1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011-2012 Red Hat UK. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-thin-metadata.h" 9 #include "dm-bio-prison-v1.h" 10 #include "dm.h" 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/log2.h> 17 #include <linux/list.h> 18 #include <linux/rculist.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sort.h> 24 #include <linux/rbtree.h> 25 26 #define DM_MSG_PREFIX "thin" 27 28 /* 29 * Tunable constants 30 */ 31 #define ENDIO_HOOK_POOL_SIZE 1024 32 #define MAPPING_POOL_SIZE 1024 33 #define COMMIT_PERIOD HZ 34 #define NO_SPACE_TIMEOUT_SECS 60 35 36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 37 38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 39 "A percentage of time allocated for copy on write"); 40 41 /* 42 * The block size of the device holding pool data must be 43 * between 64KB and 1GB. 44 */ 45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 47 48 /* 49 * Device id is restricted to 24 bits. 50 */ 51 #define MAX_DEV_ID ((1 << 24) - 1) 52 53 /* 54 * How do we handle breaking sharing of data blocks? 55 * ================================================= 56 * 57 * We use a standard copy-on-write btree to store the mappings for the 58 * devices (note I'm talking about copy-on-write of the metadata here, not 59 * the data). When you take an internal snapshot you clone the root node 60 * of the origin btree. After this there is no concept of an origin or a 61 * snapshot. They are just two device trees that happen to point to the 62 * same data blocks. 63 * 64 * When we get a write in we decide if it's to a shared data block using 65 * some timestamp magic. If it is, we have to break sharing. 66 * 67 * Let's say we write to a shared block in what was the origin. The 68 * steps are: 69 * 70 * i) plug io further to this physical block. (see bio_prison code). 71 * 72 * ii) quiesce any read io to that shared data block. Obviously 73 * including all devices that share this block. (see dm_deferred_set code) 74 * 75 * iii) copy the data block to a newly allocate block. This step can be 76 * missed out if the io covers the block. (schedule_copy). 77 * 78 * iv) insert the new mapping into the origin's btree 79 * (process_prepared_mapping). This act of inserting breaks some 80 * sharing of btree nodes between the two devices. Breaking sharing only 81 * effects the btree of that specific device. Btrees for the other 82 * devices that share the block never change. The btree for the origin 83 * device as it was after the last commit is untouched, ie. we're using 84 * persistent data structures in the functional programming sense. 85 * 86 * v) unplug io to this physical block, including the io that triggered 87 * the breaking of sharing. 88 * 89 * Steps (ii) and (iii) occur in parallel. 90 * 91 * The metadata _doesn't_ need to be committed before the io continues. We 92 * get away with this because the io is always written to a _new_ block. 93 * If there's a crash, then: 94 * 95 * - The origin mapping will point to the old origin block (the shared 96 * one). This will contain the data as it was before the io that triggered 97 * the breaking of sharing came in. 98 * 99 * - The snap mapping still points to the old block. As it would after 100 * the commit. 101 * 102 * The downside of this scheme is the timestamp magic isn't perfect, and 103 * will continue to think that data block in the snapshot device is shared 104 * even after the write to the origin has broken sharing. I suspect data 105 * blocks will typically be shared by many different devices, so we're 106 * breaking sharing n + 1 times, rather than n, where n is the number of 107 * devices that reference this data block. At the moment I think the 108 * benefits far, far outweigh the disadvantages. 109 */ 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Key building. 115 */ 116 enum lock_space { 117 VIRTUAL, 118 PHYSICAL 119 }; 120 121 static bool build_key(struct dm_thin_device *td, enum lock_space ls, 122 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 123 { 124 key->virtual = (ls == VIRTUAL); 125 key->dev = dm_thin_dev_id(td); 126 key->block_begin = b; 127 key->block_end = e; 128 129 return dm_cell_key_has_valid_range(key); 130 } 131 132 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 133 struct dm_cell_key *key) 134 { 135 (void) build_key(td, PHYSICAL, b, b + 1llu, key); 136 } 137 138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 139 struct dm_cell_key *key) 140 { 141 (void) build_key(td, VIRTUAL, b, b + 1llu, key); 142 } 143 144 /*----------------------------------------------------------------*/ 145 146 #define THROTTLE_THRESHOLD (1 * HZ) 147 148 struct throttle { 149 struct rw_semaphore lock; 150 unsigned long threshold; 151 bool throttle_applied; 152 }; 153 154 static void throttle_init(struct throttle *t) 155 { 156 init_rwsem(&t->lock); 157 t->throttle_applied = false; 158 } 159 160 static void throttle_work_start(struct throttle *t) 161 { 162 t->threshold = jiffies + THROTTLE_THRESHOLD; 163 } 164 165 static void throttle_work_update(struct throttle *t) 166 { 167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 168 down_write(&t->lock); 169 t->throttle_applied = true; 170 } 171 } 172 173 static void throttle_work_complete(struct throttle *t) 174 { 175 if (t->throttle_applied) { 176 t->throttle_applied = false; 177 up_write(&t->lock); 178 } 179 } 180 181 static void throttle_lock(struct throttle *t) 182 { 183 down_read(&t->lock); 184 } 185 186 static void throttle_unlock(struct throttle *t) 187 { 188 up_read(&t->lock); 189 } 190 191 /*----------------------------------------------------------------*/ 192 193 /* 194 * A pool device ties together a metadata device and a data device. It 195 * also provides the interface for creating and destroying internal 196 * devices. 197 */ 198 struct dm_thin_new_mapping; 199 200 /* 201 * The pool runs in various modes. Ordered in degraded order for comparisons. 202 */ 203 enum pool_mode { 204 PM_WRITE, /* metadata may be changed */ 205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 206 207 /* 208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 209 */ 210 PM_OUT_OF_METADATA_SPACE, 211 PM_READ_ONLY, /* metadata may not be changed */ 212 213 PM_FAIL, /* all I/O fails */ 214 }; 215 216 struct pool_features { 217 enum pool_mode mode; 218 219 bool zero_new_blocks:1; 220 bool discard_enabled:1; 221 bool discard_passdown:1; 222 bool error_if_no_space:1; 223 }; 224 225 struct thin_c; 226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 229 230 #define CELL_SORT_ARRAY_SIZE 8192 231 232 struct pool { 233 struct list_head list; 234 struct dm_target *ti; /* Only set if a pool target is bound */ 235 236 struct mapped_device *pool_md; 237 struct block_device *data_dev; 238 struct block_device *md_dev; 239 struct dm_pool_metadata *pmd; 240 241 dm_block_t low_water_blocks; 242 uint32_t sectors_per_block; 243 int sectors_per_block_shift; 244 245 struct pool_features pf; 246 bool low_water_triggered:1; /* A dm event has been sent */ 247 bool suspended:1; 248 bool out_of_data_space:1; 249 250 struct dm_bio_prison *prison; 251 struct dm_kcopyd_client *copier; 252 253 struct work_struct worker; 254 struct workqueue_struct *wq; 255 struct throttle throttle; 256 struct delayed_work waker; 257 struct delayed_work no_space_timeout; 258 259 unsigned long last_commit_jiffies; 260 unsigned int ref_count; 261 262 spinlock_t lock; 263 struct bio_list deferred_flush_bios; 264 struct bio_list deferred_flush_completions; 265 struct list_head prepared_mappings; 266 struct list_head prepared_discards; 267 struct list_head prepared_discards_pt2; 268 struct list_head active_thins; 269 270 struct dm_deferred_set *shared_read_ds; 271 struct dm_deferred_set *all_io_ds; 272 273 struct dm_thin_new_mapping *next_mapping; 274 275 process_bio_fn process_bio; 276 process_bio_fn process_discard; 277 278 process_cell_fn process_cell; 279 process_cell_fn process_discard_cell; 280 281 process_mapping_fn process_prepared_mapping; 282 process_mapping_fn process_prepared_discard; 283 process_mapping_fn process_prepared_discard_pt2; 284 285 struct dm_bio_prison_cell **cell_sort_array; 286 287 mempool_t mapping_pool; 288 }; 289 290 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 291 292 static enum pool_mode get_pool_mode(struct pool *pool) 293 { 294 return pool->pf.mode; 295 } 296 297 static void notify_of_pool_mode_change(struct pool *pool) 298 { 299 static const char *descs[] = { 300 "write", 301 "out-of-data-space", 302 "read-only", 303 "read-only", 304 "fail" 305 }; 306 const char *extra_desc = NULL; 307 enum pool_mode mode = get_pool_mode(pool); 308 309 if (mode == PM_OUT_OF_DATA_SPACE) { 310 if (!pool->pf.error_if_no_space) 311 extra_desc = " (queue IO)"; 312 else 313 extra_desc = " (error IO)"; 314 } 315 316 dm_table_event(pool->ti->table); 317 DMINFO("%s: switching pool to %s%s mode", 318 dm_device_name(pool->pool_md), 319 descs[(int)mode], extra_desc ? : ""); 320 } 321 322 /* 323 * Target context for a pool. 324 */ 325 struct pool_c { 326 struct dm_target *ti; 327 struct pool *pool; 328 struct dm_dev *data_dev; 329 struct dm_dev *metadata_dev; 330 331 dm_block_t low_water_blocks; 332 struct pool_features requested_pf; /* Features requested during table load */ 333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 334 }; 335 336 /* 337 * Target context for a thin. 338 */ 339 struct thin_c { 340 struct list_head list; 341 struct dm_dev *pool_dev; 342 struct dm_dev *origin_dev; 343 sector_t origin_size; 344 dm_thin_id dev_id; 345 346 struct pool *pool; 347 struct dm_thin_device *td; 348 struct mapped_device *thin_md; 349 350 bool requeue_mode:1; 351 spinlock_t lock; 352 struct list_head deferred_cells; 353 struct bio_list deferred_bio_list; 354 struct bio_list retry_on_resume_list; 355 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 356 357 /* 358 * Ensures the thin is not destroyed until the worker has finished 359 * iterating the active_thins list. 360 */ 361 refcount_t refcount; 362 struct completion can_destroy; 363 }; 364 365 /*----------------------------------------------------------------*/ 366 367 static bool block_size_is_power_of_two(struct pool *pool) 368 { 369 return pool->sectors_per_block_shift >= 0; 370 } 371 372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 373 { 374 return block_size_is_power_of_two(pool) ? 375 (b << pool->sectors_per_block_shift) : 376 (b * pool->sectors_per_block); 377 } 378 379 /*----------------------------------------------------------------*/ 380 381 struct discard_op { 382 struct thin_c *tc; 383 struct blk_plug plug; 384 struct bio *parent_bio; 385 struct bio *bio; 386 }; 387 388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 389 { 390 BUG_ON(!parent); 391 392 op->tc = tc; 393 blk_start_plug(&op->plug); 394 op->parent_bio = parent; 395 op->bio = NULL; 396 } 397 398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 399 { 400 struct thin_c *tc = op->tc; 401 sector_t s = block_to_sectors(tc->pool, data_b); 402 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 403 404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio); 405 } 406 407 static void end_discard(struct discard_op *op, int r) 408 { 409 if (op->bio) { 410 /* 411 * Even if one of the calls to issue_discard failed, we 412 * need to wait for the chain to complete. 413 */ 414 bio_chain(op->bio, op->parent_bio); 415 op->bio->bi_opf = REQ_OP_DISCARD; 416 submit_bio(op->bio); 417 } 418 419 blk_finish_plug(&op->plug); 420 421 /* 422 * Even if r is set, there could be sub discards in flight that we 423 * need to wait for. 424 */ 425 if (r && !op->parent_bio->bi_status) 426 op->parent_bio->bi_status = errno_to_blk_status(r); 427 bio_endio(op->parent_bio); 428 } 429 430 /*----------------------------------------------------------------*/ 431 432 /* 433 * wake_worker() is used when new work is queued and when pool_resume is 434 * ready to continue deferred IO processing. 435 */ 436 static void wake_worker(struct pool *pool) 437 { 438 queue_work(pool->wq, &pool->worker); 439 } 440 441 /*----------------------------------------------------------------*/ 442 443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 444 struct dm_bio_prison_cell **cell_result) 445 { 446 int r; 447 struct dm_bio_prison_cell *cell_prealloc; 448 449 /* 450 * Allocate a cell from the prison's mempool. 451 * This might block but it can't fail. 452 */ 453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 454 455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 456 if (r) 457 /* 458 * We reused an old cell; we can get rid of 459 * the new one. 460 */ 461 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 462 463 return r; 464 } 465 466 static void cell_release(struct pool *pool, 467 struct dm_bio_prison_cell *cell, 468 struct bio_list *bios) 469 { 470 dm_cell_release(pool->prison, cell, bios); 471 dm_bio_prison_free_cell(pool->prison, cell); 472 } 473 474 static void cell_visit_release(struct pool *pool, 475 void (*fn)(void *, struct dm_bio_prison_cell *), 476 void *context, 477 struct dm_bio_prison_cell *cell) 478 { 479 dm_cell_visit_release(pool->prison, fn, context, cell); 480 dm_bio_prison_free_cell(pool->prison, cell); 481 } 482 483 static void cell_release_no_holder(struct pool *pool, 484 struct dm_bio_prison_cell *cell, 485 struct bio_list *bios) 486 { 487 dm_cell_release_no_holder(pool->prison, cell, bios); 488 dm_bio_prison_free_cell(pool->prison, cell); 489 } 490 491 static void cell_error_with_code(struct pool *pool, 492 struct dm_bio_prison_cell *cell, blk_status_t error_code) 493 { 494 dm_cell_error(pool->prison, cell, error_code); 495 dm_bio_prison_free_cell(pool->prison, cell); 496 } 497 498 static blk_status_t get_pool_io_error_code(struct pool *pool) 499 { 500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 501 } 502 503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 504 { 505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 506 } 507 508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 509 { 510 cell_error_with_code(pool, cell, 0); 511 } 512 513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 514 { 515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 516 } 517 518 /*----------------------------------------------------------------*/ 519 520 /* 521 * A global list of pools that uses a struct mapped_device as a key. 522 */ 523 static struct dm_thin_pool_table { 524 struct mutex mutex; 525 struct list_head pools; 526 } dm_thin_pool_table; 527 528 static void pool_table_init(void) 529 { 530 mutex_init(&dm_thin_pool_table.mutex); 531 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 532 } 533 534 static void pool_table_exit(void) 535 { 536 mutex_destroy(&dm_thin_pool_table.mutex); 537 } 538 539 static void __pool_table_insert(struct pool *pool) 540 { 541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 542 list_add(&pool->list, &dm_thin_pool_table.pools); 543 } 544 545 static void __pool_table_remove(struct pool *pool) 546 { 547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 548 list_del(&pool->list); 549 } 550 551 static struct pool *__pool_table_lookup(struct mapped_device *md) 552 { 553 struct pool *pool = NULL, *tmp; 554 555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 556 557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 558 if (tmp->pool_md == md) { 559 pool = tmp; 560 break; 561 } 562 } 563 564 return pool; 565 } 566 567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 568 { 569 struct pool *pool = NULL, *tmp; 570 571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 572 573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 