool->process_prepared_discard = process_prepared_discard_success; 2577 2578 error_retry_list(pool); 2579 break; 2580 2581 case PM_OUT_OF_DATA_SPACE: 2582 /* 2583 * Ideally we'd never hit this state; the low water mark 2584 * would trigger userland to extend the pool before we 2585 * completely run out of data space. However, many small 2586 * IOs to unprovisioned space can consume data space at an 2587 * alarming rate. Adjust your low water mark if you're 2588 * frequently seeing this mode. 2589 */ 2590 pool->out_of_data_space = true; 2591 pool->process_bio = process_bio_read_only; 2592 pool->process_discard = process_discard_bio; 2593 pool->process_cell = process_cell_read_only; 2594 pool->process_prepared_mapping = process_prepared_mapping; 2595 set_discard_callbacks(pool); 2596 2597 if (!pool->pf.error_if_no_space && no_space_timeout) 2598 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2599 break; 2600 2601 case PM_WRITE: 2602 if (old_mode == PM_OUT_OF_DATA_SPACE) 2603 cancel_delayed_work_sync(&pool->no_space_timeout); 2604 pool->out_of_data_space = false; 2605 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2606 dm_pool_metadata_read_write(pool->pmd); 2607 pool->process_bio = process_bio; 2608 pool->process_discard = process_discard_bio; 2609 pool->process_cell = process_cell; 2610 pool->process_prepared_mapping = process_prepared_mapping; 2611 set_discard_callbacks(pool); 2612 break; 2613 } 2614 2615 pool->pf.mode = new_mode; 2616 /* 2617 * The pool mode may have changed, sync it so bind_control_target() 2618 * doesn't cause an unexpected mode transition on resume. 2619 */ 2620 pt->adjusted_pf.mode = new_mode; 2621 2622 if (old_mode != new_mode) 2623 notify_of_pool_mode_change(pool); 2624 } 2625 2626 static void abort_transaction(struct pool *pool) 2627 { 2628 const char *dev_name = dm_device_name(pool->pool_md); 2629 2630 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2631 if (dm_pool_abort_metadata(pool->pmd)) { 2632 DMERR("%s: failed to abort metadata transaction", dev_name); 2633 set_pool_mode(pool, PM_FAIL); 2634 } 2635 2636 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2637 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2638 set_pool_mode(pool, PM_FAIL); 2639 } 2640 } 2641 2642 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2643 { 2644 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2645 dm_device_name(pool->pool_md), op, r); 2646 2647 abort_transaction(pool); 2648 set_pool_mode(pool, PM_READ_ONLY); 2649 } 2650 2651 /*----------------------------------------------------------------*/ 2652 2653 /* 2654 * Mapping functions. 2655 */ 2656 2657 /* 2658 * Called only while mapping a thin bio to hand it over to the workqueue. 2659 */ 2660 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2661 { 2662 struct pool *pool = tc->pool; 2663 2664 spin_lock_irq(&tc->lock); 2665 bio_list_add(&tc->deferred_bio_list, bio); 2666 spin_unlock_irq(&tc->lock); 2667 2668 wake_worker(pool); 2669 } 2670 2671 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2672 { 2673 struct pool *pool = tc->pool; 2674 2675 throttle_lock(&pool->throttle); 2676 thin_defer_bio(tc, bio); 2677 throttle_unlock(&pool->throttle); 2678 } 2679 2680 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2681 { 2682 struct pool *pool = tc->pool; 2683 2684 throttle_lock(&pool->throttle); 2685 spin_lock_irq(&tc->lock); 2686 list_add_tail(&cell->user_list, &tc->deferred_cells); 2687 spin_unlock_irq(&tc->lock); 2688 throttle_unlock(&pool->throttle); 2689 2690 wake_worker(pool); 2691 } 2692 2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2694 { 2695 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2696 2697 h->tc = tc; 2698 h->shared_read_entry = NULL; 2699 h->all_io_entry = NULL; 2700 h->overwrite_mapping = NULL; 2701 h->cell = NULL; 2702 } 2703 2704 /* 2705 * Non-blocking function called from the thin target's map function. 2706 */ 2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2708 { 2709 int r; 2710 struct thin_c *tc = ti->private; 2711 dm_block_t block = get_bio_block(tc, bio); 2712 struct dm_thin_device *td = tc->td; 2713 struct dm_thin_lookup_result result; 2714 struct dm_bio_prison_cell *virt_cell, *data_cell; 2715 struct dm_cell_key key; 2716 2717 thin_hook_bio(tc, bio); 2718 2719 if (tc->requeue_mode) { 2720 bio->bi_status = BLK_STS_DM_REQUEUE; 2721 bio_endio(bio); 2722 return DM_MAPIO_SUBMITTED; 2723 } 2724 2725 if (get_pool_mode(tc->pool) == PM_FAIL) { 2726 bio_io_error(bio); 2727 return DM_MAPIO_SUBMITTED; 2728 } 2729 2730 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2731 thin_defer_bio_with_throttle(tc, bio); 2732 return DM_MAPIO_SUBMITTED; 2733 } 2734 2735 /* 2736 * We must hold the virtual cell before doing the lookup, otherwise 2737 * there's a race with discard. 2738 */ 2739 build_virtual_key(tc->td, block, &key); 2740 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2741 return DM_MAPIO_SUBMITTED; 2742 2743 r = dm_thin_find_block(td, block, 0, &result); 2744 2745 /* 2746 * Note that we defer readahead too. 2747 */ 2748 switch (r) { 2749 case 0: 2750 if (unlikely(result.shared)) { 2751 /* 2752 * We have a race condition here between the 2753 * result.shared value returned by the lookup and 2754 * snapshot creation, which may cause new 2755 * sharing. 2756 * 2757 * To avoid this always quiesce the origin before 2758 * taking the snap. You want to do this anyway to 2759 * ensure a consistent application view 2760 * (i.e. lockfs). 2761 * 2762 * More distant ancestors are irrelevant. The 2763 * shared flag will be set in their case. 2764 */ 2765 thin_defer_cell(tc, virt_cell); 2766 return DM_MAPIO_SUBMITTED; 2767 } 2768 2769 build_data_key(tc->td, result.block, &key); 2770 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2771 cell_defer_no_holder(tc, virt_cell); 2772 return DM_MAPIO_SUBMITTED; 2773 } 2774 2775 inc_all_io_entry(tc->pool, bio); 2776 cell_defer_no_holder(tc, data_cell); 2777 cell_defer_no_holder(tc, virt_cell); 2778 2779 remap(tc, bio, result.block); 2780 return DM_MAPIO_REMAPPED; 2781 2782 case -ENODATA: 2783 case -EWOULDBLOCK: 2784 thin_defer_cell(tc, virt_cell); 2785 return DM_MAPIO_SUBMITTED; 2786 2787 default: 2788 /* 2789 * Must always call bio_io_error on failure. 