xref: /openbmc/linux/drivers/md/dm-thin.c (revision f8a7647d)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 
204 	/*
205 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 	 */
207 	PM_OUT_OF_METADATA_SPACE,
208 	PM_READ_ONLY,		/* metadata may not be changed */
209 
210 	PM_FAIL,		/* all I/O fails */
211 };
212 
213 struct pool_features {
214 	enum pool_mode mode;
215 
216 	bool zero_new_blocks:1;
217 	bool discard_enabled:1;
218 	bool discard_passdown:1;
219 	bool error_if_no_space:1;
220 };
221 
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226 
227 #define CELL_SORT_ARRAY_SIZE 8192
228 
229 struct pool {
230 	struct list_head list;
231 	struct dm_target *ti;	/* Only set if a pool target is bound */
232 
233 	struct mapped_device *pool_md;
234 	struct block_device *md_dev;
235 	struct dm_pool_metadata *pmd;
236 
237 	dm_block_t low_water_blocks;
238 	uint32_t sectors_per_block;
239 	int sectors_per_block_shift;
240 
241 	struct pool_features pf;
242 	bool low_water_triggered:1;	/* A dm event has been sent */
243 	bool suspended:1;
244 	bool out_of_data_space:1;
245 
246 	struct dm_bio_prison *prison;
247 	struct dm_kcopyd_client *copier;
248 
249 	struct work_struct worker;
250 	struct workqueue_struct *wq;
251 	struct throttle throttle;
252 	struct delayed_work waker;
253 	struct delayed_work no_space_timeout;
254 
255 	unsigned long last_commit_jiffies;
256 	unsigned ref_count;
257 
258 	spinlock_t lock;
259 	struct bio_list deferred_flush_bios;
260 	struct bio_list deferred_flush_completions;
261 	struct list_head prepared_mappings;
262 	struct list_head prepared_discards;
263 	struct list_head prepared_discards_pt2;
264 	struct list_head active_thins;
265 
266 	struct dm_deferred_set *shared_read_ds;
267 	struct dm_deferred_set *all_io_ds;
268 
269 	struct dm_thin_new_mapping *next_mapping;
270 
271 	process_bio_fn process_bio;
272 	process_bio_fn process_discard;
273 
274 	process_cell_fn process_cell;
275 	process_cell_fn process_discard_cell;
276 
277 	process_mapping_fn process_prepared_mapping;
278 	process_mapping_fn process_prepared_discard;
279 	process_mapping_fn process_prepared_discard_pt2;
280 
281 	struct dm_bio_prison_cell **cell_sort_array;
282 
283 	mempool_t mapping_pool;
284 };
285 
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287 
288 static enum pool_mode get_pool_mode(struct pool *pool)
289 {
290 	return pool->pf.mode;
291 }
292 
293 static void notify_of_pool_mode_change(struct pool *pool)
294 {
295 	const char *descs[] = {
296 		"write",
297 		"out-of-data-space",
298 		"read-only",
299 		"read-only",
300 		"fail"
301 	};
302 	const char *extra_desc = NULL;
303 	enum pool_mode mode = get_pool_mode(pool);
304 
305 	if (mode == PM_OUT_OF_DATA_SPACE) {
306 		if (!pool->pf.error_if_no_space)
307 			extra_desc = " (queue IO)";
308 		else
309 			extra_desc = " (error IO)";
310 	}
311 
312 	dm_table_event(pool->ti->table);
313 	DMINFO("%s: switching pool to %s%s mode",
314 	       dm_device_name(pool->pool_md),
315 	       descs[(int)mode], extra_desc ? : "");
316 }
317 
318 /*
319  * Target context for a pool.
320  */
321 struct pool_c {
322 	struct dm_target *ti;
323 	struct pool *pool;
324 	struct dm_dev *data_dev;
325 	struct dm_dev *metadata_dev;
326 	struct dm_target_callbacks callbacks;
327 
328 	dm_block_t low_water_blocks;
329 	struct pool_features requested_pf; /* Features requested during table load */
330 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332 
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337 	struct list_head list;
338 	struct dm_dev *pool_dev;
339 	struct dm_dev *origin_dev;
340 	sector_t origin_size;
341 	dm_thin_id dev_id;
342 
343 	struct pool *pool;
344 	struct dm_thin_device *td;
345 	struct mapped_device *thin_md;
346 
347 	bool requeue_mode:1;
348 	spinlock_t lock;
349 	struct list_head deferred_cells;
350 	struct bio_list deferred_bio_list;
351 	struct bio_list retry_on_resume_list;
352 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
353 
354 	/*
355 	 * Ensures the thin is not destroyed until the worker has finished
356 	 * iterating the active_thins list.
357 	 */
358 	refcount_t refcount;
359 	struct completion can_destroy;
360 };
361 
362 /*----------------------------------------------------------------*/
363 
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366 	return pool->sectors_per_block_shift >= 0;
367 }
368 
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371 	return block_size_is_power_of_two(pool) ?
372 		(b << pool->sectors_per_block_shift) :
373 		(b * pool->sectors_per_block);
374 }
375 
376 /*----------------------------------------------------------------*/
377 
378 struct discard_op {
379 	struct thin_c *tc;
380 	struct blk_plug plug;
381 	struct bio *parent_bio;
382 	struct bio *bio;
383 };
384 
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387 	BUG_ON(!parent);
388 
389 	op->tc = tc;
390 	blk_start_plug(&op->plug);
391 	op->parent_bio = parent;
392 	op->bio = NULL;
393 }
394 
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397 	struct thin_c *tc = op->tc;
398 	sector_t s = block_to_sectors(tc->pool, data_b);
399 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400 
401 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
402 				      GFP_NOWAIT, 0, &op->bio);
403 }
404 
405 static void end_discard(struct discard_op *op, int r)
406 {
407 	if (op->bio) {
408 		/*
409 		 * Even if one of the calls to issue_discard failed, we
410 		 * need to wait for the chain to complete.
411 		 */
412 		bio_chain(op->bio, op->parent_bio);
413 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414 		submit_bio(op->bio);
415 	}
416 
417 	blk_finish_plug(&op->plug);
418 
419 	/*
420 	 * Even if r is set, there could be sub discards in flight that we
421 	 * need to wait for.
422 	 */
423 	if (r && !op->parent_bio->bi_status)
424 		op->parent_bio->bi_status = errno_to_blk_status(r);
425 	bio_endio(op->parent_bio);
426 }
427 
428 /*----------------------------------------------------------------*/
429 
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436 	queue_work(pool->wq, &pool->worker);
437 }
438 
439 /*----------------------------------------------------------------*/
440 
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442 		      struct dm_bio_prison_cell **cell_result)
443 {
444 	int r;
445 	struct dm_bio_prison_cell *cell_prealloc;
446 
447 	/*
448 	 * Allocate a cell from the prison's mempool.
449 	 * This might block but it can't fail.
450 	 */
451 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452 
453 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454 	if (r)
455 		/*
456 		 * We reused an old cell; we can get rid of
457 		 * the new one.
458 		 */
459 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460 
461 	return r;
462 }
463 
464 static void cell_release(struct pool *pool,
465 			 struct dm_bio_prison_cell *cell,
466 			 struct bio_list *bios)
467 {
468 	dm_cell_release(pool->prison, cell, bios);
469 	dm_bio_prison_free_cell(pool->prison, cell);
470 }
471 
472 static void cell_visit_release(struct pool *pool,
473 			       void (*fn)(void *, struct dm_bio_prison_cell *),
474 			       void *context,
475 			       struct dm_bio_prison_cell *cell)
476 {
477 	dm_cell_visit_release(pool->prison, fn, context, cell);
478 	dm_bio_prison_free_cell(pool->prison, cell);
479 }
480 
481 static void cell_release_no_holder(struct pool *pool,
482 				   struct dm_bio_prison_cell *cell,
483 				   struct bio_list *bios)
484 {
485 	dm_cell_release_no_holder(pool->prison, cell, bios);
486 	dm_bio_prison_free_cell(pool->prison, cell);
487 }
488 
489 static void cell_error_with_code(struct pool *pool,
490 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492 	dm_cell_error(pool->prison, cell, error_code);
493 	dm_bio_prison_free_cell(pool->prison, cell);
494 }
495 
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500 
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505 
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508 	cell_error_with_code(pool, cell, 0);
509 }
510 
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515 
516 /*----------------------------------------------------------------*/
517 
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522 	struct mutex mutex;
523 	struct list_head pools;
524 } dm_thin_pool_table;
525 
526 static void pool_table_init(void)
527 {
528 	mutex_init(&dm_thin_pool_table.mutex);
529 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531 
532 static void pool_table_exit(void)
533 {
534 	mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536 
537 static void __pool_table_insert(struct pool *pool)
538 {
539 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540 	list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542 
543 static void __pool_table_remove(struct pool *pool)
544 {
545 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546 	list_del(&pool->list);
547 }
548 
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551 	struct pool *pool = NULL, *tmp;
552 
553 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554 
555 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556 		if (tmp->pool_md == md) {
557 			pool = tmp;
558 			break;
559 		}
560 	}
561 
562 	return pool;
563 }
564 
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567 	struct pool *pool = NULL, *tmp;
568 
569 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570 
571 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 		if (tmp->md_dev == md_dev) {
573 			pool = tmp;
574 			break;
575 		}
576 	}
577 
578 	return pool;
579 }
580 
581 /*----------------------------------------------------------------*/
582 
583 struct dm_thin_endio_hook {
584 	struct thin_c *tc;
585 	struct dm_deferred_entry *shared_read_entry;
586 	struct dm_deferred_entry *all_io_entry;
587 	struct dm_thin_new_mapping *overwrite_mapping;
588 	struct rb_node rb_node;
589 	struct dm_bio_prison_cell *cell;
590 };
591 
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594 	bio_list_merge(bios, master);
595 	bio_list_init(master);
596 }
597 
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600 	struct bio *bio;
601 
602 	while ((bio = bio_list_pop(bios))) {
603 		bio->bi_status = error;
604 		bio_endio(bio);
605 	}
606 }
607 
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609 		blk_status_t error)
610 {
611 	struct bio_list bios;
612 	unsigned long flags;
613 
614 	bio_list_init(&bios);
615 
616 	spin_lock_irqsave(&tc->lock, flags);
617 	__merge_bio_list(&bios, master);
618 	spin_unlock_irqrestore(&tc->lock, flags);
619 
620 	error_bio_list(&bios, error);
621 }
622 
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625 	struct pool *pool = tc->pool;
626 	unsigned long flags;
627 	struct list_head cells;
628 	struct dm_bio_prison_cell *cell, *tmp;
629 
630 	INIT_LIST_HEAD(&cells);
631 
632 	spin_lock_irqsave(&tc->lock, flags);
633 	list_splice_init(&tc->deferred_cells, &cells);
634 	spin_unlock_irqrestore(&tc->lock, flags);
635 
636 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 		cell_requeue(pool, cell);
638 }
639 
640 static void requeue_io(struct thin_c *tc)
641 {
642 	struct bio_list bios;
643 	unsigned long flags;
644 
645 	bio_list_init(&bios);
646 
647 	spin_lock_irqsave(&tc->lock, flags);
648 	__merge_bio_list(&bios, &tc->deferred_bio_list);
649 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
650 	spin_unlock_irqrestore(&tc->lock, flags);
651 
652 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653 	requeue_deferred_cells(tc);
654 }
655 
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658 	struct thin_c *tc;
659 
660 	rcu_read_lock();
661 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663 	rcu_read_unlock();
664 }
665 
666 static void error_retry_list(struct pool *pool)
667 {
668 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670 
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677 
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680 	struct pool *pool = tc->pool;
681 	sector_t block_nr = bio->bi_iter.bi_sector;
682 
683 	if (block_size_is_power_of_two(pool))
684 		block_nr >>= pool->sectors_per_block_shift;
685 	else
686 		(void) sector_div(block_nr, pool->sectors_per_block);
687 
688 	return block_nr;
689 }
690 
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 				dm_block_t *begin, dm_block_t *end)
696 {
697 	struct pool *pool = tc->pool;
698 	sector_t b = bio->bi_iter.bi_sector;
699 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700 
701 	b += pool->sectors_per_block - 1ull; /* so we round up */
702 
703 	if (block_size_is_power_of_two(pool)) {
704 		b >>= pool->sectors_per_block_shift;
705 		e >>= pool->sectors_per_block_shift;
706 	} else {
707 		(void) sector_div(b, pool->sectors_per_block);
708 		(void) sector_div(e, pool->sectors_per_block);
709 	}
710 
711 	if (e < b)
712 		/* Can happen if the bio is within a single block. */
713 		e = b;
714 
715 	*begin = b;
716 	*end = e;
717 }
718 
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721 	struct pool *pool = tc->pool;
722 	sector_t bi_sector = bio->bi_iter.bi_sector;
723 
724 	bio_set_dev(bio, tc->pool_dev->bdev);
725 	if (block_size_is_power_of_two(pool))
726 		bio->bi_iter.bi_sector =
727 			(block << pool->sectors_per_block_shift) |
728 			(bi_sector & (pool->sectors_per_block - 1));
729 	else
730 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731 				 sector_div(bi_sector, pool->sectors_per_block);
732 }
733 
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736 	bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738 
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741 	return op_is_flush(bio->bi_opf) &&
742 		dm_thin_changed_this_transaction(tc->td);
743 }
744 
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747 	struct dm_thin_endio_hook *h;
748 
749 	if (bio_op(bio) == REQ_OP_DISCARD)
750 		return;
751 
752 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755 
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758 	struct pool *pool = tc->pool;
759 	unsigned long flags;
760 
761 	if (!bio_triggers_commit(tc, bio)) {
762 		generic_make_request(bio);
763 		return;
764 	}
765 
766 	/*
767 	 * Complete bio with an error if earlier I/O caused changes to
768 	 * the metadata that can't be committed e.g, due to I/O errors
769 	 * on the metadata device.
770 	 */
771 	if (dm_thin_aborted_changes(tc->td)) {
772 		bio_io_error(bio);
773 		return;
774 	}
775 
776 	/*
777 	 * Batch together any bios that trigger commits and then issue a
778 	 * single commit for them in process_deferred_bios().
779 	 */
780 	spin_lock_irqsave(&pool->lock, flags);
781 	bio_list_add(&pool->deferred_flush_bios, bio);
782 	spin_unlock_irqrestore(&pool->lock, flags);
783 }
784 
785 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
786 {
787 	remap_to_origin(tc, bio);
788 	issue(tc, bio);
789 }
790 
791 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
792 			    dm_block_t block)
793 {
794 	remap(tc, bio, block);
795 	issue(tc, bio);
796 }
797 
798 /*----------------------------------------------------------------*/
799 
800 /*
801  * Bio endio functions.
802  */
803 struct dm_thin_new_mapping {
804 	struct list_head list;
805 
806 	bool pass_discard:1;
807 	bool maybe_shared:1;
808 
809 	/*
810 	 * Track quiescing, copying and zeroing preparation actions.  When this
811 	 * counter hits zero the block is prepared and can be inserted into the
812 	 * btree.
813 	 */
814 	atomic_t prepare_actions;
815 
816 	blk_status_t status;
817 	struct thin_c *tc;
818 	dm_block_t virt_begin, virt_end;
819 	dm_block_t data_block;
820 	struct dm_bio_prison_cell *cell;
821 
822 	/*
823 	 * If the bio covers the whole area of a block then we can avoid
824 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
825 	 * still be in the cell, so care has to be taken to avoid issuing
826 	 * the bio twice.
