xref: /openbmc/linux/drivers/md/dm-thin.c (revision d5a05299306227d73b0febba9cecedf88931c507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25 
26 #define	DM_MSG_PREFIX	"thin"
27 
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35 
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 		"A percentage of time allocated for copy on write");
40 
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52 
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Key building.
115  */
116 enum lock_space {
117 	VIRTUAL,
118 	PHYSICAL
119 };
120 
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 	key->virtual = (ls == VIRTUAL);
125 	key->dev = dm_thin_dev_id(td);
126 	key->block_begin = b;
127 	key->block_end = e;
128 
129 	return dm_cell_key_has_valid_range(key);
130 }
131 
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 			   struct dm_cell_key *key)
134 {
135 	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137 
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 			      struct dm_cell_key *key)
140 {
141 	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143 
144 /*----------------------------------------------------------------*/
145 
146 #define THROTTLE_THRESHOLD (1 * HZ)
147 
148 struct throttle {
149 	struct rw_semaphore lock;
150 	unsigned long threshold;
151 	bool throttle_applied;
152 };
153 
154 static void throttle_init(struct throttle *t)
155 {
156 	init_rwsem(&t->lock);
157 	t->throttle_applied = false;
158 }
159 
160 static void throttle_work_start(struct throttle *t)
161 {
162 	t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164 
165 static void throttle_work_update(struct throttle *t)
166 {
167 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 		down_write(&t->lock);
169 		t->throttle_applied = true;
170 	}
171 }
172 
173 static void throttle_work_complete(struct throttle *t)
174 {
175 	if (t->throttle_applied) {
176 		t->throttle_applied = false;
177 		up_write(&t->lock);
178 	}
179 }
180 
181 static void throttle_lock(struct throttle *t)
182 {
183 	down_read(&t->lock);
184 }
185 
186 static void throttle_unlock(struct throttle *t)
187 {
188 	up_read(&t->lock);
189 }
190 
191 /*----------------------------------------------------------------*/
192 
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199 
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204 	PM_WRITE,		/* metadata may be changed */
205 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
206 
207 	/*
208 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 	 */
210 	PM_OUT_OF_METADATA_SPACE,
211 	PM_READ_ONLY,		/* metadata may not be changed */
212 
213 	PM_FAIL,		/* all I/O fails */
214 };
215 
216 struct pool_features {
217 	enum pool_mode mode;
218 
219 	bool zero_new_blocks:1;
220 	bool discard_enabled:1;
221 	bool discard_passdown:1;
222 	bool error_if_no_space:1;
223 };
224 
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229 
230 #define CELL_SORT_ARRAY_SIZE 8192
231 
232 struct pool {
233 	struct list_head list;
234 	struct dm_target *ti;	/* Only set if a pool target is bound */
235 
236 	struct mapped_device *pool_md;
237 	struct block_device *data_dev;
238 	struct block_device *md_dev;
239 	struct dm_pool_metadata *pmd;
240 
241 	dm_block_t low_water_blocks;
242 	uint32_t sectors_per_block;
243 	int sectors_per_block_shift;
244 
245 	struct pool_features pf;
246 	bool low_water_triggered:1;	/* A dm event has been sent */
247 	bool suspended:1;
248 	bool out_of_data_space:1;
249 
250 	struct dm_bio_prison *prison;
251 	struct dm_kcopyd_client *copier;
252 
253 	struct work_struct worker;
254 	struct workqueue_struct *wq;
255 	struct throttle throttle;
256 	struct delayed_work waker;
257 	struct delayed_work no_space_timeout;
258 
259 	unsigned long last_commit_jiffies;
260 	unsigned int ref_count;
261 
262 	spinlock_t lock;
263 	struct bio_list deferred_flush_bios;
264 	struct bio_list deferred_flush_completions;
265 	struct list_head prepared_mappings;
266 	struct list_head prepared_discards;
267 	struct list_head prepared_discards_pt2;
268 	struct list_head active_thins;
269 
270 	struct dm_deferred_set *shared_read_ds;
271 	struct dm_deferred_set *all_io_ds;
272 
273 	struct dm_thin_new_mapping *next_mapping;
274 
275 	process_bio_fn process_bio;
276 	process_bio_fn process_discard;
277 
278 	process_cell_fn process_cell;
279 	process_cell_fn process_discard_cell;
280 
281 	process_mapping_fn process_prepared_mapping;
282 	process_mapping_fn process_prepared_discard;
283 	process_mapping_fn process_prepared_discard_pt2;
284 
285 	struct dm_bio_prison_cell **cell_sort_array;
286 
287 	mempool_t mapping_pool;
288 };
289 
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 	return pool->pf.mode;
295 }
296 
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 	static const char *descs[] = {
300 		"write",
301 		"out-of-data-space",
302 		"read-only",
303 		"read-only",
304 		"fail"
305 	};
306 	const char *extra_desc = NULL;
307 	enum pool_mode mode = get_pool_mode(pool);
308 
309 	if (mode == PM_OUT_OF_DATA_SPACE) {
310 		if (!pool->pf.error_if_no_space)
311 			extra_desc = " (queue IO)";
312 		else
313 			extra_desc = " (error IO)";
314 	}
315 
316 	dm_table_event(pool->ti->table);
317 	DMINFO("%s: switching pool to %s%s mode",
318 	       dm_device_name(pool->pool_md),
319 	       descs[(int)mode], extra_desc ? : "");
320 }
321 
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326 	struct dm_target *ti;
327 	struct pool *pool;
328 	struct dm_dev *data_dev;
329 	struct dm_dev *metadata_dev;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406 
407 static void end_discard(struct discard_op *op, int r)
408 {
409 	if (op->bio) {
410 		/*
411 		 * Even if one of the calls to issue_discard failed, we
412 		 * need to wait for the chain to complete.
413 		 */
414 		bio_chain(op->bio, op->parent_bio);
415 		op->bio->bi_opf = REQ_OP_DISCARD;
416 		submit_bio(op->bio);
417 	}
418 
419 	blk_finish_plug(&op->plug);
420 
421 	/*
422 	 * Even if r is set, there could be sub discards in flight that we
423 	 * need to wait for.
424 	 */
425 	if (r && !op->parent_bio->bi_status)
426 		op->parent_bio->bi_status = errno_to_blk_status(r);
427 	bio_endio(op->parent_bio);
428 }
429 
430 /*----------------------------------------------------------------*/
431 
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438 	queue_work(pool->wq, &pool->worker);
439 }
440 
441 /*----------------------------------------------------------------*/
442 
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 		      struct dm_bio_prison_cell **cell_result)
445 {
446 	int r;
447 	struct dm_bio_prison_cell *cell_prealloc;
448 
449 	/*
450 	 * Allocate a cell from the prison's mempool.
451 	 * This might block but it can't fail.
452 	 */
453 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 
455 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 	if (r)
457 		/*
458 		 * We reused an old cell; we can get rid of
459 		 * the new one.
460 		 */
461 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 
463 	return r;
464 }
465 
466 static void cell_release(struct pool *pool,
467 			 struct dm_bio_prison_cell *cell,
468 			 struct bio_list *bios)
469 {
470 	dm_cell_release(pool->prison, cell, bios);
471 	dm_bio_prison_free_cell(pool->prison, cell);
472 }
473 
474 static void cell_visit_release(struct pool *pool,
475 			       void (*fn)(void *, struct dm_bio_prison_cell *),
476 			       void *context,
477 			       struct dm_bio_prison_cell *cell)
478 {
479 	dm_cell_visit_release(pool->prison, fn, context, cell);
480 	dm_bio_prison_free_cell(pool->prison, cell);
481 }
482 
483 static void cell_release_no_holder(struct pool *pool,
484 				   struct dm_bio_prison_cell *cell,
485 				   struct bio_list *bios)
486 {
487 	dm_cell_release_no_holder(pool->prison, cell, bios);
488 	dm_bio_prison_free_cell(pool->prison, cell);
489 }
490 
491 static void cell_error_with_code(struct pool *pool,
492 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 {
494 	dm_cell_error(pool->prison, cell, error_code);
495 	dm_bio_prison_free_cell(pool->prison, cell);
496 }
497 
498 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 {
500 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501 }
502 
503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 {
505 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506 }
507 
508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 {
510 	cell_error_with_code(pool, cell, 0);
511 }
512 
513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 {
515 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516 }
517 
518 /*----------------------------------------------------------------*/
519 
520 /*
521  * A global list of pools that uses a struct mapped_device as a key.
522  */
523 static struct dm_thin_pool_table {
524 	struct mutex mutex;
525 	struct list_head pools;
526 } dm_thin_pool_table;
527 
528 static void pool_table_init(void)
529 {
530 	mutex_init(&dm_thin_pool_table.mutex);
531 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532 }
533 
534 static void pool_table_exit(void)
535 {
536 	mutex_destroy(&dm_thin_pool_table.mutex);
537 }
538 
539 static void __pool_table_insert(struct pool *pool)
540 {
541 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 	list_add(&pool->list, &dm_thin_pool_table.pools);
543 }
544 
545 static void __pool_table_remove(struct pool *pool)
546 {
547 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 	list_del(&pool->list);
549 }
550 
551 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 {
553 	struct pool *pool = NULL, *tmp;
554 
555 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 
557 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 		if (tmp->pool_md == md) {
559 			pool = tmp;
560 			break;
561 		}
562 	}
563 
564 	return pool;
565 }
566 
567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 {
569 	struct pool *pool = NULL, *tmp;
570 
571 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572 
573 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 		if (tmp->md_dev == md_dev) {
575 			pool = tmp;
576 			break;
577 		}
578 	}
579 
580 	return pool;
581 }
582 
583 /*----------------------------------------------------------------*/
584 
585 struct dm_thin_endio_hook {
586 	struct thin_c *tc;
587 	struct dm_deferred_entry *shared_read_entry;
588 	struct dm_deferred_entry *all_io_entry;
589 	struct dm_thin_new_mapping *overwrite_mapping;
590 	struct rb_node rb_node;
591 	struct dm_bio_prison_cell *cell;
592 };
593 
594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 {
596 	bio_list_merge(bios, master);
597 	bio_list_init(master);
598 }
599 
600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 {
602 	struct bio *bio;
603 
604 	while ((bio = bio_list_pop(bios))) {
605 		bio->bi_status = error;
606 		bio_endio(bio);
607 	}
608 }
609 
610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 		blk_status_t error)
612 {
613 	struct bio_list bios;
614 
615 	bio_list_init(&bios);
616 
617 	spin_lock_irq(&tc->lock);
618 	__merge_bio_list(&bios, master);
619 	spin_unlock_irq(&tc->lock);
620 
621 	error_bio_list(&bios, error);
622 }
623 
624 static void requeue_deferred_cells(struct thin_c *tc)
625 {
626 	struct pool *pool = tc->pool;
627 	struct list_head cells;
628 	struct dm_bio_prison_cell *cell, *tmp;
629 
630 	INIT_LIST_HEAD(&cells);
631 
632 	spin_lock_irq(&tc->lock);
633 	list_splice_init(&tc->deferred_cells, &cells);
634 	spin_unlock_irq(&tc->lock);
635 
636 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 		cell_requeue(pool, cell);
638 }
639 
640 static void requeue_io(struct thin_c *tc)
641 {
642 	struct bio_list bios;
643 
644 	bio_list_init(&bios);
645 
646 	spin_lock_irq(&tc->lock);
647 	__merge_bio_list(&bios, &tc->deferred_bio_list);
648 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
649 	spin_unlock_irq(&tc->lock);
650 
651 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652 	requeue_deferred_cells(tc);
653 }
654 
655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656 {
657 	struct thin_c *tc;
658 
659 	rcu_read_lock();
660 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
661 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662 	rcu_read_unlock();
663 }
664 
665 static void error_retry_list(struct pool *pool)
666 {
667 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668 }
669 
670 /*
671  * This section of code contains the logic for processing a thin device's IO.
672  * Much of the code depends on pool object resources (lists, workqueues, etc)
673  * but most is exclusively called from the thin target rather than the thin-pool
674  * target.
675  */
676 
677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678 {
679 	struct pool *pool = tc->pool;
680 	sector_t block_nr = bio->bi_iter.bi_sector;
681 
682 	if (block_size_is_power_of_two(pool))
683 		block_nr >>= pool->sectors_per_block_shift;
684 	else
685 		(void) sector_div(block_nr, pool->sectors_per_block);
686 
687 	return block_nr;
688 }
689 
690 /*
691  * Returns the _complete_ blocks that this bio covers.
692  */
693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694 				dm_block_t *begin, dm_block_t *end)
695 {
696 	struct pool *pool = tc->pool;
697 	sector_t b = bio->bi_iter.bi_sector;
698 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699 
700 	b += pool->sectors_per_block - 1ull; /* so we round up */
701 
702 	if (block_size_is_power_of_two(pool)) {
703 		b >>= pool->sectors_per_block_shift;
704 		e >>= pool->sectors_per_block_shift;
705 	} else {
706 		(void) sector_div(b, pool->sectors_per_block);
707 		(void) sector_div(e, pool->sectors_per_block);
708 	}
709 
710 	if (e < b)
711 		/* Can happen if the bio is within a single block. */
712 		e = b;
713 
714 	*begin = b;
715 	*end = e;
716 }
717 
718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 {
720 	struct pool *pool = tc->pool;
721 	sector_t bi_sector = bio->bi_iter.bi_sector;
722 
723 	bio_set_dev(bio, tc->pool_dev->bdev);
724 	if (block_size_is_power_of_two(pool))
725 		bio->bi_iter.bi_sector =
726 			(block << pool->sectors_per_block_shift) |
727 			(bi_sector & (pool->sectors_per_block - 1));
728 	else
729 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730 				 sector_div(bi_sector, pool->sectors_per_block);
731 }
732 
733 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734 {
735 	bio_set_dev(bio, tc->origin_dev->bdev);
736 }
737 
738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739 {
740 	return op_is_flush(bio->bi_opf) &&
741 		dm_thin_changed_this_transaction(tc->td);
742 }
743 
744 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745 {
746 	struct dm_thin_endio_hook *h;
747 
748 	if (bio_op(bio) == REQ_OP_DISCARD)
749 		return;
750 
751 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753 }
754 
755 static void issue(struct thin_c *tc, struct bio *bio)
756 {
757 	struct pool *pool = tc->pool;
758 
759 	if (!bio_triggers_commit(tc, bio)) {
760 		dm_submit_bio_remap(bio, NULL);
761 		return;
762 	}
763 
764 	/*
765 	 * Complete bio with an error if earlier I/O caused changes to
766 	 * the metadata that can't be committed e.g, due to I/O errors
767 	 * on the metadata device.
768 	 */
769 	if (dm_thin_aborted_changes(tc->td)) {
770 		bio_io_error(bio);
771 		return;
772 	}
773 
774 	/*
775 	 * Batch together any bios that trigger commits and then issue a
776 	 * single commit for them in process_deferred_bios().
777 	 */
778 	spin_lock_irq(&pool->lock);
779 	bio_list_add(&pool->deferred_flush_bios, bio);
780 	spin_unlock_irq(&pool->lock);
781 }
782 
783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784 {
785 	remap_to_origin(tc, bio);
786 	issue(tc, bio);
787 }
788 
789 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790 			    dm_block_t block)
791 {
792 	remap(tc, bio, block);
793 	issue(tc, bio);
794 }
795 
796 /*----------------------------------------------------------------*/
797 
798 /*
799  * Bio endio functions.
800  */
801 struct dm_thin_new_mapping {
802 	struct list_head list;
803 
804 	bool pass_discard:1;
805 	bool maybe_shared:1;
806 
807 	/*
808 	 * Track quiescing, copying and zeroing preparation actions.  When this
809 	 * counter hits zero the block is prepared and can be inserted into the
810 	 * btree.
