1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/rculist.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/rbtree.h> 20 21 #define DM_MSG_PREFIX "thin" 22 23 /* 24 * Tunable constants 25 */ 26 #define ENDIO_HOOK_POOL_SIZE 1024 27 #define MAPPING_POOL_SIZE 1024 28 #define PRISON_CELLS 1024 29 #define COMMIT_PERIOD HZ 30 #define NO_SPACE_TIMEOUT_SECS 60 31 32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 33 34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 35 "A percentage of time allocated for copy on write"); 36 37 /* 38 * The block size of the device holding pool data must be 39 * between 64KB and 1GB. 40 */ 41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 43 44 /* 45 * Device id is restricted to 24 bits. 46 */ 47 #define MAX_DEV_ID ((1 << 24) - 1) 48 49 /* 50 * How do we handle breaking sharing of data blocks? 51 * ================================================= 52 * 53 * We use a standard copy-on-write btree to store the mappings for the 54 * devices (note I'm talking about copy-on-write of the metadata here, not 55 * the data). When you take an internal snapshot you clone the root node 56 * of the origin btree. After this there is no concept of an origin or a 57 * snapshot. They are just two device trees that happen to point to the 58 * same data blocks. 59 * 60 * When we get a write in we decide if it's to a shared data block using 61 * some timestamp magic. If it is, we have to break sharing. 62 * 63 * Let's say we write to a shared block in what was the origin. The 64 * steps are: 65 * 66 * i) plug io further to this physical block. (see bio_prison code). 67 * 68 * ii) quiesce any read io to that shared data block. Obviously 69 * including all devices that share this block. (see dm_deferred_set code) 70 * 71 * iii) copy the data block to a newly allocate block. This step can be 72 * missed out if the io covers the block. (schedule_copy). 73 * 74 * iv) insert the new mapping into the origin's btree 75 * (process_prepared_mapping). This act of inserting breaks some 76 * sharing of btree nodes between the two devices. Breaking sharing only 77 * effects the btree of that specific device. Btrees for the other 78 * devices that share the block never change. The btree for the origin 79 * device as it was after the last commit is untouched, ie. we're using 80 * persistent data structures in the functional programming sense. 81 * 82 * v) unplug io to this physical block, including the io that triggered 83 * the breaking of sharing. 84 * 85 * Steps (ii) and (iii) occur in parallel. 86 * 87 * The metadata _doesn't_ need to be committed before the io continues. We 88 * get away with this because the io is always written to a _new_ block. 89 * If there's a crash, then: 90 * 91 * - The origin mapping will point to the old origin block (the shared 92 * one). This will contain the data as it was before the io that triggered 93 * the breaking of sharing came in. 94 * 95 * - The snap mapping still points to the old block. As it would after 96 * the commit. 97 * 98 * The downside of this scheme is the timestamp magic isn't perfect, and 99 * will continue to think that data block in the snapshot device is shared 100 * even after the write to the origin has broken sharing. I suspect data 101 * blocks will typically be shared by many different devices, so we're 102 * breaking sharing n + 1 times, rather than n, where n is the number of 103 * devices that reference this data block. At the moment I think the 104 * benefits far, far outweigh the disadvantages. 105 */ 106 107 /*----------------------------------------------------------------*/ 108 109 /* 110 * Key building. 111 */ 112 static void build_data_key(struct dm_thin_device *td, 113 dm_block_t b, struct dm_cell_key *key) 114 { 115 key->virtual = 0; 116 key->dev = dm_thin_dev_id(td); 117 key->block = b; 118 } 119 120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 121 struct dm_cell_key *key) 122 { 123 key->virtual = 1; 124 key->dev = dm_thin_dev_id(td); 125 key->block = b; 126 } 127 128 /*----------------------------------------------------------------*/ 129 130 /* 131 * A pool device ties together a metadata device and a data device. It 132 * also provides the interface for creating and destroying internal 133 * devices. 134 */ 135 struct dm_thin_new_mapping; 136 137 /* 138 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 139 */ 140 enum pool_mode { 141 PM_WRITE, /* metadata may be changed */ 142 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 143 PM_READ_ONLY, /* metadata may not be changed */ 144 PM_FAIL, /* all I/O fails */ 145 }; 146 147 struct pool_features { 148 enum pool_mode mode; 149 150 bool zero_new_blocks:1; 151 bool discard_enabled:1; 152 bool discard_passdown:1; 153 bool error_if_no_space:1; 154 }; 155 156 struct thin_c; 157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 159 160 struct pool { 161 struct list_head list; 162 struct dm_target *ti; /* Only set if a pool target is bound */ 163 164 struct mapped_device *pool_md; 165 struct block_device *md_dev; 166 struct dm_pool_metadata *pmd; 167 168 dm_block_t low_water_blocks; 169 uint32_t sectors_per_block; 170 int sectors_per_block_shift; 171 172 struct pool_features pf; 173 bool low_water_triggered:1; /* A dm event has been sent */ 174 175 struct dm_bio_prison *prison; 176 struct dm_kcopyd_client *copier; 177 178 struct workqueue_struct *wq; 179 struct work_struct worker; 180 struct delayed_work waker; 181 struct delayed_work no_space_timeout; 182 183 unsigned long last_commit_jiffies; 184 unsigned ref_count; 185 186 spinlock_t lock; 187 struct bio_list deferred_flush_bios; 188 struct list_head prepared_mappings; 189 struct list_head prepared_discards; 190 struct list_head active_thins; 191 192 struct dm_deferred_set *shared_read_ds; 193 struct dm_deferred_set *all_io_ds; 194 195 struct dm_thin_new_mapping *next_mapping; 196 mempool_t *mapping_pool; 197 198 process_bio_fn process_bio; 199 process_bio_fn process_discard; 200 201 process_mapping_fn process_prepared_mapping; 202 process_mapping_fn process_prepared_discard; 203 }; 204 205 static enum pool_mode get_pool_mode(struct pool *pool); 206 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 207 208 /* 209 * Target context for a pool. 210 */ 211 struct pool_c { 212 struct dm_target *ti; 213 struct pool *pool; 214 struct dm_dev *data_dev; 215 struct dm_dev *metadata_dev; 216 struct dm_target_callbacks callbacks; 217 218 dm_block_t low_water_blocks; 219 struct pool_features requested_pf; /* Features requested during table load */ 220 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 221 }; 222 223 /* 224 * Target context for a thin. 225 */ 226 struct thin_c { 227 struct list_head list; 228 struct dm_dev *pool_dev; 229 struct dm_dev *origin_dev; 230 dm_thin_id dev_id; 231 232 struct pool *pool; 233 struct dm_thin_device *td; 234 bool requeue_mode:1; 235 spinlock_t lock; 236 struct bio_list deferred_bio_list; 237 struct bio_list retry_on_resume_list; 238 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 239 240 /* 241 * Ensures the thin is not destroyed until the worker has finished 242 * iterating the active_thins list. 243 */ 244 atomic_t refcount; 245 struct completion can_destroy; 246 }; 247 248 /*----------------------------------------------------------------*/ 249 250 /* 251 * wake_worker() is used when new work is queued and when pool_resume is 252 * ready to continue deferred IO processing. 253 */ 254 static void wake_worker(struct pool *pool) 255 { 256 queue_work(pool->wq, &pool->worker); 257 } 258 259 /*----------------------------------------------------------------*/ 260 261 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 262 struct dm_bio_prison_cell **cell_result) 263 { 264 int r; 265 struct dm_bio_prison_cell *cell_prealloc; 266 267 /* 268 * Allocate a cell from the prison's mempool. 269 * This might block but it can't fail. 270 */ 271 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 272 273 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 274 if (r) 275 /* 276 * We reused an old cell; we can get rid of 277 * the new one. 278 */ 279 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 280 281 return r; 282 } 283 284 static void cell_release(struct pool *pool, 285 struct dm_bio_prison_cell *cell, 286 struct bio_list *bios) 287 { 288 dm_cell_release(pool->prison, cell, bios); 289 dm_bio_prison_free_cell(pool->prison, cell); 290 } 291 292 static void cell_release_no_holder(struct pool *pool, 293 struct dm_bio_prison_cell *cell, 294 struct bio_list *bios) 295 { 296 dm_cell_release_no_holder(pool->prison, cell, bios); 297 dm_bio_prison_free_cell(pool->prison, cell); 298 } 299 300 static void cell_defer_no_holder_no_free(struct thin_c *tc, 301 struct dm_bio_prison_cell *cell) 302 { 303 struct pool *pool = tc->pool; 304 unsigned long flags; 305 306 spin_lock_irqsave(&tc->lock, flags); 307 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list); 308 spin_unlock_irqrestore(&tc->lock, flags); 309 310 wake_worker(pool); 311 } 312 313 static void cell_error_with_code(struct pool *pool, 314 struct dm_bio_prison_cell *cell, int error_code) 315 { 316 dm_cell_error(pool->prison, cell, error_code); 317 dm_bio_prison_free_cell(pool->prison, cell); 318 } 319 320 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 321 { 322 cell_error_with_code(pool, cell, -EIO); 323 } 324 325 /*----------------------------------------------------------------*/ 326 327 /* 328 * A global list of pools that uses a struct mapped_device as a key. 329 */ 330 static struct dm_thin_pool_table { 331 struct mutex mutex; 332 struct list_head pools; 333 } dm_thin_pool_table; 334 335 static void pool_table_init(void) 336 { 337 mutex_init(&dm_thin_pool_table.mutex); 338 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 339 } 340 341 static void __pool_table_insert(struct pool *pool) 342 { 343 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 344 list_add(&pool->list, &dm_thin_pool_table.pools); 345 } 346 347 static void __pool_table_remove(struct pool *pool) 348 { 349 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 350 list_del(&pool->list); 351 } 352 353 static struct pool *__pool_table_lookup(struct mapped_device *md) 354 { 355 struct pool *pool = NULL, *tmp; 356 357 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 358 359 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 360 if (tmp->pool_md == md) { 361 pool = tmp; 362 break; 363 } 364 } 365 366 return pool; 367 } 368 369 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 370 { 371 struct pool *pool = NULL, *tmp; 372 373 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 374 375 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 376 if (tmp->md_dev == md_dev) { 377 pool = tmp; 378 break; 379 } 380 } 381 382 return pool; 383 } 384 385 /*----------------------------------------------------------------*/ 386 387 struct dm_thin_endio_hook { 388 struct thin_c *tc; 389 struct dm_deferred_entry *shared_read_entry; 390 struct dm_deferred_entry *all_io_entry; 391 struct dm_thin_new_mapping *overwrite_mapping; 392 struct rb_node rb_node; 393 }; 394 395 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master) 396 { 397 struct bio *bio; 398 struct bio_list bios; 399 unsigned long flags; 400 401 bio_list_init(&bios); 402 403 spin_lock_irqsave(&tc->lock, flags); 404 bio_list_merge(&bios, master); 405 bio_list_init(master); 406 spin_unlock_irqrestore(&tc->lock, flags); 407 408 while ((bio = bio_list_pop(&bios))) 409 bio_endio(bio, DM_ENDIO_REQUEUE); 410 } 411 412 static void requeue_io(struct thin_c *tc) 413 { 414 requeue_bio_list(tc, &tc->deferred_bio_list); 415 requeue_bio_list(tc, &tc->retry_on_resume_list); 416 } 417 418 static void error_thin_retry_list(struct thin_c *tc) 419 { 420 struct bio *bio; 421 unsigned long flags; 422 struct bio_list bios; 423 424 bio_list_init(&bios); 425 426 spin_lock_irqsave(&tc->lock, flags); 427 bio_list_merge(&bios, &tc->retry_on_resume_list); 428 bio_list_init(&tc->retry_on_resume_list); 429 spin_unlock_irqrestore(&tc->lock, flags); 430 431 while ((bio = bio_list_pop(&bios))) 432 bio_io_error(bio); 433 } 434 435 static void error_retry_list(struct pool *pool) 436 { 437 struct thin_c *tc; 438 439 rcu_read_lock(); 440 list_for_each_entry_rcu(tc, &pool->active_thins, list) 441 error_thin_retry_list(tc); 442 rcu_read_unlock(); 443 } 444 445 /* 446 * This section of code contains the logic for processing a thin device's IO. 447 * Much of the code depends on pool object resources (lists, workqueues, etc) 448 * but most is exclusively called from the thin target rather than the thin-pool 449 * target. 