827 	 */
828 	struct bio *bio;
829 	bio_end_io_t *saved_bi_end_io;
830 };
831 
832 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
833 {
834 	struct pool *pool = m->tc->pool;
835 
836 	if (atomic_dec_and_test(&m->prepare_actions)) {
837 		list_add_tail(&m->list, &pool->prepared_mappings);
838 		wake_worker(pool);
839 	}
840 }
841 
842 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
843 {
844 	unsigned long flags;
845 	struct pool *pool = m->tc->pool;
846 
847 	spin_lock_irqsave(&pool->lock, flags);
848 	__complete_mapping_preparation(m);
849 	spin_unlock_irqrestore(&pool->lock, flags);
850 }
851 
852 static void copy_complete(int read_err, unsigned long write_err, void *context)
853 {
854 	struct dm_thin_new_mapping *m = context;
855 
856 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
857 	complete_mapping_preparation(m);
858 }
859 
860 static void overwrite_endio(struct bio *bio)
861 {
862 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
864 
865 	bio->bi_end_io = m->saved_bi_end_io;
866 
867 	m->status = bio->bi_status;
868 	complete_mapping_preparation(m);
869 }
870 
871 /*----------------------------------------------------------------*/
872 
873 /*
874  * Workqueue.
875  */
876 
877 /*
878  * Prepared mapping jobs.
879  */
880 
881 /*
882  * This sends the bios in the cell, except the original holder, back
883  * to the deferred_bios list.
884  */
885 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
886 {
887 	struct pool *pool = tc->pool;
888 	unsigned long flags;
889 
890 	spin_lock_irqsave(&tc->lock, flags);
891 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892 	spin_unlock_irqrestore(&tc->lock, flags);
893 
894 	wake_worker(pool);
895 }
896 
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898 
899 struct remap_info {
900 	struct thin_c *tc;
901 	struct bio_list defer_bios;
902 	struct bio_list issue_bios;
903 };
904 
905 static void __inc_remap_and_issue_cell(void *context,
906 				       struct dm_bio_prison_cell *cell)
907 {
908 	struct remap_info *info = context;
909 	struct bio *bio;
910 
911 	while ((bio = bio_list_pop(&cell->bios))) {
912 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 			bio_list_add(&info->defer_bios, bio);
914 		else {
915 			inc_all_io_entry(info->tc->pool, bio);
916 
917 			/*
918 			 * We can't issue the bios with the bio prison lock
919 			 * held, so we add them to a list to issue on
920 			 * return from this function.
921 			 */
922 			bio_list_add(&info->issue_bios, bio);
923 		}
924 	}
925 }
926 
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 				     struct dm_bio_prison_cell *cell,
929 				     dm_block_t block)
930 {
931 	struct bio *bio;
932 	struct remap_info info;
933 
934 	info.tc = tc;
935 	bio_list_init(&info.defer_bios);
936 	bio_list_init(&info.issue_bios);
937 
938 	/*
939 	 * We have to be careful to inc any bios we're about to issue
940 	 * before the cell is released, and avoid a race with new bios
941 	 * being added to the cell.
942 	 */
943 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 			   &info, cell);
945 
946 	while ((bio = bio_list_pop(&info.defer_bios)))
947 		thin_defer_bio(tc, bio);
948 
949 	while ((bio = bio_list_pop(&info.issue_bios)))
950 		remap_and_issue(info.tc, bio, block);
951 }
952 
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955 	cell_error(m->tc->pool, m->cell);
956 	list_del(&m->list);
957 	mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959 
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962 	struct pool *pool = tc->pool;
963 	unsigned long flags;
964 
965 	/*
966 	 * If the bio has the REQ_FUA flag set we must commit the metadata
967 	 * before signaling its completion.
968 	 */
969 	if (!bio_triggers_commit(tc, bio)) {
970 		bio_endio(bio);
971 		return;
972 	}
973 
974 	/*
975 	 * Complete bio with an error if earlier I/O caused changes to the
976 	 * metadata that can't be committed, e.g, due to I/O errors on the
977 	 * metadata device.
978 	 */
979 	if (dm_thin_aborted_changes(tc->td)) {
980 		bio_io_error(bio);
981 		return;
982 	}
983 
984 	/*
985 	 * Batch together any bios that trigger commits and then issue a
986 	 * single commit for them in process_deferred_bios().
987 	 */
988 	spin_lock_irqsave(&pool->lock, flags);
989 	bio_list_add(&pool->deferred_flush_completions, bio);
990 	spin_unlock_irqrestore(&pool->lock, flags);
991 }
992 
993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995 	struct thin_c *tc = m->tc;
996 	struct pool *pool = tc->pool;
997 	struct bio *bio = m->bio;
998 	int r;
999 
1000 	if (m->status) {
1001 		cell_error(pool, m->cell);
1002 		goto out;
1003 	}
1004 
1005 	/*
1006 	 * Commit the prepared block into the mapping btree.
1007 	 * Any I/O for this block arriving after this point will get
1008 	 * remapped to it directly.
1009 	 */
1010 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011 	if (r) {
1012 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013 		cell_error(pool, m->cell);
1014 		goto out;
1015 	}
1016 
1017 	/*
1018 	 * Release any bios held while the block was being provisioned.
1019 	 * If we are processing a write bio that completely covers the block,
1020 	 * we already processed it so can ignore it now when processing
1021 	 * the bios in the cell.
1022 	 */
1023 	if (bio) {
1024 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025 		complete_overwrite_bio(tc, bio);
1026 	} else {
1027 		inc_all_io_entry(tc->pool, m->cell->holder);
1028 		remap_and_issue(tc, m->cell->holder, m->data_block);
1029 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 	}
1031 
1032 out:
1033 	list_del(&m->list);
1034 	mempool_free(m, &pool->mapping_pool);
1035 }
1036 
1037 /*----------------------------------------------------------------*/
1038 
1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041 	struct thin_c *tc = m->tc;
1042 	if (m->cell)
1043 		cell_defer_no_holder(tc, m->cell);
1044 	mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046 
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 	bio_io_error(m->bio);
1050 	free_discard_mapping(m);
1051 }
1052 
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 	bio_endio(m->bio);
1056 	free_discard_mapping(m);
1057 }
1058 
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 	int r;
1062 	struct thin_c *tc = m->tc;
1063 
1064 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 	if (r) {
1066 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 		bio_io_error(m->bio);
1068 	} else
1069 		bio_endio(m->bio);
1070 
1071 	cell_defer_no_holder(tc, m->cell);
1072 	mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074 
1075 /*----------------------------------------------------------------*/
1076 
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 						   struct bio *discard_parent)
1079 {
1080 	/*
1081 	 * We've already unmapped this range of blocks, but before we
1082 	 * passdown we have to check that these blocks are now unused.
1083 	 */
1084 	int r = 0;
1085 	bool shared = true;
1086 	struct thin_c *tc = m->tc;
1087 	struct pool *pool = tc->pool;
1088 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 	struct discard_op op;
1090 
1091 	begin_discard(&op, tc, discard_parent);
1092 	while (b != end) {
1093 		/* find start of unmapped run */
1094 		for (; b < end; b++) {
1095 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 			if (r)
1097 				goto out;
1098 
1099 			if (!shared)
1100 				break;
1101 		}
1102 
1103 		if (b == end)
1104 			break;
1105 
1106 		/* find end of run */
1107 		for (e = b + 1; e != end; e++) {
1108 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 			if (r)
1110 				goto out;
1111 
1112 			if (shared)
1113 				break;
1114 		}
1115 
1116 		r = issue_discard(&op, b, e);
1117 		if (r)
1118 			goto out;
1119 
1120 		b = e;
1121 	}
1122 out:
1123 	end_discard(&op, r);
1124 }
1125 
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128 	unsigned long flags;
1129 	struct pool *pool = m->tc->pool;
1130 
1131 	spin_lock_irqsave(&pool->lock, flags);
1132 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 	spin_unlock_irqrestore(&pool->lock, flags);
1134 	wake_worker(pool);
1135 }
1136 
1137 static void passdown_endio(struct bio *bio)
1138 {
1139 	/*
1140 	 * It doesn't matter if the passdown discard failed, we still want
1141 	 * to unmap (we ignore err).
1142 	 */
1143 	queue_passdown_pt2(bio->bi_private);
1144 	bio_put(bio);
1145 }
1146 
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149 	int r;
1150 	struct thin_c *tc = m->tc;
1151 	struct pool *pool = tc->pool;
1152 	struct bio *discard_parent;
1153 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154 
1155 	/*
1156 	 * Only this thread allocates blocks, so we can be sure that the
1157 	 * newly unmapped blocks will not be allocated before the end of
1158 	 * the function.
1159 	 */
1160 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 	if (r) {
1162 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 		bio_io_error(m->bio);
1164 		cell_defer_no_holder(tc, m->cell);
1165 		mempool_free(m, &pool->mapping_pool);
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * Increment the unmapped blocks.  This prevents a race between the
1171 	 * passdown io and reallocation of freed blocks.
1172 	 */
1173 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 	if (r) {
1175 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 		bio_io_error(m->bio);
1177 		cell_defer_no_holder(tc, m->cell);
1178 		mempool_free(m, &pool->mapping_pool);
1179 		return;
1180 	}
1181 
1182 	discard_parent = bio_alloc(GFP_NOIO, 1);
1183 	if (!discard_parent) {
1184 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 		       dm_device_name(tc->pool->pool_md));
1186 		queue_passdown_pt2(m);
1187 
1188 	} else {
1189 		discard_parent->bi_end_io = passdown_endio;
1190 		discard_parent->bi_private = m;
1191 
1192 		if (m->maybe_shared)
1193 			passdown_double_checking_shared_status(m, discard_parent);
1194 		else {
1195 			struct discard_op op;
1196 
1197 			begin_discard(&op, tc, discard_parent);
1198 			r = issue_discard(&op, m->data_block, data_end);
1199 			end_discard(&op, r);
1200 		}
1201 	}
1202 }
1203 
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206 	int r;
1207 	struct thin_c *tc = m->tc;
1208 	struct pool *pool = tc->pool;
1209 
1210 	/*
1211 	 * The passdown has completed, so now we can decrement all those
1212 	 * unmapped blocks.
1213 	 */
1214 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215 				   m->data_block + (m->virt_end - m->virt_begin));
1216 	if (r) {
1217 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218 		bio_io_error(m->bio);
1219 	} else
1220 		bio_endio(m->bio);
1221 
1222 	cell_defer_no_holder(tc, m->cell);
1223 	mempool_free(m, &pool->mapping_pool);
1224 }
1225 
1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227 			     process_mapping_fn *fn)
1228 {
1229 	unsigned long flags;
1230 	struct list_head maps;
1231 	struct dm_thin_new_mapping *m, *tmp;
1232 
1233 	INIT_LIST_HEAD(&maps);
1234 	spin_lock_irqsave(&pool->lock, flags);
1235 	list_splice_init(head, &maps);
1236 	spin_unlock_irqrestore(&pool->lock, flags);
1237 
1238 	list_for_each_entry_safe(m, tmp, &maps, list)
1239 		(*fn)(m);
1240 }
1241 
1242 /*
1243  * Deferred bio jobs.
1244  */
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246 {
1247 	return bio->bi_iter.bi_size ==
1248 		(pool->sectors_per_block << SECTOR_SHIFT);
1249 }
1250 
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252 {
1253 	return (bio_data_dir(bio) == WRITE) &&
1254 		io_overlaps_block(pool, bio);
1255 }
1256 
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258 			       bio_end_io_t *fn)
1259 {
1260 	*save = bio->bi_end_io;
1261 	bio->bi_end_io = fn;
1262 }
1263 
1264 static int ensure_next_mapping(struct pool *pool)
1265 {
1266 	if (pool->next_mapping)
1267 		return 0;
1268 
1269 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270 
1271 	return pool->next_mapping ? 0 : -ENOMEM;
1272 }
1273 
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275 {
1276 	struct dm_thin_new_mapping *m = pool->next_mapping;
1277 
1278 	BUG_ON(!pool->next_mapping);
1279 
1280 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281 	INIT_LIST_HEAD(&m->list);
1282 	m->bio = NULL;
1283 
1284 	pool->next_mapping = NULL;
1285 
1286 	return m;
1287 }
1288 
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290 		    sector_t begin, sector_t end)
1291 {
1292 	struct dm_io_region to;
1293 
1294 	to.bdev = tc->pool_dev->bdev;
1295 	to.sector = begin;
1296 	to.count = end - begin;
1297 
1298 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 }
1300 
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302 				      dm_block_t data_begin,
1303 				      struct dm_thin_new_mapping *m)
1304 {
1305 	struct pool *pool = tc->pool;
1306 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307 
1308 	h->overwrite_mapping = m;
1309 	m->bio = bio;
1310 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311 	inc_all_io_entry(pool, bio);
1312 	remap_and_issue(tc, bio, data_begin);
1313 }
1314 
1315 /*
1316  * A partial copy also needs to zero the uncopied region.
1317  */
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319 			  struct dm_dev *origin, dm_block_t data_origin,
1320 			  dm_block_t data_dest,
1321 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1322 			  sector_t len)
1323 {
1324 	struct pool *pool = tc->pool;
1325 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326 
1327 	m->tc = tc;
1328 	m->virt_begin = virt_block;
1329 	m->virt_end = virt_block + 1u;
1330 	m->data_block = data_dest;
1331 	m->cell = cell;
1332 
1333 	/*
1334 	 * quiesce action + copy action + an extra reference held for the
1335 	 * duration of this function (we may need to inc later for a
1336 	 * partial zero).
1337 	 */
1338 	atomic_set(&m->prepare_actions, 3);
1339 
1340 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341 		complete_mapping_preparation(m); /* already quiesced */
1342 
1343 	/*
1344 	 * IO to pool_dev remaps to the pool target's data_dev.
1345 	 *
1346 	 * If the whole block of data is being overwritten, we can issue the
1347 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1348 	 */
1349 	if (io_overwrites_block(pool, bio))
1350 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1351 	else {
1352 		struct dm_io_region from, to;
1353 
1354 		from.bdev = origin->bdev;
1355 		from.sector = data_origin * pool->sectors_per_block;
1356 		from.count = len;
1357 
1358 		to.bdev = tc->pool_dev->bdev;
1359 		to.sector = data_dest * pool->sectors_per_block;
1360 		to.count = len;
1361 
1362 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363 			       0, copy_complete, m);
1364 
1365 		/*
1366 		 * Do we need to zero a tail region?
1367 		 */
1368 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369 			atomic_inc(&m->prepare_actions);
1370 			ll_zero(tc, m,
1371 				data_dest * pool->sectors_per_block + len,
1372 				(data_dest + 1) * pool->sectors_per_block);
1373 		}
1374 	}
1375 
1376 	complete_mapping_preparation(m); /* drop our ref */
1377 }
1378 
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380 				   dm_block_t data_origin, dm_block_t data_dest,
1381 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1382 {
1383 	schedule_copy(tc, virt_block, tc->pool_dev,
1384 		      data_origin, data_dest, cell, bio,
1385 		      tc->pool->sectors_per_block);
1386 }
1387 
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390 			  struct bio *bio)
1391 {
1392 	struct pool *pool = tc->pool;
1393 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394 
1395 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396 	m->tc = tc;
1397 	m->virt_begin = virt_block;
1398 	m->virt_end = virt_block + 1u;
1399 	m->data_block = data_block;
1400 	m->cell = cell;
1401 
1402 	/*
1403 	 * If the whole block of data is being overwritten or we are not
1404 	 * zeroing pre-existing data, we can issue the bio immediately.