2790 * dm_thin_find_block can fail with -EINVAL if the 2791 * pool is switched to fail-io mode. 2792 */ 2793 bio_io_error(bio); 2794 cell_defer_no_holder(tc, virt_cell); 2795 return DM_MAPIO_SUBMITTED; 2796 } 2797 } 2798 2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2800 { 2801 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2802 struct request_queue *q; 2803 2804 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2805 return 1; 2806 2807 q = bdev_get_queue(pt->data_dev->bdev); 2808 return bdi_congested(q->backing_dev_info, bdi_bits); 2809 } 2810 2811 static void requeue_bios(struct pool *pool) 2812 { 2813 struct thin_c *tc; 2814 2815 rcu_read_lock(); 2816 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2817 spin_lock_irq(&tc->lock); 2818 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2819 bio_list_init(&tc->retry_on_resume_list); 2820 spin_unlock_irq(&tc->lock); 2821 } 2822 rcu_read_unlock(); 2823 } 2824 2825 /*---------------------------------------------------------------- 2826 * Binding of control targets to a pool object 2827 *--------------------------------------------------------------*/ 2828 static bool data_dev_supports_discard(struct pool_c *pt) 2829 { 2830 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2831 2832 return q && blk_queue_discard(q); 2833 } 2834 2835 static bool is_factor(sector_t block_size, uint32_t n) 2836 { 2837 return !sector_div(block_size, n); 2838 } 2839 2840 /* 2841 * If discard_passdown was enabled verify that the data device 2842 * supports discards. Disable discard_passdown if not. 2843 */ 2844 static void disable_passdown_if_not_supported(struct pool_c *pt) 2845 { 2846 struct pool *pool = pt->pool; 2847 struct block_device *data_bdev = pt->data_dev->bdev; 2848 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2849 const char *reason = NULL; 2850 char buf[BDEVNAME_SIZE]; 2851 2852 if (!pt->adjusted_pf.discard_passdown) 2853 return; 2854 2855 if (!data_dev_supports_discard(pt)) 2856 reason = "discard unsupported"; 2857 2858 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2859 reason = "max discard sectors smaller than a block"; 2860 2861 if (reason) { 2862 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2863 pt->adjusted_pf.discard_passdown = false; 2864 } 2865 } 2866 2867 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2868 { 2869 struct pool_c *pt = ti->private; 2870 2871 /* 2872 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2873 */ 2874 enum pool_mode old_mode = get_pool_mode(pool); 2875 enum pool_mode new_mode = pt->adjusted_pf.mode; 2876 2877 /* 2878 * Don't change the pool's mode until set_pool_mode() below. 2879 * Otherwise the pool's process_* function pointers may 2880 * not match the desired pool mode. 2881 */ 2882 pt->adjusted_pf.mode = old_mode; 2883 2884 pool->ti = ti; 2885 pool->pf = pt->adjusted_pf; 2886 pool->low_water_blocks = pt->low_water_blocks; 2887 2888 set_pool_mode(pool, new_mode); 2889 2890 return 0; 2891 } 2892 2893 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2894 { 2895 if (pool->ti == ti) 2896 pool->ti = NULL; 2897 } 2898 2899 /*---------------------------------------------------------------- 2900 * Pool creation 2901 *--------------------------------------------------------------*/ 2902 /* Initialize pool features. */ 2903 static void pool_features_init(struct pool_features *pf) 2904 { 2905 pf->mode = PM_WRITE; 2906 pf->zero_new_blocks = true; 2907 pf->discard_enabled = true; 2908 pf->discard_passdown = true; 2909 pf->error_if_no_space = false; 2910 } 2911 2912 static void __pool_destroy(struct pool *pool) 2913 { 2914 __pool_table_remove(pool); 2915 2916 vfree(pool->cell_sort_array); 2917 if (dm_pool_metadata_close(pool->pmd) < 0) 2918 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2919 2920 dm_bio_prison_destroy(pool->prison); 2921 dm_kcopyd_client_destroy(pool->copier); 2922 2923 if (pool->wq) 2924 destroy_workqueue(pool->wq); 2925 2926 if (pool->next_mapping) 2927 mempool_free(pool->next_mapping, &pool->mapping_pool); 2928 mempool_exit(&pool->mapping_pool); 2929 bio_uninit(&pool->flush_bio); 2930 dm_deferred_set_destroy(pool->shared_read_ds); 2931 dm_deferred_set_destroy(pool->all_io_ds); 2932 kfree(pool); 2933 } 2934 2935 static struct kmem_cache *_new_mapping_cache; 2936 2937 static struct pool *pool_create(struct mapped_device *pool_md, 2938 struct block_device *metadata_dev, 2939 struct block_device *data_dev, 2940 unsigned long block_size, 2941 int read_only, char **error) 2942 { 2943 int r; 2944 void *err_p; 2945 struct pool *pool; 2946 struct dm_pool_metadata *pmd; 2947 bool format_device = read_only ? false : true; 2948 2949 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2950 if (IS_ERR(pmd)) { 2951 *error = "Error creating metadata object"; 2952 return (struct pool *)pmd; 2953 } 2954 2955 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2956 if (!pool) { 2957 *error = "Error allocating memory for pool"; 2958 err_p = ERR_PTR(-ENOMEM); 2959 goto bad_pool; 2960 } 2961 2962 pool->pmd = pmd; 2963 pool->sectors_per_block = block_size; 2964 if (block_size & (block_size - 1)) 2965 pool->sectors_per_block_shift = -1; 2966 else 2967 pool->sectors_per_block_shift = __ffs(block_size); 2968 pool->low_water_blocks = 0; 2969 pool_features_init(&pool->pf); 2970 pool->prison = dm_bio_prison_create(); 2971 if (!pool->prison) { 2972 *error = "Error creating pool's bio prison"; 2973 err_p = ERR_PTR(-ENOMEM); 2974 goto bad_prison; 2975 } 2976 2977 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2978 if (IS_ERR(pool->copier)) { 2979 r = PTR_ERR(pool->copier); 2980 *error = "Error creating pool's kcopyd client"; 2981 err_p = ERR_PTR(r); 2982 goto bad_kcopyd_client; 2983 } 2984 2985 /* 2986 * Create singlethreaded workqueue that will service all devices 2987 * that use this metadata. 2988 */ 2989 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2990 if (!pool->wq) { 2991 *error = "Error creating pool's workqueue"; 2992 err_p = ERR_PTR(-ENOMEM); 2993 goto bad_wq; 2994 } 2995 2996 throttle_init(&pool->throttle); 2997 INIT_WORK(&pool->worker, do_worker); 2998 INIT_DELAYED_WORK(&pool->waker, do_waker); 2999 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 3000 spin_lock_init(&pool->lock); 3001 bio_list_init(&pool->deferred_flush_bios); 3002 bio_list_init(&pool->deferred_flush_completions); 3003 INIT_LIST_HEAD(&pool->prepared_mappings); 3004 INIT_LIST_HEAD(&pool->prepared_discards); 3005 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3006 INIT_LIST_HEAD(&pool->active_thins); 3007 pool->low_water_triggered = false; 3008 pool->suspended = true; 3009 pool->out_of_data_space = false; 3010 bio_init(&pool->flush_bio, NULL, 0); 3011 3012 pool->shared_read_ds = dm_deferred_set_create(); 3013 if (!pool->shared_read_ds) { 3014 *error = "Error creating pool's shared read deferred set"; 3015 err_p = ERR_PTR(-ENOMEM); 3016 goto bad_shared_read_ds; 3017 } 3018 3019 pool->all_io_ds = dm_deferred_set_create(); 3020 if (!pool->all_io_ds) { 3021 *error = "Error creating pool's all io deferred set"; 3022 err_p = ERR_PTR(-ENOMEM); 3023 goto bad_all_io_ds; 3024 } 3025 3026 pool->next_mapping = NULL; 3027 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3028 _new_mapping_cache); 3029 if (r) { 3030 *error = "Error creating pool's mapping mempool"; 3031 err_p = ERR_PTR(r); 3032 goto bad_mapping_pool; 3033 } 3034 3035 pool->cell_sort_array = 3036 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3037 sizeof(*pool->cell_sort_array))); 