xref: /openbmc/linux/drivers/md/dm-thin.c (revision e23feb16)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 
19 #define	DM_MSG_PREFIX	"thin"
20 
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 		"A percentage of time allocated for copy on write");
31 
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38 
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43 
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101 
102 /*----------------------------------------------------------------*/
103 
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108 			   dm_block_t b, struct dm_cell_key *key)
109 {
110 	key->virtual = 0;
111 	key->dev = dm_thin_dev_id(td);
112 	key->block = b;
113 }
114 
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 			      struct dm_cell_key *key)
117 {
118 	key->virtual = 1;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block = b;
121 }
122 
123 /*----------------------------------------------------------------*/
124 
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131 
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136 	PM_WRITE,		/* metadata may be changed */
137 	PM_READ_ONLY,		/* metadata may not be changed */
138 	PM_FAIL,		/* all I/O fails */
139 };
140 
141 struct pool_features {
142 	enum pool_mode mode;
143 
144 	bool zero_new_blocks:1;
145 	bool discard_enabled:1;
146 	bool discard_passdown:1;
147 };
148 
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152 
153 struct pool {
154 	struct list_head list;
155 	struct dm_target *ti;	/* Only set if a pool target is bound */
156 
157 	struct mapped_device *pool_md;
158 	struct block_device *md_dev;
159 	struct dm_pool_metadata *pmd;
160 
161 	dm_block_t low_water_blocks;
162 	uint32_t sectors_per_block;
163 	int sectors_per_block_shift;
164 
165 	struct pool_features pf;
166 	unsigned low_water_triggered:1;	/* A dm event has been sent */
167 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
168 
169 	struct dm_bio_prison *prison;
170 	struct dm_kcopyd_client *copier;
171 
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 	struct delayed_work waker;
175 
176 	unsigned long last_commit_jiffies;
177 	unsigned ref_count;
178 
179 	spinlock_t lock;
180 	struct bio_list deferred_bios;
181 	struct bio_list deferred_flush_bios;
182 	struct list_head prepared_mappings;
183 	struct list_head prepared_discards;
184 
185 	struct bio_list retry_on_resume_list;
186 
187 	struct dm_deferred_set *shared_read_ds;
188 	struct dm_deferred_set *all_io_ds;
189 
190 	struct dm_thin_new_mapping *next_mapping;
191 	mempool_t *mapping_pool;
192 
193 	process_bio_fn process_bio;
194 	process_bio_fn process_discard;
195 
196 	process_mapping_fn process_prepared_mapping;
197 	process_mapping_fn process_prepared_discard;
198 };
199 
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202 
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207 	struct dm_target *ti;
208 	struct pool *pool;
209 	struct dm_dev *data_dev;
210 	struct dm_dev *metadata_dev;
211 	struct dm_target_callbacks callbacks;
212 
213 	dm_block_t low_water_blocks;
214 	struct pool_features requested_pf; /* Features requested during table load */
215 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217 
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222 	struct dm_dev *pool_dev;
223 	struct dm_dev *origin_dev;
224 	dm_thin_id dev_id;
225 
226 	struct pool *pool;
227 	struct dm_thin_device *td;
228 };
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238 	queue_work(pool->wq, &pool->worker);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 		      struct dm_bio_prison_cell **cell_result)
245 {
246 	int r;
247 	struct dm_bio_prison_cell *cell_prealloc;
248 
249 	/*
250 	 * Allocate a cell from the prison's mempool.
251 	 * This might block but it can't fail.
252 	 */
253 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254 
255 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 	if (r)
257 		/*
258 		 * We reused an old cell; we can get rid of
259 		 * the new one.
260 		 */
261 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262 
263 	return r;
264 }
265 
266 static void cell_release(struct pool *pool,
267 			 struct dm_bio_prison_cell *cell,
268 			 struct bio_list *bios)
269 {
270 	dm_cell_release(pool->prison, cell, bios);
271 	dm_bio_prison_free_cell(pool->prison, cell);
272 }
273 
274 static void cell_release_no_holder(struct pool *pool,
275 				   struct dm_bio_prison_cell *cell,
276 				   struct bio_list *bios)
277 {
278 	dm_cell_release_no_holder(pool->prison, cell, bios);
279 	dm_bio_prison_free_cell(pool->prison, cell);
280 }
281 
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 					 struct dm_bio_prison_cell *cell)
284 {
285 	struct pool *pool = tc->pool;
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&pool->lock, flags);
289 	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 	spin_unlock_irqrestore(&pool->lock, flags);
291 
292 	wake_worker(pool);
293 }
294 
295 static void cell_error(struct pool *pool,
296 		       struct dm_bio_prison_cell *cell)
297 {
298 	dm_cell_error(pool->prison, cell);
299 	dm_bio_prison_free_cell(pool->prison, cell);
300 }
301 
302 /*----------------------------------------------------------------*/
303 
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308 	struct mutex mutex;
309 	struct list_head pools;
310 } dm_thin_pool_table;
311 
312 static void pool_table_init(void)
313 {
314 	mutex_init(&dm_thin_pool_table.mutex);
315 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317 
318 static void __pool_table_insert(struct pool *pool)
319 {
320 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 	list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323 
324 static void __pool_table_remove(struct pool *pool)
325 {
326 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 	list_del(&pool->list);
328 }
329 
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 	struct pool *pool = NULL, *tmp;
333 
334 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 
336 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 		if (tmp->pool_md == md) {
338 			pool = tmp;
339 			break;
340 		}
341 	}
342 
343 	return pool;
344 }
345 
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 	struct pool *pool = NULL, *tmp;
349 
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 
352 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 		if (tmp->md_dev == md_dev) {
354 			pool = tmp;
355 			break;
356 		}
357 	}
358 
359 	return pool;
360 }
361 
362 /*----------------------------------------------------------------*/
363 
364 struct dm_thin_endio_hook {
365 	struct thin_c *tc;
366 	struct dm_deferred_entry *shared_read_entry;
367 	struct dm_deferred_entry *all_io_entry;
368 	struct dm_thin_new_mapping *overwrite_mapping;
369 };
370 
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 	struct bio *bio;
374 	struct bio_list bios;
375 
376 	bio_list_init(&bios);
377 	bio_list_merge(&bios, master);
378 	bio_list_init(master);
379 
380 	while ((bio = bio_list_pop(&bios))) {
381 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382 
383 		if (h->tc == tc)
384 			bio_endio(bio, DM_ENDIO_REQUEUE);
385 		else
386 			bio_list_add(master, bio);
387 	}
388 }
389 
390 static void requeue_io(struct thin_c *tc)
391 {
392 	struct pool *pool = tc->pool;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&pool->lock, flags);
396 	__requeue_bio_list(tc, &pool->deferred_bios);
397 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
398 	spin_unlock_irqrestore(&pool->lock, flags);
399 }
400 
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407 
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 	return pool->sectors_per_block_shift >= 0;
411 }
412 
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 	struct pool *pool = tc->pool;
416 	sector_t block_nr = bio->bi_sector;
417 
418 	if (block_size_is_power_of_two(pool))
419 		block_nr >>= pool->sectors_per_block_shift;
420 	else
421 		(void) sector_div(block_nr, pool->sectors_per_block);
422 
423 	return block_nr;
424 }
425 
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 	struct pool *pool = tc->pool;
429 	sector_t bi_sector = bio->bi_sector;
430 
431 	bio->bi_bdev = tc->pool_dev->bdev;
432 	if (block_size_is_power_of_two(pool))
433 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 				(bi_sector & (pool->sectors_per_block - 1));
435 	else
436 		bio->bi_sector = (block * pool->sectors_per_block) +
437 				 sector_div(bi_sector, pool->sectors_per_block);
438 }
439 
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 	bio->bi_bdev = tc->origin_dev->bdev;
443 }
444 
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 		dm_thin_changed_this_transaction(tc->td);
449 }
450 
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 	struct dm_thin_endio_hook *h;
454 
455 	if (bio->bi_rw & REQ_DISCARD)
456 		return;
457 
458 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461 
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 	struct pool *pool = tc->pool;
465 	unsigned long flags;
466 
467 	if (!bio_triggers_commit(tc, bio)) {
468 		generic_make_request(bio);
469 		return;
470 	}
471 
472 	/*
473 	 * Complete bio with an error if earlier I/O caused changes to
474 	 * the metadata that can't be committed e.g, due to I/O errors
475 	 * on the metadata device.
476 	 */
477 	if (dm_thin_aborted_changes(tc->td)) {
478 		bio_io_error(bio);
479 		return;
480 	}
481 
482 	/*
483 	 * Batch together any bios that trigger commits and then issue a
484 	 * single commit for them in process_deferred_bios().
485 	 */
486 	spin_lock_irqsave(&pool->lock, flags);
487 	bio_list_add(&pool->deferred_flush_bios, bio);
488 	spin_unlock_irqrestore(&pool->lock, flags);
489 }
490 
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 	remap_to_origin(tc, bio);
494 	issue(tc, bio);
495 }
496 
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 			    dm_block_t block)
499 {
500 	remap(tc, bio, block);
501 	issue(tc, bio);
502 }
503 
504 /*----------------------------------------------------------------*/
505 
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510 	struct list_head list;
511 
512 	unsigned quiesced:1;
513 	unsigned prepared:1;
514 	unsigned pass_discard:1;
515 
516 	struct thin_c *tc;
517 	dm_block_t virt_block;
518 	dm_block_t data_block;
519 	struct dm_bio_prison_cell *cell, *cell2;
520 	int err;
521 
522 	/*
523 	 * If the bio covers the whole area of a block then we can avoid
524 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
525 	 * still be in the cell, so care has to be taken to avoid issuing
526 	 * the bio twice.
527 	 */
528 	struct bio *bio;
529 	bio_end_io_t *saved_bi_end_io;
530 };
531 
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 	struct pool *pool = m->tc->pool;
535 
536 	if (m->quiesced && m->prepared) {
537 		list_add(&m->list, &pool->prepared_mappings);
538 		wake_worker(pool);
539 	}
540 }
541 
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 	unsigned long flags;
545 	struct dm_thin_new_mapping *m = context;
546 	struct pool *pool = m->tc->pool;
547 
548 	m->err = read_err || write_err ? -EIO : 0;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	m->prepared = 1;
552 	__maybe_add_mapping(m);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 }
555 
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 	unsigned long flags;
559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 	struct pool *pool = m->tc->pool;
562 
563 	m->err = err;
564 
565 	spin_lock_irqsave(&pool->lock, flags);
566 	m->prepared = 1;
567 	__maybe_add_mapping(m);
568 	spin_unlock_irqrestore(&pool->lock, flags);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * Workqueue.