450 */ 451 452 static bool block_size_is_power_of_two(struct pool *pool) 453 { 454 return pool->sectors_per_block_shift >= 0; 455 } 456 457 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 458 { 459 struct pool *pool = tc->pool; 460 sector_t block_nr = bio->bi_iter.bi_sector; 461 462 if (block_size_is_power_of_two(pool)) 463 block_nr >>= pool->sectors_per_block_shift; 464 else 465 (void) sector_div(block_nr, pool->sectors_per_block); 466 467 return block_nr; 468 } 469 470 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 471 { 472 struct pool *pool = tc->pool; 473 sector_t bi_sector = bio->bi_iter.bi_sector; 474 475 bio->bi_bdev = tc->pool_dev->bdev; 476 if (block_size_is_power_of_two(pool)) 477 bio->bi_iter.bi_sector = 478 (block << pool->sectors_per_block_shift) | 479 (bi_sector & (pool->sectors_per_block - 1)); 480 else 481 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 482 sector_div(bi_sector, pool->sectors_per_block); 483 } 484 485 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 486 { 487 bio->bi_bdev = tc->origin_dev->bdev; 488 } 489 490 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 491 { 492 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 493 dm_thin_changed_this_transaction(tc->td); 494 } 495 496 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 497 { 498 struct dm_thin_endio_hook *h; 499 500 if (bio->bi_rw & REQ_DISCARD) 501 return; 502 503 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 504 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 505 } 506 507 static void issue(struct thin_c *tc, struct bio *bio) 508 { 509 struct pool *pool = tc->pool; 510 unsigned long flags; 511 512 if (!bio_triggers_commit(tc, bio)) { 513 generic_make_request(bio); 514 return; 515 } 516 517 /* 518 * Complete bio with an error if earlier I/O caused changes to 519 * the metadata that can't be committed e.g, due to I/O errors 520 * on the metadata device. 521 */ 522 if (dm_thin_aborted_changes(tc->td)) { 523 bio_io_error(bio); 524 return; 525 } 526 527 /* 528 * Batch together any bios that trigger commits and then issue a 529 * single commit for them in process_deferred_bios(). 530 */ 531 spin_lock_irqsave(&pool->lock, flags); 532 bio_list_add(&pool->deferred_flush_bios, bio); 533 spin_unlock_irqrestore(&pool->lock, flags); 534 } 535 536 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 537 { 538 remap_to_origin(tc, bio); 539 issue(tc, bio); 540 } 541 542 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 543 dm_block_t block) 544 { 545 remap(tc, bio, block); 546 issue(tc, bio); 547 } 548 549 /*----------------------------------------------------------------*/ 550 551 /* 552 * Bio endio functions. 553 */ 554 struct dm_thin_new_mapping { 555 struct list_head list; 556 557 bool quiesced:1; 558 bool prepared:1; 559 bool pass_discard:1; 560 bool definitely_not_shared:1; 561 562 int err; 563 struct thin_c *tc; 564 dm_block_t virt_block; 565 dm_block_t data_block; 566 struct dm_bio_prison_cell *cell, *cell2; 567 568 /* 569 * If the bio covers the whole area of a block then we can avoid 570 * zeroing or copying. Instead this bio is hooked. The bio will 571 * still be in the cell, so care has to be taken to avoid issuing 572 * the bio twice. 573 */ 574 struct bio *bio; 575 bio_end_io_t *saved_bi_end_io; 576 }; 577 578 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 579 { 580 struct pool *pool = m->tc->pool; 581 582 if (m->quiesced && m->prepared) { 583 list_add_tail(&m->list, &pool->prepared_mappings); 584 wake_worker(pool); 585 } 586 } 587 588 static void copy_complete(int read_err, unsigned long write_err, void *context) 589 { 590 unsigned long flags; 591 struct dm_thin_new_mapping *m = context; 592 struct pool *pool = m->tc->pool; 593 594 m->err = read_err || write_err ? -EIO : 0; 595 596 spin_lock_irqsave(&pool->lock, flags); 597 m->prepared = true; 598 __maybe_add_mapping(m); 599 spin_unlock_irqrestore(&pool->lock, flags); 600 } 601 602 static void overwrite_endio(struct bio *bio, int err) 603 { 604 unsigned long flags; 605 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 606 struct dm_thin_new_mapping *m = h->overwrite_mapping; 607 struct pool *pool = m->tc->pool; 608 609 m->err = err; 610 611 spin_lock_irqsave(&pool->lock, flags); 612 m->prepared = true; 613 __maybe_add_mapping(m); 614 spin_unlock_irqrestore(&pool->lock, flags); 615 } 616 617 /*----------------------------------------------------------------*/ 618 619 /* 620 * Workqueue. 621 */ 622 623 /* 624 * Prepared mapping jobs. 625 */ 626 627 /* 628 * This sends the bios in the cell back to the deferred_bios list. 629 */ 630 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 631 { 632 struct pool *pool = tc->pool; 633 unsigned long flags; 634 635 spin_lock_irqsave(&tc->lock, flags); 636 cell_release(pool, cell, &tc->deferred_bio_list); 637 spin_unlock_irqrestore(&tc->lock, flags); 638 639 wake_worker(pool); 640 } 641 642 /* 643 * Same as cell_defer above, except it omits the original holder of the cell. 644 */ 645 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 646 { 647 struct pool *pool = tc->pool; 648 unsigned long flags; 649 650 spin_lock_irqsave(&tc->lock, flags); 651 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 652 spin_unlock_irqrestore(&tc->lock, flags); 653 654 wake_worker(pool); 655 } 656 657 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 658 { 659 if (m->bio) { 660 m->bio->bi_end_io = m->saved_bi_end_io; 661 atomic_inc(&m->bio->bi_remaining); 662 } 663 cell_error(m->tc->pool, m->cell); 664 list_del(&m->list); 665 mempool_free(m, m->tc->pool->mapping_pool); 666 } 667 668 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 669 { 670 struct thin_c *tc = m->tc; 671 struct pool *pool = tc->pool; 672 struct bio *bio; 673 int r; 674 675 bio = m->bio; 676 if (bio) { 677 bio->bi_end_io = m->saved_bi_end_io; 678 atomic_inc(&bio->bi_remaining); 679 } 680 681 if (m->err) { 682 cell_error(pool, m->cell); 683 goto out; 684 } 685 686 /* 687 * Commit the prepared block into the mapping btree. 688 * Any I/O for this block arriving after this point will get 689 * remapped to it directly. 690 */ 691 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 692 if (r) { 693 metadata_operation_failed(pool, "dm_thin_insert_block", r); 694 cell_error(pool, m->cell); 695 goto out; 696 } 697 698 /* 699 * Release any bios held while the block was being provisioned. 700 * If we are processing a write bio that completely covers the block, 701 * we already processed it so can ignore it now when processing 702 * the bios in the cell. 703 */ 704 if (bio) { 705 cell_defer_no_holder(tc, m->cell); 706 bio_endio(bio, 0); 707 } else 708 cell_defer(tc, m->cell); 709 710 out: 711 list_del(&m->list); 712 mempool_free(m, pool->mapping_pool); 713 } 714 715 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 716 { 717 struct thin_c *tc = m->tc; 718 719 bio_io_error(m->bio); 720 cell_defer_no_holder(tc, m->cell); 721 cell_defer_no_holder(tc, m->cell2); 722 mempool_free(m, tc->pool->mapping_pool); 723 } 724 725 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 726 { 727 struct thin_c *tc = m->tc; 728 729 inc_all_io_entry(tc->pool, m->bio); 730 cell_defer_no_holder(tc, m->cell); 731 cell_defer_no_holder(tc, m->cell2); 732 733 if (m->pass_discard) 734 if (m->definitely_not_shared) 735 remap_and_issue(tc, m->bio, m->data_block); 736 else { 737 bool used = false; 738 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 739 bio_endio(m->bio, 0); 740 else 741 remap_and_issue(tc, m->bio, m->data_block); 742 } 743 else 744 bio_endio(m->bio, 0); 745 746 mempool_free(m, tc->pool->mapping_pool); 747 } 748 749 static void process_prepared_discard(struct dm_thin_new_mapping *m) 750 { 751 int r; 752 struct thin_c *tc = m->tc; 753 754 r = dm_thin_remove_block(tc->td, m->virt_block); 755 if (r) 756 DMERR_LIMIT("dm_thin_remove_block() failed"); 757 758 process_prepared_discard_passdown(m); 759 } 760 761 static void process_prepared(struct pool *pool, struct list_head *head, 762 process_mapping_fn *fn) 763 { 764 unsigned long flags; 765 struct list_head maps; 766 struct dm_thin_new_mapping *m, *tmp; 767 768 INIT_LIST_HEAD(&maps); 769 spin_lock_irqsave(&pool->lock, flags); 770 list_splice_init(head, &maps); 771 spin_unlock_irqrestore(&pool->lock, flags); 772 773 list_for_each_entry_safe(m, tmp, &maps, list) 774 (*fn)(m); 775 } 776 777 /* 778 * Deferred bio jobs. 779 */ 780 static int io_overlaps_block(struct pool *pool, struct bio *bio) 781 { 782 return bio->bi_iter.bi_size == 783 (pool->sectors_per_block << SECTOR_SHIFT); 784 } 785 786 static int io_overwrites_block(struct pool *pool, struct bio *bio) 787 { 788 return (bio_data_dir(bio) == WRITE) && 789 io_overlaps_block(pool, bio); 790 } 791 792 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 793 bio_end_io_t *fn) 794 { 795 *save = bio->bi_end_io; 796 bio->bi_end_io = fn; 797 } 798 799 static int ensure_next_mapping(struct pool *pool) 800 { 801 if (pool->next_mapping) 802 return 0; 803 804 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 805 806 return pool->next_mapping ? 0 : -ENOMEM; 807 } 808 809 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 810 { 811 struct dm_thin_new_mapping *m = pool->next_mapping; 812 813 BUG_ON(!pool->next_mapping); 814 815 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 816 INIT_LIST_HEAD(&m->list); 817 m->bio = NULL; 818 819 pool->next_mapping = NULL; 820 821 return m; 822 } 823 824 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 825 struct dm_dev *origin, dm_block_t data_origin, 826 dm_block_t data_dest, 827 struct dm_bio_prison_cell *cell, struct bio *bio) 828 { 829 int r; 830 struct pool *pool = tc->pool; 831 struct dm_thin_new_mapping *m = get_next_mapping(pool); 832 833 m->tc = tc; 834 m->virt_block = virt_block; 835 m->data_block = data_dest; 836 m->cell = cell; 837 838 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 839 m->quiesced = true; 840 841 /* 842 * IO to pool_dev remaps to the pool target's data_dev. 843 * 844 * If the whole block of data is being overwritten, we can issue the 845 * bio immediately. Otherwise we use kcopyd to clone the data first. 846 */ 847 if (io_overwrites_block(pool, bio)) { 848 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 849 850 h->overwrite_mapping = m; 851 m->bio = bio; 852 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 853 inc_all_io_entry(pool, bio); 854 remap_and_issue(tc, bio, data_dest); 855 } else { 856 struct dm_io_region from, to; 857 858 from.bdev = origin->bdev; 859 from.sector = data_origin * pool->sectors_per_block; 860 from.count = pool->sectors_per_block; 861 862 to.bdev = tc->pool_dev->bdev; 863 to.sector = data_dest * pool->sectors_per_block; 864 to.count = pool->sectors_per_block; 865 866 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 867 0, copy_complete, m); 868 if (r < 0) { 869 mempool_free(m, pool->mapping_pool); 870 DMERR_LIMIT("dm_kcopyd_copy() failed"); 871 cell_error(pool, cell); 872 } 873 } 874 } 875 876 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 877 dm_block_t data_origin, dm_block_t data_dest, 878 struct dm_bio_prison_cell *cell, struct bio *bio) 879 { 880 schedule_copy(tc, virt_block, tc->pool_dev, 881 data_origin, data_dest, cell, bio); 882 } 883 884 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 885 dm_block_t data_dest, 886 struct dm_bio_prison_cell *cell, struct bio *bio) 887 { 888 schedule_copy(tc, virt_block, tc->origin_dev, 889 virt_block, data_dest, cell, bio); 890 } 891 892 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 893 dm_block_t data_block, struct dm_bio_prison_cell *cell, 894 struct bio *bio) 895 { 896 struct pool *pool = tc->pool; 897 struct dm_thin_new_mapping *m = get_next_mapping(pool); 898 899 m->quiesced = true; 900 m->prepared = false; 901 m->tc = tc; 902 m->virt_block = virt_block; 903 m->data_block = data_block; 904 m->cell = cell; 905 906 /* 907 * If the whole block of data is being overwritten or we are not 908 * zeroing pre-existing data, we can issue the bio immediately. 