3038 if (!pool->cell_sort_array) { 3039 *error = "Error allocating cell sort array"; 3040 err_p = ERR_PTR(-ENOMEM); 3041 goto bad_sort_array; 3042 } 3043 3044 pool->ref_count = 1; 3045 pool->last_commit_jiffies = jiffies; 3046 pool->pool_md = pool_md; 3047 pool->md_dev = metadata_dev; 3048 pool->data_dev = data_dev; 3049 __pool_table_insert(pool); 3050 3051 return pool; 3052 3053 bad_sort_array: 3054 mempool_exit(&pool->mapping_pool); 3055 bad_mapping_pool: 3056 dm_deferred_set_destroy(pool->all_io_ds); 3057 bad_all_io_ds: 3058 dm_deferred_set_destroy(pool->shared_read_ds); 3059 bad_shared_read_ds: 3060 destroy_workqueue(pool->wq); 3061 bad_wq: 3062 dm_kcopyd_client_destroy(pool->copier); 3063 bad_kcopyd_client: 3064 dm_bio_prison_destroy(pool->prison); 3065 bad_prison: 3066 kfree(pool); 3067 bad_pool: 3068 if (dm_pool_metadata_close(pmd)) 3069 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3070 3071 return err_p; 3072 } 3073 3074 static void __pool_inc(struct pool *pool) 3075 { 3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3077 pool->ref_count++; 3078 } 3079 3080 static void __pool_dec(struct pool *pool) 3081 { 3082 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3083 BUG_ON(!pool->ref_count); 3084 if (!--pool->ref_count) 3085 __pool_destroy(pool); 3086 } 3087 3088 static struct pool *__pool_find(struct mapped_device *pool_md, 3089 struct block_device *metadata_dev, 3090 struct block_device *data_dev, 3091 unsigned long block_size, int read_only, 3092 char **error, int *created) 3093 { 3094 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3095 3096 if (pool) { 3097 if (pool->pool_md != pool_md) { 3098 *error = "metadata device already in use by a pool"; 3099 return ERR_PTR(-EBUSY); 3100 } 3101 if (pool->data_dev != data_dev) { 3102 *error = "data device already in use by a pool"; 3103 return ERR_PTR(-EBUSY); 3104 } 3105 __pool_inc(pool); 3106 3107 } else { 3108 pool = __pool_table_lookup(pool_md); 3109 if (pool) { 3110 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3111 *error = "different pool cannot replace a pool"; 3112 return ERR_PTR(-EINVAL); 3113 } 3114 __pool_inc(pool); 3115 3116 } else { 3117 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3118 *created = 1; 3119 } 3120 } 3121 3122 return pool; 3123 } 3124 3125 /*---------------------------------------------------------------- 3126 * Pool target methods 3127 *--------------------------------------------------------------*/ 3128 static void pool_dtr(struct dm_target *ti) 3129 { 3130 struct pool_c *pt = ti->private; 3131 3132 mutex_lock(&dm_thin_pool_table.mutex); 3133 3134 unbind_control_target(pt->pool, ti); 3135 __pool_dec(pt->pool); 3136 dm_put_device(ti, pt->metadata_dev); 3137 dm_put_device(ti, pt->data_dev); 3138 kfree(pt); 3139 3140 mutex_unlock(&dm_thin_pool_table.mutex); 3141 } 3142 3143 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3144 struct dm_target *ti) 3145 { 3146 int r; 3147 unsigned argc; 3148 const char *arg_name; 3149 3150 static const struct dm_arg _args[] = { 3151 {0, 4, "Invalid number of pool feature arguments"}, 3152 }; 3153 3154 /* 3155 * No feature arguments supplied. 3156 */ 3157 if (!as->argc) 3158 return 0; 3159 3160 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3161 if (r) 3162 return -EINVAL; 3163 3164 while (argc && !r) { 3165 arg_name = dm_shift_arg(as); 3166 argc--; 3167 3168 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3169 pf->zero_new_blocks = false; 3170 3171 else if (!strcasecmp(arg_name, "ignore_discard")) 3172 pf->discard_enabled = false; 3173 3174 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3175 pf->discard_passdown = false; 3176 3177 else if (!strcasecmp(arg_name, "read_only")) 3178 pf->mode = PM_READ_ONLY; 3179 3180 else if (!strcasecmp(arg_name, "error_if_no_space")) 3181 pf->error_if_no_space = true; 3182 3183 else { 3184 ti->error = "Unrecognised pool feature requested"; 3185 r = -EINVAL; 3186 break; 3187 } 3188 } 3189 3190 return r; 3191 } 3192 3193 static void metadata_low_callback(void *context) 3194 { 3195 struct pool *pool = context; 3196 3197 DMWARN("%s: reached low water mark for metadata device: sending event.", 3198 dm_device_name(pool->pool_md)); 3199 3200 dm_table_event(pool->ti->table); 3201 } 3202 3203 /* 3204 * We need to flush the data device **before** committing the metadata. 3205 * 3206 * This ensures that the data blocks of any newly inserted mappings are 3207 * properly written to non-volatile storage and won't be lost in case of a 3208 * crash. 3209 * 3210 * Failure to do so can result in data corruption in the case of internal or 3211 * external snapshots and in the case of newly provisioned blocks, when block 3212 * zeroing is enabled. 3213 */ 3214 static int metadata_pre_commit_callback(void *context) 3215 { 3216 struct pool *pool = context; 3217 struct bio *flush_bio = &pool->flush_bio; 3218 3219 bio_reset(flush_bio); 3220 bio_set_dev(flush_bio, pool->data_dev); 3221 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3222 3223 return submit_bio_wait(flush_bio); 3224 } 3225 3226 static sector_t get_dev_size(struct block_device *bdev) 3227 { 3228 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3229 } 3230 3231 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3232 { 3233 sector_t metadata_dev_size = get_dev_size(bdev); 3234 char buffer[BDEVNAME_SIZE]; 3235 3236 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3237 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3238 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3239 } 3240 3241 static sector_t get_metadata_dev_size(struct block_device *bdev) 3242 { 3243 sector_t metadata_dev_size = get_dev_size(bdev); 3244 3245 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3246 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3247 3248 return metadata_dev_size; 3249 } 3250 3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3252 { 3253 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3254 3255 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3256 3257 return metadata_dev_size; 3258 } 3259 3260 /* 3261 * When a metadata threshold is crossed a dm event is triggered, and 3262 * userland should respond by growing the metadata device. We could let 3263 * userland set the threshold, like we do with the data threshold, but I'm 3264 * not sure they know enough to do this well. 3265 */ 3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3267 { 3268 /* 3269 * 4M is ample for all ops with the possible exception of thin 3270 * device deletion which is harmless if it fails (just retry the 3271 * delete after you've grown the device). 