574 if (tmp->md_dev == md_dev) { 575 pool = tmp; 576 break; 577 } 578 } 579 580 return pool; 581 } 582 583 /*----------------------------------------------------------------*/ 584 585 struct dm_thin_endio_hook { 586 struct thin_c *tc; 587 struct dm_deferred_entry *shared_read_entry; 588 struct dm_deferred_entry *all_io_entry; 589 struct dm_thin_new_mapping *overwrite_mapping; 590 struct rb_node rb_node; 591 struct dm_bio_prison_cell *cell; 592 }; 593 594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 595 { 596 bio_list_merge(bios, master); 597 bio_list_init(master); 598 } 599 600 static void error_bio_list(struct bio_list *bios, blk_status_t error) 601 { 602 struct bio *bio; 603 604 while ((bio = bio_list_pop(bios))) { 605 bio->bi_status = error; 606 bio_endio(bio); 607 } 608 } 609 610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 611 blk_status_t error) 612 { 613 struct bio_list bios; 614 615 bio_list_init(&bios); 616 617 spin_lock_irq(&tc->lock); 618 __merge_bio_list(&bios, master); 619 spin_unlock_irq(&tc->lock); 620 621 error_bio_list(&bios, error); 622 } 623 624 static void requeue_deferred_cells(struct thin_c *tc) 625 { 626 struct pool *pool = tc->pool; 627 struct list_head cells; 628 struct dm_bio_prison_cell *cell, *tmp; 629 630 INIT_LIST_HEAD(&cells); 631 632 spin_lock_irq(&tc->lock); 633 list_splice_init(&tc->deferred_cells, &cells); 634 spin_unlock_irq(&tc->lock); 635 636 list_for_each_entry_safe(cell, tmp, &cells, user_list) 637 cell_requeue(pool, cell); 638 } 639 640 static void requeue_io(struct thin_c *tc) 641 { 642 struct bio_list bios; 643 644 bio_list_init(&bios); 645 646 spin_lock_irq(&tc->lock); 647 __merge_bio_list(&bios, &tc->deferred_bio_list); 648 __merge_bio_list(&bios, &tc->retry_on_resume_list); 649 spin_unlock_irq(&tc->lock); 650 651 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 652 requeue_deferred_cells(tc); 653 } 654 655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 656 { 657 struct thin_c *tc; 658 659 rcu_read_lock(); 660 list_for_each_entry_rcu(tc, &pool->active_thins, list) 661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 662 rcu_read_unlock(); 663 } 664 665 static void error_retry_list(struct pool *pool) 666 { 667 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 668 } 669 670 /* 671 * This section of code contains the logic for processing a thin device's IO. 672 * Much of the code depends on pool object resources (lists, workqueues, etc) 673 * but most is exclusively called from the thin target rather than the thin-pool 674 * target. 675 */ 676 677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 678 { 679 struct pool *pool = tc->pool; 680 sector_t block_nr = bio->bi_iter.bi_sector; 681 682 if (block_size_is_power_of_two(pool)) 683 block_nr >>= pool->sectors_per_block_shift; 684 else 685 (void) sector_div(block_nr, pool->sectors_per_block); 686 687 return block_nr; 688 } 689 690 /* 691 * Returns the _complete_ blocks that this bio covers. 692 */ 693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 694 dm_block_t *begin, dm_block_t *end) 695 { 696 struct pool *pool = tc->pool; 697 sector_t b = bio->bi_iter.bi_sector; 698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 699 700 b += pool->sectors_per_block - 1ull; /* so we round up */ 701 702 if (block_size_is_power_of_two(pool)) { 703 b >>= pool->sectors_per_block_shift; 704 e >>= pool->sectors_per_block_shift; 705 } else { 706 (void) sector_div(b, pool->sectors_per_block); 707 (void) sector_div(e, pool->sectors_per_block); 708 } 709 710 if (e < b) 711 /* Can happen if the bio is within a single block. */ 712 e = b; 713 714 *begin = b; 715 *end = e; 716 } 717 718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 719 { 720 struct pool *pool = tc->pool; 721 sector_t bi_sector = bio->bi_iter.bi_sector; 722 723 bio_set_dev(bio, tc->pool_dev->bdev); 724 if (block_size_is_power_of_two(pool)) 725 bio->bi_iter.bi_sector = 726 (block << pool->sectors_per_block_shift) | 727 (bi_sector & (pool->sectors_per_block - 1)); 728 else 729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 730 sector_div(bi_sector, pool->sectors_per_block); 731 } 732 733 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 734 { 735 bio_set_dev(bio, tc->origin_dev->bdev); 736 } 737 738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 739 { 740 return op_is_flush(bio->bi_opf) && 741 dm_thin_changed_this_transaction(tc->td); 742 } 743 744 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 745 { 746 struct dm_thin_endio_hook *h; 747 748 if (bio_op(bio) == REQ_OP_DISCARD) 749 return; 750 751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 753 } 754 755 static void issue(struct thin_c *tc, struct bio *bio) 756 { 757 struct pool *pool = tc->pool; 758 759 if (!bio_triggers_commit(tc, bio)) { 760 dm_submit_bio_remap(bio, NULL); 761 return; 762 } 763 764 /* 765 * Complete bio with an error if earlier I/O caused changes to 766 * the metadata that can't be committed e.g, due to I/O errors 767 * on the metadata device. 768 */ 769 if (dm_thin_aborted_changes(tc->td)) { 770 bio_io_error(bio); 771 return; 772 } 773 774 /* 775 * Batch together any bios that trigger commits and then issue a 776 * single commit for them in process_deferred_bios(). 777 */ 778 spin_lock_irq(&pool->lock); 779 bio_list_add(&pool->deferred_flush_bios, bio); 780 spin_unlock_irq(&pool->lock); 781 } 782 783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 784 { 785 remap_to_origin(tc, bio); 786 issue(tc, bio); 787 } 788 789 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 790 dm_block_t block) 791 { 792 remap(tc, bio, block); 793 issue(tc, bio); 794 } 795 796 /*----------------------------------------------------------------*/ 797 798 /* 799 * Bio endio functions. 800 */ 801 struct dm_thin_new_mapping { 802 struct list_head list; 803 804 bool pass_discard:1; 805 bool maybe_shared:1; 806 807 /* 808 * Track quiescing, copying and zeroing preparation actions. When this 809 * counter hits zero the block is prepared and can be inserted into the 810 * btree. 811 */ 812 atomic_t prepare_actions; 813 814 blk_status_t status; 815 struct thin_c *tc; 816 dm_block_t virt_begin, virt_end; 817 dm_block_t data_block; 818 struct dm_bio_prison_cell *cell; 819 820 /* 821 * If the bio covers the whole area of a block then we can avoid 822 * zeroing or copying. Instead this bio is hooked. The bio will 823 * still be in the cell, so care has to be taken to avoid issuing 824 * the bio twice. 825 */ 826 struct bio *bio; 827 bio_end_io_t *saved_bi_end_io; 828 }; 829 830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 831 { 832 struct pool *pool = m->tc->pool; 833 834 if (atomic_dec_and_test(&m->prepare_actions)) { 835 list_add_tail(&m->list, &pool->prepared_mappings); 836 wake_worker(pool); 837 } 838 } 839 840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 841 { 842 unsigned long flags; 843 struct pool *pool = m->tc->pool; 844 845 spin_lock_irqsave(&pool->lock, flags); 846 __complete_mapping_preparation(m); 847 spin_unlock_irqrestore(&pool->lock, flags); 848 } 849 850 static void copy_complete(int read_err, unsigned long write_err, void *context) 851 { 852 struct dm_thin_new_mapping *m = context; 853 854 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 855 complete_mapping_preparation(m); 856 } 857 858 static void overwrite_endio(struct bio *bio) 859 { 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 struct dm_thin_new_mapping *m = h->overwrite_mapping; 862 863 bio->bi_end_io = m->saved_bi_end_io; 864 865 m->status = bio->bi_status; 866 complete_mapping_preparation(m); 867 } 868 869 /*----------------------------------------------------------------*/ 870 871 /* 872 * Workqueue. 873 */ 874 875 /* 876 * Prepared mapping jobs. 877 */ 878 879 /* 880 * This sends the bios in the cell, except the original holder, back 881 * to the deferred_bios list. 882 */ 883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 884 { 885 struct pool *pool = tc->pool; 886 unsigned long flags; 887 struct bio_list bios; 888 889 bio_list_init(&bios); 890 cell_release_no_holder(pool, cell, &bios); 891 892 if (!bio_list_empty(&bios)) { 893 spin_lock_irqsave(&tc->lock, flags); 894 bio_list_merge(&tc->deferred_bio_list, &bios); 895 spin_unlock_irqrestore(&tc->lock, flags); 896 wake_worker(pool); 897 } 898 } 899 900 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 901 902 struct remap_info { 903 struct thin_c *tc; 904 struct bio_list defer_bios; 905 struct bio_list issue_bios; 906 }; 907 908 static void __inc_remap_and_issue_cell(void *context, 909 struct dm_bio_prison_cell *cell) 910 { 911 struct remap_info *info = context; 912 struct bio *bio; 913 914 while ((bio = bio_list_pop(&cell->bios))) { 915 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 916 bio_list_add(&info->defer_bios, bio); 917 else { 918 inc_all_io_entry(info->tc->pool, bio); 919 920 /* 921 * We can't issue the bios with the bio prison lock 922 * held, so we add them to a list to issue on 923 * return from this function. 924 */ 925 bio_list_add(&info->issue_bios, bio); 926 } 927 } 928 } 929 930 static void inc_remap_and_issue_cell(struct thin_c *tc, 931 struct dm_bio_prison_cell *cell, 932 dm_block_t block) 933 { 934 struct bio *bio; 935 struct remap_info info; 936 937 info.tc = tc; 938 bio_list_init(&info.defer_bios); 939 bio_list_init(&info.issue_bios); 940 941 /* 942 * We have to be careful to inc any bios we're about to issue 943 * before the cell is released, and avoid a race with new bios 944 * being added to the cell. 945 */ 946 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 947 &info, cell); 948 949 while ((bio = bio_list_pop(&info.defer_bios))) 950 thin_defer_bio(tc, bio); 951 952 while ((bio = bio_list_pop(&info.issue_bios))) 953 remap_and_issue(info.tc, bio, block); 954 } 955 956 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 957 { 958 cell_error(m->tc->pool, m->cell); 959 list_del(&m->list); 960 mempool_free(m, &m->tc->pool->mapping_pool); 961 } 962 963 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 964 { 965 struct pool *pool = tc->pool; 966 967 /* 968 * If the bio has the REQ_FUA flag set we must commit the metadata 969 * before signaling its completion. 970 */ 971 if (!bio_triggers_commit(tc, bio)) { 972 bio_endio(bio); 973 return; 974 } 975 976 /* 977 * Complete bio with an error if earlier I/O caused changes to the 978 * metadata that can't be committed, e.g, due to I/O errors on the 979 * metadata device. 980 */ 981 if (dm_thin_aborted_changes(tc->td)) { 982 bio_io_error(bio); 983 return; 984 } 985 986 /* 987 * Batch together any bios that trigger commits and then issue a 988 * single commit for them in process_deferred_bios(). 989 */ 990 spin_lock_irq(&pool->lock); 991 bio_list_add(&pool->deferred_flush_completions, bio); 992 spin_unlock_irq(&pool->lock); 993 } 994 995 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 996 { 997 struct thin_c *tc = m->tc; 998 struct pool *pool = tc->pool; 999 struct bio *bio = m->bio; 1000 int r; 1001 1002 if (m->status) { 1003 cell_error(pool, m->cell); 1004 goto out; 1005 } 1006 1007 /* 1008 * Commit the prepared block into the mapping btree. 1009 * Any I/O for this block arriving after this point will get 1010 * remapped to it directly. 1011 */ 1012 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1013 if (r) { 1014 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1015 cell_error(pool, m->cell); 1016 goto out; 1017 } 1018 1019 /* 1020 * Release any bios held while the block was being provisioned. 1021 * If we are processing a write bio that completely covers the block, 1022 * we already processed it so can ignore it now when processing 1023 * the bios in the cell. 1024 */ 1025 if (bio) { 1026 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1027 complete_overwrite_bio(tc, bio); 1028 } else { 1029 inc_all_io_entry(tc->pool, m->cell->holder); 1030 remap_and_issue(tc, m->cell->holder, m->data_block); 1031 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1032 } 1033 1034 out: 1035 list_del(&m->list); 1036 mempool_free(m, &pool->mapping_pool); 1037 } 1038 1039 /*----------------------------------------------------------------*/ 1040 1041 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1042 { 1043 struct thin_c *tc = m->tc; 1044 1045 if (m->cell) 1046 cell_defer_no_holder(tc, m->cell); 1047 mempool_free(m, &tc->pool->mapping_pool); 1048 } 1049 1050 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1051 { 1052 bio_io_error(m->bio); 1053 free_discard_mapping(m); 1054 } 1055 1056 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1057 { 1058 bio_endio(m->bio); 1059 free_discard_mapping(m); 1060 } 1061 1062 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1063 { 1064 int r; 1065 struct thin_c *tc = m->tc; 1066 1067 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1068 if (r) { 1069 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1070 bio_io_error(m->bio); 1071 } else 1072 bio_endio(m->bio); 1073 1074 cell_defer_no_holder(tc, m->cell); 1075 mempool_free(m, &tc->pool->mapping_pool); 1076 } 1077 1078 /*----------------------------------------------------------------*/ 1079 1080 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1081 struct bio *discard_parent) 1082 { 1083 /* 1084 * We've already unmapped this range of blocks, but before we 1085 * passdown we have to check that these blocks are now unused. 1086 */ 1087 int r = 0; 1088 bool shared = true; 1089 struct thin_c *tc = m->tc; 1090 struct pool *pool = tc->pool; 1091 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1092 struct discard_op op; 1093 1094 begin_discard(&op, tc, discard_parent); 1095 while (b != end) { 1096 /* find start of unmapped run */ 1097 for (; b < end; b++) { 1098 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1099 if (r) 1100 goto out; 1101 1102 if (!shared) 1103 break; 1104 } 1105 1106 if (b == end) 1107 break; 1108 1109 /* find end of run */ 1110 for (e = b + 1; e != end; e++) { 1111 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1112 if (r) 1113 goto out; 1114 1115 if (shared) 1116 break; 1117 } 1118 1119 r = issue_discard(&op, b, e); 1120 if (r) 1121 goto out; 1122 1123 b = e; 1124 } 1125 out: 1126 end_discard(&op, r); 1127 } 1128 1129 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1130 { 1131 unsigned long flags; 1132 struct pool *pool = m->tc->pool; 1133 1134 spin_lock_irqsave(&pool->lock, flags); 1135 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1136 spin_unlock_irqrestore(&pool->lock, flags); 1137 wake_worker(pool); 1138 } 1139 1140 static void passdown_endio(struct bio *bio) 1141 { 1142 /* 1143 * It doesn't matter if the passdown discard failed, we still want 1144 * to unmap (we ignore err). 1145 */ 1146 queue_passdown_pt2(bio->bi_private); 1147 bio_put(bio); 1148 } 1149 1150 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1151 { 1152 int r; 1153 struct thin_c *tc = m->tc; 1154 struct pool *pool = tc->pool; 1155 struct bio *discard_parent; 1156 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1157 1158 /* 1159 * Only this thread allocates blocks, so we can be sure that the 1160 * newly unmapped blocks will not be allocated before the end of 1161 * the function. 1162 */ 1163 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1164 if (r) { 1165 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1166 bio_io_error(m->bio); 1167 cell_defer_no_holder(tc, m->cell); 1168 mempool_free(m, &pool->mapping_pool); 1169 return; 1170 } 1171 1172 /* 1173 * Increment the unmapped blocks. This prevents a race between the 1174 * passdown io and reallocation of freed blocks. 