575  */
576 
577 /*
578  * Prepared mapping jobs.
579  */
580 
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 	struct pool *pool = tc->pool;
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&pool->lock, flags);
590 	cell_release(pool, cell, &pool->deferred_bios);
591 	spin_unlock_irqrestore(&tc->pool->lock, flags);
592 
593 	wake_worker(pool);
594 }
595 
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 	struct pool *pool = tc->pool;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&pool->lock, flags);
605 	cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 	spin_unlock_irqrestore(&pool->lock, flags);
607 
608 	wake_worker(pool);
609 }
610 
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 	if (m->bio)
614 		m->bio->bi_end_io = m->saved_bi_end_io;
615 	cell_error(m->tc->pool, m->cell);
616 	list_del(&m->list);
617 	mempool_free(m, m->tc->pool->mapping_pool);
618 }
619 
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 	struct thin_c *tc = m->tc;
623 	struct pool *pool = tc->pool;
624 	struct bio *bio;
625 	int r;
626 
627 	bio = m->bio;
628 	if (bio)
629 		bio->bi_end_io = m->saved_bi_end_io;
630 
631 	if (m->err) {
632 		cell_error(pool, m->cell);
633 		goto out;
634 	}
635 
636 	/*
637 	 * Commit the prepared block into the mapping btree.
638 	 * Any I/O for this block arriving after this point will get
639 	 * remapped to it directly.
640 	 */
641 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 	if (r) {
643 		DMERR_LIMIT("dm_thin_insert_block() failed");
644 		cell_error(pool, m->cell);
645 		goto out;
646 	}
647 
648 	/*
649 	 * Release any bios held while the block was being provisioned.
650 	 * If we are processing a write bio that completely covers the block,
651 	 * we already processed it so can ignore it now when processing
652 	 * the bios in the cell.
653 	 */
654 	if (bio) {
655 		cell_defer_no_holder(tc, m->cell);
656 		bio_endio(bio, 0);
657 	} else
658 		cell_defer(tc, m->cell);
659 
660 out:
661 	list_del(&m->list);
662 	mempool_free(m, pool->mapping_pool);
663 }
664 
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 	struct thin_c *tc = m->tc;
668 
669 	bio_io_error(m->bio);
670 	cell_defer_no_holder(tc, m->cell);
671 	cell_defer_no_holder(tc, m->cell2);
672 	mempool_free(m, tc->pool->mapping_pool);
673 }
674 
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 	struct thin_c *tc = m->tc;
678 
679 	inc_all_io_entry(tc->pool, m->bio);
680 	cell_defer_no_holder(tc, m->cell);
681 	cell_defer_no_holder(tc, m->cell2);
682 
683 	if (m->pass_discard)
684 		remap_and_issue(tc, m->bio, m->data_block);
685 	else
686 		bio_endio(m->bio, 0);
687 
688 	mempool_free(m, tc->pool->mapping_pool);
689 }
690 
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 	int r;
694 	struct thin_c *tc = m->tc;
695 
696 	r = dm_thin_remove_block(tc->td, m->virt_block);
697 	if (r)
698 		DMERR_LIMIT("dm_thin_remove_block() failed");
699 
700 	process_prepared_discard_passdown(m);
701 }
702 
703 static void process_prepared(struct pool *pool, struct list_head *head,
704 			     process_mapping_fn *fn)
705 {
706 	unsigned long flags;
707 	struct list_head maps;
708 	struct dm_thin_new_mapping *m, *tmp;
709 
710 	INIT_LIST_HEAD(&maps);
711 	spin_lock_irqsave(&pool->lock, flags);
712 	list_splice_init(head, &maps);
713 	spin_unlock_irqrestore(&pool->lock, flags);
714 
715 	list_for_each_entry_safe(m, tmp, &maps, list)
716 		(*fn)(m);
717 }
718 
719 /*
720  * Deferred bio jobs.
721  */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726 
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 	return (bio_data_dir(bio) == WRITE) &&
730 		io_overlaps_block(pool, bio);
731 }
732 
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 			       bio_end_io_t *fn)
735 {
736 	*save = bio->bi_end_io;
737 	bio->bi_end_io = fn;
738 }
739 
740 static int ensure_next_mapping(struct pool *pool)
741 {
742 	if (pool->next_mapping)
743 		return 0;
744 
745 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746 
747 	return pool->next_mapping ? 0 : -ENOMEM;
748 }
749 
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 	struct dm_thin_new_mapping *r = pool->next_mapping;
753 
754 	BUG_ON(!pool->next_mapping);
755 
756 	pool->next_mapping = NULL;
757 
758 	return r;
759 }
760 
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 			  struct dm_dev *origin, dm_block_t data_origin,
763 			  dm_block_t data_dest,
764 			  struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 	int r;
767 	struct pool *pool = tc->pool;
768 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
769 
770 	INIT_LIST_HEAD(&m->list);
771 	m->quiesced = 0;
772 	m->prepared = 0;
773 	m->tc = tc;
774 	m->virt_block = virt_block;
775 	m->data_block = data_dest;
776 	m->cell = cell;
777 	m->err = 0;
778 	m->bio = NULL;
779 
780 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 		m->quiesced = 1;
782 
783 	/*
784 	 * IO to pool_dev remaps to the pool target's data_dev.
785 	 *
786 	 * If the whole block of data is being overwritten, we can issue the
787 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 	 */
789 	if (io_overwrites_block(pool, bio)) {
790 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791 
792 		h->overwrite_mapping = m;
793 		m->bio = bio;
794 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 		inc_all_io_entry(pool, bio);
796 		remap_and_issue(tc, bio, data_dest);
797 	} else {
798 		struct dm_io_region from, to;
799 
800 		from.bdev = origin->bdev;
801 		from.sector = data_origin * pool->sectors_per_block;
802 		from.count = pool->sectors_per_block;
803 
804 		to.bdev = tc->pool_dev->bdev;
805 		to.sector = data_dest * pool->sectors_per_block;
806 		to.count = pool->sectors_per_block;
807 
808 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 				   0, copy_complete, m);
810 		if (r < 0) {
811 			mempool_free(m, pool->mapping_pool);
812 			DMERR_LIMIT("dm_kcopyd_copy() failed");
813 			cell_error(pool, cell);
814 		}
815 	}
816 }
817 
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 				   dm_block_t data_origin, dm_block_t data_dest,
820 				   struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 	schedule_copy(tc, virt_block, tc->pool_dev,
823 		      data_origin, data_dest, cell, bio);
824 }
825 
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 				   dm_block_t data_dest,
828 				   struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 	schedule_copy(tc, virt_block, tc->origin_dev,
831 		      virt_block, data_dest, cell, bio);
832 }
833 
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 			  struct bio *bio)
837 {
838 	struct pool *pool = tc->pool;
839 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
840 
841 	INIT_LIST_HEAD(&m->list);
842 	m->quiesced = 1;
843 	m->prepared = 0;
844 	m->tc = tc;
845 	m->virt_block = virt_block;
846 	m->data_block = data_block;
847 	m->cell = cell;
848 	m->err = 0;
849 	m->bio = NULL;
850 
851 	/*
852 	 * If the whole block of data is being overwritten or we are not
853 	 * zeroing pre-existing data, we can issue the bio immediately.
854 	 * Otherwise we use kcopyd to zero the data first.
855 	 */
856 	if (!pool->pf.zero_new_blocks)
857 		process_prepared_mapping(m);
858 
859 	else if (io_overwrites_block(pool, bio)) {
860 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 
862 		h->overwrite_mapping = m;
863 		m->bio = bio;
864 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 		inc_all_io_entry(pool, bio);
866 		remap_and_issue(tc, bio, data_block);
867 	} else {
868 		int r;
869 		struct dm_io_region to;
870 
871 		to.bdev = tc->pool_dev->bdev;
872 		to.sector = data_block * pool->sectors_per_block;
873 		to.count = pool->sectors_per_block;
874 
875 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 		if (r < 0) {
877 			mempool_free(m, pool->mapping_pool);
878 			DMERR_LIMIT("dm_kcopyd_zero() failed");
879 			cell_error(pool, cell);
880 		}
881 	}
882 }
883 
884 static int commit(struct pool *pool)
885 {
886 	int r;
887 
888 	r = dm_pool_commit_metadata(pool->pmd);
889 	if (r)
890 		DMERR_LIMIT("%s: commit failed: error = %d",
891 			    dm_device_name(pool->pool_md), r);
892 
893 	return r;
894 }
895 
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit_or_fallback(struct pool *pool)
901 {
902 	int r;
903 
904 	if (get_pool_mode(pool) != PM_WRITE)
905 		return -EINVAL;
906 
907 	r = commit(pool);
908 	if (r)
909 		set_pool_mode(pool, PM_READ_ONLY);
910 
911 	return r;
912 }
913 
914 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
915 {
916 	int r;
917 	dm_block_t free_blocks;
918 	unsigned long flags;
919 	struct pool *pool = tc->pool;
920 
921 	/*
922 	 * Once no_free_space is set we must not allow allocation to succeed.
923 	 * Otherwise it is difficult to explain, debug, test and support.
924 	 */
925 	if (pool->no_free_space)
926 		return -ENOSPC;
927 
928 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
929 	if (r)
930 		return r;
931 
932 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
933 		DMWARN("%s: reached low water mark for data device: sending event.",
934 		       dm_device_name(pool->pool_md));
935 		spin_lock_irqsave(&pool->lock, flags);
936 		pool->low_water_triggered = 1;
937 		spin_unlock_irqrestore(&pool->lock, flags);
938 		dm_table_event(pool->ti->table);
939 	}
940 
941 	if (!free_blocks) {
942 		/*
943 		 * Try to commit to see if that will free up some
944 		 * more space.
945 		 */
946 		(void) commit_or_fallback(pool);
947 
948 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
949 		if (r)
950 			return r;
951 
952 		/*
953 		 * If we still have no space we set a flag to avoid
954 		 * doing all this checking and return -ENOSPC.  This
955 		 * flag serves as a latch that disallows allocations from
956 		 * this pool until the admin takes action (e.g. resize or
957 		 * table reload).