1405 	 * Otherwise we use kcopyd to zero the data first.
1406 	 */
1407 	if (pool->pf.zero_new_blocks) {
1408 		if (io_overwrites_block(pool, bio))
1409 			remap_and_issue_overwrite(tc, bio, data_block, m);
1410 		else
1411 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1412 				(data_block + 1) * pool->sectors_per_block);
1413 	} else
1414 		process_prepared_mapping(m);
1415 }
1416 
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418 				   dm_block_t data_dest,
1419 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1420 {
1421 	struct pool *pool = tc->pool;
1422 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424 
1425 	if (virt_block_end <= tc->origin_size)
1426 		schedule_copy(tc, virt_block, tc->origin_dev,
1427 			      virt_block, data_dest, cell, bio,
1428 			      pool->sectors_per_block);
1429 
1430 	else if (virt_block_begin < tc->origin_size)
1431 		schedule_copy(tc, virt_block, tc->origin_dev,
1432 			      virt_block, data_dest, cell, bio,
1433 			      tc->origin_size - virt_block_begin);
1434 
1435 	else
1436 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 }
1438 
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440 
1441 static void requeue_bios(struct pool *pool);
1442 
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1444 {
1445 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 }
1447 
1448 static bool is_read_only(struct pool *pool)
1449 {
1450 	return is_read_only_pool_mode(get_pool_mode(pool));
1451 }
1452 
1453 static void check_for_metadata_space(struct pool *pool)
1454 {
1455 	int r;
1456 	const char *ooms_reason = NULL;
1457 	dm_block_t nr_free;
1458 
1459 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460 	if (r)
1461 		ooms_reason = "Could not get free metadata blocks";
1462 	else if (!nr_free)
1463 		ooms_reason = "No free metadata blocks";
1464 
1465 	if (ooms_reason && !is_read_only(pool)) {
1466 		DMERR("%s", ooms_reason);
1467 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468 	}
1469 }
1470 
1471 static void check_for_data_space(struct pool *pool)
1472 {
1473 	int r;
1474 	dm_block_t nr_free;
1475 
1476 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477 		return;
1478 
1479 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480 	if (r)
1481 		return;
1482 
1483 	if (nr_free) {
1484 		set_pool_mode(pool, PM_WRITE);
1485 		requeue_bios(pool);
1486 	}
1487 }
1488 
1489 /*
1490  * A non-zero return indicates read_only or fail_io mode.
1491  * Many callers don't care about the return value.
1492  */
1493 static int commit(struct pool *pool)
1494 {
1495 	int r;
1496 
1497 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498 		return -EINVAL;
1499 
1500 	r = dm_pool_commit_metadata(pool->pmd);
1501 	if (r)
1502 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503 	else {
1504 		check_for_metadata_space(pool);
1505 		check_for_data_space(pool);
1506 	}
1507 
1508 	return r;
1509 }
1510 
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512 {
1513 	unsigned long flags;
1514 
1515 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1516 		DMWARN("%s: reached low water mark for data device: sending event.",
1517 		       dm_device_name(pool->pool_md));
1518 		spin_lock_irqsave(&pool->lock, flags);
1519 		pool->low_water_triggered = true;
1520 		spin_unlock_irqrestore(&pool->lock, flags);
1521 		dm_table_event(pool->ti->table);
1522 	}
1523 }
1524 
1525 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1526 {
1527 	int r;
1528 	dm_block_t free_blocks;
1529 	struct pool *pool = tc->pool;
1530 
1531 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1532 		return -EINVAL;
1533 
1534 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1535 	if (r) {
1536 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1537 		return r;
1538 	}
1539 
1540 	check_low_water_mark(pool, free_blocks);
1541 
1542 	if (!free_blocks) {
1543 		/*
1544 		 * Try to commit to see if that will free up some
1545 		 * more space.
1546 		 */
1547 		r = commit(pool);
1548 		if (r)
1549 			return r;
1550 
1551 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1552 		if (r) {
1553 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1554 			return r;
1555 		}
1556 
1557 		if (!free_blocks) {
1558 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559 			return -ENOSPC;
1560 		}
1561 	}
1562 
1563 	r = dm_pool_alloc_data_block(pool->pmd, result);
1564 	if (r) {
1565 		if (r == -ENOSPC)
1566 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1567 		else
1568 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1569 		return r;
1570 	}
1571 
1572 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1573 	if (r) {
1574 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1575 		return r;
1576 	}
1577 
1578 	if (!free_blocks) {
1579 		/* Let's commit before we use up the metadata reserve. */
1580 		r = commit(pool);
1581 		if (r)
1582 			return r;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * If we have run out of space, queue bios until the device is
1590  * resumed, presumably after having been reloaded with more space.
1591  */
1592 static void retry_on_resume(struct bio *bio)
1593 {
1594 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1595 	struct thin_c *tc = h->tc;
1596 	unsigned long flags;
1597 
1598 	spin_lock_irqsave(&tc->lock, flags);
1599 	bio_list_add(&tc->retry_on_resume_list, bio);
1600 	spin_unlock_irqrestore(&tc->lock, flags);
1601 }
1602 
1603 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1604 {
1605 	enum pool_mode m = get_pool_mode(pool);
1606 
1607 	switch (m) {
1608 	case PM_WRITE:
1609 		/* Shouldn't get here */
1610 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1611 		return BLK_STS_IOERR;
1612 
1613 	case PM_OUT_OF_DATA_SPACE:
1614 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1615 
1616 	case PM_OUT_OF_METADATA_SPACE:
1617 	case PM_READ_ONLY:
1618 	case PM_FAIL:
1619 		return BLK_STS_IOERR;
1620 	default:
1621 		/* Shouldn't get here */
1622 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1623 		return BLK_STS_IOERR;
1624 	}
1625 }
1626 
1627 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1628 {
1629 	blk_status_t error = should_error_unserviceable_bio(pool);
1630 
1631 	if (error) {
1632 		bio->bi_status = error;
1633 		bio_endio(bio);
1634 	} else
1635 		retry_on_resume(bio);
1636 }
1637 
1638 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1639 {
1640 	struct bio *bio;
1641 	struct bio_list bios;
1642 	blk_status_t error;
1643 
1644 	error = should_error_unserviceable_bio(pool);
1645 	if (error) {
1646 		cell_error_with_code(pool, cell, error);
1647 		return;
1648 	}
1649 
1650 	bio_list_init(&bios);
1651 	cell_release(pool, cell, &bios);
1652 
1653 	while ((bio = bio_list_pop(&bios)))
1654 		retry_on_resume(bio);
1655 }
1656 
1657 static void process_discard_cell_no_passdown(struct thin_c *tc,
1658 					     struct dm_bio_prison_cell *virt_cell)
1659 {
1660 	struct pool *pool = tc->pool;
1661 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1662 
1663 	/*
1664 	 * We don't need to lock the data blocks, since there's no
1665 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1666 	 */
1667 	m->tc = tc;
1668 	m->virt_begin = virt_cell->key.block_begin;
1669 	m->virt_end = virt_cell->key.block_end;
1670 	m->cell = virt_cell;
1671 	m->bio = virt_cell->holder;
1672 
1673 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1674 		pool->process_prepared_discard(m);
1675 }
1676 
1677 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1678 				 struct bio *bio)
1679 {
1680 	struct pool *pool = tc->pool;
1681 
1682 	int r;
1683 	bool maybe_shared;
1684 	struct dm_cell_key data_key;
1685 	struct dm_bio_prison_cell *data_cell;
1686 	struct dm_thin_new_mapping *m;
1687 	dm_block_t virt_begin, virt_end, data_begin;
1688 
1689 	while (begin != end) {
1690 		r = ensure_next_mapping(pool);
1691 		if (r)
1692 			/* we did our best */
1693 			return;
1694 
1695 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1696 					      &data_begin, &maybe_shared);
1697 		if (r)
1698 			/*
1699 			 * Silently fail, letting any mappings we've
1700 			 * created complete.
1701 			 */
1702 			break;
1703 
1704 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1705 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1706 			/* contention, we'll give up with this range */
1707 			begin = virt_end;
1708 			continue;
1709 		}
1710 
1711 		/*
1712 		 * IO may still be going to the destination block.  We must
1713 		 * quiesce before we can do the removal.
1714 		 */
1715 		m = get_next_mapping(pool);
1716 		m->tc = tc;
1717 		m->maybe_shared = maybe_shared;
1718 		m->virt_begin = virt_begin;
1719 		m->virt_end = virt_end;
1720 		m->data_block = data_begin;
1721 		m->cell = data_cell;
1722 		m->bio = bio;
1723 
1724 		/*
1725 		 * The parent bio must not complete before sub discard bios are
1726 		 * chained to it (see end_discard's bio_chain)!
1727 		 *
1728 		 * This per-mapping bi_remaining increment is paired with
1729 		 * the implicit decrement that occurs via bio_endio() in
1730 		 * end_discard().
1731 		 */
1732 		bio_inc_remaining(bio);
1733 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1734 			pool->process_prepared_discard(m);
1735 
1736 		begin = virt_end;
1737 	}
1738 }
1739 
1740 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1741 {
1742 	struct bio *bio = virt_cell->holder;
1743 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1744 
1745 	/*
1746 	 * The virt_cell will only get freed once the origin bio completes.
1747 	 * This means it will remain locked while all the individual
1748 	 * passdown bios are in flight.
1749 	 */
1750 	h->cell = virt_cell;
1751 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1752 
1753 	/*
1754 	 * We complete the bio now, knowing that the bi_remaining field
1755 	 * will prevent completion until the sub range discards have
1756 	 * completed.
1757 	 */
1758 	bio_endio(bio);
1759 }
1760 
1761 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1762 {
1763 	dm_block_t begin, end;
1764 	struct dm_cell_key virt_key;
1765 	struct dm_bio_prison_cell *virt_cell;
1766 
1767 	get_bio_block_range(tc, bio, &begin, &end);
1768 	if (begin == end) {
1769 		/*
1770 		 * The discard covers less than a block.
1771 		 */
1772 		bio_endio(bio);
1773 		return;
1774 	}
1775 
1776 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1777 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1778 		/*
1779 		 * Potential starvation issue: We're relying on the
1780 		 * fs/application being well behaved, and not trying to
1781 		 * send IO to a region at the same time as discarding it.
1782 		 * If they do this persistently then it's possible this
1783 		 * cell will never be granted.
1784 		 */
1785 		return;
1786 
1787 	tc->pool->process_discard_cell(tc, virt_cell);
1788 }
1789 
1790 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791 			  struct dm_cell_key *key,
1792 			  struct dm_thin_lookup_result *lookup_result,
1793 			  struct dm_bio_prison_cell *cell)
1794 {
1795 	int r;
1796 	dm_block_t data_block;
1797 	struct pool *pool = tc->pool;
1798 
1799 	r = alloc_data_block(tc, &data_block);
1800 	switch (r) {
1801 	case 0:
1802 		schedule_internal_copy(tc, block, lookup_result->block,
1803 				       data_block, cell, bio);
1804 		break;
1805 
1806 	case -ENOSPC:
1807 		retry_bios_on_resume(pool, cell);
1808 		break;
1809 
1810 	default:
1811 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812 			    __func__, r);
1813 		cell_error(pool, cell);
1814 		break;
1815 	}
1816 }
1817 
1818 static void __remap_and_issue_shared_cell(void *context,
1819 					  struct dm_bio_prison_cell *cell)
1820 {
1821 	struct remap_info *info = context;
1822 	struct bio *bio;
1823 
1824 	while ((bio = bio_list_pop(&cell->bios))) {
1825 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1826 		    bio_op(bio) == REQ_OP_DISCARD)
1827 			bio_list_add(&info->defer_bios, bio);
1828 		else {
1829 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1830 
1831 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1832 			inc_all_io_entry(info->tc->pool, bio);
1833 			bio_list_add(&info->issue_bios, bio);
1834 		}
1835 	}
1836 }
1837 
1838 static void remap_and_issue_shared_cell(struct thin_c *tc,
1839 					struct dm_bio_prison_cell *cell,
1840 					dm_block_t block)
1841 {
1842 	struct bio *bio;
1843 	struct remap_info info;
1844 
1845 	info.tc = tc;
1846 	bio_list_init(&info.defer_bios);
1847 	bio_list_init(&info.issue_bios);
1848 
1849 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1850 			   &info, cell);
1851 
1852 	while ((bio = bio_list_pop(&info.defer_bios)))
1853 		thin_defer_bio(tc, bio);
1854 
1855 	while ((bio = bio_list_pop(&info.issue_bios)))
1856 		remap_and_issue(tc, bio, block);
1857 }
1858 
1859 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1860 			       dm_block_t block,
1861 			       struct dm_thin_lookup_result *lookup_result,
1862 			       struct dm_bio_prison_cell *virt_cell)
1863 {
1864 	struct dm_bio_prison_cell *data_cell;
1865 	struct pool *pool = tc->pool;
1866 	struct dm_cell_key key;
1867 
1868 	/*
1869 	 * If cell is already occupied, then sharing is already in the process
1870 	 * of being broken so we have nothing further to do here.
1871 	 */
1872 	build_data_key(tc->td, lookup_result->block, &key);
1873 	if (bio_detain(pool, &key, bio, &data_cell)) {
1874 		cell_defer_no_holder(tc, virt_cell);
1875 		return;
1876 	}
1877 
1878 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1879 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1880 		cell_defer_no_holder(tc, virt_cell);
1881 	} else {
1882 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1883 
1884 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1885 		inc_all_io_entry(pool, bio);
1886 		remap_and_issue(tc, bio, lookup_result->block);
1887 
1888 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1889 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1890 	}
1891 }
1892 
1893 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1894 			    struct dm_bio_prison_cell *cell)
1895 {
1896 	int r;
1897 	dm_block_t data_block;
1898 	struct pool *pool = tc->pool;
1899 
1900 	/*
1901 	 * Remap empty bios (flushes) immediately, without provisioning.
1902 	 */
1903 	if (!bio->bi_iter.bi_size) {
1904 		inc_all_io_entry(pool, bio);
1905 		cell_defer_no_holder(tc, cell);
1906 
1907 		remap_and_issue(tc, bio, 0);
1908 		return;
1909 	}
1910 
1911 	/*
1912 	 * Fill read bios with zeroes and complete them immediately.