1175 */ 1176 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1177 if (r) { 1178 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1179 bio_io_error(m->bio); 1180 cell_defer_no_holder(tc, m->cell); 1181 mempool_free(m, &pool->mapping_pool); 1182 return; 1183 } 1184 1185 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1186 discard_parent->bi_end_io = passdown_endio; 1187 discard_parent->bi_private = m; 1188 if (m->maybe_shared) 1189 passdown_double_checking_shared_status(m, discard_parent); 1190 else { 1191 struct discard_op op; 1192 1193 begin_discard(&op, tc, discard_parent); 1194 r = issue_discard(&op, m->data_block, data_end); 1195 end_discard(&op, r); 1196 } 1197 } 1198 1199 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1200 { 1201 int r; 1202 struct thin_c *tc = m->tc; 1203 struct pool *pool = tc->pool; 1204 1205 /* 1206 * The passdown has completed, so now we can decrement all those 1207 * unmapped blocks. 1208 */ 1209 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1210 m->data_block + (m->virt_end - m->virt_begin)); 1211 if (r) { 1212 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1213 bio_io_error(m->bio); 1214 } else 1215 bio_endio(m->bio); 1216 1217 cell_defer_no_holder(tc, m->cell); 1218 mempool_free(m, &pool->mapping_pool); 1219 } 1220 1221 static void process_prepared(struct pool *pool, struct list_head *head, 1222 process_mapping_fn *fn) 1223 { 1224 struct list_head maps; 1225 struct dm_thin_new_mapping *m, *tmp; 1226 1227 INIT_LIST_HEAD(&maps); 1228 spin_lock_irq(&pool->lock); 1229 list_splice_init(head, &maps); 1230 spin_unlock_irq(&pool->lock); 1231 1232 list_for_each_entry_safe(m, tmp, &maps, list) 1233 (*fn)(m); 1234 } 1235 1236 /* 1237 * Deferred bio jobs. 1238 */ 1239 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1240 { 1241 return bio->bi_iter.bi_size == 1242 (pool->sectors_per_block << SECTOR_SHIFT); 1243 } 1244 1245 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1246 { 1247 return (bio_data_dir(bio) == WRITE) && 1248 io_overlaps_block(pool, bio); 1249 } 1250 1251 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1252 bio_end_io_t *fn) 1253 { 1254 *save = bio->bi_end_io; 1255 bio->bi_end_io = fn; 1256 } 1257 1258 static int ensure_next_mapping(struct pool *pool) 1259 { 1260 if (pool->next_mapping) 1261 return 0; 1262 1263 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1264 1265 return pool->next_mapping ? 0 : -ENOMEM; 1266 } 1267 1268 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1269 { 1270 struct dm_thin_new_mapping *m = pool->next_mapping; 1271 1272 BUG_ON(!pool->next_mapping); 1273 1274 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1275 INIT_LIST_HEAD(&m->list); 1276 m->bio = NULL; 1277 1278 pool->next_mapping = NULL; 1279 1280 return m; 1281 } 1282 1283 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1284 sector_t begin, sector_t end) 1285 { 1286 struct dm_io_region to; 1287 1288 to.bdev = tc->pool_dev->bdev; 1289 to.sector = begin; 1290 to.count = end - begin; 1291 1292 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1293 } 1294 1295 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1296 dm_block_t data_begin, 1297 struct dm_thin_new_mapping *m) 1298 { 1299 struct pool *pool = tc->pool; 1300 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1301 1302 h->overwrite_mapping = m; 1303 m->bio = bio; 1304 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1305 inc_all_io_entry(pool, bio); 1306 remap_and_issue(tc, bio, data_begin); 1307 } 1308 1309 /* 1310 * A partial copy also needs to zero the uncopied region. 1311 */ 1312 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1313 struct dm_dev *origin, dm_block_t data_origin, 1314 dm_block_t data_dest, 1315 struct dm_bio_prison_cell *cell, struct bio *bio, 1316 sector_t len) 1317 { 1318 struct pool *pool = tc->pool; 1319 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1320 1321 m->tc = tc; 1322 m->virt_begin = virt_block; 1323 m->virt_end = virt_block + 1u; 1324 m->data_block = data_dest; 1325 m->cell = cell; 1326 1327 /* 1328 * quiesce action + copy action + an extra reference held for the 1329 * duration of this function (we may need to inc later for a 1330 * partial zero). 1331 */ 1332 atomic_set(&m->prepare_actions, 3); 1333 1334 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1335 complete_mapping_preparation(m); /* already quiesced */ 1336 1337 /* 1338 * IO to pool_dev remaps to the pool target's data_dev. 1339 * 1340 * If the whole block of data is being overwritten, we can issue the 1341 * bio immediately. Otherwise we use kcopyd to clone the data first. 1342 */ 1343 if (io_overwrites_block(pool, bio)) 1344 remap_and_issue_overwrite(tc, bio, data_dest, m); 1345 else { 1346 struct dm_io_region from, to; 1347 1348 from.bdev = origin->bdev; 1349 from.sector = data_origin * pool->sectors_per_block; 1350 from.count = len; 1351 1352 to.bdev = tc->pool_dev->bdev; 1353 to.sector = data_dest * pool->sectors_per_block; 1354 to.count = len; 1355 1356 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1357 0, copy_complete, m); 1358 1359 /* 1360 * Do we need to zero a tail region? 1361 */ 1362 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1363 atomic_inc(&m->prepare_actions); 1364 ll_zero(tc, m, 1365 data_dest * pool->sectors_per_block + len, 1366 (data_dest + 1) * pool->sectors_per_block); 1367 } 1368 } 1369 1370 complete_mapping_preparation(m); /* drop our ref */ 1371 } 1372 1373 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1374 dm_block_t data_origin, dm_block_t data_dest, 1375 struct dm_bio_prison_cell *cell, struct bio *bio) 1376 { 1377 schedule_copy(tc, virt_block, tc->pool_dev, 1378 data_origin, data_dest, cell, bio, 1379 tc->pool->sectors_per_block); 1380 } 1381 1382 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1383 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1384 struct bio *bio) 1385 { 1386 struct pool *pool = tc->pool; 1387 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1388 1389 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1390 m->tc = tc; 1391 m->virt_begin = virt_block; 1392 m->virt_end = virt_block + 1u; 1393 m->data_block = data_block; 1394 m->cell = cell; 1395 1396 /* 1397 * If the whole block of data is being overwritten or we are not 1398 * zeroing pre-existing data, we can issue the bio immediately. 1399 * Otherwise we use kcopyd to zero the data first. 1400 */ 1401 if (pool->pf.zero_new_blocks) { 1402 if (io_overwrites_block(pool, bio)) 1403 remap_and_issue_overwrite(tc, bio, data_block, m); 1404 else 1405 ll_zero(tc, m, data_block * pool->sectors_per_block, 1406 (data_block + 1) * pool->sectors_per_block); 1407 } else 1408 process_prepared_mapping(m); 1409 } 1410 1411 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1412 dm_block_t data_dest, 1413 struct dm_bio_prison_cell *cell, struct bio *bio) 1414 { 1415 struct pool *pool = tc->pool; 1416 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1417 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1418 1419 if (virt_block_end <= tc->origin_size) 1420 schedule_copy(tc, virt_block, tc->origin_dev, 1421 virt_block, data_dest, cell, bio, 1422 pool->sectors_per_block); 1423 1424 else if (virt_block_begin < tc->origin_size) 1425 schedule_copy(tc, virt_block, tc->origin_dev, 1426 virt_block, data_dest, cell, bio, 1427 tc->origin_size - virt_block_begin); 1428 1429 else 1430 schedule_zero(tc, virt_block, data_dest, cell, bio); 1431 } 1432 1433 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1434 1435 static void requeue_bios(struct pool *pool); 1436 1437 static bool is_read_only_pool_mode(enum pool_mode mode) 1438 { 1439 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1440 } 1441 1442 static bool is_read_only(struct pool *pool) 1443 { 1444 return is_read_only_pool_mode(get_pool_mode(pool)); 1445 } 1446 1447 static void check_for_metadata_space(struct pool *pool) 1448 { 1449 int r; 1450 const char *ooms_reason = NULL; 1451 dm_block_t nr_free; 1452 1453 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1454 if (r) 1455 ooms_reason = "Could not get free metadata blocks"; 1456 else if (!nr_free) 1457 ooms_reason = "No free metadata blocks"; 1458 1459 if (ooms_reason && !is_read_only(pool)) { 1460 DMERR("%s", ooms_reason); 1461 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1462 } 1463 } 1464 1465 static void check_for_data_space(struct pool *pool) 1466 { 1467 int r; 1468 dm_block_t nr_free; 1469 1470 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1471 return; 1472 1473 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1474 if (r) 1475 return; 1476 1477 if (nr_free) { 1478 set_pool_mode(pool, PM_WRITE); 1479 requeue_bios(pool); 1480 } 1481 } 1482 1483 /* 1484 * A non-zero return indicates read_only or fail_io mode. 1485 * Many callers don't care about the return value. 1486 */ 1487 static int commit(struct pool *pool) 1488 { 1489 int r; 1490 1491 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1492 return -EINVAL; 1493 1494 r = dm_pool_commit_metadata(pool->pmd); 1495 if (r) 1496 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1497 else { 1498 check_for_metadata_space(pool); 1499 check_for_data_space(pool); 1500 } 1501 1502 return r; 1503 } 1504 1505 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1506 { 1507 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1508 DMWARN("%s: reached low water mark for data device: sending event.", 1509 dm_device_name(pool->pool_md)); 1510 spin_lock_irq(&pool->lock); 1511 pool->low_water_triggered = true; 1512 spin_unlock_irq(&pool->lock); 1513 dm_table_event(pool->ti->table); 1514 } 1515 } 1516 1517 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1518 { 1519 int r; 1520 dm_block_t free_blocks; 1521 struct pool *pool = tc->pool; 1522 1523 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1524 return -EINVAL; 1525 1526 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1527 if (r) { 1528 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1529 return r; 1530 } 1531 1532 check_low_water_mark(pool, free_blocks); 1533 1534 if (!free_blocks) { 1535 /* 1536 * Try to commit to see if that will free up some 1537 * more space. 1538 */ 1539 r = commit(pool); 1540 if (r) 1541 return r; 1542 1543 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1544 if (r) { 1545 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1546 return r; 1547 } 1548 1549 if (!free_blocks) { 1550 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1551 return -ENOSPC; 1552 } 1553 } 1554 1555 r = dm_pool_alloc_data_block(pool->pmd, result); 1556 if (r) { 1557 if (r == -ENOSPC) 1558 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1559 else 1560 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1561 return r; 1562 } 1563 1564 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1565 if (r) { 1566 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1567 return r; 1568 } 1569 1570 if (!free_blocks) { 1571 /* Let's commit before we use up the metadata reserve. */ 1572 r = commit(pool); 1573 if (r) 1574 return r; 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* 1581 * If we have run out of space, queue bios until the device is 1582 * resumed, presumably after having been reloaded with more space. 1583 */ 1584 static void retry_on_resume(struct bio *bio) 1585 { 1586 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1587 struct thin_c *tc = h->tc; 1588 1589 spin_lock_irq(&tc->lock); 1590 bio_list_add(&tc->retry_on_resume_list, bio); 1591 spin_unlock_irq(&tc->lock); 1592 } 1593 1594 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1595 { 1596 enum pool_mode m = get_pool_mode(pool); 1597 1598 switch (m) { 1599 case PM_WRITE: 1600 /* Shouldn't get here */ 1601 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1602 return BLK_STS_IOERR; 1603 1604 case PM_OUT_OF_DATA_SPACE: 1605 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1606 1607 case PM_OUT_OF_METADATA_SPACE: 1608 case PM_READ_ONLY: 1609 case PM_FAIL: 1610 return BLK_STS_IOERR; 1611 default: 1612 /* Shouldn't get here */ 1613 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1614 return BLK_STS_IOERR; 1615 } 1616 } 1617 1618 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1619 { 1620 blk_status_t error = should_error_unserviceable_bio(pool); 1621 1622 if (error) { 1623 bio->bi_status = error; 1624 bio_endio(bio); 1625 } else 1626 retry_on_resume(bio); 1627 } 1628 1629 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1630 { 1631 struct bio *bio; 1632 struct bio_list bios; 1633 blk_status_t error; 1634 1635 error = should_error_unserviceable_bio(pool); 1636 if (error) { 1637 cell_error_with_code(pool, cell, error); 1638 return; 1639 } 1640 1641 bio_list_init(&bios); 1642 cell_release(pool, cell, &bios); 1643 1644 while ((bio = bio_list_pop(&bios))) 1645 retry_on_resume(bio); 1646 } 1647 1648 static void process_discard_cell_no_passdown(struct thin_c *tc, 1649 struct dm_bio_prison_cell *virt_cell) 1650 { 1651 struct pool *pool = tc->pool; 1652 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1653 1654 /* 1655 * We don't need to lock the data blocks, since there's no 1656 * passdown. We only lock data blocks for allocation and breaking sharing. 1657 */ 1658 m->tc = tc; 1659 m->virt_begin = virt_cell->key.block_begin; 1660 m->virt_end = virt_cell->key.block_end; 1661 m->cell = virt_cell; 1662 m->bio = virt_cell->holder; 1663 1664 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1665 pool->process_prepared_discard(m); 1666 } 1667 1668 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1669 struct bio *bio) 1670 { 1671 struct pool *pool = tc->pool; 1672 1673 int r; 1674 bool maybe_shared; 1675 struct dm_cell_key data_key; 1676 struct dm_bio_prison_cell *data_cell; 1677 struct dm_thin_new_mapping *m; 1678 dm_block_t virt_begin, virt_end, data_begin, data_end; 1679 dm_block_t len, next_boundary; 1680 1681 while (begin != end) { 1682 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1683 &data_begin, &maybe_shared); 1684 if (r) { 1685 /* 1686 * Silently fail, letting any mappings we've 1687 * created complete. 1688 */ 1689 break; 1690 } 1691 1692 data_end = data_begin + (virt_end - virt_begin); 1693 1694 /* 1695 * Make sure the data region obeys the bio prison restrictions. 1696 */ 1697 while (data_begin < data_end) { 1698 r = ensure_next_mapping(pool); 1699 if (r) 1700 return; /* we did our best */ 1701 1702 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) 1703 << BIO_PRISON_MAX_RANGE_SHIFT; 1704 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); 1705 1706 /* This key is certainly within range given the above splitting */ 1707 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); 1708 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1709 /* contention, we'll give up with this range */ 1710 data_begin += len; 1711 continue; 1712 } 1713 1714 /* 1715 * IO may still be going to the destination block. We must 1716 * quiesce before we can do the removal. 1717 */ 1718 m = get_next_mapping(pool); 1719 m->tc = tc; 1720 m->maybe_shared = maybe_shared; 1721 m->virt_begin = virt_begin; 1722 m->virt_end = virt_begin + len; 1723 m->data_block = data_begin; 1724 m->cell = data_cell; 1725 m->bio = bio; 1726 1727 /* 1728 * The parent bio must not complete before sub discard bios are 1729 * chained to it (see end_discard's bio_chain)! 1730 * 1731 * This per-mapping bi_remaining increment is paired with 1732 * the implicit decrement that occurs via bio_endio() in 1733 * end_discard(). 