958 		 */
959 		if (!free_blocks) {
960 			DMWARN("%s: no free space available.",
961 			       dm_device_name(pool->pool_md));
962 			spin_lock_irqsave(&pool->lock, flags);
963 			pool->no_free_space = 1;
964 			spin_unlock_irqrestore(&pool->lock, flags);
965 			return -ENOSPC;
966 		}
967 	}
968 
969 	r = dm_pool_alloc_data_block(pool->pmd, result);
970 	if (r)
971 		return r;
972 
973 	return 0;
974 }
975 
976 /*
977  * If we have run out of space, queue bios until the device is
978  * resumed, presumably after having been reloaded with more space.
979  */
980 static void retry_on_resume(struct bio *bio)
981 {
982 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
983 	struct thin_c *tc = h->tc;
984 	struct pool *pool = tc->pool;
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&pool->lock, flags);
988 	bio_list_add(&pool->retry_on_resume_list, bio);
989 	spin_unlock_irqrestore(&pool->lock, flags);
990 }
991 
992 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
993 {
994 	struct bio *bio;
995 	struct bio_list bios;
996 
997 	bio_list_init(&bios);
998 	cell_release(pool, cell, &bios);
999 
1000 	while ((bio = bio_list_pop(&bios)))
1001 		retry_on_resume(bio);
1002 }
1003 
1004 static void process_discard(struct thin_c *tc, struct bio *bio)
1005 {
1006 	int r;
1007 	unsigned long flags;
1008 	struct pool *pool = tc->pool;
1009 	struct dm_bio_prison_cell *cell, *cell2;
1010 	struct dm_cell_key key, key2;
1011 	dm_block_t block = get_bio_block(tc, bio);
1012 	struct dm_thin_lookup_result lookup_result;
1013 	struct dm_thin_new_mapping *m;
1014 
1015 	build_virtual_key(tc->td, block, &key);
1016 	if (bio_detain(tc->pool, &key, bio, &cell))
1017 		return;
1018 
1019 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1020 	switch (r) {
1021 	case 0:
1022 		/*
1023 		 * Check nobody is fiddling with this pool block.  This can
1024 		 * happen if someone's in the process of breaking sharing
1025 		 * on this block.
1026 		 */
1027 		build_data_key(tc->td, lookup_result.block, &key2);
1028 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1029 			cell_defer_no_holder(tc, cell);
1030 			break;
1031 		}
1032 
1033 		if (io_overlaps_block(pool, bio)) {
1034 			/*
1035 			 * IO may still be going to the destination block.  We must
1036 			 * quiesce before we can do the removal.
1037 			 */
1038 			m = get_next_mapping(pool);
1039 			m->tc = tc;
1040 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1041 			m->virt_block = block;
1042 			m->data_block = lookup_result.block;
1043 			m->cell = cell;
1044 			m->cell2 = cell2;
1045 			m->err = 0;
1046 			m->bio = bio;
1047 
1048 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1049 				spin_lock_irqsave(&pool->lock, flags);
1050 				list_add(&m->list, &pool->prepared_discards);
1051 				spin_unlock_irqrestore(&pool->lock, flags);
1052 				wake_worker(pool);
1053 			}
1054 		} else {
1055 			inc_all_io_entry(pool, bio);
1056 			cell_defer_no_holder(tc, cell);
1057 			cell_defer_no_holder(tc, cell2);
1058 
1059 			/*
1060 			 * The DM core makes sure that the discard doesn't span
1061 			 * a block boundary.  So we submit the discard of a
1062 			 * partial block appropriately.
1063 			 */
1064 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1065 				remap_and_issue(tc, bio, lookup_result.block);
1066 			else
1067 				bio_endio(bio, 0);
1068 		}
1069 		break;
1070 
1071 	case -ENODATA:
1072 		/*
1073 		 * It isn't provisioned, just forget it.
1074 		 */
1075 		cell_defer_no_holder(tc, cell);
1076 		bio_endio(bio, 0);
1077 		break;
1078 
1079 	default:
1080 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1081 			    __func__, r);
1082 		cell_defer_no_holder(tc, cell);
1083 		bio_io_error(bio);
1084 		break;
1085 	}
1086 }
1087 
1088 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1089 			  struct dm_cell_key *key,
1090 			  struct dm_thin_lookup_result *lookup_result,
1091 			  struct dm_bio_prison_cell *cell)
1092 {
1093 	int r;
1094 	dm_block_t data_block;
1095 	struct pool *pool = tc->pool;
1096 
1097 	r = alloc_data_block(tc, &data_block);
1098 	switch (r) {
1099 	case 0:
1100 		schedule_internal_copy(tc, block, lookup_result->block,
1101 				       data_block, cell, bio);
1102 		break;
1103 
1104 	case -ENOSPC:
1105 		no_space(pool, cell);
1106 		break;
1107 
1108 	default:
1109 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1110 			    __func__, r);
1111 		set_pool_mode(pool, PM_READ_ONLY);
1112 		cell_error(pool, cell);
1113 		break;
1114 	}
1115 }
1116 
1117 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1118 			       dm_block_t block,
1119 			       struct dm_thin_lookup_result *lookup_result)
1120 {
1121 	struct dm_bio_prison_cell *cell;
1122 	struct pool *pool = tc->pool;
1123 	struct dm_cell_key key;
1124 
1125 	/*
1126 	 * If cell is already occupied, then sharing is already in the process
1127 	 * of being broken so we have nothing further to do here.
1128 	 */
1129 	build_data_key(tc->td, lookup_result->block, &key);
1130 	if (bio_detain(pool, &key, bio, &cell))
1131 		return;
1132 
1133 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1134 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1135 	else {
1136 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1137 
1138 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1139 		inc_all_io_entry(pool, bio);
1140 		cell_defer_no_holder(tc, cell);
1141 
1142 		remap_and_issue(tc, bio, lookup_result->block);
1143 	}
1144 }
1145 
1146 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1147 			    struct dm_bio_prison_cell *cell)
1148 {
1149 	int r;
1150 	dm_block_t data_block;
1151 	struct pool *pool = tc->pool;
1152 
1153 	/*
1154 	 * Remap empty bios (flushes) immediately, without provisioning.
1155 	 */
1156 	if (!bio->bi_size) {
1157 		inc_all_io_entry(pool, bio);
1158 		cell_defer_no_holder(tc, cell);
1159 
1160 		remap_and_issue(tc, bio, 0);
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * Fill read bios with zeroes and complete them immediately.
1166 	 */
1167 	if (bio_data_dir(bio) == READ) {
1168 		zero_fill_bio(bio);
1169 		cell_defer_no_holder(tc, cell);
1170 		bio_endio(bio, 0);
1171 		return;
1172 	}
1173 
1174 	r = alloc_data_block(tc, &data_block);
1175 	switch (r) {
1176 	case 0:
1177 		if (tc->origin_dev)
1178 			schedule_external_copy(tc, block, data_block, cell, bio);
1179 		else
1180 			schedule_zero(tc, block, data_block, cell, bio);
1181 		break;
1182 
1183 	case -ENOSPC:
1184 		no_space(pool, cell);
1185 		break;
1186 
1187 	default:
1188 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1189 			    __func__, r);
1190 		set_pool_mode(pool, PM_READ_ONLY);
1191 		cell_error(pool, cell);
1192 		break;
1193 	}
1194 }
1195 
1196 static void process_bio(struct thin_c *tc, struct bio *bio)
1197 {
1198 	int r;
1199 	struct pool *pool = tc->pool;
1200 	dm_block_t block = get_bio_block(tc, bio);
1201 	struct dm_bio_prison_cell *cell;
1202 	struct dm_cell_key key;
1203 	struct dm_thin_lookup_result lookup_result;
1204 
1205 	/*
1206 	 * If cell is already occupied, then the block is already
1207 	 * being provisioned so we have nothing further to do here.
1208 	 */
1209 	build_virtual_key(tc->td, block, &key);
1210 	if (bio_detain(pool, &key, bio, &cell))
1211 		return;
1212 
1213 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1214 	switch (r) {
1215 	case 0:
1216 		if (lookup_result.shared) {
1217 			process_shared_bio(tc, bio, block, &lookup_result);
1218 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1219 		} else {
1220 			inc_all_io_entry(pool, bio);
1221 			cell_defer_no_holder(tc, cell);
1222 
1223 			remap_and_issue(tc, bio, lookup_result.block);
1224 		}
1225 		break;
1226 
1227 	case -ENODATA:
1228 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1229 			inc_all_io_entry(pool, bio);
1230 			cell_defer_no_holder(tc, cell);
1231 
1232 			remap_to_origin_and_issue(tc, bio);
1233 		} else
1234 			provision_block(tc, bio, block, cell);
1235 		break;
1236 
1237 	default:
1238 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1239 			    __func__, r);
1240 		cell_defer_no_holder(tc, cell);
1241 		bio_io_error(bio);
1242 		break;
1243 	}
1244 }
1245 
1246 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1247 {
1248 	int r;
1249 	int rw = bio_data_dir(bio);
1250 	dm_block_t block = get_bio_block(tc, bio);
1251 	struct dm_thin_lookup_result lookup_result;
1252 
1253 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1254 	switch (r) {
1255 	case 0:
1256 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1257 			bio_io_error(bio);
1258 		else {
1259 			inc_all_io_entry(tc->pool, bio);
1260 			remap_and_issue(tc, bio, lookup_result.block);
1261 		}
1262 		break;
1263 
1264 	case -ENODATA:
1265 		if (rw != READ) {
1266 			bio_io_error(bio);
1267 			break;
1268 		}
1269 
1270 		if (tc->origin_dev) {
1271 			inc_all_io_entry(tc->pool, bio);
1272 			remap_to_origin_and_issue(tc, bio);
1273 			break;
1274 		}
1275 
1276 		zero_fill_bio(bio);
1277 		bio_endio(bio, 0);
1278 		break;
1279 
1280 	default:
1281 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1282 			    __func__, r);
1283 		bio_io_error(bio);
1284 		break;
1285 	}
1286 }
1287 
1288 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1289 {
1290 	bio_io_error(bio);
1291 }
1292 
1293 /*
1294  * FIXME: should we also commit due to size of transaction, measured in
1295  * metadata blocks?