909 * Otherwise we use kcopyd to zero the data first. 910 */ 911 if (!pool->pf.zero_new_blocks) 912 process_prepared_mapping(m); 913 914 else if (io_overwrites_block(pool, bio)) { 915 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 916 917 h->overwrite_mapping = m; 918 m->bio = bio; 919 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 920 inc_all_io_entry(pool, bio); 921 remap_and_issue(tc, bio, data_block); 922 } else { 923 int r; 924 struct dm_io_region to; 925 926 to.bdev = tc->pool_dev->bdev; 927 to.sector = data_block * pool->sectors_per_block; 928 to.count = pool->sectors_per_block; 929 930 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 931 if (r < 0) { 932 mempool_free(m, pool->mapping_pool); 933 DMERR_LIMIT("dm_kcopyd_zero() failed"); 934 cell_error(pool, cell); 935 } 936 } 937 } 938 939 /* 940 * A non-zero return indicates read_only or fail_io mode. 941 * Many callers don't care about the return value. 942 */ 943 static int commit(struct pool *pool) 944 { 945 int r; 946 947 if (get_pool_mode(pool) >= PM_READ_ONLY) 948 return -EINVAL; 949 950 r = dm_pool_commit_metadata(pool->pmd); 951 if (r) 952 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 953 954 return r; 955 } 956 957 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 958 { 959 unsigned long flags; 960 961 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 962 DMWARN("%s: reached low water mark for data device: sending event.", 963 dm_device_name(pool->pool_md)); 964 spin_lock_irqsave(&pool->lock, flags); 965 pool->low_water_triggered = true; 966 spin_unlock_irqrestore(&pool->lock, flags); 967 dm_table_event(pool->ti->table); 968 } 969 } 970 971 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 972 973 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 974 { 975 int r; 976 dm_block_t free_blocks; 977 struct pool *pool = tc->pool; 978 979 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 980 return -EINVAL; 981 982 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 983 if (r) { 984 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 985 return r; 986 } 987 988 check_low_water_mark(pool, free_blocks); 989 990 if (!free_blocks) { 991 /* 992 * Try to commit to see if that will free up some 993 * more space. 994 */ 995 r = commit(pool); 996 if (r) 997 return r; 998 999 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1000 if (r) { 1001 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1002 return r; 1003 } 1004 1005 if (!free_blocks) { 1006 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1007 return -ENOSPC; 1008 } 1009 } 1010 1011 r = dm_pool_alloc_data_block(pool->pmd, result); 1012 if (r) { 1013 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1014 return r; 1015 } 1016 1017 return 0; 1018 } 1019 1020 /* 1021 * If we have run out of space, queue bios until the device is 1022 * resumed, presumably after having been reloaded with more space. 1023 */ 1024 static void retry_on_resume(struct bio *bio) 1025 { 1026 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1027 struct thin_c *tc = h->tc; 1028 unsigned long flags; 1029 1030 spin_lock_irqsave(&tc->lock, flags); 1031 bio_list_add(&tc->retry_on_resume_list, bio); 1032 spin_unlock_irqrestore(&tc->lock, flags); 1033 } 1034 1035 static int should_error_unserviceable_bio(struct pool *pool) 1036 { 1037 enum pool_mode m = get_pool_mode(pool); 1038 1039 switch (m) { 1040 case PM_WRITE: 1041 /* Shouldn't get here */ 1042 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1043 return -EIO; 1044 1045 case PM_OUT_OF_DATA_SPACE: 1046 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1047 1048 case PM_READ_ONLY: 1049 case PM_FAIL: 1050 return -EIO; 1051 default: 1052 /* Shouldn't get here */ 1053 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1054 return -EIO; 1055 } 1056 } 1057 1058 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1059 { 1060 int error = should_error_unserviceable_bio(pool); 1061 1062 if (error) 1063 bio_endio(bio, error); 1064 else 1065 retry_on_resume(bio); 1066 } 1067 1068 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1069 { 1070 struct bio *bio; 1071 struct bio_list bios; 1072 int error; 1073 1074 error = should_error_unserviceable_bio(pool); 1075 if (error) { 1076 cell_error_with_code(pool, cell, error); 1077 return; 1078 } 1079 1080 bio_list_init(&bios); 1081 cell_release(pool, cell, &bios); 1082 1083 error = should_error_unserviceable_bio(pool); 1084 if (error) 1085 while ((bio = bio_list_pop(&bios))) 1086 bio_endio(bio, error); 1087 else 1088 while ((bio = bio_list_pop(&bios))) 1089 retry_on_resume(bio); 1090 } 1091 1092 static void process_discard(struct thin_c *tc, struct bio *bio) 1093 { 1094 int r; 1095 unsigned long flags; 1096 struct pool *pool = tc->pool; 1097 struct dm_bio_prison_cell *cell, *cell2; 1098 struct dm_cell_key key, key2; 1099 dm_block_t block = get_bio_block(tc, bio); 1100 struct dm_thin_lookup_result lookup_result; 1101 struct dm_thin_new_mapping *m; 1102 1103 build_virtual_key(tc->td, block, &key); 1104 if (bio_detain(tc->pool, &key, bio, &cell)) 1105 return; 1106 1107 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1108 switch (r) { 1109 case 0: 1110 /* 1111 * Check nobody is fiddling with this pool block. This can 1112 * happen if someone's in the process of breaking sharing 1113 * on this block. 1114 */ 1115 build_data_key(tc->td, lookup_result.block, &key2); 1116 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1117 cell_defer_no_holder(tc, cell); 1118 break; 1119 } 1120 1121 if (io_overlaps_block(pool, bio)) { 1122 /* 1123 * IO may still be going to the destination block. We must 1124 * quiesce before we can do the removal. 1125 */ 1126 m = get_next_mapping(pool); 1127 m->tc = tc; 1128 m->pass_discard = pool->pf.discard_passdown; 1129 m->definitely_not_shared = !lookup_result.shared; 1130 m->virt_block = block; 1131 m->data_block = lookup_result.block; 1132 m->cell = cell; 1133 m->cell2 = cell2; 1134 m->bio = bio; 1135 1136 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1137 spin_lock_irqsave(&pool->lock, flags); 1138 list_add_tail(&m->list, &pool->prepared_discards); 1139 spin_unlock_irqrestore(&pool->lock, flags); 1140 wake_worker(pool); 1141 } 1142 } else { 1143 inc_all_io_entry(pool, bio); 1144 cell_defer_no_holder(tc, cell); 1145 cell_defer_no_holder(tc, cell2); 1146 1147 /* 1148 * The DM core makes sure that the discard doesn't span 1149 * a block boundary. So we submit the discard of a 1150 * partial block appropriately. 1151 */ 1152 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1153 remap_and_issue(tc, bio, lookup_result.block); 1154 else 1155 bio_endio(bio, 0); 1156 } 1157 break; 1158 1159 case -ENODATA: 1160 /* 1161 * It isn't provisioned, just forget it. 1162 */ 1163 cell_defer_no_holder(tc, cell); 1164 bio_endio(bio, 0); 1165 break; 1166 1167 default: 1168 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1169 __func__, r); 1170 cell_defer_no_holder(tc, cell); 1171 bio_io_error(bio); 1172 break; 1173 } 1174 } 1175 1176 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1177 struct dm_cell_key *key, 1178 struct dm_thin_lookup_result *lookup_result, 1179 struct dm_bio_prison_cell *cell) 1180 { 1181 int r; 1182 dm_block_t data_block; 1183 struct pool *pool = tc->pool; 1184 1185 r = alloc_data_block(tc, &data_block); 1186 switch (r) { 1187 case 0: 1188 schedule_internal_copy(tc, block, lookup_result->block, 1189 data_block, cell, bio); 1190 break; 1191 1192 case -ENOSPC: 1193 retry_bios_on_resume(pool, cell); 1194 break; 1195 1196 default: 1197 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1198 __func__, r); 1199 cell_error(pool, cell); 1200 break; 1201 } 1202 } 1203 1204 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1205 dm_block_t block, 1206 struct dm_thin_lookup_result *lookup_result) 1207 { 1208 struct dm_bio_prison_cell *cell; 1209 struct pool *pool = tc->pool; 1210 struct dm_cell_key key; 1211 1212 /* 1213 * If cell is already occupied, then sharing is already in the process 1214 * of being broken so we have nothing further to do here. 1215 */ 1216 build_data_key(tc->td, lookup_result->block, &key); 1217 if (bio_detain(pool, &key, bio, &cell)) 1218 return; 1219 1220 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) 1221 break_sharing(tc, bio, block, &key, lookup_result, cell); 1222 else { 1223 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1224 1225 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1226 inc_all_io_entry(pool, bio); 1227 cell_defer_no_holder(tc, cell); 1228 1229 remap_and_issue(tc, bio, lookup_result->block); 1230 } 1231 } 1232 1233 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1234 struct dm_bio_prison_cell *cell) 1235 { 1236 int r; 1237 dm_block_t data_block; 1238 struct pool *pool = tc->pool; 1239 1240 /* 1241 * Remap empty bios (flushes) immediately, without provisioning. 1242 */ 1243 if (!bio->bi_iter.bi_size) { 1244 inc_all_io_entry(pool, bio); 1245 cell_defer_no_holder(tc, cell); 1246 1247 remap_and_issue(tc, bio, 0); 1248 return; 1249 } 1250 1251 /* 1252 * Fill read bios with zeroes and complete them immediately. 1253 */ 1254 if (bio_data_dir(bio) == READ) { 1255 zero_fill_bio(bio); 1256 cell_defer_no_holder(tc, cell); 1257 bio_endio(bio, 0); 1258 return; 1259 } 1260 1261 r = alloc_data_block(tc, &data_block); 1262 switch (r) { 1263 case 0: 1264 if (tc->origin_dev) 1265 schedule_external_copy(tc, block, data_block, cell, bio); 1266 else 1267 schedule_zero(tc, block, data_block, cell, bio); 1268 break; 1269 1270 case -ENOSPC: 1271 retry_bios_on_resume(pool, cell); 1272 break; 1273 1274 default: 1275 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1276 __func__, r); 1277 cell_error(pool, cell); 1278 break; 1279 } 1280 } 1281 1282 static void process_bio(struct thin_c *tc, struct bio *bio) 1283 { 1284 int r; 1285 struct pool *pool = tc->pool; 1286 dm_block_t block = get_bio_block(tc, bio); 1287 struct dm_bio_prison_cell *cell; 1288 struct dm_cell_key key; 1289 struct dm_thin_lookup_result lookup_result; 1290 1291 /* 1292 * If cell is already occupied, then the block is already 1293 * being provisioned so we have nothing further to do here. 1294 */ 1295 build_virtual_key(tc->td, block, &key); 1296 if (bio_detain(pool, &key, bio, &cell)) 1297 return; 1298 1299 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1300 switch (r) { 1301 case 0: 1302 if (lookup_result.shared) { 1303 process_shared_bio(tc, bio, block, &lookup_result); 1304 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1305 } else { 1306 inc_all_io_entry(pool, bio); 1307 cell_defer_no_holder(tc, cell); 1308 1309 remap_and_issue(tc, bio, lookup_result.block); 1310 } 1311 break; 1312 1313 case -ENODATA: 1314 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1315 inc_all_io_entry(pool, bio); 1316 cell_defer_no_holder(tc, cell); 1317 1318 remap_to_origin_and_issue(tc, bio); 1319 } else 1320 provision_block(tc, bio, block, cell); 1321 break; 1322 1323 default: 1324 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1325 __func__, r); 1326 cell_defer_no_holder(tc, cell); 1327 bio_io_error(bio); 1328 break; 1329 } 1330 } 1331 1332 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1333 { 1334 int r; 1335 int rw = bio_data_dir(bio); 1336 dm_block_t block = get_bio_block(tc, bio); 1337 struct dm_thin_lookup_result lookup_result; 1338 1339 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1340 switch (r) { 1341 case 0: 1342 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) 1343 handle_unserviceable_bio(tc->pool, bio); 1344 else { 1345 inc_all_io_entry(tc->pool, bio); 1346 remap_and_issue(tc, bio, lookup_result.block); 1347 } 1348 break; 1349 1350 case -ENODATA: 1351 if (rw != READ) { 1352 handle_unserviceable_bio(tc->pool, bio); 1353 break; 1354 } 1355 1356 if (tc->origin_dev) { 1357 inc_all_io_entry(tc->pool, bio); 1358 remap_to_origin_and_issue(tc, bio); 1359 break; 1360 } 1361 1362 zero_fill_bio(bio); 1363 bio_endio(bio, 0); 1364 break; 1365 1366 default: 1367 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1368 __func__, r); 1369 bio_io_error(bio); 1370 break; 1371 } 1372 } 1373 1374 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1375 { 1376 bio_endio(bio, 0); 1377 } 1378 1379 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1380 { 1381 bio_io_error(bio); 1382 } 1383 1384 /* 1385 * FIXME: should we also commit due to size of transaction, measured in 1386 * metadata blocks? 