811 	 */
812 	atomic_t prepare_actions;
813 
814 	blk_status_t status;
815 	struct thin_c *tc;
816 	dm_block_t virt_begin, virt_end;
817 	dm_block_t data_block;
818 	struct dm_bio_prison_cell *cell;
819 
820 	/*
821 	 * If the bio covers the whole area of a block then we can avoid
822 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
823 	 * still be in the cell, so care has to be taken to avoid issuing
824 	 * the bio twice.
825 	 */
826 	struct bio *bio;
827 	bio_end_io_t *saved_bi_end_io;
828 };
829 
830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831 {
832 	struct pool *pool = m->tc->pool;
833 
834 	if (atomic_dec_and_test(&m->prepare_actions)) {
835 		list_add_tail(&m->list, &pool->prepared_mappings);
836 		wake_worker(pool);
837 	}
838 }
839 
840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 	unsigned long flags;
843 	struct pool *pool = m->tc->pool;
844 
845 	spin_lock_irqsave(&pool->lock, flags);
846 	__complete_mapping_preparation(m);
847 	spin_unlock_irqrestore(&pool->lock, flags);
848 }
849 
850 static void copy_complete(int read_err, unsigned long write_err, void *context)
851 {
852 	struct dm_thin_new_mapping *m = context;
853 
854 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855 	complete_mapping_preparation(m);
856 }
857 
858 static void overwrite_endio(struct bio *bio)
859 {
860 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
862 
863 	bio->bi_end_io = m->saved_bi_end_io;
864 
865 	m->status = bio->bi_status;
866 	complete_mapping_preparation(m);
867 }
868 
869 /*----------------------------------------------------------------*/
870 
871 /*
872  * Workqueue.
873  */
874 
875 /*
876  * Prepared mapping jobs.
877  */
878 
879 /*
880  * This sends the bios in the cell, except the original holder, back
881  * to the deferred_bios list.
882  */
883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884 {
885 	struct pool *pool = tc->pool;
886 	unsigned long flags;
887 	struct bio_list bios;
888 
889 	bio_list_init(&bios);
890 	cell_release_no_holder(pool, cell, &bios);
891 
892 	if (!bio_list_empty(&bios)) {
893 		spin_lock_irqsave(&tc->lock, flags);
894 		bio_list_merge(&tc->deferred_bio_list, &bios);
895 		spin_unlock_irqrestore(&tc->lock, flags);
896 		wake_worker(pool);
897 	}
898 }
899 
900 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
901 
902 struct remap_info {
903 	struct thin_c *tc;
904 	struct bio_list defer_bios;
905 	struct bio_list issue_bios;
906 };
907 
908 static void __inc_remap_and_issue_cell(void *context,
909 				       struct dm_bio_prison_cell *cell)
910 {
911 	struct remap_info *info = context;
912 	struct bio *bio;
913 
914 	while ((bio = bio_list_pop(&cell->bios))) {
915 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
916 			bio_list_add(&info->defer_bios, bio);
917 		else {
918 			inc_all_io_entry(info->tc->pool, bio);
919 
920 			/*
921 			 * We can't issue the bios with the bio prison lock
922 			 * held, so we add them to a list to issue on
923 			 * return from this function.
924 			 */
925 			bio_list_add(&info->issue_bios, bio);
926 		}
927 	}
928 }
929 
930 static void inc_remap_and_issue_cell(struct thin_c *tc,
931 				     struct dm_bio_prison_cell *cell,
932 				     dm_block_t block)
933 {
934 	struct bio *bio;
935 	struct remap_info info;
936 
937 	info.tc = tc;
938 	bio_list_init(&info.defer_bios);
939 	bio_list_init(&info.issue_bios);
940 
941 	/*
942 	 * We have to be careful to inc any bios we're about to issue
943 	 * before the cell is released, and avoid a race with new bios
944 	 * being added to the cell.
945 	 */
946 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
947 			   &info, cell);
948 
949 	while ((bio = bio_list_pop(&info.defer_bios)))
950 		thin_defer_bio(tc, bio);
951 
952 	while ((bio = bio_list_pop(&info.issue_bios)))
953 		remap_and_issue(info.tc, bio, block);
954 }
955 
956 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
957 {
958 	cell_error(m->tc->pool, m->cell);
959 	list_del(&m->list);
960 	mempool_free(m, &m->tc->pool->mapping_pool);
961 }
962 
963 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
964 {
965 	struct pool *pool = tc->pool;
966 
967 	/*
968 	 * If the bio has the REQ_FUA flag set we must commit the metadata
969 	 * before signaling its completion.
970 	 */
971 	if (!bio_triggers_commit(tc, bio)) {
972 		bio_endio(bio);
973 		return;
974 	}
975 
976 	/*
977 	 * Complete bio with an error if earlier I/O caused changes to the
978 	 * metadata that can't be committed, e.g, due to I/O errors on the
979 	 * metadata device.
980 	 */
981 	if (dm_thin_aborted_changes(tc->td)) {
982 		bio_io_error(bio);
983 		return;
984 	}
985 
986 	/*
987 	 * Batch together any bios that trigger commits and then issue a
988 	 * single commit for them in process_deferred_bios().
989 	 */
990 	spin_lock_irq(&pool->lock);
991 	bio_list_add(&pool->deferred_flush_completions, bio);
992 	spin_unlock_irq(&pool->lock);
993 }
994 
995 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
996 {
997 	struct thin_c *tc = m->tc;
998 	struct pool *pool = tc->pool;
999 	struct bio *bio = m->bio;
1000 	int r;
1001 
1002 	if (m->status) {
1003 		cell_error(pool, m->cell);
1004 		goto out;
1005 	}
1006 
1007 	/*
1008 	 * Commit the prepared block into the mapping btree.
1009 	 * Any I/O for this block arriving after this point will get
1010 	 * remapped to it directly.
1011 	 */
1012 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1013 	if (r) {
1014 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015 		cell_error(pool, m->cell);
1016 		goto out;
1017 	}
1018 
1019 	/*
1020 	 * Release any bios held while the block was being provisioned.
1021 	 * If we are processing a write bio that completely covers the block,
1022 	 * we already processed it so can ignore it now when processing
1023 	 * the bios in the cell.
1024 	 */
1025 	if (bio) {
1026 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027 		complete_overwrite_bio(tc, bio);
1028 	} else {
1029 		inc_all_io_entry(tc->pool, m->cell->holder);
1030 		remap_and_issue(tc, m->cell->holder, m->data_block);
1031 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1032 	}
1033 
1034 out:
1035 	list_del(&m->list);
1036 	mempool_free(m, &pool->mapping_pool);
1037 }
1038 
1039 /*----------------------------------------------------------------*/
1040 
1041 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042 {
1043 	struct thin_c *tc = m->tc;
1044 
1045 	if (m->cell)
1046 		cell_defer_no_holder(tc, m->cell);
1047 	mempool_free(m, &tc->pool->mapping_pool);
1048 }
1049 
1050 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1051 {
1052 	bio_io_error(m->bio);
1053 	free_discard_mapping(m);
1054 }
1055 
1056 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1057 {
1058 	bio_endio(m->bio);
1059 	free_discard_mapping(m);
1060 }
1061 
1062 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1063 {
1064 	int r;
1065 	struct thin_c *tc = m->tc;
1066 
1067 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1068 	if (r) {
1069 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1070 		bio_io_error(m->bio);
1071 	} else
1072 		bio_endio(m->bio);
1073 
1074 	cell_defer_no_holder(tc, m->cell);
1075 	mempool_free(m, &tc->pool->mapping_pool);
1076 }
1077 
1078 /*----------------------------------------------------------------*/
1079 
1080 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1081 						   struct bio *discard_parent)
1082 {
1083 	/*
1084 	 * We've already unmapped this range of blocks, but before we
1085 	 * passdown we have to check that these blocks are now unused.
1086 	 */
1087 	int r = 0;
1088 	bool shared = true;
1089 	struct thin_c *tc = m->tc;
1090 	struct pool *pool = tc->pool;
1091 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1092 	struct discard_op op;
1093 
1094 	begin_discard(&op, tc, discard_parent);
1095 	while (b != end) {
1096 		/* find start of unmapped run */
1097 		for (; b < end; b++) {
1098 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1099 			if (r)
1100 				goto out;
1101 
1102 			if (!shared)
1103 				break;
1104 		}
1105 
1106 		if (b == end)
1107 			break;
1108 
1109 		/* find end of run */
1110 		for (e = b + 1; e != end; e++) {
1111 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1112 			if (r)
1113 				goto out;
1114 
1115 			if (shared)
1116 				break;
1117 		}
1118 
1119 		r = issue_discard(&op, b, e);
1120 		if (r)
1121 			goto out;
1122 
1123 		b = e;
1124 	}
1125 out:
1126 	end_discard(&op, r);
1127 }
1128 
1129 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1130 {
1131 	unsigned long flags;
1132 	struct pool *pool = m->tc->pool;
1133 
1134 	spin_lock_irqsave(&pool->lock, flags);
1135 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1136 	spin_unlock_irqrestore(&pool->lock, flags);
1137 	wake_worker(pool);
1138 }
1139 
1140 static void passdown_endio(struct bio *bio)
1141 {
1142 	/*
1143 	 * It doesn't matter if the passdown discard failed, we still want
1144 	 * to unmap (we ignore err).
1145 	 */
1146 	queue_passdown_pt2(bio->bi_private);
1147 	bio_put(bio);
1148 }
1149 
1150 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1151 {
1152 	int r;
1153 	struct thin_c *tc = m->tc;
1154 	struct pool *pool = tc->pool;
1155 	struct bio *discard_parent;
1156 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1157 
1158 	/*
1159 	 * Only this thread allocates blocks, so we can be sure that the
1160 	 * newly unmapped blocks will not be allocated before the end of
1161 	 * the function.
1162 	 */
1163 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1164 	if (r) {
1165 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1166 		bio_io_error(m->bio);
1167 		cell_defer_no_holder(tc, m->cell);
1168 		mempool_free(m, &pool->mapping_pool);
1169 		return;
1170 	}
1171 
1172 	/*
1173 	 * Increment the unmapped blocks.  This prevents a race between the
1174 	 * passdown io and reallocation of freed blocks.
1175 	 */
1176 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1177 	if (r) {
1178 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1179 		bio_io_error(m->bio);
1180 		cell_defer_no_holder(tc, m->cell);
1181 		mempool_free(m, &pool->mapping_pool);
1182 		return;
1183 	}
1184 
1185 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1186 	discard_parent->bi_end_io = passdown_endio;
1187 	discard_parent->bi_private = m;
1188 	if (m->maybe_shared)
1189 		passdown_double_checking_shared_status(m, discard_parent);
1190 	else {
1191 		struct discard_op op;
1192 
1193 		begin_discard(&op, tc, discard_parent);
1194 		r = issue_discard(&op, m->data_block, data_end);
1195 		end_discard(&op, r);
1196 	}
1197 }
1198 
1199 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1200 {
1201 	int r;
1202 	struct thin_c *tc = m->tc;
1203 	struct pool *pool = tc->pool;
1204 
1205 	/*
1206 	 * The passdown has completed, so now we can decrement all those
1207 	 * unmapped blocks.
1208 	 */
1209 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1210 				   m->data_block + (m->virt_end - m->virt_begin));
1211 	if (r) {
1212 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1213 		bio_io_error(m->bio);
1214 	} else
1215 		bio_endio(m->bio);
1216 
1217 	cell_defer_no_holder(tc, m->cell);
1218 	mempool_free(m, &pool->mapping_pool);
1219 }
1220 
1221 static void process_prepared(struct pool *pool, struct list_head *head,
1222 			     process_mapping_fn *fn)
1223 {
1224 	struct list_head maps;
1225 	struct dm_thin_new_mapping *m, *tmp;
1226 
1227 	INIT_LIST_HEAD(&maps);
1228 	spin_lock_irq(&pool->lock);
1229 	list_splice_init(head, &maps);
1230 	spin_unlock_irq(&pool->lock);
1231 
1232 	list_for_each_entry_safe(m, tmp, &maps, list)
1233 		(*fn)(m);
1234 }
1235 
1236 /*
1237  * Deferred bio jobs.
1238  */
1239 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1240 {
1241 	return bio->bi_iter.bi_size ==
1242 		(pool->sectors_per_block << SECTOR_SHIFT);
1243 }
1244 
1245 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1246 {
1247 	return (bio_data_dir(bio) == WRITE) &&
1248 		io_overlaps_block(pool, bio);
1249 }
1250 
1251 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1252 			       bio_end_io_t *fn)
1253 {
1254 	*save = bio->bi_end_io;
1255 	bio->bi_end_io = fn;
1256 }
1257 
1258 static int ensure_next_mapping(struct pool *pool)
1259 {
1260 	if (pool->next_mapping)
1261 		return 0;
1262 
1263 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1264 
1265 	return pool->next_mapping ? 0 : -ENOMEM;
1266 }
1267 
1268 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1269 {
1270 	struct dm_thin_new_mapping *m = pool->next_mapping;
1271 
1272 	BUG_ON(!pool->next_mapping);
1273 
1274 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1275 	INIT_LIST_HEAD(&m->list);
1276 	m->bio = NULL;
1277 
1278 	pool->next_mapping = NULL;
1279 
1280 	return m;
1281 }
1282 
1283 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1284 		    sector_t begin, sector_t end)
1285 {
1286 	struct dm_io_region to;
1287 
1288 	to.bdev = tc->pool_dev->bdev;
1289 	to.sector = begin;
1290 	to.count = end - begin;
1291 
1292 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1293 }
1294 
1295 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1296 				      dm_block_t data_begin,
1297 				      struct dm_thin_new_mapping *m)
1298 {
1299 	struct pool *pool = tc->pool;
1300 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1301 
1302 	h->overwrite_mapping = m;
1303 	m->bio = bio;
1304 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1305 	inc_all_io_entry(pool, bio);
1306 	remap_and_issue(tc, bio, data_begin);
1307 }
1308 
1309 /*
1310  * A partial copy also needs to zero the uncopied region.
1311  */
1312 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1313 			  struct dm_dev *origin, dm_block_t data_origin,
1314 			  dm_block_t data_dest,
1315 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1316 			  sector_t len)
1317 {
1318 	struct pool *pool = tc->pool;
1319 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1320 
1321 	m->tc = tc;
1322 	m->virt_begin = virt_block;
1323 	m->virt_end = virt_block + 1u;
1324 	m->data_block = data_dest;
1325 	m->cell = cell;
1326 
1327 	/*
1328 	 * quiesce action + copy action + an extra reference held for the
1329 	 * duration of this function (we may need to inc later for a
1330 	 * partial zero).
1331 	 */
1332 	atomic_set(&m->prepare_actions, 3);
1333 
1334 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1335 		complete_mapping_preparation(m); /* already quiesced */
1336 
1337 	/*
1338 	 * IO to pool_dev remaps to the pool target's data_dev.
1339 	 *
1340 	 * If the whole block of data is being overwritten, we can issue the
1341 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1342 	 */
1343 	if (io_overwrites_block(pool, bio))
1344 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1345 	else {
1346 		struct dm_io_region from, to;
1347 
1348 		from.bdev = origin->bdev;
1349 		from.sector = data_origin * pool->sectors_per_block;
1350 		from.count = len;
1351 
1352 		to.bdev = tc->pool_dev->bdev;
1353 		to.sector = data_dest * pool->sectors_per_block;
1354 		to.count = len;
1355 
1356 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1357 			       0, copy_complete, m);
1358 
1359 		/*
1360 		 * Do we need to zero a tail region?