1296  */
1297 static int need_commit_due_to_time(struct pool *pool)
1298 {
1299 	return jiffies < pool->last_commit_jiffies ||
1300 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1301 }
1302 
1303 static void process_deferred_bios(struct pool *pool)
1304 {
1305 	unsigned long flags;
1306 	struct bio *bio;
1307 	struct bio_list bios;
1308 
1309 	bio_list_init(&bios);
1310 
1311 	spin_lock_irqsave(&pool->lock, flags);
1312 	bio_list_merge(&bios, &pool->deferred_bios);
1313 	bio_list_init(&pool->deferred_bios);
1314 	spin_unlock_irqrestore(&pool->lock, flags);
1315 
1316 	while ((bio = bio_list_pop(&bios))) {
1317 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1318 		struct thin_c *tc = h->tc;
1319 
1320 		/*
1321 		 * If we've got no free new_mapping structs, and processing
1322 		 * this bio might require one, we pause until there are some
1323 		 * prepared mappings to process.
1324 		 */
1325 		if (ensure_next_mapping(pool)) {
1326 			spin_lock_irqsave(&pool->lock, flags);
1327 			bio_list_merge(&pool->deferred_bios, &bios);
1328 			spin_unlock_irqrestore(&pool->lock, flags);
1329 
1330 			break;
1331 		}
1332 
1333 		if (bio->bi_rw & REQ_DISCARD)
1334 			pool->process_discard(tc, bio);
1335 		else
1336 			pool->process_bio(tc, bio);
1337 	}
1338 
1339 	/*
1340 	 * If there are any deferred flush bios, we must commit
1341 	 * the metadata before issuing them.
1342 	 */
1343 	bio_list_init(&bios);
1344 	spin_lock_irqsave(&pool->lock, flags);
1345 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1346 	bio_list_init(&pool->deferred_flush_bios);
1347 	spin_unlock_irqrestore(&pool->lock, flags);
1348 
1349 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1350 		return;
1351 
1352 	if (commit_or_fallback(pool)) {
1353 		while ((bio = bio_list_pop(&bios)))
1354 			bio_io_error(bio);
1355 		return;
1356 	}
1357 	pool->last_commit_jiffies = jiffies;
1358 
1359 	while ((bio = bio_list_pop(&bios)))
1360 		generic_make_request(bio);
1361 }
1362 
1363 static void do_worker(struct work_struct *ws)
1364 {
1365 	struct pool *pool = container_of(ws, struct pool, worker);
1366 
1367 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1368 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1369 	process_deferred_bios(pool);
1370 }
1371 
1372 /*
1373  * We want to commit periodically so that not too much
1374  * unwritten data builds up.
1375  */
1376 static void do_waker(struct work_struct *ws)
1377 {
1378 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1379 	wake_worker(pool);
1380 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1381 }
1382 
1383 /*----------------------------------------------------------------*/
1384 
1385 static enum pool_mode get_pool_mode(struct pool *pool)
1386 {
1387 	return pool->pf.mode;
1388 }
1389 
1390 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1391 {
1392 	int r;
1393 
1394 	pool->pf.mode = mode;
1395 
1396 	switch (mode) {
1397 	case PM_FAIL:
1398 		DMERR("%s: switching pool to failure mode",
1399 		      dm_device_name(pool->pool_md));
1400 		pool->process_bio = process_bio_fail;
1401 		pool->process_discard = process_bio_fail;
1402 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1403 		pool->process_prepared_discard = process_prepared_discard_fail;
1404 		break;
1405 
1406 	case PM_READ_ONLY:
1407 		DMERR("%s: switching pool to read-only mode",
1408 		      dm_device_name(pool->pool_md));
1409 		r = dm_pool_abort_metadata(pool->pmd);
1410 		if (r) {
1411 			DMERR("%s: aborting transaction failed",
1412 			      dm_device_name(pool->pool_md));
1413 			set_pool_mode(pool, PM_FAIL);
1414 		} else {
1415 			dm_pool_metadata_read_only(pool->pmd);
1416 			pool->process_bio = process_bio_read_only;
1417 			pool->process_discard = process_discard;
1418 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1419 			pool->process_prepared_discard = process_prepared_discard_passdown;
1420 		}
1421 		break;
1422 
1423 	case PM_WRITE:
1424 		pool->process_bio = process_bio;
1425 		pool->process_discard = process_discard;
1426 		pool->process_prepared_mapping = process_prepared_mapping;
1427 		pool->process_prepared_discard = process_prepared_discard;
1428 		break;
1429 	}
1430 }
1431 
1432 /*----------------------------------------------------------------*/
1433 
1434 /*
1435  * Mapping functions.
1436  */
1437 
1438 /*
1439  * Called only while mapping a thin bio to hand it over to the workqueue.
1440  */
1441 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1442 {
1443 	unsigned long flags;
1444 	struct pool *pool = tc->pool;
1445 
1446 	spin_lock_irqsave(&pool->lock, flags);
1447 	bio_list_add(&pool->deferred_bios, bio);
1448 	spin_unlock_irqrestore(&pool->lock, flags);
1449 
1450 	wake_worker(pool);
1451 }
1452 
1453 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1454 {
1455 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1456 
1457 	h->tc = tc;
1458 	h->shared_read_entry = NULL;
1459 	h->all_io_entry = NULL;
1460 	h->overwrite_mapping = NULL;
1461 }
1462 
1463 /*
1464  * Non-blocking function called from the thin target's map function.
1465  */
1466 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1467 {
1468 	int r;
1469 	struct thin_c *tc = ti->private;
1470 	dm_block_t block = get_bio_block(tc, bio);
1471 	struct dm_thin_device *td = tc->td;
1472 	struct dm_thin_lookup_result result;
1473 	struct dm_bio_prison_cell cell1, cell2;
1474 	struct dm_bio_prison_cell *cell_result;
1475 	struct dm_cell_key key;
1476 
1477 	thin_hook_bio(tc, bio);
1478 
1479 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1480 		bio_io_error(bio);
1481 		return DM_MAPIO_SUBMITTED;
1482 	}
1483 
1484 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1485 		thin_defer_bio(tc, bio);
1486 		return DM_MAPIO_SUBMITTED;
1487 	}
1488 
1489 	r = dm_thin_find_block(td, block, 0, &result);
1490 
1491 	/*
1492 	 * Note that we defer readahead too.
1493 	 */
1494 	switch (r) {
1495 	case 0:
1496 		if (unlikely(result.shared)) {
1497 			/*
1498 			 * We have a race condition here between the
1499 			 * result.shared value returned by the lookup and
1500 			 * snapshot creation, which may cause new
1501 			 * sharing.
1502 			 *
1503 			 * To avoid this always quiesce the origin before
1504 			 * taking the snap.  You want to do this anyway to
1505 			 * ensure a consistent application view
1506 			 * (i.e. lockfs).
1507 			 *
1508 			 * More distant ancestors are irrelevant. The
1509 			 * shared flag will be set in their case.
1510 			 */
1511 			thin_defer_bio(tc, bio);
1512 			return DM_MAPIO_SUBMITTED;
1513 		}
1514 
1515 		build_virtual_key(tc->td, block, &key);
1516 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1517 			return DM_MAPIO_SUBMITTED;
1518 
1519 		build_data_key(tc->td, result.block, &key);
1520 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1521 			cell_defer_no_holder_no_free(tc, &cell1);
1522 			return DM_MAPIO_SUBMITTED;
1523 		}
1524 
1525 		inc_all_io_entry(tc->pool, bio);
1526 		cell_defer_no_holder_no_free(tc, &cell2);
1527 		cell_defer_no_holder_no_free(tc, &cell1);
1528 
1529 		remap(tc, bio, result.block);
1530 		return DM_MAPIO_REMAPPED;
1531 
1532 	case -ENODATA:
1533 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1534 			/*
1535 			 * This block isn't provisioned, and we have no way
1536 			 * of doing so.  Just error it.
1537 			 */
1538 			bio_io_error(bio);
1539 			return DM_MAPIO_SUBMITTED;
1540 		}
1541 		/* fall through */
1542 
1543 	case -EWOULDBLOCK:
1544 		/*
1545 		 * In future, the failed dm_thin_find_block above could
1546 		 * provide the hint to load the metadata into cache.
1547 		 */
1548 		thin_defer_bio(tc, bio);
1549 		return DM_MAPIO_SUBMITTED;
1550 
1551 	default:
1552 		/*
1553 		 * Must always call bio_io_error on failure.
1554 		 * dm_thin_find_block can fail with -EINVAL if the
1555 		 * pool is switched to fail-io mode.
1556 		 */
1557 		bio_io_error(bio);
1558 		return DM_MAPIO_SUBMITTED;
1559 	}
1560 }
1561 
1562 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1563 {
1564 	int r;
1565 	unsigned long flags;
1566 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1567 
1568 	spin_lock_irqsave(&pt->pool->lock, flags);
1569 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1570 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1571 
1572 	if (!r) {
1573 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1574 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1575 	}
1576 
1577 	return r;
1578 }
1579 
1580 static void __requeue_bios(struct pool *pool)
1581 {
1582 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1583 	bio_list_init(&pool->retry_on_resume_list);
1584 }
1585 
1586 /*----------------------------------------------------------------
1587  * Binding of control targets to a pool object
1588  *--------------------------------------------------------------*/
1589 static bool data_dev_supports_discard(struct pool_c *pt)
1590 {
1591 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1592 
1593 	return q && blk_queue_discard(q);
1594 }
1595 
1596 static bool is_factor(sector_t block_size, uint32_t n)
1597 {
1598 	return !sector_div(block_size, n);
1599 }
1600 
1601 /*
1602  * If discard_passdown was enabled verify that the data device
1603  * supports discards.  Disable discard_passdown if not.
1604  */
1605 static void disable_passdown_if_not_supported(struct pool_c *pt)
1606 {
1607 	struct pool *pool = pt->pool;
1608 	struct block_device *data_bdev = pt->data_dev->bdev;
1609 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1610 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1611 	const char *reason = NULL;
1612 	char buf[BDEVNAME_SIZE];
1613 
1614 	if (!pt->adjusted_pf.discard_passdown)
1615 		return;
1616 
1617 	if (!data_dev_supports_discard(pt))
1618 		reason = "discard unsupported";
1619 
1620 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1621 		reason = "max discard sectors smaller than a block";
1622 
1623 	else if (data_limits->discard_granularity > block_size)
1624 		reason = "discard granularity larger than a block";
1625 
1626 	else if (!is_factor(block_size, data_limits->discard_granularity))
1627 		reason = "discard granularity not a factor of block size";
1628 
1629 	if (reason) {
1630 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1631 		pt->adjusted_pf.discard_passdown = false;
1632 	}
1633 }
1634 
1635 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1636 {
1637 	struct pool_c *pt = ti->private;
1638 
1639 	/*
1640 	 * We want to make sure that degraded pools are never upgraded.