1734 */ 1735 bio_inc_remaining(bio); 1736 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1737 pool->process_prepared_discard(m); 1738 1739 virt_begin += len; 1740 data_begin += len; 1741 } 1742 1743 begin = virt_end; 1744 } 1745 } 1746 1747 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1748 { 1749 struct bio *bio = virt_cell->holder; 1750 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1751 1752 /* 1753 * The virt_cell will only get freed once the origin bio completes. 1754 * This means it will remain locked while all the individual 1755 * passdown bios are in flight. 1756 */ 1757 h->cell = virt_cell; 1758 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1759 1760 /* 1761 * We complete the bio now, knowing that the bi_remaining field 1762 * will prevent completion until the sub range discards have 1763 * completed. 1764 */ 1765 bio_endio(bio); 1766 } 1767 1768 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1769 { 1770 dm_block_t begin, end; 1771 struct dm_cell_key virt_key; 1772 struct dm_bio_prison_cell *virt_cell; 1773 1774 get_bio_block_range(tc, bio, &begin, &end); 1775 if (begin == end) { 1776 /* 1777 * The discard covers less than a block. 1778 */ 1779 bio_endio(bio); 1780 return; 1781 } 1782 1783 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { 1784 DMERR_LIMIT("Discard doesn't respect bio prison limits"); 1785 bio_endio(bio); 1786 return; 1787 } 1788 1789 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { 1790 /* 1791 * Potential starvation issue: We're relying on the 1792 * fs/application being well behaved, and not trying to 1793 * send IO to a region at the same time as discarding it. 1794 * If they do this persistently then it's possible this 1795 * cell will never be granted. 1796 */ 1797 return; 1798 } 1799 1800 tc->pool->process_discard_cell(tc, virt_cell); 1801 } 1802 1803 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1804 struct dm_cell_key *key, 1805 struct dm_thin_lookup_result *lookup_result, 1806 struct dm_bio_prison_cell *cell) 1807 { 1808 int r; 1809 dm_block_t data_block; 1810 struct pool *pool = tc->pool; 1811 1812 r = alloc_data_block(tc, &data_block); 1813 switch (r) { 1814 case 0: 1815 schedule_internal_copy(tc, block, lookup_result->block, 1816 data_block, cell, bio); 1817 break; 1818 1819 case -ENOSPC: 1820 retry_bios_on_resume(pool, cell); 1821 break; 1822 1823 default: 1824 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1825 __func__, r); 1826 cell_error(pool, cell); 1827 break; 1828 } 1829 } 1830 1831 static void __remap_and_issue_shared_cell(void *context, 1832 struct dm_bio_prison_cell *cell) 1833 { 1834 struct remap_info *info = context; 1835 struct bio *bio; 1836 1837 while ((bio = bio_list_pop(&cell->bios))) { 1838 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1839 bio_op(bio) == REQ_OP_DISCARD) 1840 bio_list_add(&info->defer_bios, bio); 1841 else { 1842 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1843 1844 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1845 inc_all_io_entry(info->tc->pool, bio); 1846 bio_list_add(&info->issue_bios, bio); 1847 } 1848 } 1849 } 1850 1851 static void remap_and_issue_shared_cell(struct thin_c *tc, 1852 struct dm_bio_prison_cell *cell, 1853 dm_block_t block) 1854 { 1855 struct bio *bio; 1856 struct remap_info info; 1857 1858 info.tc = tc; 1859 bio_list_init(&info.defer_bios); 1860 bio_list_init(&info.issue_bios); 1861 1862 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1863 &info, cell); 1864 1865 while ((bio = bio_list_pop(&info.defer_bios))) 1866 thin_defer_bio(tc, bio); 1867 1868 while ((bio = bio_list_pop(&info.issue_bios))) 1869 remap_and_issue(tc, bio, block); 1870 } 1871 1872 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1873 dm_block_t block, 1874 struct dm_thin_lookup_result *lookup_result, 1875 struct dm_bio_prison_cell *virt_cell) 1876 { 1877 struct dm_bio_prison_cell *data_cell; 1878 struct pool *pool = tc->pool; 1879 struct dm_cell_key key; 1880 1881 /* 1882 * If cell is already occupied, then sharing is already in the process 1883 * of being broken so we have nothing further to do here. 1884 */ 1885 build_data_key(tc->td, lookup_result->block, &key); 1886 if (bio_detain(pool, &key, bio, &data_cell)) { 1887 cell_defer_no_holder(tc, virt_cell); 1888 return; 1889 } 1890 1891 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1892 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1893 cell_defer_no_holder(tc, virt_cell); 1894 } else { 1895 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1896 1897 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1898 inc_all_io_entry(pool, bio); 1899 remap_and_issue(tc, bio, lookup_result->block); 1900 1901 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1902 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1903 } 1904 } 1905 1906 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1907 struct dm_bio_prison_cell *cell) 1908 { 1909 int r; 1910 dm_block_t data_block; 1911 struct pool *pool = tc->pool; 1912 1913 /* 1914 * Remap empty bios (flushes) immediately, without provisioning. 1915 */ 1916 if (!bio->bi_iter.bi_size) { 1917 inc_all_io_entry(pool, bio); 1918 cell_defer_no_holder(tc, cell); 1919 1920 remap_and_issue(tc, bio, 0); 1921 return; 1922 } 1923 1924 /* 1925 * Fill read bios with zeroes and complete them immediately. 1926 */ 1927 if (bio_data_dir(bio) == READ) { 1928 zero_fill_bio(bio); 1929 cell_defer_no_holder(tc, cell); 1930 bio_endio(bio); 1931 return; 1932 } 1933 1934 r = alloc_data_block(tc, &data_block); 1935 switch (r) { 1936 case 0: 1937 if (tc->origin_dev) 1938 schedule_external_copy(tc, block, data_block, cell, bio); 1939 else 1940 schedule_zero(tc, block, data_block, cell, bio); 1941 break; 1942 1943 case -ENOSPC: 1944 retry_bios_on_resume(pool, cell); 1945 break; 1946 1947 default: 1948 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1949 __func__, r); 1950 cell_error(pool, cell); 1951 break; 1952 } 1953 } 1954 1955 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1956 { 1957 int r; 1958 struct pool *pool = tc->pool; 1959 struct bio *bio = cell->holder; 1960 dm_block_t block = get_bio_block(tc, bio); 1961 struct dm_thin_lookup_result lookup_result; 1962 1963 if (tc->requeue_mode) { 1964 cell_requeue(pool, cell); 1965 return; 1966 } 1967 1968 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1969 switch (r) { 1970 case 0: 1971 if (lookup_result.shared) 1972 process_shared_bio(tc, bio, block, &lookup_result, cell); 1973 else { 1974 inc_all_io_entry(pool, bio); 1975 remap_and_issue(tc, bio, lookup_result.block); 1976 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1977 } 1978 break; 1979 1980 case -ENODATA: 1981 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1982 inc_all_io_entry(pool, bio); 1983 cell_defer_no_holder(tc, cell); 1984 1985 if (bio_end_sector(bio) <= tc->origin_size) 1986 remap_to_origin_and_issue(tc, bio); 1987 1988 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1989 zero_fill_bio(bio); 1990 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1991 remap_to_origin_and_issue(tc, bio); 1992 1993 } else { 1994 zero_fill_bio(bio); 1995 bio_endio(bio); 1996 } 1997 } else 1998 provision_block(tc, bio, block, cell); 1999 break; 2000 2001 default: 2002 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2003 __func__, r); 2004 cell_defer_no_holder(tc, cell); 2005 bio_io_error(bio); 2006 break; 2007 } 2008 } 2009 2010 static void process_bio(struct thin_c *tc, struct bio *bio) 2011 { 2012 struct pool *pool = tc->pool; 2013 dm_block_t block = get_bio_block(tc, bio); 2014 struct dm_bio_prison_cell *cell; 2015 struct dm_cell_key key; 2016 2017 /* 2018 * If cell is already occupied, then the block is already 2019 * being provisioned so we have nothing further to do here. 2020 */ 2021 build_virtual_key(tc->td, block, &key); 2022 if (bio_detain(pool, &key, bio, &cell)) 2023 return; 2024 2025 process_cell(tc, cell); 2026 } 2027 2028 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2029 struct dm_bio_prison_cell *cell) 2030 { 2031 int r; 2032 int rw = bio_data_dir(bio); 2033 dm_block_t block = get_bio_block(tc, bio); 2034 struct dm_thin_lookup_result lookup_result; 2035 2036 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2037 switch (r) { 2038 case 0: 2039 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2040 handle_unserviceable_bio(tc->pool, bio); 2041 if (cell) 2042 cell_defer_no_holder(tc, cell); 2043 } else { 2044 inc_all_io_entry(tc->pool, bio); 2045 remap_and_issue(tc, bio, lookup_result.block); 2046 if (cell) 2047 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2048 } 2049 break; 2050 2051 case -ENODATA: 2052 if (cell) 2053 cell_defer_no_holder(tc, cell); 2054 if (rw != READ) { 2055 handle_unserviceable_bio(tc->pool, bio); 2056 break; 2057 } 2058 2059 if (tc->origin_dev) { 2060 inc_all_io_entry(tc->pool, bio); 2061 remap_to_origin_and_issue(tc, bio); 2062 break; 2063 } 2064 2065 zero_fill_bio(bio); 2066 bio_endio(bio); 2067 break; 2068 2069 default: 2070 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2071 __func__, r); 2072 if (cell) 2073 cell_defer_no_holder(tc, cell); 2074 bio_io_error(bio); 2075 break; 2076 } 2077 } 2078 2079 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2080 { 2081 __process_bio_read_only(tc, bio, NULL); 2082 } 2083 2084 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2085 { 2086 __process_bio_read_only(tc, cell->holder, cell); 2087 } 2088 2089 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2090 { 2091 bio_endio(bio); 2092 } 2093 2094 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2095 { 2096 bio_io_error(bio); 2097 } 2098 2099 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2100 { 2101 cell_success(tc->pool, cell); 2102 } 2103 2104 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2105 { 2106 cell_error(tc->pool, cell); 2107 } 2108 2109 /* 2110 * FIXME: should we also commit due to size of transaction, measured in 2111 * metadata blocks? 2112 */ 2113 static int need_commit_due_to_time(struct pool *pool) 2114 { 2115 return !time_in_range(jiffies, pool->last_commit_jiffies, 2116 pool->last_commit_jiffies + COMMIT_PERIOD); 2117 } 2118 2119 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2120 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2121 2122 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2123 { 2124 struct rb_node **rbp, *parent; 2125 struct dm_thin_endio_hook *pbd; 2126 sector_t bi_sector = bio->bi_iter.bi_sector; 2127 2128 rbp = &tc->sort_bio_list.rb_node; 2129 parent = NULL; 2130 while (*rbp) { 2131 parent = *rbp; 2132 pbd = thin_pbd(parent); 2133 2134 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2135 rbp = &(*rbp)->rb_left; 2136 else 2137 rbp = &(*rbp)->rb_right; 2138 } 2139 2140 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2141 rb_link_node(&pbd->rb_node, parent, rbp); 2142 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2143 } 2144 2145 static void __extract_sorted_bios(struct thin_c *tc) 2146 { 2147 struct rb_node *node; 2148 struct dm_thin_endio_hook *pbd; 2149 struct bio *bio; 2150 2151 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2152 pbd = thin_pbd(node); 2153 bio = thin_bio(pbd); 2154 2155 bio_list_add(&tc->deferred_bio_list, bio); 2156 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2157 } 2158 2159 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2160 } 2161 2162 static void __sort_thin_deferred_bios(struct thin_c *tc) 2163 { 2164 struct bio *bio; 2165 struct bio_list bios; 2166 2167 bio_list_init(&bios); 2168 bio_list_merge(&bios, &tc->deferred_bio_list); 2169 bio_list_init(&tc->deferred_bio_list); 2170 2171 /* Sort deferred_bio_list using rb-tree */ 2172 while ((bio = bio_list_pop(&bios))) 2173 __thin_bio_rb_add(tc, bio); 2174 2175 /* 2176 * Transfer the sorted bios in sort_bio_list back to 2177 * deferred_bio_list to allow lockless submission of 2178 * all bios. 2179 */ 2180 __extract_sorted_bios(tc); 2181 } 2182 2183 static void process_thin_deferred_bios(struct thin_c *tc) 2184 { 2185 struct pool *pool = tc->pool; 2186 struct bio *bio; 2187 struct bio_list bios; 2188 struct blk_plug plug; 2189 unsigned int count = 0; 2190 2191 if (tc->requeue_mode) { 2192 error_thin_bio_list(tc, &tc->deferred_bio_list, 2193 BLK_STS_DM_REQUEUE); 2194 return; 2195 } 2196 2197 bio_list_init(&bios); 2198 2199 spin_lock_irq(&tc->lock); 2200 2201 if (bio_list_empty(&tc->deferred_bio_list)) { 2202 spin_unlock_irq(&tc->lock); 2203 return; 2204 } 2205 2206 __sort_thin_deferred_bios(tc); 2207 2208 bio_list_merge(&bios, &tc->deferred_bio_list); 2209 bio_list_init(&tc->deferred_bio_list); 2210 2211 spin_unlock_irq(&tc->lock); 2212 2213 blk_start_plug(&plug); 2214 while ((bio = bio_list_pop(&bios))) { 2215 /* 2216 * If we've got no free new_mapping structs, and processing 2217 * this bio might require one, we pause until there are some 2218 * prepared mappings to process. 2219 */ 2220 if (ensure_next_mapping(pool)) { 2221 spin_lock_irq(&tc->lock); 2222 bio_list_add(&tc->deferred_bio_list, bio); 2223 bio_list_merge(&tc->deferred_bio_list, &bios); 2224 spin_unlock_irq(&tc->lock); 2225 break; 2226 } 2227 2228 if (bio_op(bio) == REQ_OP_DISCARD) 2229 pool->process_discard(tc, bio); 2230 else 2231 pool->process_bio(tc, bio); 2232 2233 if ((count++ & 127) == 0) { 2234 throttle_work_update(&pool->throttle); 2235 dm_pool_issue_prefetches(pool->pmd); 2236 } 2237 cond_resched(); 2238 } 2239 blk_finish_plug(&plug); 2240 } 2241 2242 static int cmp_cells(const void *lhs, const void *rhs) 2243 { 2244 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2245 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2246 2247 BUG_ON(!lhs_cell->holder); 2248 BUG_ON(!rhs_cell->holder); 2249 2250 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2251 return -1; 2252 2253 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2254 return 1; 2255 2256 return 0; 2257 } 2258 2259 static unsigned int sort_cells(struct pool *pool, struct list_head *cells) 2260 { 2261 unsigned int count = 0; 2262 struct dm_bio_prison_cell *cell, *tmp; 2263 2264 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2265 if (count >= CELL_SORT_ARRAY_SIZE) 2266 break; 2267 2268 pool->cell_sort_array[count++] = cell; 2269 list_del(&cell->user_list); 2270 } 2271 2272 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2273 2274 return count; 2275 } 2276 2277 static void process_thin_deferred_cells(struct thin_c *tc) 2278 { 2279 struct pool *pool = tc->pool; 2280 struct list_head cells; 2281 struct dm_bio_prison_cell *cell; 2282 unsigned int i, j, count; 2283 2284 INIT_LIST_HEAD(&cells); 2285 2286 spin_lock_irq(&tc->lock); 2287 list_splice_init(&tc->deferred_cells, &cells); 2288 spin_unlock_irq(&tc->lock); 2289 2290 if (list_empty(&cells)) 2291 return; 2292 2293 do { 2294 count = sort_cells(tc->pool, &cells); 2295 2296 for (i = 0; i < count; i++) { 2297 cell = pool->cell_sort_array[i]; 2298 BUG_ON(!cell->holder); 2299 2300 /* 2301 * If we've got no free new_mapping structs, and processing 2302 * this bio might require one, we pause until there are some 2303 * prepared mappings to process. 