1361 		 */
1362 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1363 			atomic_inc(&m->prepare_actions);
1364 			ll_zero(tc, m,
1365 				data_dest * pool->sectors_per_block + len,
1366 				(data_dest + 1) * pool->sectors_per_block);
1367 		}
1368 	}
1369 
1370 	complete_mapping_preparation(m); /* drop our ref */
1371 }
1372 
1373 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1374 				   dm_block_t data_origin, dm_block_t data_dest,
1375 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1376 {
1377 	schedule_copy(tc, virt_block, tc->pool_dev,
1378 		      data_origin, data_dest, cell, bio,
1379 		      tc->pool->sectors_per_block);
1380 }
1381 
1382 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1383 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1384 			  struct bio *bio)
1385 {
1386 	struct pool *pool = tc->pool;
1387 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1388 
1389 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1390 	m->tc = tc;
1391 	m->virt_begin = virt_block;
1392 	m->virt_end = virt_block + 1u;
1393 	m->data_block = data_block;
1394 	m->cell = cell;
1395 
1396 	/*
1397 	 * If the whole block of data is being overwritten or we are not
1398 	 * zeroing pre-existing data, we can issue the bio immediately.
1399 	 * Otherwise we use kcopyd to zero the data first.
1400 	 */
1401 	if (pool->pf.zero_new_blocks) {
1402 		if (io_overwrites_block(pool, bio))
1403 			remap_and_issue_overwrite(tc, bio, data_block, m);
1404 		else
1405 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1406 				(data_block + 1) * pool->sectors_per_block);
1407 	} else
1408 		process_prepared_mapping(m);
1409 }
1410 
1411 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1412 				   dm_block_t data_dest,
1413 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1414 {
1415 	struct pool *pool = tc->pool;
1416 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1417 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1418 
1419 	if (virt_block_end <= tc->origin_size)
1420 		schedule_copy(tc, virt_block, tc->origin_dev,
1421 			      virt_block, data_dest, cell, bio,
1422 			      pool->sectors_per_block);
1423 
1424 	else if (virt_block_begin < tc->origin_size)
1425 		schedule_copy(tc, virt_block, tc->origin_dev,
1426 			      virt_block, data_dest, cell, bio,
1427 			      tc->origin_size - virt_block_begin);
1428 
1429 	else
1430 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1431 }
1432 
1433 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1434 
1435 static void requeue_bios(struct pool *pool);
1436 
1437 static bool is_read_only_pool_mode(enum pool_mode mode)
1438 {
1439 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1440 }
1441 
1442 static bool is_read_only(struct pool *pool)
1443 {
1444 	return is_read_only_pool_mode(get_pool_mode(pool));
1445 }
1446 
1447 static void check_for_metadata_space(struct pool *pool)
1448 {
1449 	int r;
1450 	const char *ooms_reason = NULL;
1451 	dm_block_t nr_free;
1452 
1453 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1454 	if (r)
1455 		ooms_reason = "Could not get free metadata blocks";
1456 	else if (!nr_free)
1457 		ooms_reason = "No free metadata blocks";
1458 
1459 	if (ooms_reason && !is_read_only(pool)) {
1460 		DMERR("%s", ooms_reason);
1461 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1462 	}
1463 }
1464 
1465 static void check_for_data_space(struct pool *pool)
1466 {
1467 	int r;
1468 	dm_block_t nr_free;
1469 
1470 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1471 		return;
1472 
1473 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1474 	if (r)
1475 		return;
1476 
1477 	if (nr_free) {
1478 		set_pool_mode(pool, PM_WRITE);
1479 		requeue_bios(pool);
1480 	}
1481 }
1482 
1483 /*
1484  * A non-zero return indicates read_only or fail_io mode.
1485  * Many callers don't care about the return value.
1486  */
1487 static int commit(struct pool *pool)
1488 {
1489 	int r;
1490 
1491 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1492 		return -EINVAL;
1493 
1494 	r = dm_pool_commit_metadata(pool->pmd);
1495 	if (r)
1496 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1497 	else {
1498 		check_for_metadata_space(pool);
1499 		check_for_data_space(pool);
1500 	}
1501 
1502 	return r;
1503 }
1504 
1505 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1506 {
1507 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1508 		DMWARN("%s: reached low water mark for data device: sending event.",
1509 		       dm_device_name(pool->pool_md));
1510 		spin_lock_irq(&pool->lock);
1511 		pool->low_water_triggered = true;
1512 		spin_unlock_irq(&pool->lock);
1513 		dm_table_event(pool->ti->table);
1514 	}
1515 }
1516 
1517 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1518 {
1519 	int r;
1520 	dm_block_t free_blocks;
1521 	struct pool *pool = tc->pool;
1522 
1523 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1524 		return -EINVAL;
1525 
1526 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1527 	if (r) {
1528 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1529 		return r;
1530 	}
1531 
1532 	check_low_water_mark(pool, free_blocks);
1533 
1534 	if (!free_blocks) {
1535 		/*
1536 		 * Try to commit to see if that will free up some
1537 		 * more space.
1538 		 */
1539 		r = commit(pool);
1540 		if (r)
1541 			return r;
1542 
1543 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1544 		if (r) {
1545 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1546 			return r;
1547 		}
1548 
1549 		if (!free_blocks) {
1550 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1551 			return -ENOSPC;
1552 		}
1553 	}
1554 
1555 	r = dm_pool_alloc_data_block(pool->pmd, result);
1556 	if (r) {
1557 		if (r == -ENOSPC)
1558 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559 		else
1560 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1561 		return r;
1562 	}
1563 
1564 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1565 	if (r) {
1566 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1567 		return r;
1568 	}
1569 
1570 	if (!free_blocks) {
1571 		/* Let's commit before we use up the metadata reserve. */
1572 		r = commit(pool);
1573 		if (r)
1574 			return r;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * If we have run out of space, queue bios until the device is
1582  * resumed, presumably after having been reloaded with more space.
1583  */
1584 static void retry_on_resume(struct bio *bio)
1585 {
1586 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1587 	struct thin_c *tc = h->tc;
1588 
1589 	spin_lock_irq(&tc->lock);
1590 	bio_list_add(&tc->retry_on_resume_list, bio);
1591 	spin_unlock_irq(&tc->lock);
1592 }
1593 
1594 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1595 {
1596 	enum pool_mode m = get_pool_mode(pool);
1597 
1598 	switch (m) {
1599 	case PM_WRITE:
1600 		/* Shouldn't get here */
1601 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1602 		return BLK_STS_IOERR;
1603 
1604 	case PM_OUT_OF_DATA_SPACE:
1605 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1606 
1607 	case PM_OUT_OF_METADATA_SPACE:
1608 	case PM_READ_ONLY:
1609 	case PM_FAIL:
1610 		return BLK_STS_IOERR;
1611 	default:
1612 		/* Shouldn't get here */
1613 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1614 		return BLK_STS_IOERR;
1615 	}
1616 }
1617 
1618 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1619 {
1620 	blk_status_t error = should_error_unserviceable_bio(pool);
1621 
1622 	if (error) {
1623 		bio->bi_status = error;
1624 		bio_endio(bio);
1625 	} else
1626 		retry_on_resume(bio);
1627 }
1628 
1629 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1630 {
1631 	struct bio *bio;
1632 	struct bio_list bios;
1633 	blk_status_t error;
1634 
1635 	error = should_error_unserviceable_bio(pool);
1636 	if (error) {
1637 		cell_error_with_code(pool, cell, error);
1638 		return;
1639 	}
1640 
1641 	bio_list_init(&bios);
1642 	cell_release(pool, cell, &bios);
1643 
1644 	while ((bio = bio_list_pop(&bios)))
1645 		retry_on_resume(bio);
1646 }
1647 
1648 static void process_discard_cell_no_passdown(struct thin_c *tc,
1649 					     struct dm_bio_prison_cell *virt_cell)
1650 {
1651 	struct pool *pool = tc->pool;
1652 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1653 
1654 	/*
1655 	 * We don't need to lock the data blocks, since there's no
1656 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1657 	 */
1658 	m->tc = tc;
1659 	m->virt_begin = virt_cell->key.block_begin;
1660 	m->virt_end = virt_cell->key.block_end;
1661 	m->cell = virt_cell;
1662 	m->bio = virt_cell->holder;
1663 
1664 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1665 		pool->process_prepared_discard(m);
1666 }
1667 
1668 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1669 				 struct bio *bio)
1670 {
1671 	struct pool *pool = tc->pool;
1672 
1673 	int r;
1674 	bool maybe_shared;
1675 	struct dm_cell_key data_key;
1676 	struct dm_bio_prison_cell *data_cell;
1677 	struct dm_thin_new_mapping *m;
1678 	dm_block_t virt_begin, virt_end, data_begin, data_end;
1679 	dm_block_t len, next_boundary;
1680 
1681 	while (begin != end) {
1682 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1683 					      &data_begin, &maybe_shared);
1684 		if (r) {
1685 			/*
1686 			 * Silently fail, letting any mappings we've
1687 			 * created complete.
1688 			 */
1689 			break;
1690 		}
1691 
1692 		data_end = data_begin + (virt_end - virt_begin);
1693 
1694 		/*
1695 		 * Make sure the data region obeys the bio prison restrictions.
1696 		 */
1697 		while (data_begin < data_end) {
1698 			r = ensure_next_mapping(pool);
1699 			if (r)
1700 				return; /* we did our best */
1701 
1702 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1703 				<< BIO_PRISON_MAX_RANGE_SHIFT;
1704 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1705 
1706 			/* This key is certainly within range given the above splitting */
1707 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1708 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1709 				/* contention, we'll give up with this range */
1710 				data_begin += len;
1711 				continue;
1712 			}
1713 
1714 			/*
1715 			 * IO may still be going to the destination block.  We must
1716 			 * quiesce before we can do the removal.
1717 			 */
1718 			m = get_next_mapping(pool);
1719 			m->tc = tc;
1720 			m->maybe_shared = maybe_shared;
1721 			m->virt_begin = virt_begin;
1722 			m->virt_end = virt_begin + len;
1723 			m->data_block = data_begin;
1724 			m->cell = data_cell;
1725 			m->bio = bio;
1726 
1727 			/*
1728 			 * The parent bio must not complete before sub discard bios are
1729 			 * chained to it (see end_discard's bio_chain)!
1730 			 *
1731 			 * This per-mapping bi_remaining increment is paired with
1732 			 * the implicit decrement that occurs via bio_endio() in
1733 			 * end_discard().
1734 			 */
1735 			bio_inc_remaining(bio);
1736 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1737 				pool->process_prepared_discard(m);
1738 
1739 			virt_begin += len;
1740 			data_begin += len;
1741 		}
1742 
1743 		begin = virt_end;
1744 	}
1745 }
1746 
1747 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1748 {
1749 	struct bio *bio = virt_cell->holder;
1750 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1751 
1752 	/*
1753 	 * The virt_cell will only get freed once the origin bio completes.
1754 	 * This means it will remain locked while all the individual
1755 	 * passdown bios are in flight.
1756 	 */
1757 	h->cell = virt_cell;
1758 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1759 
1760 	/*
1761 	 * We complete the bio now, knowing that the bi_remaining field
1762 	 * will prevent completion until the sub range discards have
1763 	 * completed.
1764 	 */
1765 	bio_endio(bio);
1766 }
1767 
1768 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1769 {
1770 	dm_block_t begin, end;
1771 	struct dm_cell_key virt_key;
1772 	struct dm_bio_prison_cell *virt_cell;
1773 
1774 	get_bio_block_range(tc, bio, &begin, &end);
1775 	if (begin == end) {
1776 		/*
1777 		 * The discard covers less than a block.
1778 		 */
1779 		bio_endio(bio);
1780 		return;
1781 	}
1782 
1783 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1784 		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1785 		bio_endio(bio);
1786 		return;
1787 	}
1788 
1789 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1790 		/*
1791 		 * Potential starvation issue: We're relying on the
1792 		 * fs/application being well behaved, and not trying to
1793 		 * send IO to a region at the same time as discarding it.
1794 		 * If they do this persistently then it's possible this
1795 		 * cell will never be granted.
1796 		 */
1797 		return;
1798 	}
1799 
1800 	tc->pool->process_discard_cell(tc, virt_cell);
1801 }
1802 
1803 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1804 			  struct dm_cell_key *key,
1805 			  struct dm_thin_lookup_result *lookup_result,
1806 			  struct dm_bio_prison_cell *cell)
1807 {
1808 	int r;
1809 	dm_block_t data_block;
1810 	struct pool *pool = tc->pool;
1811 
1812 	r = alloc_data_block(tc, &data_block);
1813 	switch (r) {
1814 	case 0:
1815 		schedule_internal_copy(tc, block, lookup_result->block,
1816 				       data_block, cell, bio);
1817 		break;
1818 
1819 	case -ENOSPC:
1820 		retry_bios_on_resume(pool, cell);
1821 		break;
1822 
1823 	default:
1824 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1825 			    __func__, r);
1826 		cell_error(pool, cell);
1827 		break;
1828 	}
1829 }
1830 
1831 static void __remap_and_issue_shared_cell(void *context,
1832 					  struct dm_bio_prison_cell *cell)
1833 {
1834 	struct remap_info *info = context;
1835 	struct bio *bio;
1836 
1837 	while ((bio = bio_list_pop(&cell->bios))) {
1838 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1839 		    bio_op(bio) == REQ_OP_DISCARD)
1840 			bio_list_add(&info->defer_bios, bio);
1841 		else {
1842 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1843 
1844 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1845 			inc_all_io_entry(info->tc->pool, bio);
1846 			bio_list_add(&info->issue_bios, bio);
1847 		}
1848 	}
1849 }
1850 
1851 static void remap_and_issue_shared_cell(struct thin_c *tc,
1852 					struct dm_bio_prison_cell *cell,
1853 					dm_block_t block)
1854 {
1855 	struct bio *bio;
1856 	struct remap_info info;
1857 
1858 	info.tc = tc;
1859 	bio_list_init(&info.defer_bios);
1860 	bio_list_init(&info.issue_bios);
1861 
1862 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1863 			   &info, cell);
1864 
1865 	while ((bio = bio_list_pop(&info.defer_bios)))
1866 		thin_defer_bio(tc, bio);
1867 
1868 	while ((bio = bio_list_pop(&info.issue_bios)))
1869 		remap_and_issue(tc, bio, block);
1870 }
1871 
1872 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1873 			       dm_block_t block,
1874 			       struct dm_thin_lookup_result *lookup_result,
1875 			       struct dm_bio_prison_cell *virt_cell)
1876 {
1877 	struct dm_bio_prison_cell *data_cell;
1878 	struct pool *pool = tc->pool;
1879 	struct dm_cell_key key;
1880 
1881 	/*
1882 	 * If cell is already occupied, then sharing is already in the process
1883 	 * of being broken so we have nothing further to do here.
1884 	 */
1885 	build_data_key(tc->td, lookup_result->block, &key);
1886 	if (bio_detain(pool, &key, bio, &data_cell)) {
1887 		cell_defer_no_holder(tc, virt_cell);
1888 		return;
1889 	}
1890 
1891 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1892 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1893 		cell_defer_no_holder(tc, virt_cell);
1894 	} else {
1895 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1896 
1897 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1898 		inc_all_io_entry(pool, bio);
1899 		remap_and_issue(tc, bio, lookup_result->block);
1900 
1901 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1902 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1903 	}
1904 }
1905 
1906 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1907 			    struct dm_bio_prison_cell *cell)
1908 {
1909 	int r;
1910 	dm_block_t data_block;
1911 	struct pool *pool = tc->pool;
1912 
1913 	/*
1914 	 * Remap empty bios (flushes) immediately, without provisioning.
1915 	 */
1916 	if (!bio->bi_iter.bi_size) {
1917 		inc_all_io_entry(pool, bio);
1918 		cell_defer_no_holder(tc, cell);
1919 
1920 		remap_and_issue(tc, bio, 0);
1921 		return;
1922 	}
1923 
1924 	/*
1925 	 * Fill read bios with zeroes and complete them immediately.