1913 	 */
1914 	if (bio_data_dir(bio) == READ) {
1915 		zero_fill_bio(bio);
1916 		cell_defer_no_holder(tc, cell);
1917 		bio_endio(bio);
1918 		return;
1919 	}
1920 
1921 	r = alloc_data_block(tc, &data_block);
1922 	switch (r) {
1923 	case 0:
1924 		if (tc->origin_dev)
1925 			schedule_external_copy(tc, block, data_block, cell, bio);
1926 		else
1927 			schedule_zero(tc, block, data_block, cell, bio);
1928 		break;
1929 
1930 	case -ENOSPC:
1931 		retry_bios_on_resume(pool, cell);
1932 		break;
1933 
1934 	default:
1935 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1936 			    __func__, r);
1937 		cell_error(pool, cell);
1938 		break;
1939 	}
1940 }
1941 
1942 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944 	int r;
1945 	struct pool *pool = tc->pool;
1946 	struct bio *bio = cell->holder;
1947 	dm_block_t block = get_bio_block(tc, bio);
1948 	struct dm_thin_lookup_result lookup_result;
1949 
1950 	if (tc->requeue_mode) {
1951 		cell_requeue(pool, cell);
1952 		return;
1953 	}
1954 
1955 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1956 	switch (r) {
1957 	case 0:
1958 		if (lookup_result.shared)
1959 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1960 		else {
1961 			inc_all_io_entry(pool, bio);
1962 			remap_and_issue(tc, bio, lookup_result.block);
1963 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1964 		}
1965 		break;
1966 
1967 	case -ENODATA:
1968 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1969 			inc_all_io_entry(pool, bio);
1970 			cell_defer_no_holder(tc, cell);
1971 
1972 			if (bio_end_sector(bio) <= tc->origin_size)
1973 				remap_to_origin_and_issue(tc, bio);
1974 
1975 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1976 				zero_fill_bio(bio);
1977 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1978 				remap_to_origin_and_issue(tc, bio);
1979 
1980 			} else {
1981 				zero_fill_bio(bio);
1982 				bio_endio(bio);
1983 			}
1984 		} else
1985 			provision_block(tc, bio, block, cell);
1986 		break;
1987 
1988 	default:
1989 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1990 			    __func__, r);
1991 		cell_defer_no_holder(tc, cell);
1992 		bio_io_error(bio);
1993 		break;
1994 	}
1995 }
1996 
1997 static void process_bio(struct thin_c *tc, struct bio *bio)
1998 {
1999 	struct pool *pool = tc->pool;
2000 	dm_block_t block = get_bio_block(tc, bio);
2001 	struct dm_bio_prison_cell *cell;
2002 	struct dm_cell_key key;
2003 
2004 	/*
2005 	 * If cell is already occupied, then the block is already
2006 	 * being provisioned so we have nothing further to do here.
2007 	 */
2008 	build_virtual_key(tc->td, block, &key);
2009 	if (bio_detain(pool, &key, bio, &cell))
2010 		return;
2011 
2012 	process_cell(tc, cell);
2013 }
2014 
2015 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2016 				    struct dm_bio_prison_cell *cell)
2017 {
2018 	int r;
2019 	int rw = bio_data_dir(bio);
2020 	dm_block_t block = get_bio_block(tc, bio);
2021 	struct dm_thin_lookup_result lookup_result;
2022 
2023 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2024 	switch (r) {
2025 	case 0:
2026 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2027 			handle_unserviceable_bio(tc->pool, bio);
2028 			if (cell)
2029 				cell_defer_no_holder(tc, cell);
2030 		} else {
2031 			inc_all_io_entry(tc->pool, bio);
2032 			remap_and_issue(tc, bio, lookup_result.block);
2033 			if (cell)
2034 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2035 		}
2036 		break;
2037 
2038 	case -ENODATA:
2039 		if (cell)
2040 			cell_defer_no_holder(tc, cell);
2041 		if (rw != READ) {
2042 			handle_unserviceable_bio(tc->pool, bio);
2043 			break;
2044 		}
2045 
2046 		if (tc->origin_dev) {
2047 			inc_all_io_entry(tc->pool, bio);
2048 			remap_to_origin_and_issue(tc, bio);
2049 			break;
2050 		}
2051 
2052 		zero_fill_bio(bio);
2053 		bio_endio(bio);
2054 		break;
2055 
2056 	default:
2057 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2058 			    __func__, r);
2059 		if (cell)
2060 			cell_defer_no_holder(tc, cell);
2061 		bio_io_error(bio);
2062 		break;
2063 	}
2064 }
2065 
2066 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2067 {
2068 	__process_bio_read_only(tc, bio, NULL);
2069 }
2070 
2071 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2072 {
2073 	__process_bio_read_only(tc, cell->holder, cell);
2074 }
2075 
2076 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2077 {
2078 	bio_endio(bio);
2079 }
2080 
2081 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2082 {
2083 	bio_io_error(bio);
2084 }
2085 
2086 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2087 {
2088 	cell_success(tc->pool, cell);
2089 }
2090 
2091 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2092 {
2093 	cell_error(tc->pool, cell);
2094 }
2095 
2096 /*
2097  * FIXME: should we also commit due to size of transaction, measured in
2098  * metadata blocks?
2099  */
2100 static int need_commit_due_to_time(struct pool *pool)
2101 {
2102 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2103 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2104 }
2105 
2106 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2107 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2108 
2109 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2110 {
2111 	struct rb_node **rbp, *parent;
2112 	struct dm_thin_endio_hook *pbd;
2113 	sector_t bi_sector = bio->bi_iter.bi_sector;
2114 
2115 	rbp = &tc->sort_bio_list.rb_node;
2116 	parent = NULL;
2117 	while (*rbp) {
2118 		parent = *rbp;
2119 		pbd = thin_pbd(parent);
2120 
2121 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2122 			rbp = &(*rbp)->rb_left;
2123 		else
2124 			rbp = &(*rbp)->rb_right;
2125 	}
2126 
2127 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2128 	rb_link_node(&pbd->rb_node, parent, rbp);
2129 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2130 }
2131 
2132 static void __extract_sorted_bios(struct thin_c *tc)
2133 {
2134 	struct rb_node *node;
2135 	struct dm_thin_endio_hook *pbd;
2136 	struct bio *bio;
2137 
2138 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2139 		pbd = thin_pbd(node);
2140 		bio = thin_bio(pbd);
2141 
2142 		bio_list_add(&tc->deferred_bio_list, bio);
2143 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2144 	}
2145 
2146 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2147 }
2148 
2149 static void __sort_thin_deferred_bios(struct thin_c *tc)
2150 {
2151 	struct bio *bio;
2152 	struct bio_list bios;
2153 
2154 	bio_list_init(&bios);
2155 	bio_list_merge(&bios, &tc->deferred_bio_list);
2156 	bio_list_init(&tc->deferred_bio_list);
2157 
2158 	/* Sort deferred_bio_list using rb-tree */
2159 	while ((bio = bio_list_pop(&bios)))
2160 		__thin_bio_rb_add(tc, bio);
2161 
2162 	/*
2163 	 * Transfer the sorted bios in sort_bio_list back to
2164 	 * deferred_bio_list to allow lockless submission of
2165 	 * all bios.
2166 	 */
2167 	__extract_sorted_bios(tc);
2168 }
2169 
2170 static void process_thin_deferred_bios(struct thin_c *tc)
2171 {
2172 	struct pool *pool = tc->pool;
2173 	unsigned long flags;
2174 	struct bio *bio;
2175 	struct bio_list bios;
2176 	struct blk_plug plug;
2177 	unsigned count = 0;
2178 
2179 	if (tc->requeue_mode) {
2180 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2181 				BLK_STS_DM_REQUEUE);
2182 		return;
2183 	}
2184 
2185 	bio_list_init(&bios);
2186 
2187 	spin_lock_irqsave(&tc->lock, flags);
2188 
2189 	if (bio_list_empty(&tc->deferred_bio_list)) {
2190 		spin_unlock_irqrestore(&tc->lock, flags);
2191 		return;
2192 	}
2193 
2194 	__sort_thin_deferred_bios(tc);
2195 
2196 	bio_list_merge(&bios, &tc->deferred_bio_list);
2197 	bio_list_init(&tc->deferred_bio_list);
2198 
2199 	spin_unlock_irqrestore(&tc->lock, flags);
2200 
2201 	blk_start_plug(&plug);
2202 	while ((bio = bio_list_pop(&bios))) {
2203 		/*
2204 		 * If we've got no free new_mapping structs, and processing
2205 		 * this bio might require one, we pause until there are some
2206 		 * prepared mappings to process.
2207 		 */
2208 		if (ensure_next_mapping(pool)) {
2209 			spin_lock_irqsave(&tc->lock, flags);
2210 			bio_list_add(&tc->deferred_bio_list, bio);
2211 			bio_list_merge(&tc->deferred_bio_list, &bios);
2212 			spin_unlock_irqrestore(&tc->lock, flags);
2213 			break;
2214 		}
2215 
2216 		if (bio_op(bio) == REQ_OP_DISCARD)
2217 			pool->process_discard(tc, bio);
2218 		else
2219 			pool->process_bio(tc, bio);
2220 
2221 		if ((count++ & 127) == 0) {
2222 			throttle_work_update(&pool->throttle);
2223 			dm_pool_issue_prefetches(pool->pmd);
2224 		}
2225 	}
2226 	blk_finish_plug(&plug);
2227 }
2228 
2229 static int cmp_cells(const void *lhs, const void *rhs)
2230 {
2231 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2232 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2233 
2234 	BUG_ON(!lhs_cell->holder);
2235 	BUG_ON(!rhs_cell->holder);
2236 
2237 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2238 		return -1;
2239 
2240 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2241 		return 1;
2242 
2243 	return 0;
2244 }
2245 
2246 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2247 {
2248 	unsigned count = 0;
2249 	struct dm_bio_prison_cell *cell, *tmp;
2250 
2251 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2252 		if (count >= CELL_SORT_ARRAY_SIZE)
2253 			break;
2254 
2255 		pool->cell_sort_array[count++] = cell;
2256 		list_del(&cell->user_list);
2257 	}
2258 
2259 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2260 
2261 	return count;
2262 }
2263 
2264 static void process_thin_deferred_cells(struct thin_c *tc)
2265 {
2266 	struct pool *pool = tc->pool;
2267 	unsigned long flags;
2268 	struct list_head cells;
2269 	struct dm_bio_prison_cell *cell;
2270 	unsigned i, j, count;
2271 
2272 	INIT_LIST_HEAD(&cells);
2273 
2274 	spin_lock_irqsave(&tc->lock, flags);
2275 	list_splice_init(&tc->deferred_cells, &cells);
2276 	spin_unlock_irqrestore(&tc->lock, flags);
2277 
2278 	if (list_empty(&cells))
2279 		return;
2280 
2281 	do {
2282 		count = sort_cells(tc->pool, &cells);
2283 
2284 		for (i = 0; i < count; i++) {
2285 			cell = pool->cell_sort_array[i];
2286 			BUG_ON(!cell->holder);
2287 
2288 			/*
2289 			 * If we've got no free new_mapping structs, and processing
2290 			 * this bio might require one, we pause until there are some
2291 			 * prepared mappings to process.
2292 			 */
2293 			if (ensure_next_mapping(pool)) {
2294 				for (j = i; j < count; j++)
2295 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2296 
2297 				spin_lock_irqsave(&tc->lock, flags);
2298 				list_splice(&cells, &tc->deferred_cells);
2299 				spin_unlock_irqrestore(&tc->lock, flags);
2300 				return;
2301 			}
2302 
2303 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2304 				pool->process_discard_cell(tc, cell);
2305 			else
2306 				pool->process_cell(tc, cell);
2307 		}
2308 	} while (!list_empty(&cells));
2309 }
2310 
2311 static void thin_get(struct thin_c *tc);
2312 static void thin_put(struct thin_c *tc);
2313 
2314 /*
2315  * We can't hold rcu_read_lock() around code that can block.  So we
2316  * find a thin with the rcu lock held; bump a refcount; then drop
2317  * the lock.
2318  */
2319 static struct thin_c *get_first_thin(struct pool *pool)
2320 {
2321 	struct thin_c *tc = NULL;
2322 
2323 	rcu_read_lock();
2324 	if (!list_empty(&pool->active_thins)) {
2325 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2326 		thin_get(tc);
2327 	}
2328 	rcu_read_unlock();
2329 
2330 	return tc;
2331 }
2332 
2333 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2334 {
2335 	struct thin_c *old_tc = tc;
2336 
2337 	rcu_read_lock();
2338 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2339 		thin_get(tc);
2340 		thin_put(old_tc);
2341 		rcu_read_unlock();
2342 		return tc;
2343 	}
2344 	thin_put(old_tc);
2345 	rcu_read_unlock();
2346 
2347 	return NULL;
2348 }
2349 
2350 static void process_deferred_bios(struct pool *pool)
2351 {
2352 	unsigned long flags;
2353 	struct bio *bio;
2354 	struct bio_list bios, bio_completions;
2355 	struct thin_c *tc;
2356 
2357 	tc = get_first_thin(pool);
2358 	while (tc) {
2359 		process_thin_deferred_cells(tc);
2360 		process_thin_deferred_bios(tc);
2361 		tc = get_next_thin(pool, tc);
2362 	}
2363 
2364 	/*
2365 	 * If there are any deferred flush bios, we must commit the metadata
2366 	 * before issuing them or signaling their completion.
2367 	 */
2368 	bio_list_init(&bios);
2369 	bio_list_init(&bio_completions);
2370 
2371 	spin_lock_irqsave(&pool->lock, flags);
2372 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2373 	bio_list_init(&pool->deferred_flush_bios);
2374 
2375 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2376 	bio_list_init(&pool->deferred_flush_completions);
2377 	spin_unlock_irqrestore(&pool->lock, flags);
2378 
2379 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2380 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2381 		return;
2382 
2383 	if (commit(pool)) {
2384 		bio_list_merge(&bios, &bio_completions);
2385 
2386 		while ((bio = bio_list_pop(&bios)))
2387 			bio_io_error(bio);
2388 		return;
2389 	}
2390 	pool->last_commit_jiffies = jiffies;
2391 
2392 	while ((bio = bio_list_pop(&bio_completions)))
2393 		bio_endio(bio);
2394 
2395 	while ((bio = bio_list_pop(&bios)))
2396 		generic_make_request(bio);
2397 }
2398 
2399 static void do_worker(struct work_struct *ws)
2400 {
2401 	struct pool *pool = container_of(ws, struct pool, worker);
2402 
2403 	throttle_work_start(&pool->throttle);
2404 	dm_pool_issue_prefetches(pool->pmd);
2405 	throttle_work_update(&pool->throttle);
2406 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2407 	throttle_work_update(&pool->throttle);
2408 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2409 	throttle_work_update(&pool->throttle);
2410 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2411 	throttle_work_update(&pool->throttle);
2412 	process_deferred_bios(pool);
2413 	throttle_work_complete(&pool->throttle);
2414 }
2415 
2416 /*
2417  * We want to commit periodically so that not too much
2418  * unwritten data builds up.