1387 */ 1388 static int need_commit_due_to_time(struct pool *pool) 1389 { 1390 return jiffies < pool->last_commit_jiffies || 1391 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1392 } 1393 1394 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1395 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1396 1397 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1398 { 1399 struct rb_node **rbp, *parent; 1400 struct dm_thin_endio_hook *pbd; 1401 sector_t bi_sector = bio->bi_iter.bi_sector; 1402 1403 rbp = &tc->sort_bio_list.rb_node; 1404 parent = NULL; 1405 while (*rbp) { 1406 parent = *rbp; 1407 pbd = thin_pbd(parent); 1408 1409 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1410 rbp = &(*rbp)->rb_left; 1411 else 1412 rbp = &(*rbp)->rb_right; 1413 } 1414 1415 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1416 rb_link_node(&pbd->rb_node, parent, rbp); 1417 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1418 } 1419 1420 static void __extract_sorted_bios(struct thin_c *tc) 1421 { 1422 struct rb_node *node; 1423 struct dm_thin_endio_hook *pbd; 1424 struct bio *bio; 1425 1426 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1427 pbd = thin_pbd(node); 1428 bio = thin_bio(pbd); 1429 1430 bio_list_add(&tc->deferred_bio_list, bio); 1431 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1432 } 1433 1434 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1435 } 1436 1437 static void __sort_thin_deferred_bios(struct thin_c *tc) 1438 { 1439 struct bio *bio; 1440 struct bio_list bios; 1441 1442 bio_list_init(&bios); 1443 bio_list_merge(&bios, &tc->deferred_bio_list); 1444 bio_list_init(&tc->deferred_bio_list); 1445 1446 /* Sort deferred_bio_list using rb-tree */ 1447 while ((bio = bio_list_pop(&bios))) 1448 __thin_bio_rb_add(tc, bio); 1449 1450 /* 1451 * Transfer the sorted bios in sort_bio_list back to 1452 * deferred_bio_list to allow lockless submission of 1453 * all bios. 1454 */ 1455 __extract_sorted_bios(tc); 1456 } 1457 1458 static void process_thin_deferred_bios(struct thin_c *tc) 1459 { 1460 struct pool *pool = tc->pool; 1461 unsigned long flags; 1462 struct bio *bio; 1463 struct bio_list bios; 1464 struct blk_plug plug; 1465 1466 if (tc->requeue_mode) { 1467 requeue_bio_list(tc, &tc->deferred_bio_list); 1468 return; 1469 } 1470 1471 bio_list_init(&bios); 1472 1473 spin_lock_irqsave(&tc->lock, flags); 1474 1475 if (bio_list_empty(&tc->deferred_bio_list)) { 1476 spin_unlock_irqrestore(&tc->lock, flags); 1477 return; 1478 } 1479 1480 __sort_thin_deferred_bios(tc); 1481 1482 bio_list_merge(&bios, &tc->deferred_bio_list); 1483 bio_list_init(&tc->deferred_bio_list); 1484 1485 spin_unlock_irqrestore(&tc->lock, flags); 1486 1487 blk_start_plug(&plug); 1488 while ((bio = bio_list_pop(&bios))) { 1489 /* 1490 * If we've got no free new_mapping structs, and processing 1491 * this bio might require one, we pause until there are some 1492 * prepared mappings to process. 1493 */ 1494 if (ensure_next_mapping(pool)) { 1495 spin_lock_irqsave(&tc->lock, flags); 1496 bio_list_add(&tc->deferred_bio_list, bio); 1497 bio_list_merge(&tc->deferred_bio_list, &bios); 1498 spin_unlock_irqrestore(&tc->lock, flags); 1499 break; 1500 } 1501 1502 if (bio->bi_rw & REQ_DISCARD) 1503 pool->process_discard(tc, bio); 1504 else 1505 pool->process_bio(tc, bio); 1506 } 1507 blk_finish_plug(&plug); 1508 } 1509 1510 static void thin_get(struct thin_c *tc); 1511 static void thin_put(struct thin_c *tc); 1512 1513 /* 1514 * We can't hold rcu_read_lock() around code that can block. So we 1515 * find a thin with the rcu lock held; bump a refcount; then drop 1516 * the lock. 1517 */ 1518 static struct thin_c *get_first_thin(struct pool *pool) 1519 { 1520 struct thin_c *tc = NULL; 1521 1522 rcu_read_lock(); 1523 if (!list_empty(&pool->active_thins)) { 1524 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1525 thin_get(tc); 1526 } 1527 rcu_read_unlock(); 1528 1529 return tc; 1530 } 1531 1532 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1533 { 1534 struct thin_c *old_tc = tc; 1535 1536 rcu_read_lock(); 1537 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1538 thin_get(tc); 1539 thin_put(old_tc); 1540 rcu_read_unlock(); 1541 return tc; 1542 } 1543 thin_put(old_tc); 1544 rcu_read_unlock(); 1545 1546 return NULL; 1547 } 1548 1549 static void process_deferred_bios(struct pool *pool) 1550 { 1551 unsigned long flags; 1552 struct bio *bio; 1553 struct bio_list bios; 1554 struct thin_c *tc; 1555 1556 tc = get_first_thin(pool); 1557 while (tc) { 1558 process_thin_deferred_bios(tc); 1559 tc = get_next_thin(pool, tc); 1560 } 1561 1562 /* 1563 * If there are any deferred flush bios, we must commit 1564 * the metadata before issuing them. 1565 */ 1566 bio_list_init(&bios); 1567 spin_lock_irqsave(&pool->lock, flags); 1568 bio_list_merge(&bios, &pool->deferred_flush_bios); 1569 bio_list_init(&pool->deferred_flush_bios); 1570 spin_unlock_irqrestore(&pool->lock, flags); 1571 1572 if (bio_list_empty(&bios) && 1573 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1574 return; 1575 1576 if (commit(pool)) { 1577 while ((bio = bio_list_pop(&bios))) 1578 bio_io_error(bio); 1579 return; 1580 } 1581 pool->last_commit_jiffies = jiffies; 1582 1583 while ((bio = bio_list_pop(&bios))) 1584 generic_make_request(bio); 1585 } 1586 1587 static void do_worker(struct work_struct *ws) 1588 { 1589 struct pool *pool = container_of(ws, struct pool, worker); 1590 1591 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1592 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1593 process_deferred_bios(pool); 1594 } 1595 1596 /* 1597 * We want to commit periodically so that not too much 1598 * unwritten data builds up. 1599 */ 1600 static void do_waker(struct work_struct *ws) 1601 { 1602 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1603 wake_worker(pool); 1604 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1605 } 1606 1607 /* 1608 * We're holding onto IO to allow userland time to react. After the 1609 * timeout either the pool will have been resized (and thus back in 1610 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 1611 */ 1612 static void do_no_space_timeout(struct work_struct *ws) 1613 { 1614 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 1615 no_space_timeout); 1616 1617 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 1618 set_pool_mode(pool, PM_READ_ONLY); 1619 } 1620 1621 /*----------------------------------------------------------------*/ 1622 1623 struct pool_work { 1624 struct work_struct worker; 1625 struct completion complete; 1626 }; 1627 1628 static struct pool_work *to_pool_work(struct work_struct *ws) 1629 { 1630 return container_of(ws, struct pool_work, worker); 1631 } 1632 1633 static void pool_work_complete(struct pool_work *pw) 1634 { 1635 complete(&pw->complete); 1636 } 1637 1638 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 1639 void (*fn)(struct work_struct *)) 1640 { 1641 INIT_WORK_ONSTACK(&pw->worker, fn); 1642 init_completion(&pw->complete); 1643 queue_work(pool->wq, &pw->worker); 1644 wait_for_completion(&pw->complete); 1645 } 1646 1647 /*----------------------------------------------------------------*/ 1648 1649 struct noflush_work { 1650 struct pool_work pw; 1651 struct thin_c *tc; 1652 }; 1653 1654 static struct noflush_work *to_noflush(struct work_struct *ws) 1655 { 1656 return container_of(to_pool_work(ws), struct noflush_work, pw); 1657 } 1658 1659 static void do_noflush_start(struct work_struct *ws) 1660 { 1661 struct noflush_work *w = to_noflush(ws); 1662 w->tc->requeue_mode = true; 1663 requeue_io(w->tc); 1664 pool_work_complete(&w->pw); 1665 } 1666 1667 static void do_noflush_stop(struct work_struct *ws) 1668 { 1669 struct noflush_work *w = to_noflush(ws); 1670 w->tc->requeue_mode = false; 1671 pool_work_complete(&w->pw); 1672 } 1673 1674 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 1675 { 1676 struct noflush_work w; 1677 1678 w.tc = tc; 1679 pool_work_wait(&w.pw, tc->pool, fn); 1680 } 1681 1682 /*----------------------------------------------------------------*/ 1683 1684 static enum pool_mode get_pool_mode(struct pool *pool) 1685 { 1686 return pool->pf.mode; 1687 } 1688 1689 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 1690 { 1691 dm_table_event(pool->ti->table); 1692 DMINFO("%s: switching pool to %s mode", 1693 dm_device_name(pool->pool_md), new_mode); 1694 } 1695 1696 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 1697 { 1698 struct pool_c *pt = pool->ti->private; 1699 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 1700 enum pool_mode old_mode = get_pool_mode(pool); 1701 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 1702 1703 /* 1704 * Never allow the pool to transition to PM_WRITE mode if user 1705 * intervention is required to verify metadata and data consistency. 1706 */ 1707 if (new_mode == PM_WRITE && needs_check) { 1708 DMERR("%s: unable to switch pool to write mode until repaired.", 1709 dm_device_name(pool->pool_md)); 1710 if (old_mode != new_mode) 1711 new_mode = old_mode; 1712 else 1713 new_mode = PM_READ_ONLY; 1714 } 1715 /* 1716 * If we were in PM_FAIL mode, rollback of metadata failed. We're 1717 * not going to recover without a thin_repair. So we never let the 1718 * pool move out of the old mode. 1719 */ 1720 if (old_mode == PM_FAIL) 1721 new_mode = old_mode; 1722 1723 switch (new_mode) { 1724 case PM_FAIL: 1725 if (old_mode != new_mode) 1726 notify_of_pool_mode_change(pool, "failure"); 1727 dm_pool_metadata_read_only(pool->pmd); 1728 pool->process_bio = process_bio_fail; 1729 pool->process_discard = process_bio_fail; 1730 pool->process_prepared_mapping = process_prepared_mapping_fail; 1731 pool->process_prepared_discard = process_prepared_discard_fail; 1732 1733 error_retry_list(pool); 1734 break; 1735 1736 case PM_READ_ONLY: 1737 if (old_mode != new_mode) 1738 notify_of_pool_mode_change(pool, "read-only"); 1739 dm_pool_metadata_read_only(pool->pmd); 1740 pool->process_bio = process_bio_read_only; 1741 pool->process_discard = process_bio_success; 1742 pool->process_prepared_mapping = process_prepared_mapping_fail; 1743 pool->process_prepared_discard = process_prepared_discard_passdown; 1744 1745 error_retry_list(pool); 1746 break; 1747 1748 case PM_OUT_OF_DATA_SPACE: 1749 /* 1750 * Ideally we'd never hit this state; the low water mark 1751 * would trigger userland to extend the pool before we 1752 * completely run out of data space. However, many small 1753 * IOs to unprovisioned space can consume data space at an 1754 * alarming rate. Adjust your low water mark if you're 1755 * frequently seeing this mode. 1756 */ 1757 if (old_mode != new_mode) 1758 notify_of_pool_mode_change(pool, "out-of-data-space"); 1759 pool->process_bio = process_bio_read_only; 1760 pool->process_discard = process_discard; 1761 pool->process_prepared_mapping = process_prepared_mapping; 1762 pool->process_prepared_discard = process_prepared_discard_passdown; 1763 1764 if (!pool->pf.error_if_no_space && no_space_timeout) 1765 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 1766 break; 1767 1768 case PM_WRITE: 1769 if (old_mode != new_mode) 1770 notify_of_pool_mode_change(pool, "write"); 1771 dm_pool_metadata_read_write(pool->pmd); 1772 pool->process_bio = process_bio; 1773 pool->process_discard = process_discard; 1774 pool->process_prepared_mapping = process_prepared_mapping; 1775 pool->process_prepared_discard = process_prepared_discard; 1776 break; 1777 } 1778 1779 pool->pf.mode = new_mode; 1780 /* 1781 * The pool mode may have changed, sync it so bind_control_target() 1782 * doesn't cause an unexpected mode transition on resume. 