2304 */ 2305 if (ensure_next_mapping(pool)) { 2306 for (j = i; j < count; j++) 2307 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2308 2309 spin_lock_irq(&tc->lock); 2310 list_splice(&cells, &tc->deferred_cells); 2311 spin_unlock_irq(&tc->lock); 2312 return; 2313 } 2314 2315 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2316 pool->process_discard_cell(tc, cell); 2317 else 2318 pool->process_cell(tc, cell); 2319 } 2320 cond_resched(); 2321 } while (!list_empty(&cells)); 2322 } 2323 2324 static void thin_get(struct thin_c *tc); 2325 static void thin_put(struct thin_c *tc); 2326 2327 /* 2328 * We can't hold rcu_read_lock() around code that can block. So we 2329 * find a thin with the rcu lock held; bump a refcount; then drop 2330 * the lock. 2331 */ 2332 static struct thin_c *get_first_thin(struct pool *pool) 2333 { 2334 struct thin_c *tc = NULL; 2335 2336 rcu_read_lock(); 2337 if (!list_empty(&pool->active_thins)) { 2338 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2339 thin_get(tc); 2340 } 2341 rcu_read_unlock(); 2342 2343 return tc; 2344 } 2345 2346 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2347 { 2348 struct thin_c *old_tc = tc; 2349 2350 rcu_read_lock(); 2351 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2352 thin_get(tc); 2353 thin_put(old_tc); 2354 rcu_read_unlock(); 2355 return tc; 2356 } 2357 thin_put(old_tc); 2358 rcu_read_unlock(); 2359 2360 return NULL; 2361 } 2362 2363 static void process_deferred_bios(struct pool *pool) 2364 { 2365 struct bio *bio; 2366 struct bio_list bios, bio_completions; 2367 struct thin_c *tc; 2368 2369 tc = get_first_thin(pool); 2370 while (tc) { 2371 process_thin_deferred_cells(tc); 2372 process_thin_deferred_bios(tc); 2373 tc = get_next_thin(pool, tc); 2374 } 2375 2376 /* 2377 * If there are any deferred flush bios, we must commit the metadata 2378 * before issuing them or signaling their completion. 2379 */ 2380 bio_list_init(&bios); 2381 bio_list_init(&bio_completions); 2382 2383 spin_lock_irq(&pool->lock); 2384 bio_list_merge(&bios, &pool->deferred_flush_bios); 2385 bio_list_init(&pool->deferred_flush_bios); 2386 2387 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2388 bio_list_init(&pool->deferred_flush_completions); 2389 spin_unlock_irq(&pool->lock); 2390 2391 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2392 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2393 return; 2394 2395 if (commit(pool)) { 2396 bio_list_merge(&bios, &bio_completions); 2397 2398 while ((bio = bio_list_pop(&bios))) 2399 bio_io_error(bio); 2400 return; 2401 } 2402 pool->last_commit_jiffies = jiffies; 2403 2404 while ((bio = bio_list_pop(&bio_completions))) 2405 bio_endio(bio); 2406 2407 while ((bio = bio_list_pop(&bios))) { 2408 /* 2409 * The data device was flushed as part of metadata commit, 2410 * so complete redundant flushes immediately. 2411 */ 2412 if (bio->bi_opf & REQ_PREFLUSH) 2413 bio_endio(bio); 2414 else 2415 dm_submit_bio_remap(bio, NULL); 2416 } 2417 } 2418 2419 static void do_worker(struct work_struct *ws) 2420 { 2421 struct pool *pool = container_of(ws, struct pool, worker); 2422 2423 throttle_work_start(&pool->throttle); 2424 dm_pool_issue_prefetches(pool->pmd); 2425 throttle_work_update(&pool->throttle); 2426 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2427 throttle_work_update(&pool->throttle); 2428 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2429 throttle_work_update(&pool->throttle); 2430 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2431 throttle_work_update(&pool->throttle); 2432 process_deferred_bios(pool); 2433 throttle_work_complete(&pool->throttle); 2434 } 2435 2436 /* 2437 * We want to commit periodically so that not too much 2438 * unwritten data builds up. 2439 */ 2440 static void do_waker(struct work_struct *ws) 2441 { 2442 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2443 2444 wake_worker(pool); 2445 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2446 } 2447 2448 /* 2449 * We're holding onto IO to allow userland time to react. After the 2450 * timeout either the pool will have been resized (and thus back in 2451 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2452 */ 2453 static void do_no_space_timeout(struct work_struct *ws) 2454 { 2455 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2456 no_space_timeout); 2457 2458 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2459 pool->pf.error_if_no_space = true; 2460 notify_of_pool_mode_change(pool); 2461 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2462 } 2463 } 2464 2465 /*----------------------------------------------------------------*/ 2466 2467 struct pool_work { 2468 struct work_struct worker; 2469 struct completion complete; 2470 }; 2471 2472 static struct pool_work *to_pool_work(struct work_struct *ws) 2473 { 2474 return container_of(ws, struct pool_work, worker); 2475 } 2476 2477 static void pool_work_complete(struct pool_work *pw) 2478 { 2479 complete(&pw->complete); 2480 } 2481 2482 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2483 void (*fn)(struct work_struct *)) 2484 { 2485 INIT_WORK_ONSTACK(&pw->worker, fn); 2486 init_completion(&pw->complete); 2487 queue_work(pool->wq, &pw->worker); 2488 wait_for_completion(&pw->complete); 2489 destroy_work_on_stack(&pw->worker); 2490 } 2491 2492 /*----------------------------------------------------------------*/ 2493 2494 struct noflush_work { 2495 struct pool_work pw; 2496 struct thin_c *tc; 2497 }; 2498 2499 static struct noflush_work *to_noflush(struct work_struct *ws) 2500 { 2501 return container_of(to_pool_work(ws), struct noflush_work, pw); 2502 } 2503 2504 static void do_noflush_start(struct work_struct *ws) 2505 { 2506 struct noflush_work *w = to_noflush(ws); 2507 2508 w->tc->requeue_mode = true; 2509 requeue_io(w->tc); 2510 pool_work_complete(&w->pw); 2511 } 2512 2513 static void do_noflush_stop(struct work_struct *ws) 2514 { 2515 struct noflush_work *w = to_noflush(ws); 2516 2517 w->tc->requeue_mode = false; 2518 pool_work_complete(&w->pw); 2519 } 2520 2521 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2522 { 2523 struct noflush_work w; 2524 2525 w.tc = tc; 2526 pool_work_wait(&w.pw, tc->pool, fn); 2527 } 2528 2529 /*----------------------------------------------------------------*/ 2530 2531 static void set_discard_callbacks(struct pool *pool) 2532 { 2533 struct pool_c *pt = pool->ti->private; 2534 2535 if (pt->adjusted_pf.discard_passdown) { 2536 pool->process_discard_cell = process_discard_cell_passdown; 2537 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2538 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2539 } else { 2540 pool->process_discard_cell = process_discard_cell_no_passdown; 2541 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2542 } 2543 } 2544 2545 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2546 { 2547 struct pool_c *pt = pool->ti->private; 2548 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2549 enum pool_mode old_mode = get_pool_mode(pool); 2550 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2551 2552 /* 2553 * Never allow the pool to transition to PM_WRITE mode if user 2554 * intervention is required to verify metadata and data consistency. 2555 */ 2556 if (new_mode == PM_WRITE && needs_check) { 2557 DMERR("%s: unable to switch pool to write mode until repaired.", 2558 dm_device_name(pool->pool_md)); 2559 if (old_mode != new_mode) 2560 new_mode = old_mode; 2561 else 2562 new_mode = PM_READ_ONLY; 2563 } 2564 /* 2565 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2566 * not going to recover without a thin_repair. So we never let the 2567 * pool move out of the old mode. 2568 */ 2569 if (old_mode == PM_FAIL) 2570 new_mode = old_mode; 2571 2572 switch (new_mode) { 2573 case PM_FAIL: 2574 dm_pool_metadata_read_only(pool->pmd); 2575 pool->process_bio = process_bio_fail; 2576 pool->process_discard = process_bio_fail; 2577 pool->process_cell = process_cell_fail; 2578 pool->process_discard_cell = process_cell_fail; 2579 pool->process_prepared_mapping = process_prepared_mapping_fail; 2580 pool->process_prepared_discard = process_prepared_discard_fail; 2581 2582 error_retry_list(pool); 2583 break; 2584 2585 case PM_OUT_OF_METADATA_SPACE: 2586 case PM_READ_ONLY: 2587 dm_pool_metadata_read_only(pool->pmd); 2588 pool->process_bio = process_bio_read_only; 2589 pool->process_discard = process_bio_success; 2590 pool->process_cell = process_cell_read_only; 2591 pool->process_discard_cell = process_cell_success; 2592 pool->process_prepared_mapping = process_prepared_mapping_fail; 2593 pool->process_prepared_discard = process_prepared_discard_success; 2594 2595 error_retry_list(pool); 2596 break; 2597 2598 case PM_OUT_OF_DATA_SPACE: 2599 /* 2600 * Ideally we'd never hit this state; the low water mark 2601 * would trigger userland to extend the pool before we 2602 * completely run out of data space. However, many small 2603 * IOs to unprovisioned space can consume data space at an 2604 * alarming rate. Adjust your low water mark if you're 2605 * frequently seeing this mode. 2606 */ 2607 pool->out_of_data_space = true; 2608 pool->process_bio = process_bio_read_only; 2609 pool->process_discard = process_discard_bio; 2610 pool->process_cell = process_cell_read_only; 2611 pool->process_prepared_mapping = process_prepared_mapping; 2612 set_discard_callbacks(pool); 2613 2614 if (!pool->pf.error_if_no_space && no_space_timeout) 2615 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2616 break; 2617 2618 case PM_WRITE: 2619 if (old_mode == PM_OUT_OF_DATA_SPACE) 2620 cancel_delayed_work_sync(&pool->no_space_timeout); 2621 pool->out_of_data_space = false; 2622 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2623 dm_pool_metadata_read_write(pool->pmd); 2624 pool->process_bio = process_bio; 2625 pool->process_discard = process_discard_bio; 2626 pool->process_cell = process_cell; 2627 pool->process_prepared_mapping = process_prepared_mapping; 2628 set_discard_callbacks(pool); 2629 break; 2630 } 2631 2632 pool->pf.mode = new_mode; 2633 /* 2634 * The pool mode may have changed, sync it so bind_control_target() 2635 * doesn't cause an unexpected mode transition on resume. 2636 */ 2637 pt->adjusted_pf.mode = new_mode; 2638 2639 if (old_mode != new_mode) 2640 notify_of_pool_mode_change(pool); 2641 } 2642 2643 static void abort_transaction(struct pool *pool) 2644 { 2645 const char *dev_name = dm_device_name(pool->pool_md); 2646 2647 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2648 if (dm_pool_abort_metadata(pool->pmd)) { 2649 DMERR("%s: failed to abort metadata transaction", dev_name); 2650 set_pool_mode(pool, PM_FAIL); 2651 } 2652 2653 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2654 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2655 set_pool_mode(pool, PM_FAIL); 2656 } 2657 } 2658 2659 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2660 { 2661 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2662 dm_device_name(pool->pool_md), op, r); 2663 2664 abort_transaction(pool); 2665 set_pool_mode(pool, PM_READ_ONLY); 2666 } 2667 2668 /*----------------------------------------------------------------*/ 2669 2670 /* 2671 * Mapping functions. 2672 */ 2673 2674 /* 2675 * Called only while mapping a thin bio to hand it over to the workqueue. 2676 */ 2677 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2678 { 2679 struct pool *pool = tc->pool; 2680 2681 spin_lock_irq(&tc->lock); 2682 bio_list_add(&tc->deferred_bio_list, bio); 2683 spin_unlock_irq(&tc->lock); 2684 2685 wake_worker(pool); 2686 } 2687 2688 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2689 { 2690 struct pool *pool = tc->pool; 2691 2692 throttle_lock(&pool->throttle); 2693 thin_defer_bio(tc, bio); 2694 throttle_unlock(&pool->throttle); 2695 } 2696 2697 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2698 { 2699 struct pool *pool = tc->pool; 2700 2701 throttle_lock(&pool->throttle); 2702 spin_lock_irq(&tc->lock); 2703 list_add_tail(&cell->user_list, &tc->deferred_cells); 2704 spin_unlock_irq(&tc->lock); 2705 throttle_unlock(&pool->throttle); 2706 2707 wake_worker(pool); 2708 } 2709 2710 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2711 { 2712 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2713 2714 h->tc = tc; 2715 h->shared_read_entry = NULL; 2716 h->all_io_entry = NULL; 2717 h->overwrite_mapping = NULL; 2718 h->cell = NULL; 2719 } 2720 2721 /* 2722 * Non-blocking function called from the thin target's map function. 2723 */ 2724 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2725 { 2726 int r; 2727 struct thin_c *tc = ti->private; 2728 dm_block_t block = get_bio_block(tc, bio); 2729 struct dm_thin_device *td = tc->td; 2730 struct dm_thin_lookup_result result; 2731 struct dm_bio_prison_cell *virt_cell, *data_cell; 2732 struct dm_cell_key key; 2733 2734 thin_hook_bio(tc, bio); 2735 2736 if (tc->requeue_mode) { 2737 bio->bi_status = BLK_STS_DM_REQUEUE; 2738 bio_endio(bio); 2739 return DM_MAPIO_SUBMITTED; 2740 } 2741 2742 if (get_pool_mode(tc->pool) == PM_FAIL) { 2743 bio_io_error(bio); 2744 return DM_MAPIO_SUBMITTED; 2745 } 2746 2747 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2748 thin_defer_bio_with_throttle(tc, bio); 2749 return DM_MAPIO_SUBMITTED; 2750 } 2751 2752 /* 2753 * We must hold the virtual cell before doing the lookup, otherwise 2754 * there's a race with discard. 2755 */ 2756 build_virtual_key(tc->td, block, &key); 2757 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2758 return DM_MAPIO_SUBMITTED; 2759 2760 r = dm_thin_find_block(td, block, 0, &result); 2761 2762 /* 2763 * Note that we defer readahead too. 2764 */ 2765 switch (r) { 2766 case 0: 2767 if (unlikely(result.shared)) { 2768 /* 2769 * We have a race condition here between the 2770 * result.shared value returned by the lookup and 2771 * snapshot creation, which may cause new 2772 * sharing. 2773 * 2774 * To avoid this always quiesce the origin before 2775 * taking the snap. You want to do this anyway to 2776 * ensure a consistent application view 2777 * (i.e. lockfs). 2778 * 2779 * More distant ancestors are irrelevant. The 2780 * shared flag will be set in their case. 2781 */ 2782 thin_defer_cell(tc, virt_cell); 2783 return DM_MAPIO_SUBMITTED; 2784 } 2785 2786 build_data_key(tc->td, result.block, &key); 2787 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2788 cell_defer_no_holder(tc, virt_cell); 2789 return DM_MAPIO_SUBMITTED; 2790 } 2791 2792 inc_all_io_entry(tc->pool, bio); 2793 cell_defer_no_holder(tc, data_cell); 2794 cell_defer_no_holder(tc, virt_cell); 2795 2796 remap(tc, bio, result.block); 2797 return DM_MAPIO_REMAPPED; 2798 2799 case -ENODATA: 2800 case -EWOULDBLOCK: 2801 thin_defer_cell(tc, virt_cell); 2802 return DM_MAPIO_SUBMITTED; 2803 2804 default: 2805 /* 2806 * Must always call bio_io_error on failure. 2807 * dm_thin_find_block can fail with -EINVAL if the 2808 * pool is switched to fail-io mode. 2809 */ 2810 bio_io_error(bio); 2811 cell_defer_no_holder(tc, virt_cell); 2812 return DM_MAPIO_SUBMITTED; 2813 } 2814 } 2815 2816 static void requeue_bios(struct pool *pool) 2817 { 2818 struct thin_c *tc; 2819 2820 rcu_read_lock(); 2821 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2822 spin_lock_irq(&tc->lock); 2823 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2824 bio_list_init(&tc->retry_on_resume_list); 2825 spin_unlock_irq(&tc->lock); 2826 } 2827 rcu_read_unlock(); 2828 } 2829 2830 /* 2831 *-------------------------------------------------------------- 2832 * Binding of control targets to a pool object 2833 *-------------------------------------------------------------- 2834 */ 2835 static bool is_factor(sector_t block_size, uint32_t n) 2836 { 2837 return !sector_div(block_size, n); 2838 } 2839 2840 /* 2841 * If discard_passdown was enabled verify that the data device 2842 * supports discards. Disable discard_passdown if not. 2843 */ 2844 static void disable_discard_passdown_if_not_supported(struct pool_c *pt) 2845 { 2846 struct pool *pool = pt->pool; 2847 struct block_device *data_bdev = pt->data_dev->bdev; 2848 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2849 const char *reason = NULL; 2850 2851 if (!pt->adjusted_pf.discard_passdown) 2852 return; 2853 2854 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2855 reason = "discard unsupported"; 2856 2857 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2858 reason = "max discard sectors smaller than a block"; 2859 2860 if (reason) { 2861 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2862 pt->adjusted_pf.discard_passdown = false; 2863 } 2864 } 2865 2866 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2867 { 2868 struct pool_c *pt = ti->private; 2869 2870 /* 2871 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2872 */ 2873 enum pool_mode old_mode = get_pool_mode(pool); 2874 enum pool_mode new_mode = pt->adjusted_pf.mode; 2875 2876 /* 2877 * Don't change the pool's mode until set_pool_mode() below. 