1641 	 */
1642 	enum pool_mode old_mode = pool->pf.mode;
1643 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1644 
1645 	if (old_mode > new_mode)
1646 		new_mode = old_mode;
1647 
1648 	pool->ti = ti;
1649 	pool->low_water_blocks = pt->low_water_blocks;
1650 	pool->pf = pt->adjusted_pf;
1651 
1652 	set_pool_mode(pool, new_mode);
1653 
1654 	return 0;
1655 }
1656 
1657 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1658 {
1659 	if (pool->ti == ti)
1660 		pool->ti = NULL;
1661 }
1662 
1663 /*----------------------------------------------------------------
1664  * Pool creation
1665  *--------------------------------------------------------------*/
1666 /* Initialize pool features. */
1667 static void pool_features_init(struct pool_features *pf)
1668 {
1669 	pf->mode = PM_WRITE;
1670 	pf->zero_new_blocks = true;
1671 	pf->discard_enabled = true;
1672 	pf->discard_passdown = true;
1673 }
1674 
1675 static void __pool_destroy(struct pool *pool)
1676 {
1677 	__pool_table_remove(pool);
1678 
1679 	if (dm_pool_metadata_close(pool->pmd) < 0)
1680 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1681 
1682 	dm_bio_prison_destroy(pool->prison);
1683 	dm_kcopyd_client_destroy(pool->copier);
1684 
1685 	if (pool->wq)
1686 		destroy_workqueue(pool->wq);
1687 
1688 	if (pool->next_mapping)
1689 		mempool_free(pool->next_mapping, pool->mapping_pool);
1690 	mempool_destroy(pool->mapping_pool);
1691 	dm_deferred_set_destroy(pool->shared_read_ds);
1692 	dm_deferred_set_destroy(pool->all_io_ds);
1693 	kfree(pool);
1694 }
1695 
1696 static struct kmem_cache *_new_mapping_cache;
1697 
1698 static struct pool *pool_create(struct mapped_device *pool_md,
1699 				struct block_device *metadata_dev,
1700 				unsigned long block_size,
1701 				int read_only, char **error)
1702 {
1703 	int r;
1704 	void *err_p;
1705 	struct pool *pool;
1706 	struct dm_pool_metadata *pmd;
1707 	bool format_device = read_only ? false : true;
1708 
1709 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1710 	if (IS_ERR(pmd)) {
1711 		*error = "Error creating metadata object";
1712 		return (struct pool *)pmd;
1713 	}
1714 
1715 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1716 	if (!pool) {
1717 		*error = "Error allocating memory for pool";
1718 		err_p = ERR_PTR(-ENOMEM);
1719 		goto bad_pool;
1720 	}
1721 
1722 	pool->pmd = pmd;
1723 	pool->sectors_per_block = block_size;
1724 	if (block_size & (block_size - 1))
1725 		pool->sectors_per_block_shift = -1;
1726 	else
1727 		pool->sectors_per_block_shift = __ffs(block_size);
1728 	pool->low_water_blocks = 0;
1729 	pool_features_init(&pool->pf);
1730 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
1731 	if (!pool->prison) {
1732 		*error = "Error creating pool's bio prison";
1733 		err_p = ERR_PTR(-ENOMEM);
1734 		goto bad_prison;
1735 	}
1736 
1737 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1738 	if (IS_ERR(pool->copier)) {
1739 		r = PTR_ERR(pool->copier);
1740 		*error = "Error creating pool's kcopyd client";
1741 		err_p = ERR_PTR(r);
1742 		goto bad_kcopyd_client;
1743 	}
1744 
1745 	/*
1746 	 * Create singlethreaded workqueue that will service all devices
1747 	 * that use this metadata.
1748 	 */
1749 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1750 	if (!pool->wq) {
1751 		*error = "Error creating pool's workqueue";
1752 		err_p = ERR_PTR(-ENOMEM);
1753 		goto bad_wq;
1754 	}
1755 
1756 	INIT_WORK(&pool->worker, do_worker);
1757 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1758 	spin_lock_init(&pool->lock);
1759 	bio_list_init(&pool->deferred_bios);
1760 	bio_list_init(&pool->deferred_flush_bios);
1761 	INIT_LIST_HEAD(&pool->prepared_mappings);
1762 	INIT_LIST_HEAD(&pool->prepared_discards);
1763 	pool->low_water_triggered = 0;
1764 	pool->no_free_space = 0;
1765 	bio_list_init(&pool->retry_on_resume_list);
1766 
1767 	pool->shared_read_ds = dm_deferred_set_create();
1768 	if (!pool->shared_read_ds) {
1769 		*error = "Error creating pool's shared read deferred set";
1770 		err_p = ERR_PTR(-ENOMEM);
1771 		goto bad_shared_read_ds;
1772 	}
1773 
1774 	pool->all_io_ds = dm_deferred_set_create();
1775 	if (!pool->all_io_ds) {
1776 		*error = "Error creating pool's all io deferred set";
1777 		err_p = ERR_PTR(-ENOMEM);
1778 		goto bad_all_io_ds;
1779 	}
1780 
1781 	pool->next_mapping = NULL;
1782 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1783 						      _new_mapping_cache);
1784 	if (!pool->mapping_pool) {
1785 		*error = "Error creating pool's mapping mempool";
1786 		err_p = ERR_PTR(-ENOMEM);
1787 		goto bad_mapping_pool;
1788 	}
1789 
1790 	pool->ref_count = 1;
1791 	pool->last_commit_jiffies = jiffies;
1792 	pool->pool_md = pool_md;
1793 	pool->md_dev = metadata_dev;
1794 	__pool_table_insert(pool);
1795 
1796 	return pool;
1797 
1798 bad_mapping_pool:
1799 	dm_deferred_set_destroy(pool->all_io_ds);
1800 bad_all_io_ds:
1801 	dm_deferred_set_destroy(pool->shared_read_ds);
1802 bad_shared_read_ds:
1803 	destroy_workqueue(pool->wq);
1804 bad_wq:
1805 	dm_kcopyd_client_destroy(pool->copier);
1806 bad_kcopyd_client:
1807 	dm_bio_prison_destroy(pool->prison);
1808 bad_prison:
1809 	kfree(pool);
1810 bad_pool:
1811 	if (dm_pool_metadata_close(pmd))
1812 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1813 
1814 	return err_p;
1815 }
1816 
1817 static void __pool_inc(struct pool *pool)
1818 {
1819 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1820 	pool->ref_count++;
1821 }
1822 
1823 static void __pool_dec(struct pool *pool)
1824 {
1825 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1826 	BUG_ON(!pool->ref_count);
1827 	if (!--pool->ref_count)
1828 		__pool_destroy(pool);
1829 }
1830 
1831 static struct pool *__pool_find(struct mapped_device *pool_md,
1832 				struct block_device *metadata_dev,
1833 				unsigned long block_size, int read_only,
1834 				char **error, int *created)
1835 {
1836 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1837 
1838 	if (pool) {
1839 		if (pool->pool_md != pool_md) {
1840 			*error = "metadata device already in use by a pool";
1841 			return ERR_PTR(-EBUSY);
1842 		}
1843 		__pool_inc(pool);
1844 
1845 	} else {
1846 		pool = __pool_table_lookup(pool_md);
1847 		if (pool) {
1848 			if (pool->md_dev != metadata_dev) {
1849 				*error = "different pool cannot replace a pool";
1850 				return ERR_PTR(-EINVAL);
1851 			}
1852 			__pool_inc(pool);
1853 
1854 		} else {
1855 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1856 			*created = 1;
1857 		}
1858 	}
1859 
1860 	return pool;
1861 }
1862 
1863 /*----------------------------------------------------------------
1864  * Pool target methods
1865  *--------------------------------------------------------------*/
1866 static void pool_dtr(struct dm_target *ti)
1867 {
1868 	struct pool_c *pt = ti->private;
1869 
1870 	mutex_lock(&dm_thin_pool_table.mutex);
1871 
1872 	unbind_control_target(pt->pool, ti);
1873 	__pool_dec(pt->pool);
1874 	dm_put_device(ti, pt->metadata_dev);
1875 	dm_put_device(ti, pt->data_dev);
1876 	kfree(pt);
1877 
1878 	mutex_unlock(&dm_thin_pool_table.mutex);
1879 }
1880 
1881 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1882 			       struct dm_target *ti)
1883 {
1884 	int r;
1885 	unsigned argc;
1886 	const char *arg_name;
1887 
1888 	static struct dm_arg _args[] = {
1889 		{0, 3, "Invalid number of pool feature arguments"},
1890 	};
1891 
1892 	/*
1893 	 * No feature arguments supplied.
1894 	 */
1895 	if (!as->argc)
1896 		return 0;
1897 
1898 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1899 	if (r)
1900 		return -EINVAL;
1901 
1902 	while (argc && !r) {
1903 		arg_name = dm_shift_arg(as);
1904 		argc--;
1905 
1906 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
1907 			pf->zero_new_blocks = false;
1908 
1909 		else if (!strcasecmp(arg_name, "ignore_discard"))
1910 			pf->discard_enabled = false;
1911 
1912 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
1913 			pf->discard_passdown = false;
1914 
1915 		else if (!strcasecmp(arg_name, "read_only"))
1916 			pf->mode = PM_READ_ONLY;
1917 
1918 		else {
1919 			ti->error = "Unrecognised pool feature requested";
1920 			r = -EINVAL;
1921 			break;
1922 		}
1923 	}
1924 
1925 	return r;
1926 }
1927 
1928 static void metadata_low_callback(void *context)
1929 {
1930 	struct pool *pool = context;
1931 
1932 	DMWARN("%s: reached low water mark for metadata device: sending event.",
1933 	       dm_device_name(pool->pool_md));
1934 
1935 	dm_table_event(pool->ti->table);
1936 }
1937 
1938 static sector_t get_metadata_dev_size(struct block_device *bdev)
1939 {
1940 	sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1941 	char buffer[BDEVNAME_SIZE];
1942 
1943 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1944 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1945 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1946 		metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1947 	}
1948 
1949 	return metadata_dev_size;
1950 }
1951 
1952 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1953 {
1954 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1955 
1956 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1957 
1958 	return metadata_dev_size;
1959 }
1960 
1961 /*
1962  * When a metadata threshold is crossed a dm event is triggered, and
1963  * userland should respond by growing the metadata device.  We could let
1964  * userland set the threshold, like we do with the data threshold, but I'm
1965  * not sure they know enough to do this well.
