xref: /openbmc/linux/drivers/md/dm-thin.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 
17 #define	DM_MSG_PREFIX	"thin"
18 
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27 
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34 
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39 
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97 
98 /*----------------------------------------------------------------*/
99 
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107 
108 struct cell_key {
109 	int virtual;
110 	dm_thin_id dev;
111 	dm_block_t block;
112 };
113 
114 struct cell {
115 	struct hlist_node list;
116 	struct bio_prison *prison;
117 	struct cell_key key;
118 	struct bio *holder;
119 	struct bio_list bios;
120 };
121 
122 struct bio_prison {
123 	spinlock_t lock;
124 	mempool_t *cell_pool;
125 
126 	unsigned nr_buckets;
127 	unsigned hash_mask;
128 	struct hlist_head *cells;
129 };
130 
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 	uint32_t n = 128;
134 
135 	nr_cells /= 4;
136 	nr_cells = min(nr_cells, 8192u);
137 
138 	while (n < nr_cells)
139 		n <<= 1;
140 
141 	return n;
142 }
143 
144 /*
145  * @nr_cells should be the number of cells you want in use _concurrently_.
146  * Don't confuse it with the number of distinct keys.
147  */
148 static struct bio_prison *prison_create(unsigned nr_cells)
149 {
150 	unsigned i;
151 	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 	size_t len = sizeof(struct bio_prison) +
153 		(sizeof(struct hlist_head) * nr_buckets);
154 	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155 
156 	if (!prison)
157 		return NULL;
158 
159 	spin_lock_init(&prison->lock);
160 	prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 							sizeof(struct cell));
162 	if (!prison->cell_pool) {
163 		kfree(prison);
164 		return NULL;
165 	}
166 
167 	prison->nr_buckets = nr_buckets;
168 	prison->hash_mask = nr_buckets - 1;
169 	prison->cells = (struct hlist_head *) (prison + 1);
170 	for (i = 0; i < nr_buckets; i++)
171 		INIT_HLIST_HEAD(prison->cells + i);
172 
173 	return prison;
174 }
175 
176 static void prison_destroy(struct bio_prison *prison)
177 {
178 	mempool_destroy(prison->cell_pool);
179 	kfree(prison);
180 }
181 
182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183 {
184 	const unsigned long BIG_PRIME = 4294967291UL;
185 	uint64_t hash = key->block * BIG_PRIME;
186 
187 	return (uint32_t) (hash & prison->hash_mask);
188 }
189 
190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191 {
192 	       return (lhs->virtual == rhs->virtual) &&
193 		       (lhs->dev == rhs->dev) &&
194 		       (lhs->block == rhs->block);
195 }
196 
197 static struct cell *__search_bucket(struct hlist_head *bucket,
198 				    struct cell_key *key)
199 {
200 	struct cell *cell;
201 	struct hlist_node *tmp;
202 
203 	hlist_for_each_entry(cell, tmp, bucket, list)
204 		if (keys_equal(&cell->key, key))
205 			return cell;
206 
207 	return NULL;
208 }
209 
210 /*
211  * This may block if a new cell needs allocating.  You must ensure that
212  * cells will be unlocked even if the calling thread is blocked.
213  *
214  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
215  */
216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 		      struct bio *inmate, struct cell **ref)
218 {
219 	int r = 1;
220 	unsigned long flags;
221 	uint32_t hash = hash_key(prison, key);
222 	struct cell *cell, *cell2;
223 
224 	BUG_ON(hash > prison->nr_buckets);
225 
226 	spin_lock_irqsave(&prison->lock, flags);
227 
228 	cell = __search_bucket(prison->cells + hash, key);
229 	if (cell) {
230 		bio_list_add(&cell->bios, inmate);
231 		goto out;
232 	}
233 
234 	/*
235 	 * Allocate a new cell
236 	 */
237 	spin_unlock_irqrestore(&prison->lock, flags);
238 	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 	spin_lock_irqsave(&prison->lock, flags);
240 
241 	/*
242 	 * We've been unlocked, so we have to double check that
243 	 * nobody else has inserted this cell in the meantime.
244 	 */
245 	cell = __search_bucket(prison->cells + hash, key);
246 	if (cell) {
247 		mempool_free(cell2, prison->cell_pool);
248 		bio_list_add(&cell->bios, inmate);
249 		goto out;
250 	}
251 
252 	/*
253 	 * Use new cell.