2878 * Otherwise the pool's process_* function pointers may 2879 * not match the desired pool mode. 2880 */ 2881 pt->adjusted_pf.mode = old_mode; 2882 2883 pool->ti = ti; 2884 pool->pf = pt->adjusted_pf; 2885 pool->low_water_blocks = pt->low_water_blocks; 2886 2887 set_pool_mode(pool, new_mode); 2888 2889 return 0; 2890 } 2891 2892 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2893 { 2894 if (pool->ti == ti) 2895 pool->ti = NULL; 2896 } 2897 2898 /* 2899 *-------------------------------------------------------------- 2900 * Pool creation 2901 *-------------------------------------------------------------- 2902 */ 2903 /* Initialize pool features. */ 2904 static void pool_features_init(struct pool_features *pf) 2905 { 2906 pf->mode = PM_WRITE; 2907 pf->zero_new_blocks = true; 2908 pf->discard_enabled = true; 2909 pf->discard_passdown = true; 2910 pf->error_if_no_space = false; 2911 } 2912 2913 static void __pool_destroy(struct pool *pool) 2914 { 2915 __pool_table_remove(pool); 2916 2917 vfree(pool->cell_sort_array); 2918 if (dm_pool_metadata_close(pool->pmd) < 0) 2919 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2920 2921 dm_bio_prison_destroy(pool->prison); 2922 dm_kcopyd_client_destroy(pool->copier); 2923 2924 cancel_delayed_work_sync(&pool->waker); 2925 cancel_delayed_work_sync(&pool->no_space_timeout); 2926 if (pool->wq) 2927 destroy_workqueue(pool->wq); 2928 2929 if (pool->next_mapping) 2930 mempool_free(pool->next_mapping, &pool->mapping_pool); 2931 mempool_exit(&pool->mapping_pool); 2932 dm_deferred_set_destroy(pool->shared_read_ds); 2933 dm_deferred_set_destroy(pool->all_io_ds); 2934 kfree(pool); 2935 } 2936 2937 static struct kmem_cache *_new_mapping_cache; 2938 2939 static struct pool *pool_create(struct mapped_device *pool_md, 2940 struct block_device *metadata_dev, 2941 struct block_device *data_dev, 2942 unsigned long block_size, 2943 int read_only, char **error) 2944 { 2945 int r; 2946 void *err_p; 2947 struct pool *pool; 2948 struct dm_pool_metadata *pmd; 2949 bool format_device = read_only ? false : true; 2950 2951 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2952 if (IS_ERR(pmd)) { 2953 *error = "Error creating metadata object"; 2954 return (struct pool *)pmd; 2955 } 2956 2957 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2958 if (!pool) { 2959 *error = "Error allocating memory for pool"; 2960 err_p = ERR_PTR(-ENOMEM); 2961 goto bad_pool; 2962 } 2963 2964 pool->pmd = pmd; 2965 pool->sectors_per_block = block_size; 2966 if (block_size & (block_size - 1)) 2967 pool->sectors_per_block_shift = -1; 2968 else 2969 pool->sectors_per_block_shift = __ffs(block_size); 2970 pool->low_water_blocks = 0; 2971 pool_features_init(&pool->pf); 2972 pool->prison = dm_bio_prison_create(); 2973 if (!pool->prison) { 2974 *error = "Error creating pool's bio prison"; 2975 err_p = ERR_PTR(-ENOMEM); 2976 goto bad_prison; 2977 } 2978 2979 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2980 if (IS_ERR(pool->copier)) { 2981 r = PTR_ERR(pool->copier); 2982 *error = "Error creating pool's kcopyd client"; 2983 err_p = ERR_PTR(r); 2984 goto bad_kcopyd_client; 2985 } 2986 2987 /* 2988 * Create singlethreaded workqueue that will service all devices 2989 * that use this metadata. 2990 */ 2991 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2992 if (!pool->wq) { 2993 *error = "Error creating pool's workqueue"; 2994 err_p = ERR_PTR(-ENOMEM); 2995 goto bad_wq; 2996 } 2997 2998 throttle_init(&pool->throttle); 2999 INIT_WORK(&pool->worker, do_worker); 3000 INIT_DELAYED_WORK(&pool->waker, do_waker); 3001 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 3002 spin_lock_init(&pool->lock); 3003 bio_list_init(&pool->deferred_flush_bios); 3004 bio_list_init(&pool->deferred_flush_completions); 3005 INIT_LIST_HEAD(&pool->prepared_mappings); 3006 INIT_LIST_HEAD(&pool->prepared_discards); 3007 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3008 INIT_LIST_HEAD(&pool->active_thins); 3009 pool->low_water_triggered = false; 3010 pool->suspended = true; 3011 pool->out_of_data_space = false; 3012 3013 pool->shared_read_ds = dm_deferred_set_create(); 3014 if (!pool->shared_read_ds) { 3015 *error = "Error creating pool's shared read deferred set"; 3016 err_p = ERR_PTR(-ENOMEM); 3017 goto bad_shared_read_ds; 3018 } 3019 3020 pool->all_io_ds = dm_deferred_set_create(); 3021 if (!pool->all_io_ds) { 3022 *error = "Error creating pool's all io deferred set"; 3023 err_p = ERR_PTR(-ENOMEM); 3024 goto bad_all_io_ds; 3025 } 3026 3027 pool->next_mapping = NULL; 3028 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3029 _new_mapping_cache); 3030 if (r) { 3031 *error = "Error creating pool's mapping mempool"; 3032 err_p = ERR_PTR(r); 3033 goto bad_mapping_pool; 3034 } 3035 3036 pool->cell_sort_array = 3037 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3038 sizeof(*pool->cell_sort_array))); 3039 if (!pool->cell_sort_array) { 3040 *error = "Error allocating cell sort array"; 3041 err_p = ERR_PTR(-ENOMEM); 3042 goto bad_sort_array; 3043 } 3044 3045 pool->ref_count = 1; 3046 pool->last_commit_jiffies = jiffies; 3047 pool->pool_md = pool_md; 3048 pool->md_dev = metadata_dev; 3049 pool->data_dev = data_dev; 3050 __pool_table_insert(pool); 3051 3052 return pool; 3053 3054 bad_sort_array: 3055 mempool_exit(&pool->mapping_pool); 3056 bad_mapping_pool: 3057 dm_deferred_set_destroy(pool->all_io_ds); 3058 bad_all_io_ds: 3059 dm_deferred_set_destroy(pool->shared_read_ds); 3060 bad_shared_read_ds: 3061 destroy_workqueue(pool->wq); 3062 bad_wq: 3063 dm_kcopyd_client_destroy(pool->copier); 3064 bad_kcopyd_client: 3065 dm_bio_prison_destroy(pool->prison); 3066 bad_prison: 3067 kfree(pool); 3068 bad_pool: 3069 if (dm_pool_metadata_close(pmd)) 3070 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3071 3072 return err_p; 3073 } 3074 3075 static void __pool_inc(struct pool *pool) 3076 { 3077 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3078 pool->ref_count++; 3079 } 3080 3081 static void __pool_dec(struct pool *pool) 3082 { 3083 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3084 BUG_ON(!pool->ref_count); 3085 if (!--pool->ref_count) 3086 __pool_destroy(pool); 3087 } 3088 3089 static struct pool *__pool_find(struct mapped_device *pool_md, 3090 struct block_device *metadata_dev, 3091 struct block_device *data_dev, 3092 unsigned long block_size, int read_only, 3093 char **error, int *created) 3094 { 3095 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3096 3097 if (pool) { 3098 if (pool->pool_md != pool_md) { 3099 *error = "metadata device already in use by a pool"; 3100 return ERR_PTR(-EBUSY); 3101 } 3102 if (pool->data_dev != data_dev) { 3103 *error = "data device already in use by a pool"; 3104 return ERR_PTR(-EBUSY); 3105 } 3106 __pool_inc(pool); 3107 3108 } else { 3109 pool = __pool_table_lookup(pool_md); 3110 if (pool) { 3111 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3112 *error = "different pool cannot replace a pool"; 3113 return ERR_PTR(-EINVAL); 3114 } 3115 __pool_inc(pool); 3116 3117 } else { 3118 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3119 *created = 1; 3120 } 3121 } 3122 3123 return pool; 3124 } 3125 3126 /* 3127 *-------------------------------------------------------------- 3128 * Pool target methods 3129 *-------------------------------------------------------------- 3130 */ 3131 static void pool_dtr(struct dm_target *ti) 3132 { 3133 struct pool_c *pt = ti->private; 3134 3135 mutex_lock(&dm_thin_pool_table.mutex); 3136 3137 unbind_control_target(pt->pool, ti); 3138 __pool_dec(pt->pool); 3139 dm_put_device(ti, pt->metadata_dev); 3140 dm_put_device(ti, pt->data_dev); 3141 kfree(pt); 3142 3143 mutex_unlock(&dm_thin_pool_table.mutex); 3144 } 3145 3146 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3147 struct dm_target *ti) 3148 { 3149 int r; 3150 unsigned int argc; 3151 const char *arg_name; 3152 3153 static const struct dm_arg _args[] = { 3154 {0, 4, "Invalid number of pool feature arguments"}, 3155 }; 3156 3157 /* 3158 * No feature arguments supplied. 3159 */ 3160 if (!as->argc) 3161 return 0; 3162 3163 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3164 if (r) 3165 return -EINVAL; 3166 3167 while (argc && !r) { 3168 arg_name = dm_shift_arg(as); 3169 argc--; 3170 3171 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3172 pf->zero_new_blocks = false; 3173 3174 else if (!strcasecmp(arg_name, "ignore_discard")) 3175 pf->discard_enabled = false; 3176 3177 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3178 pf->discard_passdown = false; 3179 3180 else if (!strcasecmp(arg_name, "read_only")) 3181 pf->mode = PM_READ_ONLY; 3182 3183 else if (!strcasecmp(arg_name, "error_if_no_space")) 3184 pf->error_if_no_space = true; 3185 3186 else { 3187 ti->error = "Unrecognised pool feature requested"; 3188 r = -EINVAL; 3189 break; 3190 } 3191 } 3192 3193 return r; 3194 } 3195 3196 static void metadata_low_callback(void *context) 3197 { 3198 struct pool *pool = context; 3199 3200 DMWARN("%s: reached low water mark for metadata device: sending event.", 3201 dm_device_name(pool->pool_md)); 3202 3203 dm_table_event(pool->ti->table); 3204 } 3205 3206 /* 3207 * We need to flush the data device **before** committing the metadata. 3208 * 3209 * This ensures that the data blocks of any newly inserted mappings are 3210 * properly written to non-volatile storage and won't be lost in case of a 3211 * crash. 3212 * 3213 * Failure to do so can result in data corruption in the case of internal or 3214 * external snapshots and in the case of newly provisioned blocks, when block 3215 * zeroing is enabled. 3216 */ 3217 static int metadata_pre_commit_callback(void *context) 3218 { 3219 struct pool *pool = context; 3220 3221 return blkdev_issue_flush(pool->data_dev); 3222 } 3223 3224 static sector_t get_dev_size(struct block_device *bdev) 3225 { 3226 return bdev_nr_sectors(bdev); 3227 } 3228 3229 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3230 { 3231 sector_t metadata_dev_size = get_dev_size(bdev); 3232 3233 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3234 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3235 bdev, THIN_METADATA_MAX_SECTORS); 3236 } 3237 3238 static sector_t get_metadata_dev_size(struct block_device *bdev) 3239 { 3240 sector_t metadata_dev_size = get_dev_size(bdev); 3241 3242 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3243 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3244 3245 return metadata_dev_size; 3246 } 3247 3248 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3249 { 3250 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3251 3252 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3253 3254 return metadata_dev_size; 3255 } 3256 3257 /* 3258 * When a metadata threshold is crossed a dm event is triggered, and 3259 * userland should respond by growing the metadata device. We could let 3260 * userland set the threshold, like we do with the data threshold, but I'm 3261 * not sure they know enough to do this well. 3262 */ 3263 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3264 { 3265 /* 3266 * 4M is ample for all ops with the possible exception of thin 3267 * device deletion which is harmless if it fails (just retry the 3268 * delete after you've grown the device). 3269 */ 3270 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3271 3272 return min((dm_block_t)1024ULL /* 4M */, quarter); 3273 } 3274 3275 /* 3276 * thin-pool <metadata dev> <data dev> 3277 * <data block size (sectors)> 3278 * <low water mark (blocks)> 3279 * [<#feature args> [<arg>]*] 3280 * 3281 * Optional feature arguments are: 3282 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3283 * ignore_discard: disable discard 3284 * no_discard_passdown: don't pass discards down to the data device 3285 * read_only: Don't allow any changes to be made to the pool metadata. 3286 * error_if_no_space: error IOs, instead of queueing, if no space. 3287 */ 3288 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3289 { 3290 int r, pool_created = 0; 3291 struct pool_c *pt; 3292 struct pool *pool; 3293 struct pool_features pf; 3294 struct dm_arg_set as; 3295 struct dm_dev *data_dev; 3296 unsigned long block_size; 3297 dm_block_t low_water_blocks; 3298 struct dm_dev *metadata_dev; 3299 blk_mode_t metadata_mode; 3300 3301 /* 3302 * FIXME Remove validation from scope of lock. 3303 */ 3304 mutex_lock(&dm_thin_pool_table.mutex); 3305 3306 if (argc < 4) { 3307 ti->error = "Invalid argument count"; 3308 r = -EINVAL; 3309 goto out_unlock; 3310 } 3311 3312 as.argc = argc; 3313 as.argv = argv; 3314 3315 /* make sure metadata and data are different devices */ 3316 if (!strcmp(argv[0], argv[1])) { 3317 ti->error = "Error setting metadata or data device"; 3318 r = -EINVAL; 3319 goto out_unlock; 3320 } 3321 3322 /* 3323 * Set default pool features. 3324 */ 3325 pool_features_init(&pf); 3326 3327 dm_consume_args(&as, 4); 3328 r = parse_pool_features(&as, &pf, ti); 3329 if (r) 3330 goto out_unlock; 3331 3332 metadata_mode = BLK_OPEN_READ | 3333 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE); 3334 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3335 if (r) { 3336 ti->error = "Error opening metadata block device"; 3337 goto out_unlock; 3338 } 3339 warn_if_metadata_device_too_big(metadata_dev->bdev); 3340 3341 r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev); 3342 if (r) { 3343 ti->error = "Error getting data device"; 3344 goto out_metadata; 3345 } 3346 3347 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3348 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3349 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3350 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3351 ti->error = "Invalid block size"; 3352 r = -EINVAL; 3353 goto out; 3354 } 3355 3356 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3357 ti->error = "Invalid low water mark"; 3358 r = -EINVAL; 3359 goto out; 3360 } 3361 3362 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3363 if (!pt) { 3364 r = -ENOMEM; 3365 goto out; 3366 } 3367 3368 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3369 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3370 if (IS_ERR(pool)) { 3371 r = PTR_ERR(pool); 3372 goto out_free_pt; 3373 } 3374 3375 /* 3376 * 'pool_created' reflects whether this is the first table load. 3377 * Top level discard support is not allowed to be changed after 3378 * initial load. This would require a pool reload to trigger thin 3379 * device changes. 3380 */ 3381 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3382 ti->error = "Discard support cannot be disabled once enabled"; 3383 r = -EINVAL; 3384 goto out_flags_changed; 3385 } 3386 3387 pt->pool = pool; 3388 pt->ti = ti; 3389 pt->metadata_dev = metadata_dev; 3390 pt->data_dev = data_dev; 3391 pt->low_water_blocks = low_water_blocks; 3392 pt->adjusted_pf = pt->requested_pf = pf; 3393 ti->num_flush_bios = 1; 3394 ti->limit_swap_bios = true; 3395 3396 /* 3397 * Only need to enable discards if the pool should pass 3398 * them down to the data device. The thin device's discard 3399 * processing will cause mappings to be removed from the btree. 