1926 	 */
1927 	if (bio_data_dir(bio) == READ) {
1928 		zero_fill_bio(bio);
1929 		cell_defer_no_holder(tc, cell);
1930 		bio_endio(bio);
1931 		return;
1932 	}
1933 
1934 	r = alloc_data_block(tc, &data_block);
1935 	switch (r) {
1936 	case 0:
1937 		if (tc->origin_dev)
1938 			schedule_external_copy(tc, block, data_block, cell, bio);
1939 		else
1940 			schedule_zero(tc, block, data_block, cell, bio);
1941 		break;
1942 
1943 	case -ENOSPC:
1944 		retry_bios_on_resume(pool, cell);
1945 		break;
1946 
1947 	default:
1948 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1949 			    __func__, r);
1950 		cell_error(pool, cell);
1951 		break;
1952 	}
1953 }
1954 
1955 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1956 {
1957 	int r;
1958 	struct pool *pool = tc->pool;
1959 	struct bio *bio = cell->holder;
1960 	dm_block_t block = get_bio_block(tc, bio);
1961 	struct dm_thin_lookup_result lookup_result;
1962 
1963 	if (tc->requeue_mode) {
1964 		cell_requeue(pool, cell);
1965 		return;
1966 	}
1967 
1968 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1969 	switch (r) {
1970 	case 0:
1971 		if (lookup_result.shared)
1972 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1973 		else {
1974 			inc_all_io_entry(pool, bio);
1975 			remap_and_issue(tc, bio, lookup_result.block);
1976 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1977 		}
1978 		break;
1979 
1980 	case -ENODATA:
1981 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1982 			inc_all_io_entry(pool, bio);
1983 			cell_defer_no_holder(tc, cell);
1984 
1985 			if (bio_end_sector(bio) <= tc->origin_size)
1986 				remap_to_origin_and_issue(tc, bio);
1987 
1988 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1989 				zero_fill_bio(bio);
1990 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1991 				remap_to_origin_and_issue(tc, bio);
1992 
1993 			} else {
1994 				zero_fill_bio(bio);
1995 				bio_endio(bio);
1996 			}
1997 		} else
1998 			provision_block(tc, bio, block, cell);
1999 		break;
2000 
2001 	default:
2002 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2003 			    __func__, r);
2004 		cell_defer_no_holder(tc, cell);
2005 		bio_io_error(bio);
2006 		break;
2007 	}
2008 }
2009 
2010 static void process_bio(struct thin_c *tc, struct bio *bio)
2011 {
2012 	struct pool *pool = tc->pool;
2013 	dm_block_t block = get_bio_block(tc, bio);
2014 	struct dm_bio_prison_cell *cell;
2015 	struct dm_cell_key key;
2016 
2017 	/*
2018 	 * If cell is already occupied, then the block is already
2019 	 * being provisioned so we have nothing further to do here.
2020 	 */
2021 	build_virtual_key(tc->td, block, &key);
2022 	if (bio_detain(pool, &key, bio, &cell))
2023 		return;
2024 
2025 	process_cell(tc, cell);
2026 }
2027 
2028 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2029 				    struct dm_bio_prison_cell *cell)
2030 {
2031 	int r;
2032 	int rw = bio_data_dir(bio);
2033 	dm_block_t block = get_bio_block(tc, bio);
2034 	struct dm_thin_lookup_result lookup_result;
2035 
2036 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2037 	switch (r) {
2038 	case 0:
2039 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2040 			handle_unserviceable_bio(tc->pool, bio);
2041 			if (cell)
2042 				cell_defer_no_holder(tc, cell);
2043 		} else {
2044 			inc_all_io_entry(tc->pool, bio);
2045 			remap_and_issue(tc, bio, lookup_result.block);
2046 			if (cell)
2047 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2048 		}
2049 		break;
2050 
2051 	case -ENODATA:
2052 		if (cell)
2053 			cell_defer_no_holder(tc, cell);
2054 		if (rw != READ) {
2055 			handle_unserviceable_bio(tc->pool, bio);
2056 			break;
2057 		}
2058 
2059 		if (tc->origin_dev) {
2060 			inc_all_io_entry(tc->pool, bio);
2061 			remap_to_origin_and_issue(tc, bio);
2062 			break;
2063 		}
2064 
2065 		zero_fill_bio(bio);
2066 		bio_endio(bio);
2067 		break;
2068 
2069 	default:
2070 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2071 			    __func__, r);
2072 		if (cell)
2073 			cell_defer_no_holder(tc, cell);
2074 		bio_io_error(bio);
2075 		break;
2076 	}
2077 }
2078 
2079 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2080 {
2081 	__process_bio_read_only(tc, bio, NULL);
2082 }
2083 
2084 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2085 {
2086 	__process_bio_read_only(tc, cell->holder, cell);
2087 }
2088 
2089 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2090 {
2091 	bio_endio(bio);
2092 }
2093 
2094 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2095 {
2096 	bio_io_error(bio);
2097 }
2098 
2099 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2100 {
2101 	cell_success(tc->pool, cell);
2102 }
2103 
2104 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2105 {
2106 	cell_error(tc->pool, cell);
2107 }
2108 
2109 /*
2110  * FIXME: should we also commit due to size of transaction, measured in
2111  * metadata blocks?
2112  */
2113 static int need_commit_due_to_time(struct pool *pool)
2114 {
2115 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2116 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2117 }
2118 
2119 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2120 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2121 
2122 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2123 {
2124 	struct rb_node **rbp, *parent;
2125 	struct dm_thin_endio_hook *pbd;
2126 	sector_t bi_sector = bio->bi_iter.bi_sector;
2127 
2128 	rbp = &tc->sort_bio_list.rb_node;
2129 	parent = NULL;
2130 	while (*rbp) {
2131 		parent = *rbp;
2132 		pbd = thin_pbd(parent);
2133 
2134 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2135 			rbp = &(*rbp)->rb_left;
2136 		else
2137 			rbp = &(*rbp)->rb_right;
2138 	}
2139 
2140 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2141 	rb_link_node(&pbd->rb_node, parent, rbp);
2142 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2143 }
2144 
2145 static void __extract_sorted_bios(struct thin_c *tc)
2146 {
2147 	struct rb_node *node;
2148 	struct dm_thin_endio_hook *pbd;
2149 	struct bio *bio;
2150 
2151 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2152 		pbd = thin_pbd(node);
2153 		bio = thin_bio(pbd);
2154 
2155 		bio_list_add(&tc->deferred_bio_list, bio);
2156 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2157 	}
2158 
2159 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2160 }
2161 
2162 static void __sort_thin_deferred_bios(struct thin_c *tc)
2163 {
2164 	struct bio *bio;
2165 	struct bio_list bios;
2166 
2167 	bio_list_init(&bios);
2168 	bio_list_merge(&bios, &tc->deferred_bio_list);
2169 	bio_list_init(&tc->deferred_bio_list);
2170 
2171 	/* Sort deferred_bio_list using rb-tree */
2172 	while ((bio = bio_list_pop(&bios)))
2173 		__thin_bio_rb_add(tc, bio);
2174 
2175 	/*
2176 	 * Transfer the sorted bios in sort_bio_list back to
2177 	 * deferred_bio_list to allow lockless submission of
2178 	 * all bios.
2179 	 */
2180 	__extract_sorted_bios(tc);
2181 }
2182 
2183 static void process_thin_deferred_bios(struct thin_c *tc)
2184 {
2185 	struct pool *pool = tc->pool;
2186 	struct bio *bio;
2187 	struct bio_list bios;
2188 	struct blk_plug plug;
2189 	unsigned int count = 0;
2190 
2191 	if (tc->requeue_mode) {
2192 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2193 				BLK_STS_DM_REQUEUE);
2194 		return;
2195 	}
2196 
2197 	bio_list_init(&bios);
2198 
2199 	spin_lock_irq(&tc->lock);
2200 
2201 	if (bio_list_empty(&tc->deferred_bio_list)) {
2202 		spin_unlock_irq(&tc->lock);
2203 		return;
2204 	}
2205 
2206 	__sort_thin_deferred_bios(tc);
2207 
2208 	bio_list_merge(&bios, &tc->deferred_bio_list);
2209 	bio_list_init(&tc->deferred_bio_list);
2210 
2211 	spin_unlock_irq(&tc->lock);
2212 
2213 	blk_start_plug(&plug);
2214 	while ((bio = bio_list_pop(&bios))) {
2215 		/*
2216 		 * If we've got no free new_mapping structs, and processing
2217 		 * this bio might require one, we pause until there are some
2218 		 * prepared mappings to process.
2219 		 */
2220 		if (ensure_next_mapping(pool)) {
2221 			spin_lock_irq(&tc->lock);
2222 			bio_list_add(&tc->deferred_bio_list, bio);
2223 			bio_list_merge(&tc->deferred_bio_list, &bios);
2224 			spin_unlock_irq(&tc->lock);
2225 			break;
2226 		}
2227 
2228 		if (bio_op(bio) == REQ_OP_DISCARD)
2229 			pool->process_discard(tc, bio);
2230 		else
2231 			pool->process_bio(tc, bio);
2232 
2233 		if ((count++ & 127) == 0) {
2234 			throttle_work_update(&pool->throttle);
2235 			dm_pool_issue_prefetches(pool->pmd);
2236 		}
2237 		cond_resched();
2238 	}
2239 	blk_finish_plug(&plug);
2240 }
2241 
2242 static int cmp_cells(const void *lhs, const void *rhs)
2243 {
2244 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2245 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2246 
2247 	BUG_ON(!lhs_cell->holder);
2248 	BUG_ON(!rhs_cell->holder);
2249 
2250 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2251 		return -1;
2252 
2253 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2254 		return 1;
2255 
2256 	return 0;
2257 }
2258 
2259 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2260 {
2261 	unsigned int count = 0;
2262 	struct dm_bio_prison_cell *cell, *tmp;
2263 
2264 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2265 		if (count >= CELL_SORT_ARRAY_SIZE)
2266 			break;
2267 
2268 		pool->cell_sort_array[count++] = cell;
2269 		list_del(&cell->user_list);
2270 	}
2271 
2272 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2273 
2274 	return count;
2275 }
2276 
2277 static void process_thin_deferred_cells(struct thin_c *tc)
2278 {
2279 	struct pool *pool = tc->pool;
2280 	struct list_head cells;
2281 	struct dm_bio_prison_cell *cell;
2282 	unsigned int i, j, count;
2283 
2284 	INIT_LIST_HEAD(&cells);
2285 
2286 	spin_lock_irq(&tc->lock);
2287 	list_splice_init(&tc->deferred_cells, &cells);
2288 	spin_unlock_irq(&tc->lock);
2289 
2290 	if (list_empty(&cells))
2291 		return;
2292 
2293 	do {
2294 		count = sort_cells(tc->pool, &cells);
2295 
2296 		for (i = 0; i < count; i++) {
2297 			cell = pool->cell_sort_array[i];
2298 			BUG_ON(!cell->holder);
2299 
2300 			/*
2301 			 * If we've got no free new_mapping structs, and processing
2302 			 * this bio might require one, we pause until there are some
2303 			 * prepared mappings to process.
2304 			 */
2305 			if (ensure_next_mapping(pool)) {
2306 				for (j = i; j < count; j++)
2307 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2308 
2309 				spin_lock_irq(&tc->lock);
2310 				list_splice(&cells, &tc->deferred_cells);
2311 				spin_unlock_irq(&tc->lock);
2312 				return;
2313 			}
2314 
2315 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2316 				pool->process_discard_cell(tc, cell);
2317 			else
2318 				pool->process_cell(tc, cell);
2319 		}
2320 		cond_resched();
2321 	} while (!list_empty(&cells));
2322 }
2323 
2324 static void thin_get(struct thin_c *tc);
2325 static void thin_put(struct thin_c *tc);
2326 
2327 /*
2328  * We can't hold rcu_read_lock() around code that can block.  So we
2329  * find a thin with the rcu lock held; bump a refcount; then drop
2330  * the lock.
2331  */
2332 static struct thin_c *get_first_thin(struct pool *pool)
2333 {
2334 	struct thin_c *tc = NULL;
2335 
2336 	rcu_read_lock();
2337 	if (!list_empty(&pool->active_thins)) {
2338 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2339 		thin_get(tc);
2340 	}
2341 	rcu_read_unlock();
2342 
2343 	return tc;
2344 }
2345 
2346 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2347 {
2348 	struct thin_c *old_tc = tc;
2349 
2350 	rcu_read_lock();
2351 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2352 		thin_get(tc);
2353 		thin_put(old_tc);
2354 		rcu_read_unlock();
2355 		return tc;
2356 	}
2357 	thin_put(old_tc);
2358 	rcu_read_unlock();
2359 
2360 	return NULL;
2361 }
2362 
2363 static void process_deferred_bios(struct pool *pool)
2364 {
2365 	struct bio *bio;
2366 	struct bio_list bios, bio_completions;
2367 	struct thin_c *tc;
2368 
2369 	tc = get_first_thin(pool);
2370 	while (tc) {
2371 		process_thin_deferred_cells(tc);
2372 		process_thin_deferred_bios(tc);
2373 		tc = get_next_thin(pool, tc);
2374 	}
2375 
2376 	/*
2377 	 * If there are any deferred flush bios, we must commit the metadata
2378 	 * before issuing them or signaling their completion.
2379 	 */
2380 	bio_list_init(&bios);
2381 	bio_list_init(&bio_completions);
2382 
2383 	spin_lock_irq(&pool->lock);
2384 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2385 	bio_list_init(&pool->deferred_flush_bios);
2386 
2387 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2388 	bio_list_init(&pool->deferred_flush_completions);
2389 	spin_unlock_irq(&pool->lock);
2390 
2391 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2392 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2393 		return;
2394 
2395 	if (commit(pool)) {
2396 		bio_list_merge(&bios, &bio_completions);
2397 
2398 		while ((bio = bio_list_pop(&bios)))
2399 			bio_io_error(bio);
2400 		return;
2401 	}
2402 	pool->last_commit_jiffies = jiffies;
2403 
2404 	while ((bio = bio_list_pop(&bio_completions)))
2405 		bio_endio(bio);
2406 
2407 	while ((bio = bio_list_pop(&bios))) {
2408 		/*
2409 		 * The data device was flushed as part of metadata commit,
2410 		 * so complete redundant flushes immediately.
2411 		 */
2412 		if (bio->bi_opf & REQ_PREFLUSH)
2413 			bio_endio(bio);
2414 		else
2415 			dm_submit_bio_remap(bio, NULL);
2416 	}
2417 }
2418 
2419 static void do_worker(struct work_struct *ws)
2420 {
2421 	struct pool *pool = container_of(ws, struct pool, worker);
2422 
2423 	throttle_work_start(&pool->throttle);
2424 	dm_pool_issue_prefetches(pool->pmd);
2425 	throttle_work_update(&pool->throttle);
2426 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2427 	throttle_work_update(&pool->throttle);
2428 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2429 	throttle_work_update(&pool->throttle);
2430 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2431 	throttle_work_update(&pool->throttle);
2432 	process_deferred_bios(pool);
2433 	throttle_work_complete(&pool->throttle);
2434 }
2435 
2436 /*
2437  * We want to commit periodically so that not too much
2438  * unwritten data builds up.