2419  */
2420 static void do_waker(struct work_struct *ws)
2421 {
2422 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2423 	wake_worker(pool);
2424 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2425 }
2426 
2427 /*
2428  * We're holding onto IO to allow userland time to react.  After the
2429  * timeout either the pool will have been resized (and thus back in
2430  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2431  */
2432 static void do_no_space_timeout(struct work_struct *ws)
2433 {
2434 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2435 					 no_space_timeout);
2436 
2437 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2438 		pool->pf.error_if_no_space = true;
2439 		notify_of_pool_mode_change(pool);
2440 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2441 	}
2442 }
2443 
2444 /*----------------------------------------------------------------*/
2445 
2446 struct pool_work {
2447 	struct work_struct worker;
2448 	struct completion complete;
2449 };
2450 
2451 static struct pool_work *to_pool_work(struct work_struct *ws)
2452 {
2453 	return container_of(ws, struct pool_work, worker);
2454 }
2455 
2456 static void pool_work_complete(struct pool_work *pw)
2457 {
2458 	complete(&pw->complete);
2459 }
2460 
2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2462 			   void (*fn)(struct work_struct *))
2463 {
2464 	INIT_WORK_ONSTACK(&pw->worker, fn);
2465 	init_completion(&pw->complete);
2466 	queue_work(pool->wq, &pw->worker);
2467 	wait_for_completion(&pw->complete);
2468 }
2469 
2470 /*----------------------------------------------------------------*/
2471 
2472 struct noflush_work {
2473 	struct pool_work pw;
2474 	struct thin_c *tc;
2475 };
2476 
2477 static struct noflush_work *to_noflush(struct work_struct *ws)
2478 {
2479 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2480 }
2481 
2482 static void do_noflush_start(struct work_struct *ws)
2483 {
2484 	struct noflush_work *w = to_noflush(ws);
2485 	w->tc->requeue_mode = true;
2486 	requeue_io(w->tc);
2487 	pool_work_complete(&w->pw);
2488 }
2489 
2490 static void do_noflush_stop(struct work_struct *ws)
2491 {
2492 	struct noflush_work *w = to_noflush(ws);
2493 	w->tc->requeue_mode = false;
2494 	pool_work_complete(&w->pw);
2495 }
2496 
2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2498 {
2499 	struct noflush_work w;
2500 
2501 	w.tc = tc;
2502 	pool_work_wait(&w.pw, tc->pool, fn);
2503 }
2504 
2505 /*----------------------------------------------------------------*/
2506 
2507 static bool passdown_enabled(struct pool_c *pt)
2508 {
2509 	return pt->adjusted_pf.discard_passdown;
2510 }
2511 
2512 static void set_discard_callbacks(struct pool *pool)
2513 {
2514 	struct pool_c *pt = pool->ti->private;
2515 
2516 	if (passdown_enabled(pt)) {
2517 		pool->process_discard_cell = process_discard_cell_passdown;
2518 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2519 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2520 	} else {
2521 		pool->process_discard_cell = process_discard_cell_no_passdown;
2522 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2523 	}
2524 }
2525 
2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2527 {
2528 	struct pool_c *pt = pool->ti->private;
2529 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2530 	enum pool_mode old_mode = get_pool_mode(pool);
2531 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2532 
2533 	/*
2534 	 * Never allow the pool to transition to PM_WRITE mode if user
2535 	 * intervention is required to verify metadata and data consistency.
2536 	 */
2537 	if (new_mode == PM_WRITE && needs_check) {
2538 		DMERR("%s: unable to switch pool to write mode until repaired.",
2539 		      dm_device_name(pool->pool_md));
2540 		if (old_mode != new_mode)
2541 			new_mode = old_mode;
2542 		else
2543 			new_mode = PM_READ_ONLY;
2544 	}
2545 	/*
2546 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2547 	 * not going to recover without a thin_repair.	So we never let the
2548 	 * pool move out of the old mode.
2549 	 */
2550 	if (old_mode == PM_FAIL)
2551 		new_mode = old_mode;
2552 
2553 	switch (new_mode) {
2554 	case PM_FAIL:
2555 		dm_pool_metadata_read_only(pool->pmd);
2556 		pool->process_bio = process_bio_fail;
2557 		pool->process_discard = process_bio_fail;
2558 		pool->process_cell = process_cell_fail;
2559 		pool->process_discard_cell = process_cell_fail;
2560 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2561 		pool->process_prepared_discard = process_prepared_discard_fail;
2562 
2563 		error_retry_list(pool);
2564 		break;
2565 
2566 	case PM_OUT_OF_METADATA_SPACE:
2567 	case PM_READ_ONLY:
2568 		dm_pool_metadata_read_only(pool->pmd);
2569 		pool->process_bio = process_bio_read_only;
2570 		pool->process_discard = process_bio_success;
2571 		pool->process_cell = process_cell_read_only;
2572 		pool->process_discard_cell = process_cell_success;
2573 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2574 		pool->process_prepared_discard = process_prepared_discard_success;
2575 
2576 		error_retry_list(pool);
2577 		break;
2578 
2579 	case PM_OUT_OF_DATA_SPACE:
2580 		/*
2581 		 * Ideally we'd never hit this state; the low water mark
2582 		 * would trigger userland to extend the pool before we
2583 		 * completely run out of data space.  However, many small
2584 		 * IOs to unprovisioned space can consume data space at an
2585 		 * alarming rate.  Adjust your low water mark if you're
2586 		 * frequently seeing this mode.
2587 		 */
2588 		pool->out_of_data_space = true;
2589 		pool->process_bio = process_bio_read_only;
2590 		pool->process_discard = process_discard_bio;
2591 		pool->process_cell = process_cell_read_only;
2592 		pool->process_prepared_mapping = process_prepared_mapping;
2593 		set_discard_callbacks(pool);
2594 
2595 		if (!pool->pf.error_if_no_space && no_space_timeout)
2596 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2597 		break;
2598 
2599 	case PM_WRITE:
2600 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2601 			cancel_delayed_work_sync(&pool->no_space_timeout);
2602 		pool->out_of_data_space = false;
2603 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2604 		dm_pool_metadata_read_write(pool->pmd);
2605 		pool->process_bio = process_bio;
2606 		pool->process_discard = process_discard_bio;
2607 		pool->process_cell = process_cell;
2608 		pool->process_prepared_mapping = process_prepared_mapping;
2609 		set_discard_callbacks(pool);
2610 		break;
2611 	}
2612 
2613 	pool->pf.mode = new_mode;
2614 	/*
2615 	 * The pool mode may have changed, sync it so bind_control_target()
2616 	 * doesn't cause an unexpected mode transition on resume.
2617 	 */
2618 	pt->adjusted_pf.mode = new_mode;
2619 
2620 	if (old_mode != new_mode)
2621 		notify_of_pool_mode_change(pool);
2622 }
2623 
2624 static void abort_transaction(struct pool *pool)
2625 {
2626 	const char *dev_name = dm_device_name(pool->pool_md);
2627 
2628 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2629 	if (dm_pool_abort_metadata(pool->pmd)) {
2630 		DMERR("%s: failed to abort metadata transaction", dev_name);
2631 		set_pool_mode(pool, PM_FAIL);
2632 	}
2633 
2634 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2635 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2636 		set_pool_mode(pool, PM_FAIL);
2637 	}
2638 }
2639 
2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2641 {
2642 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643 		    dm_device_name(pool->pool_md), op, r);
2644 
2645 	abort_transaction(pool);
2646 	set_pool_mode(pool, PM_READ_ONLY);
2647 }
2648 
2649 /*----------------------------------------------------------------*/
2650 
2651 /*
2652  * Mapping functions.
2653  */
2654 
2655 /*
2656  * Called only while mapping a thin bio to hand it over to the workqueue.
2657  */
2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2659 {
2660 	unsigned long flags;
2661 	struct pool *pool = tc->pool;
2662 
2663 	spin_lock_irqsave(&tc->lock, flags);
2664 	bio_list_add(&tc->deferred_bio_list, bio);
2665 	spin_unlock_irqrestore(&tc->lock, flags);
2666 
2667 	wake_worker(pool);
2668 }
2669 
2670 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671 {
2672 	struct pool *pool = tc->pool;
2673 
2674 	throttle_lock(&pool->throttle);
2675 	thin_defer_bio(tc, bio);
2676 	throttle_unlock(&pool->throttle);
2677 }
2678 
2679 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680 {
2681 	unsigned long flags;
2682 	struct pool *pool = tc->pool;
2683 
2684 	throttle_lock(&pool->throttle);
2685 	spin_lock_irqsave(&tc->lock, flags);
2686 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2687 	spin_unlock_irqrestore(&tc->lock, flags);
2688 	throttle_unlock(&pool->throttle);
2689 
2690 	wake_worker(pool);
2691 }
2692 
2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2694 {
2695 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2696 
2697 	h->tc = tc;
2698 	h->shared_read_entry = NULL;
2699 	h->all_io_entry = NULL;
2700 	h->overwrite_mapping = NULL;
2701 	h->cell = NULL;
2702 }
2703 
2704 /*
2705  * Non-blocking function called from the thin target's map function.
2706  */
2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2708 {
2709 	int r;
2710 	struct thin_c *tc = ti->private;
2711 	dm_block_t block = get_bio_block(tc, bio);
2712 	struct dm_thin_device *td = tc->td;
2713 	struct dm_thin_lookup_result result;
2714 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2715 	struct dm_cell_key key;
2716 
2717 	thin_hook_bio(tc, bio);
2718 
2719 	if (tc->requeue_mode) {
2720 		bio->bi_status = BLK_STS_DM_REQUEUE;
2721 		bio_endio(bio);
2722 		return DM_MAPIO_SUBMITTED;
2723 	}
2724 
2725 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2726 		bio_io_error(bio);
2727 		return DM_MAPIO_SUBMITTED;
2728 	}
2729 
2730 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731 		thin_defer_bio_with_throttle(tc, bio);
2732 		return DM_MAPIO_SUBMITTED;
2733 	}
2734 
2735 	/*
2736 	 * We must hold the virtual cell before doing the lookup, otherwise
2737 	 * there's a race with discard.
2738 	 */
2739 	build_virtual_key(tc->td, block, &key);
2740 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741 		return DM_MAPIO_SUBMITTED;
2742 
2743 	r = dm_thin_find_block(td, block, 0, &result);
2744 
2745 	/*
2746 	 * Note that we defer readahead too.
2747 	 */
2748 	switch (r) {
2749 	case 0:
2750 		if (unlikely(result.shared)) {
2751 			/*
2752 			 * We have a race condition here between the
2753 			 * result.shared value returned by the lookup and
2754 			 * snapshot creation, which may cause new
2755 			 * sharing.
2756 			 *
2757 			 * To avoid this always quiesce the origin before
2758 			 * taking the snap.  You want to do this anyway to
2759 			 * ensure a consistent application view
2760 			 * (i.e. lockfs).
2761 			 *
2762 			 * More distant ancestors are irrelevant. The
2763 			 * shared flag will be set in their case.
2764 			 */
2765 			thin_defer_cell(tc, virt_cell);
2766 			return DM_MAPIO_SUBMITTED;
2767 		}
2768 
2769 		build_data_key(tc->td, result.block, &key);
2770 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771 			cell_defer_no_holder(tc, virt_cell);
2772 			return DM_MAPIO_SUBMITTED;
2773 		}
2774 
2775 		inc_all_io_entry(tc->pool, bio);
2776 		cell_defer_no_holder(tc, data_cell);
2777 		cell_defer_no_holder(tc, virt_cell);
2778 
2779 		remap(tc, bio, result.block);
2780 		return DM_MAPIO_REMAPPED;
2781 
2782 	case -ENODATA:
2783 	case -EWOULDBLOCK:
2784 		thin_defer_cell(tc, virt_cell);
2785 		return DM_MAPIO_SUBMITTED;
2786 
2787 	default:
2788 		/*
2789 		 * Must always call bio_io_error on failure.
2790 		 * dm_thin_find_block can fail with -EINVAL if the
2791 		 * pool is switched to fail-io mode.
2792 		 */
2793 		bio_io_error(bio);
2794 		cell_defer_no_holder(tc, virt_cell);
2795 		return DM_MAPIO_SUBMITTED;
2796 	}
2797 }
2798 
2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2800 {
2801 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802 	struct request_queue *q;
2803 
2804 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805 		return 1;
2806 
2807 	q = bdev_get_queue(pt->data_dev->bdev);
2808 	return bdi_congested(q->backing_dev_info, bdi_bits);
2809 }
2810 
2811 static void requeue_bios(struct pool *pool)
2812 {
2813 	unsigned long flags;
2814 	struct thin_c *tc;
2815 
2816 	rcu_read_lock();
2817 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2818 		spin_lock_irqsave(&tc->lock, flags);
2819 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2820 		bio_list_init(&tc->retry_on_resume_list);
2821 		spin_unlock_irqrestore(&tc->lock, flags);
2822 	}
2823 	rcu_read_unlock();
2824 }
2825 
2826 /*----------------------------------------------------------------
2827  * Binding of control targets to a pool object
2828  *--------------------------------------------------------------*/
2829 static bool data_dev_supports_discard(struct pool_c *pt)
2830 {
2831 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2832 
2833 	return q && blk_queue_discard(q);
2834 }
2835 
2836 static bool is_factor(sector_t block_size, uint32_t n)
2837 {
2838 	return !sector_div(block_size, n);
2839 }
2840 
2841 /*
2842  * If discard_passdown was enabled verify that the data device
2843  * supports discards.  Disable discard_passdown if not.
2844  */
2845 static void disable_passdown_if_not_supported(struct pool_c *pt)
2846 {
2847 	struct pool *pool = pt->pool;
2848 	struct block_device *data_bdev = pt->data_dev->bdev;
2849 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2850 	const char *reason = NULL;
2851 	char buf[BDEVNAME_SIZE];
2852 
2853 	if (!pt->adjusted_pf.discard_passdown)
2854 		return;
2855 
2856 	if (!data_dev_supports_discard(pt))
2857 		reason = "discard unsupported";
2858 
2859 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2860 		reason = "max discard sectors smaller than a block";
2861 
2862 	if (reason) {
2863 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2864 		pt->adjusted_pf.discard_passdown = false;
2865 	}
2866 }
2867 
2868 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2869 {
2870 	struct pool_c *pt = ti->private;
2871 
2872 	/*
2873 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2874 	 */
2875 	enum pool_mode old_mode = get_pool_mode(pool);
2876 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2877 
2878 	/*
2879 	 * Don't change the pool's mode until set_pool_mode() below.
2880 	 * Otherwise the pool's process_* function pointers may
2881 	 * not match the desired pool mode.
2882 	 */
2883 	pt->adjusted_pf.mode = old_mode;
2884 
2885 	pool->ti = ti;
2886 	pool->pf = pt->adjusted_pf;
2887 	pool->low_water_blocks = pt->low_water_blocks;
2888 
2889 	set_pool_mode(pool, new_mode);
2890 
2891 	return 0;
2892 }
2893 
2894 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2895 {
2896 	if (pool->ti == ti)
2897 		pool->ti = NULL;
2898 }
2899 
2900 /*----------------------------------------------------------------
2901  * Pool creation
2902  *--------------------------------------------------------------*/
2903 /* Initialize pool features. */
2904 static void pool_features_init(struct pool_features *pf)
2905 {
2906 	pf->mode = PM_WRITE;
2907 	pf->zero_new_blocks = true;
2908 	pf->discard_enabled = true;
2909 	pf->discard_passdown = true;
2910 	pf->error_if_no_space = false;
2911 }
2912 
2913 static void __pool_destroy(struct pool *pool)
2914 {
2915 	__pool_table_remove(pool);
2916 
2917 	vfree(pool->cell_sort_array);
2918 	if (dm_pool_metadata_close(pool->pmd) < 0)
2919 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2920 
2921 	dm_bio_prison_destroy(pool->prison);
2922 	dm_kcopyd_client_destroy(pool->copier);
2923 
2924 	if (pool->wq)
2925 		destroy_workqueue(pool->wq);
2926 
2927 	if (pool->next_mapping)
2928 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2929 	mempool_exit(&pool->mapping_pool);
2930 	dm_deferred_set_destroy(pool->shared_read_ds);
2931 	dm_deferred_set_destroy(pool->all_io_ds);
2932 	kfree(pool);
2933 }
2934 
2935 static struct kmem_cache *_new_mapping_cache;
2936 
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938 				struct block_device *metadata_dev,
2939 				unsigned long block_size,
2940 				int read_only, char **error)
2941 {
2942 	int r;
2943 	void *err_p;
2944 	struct pool *pool;
2945 	struct dm_pool_metadata *pmd;
2946 	bool format_device = read_only ? false : true;
2947 
2948 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949 	if (IS_ERR(pmd)) {
2950 		*error = "Error creating metadata object";
2951 		return (struct pool *)pmd;
2952 	}
2953 
2954 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955 	if (!pool) {
2956 		*error = "Error allocating memory for pool";
2957 		err_p = ERR_PTR(-ENOMEM);
2958 		goto bad_pool;
2959 	}
2960 
2961 	pool->pmd = pmd;
2962 	pool->sectors_per_block = block_size;
2963 	if (block_size & (block_size - 1))
2964 		pool->sectors_per_block_shift = -1;
2965 	else
2966 		pool->sectors_per_block_shift = __ffs(block_size);
2967 	pool->low_water_blocks = 0;
2968 	pool_features_init(&pool->pf);
2969 	pool->prison = dm_bio_prison_create();
2970 	if (!pool->prison) {
2971 		*error = "Error creating pool's bio prison";
2972 		err_p = ERR_PTR(-ENOMEM);
2973 		goto bad_prison;
2974 	}
2975 
2976 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977 	if (IS_ERR(pool->copier)) {
2978 		r = PTR_ERR(pool->copier);
2979 		*error = "Error creating pool's kcopyd client";
2980 		err_p = ERR_PTR(r);
2981 		goto bad_kcopyd_client;
2982 	}
2983 
2984 	/*
2985 	 * Create singlethreaded workqueue that will service all devices
2986 	 * that use this metadata.