3400 */ 3401 if (pf.discard_enabled && pf.discard_passdown) { 3402 ti->num_discard_bios = 1; 3403 /* 3404 * Setting 'discards_supported' circumvents the normal 3405 * stacking of discard limits (this keeps the pool and 3406 * thin devices' discard limits consistent). 3407 */ 3408 ti->discards_supported = true; 3409 ti->max_discard_granularity = true; 3410 } 3411 ti->private = pt; 3412 3413 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3414 calc_metadata_threshold(pt), 3415 metadata_low_callback, 3416 pool); 3417 if (r) { 3418 ti->error = "Error registering metadata threshold"; 3419 goto out_flags_changed; 3420 } 3421 3422 dm_pool_register_pre_commit_callback(pool->pmd, 3423 metadata_pre_commit_callback, pool); 3424 3425 mutex_unlock(&dm_thin_pool_table.mutex); 3426 3427 return 0; 3428 3429 out_flags_changed: 3430 __pool_dec(pool); 3431 out_free_pt: 3432 kfree(pt); 3433 out: 3434 dm_put_device(ti, data_dev); 3435 out_metadata: 3436 dm_put_device(ti, metadata_dev); 3437 out_unlock: 3438 mutex_unlock(&dm_thin_pool_table.mutex); 3439 3440 return r; 3441 } 3442 3443 static int pool_map(struct dm_target *ti, struct bio *bio) 3444 { 3445 struct pool_c *pt = ti->private; 3446 struct pool *pool = pt->pool; 3447 3448 /* 3449 * As this is a singleton target, ti->begin is always zero. 3450 */ 3451 spin_lock_irq(&pool->lock); 3452 bio_set_dev(bio, pt->data_dev->bdev); 3453 spin_unlock_irq(&pool->lock); 3454 3455 return DM_MAPIO_REMAPPED; 3456 } 3457 3458 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3459 { 3460 int r; 3461 struct pool_c *pt = ti->private; 3462 struct pool *pool = pt->pool; 3463 sector_t data_size = ti->len; 3464 dm_block_t sb_data_size; 3465 3466 *need_commit = false; 3467 3468 (void) sector_div(data_size, pool->sectors_per_block); 3469 3470 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3471 if (r) { 3472 DMERR("%s: failed to retrieve data device size", 3473 dm_device_name(pool->pool_md)); 3474 return r; 3475 } 3476 3477 if (data_size < sb_data_size) { 3478 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3479 dm_device_name(pool->pool_md), 3480 (unsigned long long)data_size, sb_data_size); 3481 return -EINVAL; 3482 3483 } else if (data_size > sb_data_size) { 3484 if (dm_pool_metadata_needs_check(pool->pmd)) { 3485 DMERR("%s: unable to grow the data device until repaired.", 3486 dm_device_name(pool->pool_md)); 3487 return 0; 3488 } 3489 3490 if (sb_data_size) 3491 DMINFO("%s: growing the data device from %llu to %llu blocks", 3492 dm_device_name(pool->pool_md), 3493 sb_data_size, (unsigned long long)data_size); 3494 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3495 if (r) { 3496 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3497 return r; 3498 } 3499 3500 *need_commit = true; 3501 } 3502 3503 return 0; 3504 } 3505 3506 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3507 { 3508 int r; 3509 struct pool_c *pt = ti->private; 3510 struct pool *pool = pt->pool; 3511 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3512 3513 *need_commit = false; 3514 3515 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3516 3517 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3518 if (r) { 3519 DMERR("%s: failed to retrieve metadata device size", 3520 dm_device_name(pool->pool_md)); 3521 return r; 3522 } 3523 3524 if (metadata_dev_size < sb_metadata_dev_size) { 3525 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3526 dm_device_name(pool->pool_md), 3527 metadata_dev_size, sb_metadata_dev_size); 3528 return -EINVAL; 3529 3530 } else if (metadata_dev_size > sb_metadata_dev_size) { 3531 if (dm_pool_metadata_needs_check(pool->pmd)) { 3532 DMERR("%s: unable to grow the metadata device until repaired.", 3533 dm_device_name(pool->pool_md)); 3534 return 0; 3535 } 3536 3537 warn_if_metadata_device_too_big(pool->md_dev); 3538 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3539 dm_device_name(pool->pool_md), 3540 sb_metadata_dev_size, metadata_dev_size); 3541 3542 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3543 set_pool_mode(pool, PM_WRITE); 3544 3545 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3546 if (r) { 3547 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3548 return r; 3549 } 3550 3551 *need_commit = true; 3552 } 3553 3554 return 0; 3555 } 3556 3557 /* 3558 * Retrieves the number of blocks of the data device from 3559 * the superblock and compares it to the actual device size, 3560 * thus resizing the data device in case it has grown. 3561 * 3562 * This both copes with opening preallocated data devices in the ctr 3563 * being followed by a resume 3564 * -and- 3565 * calling the resume method individually after userspace has 3566 * grown the data device in reaction to a table event. 3567 */ 3568 static int pool_preresume(struct dm_target *ti) 3569 { 3570 int r; 3571 bool need_commit1, need_commit2; 3572 struct pool_c *pt = ti->private; 3573 struct pool *pool = pt->pool; 3574 3575 /* 3576 * Take control of the pool object. 3577 */ 3578 r = bind_control_target(pool, ti); 3579 if (r) 3580 goto out; 3581 3582 r = maybe_resize_data_dev(ti, &need_commit1); 3583 if (r) 3584 goto out; 3585 3586 r = maybe_resize_metadata_dev(ti, &need_commit2); 3587 if (r) 3588 goto out; 3589 3590 if (need_commit1 || need_commit2) 3591 (void) commit(pool); 3592 out: 3593 /* 3594 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3595 * bio is in deferred list. Therefore need to return 0 3596 * to allow pool_resume() to flush IO. 3597 */ 3598 if (r && get_pool_mode(pool) == PM_FAIL) 3599 r = 0; 3600 3601 return r; 3602 } 3603 3604 static void pool_suspend_active_thins(struct pool *pool) 3605 { 3606 struct thin_c *tc; 3607 3608 /* Suspend all active thin devices */ 3609 tc = get_first_thin(pool); 3610 while (tc) { 3611 dm_internal_suspend_noflush(tc->thin_md); 3612 tc = get_next_thin(pool, tc); 3613 } 3614 } 3615 3616 static void pool_resume_active_thins(struct pool *pool) 3617 { 3618 struct thin_c *tc; 3619 3620 /* Resume all active thin devices */ 3621 tc = get_first_thin(pool); 3622 while (tc) { 3623 dm_internal_resume(tc->thin_md); 3624 tc = get_next_thin(pool, tc); 3625 } 3626 } 3627 3628 static void pool_resume(struct dm_target *ti) 3629 { 3630 struct pool_c *pt = ti->private; 3631 struct pool *pool = pt->pool; 3632 3633 /* 3634 * Must requeue active_thins' bios and then resume 3635 * active_thins _before_ clearing 'suspend' flag. 3636 */ 3637 requeue_bios(pool); 3638 pool_resume_active_thins(pool); 3639 3640 spin_lock_irq(&pool->lock); 3641 pool->low_water_triggered = false; 3642 pool->suspended = false; 3643 spin_unlock_irq(&pool->lock); 3644 3645 do_waker(&pool->waker.work); 3646 } 3647 3648 static void pool_presuspend(struct dm_target *ti) 3649 { 3650 struct pool_c *pt = ti->private; 3651 struct pool *pool = pt->pool; 3652 3653 spin_lock_irq(&pool->lock); 3654 pool->suspended = true; 3655 spin_unlock_irq(&pool->lock); 3656 3657 pool_suspend_active_thins(pool); 3658 } 3659 3660 static void pool_presuspend_undo(struct dm_target *ti) 3661 { 3662 struct pool_c *pt = ti->private; 3663 struct pool *pool = pt->pool; 3664 3665 pool_resume_active_thins(pool); 3666 3667 spin_lock_irq(&pool->lock); 3668 pool->suspended = false; 3669 spin_unlock_irq(&pool->lock); 3670 } 3671 3672 static void pool_postsuspend(struct dm_target *ti) 3673 { 3674 struct pool_c *pt = ti->private; 3675 struct pool *pool = pt->pool; 3676 3677 cancel_delayed_work_sync(&pool->waker); 3678 cancel_delayed_work_sync(&pool->no_space_timeout); 3679 flush_workqueue(pool->wq); 3680 (void) commit(pool); 3681 } 3682 3683 static int check_arg_count(unsigned int argc, unsigned int args_required) 3684 { 3685 if (argc != args_required) { 3686 DMWARN("Message received with %u arguments instead of %u.", 3687 argc, args_required); 3688 return -EINVAL; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3695 { 3696 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3697 *dev_id <= MAX_DEV_ID) 3698 return 0; 3699 3700 if (warning) 3701 DMWARN("Message received with invalid device id: %s", arg); 3702 3703 return -EINVAL; 3704 } 3705 3706 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) 3707 { 3708 dm_thin_id dev_id; 3709 int r; 3710 3711 r = check_arg_count(argc, 2); 3712 if (r) 3713 return r; 3714 3715 r = read_dev_id(argv[1], &dev_id, 1); 3716 if (r) 3717 return r; 3718 3719 r = dm_pool_create_thin(pool->pmd, dev_id); 3720 if (r) { 3721 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3722 argv[1]); 3723 return r; 3724 } 3725 3726 return 0; 3727 } 3728 3729 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3730 { 3731 dm_thin_id dev_id; 3732 dm_thin_id origin_dev_id; 3733 int r; 3734 3735 r = check_arg_count(argc, 3); 3736 if (r) 3737 return r; 3738 3739 r = read_dev_id(argv[1], &dev_id, 1); 3740 if (r) 3741 return r; 3742 3743 r = read_dev_id(argv[2], &origin_dev_id, 1); 3744 if (r) 3745 return r; 3746 3747 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3748 if (r) { 3749 DMWARN("Creation of new snapshot %s of device %s failed.", 3750 argv[1], argv[2]); 3751 return r; 3752 } 3753 3754 return 0; 3755 } 3756 3757 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) 3758 { 3759 dm_thin_id dev_id; 3760 int r; 3761 3762 r = check_arg_count(argc, 2); 3763 if (r) 3764 return r; 3765 3766 r = read_dev_id(argv[1], &dev_id, 1); 3767 if (r) 3768 return r; 3769 3770 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3771 if (r) 3772 DMWARN("Deletion of thin device %s failed.", argv[1]); 3773 3774 return r; 3775 } 3776 3777 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) 3778 { 3779 dm_thin_id old_id, new_id; 3780 int r; 3781 3782 r = check_arg_count(argc, 3); 3783 if (r) 3784 return r; 3785 3786 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3787 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3788 return -EINVAL; 3789 } 3790 3791 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3792 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3793 return -EINVAL; 3794 } 3795 3796 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3797 if (r) { 3798 DMWARN("Failed to change transaction id from %s to %s.", 3799 argv[1], argv[2]); 3800 return r; 3801 } 3802 3803 return 0; 3804 } 3805 3806 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3807 { 3808 int r; 3809 3810 r = check_arg_count(argc, 1); 3811 if (r) 3812 return r; 3813 3814 (void) commit(pool); 3815 3816 r = dm_pool_reserve_metadata_snap(pool->pmd); 3817 if (r) 3818 DMWARN("reserve_metadata_snap message failed."); 3819 3820 return r; 3821 } 3822 3823 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3824 { 3825 int r; 3826 3827 r = check_arg_count(argc, 1); 3828 if (r) 3829 return r; 3830 3831 r = dm_pool_release_metadata_snap(pool->pmd); 3832 if (r) 3833 DMWARN("release_metadata_snap message failed."); 3834 3835 return r; 3836 } 3837 3838 /* 3839 * Messages supported: 3840 * create_thin <dev_id> 3841 * create_snap <dev_id> <origin_id> 3842 * delete <dev_id> 3843 * set_transaction_id <current_trans_id> <new_trans_id> 3844 * reserve_metadata_snap 3845 * release_metadata_snap 3846 */ 3847 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, 3848 char *result, unsigned int maxlen) 3849 { 3850 int r = -EINVAL; 3851 struct pool_c *pt = ti->private; 3852 struct pool *pool = pt->pool; 3853 3854 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3855 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3856 dm_device_name(pool->pool_md)); 3857 return -EOPNOTSUPP; 3858 } 3859 3860 if (!strcasecmp(argv[0], "create_thin")) 3861 r = process_create_thin_mesg(argc, argv, pool); 3862 3863 else if (!strcasecmp(argv[0], "create_snap")) 3864 r = process_create_snap_mesg(argc, argv, pool); 3865 3866 else if (!strcasecmp(argv[0], "delete")) 3867 r = process_delete_mesg(argc, argv, pool); 3868 3869 else if (!strcasecmp(argv[0], "set_transaction_id")) 3870 r = process_set_transaction_id_mesg(argc, argv, pool); 3871 3872 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3873 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3874 3875 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3876 r = process_release_metadata_snap_mesg(argc, argv, pool); 3877 3878 else 3879 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3880 3881 if (!r) 3882 (void) commit(pool); 3883 3884 return r; 3885 } 3886 3887 static void emit_flags(struct pool_features *pf, char *result, 3888 unsigned int sz, unsigned int maxlen) 3889 { 3890 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + 3891 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3892 pf->error_if_no_space; 3893 DMEMIT("%u ", count); 3894 3895 if (!pf->zero_new_blocks) 3896 DMEMIT("skip_block_zeroing "); 3897 3898 if (!pf->discard_enabled) 3899 DMEMIT("ignore_discard "); 3900 3901 if (!pf->discard_passdown) 3902 DMEMIT("no_discard_passdown "); 3903 3904 if (pf->mode == PM_READ_ONLY) 3905 DMEMIT("read_only "); 3906 3907 if (pf->error_if_no_space) 3908 DMEMIT("error_if_no_space "); 3909 } 3910 3911 /* 3912 * Status line is: 3913 * <transaction id> <used metadata sectors>/<total metadata sectors> 3914 * <used data sectors>/<total data sectors> <held metadata root> 3915 * <pool mode> <discard config> <no space config> <needs_check> 3916 */ 3917 static void pool_status(struct dm_target *ti, status_type_t type, 3918 unsigned int status_flags, char *result, unsigned int maxlen) 3919 { 3920 int r; 3921 unsigned int sz = 0; 3922 uint64_t transaction_id; 3923 dm_block_t nr_free_blocks_data; 3924 dm_block_t nr_free_blocks_metadata; 3925 dm_block_t nr_blocks_data; 3926 dm_block_t nr_blocks_metadata; 3927 dm_block_t held_root; 3928 enum pool_mode mode; 3929 char buf[BDEVNAME_SIZE]; 3930 char buf2[BDEVNAME_SIZE]; 3931 struct pool_c *pt = ti->private; 3932 struct pool *pool = pt->pool; 3933 3934 switch (type) { 3935 case STATUSTYPE_INFO: 3936 if (get_pool_mode(pool) == PM_FAIL) { 3937 DMEMIT("Fail"); 3938 break; 3939 } 3940 3941 /* Commit to ensure statistics aren't out-of-date */ 3942 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3943 (void) commit(pool); 3944 3945 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3946 if (r) { 3947 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3948 dm_device_name(pool->pool_md), r); 3949 goto err; 3950 } 3951 3952 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3953 if (r) { 3954 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3955 dm_device_name(pool->pool_md), r); 3956 goto err; 3957 } 3958 3959 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3960 if (r) { 3961 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3962 dm_device_name(pool->pool_md), r); 3963 goto err; 3964 } 3965 3966 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3967 if (r) { 3968 DMERR("%s: dm_pool_get_free_block_count returned %d", 3969 dm_device_name(pool->pool_md), r); 3970 goto err; 3971 } 3972 3973 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3974 if (r) { 3975 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3976 dm_device_name(pool->pool_md), r); 3977 goto err; 3978 } 3979 3980 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3981 if (r) { 3982 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3983 dm_device_name(pool->pool_md), r); 3984 goto err; 3985 } 3986 3987 DMEMIT("%llu %llu/%llu %llu/%llu ", 3988 (unsigned long long)transaction_id, 3989 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3990 (unsigned long long)nr_blocks_metadata, 3991 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3992 (unsigned long long)nr_blocks_data); 3993 3994 if (held_root) 3995 DMEMIT("%llu ", held_root); 3996 else 3997 DMEMIT("- "); 3998 3999 mode = get_pool_mode(pool); 