2439  */
2440 static void do_waker(struct work_struct *ws)
2441 {
2442 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2443 
2444 	wake_worker(pool);
2445 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2446 }
2447 
2448 /*
2449  * We're holding onto IO to allow userland time to react.  After the
2450  * timeout either the pool will have been resized (and thus back in
2451  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2452  */
2453 static void do_no_space_timeout(struct work_struct *ws)
2454 {
2455 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2456 					 no_space_timeout);
2457 
2458 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2459 		pool->pf.error_if_no_space = true;
2460 		notify_of_pool_mode_change(pool);
2461 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2462 	}
2463 }
2464 
2465 /*----------------------------------------------------------------*/
2466 
2467 struct pool_work {
2468 	struct work_struct worker;
2469 	struct completion complete;
2470 };
2471 
2472 static struct pool_work *to_pool_work(struct work_struct *ws)
2473 {
2474 	return container_of(ws, struct pool_work, worker);
2475 }
2476 
2477 static void pool_work_complete(struct pool_work *pw)
2478 {
2479 	complete(&pw->complete);
2480 }
2481 
2482 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2483 			   void (*fn)(struct work_struct *))
2484 {
2485 	INIT_WORK_ONSTACK(&pw->worker, fn);
2486 	init_completion(&pw->complete);
2487 	queue_work(pool->wq, &pw->worker);
2488 	wait_for_completion(&pw->complete);
2489 }
2490 
2491 /*----------------------------------------------------------------*/
2492 
2493 struct noflush_work {
2494 	struct pool_work pw;
2495 	struct thin_c *tc;
2496 };
2497 
2498 static struct noflush_work *to_noflush(struct work_struct *ws)
2499 {
2500 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2501 }
2502 
2503 static void do_noflush_start(struct work_struct *ws)
2504 {
2505 	struct noflush_work *w = to_noflush(ws);
2506 
2507 	w->tc->requeue_mode = true;
2508 	requeue_io(w->tc);
2509 	pool_work_complete(&w->pw);
2510 }
2511 
2512 static void do_noflush_stop(struct work_struct *ws)
2513 {
2514 	struct noflush_work *w = to_noflush(ws);
2515 
2516 	w->tc->requeue_mode = false;
2517 	pool_work_complete(&w->pw);
2518 }
2519 
2520 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2521 {
2522 	struct noflush_work w;
2523 
2524 	w.tc = tc;
2525 	pool_work_wait(&w.pw, tc->pool, fn);
2526 }
2527 
2528 /*----------------------------------------------------------------*/
2529 
2530 static bool passdown_enabled(struct pool_c *pt)
2531 {
2532 	return pt->adjusted_pf.discard_passdown;
2533 }
2534 
2535 static void set_discard_callbacks(struct pool *pool)
2536 {
2537 	struct pool_c *pt = pool->ti->private;
2538 
2539 	if (passdown_enabled(pt)) {
2540 		pool->process_discard_cell = process_discard_cell_passdown;
2541 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2542 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2543 	} else {
2544 		pool->process_discard_cell = process_discard_cell_no_passdown;
2545 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2546 	}
2547 }
2548 
2549 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2550 {
2551 	struct pool_c *pt = pool->ti->private;
2552 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2553 	enum pool_mode old_mode = get_pool_mode(pool);
2554 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2555 
2556 	/*
2557 	 * Never allow the pool to transition to PM_WRITE mode if user
2558 	 * intervention is required to verify metadata and data consistency.
2559 	 */
2560 	if (new_mode == PM_WRITE && needs_check) {
2561 		DMERR("%s: unable to switch pool to write mode until repaired.",
2562 		      dm_device_name(pool->pool_md));
2563 		if (old_mode != new_mode)
2564 			new_mode = old_mode;
2565 		else
2566 			new_mode = PM_READ_ONLY;
2567 	}
2568 	/*
2569 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2570 	 * not going to recover without a thin_repair.	So we never let the
2571 	 * pool move out of the old mode.
2572 	 */
2573 	if (old_mode == PM_FAIL)
2574 		new_mode = old_mode;
2575 
2576 	switch (new_mode) {
2577 	case PM_FAIL:
2578 		dm_pool_metadata_read_only(pool->pmd);
2579 		pool->process_bio = process_bio_fail;
2580 		pool->process_discard = process_bio_fail;
2581 		pool->process_cell = process_cell_fail;
2582 		pool->process_discard_cell = process_cell_fail;
2583 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2584 		pool->process_prepared_discard = process_prepared_discard_fail;
2585 
2586 		error_retry_list(pool);
2587 		break;
2588 
2589 	case PM_OUT_OF_METADATA_SPACE:
2590 	case PM_READ_ONLY:
2591 		dm_pool_metadata_read_only(pool->pmd);
2592 		pool->process_bio = process_bio_read_only;
2593 		pool->process_discard = process_bio_success;
2594 		pool->process_cell = process_cell_read_only;
2595 		pool->process_discard_cell = process_cell_success;
2596 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2597 		pool->process_prepared_discard = process_prepared_discard_success;
2598 
2599 		error_retry_list(pool);
2600 		break;
2601 
2602 	case PM_OUT_OF_DATA_SPACE:
2603 		/*
2604 		 * Ideally we'd never hit this state; the low water mark
2605 		 * would trigger userland to extend the pool before we
2606 		 * completely run out of data space.  However, many small
2607 		 * IOs to unprovisioned space can consume data space at an
2608 		 * alarming rate.  Adjust your low water mark if you're
2609 		 * frequently seeing this mode.
2610 		 */
2611 		pool->out_of_data_space = true;
2612 		pool->process_bio = process_bio_read_only;
2613 		pool->process_discard = process_discard_bio;
2614 		pool->process_cell = process_cell_read_only;
2615 		pool->process_prepared_mapping = process_prepared_mapping;
2616 		set_discard_callbacks(pool);
2617 
2618 		if (!pool->pf.error_if_no_space && no_space_timeout)
2619 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2620 		break;
2621 
2622 	case PM_WRITE:
2623 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2624 			cancel_delayed_work_sync(&pool->no_space_timeout);
2625 		pool->out_of_data_space = false;
2626 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2627 		dm_pool_metadata_read_write(pool->pmd);
2628 		pool->process_bio = process_bio;
2629 		pool->process_discard = process_discard_bio;
2630 		pool->process_cell = process_cell;
2631 		pool->process_prepared_mapping = process_prepared_mapping;
2632 		set_discard_callbacks(pool);
2633 		break;
2634 	}
2635 
2636 	pool->pf.mode = new_mode;
2637 	/*
2638 	 * The pool mode may have changed, sync it so bind_control_target()
2639 	 * doesn't cause an unexpected mode transition on resume.
2640 	 */
2641 	pt->adjusted_pf.mode = new_mode;
2642 
2643 	if (old_mode != new_mode)
2644 		notify_of_pool_mode_change(pool);
2645 }
2646 
2647 static void abort_transaction(struct pool *pool)
2648 {
2649 	const char *dev_name = dm_device_name(pool->pool_md);
2650 
2651 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2652 	if (dm_pool_abort_metadata(pool->pmd)) {
2653 		DMERR("%s: failed to abort metadata transaction", dev_name);
2654 		set_pool_mode(pool, PM_FAIL);
2655 	}
2656 
2657 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2658 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2659 		set_pool_mode(pool, PM_FAIL);
2660 	}
2661 }
2662 
2663 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2664 {
2665 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2666 		    dm_device_name(pool->pool_md), op, r);
2667 
2668 	abort_transaction(pool);
2669 	set_pool_mode(pool, PM_READ_ONLY);
2670 }
2671 
2672 /*----------------------------------------------------------------*/
2673 
2674 /*
2675  * Mapping functions.
2676  */
2677 
2678 /*
2679  * Called only while mapping a thin bio to hand it over to the workqueue.
2680  */
2681 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2682 {
2683 	struct pool *pool = tc->pool;
2684 
2685 	spin_lock_irq(&tc->lock);
2686 	bio_list_add(&tc->deferred_bio_list, bio);
2687 	spin_unlock_irq(&tc->lock);
2688 
2689 	wake_worker(pool);
2690 }
2691 
2692 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2693 {
2694 	struct pool *pool = tc->pool;
2695 
2696 	throttle_lock(&pool->throttle);
2697 	thin_defer_bio(tc, bio);
2698 	throttle_unlock(&pool->throttle);
2699 }
2700 
2701 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2702 {
2703 	struct pool *pool = tc->pool;
2704 
2705 	throttle_lock(&pool->throttle);
2706 	spin_lock_irq(&tc->lock);
2707 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2708 	spin_unlock_irq(&tc->lock);
2709 	throttle_unlock(&pool->throttle);
2710 
2711 	wake_worker(pool);
2712 }
2713 
2714 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2715 {
2716 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2717 
2718 	h->tc = tc;
2719 	h->shared_read_entry = NULL;
2720 	h->all_io_entry = NULL;
2721 	h->overwrite_mapping = NULL;
2722 	h->cell = NULL;
2723 }
2724 
2725 /*
2726  * Non-blocking function called from the thin target's map function.
2727  */
2728 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2729 {
2730 	int r;
2731 	struct thin_c *tc = ti->private;
2732 	dm_block_t block = get_bio_block(tc, bio);
2733 	struct dm_thin_device *td = tc->td;
2734 	struct dm_thin_lookup_result result;
2735 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2736 	struct dm_cell_key key;
2737 
2738 	thin_hook_bio(tc, bio);
2739 
2740 	if (tc->requeue_mode) {
2741 		bio->bi_status = BLK_STS_DM_REQUEUE;
2742 		bio_endio(bio);
2743 		return DM_MAPIO_SUBMITTED;
2744 	}
2745 
2746 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2747 		bio_io_error(bio);
2748 		return DM_MAPIO_SUBMITTED;
2749 	}
2750 
2751 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2752 		thin_defer_bio_with_throttle(tc, bio);
2753 		return DM_MAPIO_SUBMITTED;
2754 	}
2755 
2756 	/*
2757 	 * We must hold the virtual cell before doing the lookup, otherwise
2758 	 * there's a race with discard.
2759 	 */
2760 	build_virtual_key(tc->td, block, &key);
2761 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2762 		return DM_MAPIO_SUBMITTED;
2763 
2764 	r = dm_thin_find_block(td, block, 0, &result);
2765 
2766 	/*
2767 	 * Note that we defer readahead too.
2768 	 */
2769 	switch (r) {
2770 	case 0:
2771 		if (unlikely(result.shared)) {
2772 			/*
2773 			 * We have a race condition here between the
2774 			 * result.shared value returned by the lookup and
2775 			 * snapshot creation, which may cause new
2776 			 * sharing.
2777 			 *
2778 			 * To avoid this always quiesce the origin before
2779 			 * taking the snap.  You want to do this anyway to
2780 			 * ensure a consistent application view
2781 			 * (i.e. lockfs).
2782 			 *
2783 			 * More distant ancestors are irrelevant. The
2784 			 * shared flag will be set in their case.
2785 			 */
2786 			thin_defer_cell(tc, virt_cell);
2787 			return DM_MAPIO_SUBMITTED;
2788 		}
2789 
2790 		build_data_key(tc->td, result.block, &key);
2791 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2792 			cell_defer_no_holder(tc, virt_cell);
2793 			return DM_MAPIO_SUBMITTED;
2794 		}
2795 
2796 		inc_all_io_entry(tc->pool, bio);
2797 		cell_defer_no_holder(tc, data_cell);
2798 		cell_defer_no_holder(tc, virt_cell);
2799 
2800 		remap(tc, bio, result.block);
2801 		return DM_MAPIO_REMAPPED;
2802 
2803 	case -ENODATA:
2804 	case -EWOULDBLOCK:
2805 		thin_defer_cell(tc, virt_cell);
2806 		return DM_MAPIO_SUBMITTED;
2807 
2808 	default:
2809 		/*
2810 		 * Must always call bio_io_error on failure.
2811 		 * dm_thin_find_block can fail with -EINVAL if the
2812 		 * pool is switched to fail-io mode.
2813 		 */
2814 		bio_io_error(bio);
2815 		cell_defer_no_holder(tc, virt_cell);
2816 		return DM_MAPIO_SUBMITTED;
2817 	}
2818 }
2819 
2820 static void requeue_bios(struct pool *pool)
2821 {
2822 	struct thin_c *tc;
2823 
2824 	rcu_read_lock();
2825 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2826 		spin_lock_irq(&tc->lock);
2827 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2828 		bio_list_init(&tc->retry_on_resume_list);
2829 		spin_unlock_irq(&tc->lock);
2830 	}
2831 	rcu_read_unlock();
2832 }
2833 
2834 /*
2835  *--------------------------------------------------------------
2836  * Binding of control targets to a pool object
2837  *--------------------------------------------------------------
2838  */
2839 static bool is_factor(sector_t block_size, uint32_t n)
2840 {
2841 	return !sector_div(block_size, n);
2842 }
2843 
2844 /*
2845  * If discard_passdown was enabled verify that the data device
2846  * supports discards.  Disable discard_passdown if not.
2847  */
2848 static void disable_passdown_if_not_supported(struct pool_c *pt)
2849 {
2850 	struct pool *pool = pt->pool;
2851 	struct block_device *data_bdev = pt->data_dev->bdev;
2852 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2853 	const char *reason = NULL;
2854 
2855 	if (!pt->adjusted_pf.discard_passdown)
2856 		return;
2857 
2858 	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2859 		reason = "discard unsupported";
2860 
2861 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2862 		reason = "max discard sectors smaller than a block";
2863 
2864 	if (reason) {
2865 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2866 		pt->adjusted_pf.discard_passdown = false;
2867 	}
2868 }
2869 
2870 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2871 {
2872 	struct pool_c *pt = ti->private;
2873 
2874 	/*
2875 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2876 	 */
2877 	enum pool_mode old_mode = get_pool_mode(pool);
2878 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2879 
2880 	/*
2881 	 * Don't change the pool's mode until set_pool_mode() below.
2882 	 * Otherwise the pool's process_* function pointers may
2883 	 * not match the desired pool mode.
2884 	 */
2885 	pt->adjusted_pf.mode = old_mode;
2886 
2887 	pool->ti = ti;
2888 	pool->pf = pt->adjusted_pf;
2889 	pool->low_water_blocks = pt->low_water_blocks;
2890 
2891 	set_pool_mode(pool, new_mode);
2892 
2893 	return 0;
2894 }
2895 
2896 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2897 {
2898 	if (pool->ti == ti)
2899 		pool->ti = NULL;
2900 }
2901 
2902 /*
2903  *--------------------------------------------------------------
2904  * Pool creation
2905  *--------------------------------------------------------------
2906  */
2907 /* Initialize pool features. */
2908 static void pool_features_init(struct pool_features *pf)
2909 {
2910 	pf->mode = PM_WRITE;
2911 	pf->zero_new_blocks = true;
2912 	pf->discard_enabled = true;
2913 	pf->discard_passdown = true;
2914 	pf->error_if_no_space = false;
2915 }
2916 
2917 static void __pool_destroy(struct pool *pool)
2918 {
2919 	__pool_table_remove(pool);
2920 
2921 	vfree(pool->cell_sort_array);
2922 	if (dm_pool_metadata_close(pool->pmd) < 0)
2923 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2924 
2925 	dm_bio_prison_destroy(pool->prison);
2926 	dm_kcopyd_client_destroy(pool->copier);
2927 
2928 	cancel_delayed_work_sync(&pool->waker);
2929 	cancel_delayed_work_sync(&pool->no_space_timeout);
2930 	if (pool->wq)
2931 		destroy_workqueue(pool->wq);
2932 
2933 	if (pool->next_mapping)
2934 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2935 	mempool_exit(&pool->mapping_pool);
2936 	dm_deferred_set_destroy(pool->shared_read_ds);
2937 	dm_deferred_set_destroy(pool->all_io_ds);
2938 	kfree(pool);
2939 }
2940 
2941 static struct kmem_cache *_new_mapping_cache;
2942 
2943 static struct pool *pool_create(struct mapped_device *pool_md,
2944 				struct block_device *metadata_dev,
2945 				struct block_device *data_dev,
2946 				unsigned long block_size,
2947 				int read_only, char **error)
2948 {
2949 	int r;
2950 	void *err_p;
2951 	struct pool *pool;
2952 	struct dm_pool_metadata *pmd;
2953 	bool format_device = read_only ? false : true;
2954 
2955 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2956 	if (IS_ERR(pmd)) {
2957 		*error = "Error creating metadata object";
2958 		return (struct pool *)pmd;
2959 	}
2960 
2961 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2962 	if (!pool) {
2963 		*error = "Error allocating memory for pool";
2964 		err_p = ERR_PTR(-ENOMEM);
2965 		goto bad_pool;
2966 	}
2967 
2968 	pool->pmd = pmd;
2969 	pool->sectors_per_block = block_size;
2970 	if (block_size & (block_size - 1))
2971 		pool->sectors_per_block_shift = -1;
2972 	else
2973 		pool->sectors_per_block_shift = __ffs(block_size);
2974 	pool->low_water_blocks = 0;
2975 	pool_features_init(&pool->pf);
2976 	pool->prison = dm_bio_prison_create();
2977 	if (!pool->prison) {
2978 		*error = "Error creating pool's bio prison";
2979 		err_p = ERR_PTR(-ENOMEM);
2980 		goto bad_prison;
2981 	}
2982 
2983 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2984 	if (IS_ERR(pool->copier)) {
2985 		r = PTR_ERR(pool->copier);
2986 		*error = "Error creating pool's kcopyd client";
2987 		err_p = ERR_PTR(r);
2988 		goto bad_kcopyd_client;
2989 	}
2990 
2991 	/*
2992 	 * Create singlethreaded workqueue that will service all devices
2993 	 * that use this metadata.