2987 	 */
2988 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989 	if (!pool->wq) {
2990 		*error = "Error creating pool's workqueue";
2991 		err_p = ERR_PTR(-ENOMEM);
2992 		goto bad_wq;
2993 	}
2994 
2995 	throttle_init(&pool->throttle);
2996 	INIT_WORK(&pool->worker, do_worker);
2997 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2998 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999 	spin_lock_init(&pool->lock);
3000 	bio_list_init(&pool->deferred_flush_bios);
3001 	bio_list_init(&pool->deferred_flush_completions);
3002 	INIT_LIST_HEAD(&pool->prepared_mappings);
3003 	INIT_LIST_HEAD(&pool->prepared_discards);
3004 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005 	INIT_LIST_HEAD(&pool->active_thins);
3006 	pool->low_water_triggered = false;
3007 	pool->suspended = true;
3008 	pool->out_of_data_space = false;
3009 
3010 	pool->shared_read_ds = dm_deferred_set_create();
3011 	if (!pool->shared_read_ds) {
3012 		*error = "Error creating pool's shared read deferred set";
3013 		err_p = ERR_PTR(-ENOMEM);
3014 		goto bad_shared_read_ds;
3015 	}
3016 
3017 	pool->all_io_ds = dm_deferred_set_create();
3018 	if (!pool->all_io_ds) {
3019 		*error = "Error creating pool's all io deferred set";
3020 		err_p = ERR_PTR(-ENOMEM);
3021 		goto bad_all_io_ds;
3022 	}
3023 
3024 	pool->next_mapping = NULL;
3025 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026 				   _new_mapping_cache);
3027 	if (r) {
3028 		*error = "Error creating pool's mapping mempool";
3029 		err_p = ERR_PTR(r);
3030 		goto bad_mapping_pool;
3031 	}
3032 
3033 	pool->cell_sort_array =
3034 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035 				   sizeof(*pool->cell_sort_array)));
3036 	if (!pool->cell_sort_array) {
3037 		*error = "Error allocating cell sort array";
3038 		err_p = ERR_PTR(-ENOMEM);
3039 		goto bad_sort_array;
3040 	}
3041 
3042 	pool->ref_count = 1;
3043 	pool->last_commit_jiffies = jiffies;
3044 	pool->pool_md = pool_md;
3045 	pool->md_dev = metadata_dev;
3046 	__pool_table_insert(pool);
3047 
3048 	return pool;
3049 
3050 bad_sort_array:
3051 	mempool_exit(&pool->mapping_pool);
3052 bad_mapping_pool:
3053 	dm_deferred_set_destroy(pool->all_io_ds);
3054 bad_all_io_ds:
3055 	dm_deferred_set_destroy(pool->shared_read_ds);
3056 bad_shared_read_ds:
3057 	destroy_workqueue(pool->wq);
3058 bad_wq:
3059 	dm_kcopyd_client_destroy(pool->copier);
3060 bad_kcopyd_client:
3061 	dm_bio_prison_destroy(pool->prison);
3062 bad_prison:
3063 	kfree(pool);
3064 bad_pool:
3065 	if (dm_pool_metadata_close(pmd))
3066 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3067 
3068 	return err_p;
3069 }
3070 
3071 static void __pool_inc(struct pool *pool)
3072 {
3073 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074 	pool->ref_count++;
3075 }
3076 
3077 static void __pool_dec(struct pool *pool)
3078 {
3079 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3080 	BUG_ON(!pool->ref_count);
3081 	if (!--pool->ref_count)
3082 		__pool_destroy(pool);
3083 }
3084 
3085 static struct pool *__pool_find(struct mapped_device *pool_md,
3086 				struct block_device *metadata_dev,
3087 				unsigned long block_size, int read_only,
3088 				char **error, int *created)
3089 {
3090 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3091 
3092 	if (pool) {
3093 		if (pool->pool_md != pool_md) {
3094 			*error = "metadata device already in use by a pool";
3095 			return ERR_PTR(-EBUSY);
3096 		}
3097 		__pool_inc(pool);
3098 
3099 	} else {
3100 		pool = __pool_table_lookup(pool_md);
3101 		if (pool) {
3102 			if (pool->md_dev != metadata_dev) {
3103 				*error = "different pool cannot replace a pool";
3104 				return ERR_PTR(-EINVAL);
3105 			}
3106 			__pool_inc(pool);
3107 
3108 		} else {
3109 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3110 			*created = 1;
3111 		}
3112 	}
3113 
3114 	return pool;
3115 }
3116 
3117 /*----------------------------------------------------------------
3118  * Pool target methods
3119  *--------------------------------------------------------------*/
3120 static void pool_dtr(struct dm_target *ti)
3121 {
3122 	struct pool_c *pt = ti->private;
3123 
3124 	mutex_lock(&dm_thin_pool_table.mutex);
3125 
3126 	unbind_control_target(pt->pool, ti);
3127 	__pool_dec(pt->pool);
3128 	dm_put_device(ti, pt->metadata_dev);
3129 	dm_put_device(ti, pt->data_dev);
3130 	kfree(pt);
3131 
3132 	mutex_unlock(&dm_thin_pool_table.mutex);
3133 }
3134 
3135 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3136 			       struct dm_target *ti)
3137 {
3138 	int r;
3139 	unsigned argc;
3140 	const char *arg_name;
3141 
3142 	static const struct dm_arg _args[] = {
3143 		{0, 4, "Invalid number of pool feature arguments"},
3144 	};
3145 
3146 	/*
3147 	 * No feature arguments supplied.
3148 	 */
3149 	if (!as->argc)
3150 		return 0;
3151 
3152 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3153 	if (r)
3154 		return -EINVAL;
3155 
3156 	while (argc && !r) {
3157 		arg_name = dm_shift_arg(as);
3158 		argc--;
3159 
3160 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3161 			pf->zero_new_blocks = false;
3162 
3163 		else if (!strcasecmp(arg_name, "ignore_discard"))
3164 			pf->discard_enabled = false;
3165 
3166 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3167 			pf->discard_passdown = false;
3168 
3169 		else if (!strcasecmp(arg_name, "read_only"))
3170 			pf->mode = PM_READ_ONLY;
3171 
3172 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3173 			pf->error_if_no_space = true;
3174 
3175 		else {
3176 			ti->error = "Unrecognised pool feature requested";
3177 			r = -EINVAL;
3178 			break;
3179 		}
3180 	}
3181 
3182 	return r;
3183 }
3184 
3185 static void metadata_low_callback(void *context)
3186 {
3187 	struct pool *pool = context;
3188 
3189 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3190 	       dm_device_name(pool->pool_md));
3191 
3192 	dm_table_event(pool->ti->table);
3193 }
3194 
3195 static sector_t get_dev_size(struct block_device *bdev)
3196 {
3197 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3198 }
3199 
3200 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3201 {
3202 	sector_t metadata_dev_size = get_dev_size(bdev);
3203 	char buffer[BDEVNAME_SIZE];
3204 
3205 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3206 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3207 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3208 }
3209 
3210 static sector_t get_metadata_dev_size(struct block_device *bdev)
3211 {
3212 	sector_t metadata_dev_size = get_dev_size(bdev);
3213 
3214 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3215 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3216 
3217 	return metadata_dev_size;
3218 }
3219 
3220 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3221 {
3222 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3223 
3224 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3225 
3226 	return metadata_dev_size;
3227 }
3228 
3229 /*
3230  * When a metadata threshold is crossed a dm event is triggered, and
3231  * userland should respond by growing the metadata device.  We could let
3232  * userland set the threshold, like we do with the data threshold, but I'm
3233  * not sure they know enough to do this well.
3234  */
3235 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3236 {
3237 	/*
3238 	 * 4M is ample for all ops with the possible exception of thin
3239 	 * device deletion which is harmless if it fails (just retry the
3240 	 * delete after you've grown the device).
3241 	 */
3242 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3243 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3244 }
3245 
3246 /*
3247  * thin-pool <metadata dev> <data dev>
3248  *	     <data block size (sectors)>
3249  *	     <low water mark (blocks)>
3250  *	     [<#feature args> [<arg>]*]
3251  *
3252  * Optional feature arguments are:
3253  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3254  *	     ignore_discard: disable discard
3255  *	     no_discard_passdown: don't pass discards down to the data device
3256  *	     read_only: Don't allow any changes to be made to the pool metadata.
3257  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3258  */
3259 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3260 {
3261 	int r, pool_created = 0;
3262 	struct pool_c *pt;
3263 	struct pool *pool;
3264 	struct pool_features pf;
3265 	struct dm_arg_set as;
3266 	struct dm_dev *data_dev;
3267 	unsigned long block_size;
3268 	dm_block_t low_water_blocks;
3269 	struct dm_dev *metadata_dev;
3270 	fmode_t metadata_mode;
3271 
3272 	/*
3273 	 * FIXME Remove validation from scope of lock.
3274 	 */
3275 	mutex_lock(&dm_thin_pool_table.mutex);
3276 
3277 	if (argc < 4) {
3278 		ti->error = "Invalid argument count";
3279 		r = -EINVAL;
3280 		goto out_unlock;
3281 	}
3282 
3283 	as.argc = argc;
3284 	as.argv = argv;
3285 
3286 	/*
3287 	 * Set default pool features.
3288 	 */
3289 	pool_features_init(&pf);
3290 
3291 	dm_consume_args(&as, 4);
3292 	r = parse_pool_features(&as, &pf, ti);
3293 	if (r)
3294 		goto out_unlock;
3295 
3296 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3297 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3298 	if (r) {
3299 		ti->error = "Error opening metadata block device";
3300 		goto out_unlock;
3301 	}
3302 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3303 
3304 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3305 	if (r) {
3306 		ti->error = "Error getting data device";
3307 		goto out_metadata;
3308 	}
3309 
3310 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3311 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3312 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3313 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3314 		ti->error = "Invalid block size";
3315 		r = -EINVAL;
3316 		goto out;
3317 	}
3318 
3319 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3320 		ti->error = "Invalid low water mark";
3321 		r = -EINVAL;
3322 		goto out;
3323 	}
3324 
3325 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3326 	if (!pt) {
3327 		r = -ENOMEM;
3328 		goto out;
3329 	}
3330 
3331 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3332 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3333 	if (IS_ERR(pool)) {
3334 		r = PTR_ERR(pool);
3335 		goto out_free_pt;
3336 	}
3337 
3338 	/*
3339 	 * 'pool_created' reflects whether this is the first table load.
3340 	 * Top level discard support is not allowed to be changed after
3341 	 * initial load.  This would require a pool reload to trigger thin
3342 	 * device changes.
3343 	 */
3344 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3345 		ti->error = "Discard support cannot be disabled once enabled";
3346 		r = -EINVAL;
3347 		goto out_flags_changed;
3348 	}
3349 
3350 	pt->pool = pool;
3351 	pt->ti = ti;
3352 	pt->metadata_dev = metadata_dev;
3353 	pt->data_dev = data_dev;
3354 	pt->low_water_blocks = low_water_blocks;
3355 	pt->adjusted_pf = pt->requested_pf = pf;
3356 	ti->num_flush_bios = 1;
3357 
3358 	/*
3359 	 * Only need to enable discards if the pool should pass
3360 	 * them down to the data device.  The thin device's discard
3361 	 * processing will cause mappings to be removed from the btree.
3362 	 */
3363 	if (pf.discard_enabled && pf.discard_passdown) {
3364 		ti->num_discard_bios = 1;
3365 
3366 		/*
3367 		 * Setting 'discards_supported' circumvents the normal
3368 		 * stacking of discard limits (this keeps the pool and
3369 		 * thin devices' discard limits consistent).
3370 		 */
3371 		ti->discards_supported = true;
3372 	}
3373 	ti->private = pt;
3374 
3375 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3376 						calc_metadata_threshold(pt),
3377 						metadata_low_callback,
3378 						pool);
3379 	if (r)
3380 		goto out_flags_changed;
3381 
3382 	pt->callbacks.congested_fn = pool_is_congested;
3383 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3384 
3385 	mutex_unlock(&dm_thin_pool_table.mutex);
3386 
3387 	return 0;
3388 
3389 out_flags_changed:
3390 	__pool_dec(pool);
3391 out_free_pt:
3392 	kfree(pt);
3393 out:
3394 	dm_put_device(ti, data_dev);
3395 out_metadata:
3396 	dm_put_device(ti, metadata_dev);
3397 out_unlock:
3398 	mutex_unlock(&dm_thin_pool_table.mutex);
3399 
3400 	return r;
3401 }
3402 
3403 static int pool_map(struct dm_target *ti, struct bio *bio)
3404 {
3405 	int r;
3406 	struct pool_c *pt = ti->private;
3407 	struct pool *pool = pt->pool;
3408 	unsigned long flags;
3409 
3410 	/*
3411 	 * As this is a singleton target, ti->begin is always zero.