4000 if (mode == PM_OUT_OF_DATA_SPACE) 4001 DMEMIT("out_of_data_space "); 4002 else if (is_read_only_pool_mode(mode)) 4003 DMEMIT("ro "); 4004 else 4005 DMEMIT("rw "); 4006 4007 if (!pool->pf.discard_enabled) 4008 DMEMIT("ignore_discard "); 4009 else if (pool->pf.discard_passdown) 4010 DMEMIT("discard_passdown "); 4011 else 4012 DMEMIT("no_discard_passdown "); 4013 4014 if (pool->pf.error_if_no_space) 4015 DMEMIT("error_if_no_space "); 4016 else 4017 DMEMIT("queue_if_no_space "); 4018 4019 if (dm_pool_metadata_needs_check(pool->pmd)) 4020 DMEMIT("needs_check "); 4021 else 4022 DMEMIT("- "); 4023 4024 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4025 4026 break; 4027 4028 case STATUSTYPE_TABLE: 4029 DMEMIT("%s %s %lu %llu ", 4030 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4031 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4032 (unsigned long)pool->sectors_per_block, 4033 (unsigned long long)pt->low_water_blocks); 4034 emit_flags(&pt->requested_pf, result, sz, maxlen); 4035 break; 4036 4037 case STATUSTYPE_IMA: 4038 *result = '\0'; 4039 break; 4040 } 4041 return; 4042 4043 err: 4044 DMEMIT("Error"); 4045 } 4046 4047 static int pool_iterate_devices(struct dm_target *ti, 4048 iterate_devices_callout_fn fn, void *data) 4049 { 4050 struct pool_c *pt = ti->private; 4051 4052 return fn(ti, pt->data_dev, 0, ti->len, data); 4053 } 4054 4055 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4056 { 4057 struct pool_c *pt = ti->private; 4058 struct pool *pool = pt->pool; 4059 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4060 4061 /* 4062 * If max_sectors is smaller than pool->sectors_per_block adjust it 4063 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4064 * This is especially beneficial when the pool's data device is a RAID 4065 * device that has a full stripe width that matches pool->sectors_per_block 4066 * -- because even though partial RAID stripe-sized IOs will be issued to a 4067 * single RAID stripe; when aggregated they will end on a full RAID stripe 4068 * boundary.. which avoids additional partial RAID stripe writes cascading 4069 */ 4070 if (limits->max_sectors < pool->sectors_per_block) { 4071 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4072 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4073 limits->max_sectors--; 4074 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4075 } 4076 } 4077 4078 /* 4079 * If the system-determined stacked limits are compatible with the 4080 * pool's blocksize (io_opt is a factor) do not override them. 4081 */ 4082 if (io_opt_sectors < pool->sectors_per_block || 4083 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4084 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4085 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4086 else 4087 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4088 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4089 } 4090 4091 /* 4092 * pt->adjusted_pf is a staging area for the actual features to use. 4093 * They get transferred to the live pool in bind_control_target() 4094 * called from pool_preresume(). 4095 */ 4096 4097 if (pt->adjusted_pf.discard_enabled) { 4098 disable_discard_passdown_if_not_supported(pt); 4099 if (!pt->adjusted_pf.discard_passdown) 4100 limits->max_discard_sectors = 0; 4101 /* 4102 * The pool uses the same discard limits as the underlying data 4103 * device. DM core has already set this up. 4104 */ 4105 } else { 4106 /* 4107 * Must explicitly disallow stacking discard limits otherwise the 4108 * block layer will stack them if pool's data device has support. 4109 */ 4110 limits->discard_granularity = 0; 4111 } 4112 } 4113 4114 static struct target_type pool_target = { 4115 .name = "thin-pool", 4116 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4117 DM_TARGET_IMMUTABLE, 4118 .version = {1, 23, 0}, 4119 .module = THIS_MODULE, 4120 .ctr = pool_ctr, 4121 .dtr = pool_dtr, 4122 .map = pool_map, 4123 .presuspend = pool_presuspend, 4124 .presuspend_undo = pool_presuspend_undo, 4125 .postsuspend = pool_postsuspend, 4126 .preresume = pool_preresume, 4127 .resume = pool_resume, 4128 .message = pool_message, 4129 .status = pool_status, 4130 .iterate_devices = pool_iterate_devices, 4131 .io_hints = pool_io_hints, 4132 }; 4133 4134 /* 4135 *-------------------------------------------------------------- 4136 * Thin target methods 4137 *-------------------------------------------------------------- 4138 */ 4139 static void thin_get(struct thin_c *tc) 4140 { 4141 refcount_inc(&tc->refcount); 4142 } 4143 4144 static void thin_put(struct thin_c *tc) 4145 { 4146 if (refcount_dec_and_test(&tc->refcount)) 4147 complete(&tc->can_destroy); 4148 } 4149 4150 static void thin_dtr(struct dm_target *ti) 4151 { 4152 struct thin_c *tc = ti->private; 4153 4154 spin_lock_irq(&tc->pool->lock); 4155 list_del_rcu(&tc->list); 4156 spin_unlock_irq(&tc->pool->lock); 4157 synchronize_rcu(); 4158 4159 thin_put(tc); 4160 wait_for_completion(&tc->can_destroy); 4161 4162 mutex_lock(&dm_thin_pool_table.mutex); 4163 4164 __pool_dec(tc->pool); 4165 dm_pool_close_thin_device(tc->td); 4166 dm_put_device(ti, tc->pool_dev); 4167 if (tc->origin_dev) 4168 dm_put_device(ti, tc->origin_dev); 4169 kfree(tc); 4170 4171 mutex_unlock(&dm_thin_pool_table.mutex); 4172 } 4173 4174 /* 4175 * Thin target parameters: 4176 * 4177 * <pool_dev> <dev_id> [origin_dev] 4178 * 4179 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4180 * dev_id: the internal device identifier 4181 * origin_dev: a device external to the pool that should act as the origin 4182 * 4183 * If the pool device has discards disabled, they get disabled for the thin 4184 * device as well. 4185 */ 4186 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4187 { 4188 int r; 4189 struct thin_c *tc; 4190 struct dm_dev *pool_dev, *origin_dev; 4191 struct mapped_device *pool_md; 4192 4193 mutex_lock(&dm_thin_pool_table.mutex); 4194 4195 if (argc != 2 && argc != 3) { 4196 ti->error = "Invalid argument count"; 4197 r = -EINVAL; 4198 goto out_unlock; 4199 } 4200 4201 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4202 if (!tc) { 4203 ti->error = "Out of memory"; 4204 r = -ENOMEM; 4205 goto out_unlock; 4206 } 4207 tc->thin_md = dm_table_get_md(ti->table); 4208 spin_lock_init(&tc->lock); 4209 INIT_LIST_HEAD(&tc->deferred_cells); 4210 bio_list_init(&tc->deferred_bio_list); 4211 bio_list_init(&tc->retry_on_resume_list); 4212 tc->sort_bio_list = RB_ROOT; 4213 4214 if (argc == 3) { 4215 if (!strcmp(argv[0], argv[2])) { 4216 ti->error = "Error setting origin device"; 4217 r = -EINVAL; 4218 goto bad_origin_dev; 4219 } 4220 4221 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev); 4222 if (r) { 4223 ti->error = "Error opening origin device"; 4224 goto bad_origin_dev; 4225 } 4226 tc->origin_dev = origin_dev; 4227 } 4228 4229 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4230 if (r) { 4231 ti->error = "Error opening pool device"; 4232 goto bad_pool_dev; 4233 } 4234 tc->pool_dev = pool_dev; 4235 4236 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4237 ti->error = "Invalid device id"; 4238 r = -EINVAL; 4239 goto bad_common; 4240 } 4241 4242 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4243 if (!pool_md) { 4244 ti->error = "Couldn't get pool mapped device"; 4245 r = -EINVAL; 4246 goto bad_common; 4247 } 4248 4249 tc->pool = __pool_table_lookup(pool_md); 4250 if (!tc->pool) { 4251 ti->error = "Couldn't find pool object"; 4252 r = -EINVAL; 4253 goto bad_pool_lookup; 4254 } 4255 __pool_inc(tc->pool); 4256 4257 if (get_pool_mode(tc->pool) == PM_FAIL) { 4258 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4259 r = -EINVAL; 4260 goto bad_pool; 4261 } 4262 4263 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4264 if (r) { 4265 ti->error = "Couldn't open thin internal device"; 4266 goto bad_pool; 4267 } 4268 4269 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4270 if (r) 4271 goto bad; 4272 4273 ti->num_flush_bios = 1; 4274 ti->limit_swap_bios = true; 4275 ti->flush_supported = true; 4276 ti->accounts_remapped_io = true; 4277 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4278 4279 /* In case the pool supports discards, pass them on. */ 4280 if (tc->pool->pf.discard_enabled) { 4281 ti->discards_supported = true; 4282 ti->num_discard_bios = 1; 4283 ti->max_discard_granularity = true; 4284 } 4285 4286 mutex_unlock(&dm_thin_pool_table.mutex); 4287 4288 spin_lock_irq(&tc->pool->lock); 4289 if (tc->pool->suspended) { 4290 spin_unlock_irq(&tc->pool->lock); 4291 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4292 ti->error = "Unable to activate thin device while pool is suspended"; 4293 r = -EINVAL; 4294 goto bad; 4295 } 4296 refcount_set(&tc->refcount, 1); 4297 init_completion(&tc->can_destroy); 4298 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4299 spin_unlock_irq(&tc->pool->lock); 4300 /* 4301 * This synchronize_rcu() call is needed here otherwise we risk a 4302 * wake_worker() call finding no bios to process (because the newly 4303 * added tc isn't yet visible). So this reduces latency since we 4304 * aren't then dependent on the periodic commit to wake_worker(). 4305 */ 4306 synchronize_rcu(); 4307 4308 dm_put(pool_md); 4309 4310 return 0; 4311 4312 bad: 4313 dm_pool_close_thin_device(tc->td); 4314 bad_pool: 4315 __pool_dec(tc->pool); 4316 bad_pool_lookup: 4317 dm_put(pool_md); 4318 bad_common: 4319 dm_put_device(ti, tc->pool_dev); 4320 bad_pool_dev: 4321 if (tc->origin_dev) 4322 dm_put_device(ti, tc->origin_dev); 4323 bad_origin_dev: 4324 kfree(tc); 4325 out_unlock: 4326 mutex_unlock(&dm_thin_pool_table.mutex); 4327 4328 return r; 4329 } 4330 4331 static int thin_map(struct dm_target *ti, struct bio *bio) 4332 { 4333 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4334 4335 return thin_bio_map(ti, bio); 4336 } 4337 4338 static int thin_endio(struct dm_target *ti, struct bio *bio, 4339 blk_status_t *err) 4340 { 4341 unsigned long flags; 4342 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4343 struct list_head work; 4344 struct dm_thin_new_mapping *m, *tmp; 4345 struct pool *pool = h->tc->pool; 4346 4347 if (h->shared_read_entry) { 4348 INIT_LIST_HEAD(&work); 4349 dm_deferred_entry_dec(h->shared_read_entry, &work); 4350 4351 spin_lock_irqsave(&pool->lock, flags); 4352 list_for_each_entry_safe(m, tmp, &work, list) { 4353 list_del(&m->list); 4354 __complete_mapping_preparation(m); 4355 } 4356 spin_unlock_irqrestore(&pool->lock, flags); 4357 } 4358 4359 if (h->all_io_entry) { 4360 INIT_LIST_HEAD(&work); 4361 dm_deferred_entry_dec(h->all_io_entry, &work); 4362 if (!list_empty(&work)) { 4363 spin_lock_irqsave(&pool->lock, flags); 4364 list_for_each_entry_safe(m, tmp, &work, list) 4365 list_add_tail(&m->list, &pool->prepared_discards); 4366 spin_unlock_irqrestore(&pool->lock, flags); 4367 wake_worker(pool); 4368 } 4369 } 4370 4371 if (h->cell) 4372 cell_defer_no_holder(h->tc, h->cell); 4373 4374 return DM_ENDIO_DONE; 4375 } 4376 4377 static void thin_presuspend(struct dm_target *ti) 4378 { 4379 struct thin_c *tc = ti->private; 4380 4381 if (dm_noflush_suspending(ti)) 4382 noflush_work(tc, do_noflush_start); 4383 } 4384 4385 static void thin_postsuspend(struct dm_target *ti) 4386 { 4387 struct thin_c *tc = ti->private; 4388 4389 /* 4390 * The dm_noflush_suspending flag has been cleared by now, so 4391 * unfortunately we must always run this. 4392 */ 4393 noflush_work(tc, do_noflush_stop); 4394 } 4395 4396 static int thin_preresume(struct dm_target *ti) 4397 { 4398 struct thin_c *tc = ti->private; 4399 4400 if (tc->origin_dev) 4401 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4402 4403 return 0; 4404 } 4405 4406 /* 4407 * <nr mapped sectors> <highest mapped sector> 4408 */ 4409 static void thin_status(struct dm_target *ti, status_type_t type, 4410 unsigned int status_flags, char *result, unsigned int maxlen) 4411 { 4412 int r; 4413 ssize_t sz = 0; 4414 dm_block_t mapped, highest; 4415 char buf[BDEVNAME_SIZE]; 4416 struct thin_c *tc = ti->private; 4417 4418 if (get_pool_mode(tc->pool) == PM_FAIL) { 4419 DMEMIT("Fail"); 4420 return; 4421 } 4422 4423 if (!tc->td) 4424 DMEMIT("-"); 4425 else { 4426 switch (type) { 4427 case STATUSTYPE_INFO: 4428 r = dm_thin_get_mapped_count(tc->td, &mapped); 4429 if (r) { 4430 DMERR("dm_thin_get_mapped_count returned %d", r); 4431 goto err; 4432 } 4433 4434 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4435 if (r < 0) { 4436 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4437 goto err; 4438 } 4439 4440 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4441 if (r) 4442 DMEMIT("%llu", ((highest + 1) * 4443 tc->pool->sectors_per_block) - 1); 4444 else 4445 DMEMIT("-"); 4446 break; 4447 4448 case STATUSTYPE_TABLE: 4449 DMEMIT("%s %lu", 4450 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4451 (unsigned long) tc->dev_id); 4452 if (tc->origin_dev) 4453 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4454 break; 4455 4456 case STATUSTYPE_IMA: 4457 *result = '\0'; 4458 break; 4459 } 4460 } 4461 4462 return; 4463 4464 err: 4465 DMEMIT("Error"); 4466 } 4467 4468 static int thin_iterate_devices(struct dm_target *ti, 4469 iterate_devices_callout_fn fn, void *data) 4470 { 4471 sector_t blocks; 4472 struct thin_c *tc = ti->private; 4473 struct pool *pool = tc->pool; 4474 4475 /* 4476 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4477 * we follow a more convoluted path through to the pool's target. 4478 */ 4479 if (!pool->ti) 4480 return 0; /* nothing is bound */ 4481 4482 blocks = pool->ti->len; 4483 (void) sector_div(blocks, pool->sectors_per_block); 4484 if (blocks) 4485 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4486 4487 return 0; 4488 } 4489 4490 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4491 { 4492 struct thin_c *tc = ti->private; 4493 struct pool *pool = tc->pool; 4494 4495 if (pool->pf.discard_enabled) { 4496 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4497 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; 4498 } 4499 } 4500 4501 static struct target_type thin_target = { 4502 .name = "thin", 4503 .version = {1, 23, 0}, 4504 .module = THIS_MODULE, 4505 .ctr = thin_ctr, 4506 .dtr = thin_dtr, 4507 .map = thin_map, 4508 .end_io = thin_endio, 4509 .preresume = thin_preresume, 4510 .presuspend = thin_presuspend, 4511 .postsuspend = thin_postsuspend, 4512 .status = thin_status, 4513 .iterate_devices = thin_iterate_devices, 4514 .io_hints = thin_io_hints, 4515 }; 4516 4517 /*----------------------------------------------------------------*/ 4518 4519 static int __init dm_thin_init(void) 4520 { 4521 int r = -ENOMEM; 4522 4523 pool_table_init(); 4524 4525 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4526 if (!_new_mapping_cache) 4527 return r; 4528 4529 r = dm_register_target(&thin_target); 4530 if (r) 4531 goto bad_new_mapping_cache; 4532 4533 r = dm_register_target(&pool_target); 4534 if (r) 4535 goto bad_thin_target; 4536 4537 return 0; 4538 4539 bad_thin_target: 4540 dm_unregister_target(&thin_target); 4541 bad_new_mapping_cache: 4542 kmem_cache_destroy(_new_mapping_cache); 4543 4544 return r; 4545 } 4546 4547 static void dm_thin_exit(void) 4548 { 4549 dm_unregister_target(&thin_target); 4550 dm_unregister_target(&pool_target); 4551 4552 kmem_cache_destroy(_new_mapping_cache); 4553 4554 pool_table_exit(); 4555 } 4556 4557 module_init(dm_thin_init); 4558 module_exit(dm_thin_exit); 4559 4560 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); 4561 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4562 4563 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4564 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4565 MODULE_LICENSE("GPL"); 4566