2994 	 */
2995 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2996 	if (!pool->wq) {
2997 		*error = "Error creating pool's workqueue";
2998 		err_p = ERR_PTR(-ENOMEM);
2999 		goto bad_wq;
3000 	}
3001 
3002 	throttle_init(&pool->throttle);
3003 	INIT_WORK(&pool->worker, do_worker);
3004 	INIT_DELAYED_WORK(&pool->waker, do_waker);
3005 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3006 	spin_lock_init(&pool->lock);
3007 	bio_list_init(&pool->deferred_flush_bios);
3008 	bio_list_init(&pool->deferred_flush_completions);
3009 	INIT_LIST_HEAD(&pool->prepared_mappings);
3010 	INIT_LIST_HEAD(&pool->prepared_discards);
3011 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3012 	INIT_LIST_HEAD(&pool->active_thins);
3013 	pool->low_water_triggered = false;
3014 	pool->suspended = true;
3015 	pool->out_of_data_space = false;
3016 
3017 	pool->shared_read_ds = dm_deferred_set_create();
3018 	if (!pool->shared_read_ds) {
3019 		*error = "Error creating pool's shared read deferred set";
3020 		err_p = ERR_PTR(-ENOMEM);
3021 		goto bad_shared_read_ds;
3022 	}
3023 
3024 	pool->all_io_ds = dm_deferred_set_create();
3025 	if (!pool->all_io_ds) {
3026 		*error = "Error creating pool's all io deferred set";
3027 		err_p = ERR_PTR(-ENOMEM);
3028 		goto bad_all_io_ds;
3029 	}
3030 
3031 	pool->next_mapping = NULL;
3032 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3033 				   _new_mapping_cache);
3034 	if (r) {
3035 		*error = "Error creating pool's mapping mempool";
3036 		err_p = ERR_PTR(r);
3037 		goto bad_mapping_pool;
3038 	}
3039 
3040 	pool->cell_sort_array =
3041 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3042 				   sizeof(*pool->cell_sort_array)));
3043 	if (!pool->cell_sort_array) {
3044 		*error = "Error allocating cell sort array";
3045 		err_p = ERR_PTR(-ENOMEM);
3046 		goto bad_sort_array;
3047 	}
3048 
3049 	pool->ref_count = 1;
3050 	pool->last_commit_jiffies = jiffies;
3051 	pool->pool_md = pool_md;
3052 	pool->md_dev = metadata_dev;
3053 	pool->data_dev = data_dev;
3054 	__pool_table_insert(pool);
3055 
3056 	return pool;
3057 
3058 bad_sort_array:
3059 	mempool_exit(&pool->mapping_pool);
3060 bad_mapping_pool:
3061 	dm_deferred_set_destroy(pool->all_io_ds);
3062 bad_all_io_ds:
3063 	dm_deferred_set_destroy(pool->shared_read_ds);
3064 bad_shared_read_ds:
3065 	destroy_workqueue(pool->wq);
3066 bad_wq:
3067 	dm_kcopyd_client_destroy(pool->copier);
3068 bad_kcopyd_client:
3069 	dm_bio_prison_destroy(pool->prison);
3070 bad_prison:
3071 	kfree(pool);
3072 bad_pool:
3073 	if (dm_pool_metadata_close(pmd))
3074 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3075 
3076 	return err_p;
3077 }
3078 
3079 static void __pool_inc(struct pool *pool)
3080 {
3081 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3082 	pool->ref_count++;
3083 }
3084 
3085 static void __pool_dec(struct pool *pool)
3086 {
3087 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3088 	BUG_ON(!pool->ref_count);
3089 	if (!--pool->ref_count)
3090 		__pool_destroy(pool);
3091 }
3092 
3093 static struct pool *__pool_find(struct mapped_device *pool_md,
3094 				struct block_device *metadata_dev,
3095 				struct block_device *data_dev,
3096 				unsigned long block_size, int read_only,
3097 				char **error, int *created)
3098 {
3099 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3100 
3101 	if (pool) {
3102 		if (pool->pool_md != pool_md) {
3103 			*error = "metadata device already in use by a pool";
3104 			return ERR_PTR(-EBUSY);
3105 		}
3106 		if (pool->data_dev != data_dev) {
3107 			*error = "data device already in use by a pool";
3108 			return ERR_PTR(-EBUSY);
3109 		}
3110 		__pool_inc(pool);
3111 
3112 	} else {
3113 		pool = __pool_table_lookup(pool_md);
3114 		if (pool) {
3115 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3116 				*error = "different pool cannot replace a pool";
3117 				return ERR_PTR(-EINVAL);
3118 			}
3119 			__pool_inc(pool);
3120 
3121 		} else {
3122 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3123 			*created = 1;
3124 		}
3125 	}
3126 
3127 	return pool;
3128 }
3129 
3130 /*
3131  *--------------------------------------------------------------
3132  * Pool target methods
3133  *--------------------------------------------------------------
3134  */
3135 static void pool_dtr(struct dm_target *ti)
3136 {
3137 	struct pool_c *pt = ti->private;
3138 
3139 	mutex_lock(&dm_thin_pool_table.mutex);
3140 
3141 	unbind_control_target(pt->pool, ti);
3142 	__pool_dec(pt->pool);
3143 	dm_put_device(ti, pt->metadata_dev);
3144 	dm_put_device(ti, pt->data_dev);
3145 	kfree(pt);
3146 
3147 	mutex_unlock(&dm_thin_pool_table.mutex);
3148 }
3149 
3150 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3151 			       struct dm_target *ti)
3152 {
3153 	int r;
3154 	unsigned int argc;
3155 	const char *arg_name;
3156 
3157 	static const struct dm_arg _args[] = {
3158 		{0, 4, "Invalid number of pool feature arguments"},
3159 	};
3160 
3161 	/*
3162 	 * No feature arguments supplied.
3163 	 */
3164 	if (!as->argc)
3165 		return 0;
3166 
3167 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3168 	if (r)
3169 		return -EINVAL;
3170 
3171 	while (argc && !r) {
3172 		arg_name = dm_shift_arg(as);
3173 		argc--;
3174 
3175 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3176 			pf->zero_new_blocks = false;
3177 
3178 		else if (!strcasecmp(arg_name, "ignore_discard"))
3179 			pf->discard_enabled = false;
3180 
3181 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3182 			pf->discard_passdown = false;
3183 
3184 		else if (!strcasecmp(arg_name, "read_only"))
3185 			pf->mode = PM_READ_ONLY;
3186 
3187 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3188 			pf->error_if_no_space = true;
3189 
3190 		else {
3191 			ti->error = "Unrecognised pool feature requested";
3192 			r = -EINVAL;
3193 			break;
3194 		}
3195 	}
3196 
3197 	return r;
3198 }
3199 
3200 static void metadata_low_callback(void *context)
3201 {
3202 	struct pool *pool = context;
3203 
3204 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3205 	       dm_device_name(pool->pool_md));
3206 
3207 	dm_table_event(pool->ti->table);
3208 }
3209 
3210 /*
3211  * We need to flush the data device **before** committing the metadata.
3212  *
3213  * This ensures that the data blocks of any newly inserted mappings are
3214  * properly written to non-volatile storage and won't be lost in case of a
3215  * crash.
3216  *
3217  * Failure to do so can result in data corruption in the case of internal or
3218  * external snapshots and in the case of newly provisioned blocks, when block
3219  * zeroing is enabled.
3220  */
3221 static int metadata_pre_commit_callback(void *context)
3222 {
3223 	struct pool *pool = context;
3224 
3225 	return blkdev_issue_flush(pool->data_dev);
3226 }
3227 
3228 static sector_t get_dev_size(struct block_device *bdev)
3229 {
3230 	return bdev_nr_sectors(bdev);
3231 }
3232 
3233 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3234 {
3235 	sector_t metadata_dev_size = get_dev_size(bdev);
3236 
3237 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3238 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3239 		       bdev, THIN_METADATA_MAX_SECTORS);
3240 }
3241 
3242 static sector_t get_metadata_dev_size(struct block_device *bdev)
3243 {
3244 	sector_t metadata_dev_size = get_dev_size(bdev);
3245 
3246 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3247 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3248 
3249 	return metadata_dev_size;
3250 }
3251 
3252 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3253 {
3254 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3255 
3256 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3257 
3258 	return metadata_dev_size;
3259 }
3260 
3261 /*
3262  * When a metadata threshold is crossed a dm event is triggered, and
3263  * userland should respond by growing the metadata device.  We could let
3264  * userland set the threshold, like we do with the data threshold, but I'm
3265  * not sure they know enough to do this well.
3266  */
3267 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3268 {
3269 	/*
3270 	 * 4M is ample for all ops with the possible exception of thin
3271 	 * device deletion which is harmless if it fails (just retry the
3272 	 * delete after you've grown the device).
3273 	 */
3274 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3275 
3276 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3277 }
3278 
3279 /*
3280  * thin-pool <metadata dev> <data dev>
3281  *	     <data block size (sectors)>
3282  *	     <low water mark (blocks)>
3283  *	     [<#feature args> [<arg>]*]
3284  *
3285  * Optional feature arguments are:
3286  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3287  *	     ignore_discard: disable discard
3288  *	     no_discard_passdown: don't pass discards down to the data device
3289  *	     read_only: Don't allow any changes to be made to the pool metadata.
3290  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3291  */
3292 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3293 {
3294 	int r, pool_created = 0;
3295 	struct pool_c *pt;
3296 	struct pool *pool;
3297 	struct pool_features pf;
3298 	struct dm_arg_set as;
3299 	struct dm_dev *data_dev;
3300 	unsigned long block_size;
3301 	dm_block_t low_water_blocks;
3302 	struct dm_dev *metadata_dev;
3303 	fmode_t metadata_mode;
3304 
3305 	/*
3306 	 * FIXME Remove validation from scope of lock.
3307 	 */
3308 	mutex_lock(&dm_thin_pool_table.mutex);
3309 
3310 	if (argc < 4) {
3311 		ti->error = "Invalid argument count";
3312 		r = -EINVAL;
3313 		goto out_unlock;
3314 	}
3315 
3316 	as.argc = argc;
3317 	as.argv = argv;
3318 
3319 	/* make sure metadata and data are different devices */
3320 	if (!strcmp(argv[0], argv[1])) {
3321 		ti->error = "Error setting metadata or data device";
3322 		r = -EINVAL;
3323 		goto out_unlock;
3324 	}
3325 
3326 	/*
3327 	 * Set default pool features.
3328 	 */
3329 	pool_features_init(&pf);
3330 
3331 	dm_consume_args(&as, 4);
3332 	r = parse_pool_features(&as, &pf, ti);
3333 	if (r)
3334 		goto out_unlock;
3335 
3336 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3337 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3338 	if (r) {
3339 		ti->error = "Error opening metadata block device";
3340 		goto out_unlock;
3341 	}
3342 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3343 
3344 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3345 	if (r) {
3346 		ti->error = "Error getting data device";
3347 		goto out_metadata;
3348 	}
3349 
3350 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3351 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3352 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3353 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3354 		ti->error = "Invalid block size";
3355 		r = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3360 		ti->error = "Invalid low water mark";
3361 		r = -EINVAL;
3362 		goto out;
3363 	}
3364 
3365 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3366 	if (!pt) {
3367 		r = -ENOMEM;
3368 		goto out;
3369 	}
3370 
3371 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3372 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3373 	if (IS_ERR(pool)) {
3374 		r = PTR_ERR(pool);
3375 		goto out_free_pt;
3376 	}
3377 
3378 	/*
3379 	 * 'pool_created' reflects whether this is the first table load.
3380 	 * Top level discard support is not allowed to be changed after
3381 	 * initial load.  This would require a pool reload to trigger thin
3382 	 * device changes.
3383 	 */
3384 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3385 		ti->error = "Discard support cannot be disabled once enabled";
3386 		r = -EINVAL;
3387 		goto out_flags_changed;
3388 	}
3389 
3390 	pt->pool = pool;
3391 	pt->ti = ti;
3392 	pt->metadata_dev = metadata_dev;
3393 	pt->data_dev = data_dev;
3394 	pt->low_water_blocks = low_water_blocks;
3395 	pt->adjusted_pf = pt->requested_pf = pf;
3396 	ti->num_flush_bios = 1;
3397 	ti->limit_swap_bios = true;
3398 
3399 	/*
3400 	 * Only need to enable discards if the pool should pass
3401 	 * them down to the data device.  The thin device's discard
3402 	 * processing will cause mappings to be removed from the btree.
3403 	 */
3404 	if (pf.discard_enabled && pf.discard_passdown) {
3405 		ti->num_discard_bios = 1;
3406 		/*
3407 		 * Setting 'discards_supported' circumvents the normal
3408 		 * stacking of discard limits (this keeps the pool and
3409 		 * thin devices' discard limits consistent).
3410 		 */
3411 		ti->discards_supported = true;
3412 		ti->max_discard_granularity = true;
3413 	}
3414 	ti->private = pt;
3415 
3416 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3417 						calc_metadata_threshold(pt),
3418 						metadata_low_callback,
3419 						pool);
3420 	if (r) {
3421 		ti->error = "Error registering metadata threshold";
3422 		goto out_flags_changed;
3423 	}
3424 
3425 	dm_pool_register_pre_commit_callback(pool->pmd,
3426 					     metadata_pre_commit_callback, pool);
3427 
3428 	mutex_unlock(&dm_thin_pool_table.mutex);
3429 
3430 	return 0;
3431 
3432 out_flags_changed:
3433 	__pool_dec(pool);
3434 out_free_pt:
3435 	kfree(pt);
3436 out:
3437 	dm_put_device(ti, data_dev);
3438 out_metadata:
3439 	dm_put_device(ti, metadata_dev);
3440 out_unlock:
3441 	mutex_unlock(&dm_thin_pool_table.mutex);
3442 
3443 	return r;
3444 }
3445 
3446 static int pool_map(struct dm_target *ti, struct bio *bio)
3447 {
3448 	int r;
3449 	struct pool_c *pt = ti->private;
3450 	struct pool *pool = pt->pool;
3451 
3452 	/*
3453 	 * As this is a singleton target, ti->begin is always zero.