1783 */ 1784 pt->adjusted_pf.mode = new_mode; 1785 } 1786 1787 static void abort_transaction(struct pool *pool) 1788 { 1789 const char *dev_name = dm_device_name(pool->pool_md); 1790 1791 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 1792 if (dm_pool_abort_metadata(pool->pmd)) { 1793 DMERR("%s: failed to abort metadata transaction", dev_name); 1794 set_pool_mode(pool, PM_FAIL); 1795 } 1796 1797 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 1798 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 1799 set_pool_mode(pool, PM_FAIL); 1800 } 1801 } 1802 1803 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 1804 { 1805 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1806 dm_device_name(pool->pool_md), op, r); 1807 1808 abort_transaction(pool); 1809 set_pool_mode(pool, PM_READ_ONLY); 1810 } 1811 1812 /*----------------------------------------------------------------*/ 1813 1814 /* 1815 * Mapping functions. 1816 */ 1817 1818 /* 1819 * Called only while mapping a thin bio to hand it over to the workqueue. 1820 */ 1821 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1822 { 1823 unsigned long flags; 1824 struct pool *pool = tc->pool; 1825 1826 spin_lock_irqsave(&tc->lock, flags); 1827 bio_list_add(&tc->deferred_bio_list, bio); 1828 spin_unlock_irqrestore(&tc->lock, flags); 1829 1830 wake_worker(pool); 1831 } 1832 1833 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1834 { 1835 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1836 1837 h->tc = tc; 1838 h->shared_read_entry = NULL; 1839 h->all_io_entry = NULL; 1840 h->overwrite_mapping = NULL; 1841 } 1842 1843 /* 1844 * Non-blocking function called from the thin target's map function. 1845 */ 1846 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1847 { 1848 int r; 1849 struct thin_c *tc = ti->private; 1850 dm_block_t block = get_bio_block(tc, bio); 1851 struct dm_thin_device *td = tc->td; 1852 struct dm_thin_lookup_result result; 1853 struct dm_bio_prison_cell cell1, cell2; 1854 struct dm_bio_prison_cell *cell_result; 1855 struct dm_cell_key key; 1856 1857 thin_hook_bio(tc, bio); 1858 1859 if (tc->requeue_mode) { 1860 bio_endio(bio, DM_ENDIO_REQUEUE); 1861 return DM_MAPIO_SUBMITTED; 1862 } 1863 1864 if (get_pool_mode(tc->pool) == PM_FAIL) { 1865 bio_io_error(bio); 1866 return DM_MAPIO_SUBMITTED; 1867 } 1868 1869 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1870 thin_defer_bio(tc, bio); 1871 return DM_MAPIO_SUBMITTED; 1872 } 1873 1874 r = dm_thin_find_block(td, block, 0, &result); 1875 1876 /* 1877 * Note that we defer readahead too. 1878 */ 1879 switch (r) { 1880 case 0: 1881 if (unlikely(result.shared)) { 1882 /* 1883 * We have a race condition here between the 1884 * result.shared value returned by the lookup and 1885 * snapshot creation, which may cause new 1886 * sharing. 1887 * 1888 * To avoid this always quiesce the origin before 1889 * taking the snap. You want to do this anyway to 1890 * ensure a consistent application view 1891 * (i.e. lockfs). 1892 * 1893 * More distant ancestors are irrelevant. The 1894 * shared flag will be set in their case. 1895 */ 1896 thin_defer_bio(tc, bio); 1897 return DM_MAPIO_SUBMITTED; 1898 } 1899 1900 build_virtual_key(tc->td, block, &key); 1901 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1902 return DM_MAPIO_SUBMITTED; 1903 1904 build_data_key(tc->td, result.block, &key); 1905 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1906 cell_defer_no_holder_no_free(tc, &cell1); 1907 return DM_MAPIO_SUBMITTED; 1908 } 1909 1910 inc_all_io_entry(tc->pool, bio); 1911 cell_defer_no_holder_no_free(tc, &cell2); 1912 cell_defer_no_holder_no_free(tc, &cell1); 1913 1914 remap(tc, bio, result.block); 1915 return DM_MAPIO_REMAPPED; 1916 1917 case -ENODATA: 1918 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1919 /* 1920 * This block isn't provisioned, and we have no way 1921 * of doing so. 1922 */ 1923 handle_unserviceable_bio(tc->pool, bio); 1924 return DM_MAPIO_SUBMITTED; 1925 } 1926 /* fall through */ 1927 1928 case -EWOULDBLOCK: 1929 /* 1930 * In future, the failed dm_thin_find_block above could 1931 * provide the hint to load the metadata into cache. 1932 */ 1933 thin_defer_bio(tc, bio); 1934 return DM_MAPIO_SUBMITTED; 1935 1936 default: 1937 /* 1938 * Must always call bio_io_error on failure. 1939 * dm_thin_find_block can fail with -EINVAL if the 1940 * pool is switched to fail-io mode. 1941 */ 1942 bio_io_error(bio); 1943 return DM_MAPIO_SUBMITTED; 1944 } 1945 } 1946 1947 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1948 { 1949 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1950 struct request_queue *q; 1951 1952 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 1953 return 1; 1954 1955 q = bdev_get_queue(pt->data_dev->bdev); 1956 return bdi_congested(&q->backing_dev_info, bdi_bits); 1957 } 1958 1959 static void requeue_bios(struct pool *pool) 1960 { 1961 unsigned long flags; 1962 struct thin_c *tc; 1963 1964 rcu_read_lock(); 1965 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 1966 spin_lock_irqsave(&tc->lock, flags); 1967 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 1968 bio_list_init(&tc->retry_on_resume_list); 1969 spin_unlock_irqrestore(&tc->lock, flags); 1970 } 1971 rcu_read_unlock(); 1972 } 1973 1974 /*---------------------------------------------------------------- 1975 * Binding of control targets to a pool object 1976 *--------------------------------------------------------------*/ 1977 static bool data_dev_supports_discard(struct pool_c *pt) 1978 { 1979 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1980 1981 return q && blk_queue_discard(q); 1982 } 1983 1984 static bool is_factor(sector_t block_size, uint32_t n) 1985 { 1986 return !sector_div(block_size, n); 1987 } 1988 1989 /* 1990 * If discard_passdown was enabled verify that the data device 1991 * supports discards. Disable discard_passdown if not. 1992 */ 1993 static void disable_passdown_if_not_supported(struct pool_c *pt) 1994 { 1995 struct pool *pool = pt->pool; 1996 struct block_device *data_bdev = pt->data_dev->bdev; 1997 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1998 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1999 const char *reason = NULL; 2000 char buf[BDEVNAME_SIZE]; 2001 2002 if (!pt->adjusted_pf.discard_passdown) 2003 return; 2004 2005 if (!data_dev_supports_discard(pt)) 2006 reason = "discard unsupported"; 2007 2008 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2009 reason = "max discard sectors smaller than a block"; 2010 2011 else if (data_limits->discard_granularity > block_size) 2012 reason = "discard granularity larger than a block"; 2013 2014 else if (!is_factor(block_size, data_limits->discard_granularity)) 2015 reason = "discard granularity not a factor of block size"; 2016 2017 if (reason) { 2018 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2019 pt->adjusted_pf.discard_passdown = false; 2020 } 2021 } 2022 2023 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2024 { 2025 struct pool_c *pt = ti->private; 2026 2027 /* 2028 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2029 */ 2030 enum pool_mode old_mode = get_pool_mode(pool); 2031 enum pool_mode new_mode = pt->adjusted_pf.mode; 2032 2033 /* 2034 * Don't change the pool's mode until set_pool_mode() below. 2035 * Otherwise the pool's process_* function pointers may 2036 * not match the desired pool mode. 2037 */ 2038 pt->adjusted_pf.mode = old_mode; 2039 2040 pool->ti = ti; 2041 pool->pf = pt->adjusted_pf; 2042 pool->low_water_blocks = pt->low_water_blocks; 2043 2044 set_pool_mode(pool, new_mode); 2045 2046 return 0; 2047 } 2048 2049 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2050 { 2051 if (pool->ti == ti) 2052 pool->ti = NULL; 2053 } 2054 2055 /*---------------------------------------------------------------- 2056 * Pool creation 2057 *--------------------------------------------------------------*/ 2058 /* Initialize pool features. */ 2059 static void pool_features_init(struct pool_features *pf) 2060 { 2061 pf->mode = PM_WRITE; 2062 pf->zero_new_blocks = true; 2063 pf->discard_enabled = true; 2064 pf->discard_passdown = true; 2065 pf->error_if_no_space = false; 2066 } 2067 2068 static void __pool_destroy(struct pool *pool) 2069 { 2070 __pool_table_remove(pool); 2071 2072 if (dm_pool_metadata_close(pool->pmd) < 0) 2073 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2074 2075 dm_bio_prison_destroy(pool->prison); 2076 dm_kcopyd_client_destroy(pool->copier); 2077 2078 if (pool->wq) 2079 destroy_workqueue(pool->wq); 2080 2081 if (pool->next_mapping) 2082 mempool_free(pool->next_mapping, pool->mapping_pool); 2083 mempool_destroy(pool->mapping_pool); 2084 dm_deferred_set_destroy(pool->shared_read_ds); 2085 dm_deferred_set_destroy(pool->all_io_ds); 2086 kfree(pool); 2087 } 2088 2089 static struct kmem_cache *_new_mapping_cache; 2090 2091 static struct pool *pool_create(struct mapped_device *pool_md, 2092 struct block_device *metadata_dev, 2093 unsigned long block_size, 2094 int read_only, char **error) 2095 { 2096 int r; 2097 void *err_p; 2098 struct pool *pool; 2099 struct dm_pool_metadata *pmd; 2100 bool format_device = read_only ? false : true; 2101 2102 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2103 if (IS_ERR(pmd)) { 2104 *error = "Error creating metadata object"; 2105 return (struct pool *)pmd; 2106 } 2107 2108 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2109 if (!pool) { 2110 *error = "Error allocating memory for pool"; 2111 err_p = ERR_PTR(-ENOMEM); 2112 goto bad_pool; 2113 } 2114 2115 pool->pmd = pmd; 2116 pool->sectors_per_block = block_size; 2117 if (block_size & (block_size - 1)) 2118 pool->sectors_per_block_shift = -1; 2119 else 2120 pool->sectors_per_block_shift = __ffs(block_size); 2121 pool->low_water_blocks = 0; 2122 pool_features_init(&pool->pf); 2123 pool->prison = dm_bio_prison_create(PRISON_CELLS); 2124 if (!pool->prison) { 2125 *error = "Error creating pool's bio prison"; 2126 err_p = ERR_PTR(-ENOMEM); 2127 goto bad_prison; 2128 } 2129 2130 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2131 if (IS_ERR(pool->copier)) { 2132 r = PTR_ERR(pool->copier); 2133 *error = "Error creating pool's kcopyd client"; 2134 err_p = ERR_PTR(r); 2135 goto bad_kcopyd_client; 2136 } 2137 2138 /* 2139 * Create singlethreaded workqueue that will service all devices 2140 * that use this metadata. 2141 */ 2142 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2143 if (!pool->wq) { 2144 *error = "Error creating pool's workqueue"; 2145 err_p = ERR_PTR(-ENOMEM); 2146 goto bad_wq; 2147 } 2148 2149 INIT_WORK(&pool->worker, do_worker); 2150 INIT_DELAYED_WORK(&pool->waker, do_waker); 2151 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2152 spin_lock_init(&pool->lock); 2153 bio_list_init(&pool->deferred_flush_bios); 2154 INIT_LIST_HEAD(&pool->prepared_mappings); 2155 INIT_LIST_HEAD(&pool->prepared_discards); 2156 INIT_LIST_HEAD(&pool->active_thins); 2157 pool->low_water_triggered = false; 2158 2159 pool->shared_read_ds = dm_deferred_set_create(); 2160 if (!pool->shared_read_ds) { 2161 *error = "Error creating pool's shared read deferred set"; 2162 err_p = ERR_PTR(-ENOMEM); 2163 goto bad_shared_read_ds; 2164 } 2165 2166 pool->all_io_ds = dm_deferred_set_create(); 2167 if (!pool->all_io_ds) { 2168 *error = "Error creating pool's all io deferred set"; 2169 err_p = ERR_PTR(-ENOMEM); 2170 goto bad_all_io_ds; 2171 } 2172 2173 pool->next_mapping = NULL; 2174 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2175 _new_mapping_cache); 2176 if (!pool->mapping_pool) { 2177 *error = "Error creating pool's mapping mempool"; 2178 err_p = ERR_PTR(-ENOMEM); 2179 goto bad_mapping_pool; 2180 } 2181 2182 pool->ref_count = 1; 2183 pool->last_commit_jiffies = jiffies; 2184 pool->pool_md = pool_md; 2185 pool->md_dev = metadata_dev; 2186 __pool_table_insert(pool); 2187 2188 return pool; 2189 2190 bad_mapping_pool: 2191 dm_deferred_set_destroy(pool->all_io_ds); 2192 bad_all_io_ds: 2193 dm_deferred_set_destroy(pool->shared_read_ds); 2194 bad_shared_read_ds: 2195 destroy_workqueue(pool->wq); 2196 bad_wq: 2197 dm_kcopyd_client_destroy(pool->copier); 2198 bad_kcopyd_client: 2199 dm_bio_prison_destroy(pool->prison); 2200 bad_prison: 2201 kfree(pool); 2202 bad_pool: 2203 if (dm_pool_metadata_close(pmd)) 2204 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2205 2206 return err_p; 2207 } 2208 2209 static void __pool_inc(struct pool *pool) 2210 { 2211 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2212 pool->ref_count++; 2213 } 2214 2215 static void __pool_dec(struct pool *pool) 2216 { 2217 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2218 BUG_ON(!pool->ref_count); 2219 if (!