3272 */ 3273 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3274 return min((dm_block_t)1024ULL /* 4M */, quarter); 3275 } 3276 3277 /* 3278 * thin-pool <metadata dev> <data dev> 3279 * <data block size (sectors)> 3280 * <low water mark (blocks)> 3281 * [<#feature args> [<arg>]*] 3282 * 3283 * Optional feature arguments are: 3284 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3285 * ignore_discard: disable discard 3286 * no_discard_passdown: don't pass discards down to the data device 3287 * read_only: Don't allow any changes to be made to the pool metadata. 3288 * error_if_no_space: error IOs, instead of queueing, if no space. 3289 */ 3290 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3291 { 3292 int r, pool_created = 0; 3293 struct pool_c *pt; 3294 struct pool *pool; 3295 struct pool_features pf; 3296 struct dm_arg_set as; 3297 struct dm_dev *data_dev; 3298 unsigned long block_size; 3299 dm_block_t low_water_blocks; 3300 struct dm_dev *metadata_dev; 3301 fmode_t metadata_mode; 3302 3303 /* 3304 * FIXME Remove validation from scope of lock. 3305 */ 3306 mutex_lock(&dm_thin_pool_table.mutex); 3307 3308 if (argc < 4) { 3309 ti->error = "Invalid argument count"; 3310 r = -EINVAL; 3311 goto out_unlock; 3312 } 3313 3314 as.argc = argc; 3315 as.argv = argv; 3316 3317 /* make sure metadata and data are different devices */ 3318 if (!strcmp(argv[0], argv[1])) { 3319 ti->error = "Error setting metadata or data device"; 3320 r = -EINVAL; 3321 goto out_unlock; 3322 } 3323 3324 /* 3325 * Set default pool features. 3326 */ 3327 pool_features_init(&pf); 3328 3329 dm_consume_args(&as, 4); 3330 r = parse_pool_features(&as, &pf, ti); 3331 if (r) 3332 goto out_unlock; 3333 3334 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3335 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3336 if (r) { 3337 ti->error = "Error opening metadata block device"; 3338 goto out_unlock; 3339 } 3340 warn_if_metadata_device_too_big(metadata_dev->bdev); 3341 3342 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3343 if (r) { 3344 ti->error = "Error getting data device"; 3345 goto out_metadata; 3346 } 3347 3348 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3349 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3350 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3351 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3352 ti->error = "Invalid block size"; 3353 r = -EINVAL; 3354 goto out; 3355 } 3356 3357 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3358 ti->error = "Invalid low water mark"; 3359 r = -EINVAL; 3360 goto out; 3361 } 3362 3363 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3364 if (!pt) { 3365 r = -ENOMEM; 3366 goto out; 3367 } 3368 3369 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3370 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3371 if (IS_ERR(pool)) { 3372 r = PTR_ERR(pool); 3373 goto out_free_pt; 3374 } 3375 3376 /* 3377 * 'pool_created' reflects whether this is the first table load. 3378 * Top level discard support is not allowed to be changed after 3379 * initial load. This would require a pool reload to trigger thin 3380 * device changes. 3381 */ 3382 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3383 ti->error = "Discard support cannot be disabled once enabled"; 3384 r = -EINVAL; 3385 goto out_flags_changed; 3386 } 3387 3388 pt->pool = pool; 3389 pt->ti = ti; 3390 pt->metadata_dev = metadata_dev; 3391 pt->data_dev = data_dev; 3392 pt->low_water_blocks = low_water_blocks; 3393 pt->adjusted_pf = pt->requested_pf = pf; 3394 ti->num_flush_bios = 1; 3395 3396 /* 3397 * Only need to enable discards if the pool should pass 3398 * them down to the data device. The thin device's discard 3399 * processing will cause mappings to be removed from the btree. 3400 */ 3401 if (pf.discard_enabled && pf.discard_passdown) { 3402 ti->num_discard_bios = 1; 3403 3404 /* 3405 * Setting 'discards_supported' circumvents the normal 3406 * stacking of discard limits (this keeps the pool and 3407 * thin devices' discard limits consistent). 3408 */ 3409 ti->discards_supported = true; 3410 } 3411 ti->private = pt; 3412 3413 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3414 calc_metadata_threshold(pt), 3415 metadata_low_callback, 3416 pool); 3417 if (r) 3418 goto out_flags_changed; 3419 3420 dm_pool_register_pre_commit_callback(pool->pmd, 3421 metadata_pre_commit_callback, pool); 3422 3423 pt->callbacks.congested_fn = pool_is_congested; 3424 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3425 3426 mutex_unlock(&dm_thin_pool_table.mutex); 3427 3428 return 0; 3429 3430 out_flags_changed: 3431 __pool_dec(pool); 3432 out_free_pt: 3433 kfree(pt); 3434 out: 3435 dm_put_device(ti, data_dev); 3436 out_metadata: 3437 dm_put_device(ti, metadata_dev); 3438 out_unlock: 3439 mutex_unlock(&dm_thin_pool_table.mutex); 3440 3441 return r; 3442 } 3443 3444 static int pool_map(struct dm_target *ti, struct bio *bio) 3445 { 3446 int r; 3447 struct pool_c *pt = ti->private; 3448 struct pool *pool = pt->pool; 3449 3450 /* 3451 * As this is a singleton target, ti->begin is always zero. 3452 */ 3453 spin_lock_irq(&pool->lock); 3454 bio_set_dev(bio, pt->data_dev->bdev); 3455 r = DM_MAPIO_REMAPPED; 3456 spin_unlock_irq(&pool->lock); 3457 3458 return r; 3459 } 3460 3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3462 { 3463 int r; 3464 struct pool_c *pt = ti->private; 3465 struct pool *pool = pt->pool; 3466 sector_t data_size = ti->len; 3467 dm_block_t sb_data_size; 3468 3469 *need_commit = false; 3470 3471 (void) sector_div(data_size, pool->sectors_per_block); 3472 3473 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3474 if (r) { 3475 DMERR("%s: failed to retrieve data device size", 3476 dm_device_name(pool->pool_md)); 3477 return r; 3478 } 3479 3480 if (data_size < sb_data_size) { 3481 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3482 dm_device_name(pool->pool_md), 3483 (unsigned long long)data_size, sb_data_size); 3484 return -EINVAL; 3485 3486 } else if (data_size > sb_data_size) { 3487 if (dm_pool_metadata_needs_check(pool->pmd)) { 3488 DMERR("%s: unable to grow the data device until repaired.", 3489 dm_device_name(pool->pool_md)); 3490 return 0; 3491 } 3492 3493 if (sb_data_size) 3494 DMINFO("%s: growing the data device from %llu to %llu blocks", 3495 dm_device_name(pool->pool_md), 3496 sb_data_size, (unsigned long long)data_size); 3497 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3498 if (r) { 3499 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3500 return r; 3501 } 3502 3503 *need_commit = true; 3504 } 3505 3506 return 0; 3507 } 3508 3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3510 { 3511 int r; 3512 struct pool_c *pt = ti->private; 3513 struct pool *pool = pt->pool; 3514 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3515 3516 *need_commit = false; 3517 3518 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3519 3520 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3521 if (r) { 3522 DMERR("%s: failed to retrieve metadata device size", 3523 dm_device_name(pool->pool_md)); 3524 return r; 3525 } 3526 3527 if (metadata_dev_size < sb_metadata_dev_size) { 3528 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3529 dm_device_name(pool->pool_md), 3530 metadata_dev_size, sb_metadata_dev_size); 3531 return -EINVAL; 3532 3533 } else if (metadata_dev_size > sb_metadata_dev_size) { 3534 if (dm_pool_metadata_needs_check(pool->pmd)) { 3535 DMERR("%s: unable to grow the metadata device until repaired.", 3536 dm_device_name(pool->pool_md)); 3537 return 0; 3538 } 3539 3540 warn_if_metadata_device_too_big(pool->md_dev); 3541 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3542 dm_device_name(pool->pool_md), 3543 sb_metadata_dev_size, metadata_dev_size); 3544 3545 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3546 set_pool_mode(pool, PM_WRITE); 3547 3548 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3549 if (r) { 3550 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3551 return r; 3552 } 3553 3554 *need_commit = true; 3555 } 3556 3557 return 0; 3558 } 3559 3560 /* 3561 * Retrieves the number of blocks of the data device from 3562 * the superblock and compares it to the actual device size, 3563 * thus resizing the data device in case it has grown. 3564 * 3565 * This both copes with opening preallocated data devices in the ctr 3566 * being followed by a resume 3567 * -and- 3568 * calling the resume method individually after userspace has 3569 * grown the data device in reaction to a table event. 3570 */ 3571 static int pool_preresume(struct dm_target *ti) 3572 { 3573 int r; 3574 bool need_commit1, need_commit2; 3575 struct pool_c *pt = ti->private; 3576 struct pool *pool = pt->pool; 3577 3578 /* 3579 * Take control of the pool object. 3580 */ 3581 r = bind_control_target(pool, ti); 3582 if (r) 3583 return r; 3584 3585 r = maybe_resize_data_dev(ti, &need_commit1); 3586 if (r) 3587 return r; 3588 3589 r = maybe_resize_metadata_dev(ti, &need_commit2); 3590 if (r) 3591 return r; 3592 3593 if (need_commit1 || need_commit2) 3594 (void) commit(pool); 3595 3596 return 0; 3597 } 3598 3599 static void pool_suspend_active_thins(struct pool *pool) 3600 { 3601 struct thin_c *tc; 3602 3603 /* Suspend all active thin devices */ 3604 tc = get_first_thin(pool); 3605 while (tc) { 3606 dm_internal_suspend_noflush(tc->thin_md); 3607 tc = get_next_thin(pool, tc); 3608 } 3609 } 3610 3611 static void pool_resume_active_thins(struct pool *pool) 3612 { 3613 struct thin_c *tc; 3614 3615 /* Resume all active thin devices */ 3616 tc = get_first_thin(pool); 3617 while (tc) { 3618 dm_internal_resume(tc->thin_md); 3619 tc = get_next_thin(pool, tc); 3620 } 3621 } 3622 3623 static void pool_resume(struct dm_target *ti) 3624 { 3625 struct pool_c *pt = ti->private; 3626 struct pool *pool = pt->pool; 3627 3628 /* 3629 * Must requeue active_thins' bios and then resume 3630 * active_thins _before_ clearing 'suspend' flag. 3631 */ 3632 requeue_bios(pool); 3633 pool_resume_active_thins(pool); 3634 3635 spin_lock_irq(&pool->lock); 3636 pool->low_water_triggered = false; 3637 pool->suspended = false; 3638 spin_unlock_irq(&pool->lock); 3639 3640 do_waker(&pool->waker.work); 3641 } 3642 3643 static void pool_presuspend(struct dm_target *ti) 3644 { 3645 struct pool_c *pt = ti->private; 3646 struct pool *pool = pt->pool; 3647 3648 spin_lock_irq(&pool->lock); 3649 pool->suspended = true; 3650 spin_unlock_irq(&pool->lock); 3651 3652 pool_suspend_active_thins(pool); 3653 } 3654 3655 static void pool_presuspend_undo(struct dm_target *ti) 3656 { 3657 struct pool_c *pt = ti->private; 3658 struct pool *pool = pt->pool; 3659 3660 pool_resume_active_thins(pool); 3661 3662 spin_lock_irq(&pool->lock); 3663 pool->suspended = false; 3664 spin_unlock_irq(&pool->lock); 3665 } 3666 3667 static void pool_postsuspend(struct dm_target *ti) 3668 { 3669 struct pool_c *pt = ti->private; 3670 struct pool *pool = pt->pool; 3671 3672 cancel_delayed_work_sync(&pool->waker); 3673 cancel_delayed_work_sync(&pool->no_space_timeout); 3674 flush_workqueue(pool->wq); 3675 (void) commit(pool); 3676 } 3677 3678 static int check_arg_count(unsigned argc, unsigned args_required) 3679 { 3680 if (argc != args_required) { 3681 DMWARN("Message received with %u arguments instead of %u.", 3682 argc, args_required); 3683 return -EINVAL; 3684 } 3685 3686 return 0; 3687 } 3688 3689 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3690 { 3691 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3692 *dev_id <= MAX_DEV_ID) 3693 return 0; 3694 3695 if (warning) 3696 DMWARN("Message received with invalid device id: %s", arg); 3697 3698 return -EINVAL; 3699 } 3700 3701 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3702 { 3703 dm_thin_id dev_id; 3704 int r; 3705 3706 r = check_arg_count(argc, 2); 3707 if (r) 3708 return r; 3709 3710 r = read_dev_id(argv[1], &dev_id, 1); 3711 if (r) 3712 return r; 3713 3714 r = dm_pool_create_thin(pool->pmd, dev_id); 3715 if (r) { 3716 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3717 argv[1]); 3718 return r; 3719 } 3720 3721 return 0; 3722 } 3723 3724 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3725 { 3726 dm_thin_id dev_id; 3727 dm_thin_id origin_dev_id; 3728 int r; 3729 3730 r = check_arg_count(argc, 3); 3731 if (r) 3732 return r; 3733 3734 r = read_dev_id(argv[1], &dev_id, 1); 3735 if (r) 3736 return r; 3737 3738 r = read_dev_id(argv[2], &origin_dev_id, 1); 3739 if (r) 3740 return r; 3741 3742 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3743 if (r) { 3744 DMWARN("Creation of new snapshot %s of device %s failed.", 3745 argv[1], argv[2]); 3746 return r; 3747 } 3748 3749 return 0; 3750 } 3751 3752 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3753 { 3754 dm_thin_id dev_id; 3755 int r; 3756 3757 r = check_arg_count(argc, 2); 3758 if (r) 3759 return r; 3760 3761 r = read_dev_id(argv[1], &dev_id, 1); 3762 if (r) 3763 return r; 3764 3765 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3766 if (r) 3767 DMWARN("Deletion of thin device %s failed.", argv[1]); 3768 3769 return r; 3770 } 3771 3772 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3773 { 3774 dm_thin_id old_id, new_id; 3775 int r; 3776 3777 r = check_arg_count(argc, 3); 3778 if (r) 3779 return r; 3780 3781 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3782 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3783 return -EINVAL; 3784 } 3785 3786 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3787 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3788 return -EINVAL; 3789 } 3790 3791 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3792 if (r) { 3793 DMWARN("Failed to change transaction id from %s to %s.", 3794 argv[1], argv[2]); 3795 return r; 3796 } 3797 3798 return 0; 3799 } 3800 3801 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3802 { 3803 int r; 3804 3805 r = check_arg_count(argc, 1); 3806 if (r) 3807 return r; 3808 3809 (void) commit(pool); 3810 