1966  */
1967 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1968 {
1969 	/*
1970 	 * 4M is ample for all ops with the possible exception of thin
1971 	 * device deletion which is harmless if it fails (just retry the
1972 	 * delete after you've grown the device).
1973 	 */
1974 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1975 	return min((dm_block_t)1024ULL /* 4M */, quarter);
1976 }
1977 
1978 /*
1979  * thin-pool <metadata dev> <data dev>
1980  *	     <data block size (sectors)>
1981  *	     <low water mark (blocks)>
1982  *	     [<#feature args> [<arg>]*]
1983  *
1984  * Optional feature arguments are:
1985  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1986  *	     ignore_discard: disable discard
1987  *	     no_discard_passdown: don't pass discards down to the data device
1988  */
1989 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1990 {
1991 	int r, pool_created = 0;
1992 	struct pool_c *pt;
1993 	struct pool *pool;
1994 	struct pool_features pf;
1995 	struct dm_arg_set as;
1996 	struct dm_dev *data_dev;
1997 	unsigned long block_size;
1998 	dm_block_t low_water_blocks;
1999 	struct dm_dev *metadata_dev;
2000 	fmode_t metadata_mode;
2001 
2002 	/*
2003 	 * FIXME Remove validation from scope of lock.
2004 	 */
2005 	mutex_lock(&dm_thin_pool_table.mutex);
2006 
2007 	if (argc < 4) {
2008 		ti->error = "Invalid argument count";
2009 		r = -EINVAL;
2010 		goto out_unlock;
2011 	}
2012 
2013 	as.argc = argc;
2014 	as.argv = argv;
2015 
2016 	/*
2017 	 * Set default pool features.
2018 	 */
2019 	pool_features_init(&pf);
2020 
2021 	dm_consume_args(&as, 4);
2022 	r = parse_pool_features(&as, &pf, ti);
2023 	if (r)
2024 		goto out_unlock;
2025 
2026 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2027 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2028 	if (r) {
2029 		ti->error = "Error opening metadata block device";
2030 		goto out_unlock;
2031 	}
2032 
2033 	/*
2034 	 * Run for the side-effect of possibly issuing a warning if the
2035 	 * device is too big.
2036 	 */
2037 	(void) get_metadata_dev_size(metadata_dev->bdev);
2038 
2039 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2040 	if (r) {
2041 		ti->error = "Error getting data device";
2042 		goto out_metadata;
2043 	}
2044 
2045 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2046 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2047 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2048 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2049 		ti->error = "Invalid block size";
2050 		r = -EINVAL;
2051 		goto out;
2052 	}
2053 
2054 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2055 		ti->error = "Invalid low water mark";
2056 		r = -EINVAL;
2057 		goto out;
2058 	}
2059 
2060 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2061 	if (!pt) {
2062 		r = -ENOMEM;
2063 		goto out;
2064 	}
2065 
2066 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2067 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2068 	if (IS_ERR(pool)) {
2069 		r = PTR_ERR(pool);
2070 		goto out_free_pt;
2071 	}
2072 
2073 	/*
2074 	 * 'pool_created' reflects whether this is the first table load.
2075 	 * Top level discard support is not allowed to be changed after
2076 	 * initial load.  This would require a pool reload to trigger thin
2077 	 * device changes.
2078 	 */
2079 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2080 		ti->error = "Discard support cannot be disabled once enabled";
2081 		r = -EINVAL;
2082 		goto out_flags_changed;
2083 	}
2084 
2085 	pt->pool = pool;
2086 	pt->ti = ti;
2087 	pt->metadata_dev = metadata_dev;
2088 	pt->data_dev = data_dev;
2089 	pt->low_water_blocks = low_water_blocks;
2090 	pt->adjusted_pf = pt->requested_pf = pf;
2091 	ti->num_flush_bios = 1;
2092 
2093 	/*
2094 	 * Only need to enable discards if the pool should pass
2095 	 * them down to the data device.  The thin device's discard
2096 	 * processing will cause mappings to be removed from the btree.
2097 	 */
2098 	ti->discard_zeroes_data_unsupported = true;
2099 	if (pf.discard_enabled && pf.discard_passdown) {
2100 		ti->num_discard_bios = 1;
2101 
2102 		/*
2103 		 * Setting 'discards_supported' circumvents the normal
2104 		 * stacking of discard limits (this keeps the pool and
2105 		 * thin devices' discard limits consistent).
2106 		 */
2107 		ti->discards_supported = true;
2108 	}
2109 	ti->private = pt;
2110 
2111 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2112 						calc_metadata_threshold(pt),
2113 						metadata_low_callback,
2114 						pool);
2115 	if (r)
2116 		goto out_free_pt;
2117 
2118 	pt->callbacks.congested_fn = pool_is_congested;
2119 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2120 
2121 	mutex_unlock(&dm_thin_pool_table.mutex);
2122 
2123 	return 0;
2124 
2125 out_flags_changed:
2126 	__pool_dec(pool);
2127 out_free_pt:
2128 	kfree(pt);
2129 out:
2130 	dm_put_device(ti, data_dev);
2131 out_metadata:
2132 	dm_put_device(ti, metadata_dev);
2133 out_unlock:
2134 	mutex_unlock(&dm_thin_pool_table.mutex);
2135 
2136 	return r;
2137 }
2138 
2139 static int pool_map(struct dm_target *ti, struct bio *bio)
2140 {
2141 	int r;
2142 	struct pool_c *pt = ti->private;
2143 	struct pool *pool = pt->pool;
2144 	unsigned long flags;
2145 
2146 	/*
2147 	 * As this is a singleton target, ti->begin is always zero.
2148 	 */
2149 	spin_lock_irqsave(&pool->lock, flags);
2150 	bio->bi_bdev = pt->data_dev->bdev;
2151 	r = DM_MAPIO_REMAPPED;
2152 	spin_unlock_irqrestore(&pool->lock, flags);
2153 
2154 	return r;
2155 }
2156 
2157 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2158 {
2159 	int r;
2160 	struct pool_c *pt = ti->private;
2161 	struct pool *pool = pt->pool;
2162 	sector_t data_size = ti->len;
2163 	dm_block_t sb_data_size;
2164 
2165 	*need_commit = false;
2166 
2167 	(void) sector_div(data_size, pool->sectors_per_block);
2168 
2169 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2170 	if (r) {
2171 		DMERR("%s: failed to retrieve data device size",
2172 		      dm_device_name(pool->pool_md));
2173 		return r;
2174 	}
2175 
2176 	if (data_size < sb_data_size) {
2177 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2178 		      dm_device_name(pool->pool_md),
2179 		      (unsigned long long)data_size, sb_data_size);
2180 		return -EINVAL;
2181 
2182 	} else if (data_size > sb_data_size) {
2183 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2184 		if (r) {
2185 			DMERR("%s: failed to resize data device",
2186 			      dm_device_name(pool->pool_md));
2187 			set_pool_mode(pool, PM_READ_ONLY);
2188 			return r;
2189 		}
2190 
2191 		*need_commit = true;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2198 {
2199 	int r;
2200 	struct pool_c *pt = ti->private;
2201 	struct pool *pool = pt->pool;
2202 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2203 
2204 	*need_commit = false;
2205 
2206 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2207 
2208 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2209 	if (r) {
2210 		DMERR("%s: failed to retrieve metadata device size",
2211 		      dm_device_name(pool->pool_md));
2212 		return r;
2213 	}
2214 
2215 	if (metadata_dev_size < sb_metadata_dev_size) {
2216 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2217 		      dm_device_name(pool->pool_md),
2218 		      metadata_dev_size, sb_metadata_dev_size);
2219 		return -EINVAL;
2220 
2221 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2222 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2223 		if (r) {
2224 			DMERR("%s: failed to resize metadata device",
2225 			      dm_device_name(pool->pool_md));
2226 			return r;
2227 		}
2228 
2229 		*need_commit = true;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /*
2236  * Retrieves the number of blocks of the data device from
2237  * the superblock and compares it to the actual device size,
2238  * thus resizing the data device in case it has grown.
2239  *
2240  * This both copes with opening preallocated data devices in the ctr
2241  * being followed by a resume
2242  * -and-
2243  * calling the resume method individually after userspace has
2244  * grown the data device in reaction to a table event.
2245  */
2246 static int pool_preresume(struct dm_target *ti)
2247 {
2248 	int r;
2249 	bool need_commit1, need_commit2;
2250 	struct pool_c *pt = ti->private;
2251 	struct pool *pool = pt->pool;
2252 
2253 	/*
2254 	 * Take control of the pool object.