--pool->ref_count) 2220 __pool_destroy(pool); 2221 } 2222 2223 static struct pool *__pool_find(struct mapped_device *pool_md, 2224 struct block_device *metadata_dev, 2225 unsigned long block_size, int read_only, 2226 char **error, int *created) 2227 { 2228 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2229 2230 if (pool) { 2231 if (pool->pool_md != pool_md) { 2232 *error = "metadata device already in use by a pool"; 2233 return ERR_PTR(-EBUSY); 2234 } 2235 __pool_inc(pool); 2236 2237 } else { 2238 pool = __pool_table_lookup(pool_md); 2239 if (pool) { 2240 if (pool->md_dev != metadata_dev) { 2241 *error = "different pool cannot replace a pool"; 2242 return ERR_PTR(-EINVAL); 2243 } 2244 __pool_inc(pool); 2245 2246 } else { 2247 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2248 *created = 1; 2249 } 2250 } 2251 2252 return pool; 2253 } 2254 2255 /*---------------------------------------------------------------- 2256 * Pool target methods 2257 *--------------------------------------------------------------*/ 2258 static void pool_dtr(struct dm_target *ti) 2259 { 2260 struct pool_c *pt = ti->private; 2261 2262 mutex_lock(&dm_thin_pool_table.mutex); 2263 2264 unbind_control_target(pt->pool, ti); 2265 __pool_dec(pt->pool); 2266 dm_put_device(ti, pt->metadata_dev); 2267 dm_put_device(ti, pt->data_dev); 2268 kfree(pt); 2269 2270 mutex_unlock(&dm_thin_pool_table.mutex); 2271 } 2272 2273 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2274 struct dm_target *ti) 2275 { 2276 int r; 2277 unsigned argc; 2278 const char *arg_name; 2279 2280 static struct dm_arg _args[] = { 2281 {0, 4, "Invalid number of pool feature arguments"}, 2282 }; 2283 2284 /* 2285 * No feature arguments supplied. 2286 */ 2287 if (!as->argc) 2288 return 0; 2289 2290 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2291 if (r) 2292 return -EINVAL; 2293 2294 while (argc && !r) { 2295 arg_name = dm_shift_arg(as); 2296 argc--; 2297 2298 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2299 pf->zero_new_blocks = false; 2300 2301 else if (!strcasecmp(arg_name, "ignore_discard")) 2302 pf->discard_enabled = false; 2303 2304 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2305 pf->discard_passdown = false; 2306 2307 else if (!strcasecmp(arg_name, "read_only")) 2308 pf->mode = PM_READ_ONLY; 2309 2310 else if (!strcasecmp(arg_name, "error_if_no_space")) 2311 pf->error_if_no_space = true; 2312 2313 else { 2314 ti->error = "Unrecognised pool feature requested"; 2315 r = -EINVAL; 2316 break; 2317 } 2318 } 2319 2320 return r; 2321 } 2322 2323 static void metadata_low_callback(void *context) 2324 { 2325 struct pool *pool = context; 2326 2327 DMWARN("%s: reached low water mark for metadata device: sending event.", 2328 dm_device_name(pool->pool_md)); 2329 2330 dm_table_event(pool->ti->table); 2331 } 2332 2333 static sector_t get_dev_size(struct block_device *bdev) 2334 { 2335 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2336 } 2337 2338 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2339 { 2340 sector_t metadata_dev_size = get_dev_size(bdev); 2341 char buffer[BDEVNAME_SIZE]; 2342 2343 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2344 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2345 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2346 } 2347 2348 static sector_t get_metadata_dev_size(struct block_device *bdev) 2349 { 2350 sector_t metadata_dev_size = get_dev_size(bdev); 2351 2352 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2353 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2354 2355 return metadata_dev_size; 2356 } 2357 2358 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2359 { 2360 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2361 2362 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2363 2364 return metadata_dev_size; 2365 } 2366 2367 /* 2368 * When a metadata threshold is crossed a dm event is triggered, and 2369 * userland should respond by growing the metadata device. We could let 2370 * userland set the threshold, like we do with the data threshold, but I'm 2371 * not sure they know enough to do this well. 2372 */ 2373 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2374 { 2375 /* 2376 * 4M is ample for all ops with the possible exception of thin 2377 * device deletion which is harmless if it fails (just retry the 2378 * delete after you've grown the device). 2379 */ 2380 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2381 return min((dm_block_t)1024ULL /* 4M */, quarter); 2382 } 2383 2384 /* 2385 * thin-pool <metadata dev> <data dev> 2386 * <data block size (sectors)> 2387 * <low water mark (blocks)> 2388 * [<#feature args> [<arg>]*] 2389 * 2390 * Optional feature arguments are: 2391 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2392 * ignore_discard: disable discard 2393 * no_discard_passdown: don't pass discards down to the data device 2394 * read_only: Don't allow any changes to be made to the pool metadata. 2395 * error_if_no_space: error IOs, instead of queueing, if no space. 2396 */ 2397 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2398 { 2399 int r, pool_created = 0; 2400 struct pool_c *pt; 2401 struct pool *pool; 2402 struct pool_features pf; 2403 struct dm_arg_set as; 2404 struct dm_dev *data_dev; 2405 unsigned long block_size; 2406 dm_block_t low_water_blocks; 2407 struct dm_dev *metadata_dev; 2408 fmode_t metadata_mode; 2409 2410 /* 2411 * FIXME Remove validation from scope of lock. 2412 */ 2413 mutex_lock(&dm_thin_pool_table.mutex); 2414 2415 if (argc < 4) { 2416 ti->error = "Invalid argument count"; 2417 r = -EINVAL; 2418 goto out_unlock; 2419 } 2420 2421 as.argc = argc; 2422 as.argv = argv; 2423 2424 /* 2425 * Set default pool features. 2426 */ 2427 pool_features_init(&pf); 2428 2429 dm_consume_args(&as, 4); 2430 r = parse_pool_features(&as, &pf, ti); 2431 if (r) 2432 goto out_unlock; 2433 2434 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2435 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2436 if (r) { 2437 ti->error = "Error opening metadata block device"; 2438 goto out_unlock; 2439 } 2440 warn_if_metadata_device_too_big(metadata_dev->bdev); 2441 2442 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2443 if (r) { 2444 ti->error = "Error getting data device"; 2445 goto out_metadata; 2446 } 2447 2448 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2449 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2450 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2451 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2452 ti->error = "Invalid block size"; 2453 r = -EINVAL; 2454 goto out; 2455 } 2456 2457 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2458 ti->error = "Invalid low water mark"; 2459 r = -EINVAL; 2460 goto out; 2461 } 2462 2463 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2464 if (!pt) { 2465 r = -ENOMEM; 2466 goto out; 2467 } 2468 2469 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2470 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2471 if (IS_ERR(pool)) { 2472 r = PTR_ERR(pool); 2473 goto out_free_pt; 2474 } 2475 2476 /* 2477 * 'pool_created' reflects whether this is the first table load. 2478 * Top level discard support is not allowed to be changed after 2479 * initial load. This would require a pool reload to trigger thin 2480 * device changes. 2481 */ 2482 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2483 ti->error = "Discard support cannot be disabled once enabled"; 2484 r = -EINVAL; 2485 goto out_flags_changed; 2486 } 2487 2488 pt->pool = pool; 2489 pt->ti = ti; 2490 pt->metadata_dev = metadata_dev; 2491 pt->data_dev = data_dev; 2492 pt->low_water_blocks = low_water_blocks; 2493 pt->adjusted_pf = pt->requested_pf = pf; 2494 ti->num_flush_bios = 1; 2495 2496 /* 2497 * Only need to enable discards if the pool should pass 2498 * them down to the data device. The thin device's discard 2499 * processing will cause mappings to be removed from the btree. 2500 */ 2501 ti->discard_zeroes_data_unsupported = true; 2502 if (pf.discard_enabled && pf.discard_passdown) { 2503 ti->num_discard_bios = 1; 2504 2505 /* 2506 * Setting 'discards_supported' circumvents the normal 2507 * stacking of discard limits (this keeps the pool and 2508 * thin devices' discard limits consistent). 2509 */ 2510 ti->discards_supported = true; 2511 } 2512 ti->private = pt; 2513 2514 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2515 calc_metadata_threshold(pt), 2516 metadata_low_callback, 2517 pool); 2518 if (r) 2519 goto out_free_pt; 2520 2521 pt->callbacks.congested_fn = pool_is_congested; 2522 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2523 2524 mutex_unlock(&dm_thin_pool_table.mutex); 2525 2526 return 0; 2527 2528 out_flags_changed: 2529 __pool_dec(pool); 2530 out_free_pt: 2531 kfree(pt); 2532 out: 2533 dm_put_device(ti, data_dev); 2534 out_metadata: 2535 dm_put_device(ti, metadata_dev); 2536 out_unlock: 2537 mutex_unlock(&dm_thin_pool_table.mutex); 2538 2539 return r; 2540 } 2541 2542 static int pool_map(struct dm_target *ti, struct bio *bio) 2543 { 2544 int r; 2545 struct pool_c *pt = ti->private; 2546 struct pool *pool = pt->pool; 2547 unsigned long flags; 2548 2549 /* 2550 * As this is a singleton target, ti->begin is always zero. 2551 */ 2552 spin_lock_irqsave(&pool->lock, flags); 2553 bio->bi_bdev = pt->data_dev->bdev; 2554 r = DM_MAPIO_REMAPPED; 2555 spin_unlock_irqrestore(&pool->lock, flags); 2556 2557 return r; 2558 } 2559 2560 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2561 { 2562 int r; 2563 struct pool_c *pt = ti->private; 2564 struct pool *pool = pt->pool; 2565 sector_t data_size = ti->len; 2566 dm_block_t sb_data_size; 2567 2568 *need_commit = false; 2569 2570 (void) sector_div(data_size, pool->sectors_per_block); 2571 2572 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2573 if (r) { 2574 DMERR("%s: failed to retrieve data device size", 2575 dm_device_name(pool->pool_md)); 2576 return r; 2577 } 2578 2579 if (data_size < sb_data_size) { 2580 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2581 dm_device_name(pool->pool_md), 2582 (unsigned long long)data_size, sb_data_size); 2583 return -EINVAL; 2584 2585 } else if (data_size > sb_data_size) { 2586 if (dm_pool_metadata_needs_check(pool->pmd)) { 2587 DMERR("%s: unable to grow the data device until repaired.", 2588 dm_device_name(pool->pool_md)); 2589 return 0; 2590 } 2591 2592 if (sb_data_size) 2593 DMINFO("%s: growing the data device from %llu to %llu blocks", 2594 dm_device_name(pool->pool_md), 2595 sb_data_size, (unsigned long long)data_size); 2596 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2597 if (r) { 2598 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 2599 return r; 2600 } 2601 2602 *need_commit = true; 2603 } 2604 2605 return 0; 2606 } 2607 2608 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2609 { 2610 int r; 2611 struct pool_c *pt = ti->private; 2612 struct pool *pool = pt->pool; 2613 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2614 2615 *need_commit = false; 2616 2617 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2618 2619 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2620 if (r) { 2621 DMERR("%s: failed to retrieve metadata device size", 2622 dm_device_name(pool->pool_md)); 2623 return r; 2624 } 2625 2626 if (metadata_dev_size < sb_metadata_dev_size) { 2627 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2628 dm_device_name(pool->pool_md), 2629 metadata_dev_size, sb_metadata_dev_size); 2630 return -EINVAL; 2631 2632 } else if (metadata_dev_size > sb_metadata_dev_size) { 2633 if (dm_pool_metadata_needs_check(pool->pmd)) { 2634 DMERR("%s: unable to grow the metadata device until repaired.", 2635 dm_device_name(pool->pool_md)); 2636 return 0; 2637 } 2638 2639 warn_if_metadata_device_too_big(pool->md_dev); 2640 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 2641 dm_device_name(pool->pool_md), 2642 sb_metadata_dev_size, metadata_dev_size); 2643 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2644 if (r) { 2645 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 2646 return r; 2647 } 2648 2649 *need_commit = true; 2650 } 2651 2652 return 0; 2653 } 2654 2655 /* 2656 * Retrieves the number of blocks of the data device from 2657 * the superblock and compares it to the actual device size, 2658 * thus resizing the data device in case it has grown. 