3454 	 */
3455 	spin_lock_irq(&pool->lock);
3456 	bio_set_dev(bio, pt->data_dev->bdev);
3457 	r = DM_MAPIO_REMAPPED;
3458 	spin_unlock_irq(&pool->lock);
3459 
3460 	return r;
3461 }
3462 
3463 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3464 {
3465 	int r;
3466 	struct pool_c *pt = ti->private;
3467 	struct pool *pool = pt->pool;
3468 	sector_t data_size = ti->len;
3469 	dm_block_t sb_data_size;
3470 
3471 	*need_commit = false;
3472 
3473 	(void) sector_div(data_size, pool->sectors_per_block);
3474 
3475 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3476 	if (r) {
3477 		DMERR("%s: failed to retrieve data device size",
3478 		      dm_device_name(pool->pool_md));
3479 		return r;
3480 	}
3481 
3482 	if (data_size < sb_data_size) {
3483 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3484 		      dm_device_name(pool->pool_md),
3485 		      (unsigned long long)data_size, sb_data_size);
3486 		return -EINVAL;
3487 
3488 	} else if (data_size > sb_data_size) {
3489 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3490 			DMERR("%s: unable to grow the data device until repaired.",
3491 			      dm_device_name(pool->pool_md));
3492 			return 0;
3493 		}
3494 
3495 		if (sb_data_size)
3496 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3497 			       dm_device_name(pool->pool_md),
3498 			       sb_data_size, (unsigned long long)data_size);
3499 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3500 		if (r) {
3501 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3502 			return r;
3503 		}
3504 
3505 		*need_commit = true;
3506 	}
3507 
3508 	return 0;
3509 }
3510 
3511 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3512 {
3513 	int r;
3514 	struct pool_c *pt = ti->private;
3515 	struct pool *pool = pt->pool;
3516 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3517 
3518 	*need_commit = false;
3519 
3520 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3521 
3522 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3523 	if (r) {
3524 		DMERR("%s: failed to retrieve metadata device size",
3525 		      dm_device_name(pool->pool_md));
3526 		return r;
3527 	}
3528 
3529 	if (metadata_dev_size < sb_metadata_dev_size) {
3530 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3531 		      dm_device_name(pool->pool_md),
3532 		      metadata_dev_size, sb_metadata_dev_size);
3533 		return -EINVAL;
3534 
3535 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3536 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3537 			DMERR("%s: unable to grow the metadata device until repaired.",
3538 			      dm_device_name(pool->pool_md));
3539 			return 0;
3540 		}
3541 
3542 		warn_if_metadata_device_too_big(pool->md_dev);
3543 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3544 		       dm_device_name(pool->pool_md),
3545 		       sb_metadata_dev_size, metadata_dev_size);
3546 
3547 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3548 			set_pool_mode(pool, PM_WRITE);
3549 
3550 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3551 		if (r) {
3552 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3553 			return r;
3554 		}
3555 
3556 		*need_commit = true;
3557 	}
3558 
3559 	return 0;
3560 }
3561 
3562 /*
3563  * Retrieves the number of blocks of the data device from
3564  * the superblock and compares it to the actual device size,
3565  * thus resizing the data device in case it has grown.
3566  *
3567  * This both copes with opening preallocated data devices in the ctr
3568  * being followed by a resume
3569  * -and-
3570  * calling the resume method individually after userspace has
3571  * grown the data device in reaction to a table event.
3572  */
3573 static int pool_preresume(struct dm_target *ti)
3574 {
3575 	int r;
3576 	bool need_commit1, need_commit2;
3577 	struct pool_c *pt = ti->private;
3578 	struct pool *pool = pt->pool;
3579 
3580 	/*
3581 	 * Take control of the pool object.
3582 	 */
3583 	r = bind_control_target(pool, ti);
3584 	if (r)
3585 		goto out;
3586 
3587 	r = maybe_resize_data_dev(ti, &need_commit1);
3588 	if (r)
3589 		goto out;
3590 
3591 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3592 	if (r)
3593 		goto out;
3594 
3595 	if (need_commit1 || need_commit2)
3596 		(void) commit(pool);
3597 out:
3598 	/*
3599 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3600 	 * bio is in deferred list. Therefore need to return 0
3601 	 * to allow pool_resume() to flush IO.
3602 	 */
3603 	if (r && get_pool_mode(pool) == PM_FAIL)
3604 		r = 0;
3605 
3606 	return r;
3607 }
3608 
3609 static void pool_suspend_active_thins(struct pool *pool)
3610 {
3611 	struct thin_c *tc;
3612 
3613 	/* Suspend all active thin devices */
3614 	tc = get_first_thin(pool);
3615 	while (tc) {
3616 		dm_internal_suspend_noflush(tc->thin_md);
3617 		tc = get_next_thin(pool, tc);
3618 	}
3619 }
3620 
3621 static void pool_resume_active_thins(struct pool *pool)
3622 {
3623 	struct thin_c *tc;
3624 
3625 	/* Resume all active thin devices */
3626 	tc = get_first_thin(pool);
3627 	while (tc) {
3628 		dm_internal_resume(tc->thin_md);
3629 		tc = get_next_thin(pool, tc);
3630 	}
3631 }
3632 
3633 static void pool_resume(struct dm_target *ti)
3634 {
3635 	struct pool_c *pt = ti->private;
3636 	struct pool *pool = pt->pool;
3637 
3638 	/*
3639 	 * Must requeue active_thins' bios and then resume
3640 	 * active_thins _before_ clearing 'suspend' flag.
3641 	 */
3642 	requeue_bios(pool);
3643 	pool_resume_active_thins(pool);
3644 
3645 	spin_lock_irq(&pool->lock);
3646 	pool->low_water_triggered = false;
3647 	pool->suspended = false;
3648 	spin_unlock_irq(&pool->lock);
3649 
3650 	do_waker(&pool->waker.work);
3651 }
3652 
3653 static void pool_presuspend(struct dm_target *ti)
3654 {
3655 	struct pool_c *pt = ti->private;
3656 	struct pool *pool = pt->pool;
3657 
3658 	spin_lock_irq(&pool->lock);
3659 	pool->suspended = true;
3660 	spin_unlock_irq(&pool->lock);
3661 
3662 	pool_suspend_active_thins(pool);
3663 }
3664 
3665 static void pool_presuspend_undo(struct dm_target *ti)
3666 {
3667 	struct pool_c *pt = ti->private;
3668 	struct pool *pool = pt->pool;
3669 
3670 	pool_resume_active_thins(pool);
3671 
3672 	spin_lock_irq(&pool->lock);
3673 	pool->suspended = false;
3674 	spin_unlock_irq(&pool->lock);
3675 }
3676 
3677 static void pool_postsuspend(struct dm_target *ti)
3678 {
3679 	struct pool_c *pt = ti->private;
3680 	struct pool *pool = pt->pool;
3681 
3682 	cancel_delayed_work_sync(&pool->waker);
3683 	cancel_delayed_work_sync(&pool->no_space_timeout);
3684 	flush_workqueue(pool->wq);
3685 	(void) commit(pool);
3686 }
3687 
3688 static int check_arg_count(unsigned int argc, unsigned int args_required)
3689 {
3690 	if (argc != args_required) {
3691 		DMWARN("Message received with %u arguments instead of %u.",
3692 		       argc, args_required);
3693 		return -EINVAL;
3694 	}
3695 
3696 	return 0;
3697 }
3698 
3699 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3700 {
3701 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3702 	    *dev_id <= MAX_DEV_ID)
3703 		return 0;
3704 
3705 	if (warning)
3706 		DMWARN("Message received with invalid device id: %s", arg);
3707 
3708 	return -EINVAL;
3709 }
3710 
3711 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3712 {
3713 	dm_thin_id dev_id;
3714 	int r;
3715 
3716 	r = check_arg_count(argc, 2);
3717 	if (r)
3718 		return r;
3719 
3720 	r = read_dev_id(argv[1], &dev_id, 1);
3721 	if (r)
3722 		return r;
3723 
3724 	r = dm_pool_create_thin(pool->pmd, dev_id);
3725 	if (r) {
3726 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3727 		       argv[1]);
3728 		return r;
3729 	}
3730 
3731 	return 0;
3732 }
3733 
3734 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3735 {
3736 	dm_thin_id dev_id;
3737 	dm_thin_id origin_dev_id;
3738 	int r;
3739 
3740 	r = check_arg_count(argc, 3);
3741 	if (r)
3742 		return r;
3743 
3744 	r = read_dev_id(argv[1], &dev_id, 1);
3745 	if (r)
3746 		return r;
3747 
3748 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3749 	if (r)
3750 		return r;
3751 
3752 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3753 	if (r) {
3754 		DMWARN("Creation of new snapshot %s of device %s failed.",
3755 		       argv[1], argv[2]);
3756 		return r;
3757 	}
3758 
3759 	return 0;
3760 }
3761 
3762 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3763 {
3764 	dm_thin_id dev_id;
3765 	int r;
3766 
3767 	r = check_arg_count(argc, 2);
3768 	if (r)
3769 		return r;
3770 
3771 	r = read_dev_id(argv[1], &dev_id, 1);
3772 	if (r)
3773 		return r;
3774 
3775 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3776 	if (r)
3777 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3778 
3779 	return r;
3780 }
3781 
3782 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3783 {
3784 	dm_thin_id old_id, new_id;
3785 	int r;
3786 
3787 	r = check_arg_count(argc, 3);
3788 	if (r)
3789 		return r;
3790 
3791 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3792 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3793 		return -EINVAL;
3794 	}
3795 
3796 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3797 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3798 		return -EINVAL;
3799 	}
3800 
3801 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3802 	if (r) {
3803 		DMWARN("Failed to change transaction id from %s to %s.",
3804 		       argv[1], argv[2]);
3805 		return r;
3806 	}
3807 
3808 	return 0;
3809 }
3810 
3811 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3812 {
3813 	int r;
3814 
3815 	r = check_arg_count(argc, 1);
3816 	if (r)
3817 		return r;
3818 
3819 	(void) commit(pool);
3820 
3821 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3822 	if (r)
3823 		DMWARN("reserve_metadata_snap message failed.");
3824 
3825 	return r;
3826 }
3827 
3828 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3829 {
3830 	int r;
3831 
3832 	r = check_arg_count(argc, 1);
3833 	if (r)
3834 		return r;
3835 
3836 	r = dm_pool_release_metadata_snap(pool->pmd);
3837 	if (r)
3838 		DMWARN("release_metadata_snap message failed.");
3839 
3840 	return r;
3841 }
3842 
3843 /*
3844  * Messages supported:
3845  *   create_thin	<dev_id>
3846  *   create_snap	<dev_id> <origin_id>
3847  *   delete		<dev_id>
3848  *   set_transaction_id <current_trans_id> <new_trans_id>
3849  *   reserve_metadata_snap
3850  *   release_metadata_snap
3851  */
3852 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3853 			char *result, unsigned int maxlen)
3854 {
3855 	int r = -EINVAL;
3856 	struct pool_c *pt = ti->private;
3857 	struct pool *pool = pt->pool;
3858 
3859 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3860 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3861 		      dm_device_name(pool->pool_md));
3862 		return -EOPNOTSUPP;
3863 	}
3864 
3865 	if (!strcasecmp(argv[0], "create_thin"))
3866 		r = process_create_thin_mesg(argc, argv, pool);
3867 
3868 	else if (!strcasecmp(argv[0], "create_snap"))
3869 		r = process_create_snap_mesg(argc, argv, pool);
3870 
3871 	else if (!strcasecmp(argv[0], "delete"))
3872 		r = process_delete_mesg(argc, argv, pool);
3873 
3874 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3875 		r = process_set_transaction_id_mesg(argc, argv, pool);
3876 
3877 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3878 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3879 
3880 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3881 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3882 
3883 	else
3884 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3885 
3886 	if (!r)
3887 		(void) commit(pool);
3888 
3889 	return r;
3890 }
3891 
3892 static void emit_flags(struct pool_features *pf, char *result,
3893 		       unsigned int sz, unsigned int maxlen)
3894 {
3895 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3896 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3897 		pf->error_if_no_space;
3898 	DMEMIT("%u ", count);
3899 
3900 	if (!pf->zero_new_blocks)
3901 		DMEMIT("skip_block_zeroing ");
3902 
3903 	if (!pf->discard_enabled)
3904 		DMEMIT("ignore_discard ");
3905 
3906 	if (!pf->discard_passdown)
3907 		DMEMIT("no_discard_passdown ");
3908 
3909 	if (pf->mode == PM_READ_ONLY)
3910 		DMEMIT("read_only ");
3911 
3912 	if (pf->error_if_no_space)
3913 		DMEMIT("error_if_no_space ");
3914 }
3915 
3916 /*
3917  * Status line is:
3918  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3919  *    <used data sectors>/<total data sectors> <held metadata root>
3920  *    <pool mode> <discard config> <no space config> <needs_check>
3921  */
3922 static void pool_status(struct dm_target *ti, status_type_t type,
3923 			unsigned int status_flags, char *result, unsigned int maxlen)
3924 {
3925 	int r;
3926 	unsigned int sz = 0;
3927 	uint64_t transaction_id;
3928 	dm_block_t nr_free_blocks_data;
3929 	dm_block_t nr_free_blocks_metadata;
3930 	dm_block_t nr_blocks_data;
3931 	dm_block_t nr_blocks_metadata;
3932 	dm_block_t held_root;
3933 	enum pool_mode mode;
3934 	char buf[BDEVNAME_SIZE];
3935 	char buf2[BDEVNAME_SIZE];
3936 	struct pool_c *pt = ti->private;
3937 	struct pool *pool = pt->pool;
3938 
3939 	switch (type) {
3940 	case STATUSTYPE_INFO:
3941 		if (get_pool_mode(pool) == PM_FAIL) {
3942 			DMEMIT("Fail");
3943 			break;
3944 		}
3945 
3946 		/* Commit to ensure statistics aren't out-of-date */
3947 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3948 			(void) commit(pool);
3949 
3950 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3951 		if (r) {
3952 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3953 			      dm_device_name(pool->pool_md), r);
3954 			goto err;
3955 		}
3956 
3957 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3958 		if (r) {
3959 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3960 			      dm_device_name(pool->pool_md), r);
3961 			goto err;
3962 		}
3963 
3964 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3965 		if (r) {
3966 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3967 			      dm_device_name(pool->pool_md), r);
3968 			goto err;
3969 		}
3970 
3971 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3972 		if (r) {
3973 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3974 			      dm_device_name(pool->pool_md), r);
3975 			goto err;
3976 		}
3977 
3978 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3979 		if (r) {
3980 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3981 			      dm_device_name(pool->pool_md), r);
3982 			goto err;
3983 		}
3984 
3985 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3986 		if (r) {
3987 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3988 			      dm_device_name(pool->pool_md), r);
3989 			goto err;
3990 		}
3991 
3992 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3993 		       (unsigned long long)transaction_id,
3994 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3995 		       (unsigned long long)nr_blocks_metadata,
3996 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3997 		       (unsigned long long)nr_blocks_data);
3998 
3999 		if (held_root)
4000 			DMEMIT("%llu ", held_root);
4001 		else
4002 			DMEMIT("- ");
4003 
4004 		mode = get_pool_mode(pool);
4005 		if (mode == PM_OUT_OF_DATA_SPACE)
4006 			DMEMIT("out_of_data_space ");
4007 		else if (is_read_only_pool_mode(mode))
4008 			DMEMIT("ro ");
4009 		else
4010 			DMEMIT("rw ");
4011 
4012 		if (!pool->pf.discard_enabled)
4013 			DMEMIT("ignore_discard ");
4014 		else if (pool->pf.discard_passdown)
4015 			DMEMIT("discard_passdown ");
4016 		else
4017 			DMEMIT("no_discard_passdown ");
4018 
4019 		if (pool->pf.error_if_no_space)
4020 			DMEMIT("error_if_no_space ");
4021 		else
4022 			DMEMIT("queue_if_no_space ");
4023 
4024 		if (dm_pool_metadata_needs_check(pool->pmd))
4025 			DMEMIT("needs_check ");
4026 		else
4027 			DMEMIT("- ");
4028 
4029 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4030 
4031 		break;
4032 
4033 	case STATUSTYPE_TABLE:
4034 		DMEMIT("%s %s %lu %llu ",
4035 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4036 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4037 		       (unsigned long)pool->sectors_per_block,
4038 		       (unsigned long long)pt->low_water_blocks);
4039 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4040 		break;
4041 
4042 	case STATUSTYPE_IMA:
4043 		*result = '\0';
4044 		break;
4045 	}
4046 	return;
4047 
4048 err:
4049 	DMEMIT("Error");
4050 }
4051 
4052 static int pool_iterate_devices(struct dm_target *ti,
4053 				iterate_devices_callout_fn fn, void *data)
4054 {
4055 	struct pool_c *pt = ti->private;
4056 
4057 	return fn(ti, pt->data_dev, 0, ti->len, data);
4058 }
4059 
4060 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4061 {
4062 	struct pool_c *pt = ti->private;
4063 	struct pool *pool = pt->pool;
4064 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4065 
4066 	/*
4067 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4068 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4069 	 * This is especially beneficial when the pool's data device is a RAID
4070 	 * device that has a full stripe width that matches pool->sectors_per_block
4071 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4072 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4073 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4074 	 */
4075 	if (limits->max_sectors < pool->sectors_per_block) {
4076 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4077 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4078 				limits->max_sectors--;
4079 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4080 		}
4081 	}
4082 
4083 	/*
4084 	 * If the system-determined stacked limits are compatible with the
4085 	 * pool's blocksize (io_opt is a factor) do not override them.