3412 	 */
3413 	spin_lock_irqsave(&pool->lock, flags);
3414 	bio_set_dev(bio, pt->data_dev->bdev);
3415 	r = DM_MAPIO_REMAPPED;
3416 	spin_unlock_irqrestore(&pool->lock, flags);
3417 
3418 	return r;
3419 }
3420 
3421 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3422 {
3423 	int r;
3424 	struct pool_c *pt = ti->private;
3425 	struct pool *pool = pt->pool;
3426 	sector_t data_size = ti->len;
3427 	dm_block_t sb_data_size;
3428 
3429 	*need_commit = false;
3430 
3431 	(void) sector_div(data_size, pool->sectors_per_block);
3432 
3433 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3434 	if (r) {
3435 		DMERR("%s: failed to retrieve data device size",
3436 		      dm_device_name(pool->pool_md));
3437 		return r;
3438 	}
3439 
3440 	if (data_size < sb_data_size) {
3441 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3442 		      dm_device_name(pool->pool_md),
3443 		      (unsigned long long)data_size, sb_data_size);
3444 		return -EINVAL;
3445 
3446 	} else if (data_size > sb_data_size) {
3447 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3448 			DMERR("%s: unable to grow the data device until repaired.",
3449 			      dm_device_name(pool->pool_md));
3450 			return 0;
3451 		}
3452 
3453 		if (sb_data_size)
3454 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3455 			       dm_device_name(pool->pool_md),
3456 			       sb_data_size, (unsigned long long)data_size);
3457 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3458 		if (r) {
3459 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3460 			return r;
3461 		}
3462 
3463 		*need_commit = true;
3464 	}
3465 
3466 	return 0;
3467 }
3468 
3469 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3470 {
3471 	int r;
3472 	struct pool_c *pt = ti->private;
3473 	struct pool *pool = pt->pool;
3474 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3475 
3476 	*need_commit = false;
3477 
3478 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3479 
3480 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3481 	if (r) {
3482 		DMERR("%s: failed to retrieve metadata device size",
3483 		      dm_device_name(pool->pool_md));
3484 		return r;
3485 	}
3486 
3487 	if (metadata_dev_size < sb_metadata_dev_size) {
3488 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3489 		      dm_device_name(pool->pool_md),
3490 		      metadata_dev_size, sb_metadata_dev_size);
3491 		return -EINVAL;
3492 
3493 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3494 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3495 			DMERR("%s: unable to grow the metadata device until repaired.",
3496 			      dm_device_name(pool->pool_md));
3497 			return 0;
3498 		}
3499 
3500 		warn_if_metadata_device_too_big(pool->md_dev);
3501 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3502 		       dm_device_name(pool->pool_md),
3503 		       sb_metadata_dev_size, metadata_dev_size);
3504 
3505 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3506 			set_pool_mode(pool, PM_WRITE);
3507 
3508 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3509 		if (r) {
3510 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3511 			return r;
3512 		}
3513 
3514 		*need_commit = true;
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 /*
3521  * Retrieves the number of blocks of the data device from
3522  * the superblock and compares it to the actual device size,
3523  * thus resizing the data device in case it has grown.
3524  *
3525  * This both copes with opening preallocated data devices in the ctr
3526  * being followed by a resume
3527  * -and-
3528  * calling the resume method individually after userspace has
3529  * grown the data device in reaction to a table event.
3530  */
3531 static int pool_preresume(struct dm_target *ti)
3532 {
3533 	int r;
3534 	bool need_commit1, need_commit2;
3535 	struct pool_c *pt = ti->private;
3536 	struct pool *pool = pt->pool;
3537 
3538 	/*
3539 	 * Take control of the pool object.
3540 	 */
3541 	r = bind_control_target(pool, ti);
3542 	if (r)
3543 		return r;
3544 
3545 	r = maybe_resize_data_dev(ti, &need_commit1);
3546 	if (r)
3547 		return r;
3548 
3549 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3550 	if (r)
3551 		return r;
3552 
3553 	if (need_commit1 || need_commit2)
3554 		(void) commit(pool);
3555 
3556 	return 0;
3557 }
3558 
3559 static void pool_suspend_active_thins(struct pool *pool)
3560 {
3561 	struct thin_c *tc;
3562 
3563 	/* Suspend all active thin devices */
3564 	tc = get_first_thin(pool);
3565 	while (tc) {
3566 		dm_internal_suspend_noflush(tc->thin_md);
3567 		tc = get_next_thin(pool, tc);
3568 	}
3569 }
3570 
3571 static void pool_resume_active_thins(struct pool *pool)
3572 {
3573 	struct thin_c *tc;
3574 
3575 	/* Resume all active thin devices */
3576 	tc = get_first_thin(pool);
3577 	while (tc) {
3578 		dm_internal_resume(tc->thin_md);
3579 		tc = get_next_thin(pool, tc);
3580 	}
3581 }
3582 
3583 static void pool_resume(struct dm_target *ti)
3584 {
3585 	struct pool_c *pt = ti->private;
3586 	struct pool *pool = pt->pool;
3587 	unsigned long flags;
3588 
3589 	/*
3590 	 * Must requeue active_thins' bios and then resume
3591 	 * active_thins _before_ clearing 'suspend' flag.
3592 	 */
3593 	requeue_bios(pool);
3594 	pool_resume_active_thins(pool);
3595 
3596 	spin_lock_irqsave(&pool->lock, flags);
3597 	pool->low_water_triggered = false;
3598 	pool->suspended = false;
3599 	spin_unlock_irqrestore(&pool->lock, flags);
3600 
3601 	do_waker(&pool->waker.work);
3602 }
3603 
3604 static void pool_presuspend(struct dm_target *ti)
3605 {
3606 	struct pool_c *pt = ti->private;
3607 	struct pool *pool = pt->pool;
3608 	unsigned long flags;
3609 
3610 	spin_lock_irqsave(&pool->lock, flags);
3611 	pool->suspended = true;
3612 	spin_unlock_irqrestore(&pool->lock, flags);
3613 
3614 	pool_suspend_active_thins(pool);
3615 }
3616 
3617 static void pool_presuspend_undo(struct dm_target *ti)
3618 {
3619 	struct pool_c *pt = ti->private;
3620 	struct pool *pool = pt->pool;
3621 	unsigned long flags;
3622 
3623 	pool_resume_active_thins(pool);
3624 
3625 	spin_lock_irqsave(&pool->lock, flags);
3626 	pool->suspended = false;
3627 	spin_unlock_irqrestore(&pool->lock, flags);
3628 }
3629 
3630 static void pool_postsuspend(struct dm_target *ti)
3631 {
3632 	struct pool_c *pt = ti->private;
3633 	struct pool *pool = pt->pool;
3634 
3635 	cancel_delayed_work_sync(&pool->waker);
3636 	cancel_delayed_work_sync(&pool->no_space_timeout);
3637 	flush_workqueue(pool->wq);
3638 	(void) commit(pool);
3639 }
3640 
3641 static int check_arg_count(unsigned argc, unsigned args_required)
3642 {
3643 	if (argc != args_required) {
3644 		DMWARN("Message received with %u arguments instead of %u.",
3645 		       argc, args_required);
3646 		return -EINVAL;
3647 	}
3648 
3649 	return 0;
3650 }
3651 
3652 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3653 {
3654 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3655 	    *dev_id <= MAX_DEV_ID)
3656 		return 0;
3657 
3658 	if (warning)
3659 		DMWARN("Message received with invalid device id: %s", arg);
3660 
3661 	return -EINVAL;
3662 }
3663 
3664 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3665 {
3666 	dm_thin_id dev_id;
3667 	int r;
3668 
3669 	r = check_arg_count(argc, 2);
3670 	if (r)
3671 		return r;
3672 
3673 	r = read_dev_id(argv[1], &dev_id, 1);
3674 	if (r)
3675 		return r;
3676 
3677 	r = dm_pool_create_thin(pool->pmd, dev_id);
3678 	if (r) {
3679 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3680 		       argv[1]);
3681 		return r;
3682 	}
3683 
3684 	return 0;
3685 }
3686 
3687 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3688 {
3689 	dm_thin_id dev_id;
3690 	dm_thin_id origin_dev_id;
3691 	int r;
3692 
3693 	r = check_arg_count(argc, 3);
3694 	if (r)
3695 		return r;
3696 
3697 	r = read_dev_id(argv[1], &dev_id, 1);
3698 	if (r)
3699 		return r;
3700 
3701 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3702 	if (r)
3703 		return r;
3704 
3705 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3706 	if (r) {
3707 		DMWARN("Creation of new snapshot %s of device %s failed.",
3708 		       argv[1], argv[2]);
3709 		return r;
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3716 {
3717 	dm_thin_id dev_id;
3718 	int r;
3719 
3720 	r = check_arg_count(argc, 2);
3721 	if (r)
3722 		return r;
3723 
3724 	r = read_dev_id(argv[1], &dev_id, 1);
3725 	if (r)
3726 		return r;
3727 
3728 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3729 	if (r)
3730 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3731 
3732 	return r;
3733 }
3734 
3735 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3736 {
3737 	dm_thin_id old_id, new_id;
3738 	int r;
3739 
3740 	r = check_arg_count(argc, 3);
3741 	if (r)
3742 		return r;
3743 
3744 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3745 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3746 		return -EINVAL;
3747 	}
3748 
3749 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3750 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3751 		return -EINVAL;
3752 	}
3753 
3754 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3755 	if (r) {
3756 		DMWARN("Failed to change transaction id from %s to %s.",
3757 		       argv[1], argv[2]);
3758 		return r;
3759 	}
3760 
3761 	return 0;
3762 }
3763 
3764 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3765 {
3766 	int r;
3767 
3768 	r = check_arg_count(argc, 1);
3769 	if (r)
3770 		return r;
3771 
3772 	(void) commit(pool);
3773 
3774 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3775 	if (r)
3776 		DMWARN("reserve_metadata_snap message failed.");
3777 
3778 	return r;
3779 }
3780 
3781 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3782 {
3783 	int r;
3784 
3785 	r = check_arg_count(argc, 1);
3786 	if (r)
3787 		return r;
3788 
3789 	r = dm_pool_release_metadata_snap(pool->pmd);
3790 	if (r)
3791 		DMWARN("release_metadata_snap message failed.");
3792 
3793 	return r;
3794 }
3795 
3796 /*
3797  * Messages supported:
3798  *   create_thin	<dev_id>
3799  *   create_snap	<dev_id> <origin_id>
3800  *   delete		<dev_id>
3801  *   set_transaction_id <current_trans_id> <new_trans_id>
3802  *   reserve_metadata_snap
3803  *   release_metadata_snap
3804  */
3805 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3806 			char *result, unsigned maxlen)
3807 {
3808 	int r = -EINVAL;
3809 	struct pool_c *pt = ti->private;
3810 	struct pool *pool = pt->pool;
3811 
3812 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3813 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3814 		      dm_device_name(pool->pool_md));
3815 		return -EOPNOTSUPP;
3816 	}
3817 
3818 	if (!strcasecmp(argv[0], "create_thin"))
3819 		r = process_create_thin_mesg(argc, argv, pool);
3820 
3821 	else if (!strcasecmp(argv[0], "create_snap"))
3822 		r = process_create_snap_mesg(argc, argv, pool);
3823 
3824 	else if (!strcasecmp(argv[0], "delete"))
3825 		r = process_delete_mesg(argc, argv, pool);
3826 
3827 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3828 		r = process_set_transaction_id_mesg(argc, argv, pool);
3829 
3830 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3831 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3832 
3833 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3834 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3835 
3836 	else
3837 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3838 
3839 	if (!r)
3840 		(void) commit(pool);
3841 
3842 	return r;
3843 }
3844 
3845 static void emit_flags(struct pool_features *pf, char *result,
3846 		       unsigned sz, unsigned maxlen)
3847 {
3848 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3849 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3850 		pf->error_if_no_space;
3851 	DMEMIT("%u ", count);
3852 
3853 	if (!pf->zero_new_blocks)
3854 		DMEMIT("skip_block_zeroing ");
3855 
3856 	if (!pf->discard_enabled)
3857 		DMEMIT("ignore_discard ");
3858 
3859 	if (!pf->discard_passdown)
3860 		DMEMIT("no_discard_passdown ");
3861 
3862 	if (pf->mode == PM_READ_ONLY)
3863 		DMEMIT("read_only ");
3864 
3865 	if (pf->error_if_no_space)
3866 		DMEMIT("error_if_no_space ");
3867 }
3868 
3869 /*
3870  * Status line is:
3871  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3872  *    <used data sectors>/<total data sectors> <held metadata root>
3873  *    <pool mode> <discard config> <no space config> <needs_check>
3874  */
3875 static void pool_status(struct dm_target *ti, status_type_t type,
3876 			unsigned status_flags, char *result, unsigned maxlen)
3877 {
3878 	int r;
3879 	unsigned sz = 0;
3880 	uint64_t transaction_id;
3881 	dm_block_t nr_free_blocks_data;
3882 	dm_block_t nr_free_blocks_metadata;
3883 	dm_block_t nr_blocks_data;
3884 	dm_block_t nr_blocks_metadata;
3885 	dm_block_t held_root;
3886 	enum pool_mode mode;
3887 	char buf[BDEVNAME_SIZE];
3888 	char buf2[BDEVNAME_SIZE];
3889 	struct pool_c *pt = ti->private;
3890 	struct pool *pool = pt->pool;
3891 
3892 	switch (type) {
3893 	case STATUSTYPE_INFO:
3894 		if (get_pool_mode(pool) == PM_FAIL) {
3895 			DMEMIT("Fail");
3896 			break;
3897 		}
3898 
3899 		/* Commit to ensure statistics aren't out-of-date */
3900 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3901 			(void) commit(pool);
3902 
3903 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3904 		if (r) {
3905 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3906 			      dm_device_name(pool->pool_md), r);
3907 			goto err;
3908 		}
3909 
3910 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3911 		if (r) {
3912 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3913 			      dm_device_name(pool->pool_md), r);
3914 			goto err;
3915 		}
3916 
3917 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3918 		if (r) {
3919 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3920 			      dm_device_name(pool->pool_md), r);
3921 			goto err;
3922 		}
3923 
3924 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3925 		if (r) {
3926 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3927 			      dm_device_name(pool->pool_md), r);
3928 			goto err;
3929 		}
3930 
3931 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3932 		if (r) {
3933 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3934 			      dm_device_name(pool->pool_md), r);
3935 			goto err;
3936 		}
3937 
3938 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3939 		if (r) {
3940 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3941 			      dm_device_name(pool->pool_md), r);
3942 			goto err;
3943 		}
3944 
3945 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3946 		       (unsigned long long)transaction_id,
3947 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3948 		       (unsigned long long)nr_blocks_metadata,
3949 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3950 		       (unsigned long long)nr_blocks_data);
3951 
3952 		if (held_root)
3953 			DMEMIT("%llu ", held_root);
3954 		else
3955 			DMEMIT("- ");
3956 
3957 		mode = get_pool_mode(pool);
3958 		if (mode == PM_OUT_OF_DATA_SPACE)
3959 			DMEMIT("out_of_data_space ");
3960 		else if (is_read_only_pool_mode(mode))
3961 			DMEMIT("ro ");
3962 		else
3963 			DMEMIT("rw ");
3964 
3965 		if (!pool->pf.discard_enabled)
3966 			DMEMIT("ignore_discard ");
3967 		else if (pool->pf.discard_passdown)
3968 			DMEMIT("discard_passdown ");
3969 		else
3970 			DMEMIT("no_discard_passdown ");
3971 
3972 		if (pool->pf.error_if_no_space)
3973 			DMEMIT("error_if_no_space ");
3974 		else
3975 			DMEMIT("queue_if_no_space ");
3976 
3977 		if (dm_pool_metadata_needs_check(pool->pmd))
3978 			DMEMIT("needs_check ");
3979 		else
3980 			DMEMIT("- ");
3981 
3982 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3983 
3984 		break;
3985 
3986 	case STATUSTYPE_TABLE:
3987 		DMEMIT("%s %s %lu %llu ",
3988 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3989 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3990 		       (unsigned long)pool->sectors_per_block,
3991 		       (unsigned long long)pt->low_water_blocks);
3992 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3993 		break;
3994 	}
3995 	return;
3996 
3997 err:
3998 	DMEMIT("Error");
3999 }
4000 
4001 static int pool_iterate_devices(struct dm_target *ti,
4002 				iterate_devices_callout_fn fn, void *data)
4003 {
4004 	struct pool_c *pt = ti->private;
4005 
4006 	return fn(ti, pt->data_dev, 0, ti->len, data);
4007 }
4008 
4009 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4010 {
4011 	struct pool_c *pt = ti->private;
4012 	struct pool *pool = pt->pool;
4013 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4014 
4015 	/*
4016 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4017 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4018 	 * This is especially beneficial when the pool's data device is a RAID
4019 	 * device that has a full stripe width that matches pool->sectors_per_block
4020 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4021 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4022 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4023 	 */
4024 	if (limits->max_sectors < pool->sectors_per_block) {
4025 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4026 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4027 				limits->max_sectors--;
4028 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4029 		}
4030 	}
4031 
4032 	/*
4033 	 * If the system-determined stacked limits are compatible with the
4034 	 * pool's blocksize (io_opt is a factor) do not override them.