2659 * 2660 * This both copes with opening preallocated data devices in the ctr 2661 * being followed by a resume 2662 * -and- 2663 * calling the resume method individually after userspace has 2664 * grown the data device in reaction to a table event. 2665 */ 2666 static int pool_preresume(struct dm_target *ti) 2667 { 2668 int r; 2669 bool need_commit1, need_commit2; 2670 struct pool_c *pt = ti->private; 2671 struct pool *pool = pt->pool; 2672 2673 /* 2674 * Take control of the pool object. 2675 */ 2676 r = bind_control_target(pool, ti); 2677 if (r) 2678 return r; 2679 2680 r = maybe_resize_data_dev(ti, &need_commit1); 2681 if (r) 2682 return r; 2683 2684 r = maybe_resize_metadata_dev(ti, &need_commit2); 2685 if (r) 2686 return r; 2687 2688 if (need_commit1 || need_commit2) 2689 (void) commit(pool); 2690 2691 return 0; 2692 } 2693 2694 static void pool_resume(struct dm_target *ti) 2695 { 2696 struct pool_c *pt = ti->private; 2697 struct pool *pool = pt->pool; 2698 unsigned long flags; 2699 2700 spin_lock_irqsave(&pool->lock, flags); 2701 pool->low_water_triggered = false; 2702 spin_unlock_irqrestore(&pool->lock, flags); 2703 requeue_bios(pool); 2704 2705 do_waker(&pool->waker.work); 2706 } 2707 2708 static void pool_postsuspend(struct dm_target *ti) 2709 { 2710 struct pool_c *pt = ti->private; 2711 struct pool *pool = pt->pool; 2712 2713 cancel_delayed_work(&pool->waker); 2714 cancel_delayed_work(&pool->no_space_timeout); 2715 flush_workqueue(pool->wq); 2716 (void) commit(pool); 2717 } 2718 2719 static int check_arg_count(unsigned argc, unsigned args_required) 2720 { 2721 if (argc != args_required) { 2722 DMWARN("Message received with %u arguments instead of %u.", 2723 argc, args_required); 2724 return -EINVAL; 2725 } 2726 2727 return 0; 2728 } 2729 2730 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2731 { 2732 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2733 *dev_id <= MAX_DEV_ID) 2734 return 0; 2735 2736 if (warning) 2737 DMWARN("Message received with invalid device id: %s", arg); 2738 2739 return -EINVAL; 2740 } 2741 2742 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2743 { 2744 dm_thin_id dev_id; 2745 int r; 2746 2747 r = check_arg_count(argc, 2); 2748 if (r) 2749 return r; 2750 2751 r = read_dev_id(argv[1], &dev_id, 1); 2752 if (r) 2753 return r; 2754 2755 r = dm_pool_create_thin(pool->pmd, dev_id); 2756 if (r) { 2757 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2758 argv[1]); 2759 return r; 2760 } 2761 2762 return 0; 2763 } 2764 2765 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2766 { 2767 dm_thin_id dev_id; 2768 dm_thin_id origin_dev_id; 2769 int r; 2770 2771 r = check_arg_count(argc, 3); 2772 if (r) 2773 return r; 2774 2775 r = read_dev_id(argv[1], &dev_id, 1); 2776 if (r) 2777 return r; 2778 2779 r = read_dev_id(argv[2], &origin_dev_id, 1); 2780 if (r) 2781 return r; 2782 2783 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2784 if (r) { 2785 DMWARN("Creation of new snapshot %s of device %s failed.", 2786 argv[1], argv[2]); 2787 return r; 2788 } 2789 2790 return 0; 2791 } 2792 2793 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2794 { 2795 dm_thin_id dev_id; 2796 int r; 2797 2798 r = check_arg_count(argc, 2); 2799 if (r) 2800 return r; 2801 2802 r = read_dev_id(argv[1], &dev_id, 1); 2803 if (r) 2804 return r; 2805 2806 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2807 if (r) 2808 DMWARN("Deletion of thin device %s failed.", argv[1]); 2809 2810 return r; 2811 } 2812 2813 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2814 { 2815 dm_thin_id old_id, new_id; 2816 int r; 2817 2818 r = check_arg_count(argc, 3); 2819 if (r) 2820 return r; 2821 2822 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2823 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2824 return -EINVAL; 2825 } 2826 2827 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2828 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2829 return -EINVAL; 2830 } 2831 2832 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2833 if (r) { 2834 DMWARN("Failed to change transaction id from %s to %s.", 2835 argv[1], argv[2]); 2836 return r; 2837 } 2838 2839 return 0; 2840 } 2841 2842 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2843 { 2844 int r; 2845 2846 r = check_arg_count(argc, 1); 2847 if (r) 2848 return r; 2849 2850 (void) commit(pool); 2851 2852 r = dm_pool_reserve_metadata_snap(pool->pmd); 2853 if (r) 2854 DMWARN("reserve_metadata_snap message failed."); 2855 2856 return r; 2857 } 2858 2859 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2860 { 2861 int r; 2862 2863 r = check_arg_count(argc, 1); 2864 if (r) 2865 return r; 2866 2867 r = dm_pool_release_metadata_snap(pool->pmd); 2868 if (r) 2869 DMWARN("release_metadata_snap message failed."); 2870 2871 return r; 2872 } 2873 2874 /* 2875 * Messages supported: 2876 * create_thin <dev_id> 2877 * create_snap <dev_id> <origin_id> 2878 * delete <dev_id> 2879 * trim <dev_id> <new_size_in_sectors> 2880 * set_transaction_id <current_trans_id> <new_trans_id> 2881 * reserve_metadata_snap 2882 * release_metadata_snap 2883 */ 2884 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2885 { 2886 int r = -EINVAL; 2887 struct pool_c *pt = ti->private; 2888 struct pool *pool = pt->pool; 2889 2890 if (!strcasecmp(argv[0], "create_thin")) 2891 r = process_create_thin_mesg(argc, argv, pool); 2892 2893 else if (!strcasecmp(argv[0], "create_snap")) 2894 r = process_create_snap_mesg(argc, argv, pool); 2895 2896 else if (!strcasecmp(argv[0], "delete")) 2897 r = process_delete_mesg(argc, argv, pool); 2898 2899 else if (!strcasecmp(argv[0], "set_transaction_id")) 2900 r = process_set_transaction_id_mesg(argc, argv, pool); 2901 2902 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2903 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2904 2905 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2906 r = process_release_metadata_snap_mesg(argc, argv, pool); 2907 2908 else 2909 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2910 2911 if (!r) 2912 (void) commit(pool); 2913 2914 return r; 2915 } 2916 2917 static void emit_flags(struct pool_features *pf, char *result, 2918 unsigned sz, unsigned maxlen) 2919 { 2920 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2921 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 2922 pf->error_if_no_space; 2923 DMEMIT("%u ", count); 2924 2925 if (!pf->zero_new_blocks) 2926 DMEMIT("skip_block_zeroing "); 2927 2928 if (!pf->discard_enabled) 2929 DMEMIT("ignore_discard "); 2930 2931 if (!pf->discard_passdown) 2932 DMEMIT("no_discard_passdown "); 2933 2934 if (pf->mode == PM_READ_ONLY) 2935 DMEMIT("read_only "); 2936 2937 if (pf->error_if_no_space) 2938 DMEMIT("error_if_no_space "); 2939 } 2940 2941 /* 2942 * Status line is: 2943 * <transaction id> <used metadata sectors>/<total metadata sectors> 2944 * <used data sectors>/<total data sectors> <held metadata root> 2945 */ 2946 static void pool_status(struct dm_target *ti, status_type_t type, 2947 unsigned status_flags, char *result, unsigned maxlen) 2948 { 2949 int r; 2950 unsigned sz = 0; 2951 uint64_t transaction_id; 2952 dm_block_t nr_free_blocks_data; 2953 dm_block_t nr_free_blocks_metadata; 2954 dm_block_t nr_blocks_data; 2955 dm_block_t nr_blocks_metadata; 2956 dm_block_t held_root; 2957 char buf[BDEVNAME_SIZE]; 2958 char buf2[BDEVNAME_SIZE]; 2959 struct pool_c *pt = ti->private; 2960 struct pool *pool = pt->pool; 2961 2962 switch (type) { 2963 case STATUSTYPE_INFO: 2964 if (get_pool_mode(pool) == PM_FAIL) { 2965 DMEMIT("Fail"); 2966 break; 2967 } 2968 2969 /* Commit to ensure statistics aren't out-of-date */ 2970 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2971 (void) commit(pool); 2972 2973 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2974 if (r) { 2975 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 2976 dm_device_name(pool->pool_md), r); 2977 goto err; 2978 } 2979 2980 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2981 if (r) { 2982 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 2983 dm_device_name(pool->pool_md), r); 2984 goto err; 2985 } 2986 2987 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2988 if (r) { 2989 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 2990 dm_device_name(pool->pool_md), r); 2991 goto err; 2992 } 2993 2994 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2995 if (r) { 2996 DMERR("%s: dm_pool_get_free_block_count returned %d", 2997 dm_device_name(pool->pool_md), r); 2998 goto err; 2999 } 3000 3001 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3002 if (r) { 3003 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3004 dm_device_name(pool->pool_md), r); 3005 goto err; 3006 } 3007 3008 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3009 if (r) { 3010 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3011 dm_device_name(pool->pool_md), r); 3012 goto err; 3013 } 3014 3015 DMEMIT("%llu %llu/%llu %llu/%llu ", 3016 (unsigned long long)transaction_id, 3017 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3018 (unsigned long long)nr_blocks_metadata, 3019 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3020 (unsigned long long)nr_blocks_data); 3021 3022 if (held_root) 3023 DMEMIT("%llu ", held_root); 3024 else 3025 DMEMIT("- "); 3026 3027 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3028 DMEMIT("out_of_data_space "); 3029 else if (pool->pf.mode == PM_READ_ONLY) 3030 DMEMIT("ro "); 3031 else 3032 DMEMIT("rw "); 3033 3034 if (!pool->pf.discard_enabled) 3035 DMEMIT("ignore_discard "); 3036 else if (pool->pf.discard_passdown) 3037 DMEMIT("discard_passdown "); 3038 else 3039 DMEMIT("no_discard_passdown "); 3040 3041 if (pool->pf.error_if_no_space) 3042 DMEMIT("error_if_no_space "); 3043 else 3044 DMEMIT("queue_if_no_space "); 3045 3046 break; 3047 3048 case STATUSTYPE_TABLE: 3049 DMEMIT("%s %s %lu %llu ", 3050 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3051 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3052 (unsigned long)pool->sectors_per_block, 3053 (unsigned long long)pt->low_water_blocks); 3054 emit_flags(&pt->requested_pf, result, sz, maxlen); 3055 break; 3056 } 3057 return; 3058 3059 err: 3060 DMEMIT("Error"); 3061 } 3062 3063 static int pool_iterate_devices(struct dm_target *ti, 3064 iterate_devices_callout_fn fn, void *data) 3065 { 3066 struct pool_c *pt = ti->private; 3067 3068 return fn(ti, pt->data_dev, 0, ti->len, data); 3069 } 3070 3071 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3072 struct bio_vec *biovec, int max_size) 3073 { 3074 struct pool_c *pt = ti->private; 3075 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3076 3077 if (!q->merge_bvec_fn) 3078 return max_size; 3079 3080 bvm->bi_bdev = pt->data_dev->bdev; 3081 3082 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3083 } 3084 3085 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3086 { 3087 struct pool *pool = pt->pool; 3088 struct queue_limits *data_limits; 3089 3090 limits->max_discard_sectors = pool->sectors_per_block; 3091 3092 /* 3093 * discard_granularity is just a hint, and not enforced. 