3811 r = dm_pool_reserve_metadata_snap(pool->pmd); 3812 if (r) 3813 DMWARN("reserve_metadata_snap message failed."); 3814 3815 return r; 3816 } 3817 3818 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3819 { 3820 int r; 3821 3822 r = check_arg_count(argc, 1); 3823 if (r) 3824 return r; 3825 3826 r = dm_pool_release_metadata_snap(pool->pmd); 3827 if (r) 3828 DMWARN("release_metadata_snap message failed."); 3829 3830 return r; 3831 } 3832 3833 /* 3834 * Messages supported: 3835 * create_thin <dev_id> 3836 * create_snap <dev_id> <origin_id> 3837 * delete <dev_id> 3838 * set_transaction_id <current_trans_id> <new_trans_id> 3839 * reserve_metadata_snap 3840 * release_metadata_snap 3841 */ 3842 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3843 char *result, unsigned maxlen) 3844 { 3845 int r = -EINVAL; 3846 struct pool_c *pt = ti->private; 3847 struct pool *pool = pt->pool; 3848 3849 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3850 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3851 dm_device_name(pool->pool_md)); 3852 return -EOPNOTSUPP; 3853 } 3854 3855 if (!strcasecmp(argv[0], "create_thin")) 3856 r = process_create_thin_mesg(argc, argv, pool); 3857 3858 else if (!strcasecmp(argv[0], "create_snap")) 3859 r = process_create_snap_mesg(argc, argv, pool); 3860 3861 else if (!strcasecmp(argv[0], "delete")) 3862 r = process_delete_mesg(argc, argv, pool); 3863 3864 else if (!strcasecmp(argv[0], "set_transaction_id")) 3865 r = process_set_transaction_id_mesg(argc, argv, pool); 3866 3867 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3868 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3869 3870 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3871 r = process_release_metadata_snap_mesg(argc, argv, pool); 3872 3873 else 3874 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3875 3876 if (!r) 3877 (void) commit(pool); 3878 3879 return r; 3880 } 3881 3882 static void emit_flags(struct pool_features *pf, char *result, 3883 unsigned sz, unsigned maxlen) 3884 { 3885 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3886 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3887 pf->error_if_no_space; 3888 DMEMIT("%u ", count); 3889 3890 if (!pf->zero_new_blocks) 3891 DMEMIT("skip_block_zeroing "); 3892 3893 if (!pf->discard_enabled) 3894 DMEMIT("ignore_discard "); 3895 3896 if (!pf->discard_passdown) 3897 DMEMIT("no_discard_passdown "); 3898 3899 if (pf->mode == PM_READ_ONLY) 3900 DMEMIT("read_only "); 3901 3902 if (pf->error_if_no_space) 3903 DMEMIT("error_if_no_space "); 3904 } 3905 3906 /* 3907 * Status line is: 3908 * <transaction id> <used metadata sectors>/<total metadata sectors> 3909 * <used data sectors>/<total data sectors> <held metadata root> 3910 * <pool mode> <discard config> <no space config> <needs_check> 3911 */ 3912 static void pool_status(struct dm_target *ti, status_type_t type, 3913 unsigned status_flags, char *result, unsigned maxlen) 3914 { 3915 int r; 3916 unsigned sz = 0; 3917 uint64_t transaction_id; 3918 dm_block_t nr_free_blocks_data; 3919 dm_block_t nr_free_blocks_metadata; 3920 dm_block_t nr_blocks_data; 3921 dm_block_t nr_blocks_metadata; 3922 dm_block_t held_root; 3923 enum pool_mode mode; 3924 char buf[BDEVNAME_SIZE]; 3925 char buf2[BDEVNAME_SIZE]; 3926 struct pool_c *pt = ti->private; 3927 struct pool *pool = pt->pool; 3928 3929 switch (type) { 3930 case STATUSTYPE_INFO: 3931 if (get_pool_mode(pool) == PM_FAIL) { 3932 DMEMIT("Fail"); 3933 break; 3934 } 3935 3936 /* Commit to ensure statistics aren't out-of-date */ 3937 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3938 (void) commit(pool); 3939 3940 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3941 if (r) { 3942 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3943 dm_device_name(pool->pool_md), r); 3944 goto err; 3945 } 3946 3947 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3948 if (r) { 3949 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3950 dm_device_name(pool->pool_md), r); 3951 goto err; 3952 } 3953 3954 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3955 if (r) { 3956 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3957 dm_device_name(pool->pool_md), r); 3958 goto err; 3959 } 3960 3961 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3962 if (r) { 3963 DMERR("%s: dm_pool_get_free_block_count returned %d", 3964 dm_device_name(pool->pool_md), r); 3965 goto err; 3966 } 3967 3968 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3969 if (r) { 3970 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3971 dm_device_name(pool->pool_md), r); 3972 goto err; 3973 } 3974 3975 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3976 if (r) { 3977 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3978 dm_device_name(pool->pool_md), r); 3979 goto err; 3980 } 3981 3982 DMEMIT("%llu %llu/%llu %llu/%llu ", 3983 (unsigned long long)transaction_id, 3984 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3985 (unsigned long long)nr_blocks_metadata, 3986 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3987 (unsigned long long)nr_blocks_data); 3988 3989 if (held_root) 3990 DMEMIT("%llu ", held_root); 3991 else 3992 DMEMIT("- "); 3993 3994 mode = get_pool_mode(pool); 3995 if (mode == PM_OUT_OF_DATA_SPACE) 3996 DMEMIT("out_of_data_space "); 3997 else if (is_read_only_pool_mode(mode)) 3998 DMEMIT("ro "); 3999 else 4000 DMEMIT("rw "); 4001 4002 if (!pool->pf.discard_enabled) 4003 DMEMIT("ignore_discard "); 4004 else if (pool->pf.discard_passdown) 4005 DMEMIT("discard_passdown "); 4006 else 4007 DMEMIT("no_discard_passdown "); 4008 4009 if (pool->pf.error_if_no_space) 4010 DMEMIT("error_if_no_space "); 4011 else 4012 DMEMIT("queue_if_no_space "); 4013 4014 if (dm_pool_metadata_needs_check(pool->pmd)) 4015 DMEMIT("needs_check "); 4016 else 4017 DMEMIT("- "); 4018 4019 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4020 4021 break; 4022 4023 case STATUSTYPE_TABLE: 4024 DMEMIT("%s %s %lu %llu ", 4025 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4026 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4027 (unsigned long)pool->sectors_per_block, 4028 (unsigned long long)pt->low_water_blocks); 4029 emit_flags(&pt->requested_pf, result, sz, maxlen); 4030 break; 4031 } 4032 return; 4033 4034 err: 4035 DMEMIT("Error"); 4036 } 4037 4038 static int pool_iterate_devices(struct dm_target *ti, 4039 iterate_devices_callout_fn fn, void *data) 4040 { 4041 struct pool_c *pt = ti->private; 4042 4043 return fn(ti, pt->data_dev, 0, ti->len, data); 4044 } 4045 4046 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4047 { 4048 struct pool_c *pt = ti->private; 4049 struct pool *pool = pt->pool; 4050 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4051 4052 /* 4053 * If max_sectors is smaller than pool->sectors_per_block adjust it 4054 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4055 * This is especially beneficial when the pool's data device is a RAID 4056 * device that has a full stripe width that matches pool->sectors_per_block 4057 * -- because even though partial RAID stripe-sized IOs will be issued to a 4058 * single RAID stripe; when aggregated they will end on a full RAID stripe 4059 * boundary.. which avoids additional partial RAID stripe writes cascading 4060 */ 4061 if (limits->max_sectors < pool->sectors_per_block) { 4062 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4063 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4064 limits->max_sectors--; 4065 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4066 } 4067 } 4068 4069 /* 4070 * If the system-determined stacked limits are compatible with the 4071 * pool's blocksize (io_opt is a factor) do not override them. 4072 */ 4073 if (io_opt_sectors < pool->sectors_per_block || 4074 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4075 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4076 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4077 else 4078 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4079 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4080 } 4081 4082 /* 4083 * pt->adjusted_pf is a staging area for the actual features to use. 4084 * They get transferred to the live pool in bind_control_target() 4085 * called from pool_preresume(). 4086 */ 4087 if (!pt->adjusted_pf.discard_enabled) { 4088 /* 4089 * Must explicitly disallow stacking discard limits otherwise the 4090 * block layer will stack them if pool's data device has support. 4091 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4092 * user to see that, so make sure to set all discard limits to 0. 4093 */ 4094 limits->discard_granularity = 0; 4095 return; 4096 } 4097 4098 disable_passdown_if_not_supported(pt); 4099 4100 /* 4101 * The pool uses the same discard limits as the underlying data 4102 * device. DM core has already set this up. 4103 */ 4104 } 4105 4106 static struct target_type pool_target = { 4107 .name = "thin-pool", 4108 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4109 DM_TARGET_IMMUTABLE, 4110 .version = {1, 22, 0}, 4111 .module = THIS_MODULE, 4112 .ctr = pool_ctr, 4113 .dtr = pool_dtr, 4114 .map = pool_map, 4115 .presuspend = pool_presuspend, 4116 .presuspend_undo = pool_presuspend_undo, 4117 .postsuspend = pool_postsuspend, 4118 .preresume = pool_preresume, 4119 .resume = pool_resume, 4120 .message = pool_message, 4121 .status = pool_status, 4122 .iterate_devices = pool_iterate_devices, 4123 .io_hints = pool_io_hints, 4124 }; 4125 4126 /*---------------------------------------------------------------- 4127 * Thin target methods 4128 *--------------------------------------------------------------*/ 4129 static void thin_get(struct thin_c *tc) 4130 { 4131 refcount_inc(&tc->refcount); 4132 } 4133 4134 static void thin_put(struct thin_c *tc) 4135 { 4136 if (refcount_dec_and_test(&tc->refcount)) 4137 complete(&tc->can_destroy); 4138 } 4139 4140 static void thin_dtr(struct dm_target *ti) 4141 { 4142 struct thin_c *tc = ti->private; 4143 4144 spin_lock_irq(&tc->pool->lock); 4145 list_del_rcu(&tc->list); 4146 spin_unlock_irq(&tc->pool->lock); 4147 synchronize_rcu(); 4148 4149 thin_put(tc); 4150 wait_for_completion(&tc->can_destroy); 4151 4152 mutex_lock(&dm_thin_pool_table.mutex); 4153 4154 __pool_dec(tc->pool); 4155 dm_pool_close_thin_device(tc->td); 4156 dm_put_device(ti, tc->pool_dev); 4157 if (tc->origin_dev) 4158 dm_put_device(ti, tc->origin_dev); 4159 kfree(tc); 4160 4161 mutex_unlock(&dm_thin_pool_table.mutex); 4162 } 4163 4164 /* 4165 * Thin target parameters: 4166 * 4167 * <pool_dev> <dev_id> [origin_dev] 4168 * 4169 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4170 * dev_id: the internal device identifier 4171 * origin_dev: a device external to the pool that should act as the origin 4172 * 4173 * If the pool device has discards disabled, they get disabled for the thin 4174 * device as well. 4175 */ 4176 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4177 { 4178 int r; 4179 struct thin_c *tc; 4180 struct dm_dev *pool_dev, *origin_dev; 4181 struct mapped_device *pool_md; 4182 4183 mutex_lock(&dm_thin_pool_table.mutex); 4184 4185 if (argc != 2 && argc != 3) { 4186 ti->error = "Invalid argument count"; 4187 r = -EINVAL; 4188 goto out_unlock; 4189 } 4190 4191 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4192 if (!tc) { 4193 ti->error = "Out of memory"; 4194 r = -ENOMEM; 4195 goto out_unlock; 4196 } 4197 tc->thin_md = dm_table_get_md(ti->table); 4198 spin_lock_init(&tc->lock); 4199 INIT_LIST_HEAD(&tc->deferred_cells); 4200 bio_list_init(&tc->deferred_bio_list); 4201 bio_list_init(&tc->retry_on_resume_list); 4202 tc->sort_bio_list = RB_ROOT; 4203 4204 if (argc == 3) { 4205 if (!strcmp(argv[0], argv[2])) { 4206 ti->error = "Error setting origin device"; 4207 r = -EINVAL; 4208 goto bad_origin_dev; 4209 } 4210 4211 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4212 if (r) { 4213 ti->error = "Error opening origin device"; 4214 goto bad_origin_dev; 4215 } 4216 tc->origin_dev = origin_dev; 4217 } 4218 4219 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4220 if (r) { 4221 ti->error = "Error opening pool device"; 4222 goto bad_pool_dev; 4223 } 4224 tc->pool_dev = pool_dev; 4225 4226 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4227 ti->error = "Invalid device id"; 4228 r = -EINVAL; 4229 goto bad_common; 4230 } 4231 4232 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4233 if (!pool_md) { 4234 ti->error = "Couldn't get pool mapped device"; 4235 r = -EINVAL; 4236 goto bad_common; 4237 } 4238 4239 tc->pool = __pool_table_lookup(pool_md); 4240 if (!tc->pool) { 4241 ti->error = "Couldn't find pool object"; 4242 r = -EINVAL; 4243 goto bad_pool_lookup; 4244 } 4245 __pool_inc(tc->pool); 4246 4247 if (get_pool_mode(tc->pool) == PM_FAIL) { 4248 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4249 r = -EINVAL; 4250 goto bad_pool; 4251 } 4252 4253 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4254 if (r) { 4255 ti->error = "Couldn't open thin internal device"; 4256 goto bad_pool; 4257 } 4258 4259 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4260 if (r) 4261 goto bad; 4262 4263 ti->num_flush_bios = 1; 4264 ti->flush_supported = true; 4265 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4266 4267 /* In case the pool supports discards, pass them on. */ 4268 if (tc->pool->pf.discard_enabled) { 4269 ti->discards_supported = true; 4270 ti->num_discard_bios = 1; 4271 } 4272 4273 mutex_unlock(&dm_thin_pool_table.mutex); 4274 4275 spin_lock_irq(&tc->pool->lock); 4276 if (tc->pool->suspended) { 4277 spin_unlock_irq(&tc->pool->lock); 4278 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4279 ti->error = "Unable to activate thin device while pool is suspended"; 4280 r = -EINVAL; 4281 goto bad; 4282 } 4283 refcount_set(&tc->refcount, 1); 4284 init_completion(&tc->can_destroy); 4285 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4286 spin_unlock_irq(&tc->pool->lock); 4287 /* 4288 * This synchronize_rcu() call is needed here otherwise we risk a 4289 * wake_worker() call finding no bios to process (because the newly 4290 * added tc isn't yet visible). So this reduces latency since we 4291 * aren't then dependent on the periodic commit to wake_worker(). 