2255 	 */
2256 	r = bind_control_target(pool, ti);
2257 	if (r)
2258 		return r;
2259 
2260 	r = maybe_resize_data_dev(ti, &need_commit1);
2261 	if (r)
2262 		return r;
2263 
2264 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2265 	if (r)
2266 		return r;
2267 
2268 	if (need_commit1 || need_commit2)
2269 		(void) commit_or_fallback(pool);
2270 
2271 	return 0;
2272 }
2273 
2274 static void pool_resume(struct dm_target *ti)
2275 {
2276 	struct pool_c *pt = ti->private;
2277 	struct pool *pool = pt->pool;
2278 	unsigned long flags;
2279 
2280 	spin_lock_irqsave(&pool->lock, flags);
2281 	pool->low_water_triggered = 0;
2282 	pool->no_free_space = 0;
2283 	__requeue_bios(pool);
2284 	spin_unlock_irqrestore(&pool->lock, flags);
2285 
2286 	do_waker(&pool->waker.work);
2287 }
2288 
2289 static void pool_postsuspend(struct dm_target *ti)
2290 {
2291 	struct pool_c *pt = ti->private;
2292 	struct pool *pool = pt->pool;
2293 
2294 	cancel_delayed_work(&pool->waker);
2295 	flush_workqueue(pool->wq);
2296 	(void) commit_or_fallback(pool);
2297 }
2298 
2299 static int check_arg_count(unsigned argc, unsigned args_required)
2300 {
2301 	if (argc != args_required) {
2302 		DMWARN("Message received with %u arguments instead of %u.",
2303 		       argc, args_required);
2304 		return -EINVAL;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2311 {
2312 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2313 	    *dev_id <= MAX_DEV_ID)
2314 		return 0;
2315 
2316 	if (warning)
2317 		DMWARN("Message received with invalid device id: %s", arg);
2318 
2319 	return -EINVAL;
2320 }
2321 
2322 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2323 {
2324 	dm_thin_id dev_id;
2325 	int r;
2326 
2327 	r = check_arg_count(argc, 2);
2328 	if (r)
2329 		return r;
2330 
2331 	r = read_dev_id(argv[1], &dev_id, 1);
2332 	if (r)
2333 		return r;
2334 
2335 	r = dm_pool_create_thin(pool->pmd, dev_id);
2336 	if (r) {
2337 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2338 		       argv[1]);
2339 		return r;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2346 {
2347 	dm_thin_id dev_id;
2348 	dm_thin_id origin_dev_id;
2349 	int r;
2350 
2351 	r = check_arg_count(argc, 3);
2352 	if (r)
2353 		return r;
2354 
2355 	r = read_dev_id(argv[1], &dev_id, 1);
2356 	if (r)
2357 		return r;
2358 
2359 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2360 	if (r)
2361 		return r;
2362 
2363 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2364 	if (r) {
2365 		DMWARN("Creation of new snapshot %s of device %s failed.",
2366 		       argv[1], argv[2]);
2367 		return r;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2374 {
2375 	dm_thin_id dev_id;
2376 	int r;
2377 
2378 	r = check_arg_count(argc, 2);
2379 	if (r)
2380 		return r;
2381 
2382 	r = read_dev_id(argv[1], &dev_id, 1);
2383 	if (r)
2384 		return r;
2385 
2386 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2387 	if (r)
2388 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2389 
2390 	return r;
2391 }
2392 
2393 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2394 {
2395 	dm_thin_id old_id, new_id;
2396 	int r;
2397 
2398 	r = check_arg_count(argc, 3);
2399 	if (r)
2400 		return r;
2401 
2402 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2403 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2404 		return -EINVAL;
2405 	}
2406 
2407 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2408 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2409 		return -EINVAL;
2410 	}
2411 
2412 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2413 	if (r) {
2414 		DMWARN("Failed to change transaction id from %s to %s.",
2415 		       argv[1], argv[2]);
2416 		return r;
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2423 {
2424 	int r;
2425 
2426 	r = check_arg_count(argc, 1);
2427 	if (r)
2428 		return r;
2429 
2430 	(void) commit_or_fallback(pool);
2431 
2432 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2433 	if (r)
2434 		DMWARN("reserve_metadata_snap message failed.");
2435 
2436 	return r;
2437 }
2438 
2439 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2440 {
2441 	int r;
2442 
2443 	r = check_arg_count(argc, 1);
2444 	if (r)
2445 		return r;
2446 
2447 	r = dm_pool_release_metadata_snap(pool->pmd);
2448 	if (r)
2449 		DMWARN("release_metadata_snap message failed.");
2450 
2451 	return r;
2452 }
2453 
2454 /*
2455  * Messages supported:
2456  *   create_thin	<dev_id>
2457  *   create_snap	<dev_id> <origin_id>
2458  *   delete		<dev_id>
2459  *   trim		<dev_id> <new_size_in_sectors>
2460  *   set_transaction_id <current_trans_id> <new_trans_id>
2461  *   reserve_metadata_snap
2462  *   release_metadata_snap
2463  */
2464 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2465 {
2466 	int r = -EINVAL;
2467 	struct pool_c *pt = ti->private;
2468 	struct pool *pool = pt->pool;
2469 
2470 	if (!strcasecmp(argv[0], "create_thin"))
2471 		r = process_create_thin_mesg(argc, argv, pool);
2472 
2473 	else if (!strcasecmp(argv[0], "create_snap"))
2474 		r = process_create_snap_mesg(argc, argv, pool);
2475 
2476 	else if (!strcasecmp(argv[0], "delete"))
2477 		r = process_delete_mesg(argc, argv, pool);
2478 
2479 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2480 		r = process_set_transaction_id_mesg(argc, argv, pool);
2481 
2482 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2483 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2484 
2485 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2486 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2487 
2488 	else
2489 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2490 
2491 	if (!r)
2492 		(void) commit_or_fallback(pool);
2493 
2494 	return r;
2495 }
2496 
2497 static void emit_flags(struct pool_features *pf, char *result,
2498 		       unsigned sz, unsigned maxlen)
2499 {
2500 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2501 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2502 	DMEMIT("%u ", count);
2503 
2504 	if (!pf->zero_new_blocks)
2505 		DMEMIT("skip_block_zeroing ");
2506 
2507 	if (!pf->discard_enabled)
2508 		DMEMIT("ignore_discard ");
2509 
2510 	if (!pf->discard_passdown)
2511 		DMEMIT("no_discard_passdown ");
2512 
2513 	if (pf->mode == PM_READ_ONLY)
2514 		DMEMIT("read_only ");
2515 }
2516 
2517 /*
2518  * Status line is:
2519  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2520  *    <used data sectors>/<total data sectors> <held metadata root>
2521  */
2522 static void pool_status(struct dm_target *ti, status_type_t type,
2523 			unsigned status_flags, char *result, unsigned maxlen)
2524 {
2525 	int r;
2526 	unsigned sz = 0;
2527 	uint64_t transaction_id;
2528 	dm_block_t nr_free_blocks_data;
2529 	dm_block_t nr_free_blocks_metadata;
2530 	dm_block_t nr_blocks_data;
2531 	dm_block_t nr_blocks_metadata;
2532 	dm_block_t held_root;
2533 	char buf[BDEVNAME_SIZE];
2534 	char buf2[BDEVNAME_SIZE];
2535 	struct pool_c *pt = ti->private;
2536 	struct pool *pool = pt->pool;
2537 
2538 	switch (type) {
2539 	case STATUSTYPE_INFO:
2540 		if (get_pool_mode(pool) == PM_FAIL) {
2541 			DMEMIT("Fail");
2542 			break;
2543 		}
2544 
2545 		/* Commit to ensure statistics aren't out-of-date */
2546 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2547 			(void) commit_or_fallback(pool);
2548 
2549 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2550 		if (r) {
2551 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2552 			      dm_device_name(pool->pool_md), r);
2553 			goto err;
2554 		}
2555 
2556 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2557 		if (r) {
2558 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2559 			      dm_device_name(pool->pool_md), r);
2560 			goto err;
2561 		}
2562 
2563 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2564 		if (r) {
2565 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2566 			      dm_device_name(pool->pool_md), r);
2567 			goto err;
2568 		}
2569 
2570 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2571 		if (r) {
2572 			DMERR("%s: dm_pool_get_free_block_count returned %d",
2573 			      dm_device_name(pool->pool_md), r);
2574 			goto err;
2575 		}
2576 
2577 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2578 		if (r) {
2579 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2580 			      dm_device_name(pool->pool_md), r);
2581 			goto err;
2582 		}
2583 
2584 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2585 		if (r) {
2586 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2587 			      dm_device_name(pool->pool_md), r);
2588 			goto err;
2589 		}
2590 
2591 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2592 		       (unsigned long long)transaction_id,
2593 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2594 		       (unsigned long long)nr_blocks_metadata,
2595 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2596 		       (unsigned long long)nr_blocks_data);
2597 
2598 		if (held_root)
2599 			DMEMIT("%llu ", held_root);
2600 		else
2601 			DMEMIT("- ");
2602 
2603 		if (pool->pf.mode == PM_READ_ONLY)
2604 			DMEMIT("ro ");
2605 		else
2606 			DMEMIT("rw ");
2607 
2608 		if (!pool->pf.discard_enabled)
2609 			DMEMIT("ignore_discard");
2610 		else if (pool->pf.discard_passdown)
2611 			DMEMIT("discard_passdown");
2612 		else
2613 			DMEMIT("no_discard_passdown");
2614 
2615 		break;
2616 
2617 	case STATUSTYPE_TABLE:
2618 		DMEMIT("%s %s %lu %llu ",
2619 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2620 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2621 		       (unsigned long)pool->sectors_per_block,
2622 		       (unsigned long long)pt->low_water_blocks);
2623 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2624 		break;
2625 	}
2626 	return;
2627 
2628 err:
2629 	DMEMIT("Error");
2630 }
2631 
2632 static int pool_iterate_devices(struct dm_target *ti,
2633 				iterate_devices_callout_fn fn, void *data)
2634 {
2635 	struct pool_c *pt = ti->private;
2636 
2637 	return fn(ti, pt->data_dev, 0, ti->len, data);
2638 }
2639 
2640 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2641 		      struct bio_vec *biovec, int max_size)
2642 {
2643 	struct pool_c *pt = ti->private;
2644 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2645 
2646 	if (!q->merge_bvec_fn)
2647 		return max_size;
2648 
2649 	bvm->bi_bdev = pt->data_dev->bdev;
2650 
2651 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2652 }
2653 
2654 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2655 {
2656 	struct pool *pool = pt->pool;
2657 	struct queue_limits *data_limits;
2658 
2659 	limits->max_discard_sectors = pool->sectors_per_block;
2660 
2661 	/*
2662 	 * discard_granularity is just a hint, and not enforced.
2663 	 */
2664 	if (pt->adjusted_pf.discard_passdown) {
2665 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2666 		limits->discard_granularity = data_limits->discard_granularity;
2667 	} else
2668 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2669 }
2670 
2671 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2672 {
2673 	struct pool_c *pt = ti->private;
2674 	struct pool *pool = pt->pool;
2675 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2676 
2677 	/*
2678 	 * If the system-determined stacked limits are compatible with the
2679 	 * pool's blocksize (io_opt is a factor) do not override them.
2680 	 */
2681 	if (io_opt_sectors < pool->sectors_per_block ||
2682 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
2683 		blk_limits_io_min(limits, 0);
2684 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2685 	}
2686 
2687 	/*
2688 	 * pt->adjusted_pf is a staging area for the actual features to use.
2689 	 * They get transferred to the live pool in bind_control_target()
2690 	 * called from pool_preresume().
2691 	 */
2692 	if (!pt->adjusted_pf.discard_enabled) {
2693 		/*
2694 		 * Must explicitly disallow stacking discard limits otherwise the
2695 		 * block layer will stack them if pool's data device has support.
2696 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2697 		 * user to see that, so make sure to set all discard limits to 0.