4086 	 */
4087 	if (io_opt_sectors < pool->sectors_per_block ||
4088 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4089 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4090 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4091 		else
4092 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4093 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4094 	}
4095 
4096 	/*
4097 	 * pt->adjusted_pf is a staging area for the actual features to use.
4098 	 * They get transferred to the live pool in bind_control_target()
4099 	 * called from pool_preresume().
4100 	 */
4101 	if (!pt->adjusted_pf.discard_enabled) {
4102 		/*
4103 		 * Must explicitly disallow stacking discard limits otherwise the
4104 		 * block layer will stack them if pool's data device has support.
4105 		 */
4106 		limits->discard_granularity = 0;
4107 		return;
4108 	}
4109 
4110 	disable_passdown_if_not_supported(pt);
4111 
4112 	/*
4113 	 * The pool uses the same discard limits as the underlying data
4114 	 * device.  DM core has already set this up.
4115 	 */
4116 }
4117 
4118 static struct target_type pool_target = {
4119 	.name = "thin-pool",
4120 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4121 		    DM_TARGET_IMMUTABLE,
4122 	.version = {1, 23, 0},
4123 	.module = THIS_MODULE,
4124 	.ctr = pool_ctr,
4125 	.dtr = pool_dtr,
4126 	.map = pool_map,
4127 	.presuspend = pool_presuspend,
4128 	.presuspend_undo = pool_presuspend_undo,
4129 	.postsuspend = pool_postsuspend,
4130 	.preresume = pool_preresume,
4131 	.resume = pool_resume,
4132 	.message = pool_message,
4133 	.status = pool_status,
4134 	.iterate_devices = pool_iterate_devices,
4135 	.io_hints = pool_io_hints,
4136 };
4137 
4138 /*
4139  *--------------------------------------------------------------
4140  * Thin target methods
4141  *--------------------------------------------------------------
4142  */
4143 static void thin_get(struct thin_c *tc)
4144 {
4145 	refcount_inc(&tc->refcount);
4146 }
4147 
4148 static void thin_put(struct thin_c *tc)
4149 {
4150 	if (refcount_dec_and_test(&tc->refcount))
4151 		complete(&tc->can_destroy);
4152 }
4153 
4154 static void thin_dtr(struct dm_target *ti)
4155 {
4156 	struct thin_c *tc = ti->private;
4157 
4158 	spin_lock_irq(&tc->pool->lock);
4159 	list_del_rcu(&tc->list);
4160 	spin_unlock_irq(&tc->pool->lock);
4161 	synchronize_rcu();
4162 
4163 	thin_put(tc);
4164 	wait_for_completion(&tc->can_destroy);
4165 
4166 	mutex_lock(&dm_thin_pool_table.mutex);
4167 
4168 	__pool_dec(tc->pool);
4169 	dm_pool_close_thin_device(tc->td);
4170 	dm_put_device(ti, tc->pool_dev);
4171 	if (tc->origin_dev)
4172 		dm_put_device(ti, tc->origin_dev);
4173 	kfree(tc);
4174 
4175 	mutex_unlock(&dm_thin_pool_table.mutex);
4176 }
4177 
4178 /*
4179  * Thin target parameters:
4180  *
4181  * <pool_dev> <dev_id> [origin_dev]
4182  *
4183  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4184  * dev_id: the internal device identifier
4185  * origin_dev: a device external to the pool that should act as the origin
4186  *
4187  * If the pool device has discards disabled, they get disabled for the thin
4188  * device as well.
4189  */
4190 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4191 {
4192 	int r;
4193 	struct thin_c *tc;
4194 	struct dm_dev *pool_dev, *origin_dev;
4195 	struct mapped_device *pool_md;
4196 
4197 	mutex_lock(&dm_thin_pool_table.mutex);
4198 
4199 	if (argc != 2 && argc != 3) {
4200 		ti->error = "Invalid argument count";
4201 		r = -EINVAL;
4202 		goto out_unlock;
4203 	}
4204 
4205 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4206 	if (!tc) {
4207 		ti->error = "Out of memory";
4208 		r = -ENOMEM;
4209 		goto out_unlock;
4210 	}
4211 	tc->thin_md = dm_table_get_md(ti->table);
4212 	spin_lock_init(&tc->lock);
4213 	INIT_LIST_HEAD(&tc->deferred_cells);
4214 	bio_list_init(&tc->deferred_bio_list);
4215 	bio_list_init(&tc->retry_on_resume_list);
4216 	tc->sort_bio_list = RB_ROOT;
4217 
4218 	if (argc == 3) {
4219 		if (!strcmp(argv[0], argv[2])) {
4220 			ti->error = "Error setting origin device";
4221 			r = -EINVAL;
4222 			goto bad_origin_dev;
4223 		}
4224 
4225 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4226 		if (r) {
4227 			ti->error = "Error opening origin device";
4228 			goto bad_origin_dev;
4229 		}
4230 		tc->origin_dev = origin_dev;
4231 	}
4232 
4233 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4234 	if (r) {
4235 		ti->error = "Error opening pool device";
4236 		goto bad_pool_dev;
4237 	}
4238 	tc->pool_dev = pool_dev;
4239 
4240 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4241 		ti->error = "Invalid device id";
4242 		r = -EINVAL;
4243 		goto bad_common;
4244 	}
4245 
4246 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4247 	if (!pool_md) {
4248 		ti->error = "Couldn't get pool mapped device";
4249 		r = -EINVAL;
4250 		goto bad_common;
4251 	}
4252 
4253 	tc->pool = __pool_table_lookup(pool_md);
4254 	if (!tc->pool) {
4255 		ti->error = "Couldn't find pool object";
4256 		r = -EINVAL;
4257 		goto bad_pool_lookup;
4258 	}
4259 	__pool_inc(tc->pool);
4260 
4261 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4262 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4263 		r = -EINVAL;
4264 		goto bad_pool;
4265 	}
4266 
4267 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4268 	if (r) {
4269 		ti->error = "Couldn't open thin internal device";
4270 		goto bad_pool;
4271 	}
4272 
4273 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4274 	if (r)
4275 		goto bad;
4276 
4277 	ti->num_flush_bios = 1;
4278 	ti->limit_swap_bios = true;
4279 	ti->flush_supported = true;
4280 	ti->accounts_remapped_io = true;
4281 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4282 
4283 	/* In case the pool supports discards, pass them on. */
4284 	if (tc->pool->pf.discard_enabled) {
4285 		ti->discards_supported = true;
4286 		ti->num_discard_bios = 1;
4287 		ti->max_discard_granularity = true;
4288 	}
4289 
4290 	mutex_unlock(&dm_thin_pool_table.mutex);
4291 
4292 	spin_lock_irq(&tc->pool->lock);
4293 	if (tc->pool->suspended) {
4294 		spin_unlock_irq(&tc->pool->lock);
4295 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4296 		ti->error = "Unable to activate thin device while pool is suspended";
4297 		r = -EINVAL;
4298 		goto bad;
4299 	}
4300 	refcount_set(&tc->refcount, 1);
4301 	init_completion(&tc->can_destroy);
4302 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4303 	spin_unlock_irq(&tc->pool->lock);
4304 	/*
4305 	 * This synchronize_rcu() call is needed here otherwise we risk a
4306 	 * wake_worker() call finding no bios to process (because the newly
4307 	 * added tc isn't yet visible).  So this reduces latency since we
4308 	 * aren't then dependent on the periodic commit to wake_worker().
4309 	 */
4310 	synchronize_rcu();
4311 
4312 	dm_put(pool_md);
4313 
4314 	return 0;
4315 
4316 bad:
4317 	dm_pool_close_thin_device(tc->td);
4318 bad_pool:
4319 	__pool_dec(tc->pool);
4320 bad_pool_lookup:
4321 	dm_put(pool_md);
4322 bad_common:
4323 	dm_put_device(ti, tc->pool_dev);
4324 bad_pool_dev:
4325 	if (tc->origin_dev)
4326 		dm_put_device(ti, tc->origin_dev);
4327 bad_origin_dev:
4328 	kfree(tc);
4329 out_unlock:
4330 	mutex_unlock(&dm_thin_pool_table.mutex);
4331 
4332 	return r;
4333 }
4334 
4335 static int thin_map(struct dm_target *ti, struct bio *bio)
4336 {
4337 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4338 
4339 	return thin_bio_map(ti, bio);
4340 }
4341 
4342 static int thin_endio(struct dm_target *ti, struct bio *bio,
4343 		blk_status_t *err)
4344 {
4345 	unsigned long flags;
4346 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4347 	struct list_head work;
4348 	struct dm_thin_new_mapping *m, *tmp;
4349 	struct pool *pool = h->tc->pool;
4350 
4351 	if (h->shared_read_entry) {
4352 		INIT_LIST_HEAD(&work);
4353 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4354 
4355 		spin_lock_irqsave(&pool->lock, flags);
4356 		list_for_each_entry_safe(m, tmp, &work, list) {
4357 			list_del(&m->list);
4358 			__complete_mapping_preparation(m);
4359 		}
4360 		spin_unlock_irqrestore(&pool->lock, flags);
4361 	}
4362 
4363 	if (h->all_io_entry) {
4364 		INIT_LIST_HEAD(&work);
4365 		dm_deferred_entry_dec(h->all_io_entry, &work);
4366 		if (!list_empty(&work)) {
4367 			spin_lock_irqsave(&pool->lock, flags);
4368 			list_for_each_entry_safe(m, tmp, &work, list)
4369 				list_add_tail(&m->list, &pool->prepared_discards);
4370 			spin_unlock_irqrestore(&pool->lock, flags);
4371 			wake_worker(pool);
4372 		}
4373 	}
4374 
4375 	if (h->cell)
4376 		cell_defer_no_holder(h->tc, h->cell);
4377 
4378 	return DM_ENDIO_DONE;
4379 }
4380 
4381 static void thin_presuspend(struct dm_target *ti)
4382 {
4383 	struct thin_c *tc = ti->private;
4384 
4385 	if (dm_noflush_suspending(ti))
4386 		noflush_work(tc, do_noflush_start);
4387 }
4388 
4389 static void thin_postsuspend(struct dm_target *ti)
4390 {
4391 	struct thin_c *tc = ti->private;
4392 
4393 	/*
4394 	 * The dm_noflush_suspending flag has been cleared by now, so
4395 	 * unfortunately we must always run this.
4396 	 */
4397 	noflush_work(tc, do_noflush_stop);
4398 }
4399 
4400 static int thin_preresume(struct dm_target *ti)
4401 {
4402 	struct thin_c *tc = ti->private;
4403 
4404 	if (tc->origin_dev)
4405 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4406 
4407 	return 0;
4408 }
4409 
4410 /*
4411  * <nr mapped sectors> <highest mapped sector>
4412  */
4413 static void thin_status(struct dm_target *ti, status_type_t type,
4414 			unsigned int status_flags, char *result, unsigned int maxlen)
4415 {
4416 	int r;
4417 	ssize_t sz = 0;
4418 	dm_block_t mapped, highest;
4419 	char buf[BDEVNAME_SIZE];
4420 	struct thin_c *tc = ti->private;
4421 
4422 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4423 		DMEMIT("Fail");
4424 		return;
4425 	}
4426 
4427 	if (!tc->td)
4428 		DMEMIT("-");
4429 	else {
4430 		switch (type) {
4431 		case STATUSTYPE_INFO:
4432 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4433 			if (r) {
4434 				DMERR("dm_thin_get_mapped_count returned %d", r);
4435 				goto err;
4436 			}
4437 
4438 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4439 			if (r < 0) {
4440 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4441 				goto err;
4442 			}
4443 
4444 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4445 			if (r)
4446 				DMEMIT("%llu", ((highest + 1) *
4447 						tc->pool->sectors_per_block) - 1);
4448 			else
4449 				DMEMIT("-");
4450 			break;
4451 
4452 		case STATUSTYPE_TABLE:
4453 			DMEMIT("%s %lu",
4454 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4455 			       (unsigned long) tc->dev_id);
4456 			if (tc->origin_dev)
4457 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4458 			break;
4459 
4460 		case STATUSTYPE_IMA:
4461 			*result = '\0';
4462 			break;
4463 		}
4464 	}
4465 
4466 	return;
4467 
4468 err:
4469 	DMEMIT("Error");
4470 }
4471 
4472 static int thin_iterate_devices(struct dm_target *ti,
4473 				iterate_devices_callout_fn fn, void *data)
4474 {
4475 	sector_t blocks;
4476 	struct thin_c *tc = ti->private;
4477 	struct pool *pool = tc->pool;
4478 
4479 	/*
4480 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4481 	 * we follow a more convoluted path through to the pool's target.
4482 	 */
4483 	if (!pool->ti)
4484 		return 0;	/* nothing is bound */
4485 
4486 	blocks = pool->ti->len;
4487 	(void) sector_div(blocks, pool->sectors_per_block);
4488 	if (blocks)
4489 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4490 
4491 	return 0;
4492 }
4493 
4494 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4495 {
4496 	struct thin_c *tc = ti->private;
4497 	struct pool *pool = tc->pool;
4498 
4499 	if (!pool->pf.discard_enabled)
4500 		return;
4501 
4502 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4503 	limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4504 }
4505 
4506 static struct target_type thin_target = {
4507 	.name = "thin",
4508 	.version = {1, 23, 0},
4509 	.module	= THIS_MODULE,
4510 	.ctr = thin_ctr,
4511 	.dtr = thin_dtr,
4512 	.map = thin_map,
4513 	.end_io = thin_endio,
4514 	.preresume = thin_preresume,
4515 	.presuspend = thin_presuspend,
4516 	.postsuspend = thin_postsuspend,
4517 	.status = thin_status,
4518 	.iterate_devices = thin_iterate_devices,
4519 	.io_hints = thin_io_hints,
4520 };
4521 
4522 /*----------------------------------------------------------------*/
4523 
4524 static int __init dm_thin_init(void)
4525 {
4526 	int r = -ENOMEM;
4527 
4528 	pool_table_init();
4529 
4530 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4531 	if (!_new_mapping_cache)
4532 		return r;
4533 
4534 	r = dm_register_target(&thin_target);
4535 	if (r)
4536 		goto bad_new_mapping_cache;
4537 
4538 	r = dm_register_target(&pool_target);
4539 	if (r)
4540 		goto bad_thin_target;
4541 
4542 	return 0;
4543 
4544 bad_thin_target:
4545 	dm_unregister_target(&thin_target);
4546 bad_new_mapping_cache:
4547 	kmem_cache_destroy(_new_mapping_cache);
4548 
4549 	return r;
4550 }
4551 
4552 static void dm_thin_exit(void)
4553 {
4554 	dm_unregister_target(&thin_target);
4555 	dm_unregister_target(&pool_target);
4556 
4557 	kmem_cache_destroy(_new_mapping_cache);
4558 
4559 	pool_table_exit();
4560 }
4561 
4562 module_init(dm_thin_init);
4563 module_exit(dm_thin_exit);
4564 
4565 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4566 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4567 
4568 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4569 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4570 MODULE_LICENSE("GPL");
4571