4292 */ 4293 synchronize_rcu(); 4294 4295 dm_put(pool_md); 4296 4297 return 0; 4298 4299 bad: 4300 dm_pool_close_thin_device(tc->td); 4301 bad_pool: 4302 __pool_dec(tc->pool); 4303 bad_pool_lookup: 4304 dm_put(pool_md); 4305 bad_common: 4306 dm_put_device(ti, tc->pool_dev); 4307 bad_pool_dev: 4308 if (tc->origin_dev) 4309 dm_put_device(ti, tc->origin_dev); 4310 bad_origin_dev: 4311 kfree(tc); 4312 out_unlock: 4313 mutex_unlock(&dm_thin_pool_table.mutex); 4314 4315 return r; 4316 } 4317 4318 static int thin_map(struct dm_target *ti, struct bio *bio) 4319 { 4320 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4321 4322 return thin_bio_map(ti, bio); 4323 } 4324 4325 static int thin_endio(struct dm_target *ti, struct bio *bio, 4326 blk_status_t *err) 4327 { 4328 unsigned long flags; 4329 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4330 struct list_head work; 4331 struct dm_thin_new_mapping *m, *tmp; 4332 struct pool *pool = h->tc->pool; 4333 4334 if (h->shared_read_entry) { 4335 INIT_LIST_HEAD(&work); 4336 dm_deferred_entry_dec(h->shared_read_entry, &work); 4337 4338 spin_lock_irqsave(&pool->lock, flags); 4339 list_for_each_entry_safe(m, tmp, &work, list) { 4340 list_del(&m->list); 4341 __complete_mapping_preparation(m); 4342 } 4343 spin_unlock_irqrestore(&pool->lock, flags); 4344 } 4345 4346 if (h->all_io_entry) { 4347 INIT_LIST_HEAD(&work); 4348 dm_deferred_entry_dec(h->all_io_entry, &work); 4349 if (!list_empty(&work)) { 4350 spin_lock_irqsave(&pool->lock, flags); 4351 list_for_each_entry_safe(m, tmp, &work, list) 4352 list_add_tail(&m->list, &pool->prepared_discards); 4353 spin_unlock_irqrestore(&pool->lock, flags); 4354 wake_worker(pool); 4355 } 4356 } 4357 4358 if (h->cell) 4359 cell_defer_no_holder(h->tc, h->cell); 4360 4361 return DM_ENDIO_DONE; 4362 } 4363 4364 static void thin_presuspend(struct dm_target *ti) 4365 { 4366 struct thin_c *tc = ti->private; 4367 4368 if (dm_noflush_suspending(ti)) 4369 noflush_work(tc, do_noflush_start); 4370 } 4371 4372 static void thin_postsuspend(struct dm_target *ti) 4373 { 4374 struct thin_c *tc = ti->private; 4375 4376 /* 4377 * The dm_noflush_suspending flag has been cleared by now, so 4378 * unfortunately we must always run this. 4379 */ 4380 noflush_work(tc, do_noflush_stop); 4381 } 4382 4383 static int thin_preresume(struct dm_target *ti) 4384 { 4385 struct thin_c *tc = ti->private; 4386 4387 if (tc->origin_dev) 4388 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4389 4390 return 0; 4391 } 4392 4393 /* 4394 * <nr mapped sectors> <highest mapped sector> 4395 */ 4396 static void thin_status(struct dm_target *ti, status_type_t type, 4397 unsigned status_flags, char *result, unsigned maxlen) 4398 { 4399 int r; 4400 ssize_t sz = 0; 4401 dm_block_t mapped, highest; 4402 char buf[BDEVNAME_SIZE]; 4403 struct thin_c *tc = ti->private; 4404 4405 if (get_pool_mode(tc->pool) == PM_FAIL) { 4406 DMEMIT("Fail"); 4407 return; 4408 } 4409 4410 if (!tc->td) 4411 DMEMIT("-"); 4412 else { 4413 switch (type) { 4414 case STATUSTYPE_INFO: 4415 r = dm_thin_get_mapped_count(tc->td, &mapped); 4416 if (r) { 4417 DMERR("dm_thin_get_mapped_count returned %d", r); 4418 goto err; 4419 } 4420 4421 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4422 if (r < 0) { 4423 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4424 goto err; 4425 } 4426 4427 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4428 if (r) 4429 DMEMIT("%llu", ((highest + 1) * 4430 tc->pool->sectors_per_block) - 1); 4431 else 4432 DMEMIT("-"); 4433 break; 4434 4435 case STATUSTYPE_TABLE: 4436 DMEMIT("%s %lu", 4437 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4438 (unsigned long) tc->dev_id); 4439 if (tc->origin_dev) 4440 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4441 break; 4442 } 4443 } 4444 4445 return; 4446 4447 err: 4448 DMEMIT("Error"); 4449 } 4450 4451 static int thin_iterate_devices(struct dm_target *ti, 4452 iterate_devices_callout_fn fn, void *data) 4453 { 4454 sector_t blocks; 4455 struct thin_c *tc = ti->private; 4456 struct pool *pool = tc->pool; 4457 4458 /* 4459 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4460 * we follow a more convoluted path through to the pool's target. 4461 */ 4462 if (!pool->ti) 4463 return 0; /* nothing is bound */ 4464 4465 blocks = pool->ti->len; 4466 (void) sector_div(blocks, pool->sectors_per_block); 4467 if (blocks) 4468 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4469 4470 return 0; 4471 } 4472 4473 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4474 { 4475 struct thin_c *tc = ti->private; 4476 struct pool *pool = tc->pool; 4477 4478 if (!pool->pf.discard_enabled) 4479 return; 4480 4481 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4482 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4483 } 4484 4485 static struct target_type thin_target = { 4486 .name = "thin", 4487 .version = {1, 22, 0}, 4488 .module = THIS_MODULE, 4489 .ctr = thin_ctr, 4490 .dtr = thin_dtr, 4491 .map = thin_map, 4492 .end_io = thin_endio, 4493 .preresume = thin_preresume, 4494 .presuspend = thin_presuspend, 4495 .postsuspend = thin_postsuspend, 4496 .status = thin_status, 4497 .iterate_devices = thin_iterate_devices, 4498 .io_hints = thin_io_hints, 4499 }; 4500 4501 /*----------------------------------------------------------------*/ 4502 4503 static int __init dm_thin_init(void) 4504 { 4505 int r = -ENOMEM; 4506 4507 pool_table_init(); 4508 4509 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4510 if (!_new_mapping_cache) 4511 return r; 4512 4513 r = dm_register_target(&thin_target); 4514 if (r) 4515 goto bad_new_mapping_cache; 4516 4517 r = dm_register_target(&pool_target); 4518 if (r) 4519 goto bad_thin_target; 4520 4521 return 0; 4522 4523 bad_thin_target: 4524 dm_unregister_target(&thin_target); 4525 bad_new_mapping_cache: 4526 kmem_cache_destroy(_new_mapping_cache); 4527 4528 return r; 4529 } 4530 4531 static void dm_thin_exit(void) 4532 { 4533 dm_unregister_target(&thin_target); 4534 dm_unregister_target(&pool_target); 4535 4536 kmem_cache_destroy(_new_mapping_cache); 4537 4538 pool_table_exit(); 4539 } 4540 4541 module_init(dm_thin_init); 4542 module_exit(dm_thin_exit); 4543 4544 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4545 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4546 4547 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4549 MODULE_LICENSE("GPL"); 4550