4035 	 */
4036 	if (io_opt_sectors < pool->sectors_per_block ||
4037 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4038 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4039 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4040 		else
4041 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4042 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4043 	}
4044 
4045 	/*
4046 	 * pt->adjusted_pf is a staging area for the actual features to use.
4047 	 * They get transferred to the live pool in bind_control_target()
4048 	 * called from pool_preresume().
4049 	 */
4050 	if (!pt->adjusted_pf.discard_enabled) {
4051 		/*
4052 		 * Must explicitly disallow stacking discard limits otherwise the
4053 		 * block layer will stack them if pool's data device has support.
4054 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4055 		 * user to see that, so make sure to set all discard limits to 0.
4056 		 */
4057 		limits->discard_granularity = 0;
4058 		return;
4059 	}
4060 
4061 	disable_passdown_if_not_supported(pt);
4062 
4063 	/*
4064 	 * The pool uses the same discard limits as the underlying data
4065 	 * device.  DM core has already set this up.
4066 	 */
4067 }
4068 
4069 static struct target_type pool_target = {
4070 	.name = "thin-pool",
4071 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4072 		    DM_TARGET_IMMUTABLE,
4073 	.version = {1, 21, 0},
4074 	.module = THIS_MODULE,
4075 	.ctr = pool_ctr,
4076 	.dtr = pool_dtr,
4077 	.map = pool_map,
4078 	.presuspend = pool_presuspend,
4079 	.presuspend_undo = pool_presuspend_undo,
4080 	.postsuspend = pool_postsuspend,
4081 	.preresume = pool_preresume,
4082 	.resume = pool_resume,
4083 	.message = pool_message,
4084 	.status = pool_status,
4085 	.iterate_devices = pool_iterate_devices,
4086 	.io_hints = pool_io_hints,
4087 };
4088 
4089 /*----------------------------------------------------------------
4090  * Thin target methods
4091  *--------------------------------------------------------------*/
4092 static void thin_get(struct thin_c *tc)
4093 {
4094 	refcount_inc(&tc->refcount);
4095 }
4096 
4097 static void thin_put(struct thin_c *tc)
4098 {
4099 	if (refcount_dec_and_test(&tc->refcount))
4100 		complete(&tc->can_destroy);
4101 }
4102 
4103 static void thin_dtr(struct dm_target *ti)
4104 {
4105 	struct thin_c *tc = ti->private;
4106 	unsigned long flags;
4107 
4108 	spin_lock_irqsave(&tc->pool->lock, flags);
4109 	list_del_rcu(&tc->list);
4110 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4111 	synchronize_rcu();
4112 
4113 	thin_put(tc);
4114 	wait_for_completion(&tc->can_destroy);
4115 
4116 	mutex_lock(&dm_thin_pool_table.mutex);
4117 
4118 	__pool_dec(tc->pool);
4119 	dm_pool_close_thin_device(tc->td);
4120 	dm_put_device(ti, tc->pool_dev);
4121 	if (tc->origin_dev)
4122 		dm_put_device(ti, tc->origin_dev);
4123 	kfree(tc);
4124 
4125 	mutex_unlock(&dm_thin_pool_table.mutex);
4126 }
4127 
4128 /*
4129  * Thin target parameters:
4130  *
4131  * <pool_dev> <dev_id> [origin_dev]
4132  *
4133  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4134  * dev_id: the internal device identifier
4135  * origin_dev: a device external to the pool that should act as the origin
4136  *
4137  * If the pool device has discards disabled, they get disabled for the thin
4138  * device as well.
4139  */
4140 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4141 {
4142 	int r;
4143 	struct thin_c *tc;
4144 	struct dm_dev *pool_dev, *origin_dev;
4145 	struct mapped_device *pool_md;
4146 	unsigned long flags;
4147 
4148 	mutex_lock(&dm_thin_pool_table.mutex);
4149 
4150 	if (argc != 2 && argc != 3) {
4151 		ti->error = "Invalid argument count";
4152 		r = -EINVAL;
4153 		goto out_unlock;
4154 	}
4155 
4156 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4157 	if (!tc) {
4158 		ti->error = "Out of memory";
4159 		r = -ENOMEM;
4160 		goto out_unlock;
4161 	}
4162 	tc->thin_md = dm_table_get_md(ti->table);
4163 	spin_lock_init(&tc->lock);
4164 	INIT_LIST_HEAD(&tc->deferred_cells);
4165 	bio_list_init(&tc->deferred_bio_list);
4166 	bio_list_init(&tc->retry_on_resume_list);
4167 	tc->sort_bio_list = RB_ROOT;
4168 
4169 	if (argc == 3) {
4170 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4171 		if (r) {
4172 			ti->error = "Error opening origin device";
4173 			goto bad_origin_dev;
4174 		}
4175 		tc->origin_dev = origin_dev;
4176 	}
4177 
4178 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4179 	if (r) {
4180 		ti->error = "Error opening pool device";
4181 		goto bad_pool_dev;
4182 	}
4183 	tc->pool_dev = pool_dev;
4184 
4185 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4186 		ti->error = "Invalid device id";
4187 		r = -EINVAL;
4188 		goto bad_common;
4189 	}
4190 
4191 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4192 	if (!pool_md) {
4193 		ti->error = "Couldn't get pool mapped device";
4194 		r = -EINVAL;
4195 		goto bad_common;
4196 	}
4197 
4198 	tc->pool = __pool_table_lookup(pool_md);
4199 	if (!tc->pool) {
4200 		ti->error = "Couldn't find pool object";
4201 		r = -EINVAL;
4202 		goto bad_pool_lookup;
4203 	}
4204 	__pool_inc(tc->pool);
4205 
4206 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4207 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4208 		r = -EINVAL;
4209 		goto bad_pool;
4210 	}
4211 
4212 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4213 	if (r) {
4214 		ti->error = "Couldn't open thin internal device";
4215 		goto bad_pool;
4216 	}
4217 
4218 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4219 	if (r)
4220 		goto bad;
4221 
4222 	ti->num_flush_bios = 1;
4223 	ti->flush_supported = true;
4224 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4225 
4226 	/* In case the pool supports discards, pass them on. */
4227 	if (tc->pool->pf.discard_enabled) {
4228 		ti->discards_supported = true;
4229 		ti->num_discard_bios = 1;
4230 		ti->split_discard_bios = false;
4231 	}
4232 
4233 	mutex_unlock(&dm_thin_pool_table.mutex);
4234 
4235 	spin_lock_irqsave(&tc->pool->lock, flags);
4236 	if (tc->pool->suspended) {
4237 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4238 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4239 		ti->error = "Unable to activate thin device while pool is suspended";
4240 		r = -EINVAL;
4241 		goto bad;
4242 	}
4243 	refcount_set(&tc->refcount, 1);
4244 	init_completion(&tc->can_destroy);
4245 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4246 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4247 	/*
4248 	 * This synchronize_rcu() call is needed here otherwise we risk a
4249 	 * wake_worker() call finding no bios to process (because the newly
4250 	 * added tc isn't yet visible).  So this reduces latency since we
4251 	 * aren't then dependent on the periodic commit to wake_worker().
4252 	 */
4253 	synchronize_rcu();
4254 
4255 	dm_put(pool_md);
4256 
4257 	return 0;
4258 
4259 bad:
4260 	dm_pool_close_thin_device(tc->td);
4261 bad_pool:
4262 	__pool_dec(tc->pool);
4263 bad_pool_lookup:
4264 	dm_put(pool_md);
4265 bad_common:
4266 	dm_put_device(ti, tc->pool_dev);
4267 bad_pool_dev:
4268 	if (tc->origin_dev)
4269 		dm_put_device(ti, tc->origin_dev);
4270 bad_origin_dev:
4271 	kfree(tc);
4272 out_unlock:
4273 	mutex_unlock(&dm_thin_pool_table.mutex);
4274 
4275 	return r;
4276 }
4277 
4278 static int thin_map(struct dm_target *ti, struct bio *bio)
4279 {
4280 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4281 
4282 	return thin_bio_map(ti, bio);
4283 }
4284 
4285 static int thin_endio(struct dm_target *ti, struct bio *bio,
4286 		blk_status_t *err)
4287 {
4288 	unsigned long flags;
4289 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4290 	struct list_head work;
4291 	struct dm_thin_new_mapping *m, *tmp;
4292 	struct pool *pool = h->tc->pool;
4293 
4294 	if (h->shared_read_entry) {
4295 		INIT_LIST_HEAD(&work);
4296 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4297 
4298 		spin_lock_irqsave(&pool->lock, flags);
4299 		list_for_each_entry_safe(m, tmp, &work, list) {
4300 			list_del(&m->list);
4301 			__complete_mapping_preparation(m);
4302 		}
4303 		spin_unlock_irqrestore(&pool->lock, flags);
4304 	}
4305 
4306 	if (h->all_io_entry) {
4307 		INIT_LIST_HEAD(&work);
4308 		dm_deferred_entry_dec(h->all_io_entry, &work);
4309 		if (!list_empty(&work)) {
4310 			spin_lock_irqsave(&pool->lock, flags);
4311 			list_for_each_entry_safe(m, tmp, &work, list)
4312 				list_add_tail(&m->list, &pool->prepared_discards);
4313 			spin_unlock_irqrestore(&pool->lock, flags);
4314 			wake_worker(pool);
4315 		}
4316 	}
4317 
4318 	if (h->cell)
4319 		cell_defer_no_holder(h->tc, h->cell);
4320 
4321 	return DM_ENDIO_DONE;
4322 }
4323 
4324 static void thin_presuspend(struct dm_target *ti)
4325 {
4326 	struct thin_c *tc = ti->private;
4327 
4328 	if (dm_noflush_suspending(ti))
4329 		noflush_work(tc, do_noflush_start);
4330 }
4331 
4332 static void thin_postsuspend(struct dm_target *ti)
4333 {
4334 	struct thin_c *tc = ti->private;
4335 
4336 	/*
4337 	 * The dm_noflush_suspending flag has been cleared by now, so
4338 	 * unfortunately we must always run this.
4339 	 */
4340 	noflush_work(tc, do_noflush_stop);
4341 }
4342 
4343 static int thin_preresume(struct dm_target *ti)
4344 {
4345 	struct thin_c *tc = ti->private;
4346 
4347 	if (tc->origin_dev)
4348 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4349 
4350 	return 0;
4351 }
4352 
4353 /*
4354  * <nr mapped sectors> <highest mapped sector>
4355  */
4356 static void thin_status(struct dm_target *ti, status_type_t type,
4357 			unsigned status_flags, char *result, unsigned maxlen)
4358 {
4359 	int r;
4360 	ssize_t sz = 0;
4361 	dm_block_t mapped, highest;
4362 	char buf[BDEVNAME_SIZE];
4363 	struct thin_c *tc = ti->private;
4364 
4365 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4366 		DMEMIT("Fail");
4367 		return;
4368 	}
4369 
4370 	if (!tc->td)
4371 		DMEMIT("-");
4372 	else {
4373 		switch (type) {
4374 		case STATUSTYPE_INFO:
4375 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4376 			if (r) {
4377 				DMERR("dm_thin_get_mapped_count returned %d", r);
4378 				goto err;
4379 			}
4380 
4381 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4382 			if (r < 0) {
4383 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4384 				goto err;
4385 			}
4386 
4387 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4388 			if (r)
4389 				DMEMIT("%llu", ((highest + 1) *
4390 						tc->pool->sectors_per_block) - 1);
4391 			else
4392 				DMEMIT("-");
4393 			break;
4394 
4395 		case STATUSTYPE_TABLE:
4396 			DMEMIT("%s %lu",
4397 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4398 			       (unsigned long) tc->dev_id);
4399 			if (tc->origin_dev)
4400 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4401 			break;
4402 		}
4403 	}
4404 
4405 	return;
4406 
4407 err:
4408 	DMEMIT("Error");
4409 }
4410 
4411 static int thin_iterate_devices(struct dm_target *ti,
4412 				iterate_devices_callout_fn fn, void *data)
4413 {
4414 	sector_t blocks;
4415 	struct thin_c *tc = ti->private;
4416 	struct pool *pool = tc->pool;
4417 
4418 	/*
4419 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4420 	 * we follow a more convoluted path through to the pool's target.
4421 	 */
4422 	if (!pool->ti)
4423 		return 0;	/* nothing is bound */
4424 
4425 	blocks = pool->ti->len;
4426 	(void) sector_div(blocks, pool->sectors_per_block);
4427 	if (blocks)
4428 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4429 
4430 	return 0;
4431 }
4432 
4433 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4434 {
4435 	struct thin_c *tc = ti->private;
4436 	struct pool *pool = tc->pool;
4437 
4438 	if (!pool->pf.discard_enabled)
4439 		return;
4440 
4441 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4442 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4443 }
4444 
4445 static struct target_type thin_target = {
4446 	.name = "thin",
4447 	.version = {1, 21, 0},
4448 	.module	= THIS_MODULE,
4449 	.ctr = thin_ctr,
4450 	.dtr = thin_dtr,
4451 	.map = thin_map,
4452 	.end_io = thin_endio,
4453 	.preresume = thin_preresume,
4454 	.presuspend = thin_presuspend,
4455 	.postsuspend = thin_postsuspend,
4456 	.status = thin_status,
4457 	.iterate_devices = thin_iterate_devices,
4458 	.io_hints = thin_io_hints,
4459 };
4460 
4461 /*----------------------------------------------------------------*/
4462 
4463 static int __init dm_thin_init(void)
4464 {
4465 	int r = -ENOMEM;
4466 
4467 	pool_table_init();
4468 
4469 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4470 	if (!_new_mapping_cache)
4471 		return r;
4472 
4473 	r = dm_register_target(&thin_target);
4474 	if (r)
4475 		goto bad_new_mapping_cache;
4476 
4477 	r = dm_register_target(&pool_target);
4478 	if (r)
4479 		goto bad_thin_target;
4480 
4481 	return 0;
4482 
4483 bad_thin_target:
4484 	dm_unregister_target(&thin_target);
4485 bad_new_mapping_cache:
4486 	kmem_cache_destroy(_new_mapping_cache);
4487 
4488 	return r;
4489 }
4490 
4491 static void dm_thin_exit(void)
4492 {
4493 	dm_unregister_target(&thin_target);
4494 	dm_unregister_target(&pool_target);
4495 
4496 	kmem_cache_destroy(_new_mapping_cache);
4497 
4498 	pool_table_exit();
4499 }
4500 
4501 module_init(dm_thin_init);
4502 module_exit(dm_thin_exit);
4503 
4504 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4505 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4506 
4507 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4508 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4509 MODULE_LICENSE("GPL");
4510