2698 		 */
2699 		limits->discard_granularity = 0;
2700 		return;
2701 	}
2702 
2703 	disable_passdown_if_not_supported(pt);
2704 
2705 	set_discard_limits(pt, limits);
2706 }
2707 
2708 static struct target_type pool_target = {
2709 	.name = "thin-pool",
2710 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2711 		    DM_TARGET_IMMUTABLE,
2712 	.version = {1, 9, 0},
2713 	.module = THIS_MODULE,
2714 	.ctr = pool_ctr,
2715 	.dtr = pool_dtr,
2716 	.map = pool_map,
2717 	.postsuspend = pool_postsuspend,
2718 	.preresume = pool_preresume,
2719 	.resume = pool_resume,
2720 	.message = pool_message,
2721 	.status = pool_status,
2722 	.merge = pool_merge,
2723 	.iterate_devices = pool_iterate_devices,
2724 	.io_hints = pool_io_hints,
2725 };
2726 
2727 /*----------------------------------------------------------------
2728  * Thin target methods
2729  *--------------------------------------------------------------*/
2730 static void thin_dtr(struct dm_target *ti)
2731 {
2732 	struct thin_c *tc = ti->private;
2733 
2734 	mutex_lock(&dm_thin_pool_table.mutex);
2735 
2736 	__pool_dec(tc->pool);
2737 	dm_pool_close_thin_device(tc->td);
2738 	dm_put_device(ti, tc->pool_dev);
2739 	if (tc->origin_dev)
2740 		dm_put_device(ti, tc->origin_dev);
2741 	kfree(tc);
2742 
2743 	mutex_unlock(&dm_thin_pool_table.mutex);
2744 }
2745 
2746 /*
2747  * Thin target parameters:
2748  *
2749  * <pool_dev> <dev_id> [origin_dev]
2750  *
2751  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2752  * dev_id: the internal device identifier
2753  * origin_dev: a device external to the pool that should act as the origin
2754  *
2755  * If the pool device has discards disabled, they get disabled for the thin
2756  * device as well.
2757  */
2758 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2759 {
2760 	int r;
2761 	struct thin_c *tc;
2762 	struct dm_dev *pool_dev, *origin_dev;
2763 	struct mapped_device *pool_md;
2764 
2765 	mutex_lock(&dm_thin_pool_table.mutex);
2766 
2767 	if (argc != 2 && argc != 3) {
2768 		ti->error = "Invalid argument count";
2769 		r = -EINVAL;
2770 		goto out_unlock;
2771 	}
2772 
2773 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2774 	if (!tc) {
2775 		ti->error = "Out of memory";
2776 		r = -ENOMEM;
2777 		goto out_unlock;
2778 	}
2779 
2780 	if (argc == 3) {
2781 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2782 		if (r) {
2783 			ti->error = "Error opening origin device";
2784 			goto bad_origin_dev;
2785 		}
2786 		tc->origin_dev = origin_dev;
2787 	}
2788 
2789 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2790 	if (r) {
2791 		ti->error = "Error opening pool device";
2792 		goto bad_pool_dev;
2793 	}
2794 	tc->pool_dev = pool_dev;
2795 
2796 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2797 		ti->error = "Invalid device id";
2798 		r = -EINVAL;
2799 		goto bad_common;
2800 	}
2801 
2802 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2803 	if (!pool_md) {
2804 		ti->error = "Couldn't get pool mapped device";
2805 		r = -EINVAL;
2806 		goto bad_common;
2807 	}
2808 
2809 	tc->pool = __pool_table_lookup(pool_md);
2810 	if (!tc->pool) {
2811 		ti->error = "Couldn't find pool object";
2812 		r = -EINVAL;
2813 		goto bad_pool_lookup;
2814 	}
2815 	__pool_inc(tc->pool);
2816 
2817 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2818 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2819 		goto bad_thin_open;
2820 	}
2821 
2822 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2823 	if (r) {
2824 		ti->error = "Couldn't open thin internal device";
2825 		goto bad_thin_open;
2826 	}
2827 
2828 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2829 	if (r)
2830 		goto bad_thin_open;
2831 
2832 	ti->num_flush_bios = 1;
2833 	ti->flush_supported = true;
2834 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2835 
2836 	/* In case the pool supports discards, pass them on. */
2837 	ti->discard_zeroes_data_unsupported = true;
2838 	if (tc->pool->pf.discard_enabled) {
2839 		ti->discards_supported = true;
2840 		ti->num_discard_bios = 1;
2841 		/* Discard bios must be split on a block boundary */
2842 		ti->split_discard_bios = true;
2843 	}
2844 
2845 	dm_put(pool_md);
2846 
2847 	mutex_unlock(&dm_thin_pool_table.mutex);
2848 
2849 	return 0;
2850 
2851 bad_thin_open:
2852 	__pool_dec(tc->pool);
2853 bad_pool_lookup:
2854 	dm_put(pool_md);
2855 bad_common:
2856 	dm_put_device(ti, tc->pool_dev);
2857 bad_pool_dev:
2858 	if (tc->origin_dev)
2859 		dm_put_device(ti, tc->origin_dev);
2860 bad_origin_dev:
2861 	kfree(tc);
2862 out_unlock:
2863 	mutex_unlock(&dm_thin_pool_table.mutex);
2864 
2865 	return r;
2866 }
2867 
2868 static int thin_map(struct dm_target *ti, struct bio *bio)
2869 {
2870 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2871 
2872 	return thin_bio_map(ti, bio);
2873 }
2874 
2875 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2876 {
2877 	unsigned long flags;
2878 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2879 	struct list_head work;
2880 	struct dm_thin_new_mapping *m, *tmp;
2881 	struct pool *pool = h->tc->pool;
2882 
2883 	if (h->shared_read_entry) {
2884 		INIT_LIST_HEAD(&work);
2885 		dm_deferred_entry_dec(h->shared_read_entry, &work);
2886 
2887 		spin_lock_irqsave(&pool->lock, flags);
2888 		list_for_each_entry_safe(m, tmp, &work, list) {
2889 			list_del(&m->list);
2890 			m->quiesced = 1;
2891 			__maybe_add_mapping(m);
2892 		}
2893 		spin_unlock_irqrestore(&pool->lock, flags);
2894 	}
2895 
2896 	if (h->all_io_entry) {
2897 		INIT_LIST_HEAD(&work);
2898 		dm_deferred_entry_dec(h->all_io_entry, &work);
2899 		if (!list_empty(&work)) {
2900 			spin_lock_irqsave(&pool->lock, flags);
2901 			list_for_each_entry_safe(m, tmp, &work, list)
2902 				list_add(&m->list, &pool->prepared_discards);
2903 			spin_unlock_irqrestore(&pool->lock, flags);
2904 			wake_worker(pool);
2905 		}
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 static void thin_postsuspend(struct dm_target *ti)
2912 {
2913 	if (dm_noflush_suspending(ti))
2914 		requeue_io((struct thin_c *)ti->private);
2915 }
2916 
2917 /*
2918  * <nr mapped sectors> <highest mapped sector>
2919  */
2920 static void thin_status(struct dm_target *ti, status_type_t type,
2921 			unsigned status_flags, char *result, unsigned maxlen)
2922 {
2923 	int r;
2924 	ssize_t sz = 0;
2925 	dm_block_t mapped, highest;
2926 	char buf[BDEVNAME_SIZE];
2927 	struct thin_c *tc = ti->private;
2928 
2929 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2930 		DMEMIT("Fail");
2931 		return;
2932 	}
2933 
2934 	if (!tc->td)
2935 		DMEMIT("-");
2936 	else {
2937 		switch (type) {
2938 		case STATUSTYPE_INFO:
2939 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2940 			if (r) {
2941 				DMERR("dm_thin_get_mapped_count returned %d", r);
2942 				goto err;
2943 			}
2944 
2945 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2946 			if (r < 0) {
2947 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2948 				goto err;
2949 			}
2950 
2951 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2952 			if (r)
2953 				DMEMIT("%llu", ((highest + 1) *
2954 						tc->pool->sectors_per_block) - 1);
2955 			else
2956 				DMEMIT("-");
2957 			break;
2958 
2959 		case STATUSTYPE_TABLE:
2960 			DMEMIT("%s %lu",
2961 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2962 			       (unsigned long) tc->dev_id);
2963 			if (tc->origin_dev)
2964 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2965 			break;
2966 		}
2967 	}
2968 
2969 	return;
2970 
2971 err:
2972 	DMEMIT("Error");
2973 }
2974 
2975 static int thin_iterate_devices(struct dm_target *ti,
2976 				iterate_devices_callout_fn fn, void *data)
2977 {
2978 	sector_t blocks;
2979 	struct thin_c *tc = ti->private;
2980 	struct pool *pool = tc->pool;
2981 
2982 	/*
2983 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2984 	 * we follow a more convoluted path through to the pool's target.
2985 	 */
2986 	if (!pool->ti)
2987 		return 0;	/* nothing is bound */
2988 
2989 	blocks = pool->ti->len;
2990 	(void) sector_div(blocks, pool->sectors_per_block);
2991 	if (blocks)
2992 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2993 
2994 	return 0;
2995 }
2996 
2997 static struct target_type thin_target = {
2998 	.name = "thin",
2999 	.version = {1, 9, 0},
3000 	.module	= THIS_MODULE,
3001 	.ctr = thin_ctr,
3002 	.dtr = thin_dtr,
3003 	.map = thin_map,
3004 	.end_io = thin_endio,
3005 	.postsuspend = thin_postsuspend,
3006 	.status = thin_status,
3007 	.iterate_devices = thin_iterate_devices,
3008 };
3009 
3010 /*----------------------------------------------------------------*/
3011 
3012 static int __init dm_thin_init(void)
3013 {
3014 	int r;
3015 
3016 	pool_table_init();
3017 
3018 	r = dm_register_target(&thin_target);
3019 	if (r)
3020 		return r;
3021 
3022 	r = dm_register_target(&pool_target);
3023 	if (r)
3024 		goto bad_pool_target;
3025 
3026 	r = -ENOMEM;
3027 
3028 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3029 	if (!_new_mapping_cache)
3030 		goto bad_new_mapping_cache;
3031 
3032 	return 0;
3033 
3034 bad_new_mapping_cache:
3035 	dm_unregister_target(&pool_target);
3036 bad_pool_target:
3037 	dm_unregister_target(&thin_target);
3038 
3039 	return r;
3040 }
3041 
3042 static void dm_thin_exit(void)
3043 {
3044 	dm_unregister_target(&thin_target);
3045 	dm_unregister_target(&pool_target);
3046 
3047 	kmem_cache_destroy(_new_mapping_cache);
3048 }
3049 
3050 module_init(dm_thin_init);
3051 module_exit(dm_thin_exit);
3052 
3053 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3054 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3055 MODULE_LICENSE("GPL");
3056