3094 */ 3095 if (pt->adjusted_pf.discard_passdown) { 3096 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3097 limits->discard_granularity = max(data_limits->discard_granularity, 3098 pool->sectors_per_block << SECTOR_SHIFT); 3099 } else 3100 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3101 } 3102 3103 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3104 { 3105 struct pool_c *pt = ti->private; 3106 struct pool *pool = pt->pool; 3107 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3108 3109 /* 3110 * If the system-determined stacked limits are compatible with the 3111 * pool's blocksize (io_opt is a factor) do not override them. 3112 */ 3113 if (io_opt_sectors < pool->sectors_per_block || 3114 do_div(io_opt_sectors, pool->sectors_per_block)) { 3115 blk_limits_io_min(limits, 0); 3116 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3117 } 3118 3119 /* 3120 * pt->adjusted_pf is a staging area for the actual features to use. 3121 * They get transferred to the live pool in bind_control_target() 3122 * called from pool_preresume(). 3123 */ 3124 if (!pt->adjusted_pf.discard_enabled) { 3125 /* 3126 * Must explicitly disallow stacking discard limits otherwise the 3127 * block layer will stack them if pool's data device has support. 3128 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3129 * user to see that, so make sure to set all discard limits to 0. 3130 */ 3131 limits->discard_granularity = 0; 3132 return; 3133 } 3134 3135 disable_passdown_if_not_supported(pt); 3136 3137 set_discard_limits(pt, limits); 3138 } 3139 3140 static struct target_type pool_target = { 3141 .name = "thin-pool", 3142 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3143 DM_TARGET_IMMUTABLE, 3144 .version = {1, 12, 0}, 3145 .module = THIS_MODULE, 3146 .ctr = pool_ctr, 3147 .dtr = pool_dtr, 3148 .map = pool_map, 3149 .postsuspend = pool_postsuspend, 3150 .preresume = pool_preresume, 3151 .resume = pool_resume, 3152 .message = pool_message, 3153 .status = pool_status, 3154 .merge = pool_merge, 3155 .iterate_devices = pool_iterate_devices, 3156 .io_hints = pool_io_hints, 3157 }; 3158 3159 /*---------------------------------------------------------------- 3160 * Thin target methods 3161 *--------------------------------------------------------------*/ 3162 static void thin_get(struct thin_c *tc) 3163 { 3164 atomic_inc(&tc->refcount); 3165 } 3166 3167 static void thin_put(struct thin_c *tc) 3168 { 3169 if (atomic_dec_and_test(&tc->refcount)) 3170 complete(&tc->can_destroy); 3171 } 3172 3173 static void thin_dtr(struct dm_target *ti) 3174 { 3175 struct thin_c *tc = ti->private; 3176 unsigned long flags; 3177 3178 thin_put(tc); 3179 wait_for_completion(&tc->can_destroy); 3180 3181 spin_lock_irqsave(&tc->pool->lock, flags); 3182 list_del_rcu(&tc->list); 3183 spin_unlock_irqrestore(&tc->pool->lock, flags); 3184 synchronize_rcu(); 3185 3186 mutex_lock(&dm_thin_pool_table.mutex); 3187 3188 __pool_dec(tc->pool); 3189 dm_pool_close_thin_device(tc->td); 3190 dm_put_device(ti, tc->pool_dev); 3191 if (tc->origin_dev) 3192 dm_put_device(ti, tc->origin_dev); 3193 kfree(tc); 3194 3195 mutex_unlock(&dm_thin_pool_table.mutex); 3196 } 3197 3198 /* 3199 * Thin target parameters: 3200 * 3201 * <pool_dev> <dev_id> [origin_dev] 3202 * 3203 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3204 * dev_id: the internal device identifier 3205 * origin_dev: a device external to the pool that should act as the origin 3206 * 3207 * If the pool device has discards disabled, they get disabled for the thin 3208 * device as well. 3209 */ 3210 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3211 { 3212 int r; 3213 struct thin_c *tc; 3214 struct dm_dev *pool_dev, *origin_dev; 3215 struct mapped_device *pool_md; 3216 unsigned long flags; 3217 3218 mutex_lock(&dm_thin_pool_table.mutex); 3219 3220 if (argc != 2 && argc != 3) { 3221 ti->error = "Invalid argument count"; 3222 r = -EINVAL; 3223 goto out_unlock; 3224 } 3225 3226 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3227 if (!tc) { 3228 ti->error = "Out of memory"; 3229 r = -ENOMEM; 3230 goto out_unlock; 3231 } 3232 spin_lock_init(&tc->lock); 3233 bio_list_init(&tc->deferred_bio_list); 3234 bio_list_init(&tc->retry_on_resume_list); 3235 tc->sort_bio_list = RB_ROOT; 3236 3237 if (argc == 3) { 3238 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3239 if (r) { 3240 ti->error = "Error opening origin device"; 3241 goto bad_origin_dev; 3242 } 3243 tc->origin_dev = origin_dev; 3244 } 3245 3246 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3247 if (r) { 3248 ti->error = "Error opening pool device"; 3249 goto bad_pool_dev; 3250 } 3251 tc->pool_dev = pool_dev; 3252 3253 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3254 ti->error = "Invalid device id"; 3255 r = -EINVAL; 3256 goto bad_common; 3257 } 3258 3259 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3260 if (!pool_md) { 3261 ti->error = "Couldn't get pool mapped device"; 3262 r = -EINVAL; 3263 goto bad_common; 3264 } 3265 3266 tc->pool = __pool_table_lookup(pool_md); 3267 if (!tc->pool) { 3268 ti->error = "Couldn't find pool object"; 3269 r = -EINVAL; 3270 goto bad_pool_lookup; 3271 } 3272 __pool_inc(tc->pool); 3273 3274 if (get_pool_mode(tc->pool) == PM_FAIL) { 3275 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3276 r = -EINVAL; 3277 goto bad_thin_open; 3278 } 3279 3280 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3281 if (r) { 3282 ti->error = "Couldn't open thin internal device"; 3283 goto bad_thin_open; 3284 } 3285 3286 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3287 if (r) 3288 goto bad_target_max_io_len; 3289 3290 ti->num_flush_bios = 1; 3291 ti->flush_supported = true; 3292 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3293 3294 /* In case the pool supports discards, pass them on. */ 3295 ti->discard_zeroes_data_unsupported = true; 3296 if (tc->pool->pf.discard_enabled) { 3297 ti->discards_supported = true; 3298 ti->num_discard_bios = 1; 3299 /* Discard bios must be split on a block boundary */ 3300 ti->split_discard_bios = true; 3301 } 3302 3303 dm_put(pool_md); 3304 3305 mutex_unlock(&dm_thin_pool_table.mutex); 3306 3307 atomic_set(&tc->refcount, 1); 3308 init_completion(&tc->can_destroy); 3309 3310 spin_lock_irqsave(&tc->pool->lock, flags); 3311 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3312 spin_unlock_irqrestore(&tc->pool->lock, flags); 3313 /* 3314 * This synchronize_rcu() call is needed here otherwise we risk a 3315 * wake_worker() call finding no bios to process (because the newly 3316 * added tc isn't yet visible). So this reduces latency since we 3317 * aren't then dependent on the periodic commit to wake_worker(). 3318 */ 3319 synchronize_rcu(); 3320 3321 return 0; 3322 3323 bad_target_max_io_len: 3324 dm_pool_close_thin_device(tc->td); 3325 bad_thin_open: 3326 __pool_dec(tc->pool); 3327 bad_pool_lookup: 3328 dm_put(pool_md); 3329 bad_common: 3330 dm_put_device(ti, tc->pool_dev); 3331 bad_pool_dev: 3332 if (tc->origin_dev) 3333 dm_put_device(ti, tc->origin_dev); 3334 bad_origin_dev: 3335 kfree(tc); 3336 out_unlock: 3337 mutex_unlock(&dm_thin_pool_table.mutex); 3338 3339 return r; 3340 } 3341 3342 static int thin_map(struct dm_target *ti, struct bio *bio) 3343 { 3344 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3345 3346 return thin_bio_map(ti, bio); 3347 } 3348 3349 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3350 { 3351 unsigned long flags; 3352 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3353 struct list_head work; 3354 struct dm_thin_new_mapping *m, *tmp; 3355 struct pool *pool = h->tc->pool; 3356 3357 if (h->shared_read_entry) { 3358 INIT_LIST_HEAD(&work); 3359 dm_deferred_entry_dec(h->shared_read_entry, &work); 3360 3361 spin_lock_irqsave(&pool->lock, flags); 3362 list_for_each_entry_safe(m, tmp, &work, list) { 3363 list_del(&m->list); 3364 m->quiesced = true; 3365 __maybe_add_mapping(m); 3366 } 3367 spin_unlock_irqrestore(&pool->lock, flags); 3368 } 3369 3370 if (h->all_io_entry) { 3371 INIT_LIST_HEAD(&work); 3372 dm_deferred_entry_dec(h->all_io_entry, &work); 3373 if (!list_empty(&work)) { 3374 spin_lock_irqsave(&pool->lock, flags); 3375 list_for_each_entry_safe(m, tmp, &work, list) 3376 list_add_tail(&m->list, &pool->prepared_discards); 3377 spin_unlock_irqrestore(&pool->lock, flags); 3378 wake_worker(pool); 3379 } 3380 } 3381 3382 return 0; 3383 } 3384 3385 static void thin_presuspend(struct dm_target *ti) 3386 { 3387 struct thin_c *tc = ti->private; 3388 3389 if (dm_noflush_suspending(ti)) 3390 noflush_work(tc, do_noflush_start); 3391 } 3392 3393 static void thin_postsuspend(struct dm_target *ti) 3394 { 3395 struct thin_c *tc = ti->private; 3396 3397 /* 3398 * The dm_noflush_suspending flag has been cleared by now, so 3399 * unfortunately we must always run this. 3400 */ 3401 noflush_work(tc, do_noflush_stop); 3402 } 3403 3404 /* 3405 * <nr mapped sectors> <highest mapped sector> 3406 */ 3407 static void thin_status(struct dm_target *ti, status_type_t type, 3408 unsigned status_flags, char *result, unsigned maxlen) 3409 { 3410 int r; 3411 ssize_t sz = 0; 3412 dm_block_t mapped, highest; 3413 char buf[BDEVNAME_SIZE]; 3414 struct thin_c *tc = ti->private; 3415 3416 if (get_pool_mode(tc->pool) == PM_FAIL) { 3417 DMEMIT("Fail"); 3418 return; 3419 } 3420 3421 if (!tc->td) 3422 DMEMIT("-"); 3423 else { 3424 switch (type) { 3425 case STATUSTYPE_INFO: 3426 r = dm_thin_get_mapped_count(tc->td, &mapped); 3427 if (r) { 3428 DMERR("dm_thin_get_mapped_count returned %d", r); 3429 goto err; 3430 } 3431 3432 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3433 if (r < 0) { 3434 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3435 goto err; 3436 } 3437 3438 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3439 if (r) 3440 DMEMIT("%llu", ((highest + 1) * 3441 tc->pool->sectors_per_block) - 1); 3442 else 3443 DMEMIT("-"); 3444 break; 3445 3446 case STATUSTYPE_TABLE: 3447 DMEMIT("%s %lu", 3448 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3449 (unsigned long) tc->dev_id); 3450 if (tc->origin_dev) 3451 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3452 break; 3453 } 3454 } 3455 3456 return; 3457 3458 err: 3459 DMEMIT("Error"); 3460 } 3461 3462 static int thin_iterate_devices(struct dm_target *ti, 3463 iterate_devices_callout_fn fn, void *data) 3464 { 3465 sector_t blocks; 3466 struct thin_c *tc = ti->private; 3467 struct pool *pool = tc->pool; 3468 3469 /* 3470 * We can't call dm_pool_get_data_dev_size() since that blocks. So 3471 * we follow a more convoluted path through to the pool's target. 3472 */ 3473 if (!pool->ti) 3474 return 0; /* nothing is bound */ 3475 3476 blocks = pool->ti->len; 3477 (void) sector_div(blocks, pool->sectors_per_block); 3478 if (blocks) 3479 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 3480 3481 return 0; 3482 } 3483 3484 static struct target_type thin_target = { 3485 .name = "thin", 3486 .version = {1, 12, 0}, 3487 .module = THIS_MODULE, 3488 .ctr = thin_ctr, 3489 .dtr = thin_dtr, 3490 .map = thin_map, 3491 .end_io = thin_endio, 3492 .presuspend = thin_presuspend, 3493 .postsuspend = thin_postsuspend, 3494 .status = thin_status, 3495 .iterate_devices = thin_iterate_devices, 3496 }; 3497 3498 /*----------------------------------------------------------------*/ 3499 3500 static int __init dm_thin_init(void) 3501 { 3502 int r; 3503 3504 pool_table_init(); 3505 3506 r = dm_register_target(&thin_target); 3507 if (r) 3508 return r; 3509 3510 r = dm_register_target(&pool_target); 3511 if (r) 3512 goto bad_pool_target; 3513 3514 r = -ENOMEM; 3515 3516 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3517 if (!_new_mapping_cache) 3518 goto bad_new_mapping_cache; 3519 3520 return 0; 3521 3522 bad_new_mapping_cache: 3523 dm_unregister_target(&pool_target); 3524 bad_pool_target: 3525 dm_unregister_target(&thin_target); 3526 3527 return r; 3528 } 3529 3530 static void dm_thin_exit(void) 3531 { 3532 dm_unregister_target(&thin_target); 3533 dm_unregister_target(&pool_target); 3534 3535 kmem_cache_destroy(_new_mapping_cache); 3536 } 3537 3538 module_init(dm_thin_init); 3539 module_exit(dm_thin_exit); 3540 3541 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 3542 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 3543 3544 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3545 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3546 MODULE_LICENSE("GPL"); 3547