254 	 */
255 	cell = cell2;
256 
257 	cell->prison = prison;
258 	memcpy(&cell->key, key, sizeof(cell->key));
259 	cell->holder = inmate;
260 	bio_list_init(&cell->bios);
261 	hlist_add_head(&cell->list, prison->cells + hash);
262 
263 	r = 0;
264 
265 out:
266 	spin_unlock_irqrestore(&prison->lock, flags);
267 
268 	*ref = cell;
269 
270 	return r;
271 }
272 
273 /*
274  * @inmates must have been initialised prior to this call
275  */
276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
277 {
278 	struct bio_prison *prison = cell->prison;
279 
280 	hlist_del(&cell->list);
281 
282 	if (inmates) {
283 		bio_list_add(inmates, cell->holder);
284 		bio_list_merge(inmates, &cell->bios);
285 	}
286 
287 	mempool_free(cell, prison->cell_pool);
288 }
289 
290 static void cell_release(struct cell *cell, struct bio_list *bios)
291 {
292 	unsigned long flags;
293 	struct bio_prison *prison = cell->prison;
294 
295 	spin_lock_irqsave(&prison->lock, flags);
296 	__cell_release(cell, bios);
297 	spin_unlock_irqrestore(&prison->lock, flags);
298 }
299 
300 /*
301  * There are a couple of places where we put a bio into a cell briefly
302  * before taking it out again.  In these situations we know that no other
303  * bio may be in the cell.  This function releases the cell, and also does
304  * a sanity check.
305  */
306 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
307 {
308 	BUG_ON(cell->holder != bio);
309 	BUG_ON(!bio_list_empty(&cell->bios));
310 
311 	__cell_release(cell, NULL);
312 }
313 
314 static void cell_release_singleton(struct cell *cell, struct bio *bio)
315 {
316 	unsigned long flags;
317 	struct bio_prison *prison = cell->prison;
318 
319 	spin_lock_irqsave(&prison->lock, flags);
320 	__cell_release_singleton(cell, bio);
321 	spin_unlock_irqrestore(&prison->lock, flags);
322 }
323 
324 /*
325  * Sometimes we don't want the holder, just the additional bios.
326  */
327 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
328 {
329 	struct bio_prison *prison = cell->prison;
330 
331 	hlist_del(&cell->list);
332 	bio_list_merge(inmates, &cell->bios);
333 
334 	mempool_free(cell, prison->cell_pool);
335 }
336 
337 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
338 {
339 	unsigned long flags;
340 	struct bio_prison *prison = cell->prison;
341 
342 	spin_lock_irqsave(&prison->lock, flags);
343 	__cell_release_no_holder(cell, inmates);
344 	spin_unlock_irqrestore(&prison->lock, flags);
345 }
346 
347 static void cell_error(struct cell *cell)
348 {
349 	struct bio_prison *prison = cell->prison;
350 	struct bio_list bios;
351 	struct bio *bio;
352 	unsigned long flags;
353 
354 	bio_list_init(&bios);
355 
356 	spin_lock_irqsave(&prison->lock, flags);
357 	__cell_release(cell, &bios);
358 	spin_unlock_irqrestore(&prison->lock, flags);
359 
360 	while ((bio = bio_list_pop(&bios)))
361 		bio_io_error(bio);
362 }
363 
364 /*----------------------------------------------------------------*/
365 
366 /*
367  * We use the deferred set to keep track of pending reads to shared blocks.
368  * We do this to ensure the new mapping caused by a write isn't performed
369  * until these prior reads have completed.  Otherwise the insertion of the
370  * new mapping could free the old block that the read bios are mapped to.
371  */
372 
373 struct deferred_set;
374 struct deferred_entry {
375 	struct deferred_set *ds;
376 	unsigned count;
377 	struct list_head work_items;
378 };
379 
380 struct deferred_set {
381 	spinlock_t lock;
382 	unsigned current_entry;
383 	unsigned sweeper;
384 	struct deferred_entry entries[DEFERRED_SET_SIZE];
385 };
386 
387 static void ds_init(struct deferred_set *ds)
388 {
389 	int i;
390 
391 	spin_lock_init(&ds->lock);
392 	ds->current_entry = 0;
393 	ds->sweeper = 0;
394 	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
395 		ds->entries[i].ds = ds;
396 		ds->entries[i].count = 0;
397 		INIT_LIST_HEAD(&ds->entries[i].work_items);
398 	}
399 }
400 
401 static struct deferred_entry *ds_inc(struct deferred_set *ds)
402 {
403 	unsigned long flags;
404 	struct deferred_entry *entry;
405 
406 	spin_lock_irqsave(&ds->lock, flags);
407 	entry = ds->entries + ds->current_entry;
408 	entry->count++;
409 	spin_unlock_irqrestore(&ds->lock, flags);
410 
411 	return entry;
412 }
413 
414 static unsigned ds_next(unsigned index)
415 {
416 	return (index + 1) % DEFERRED_SET_SIZE;
417 }
418 
419 static void __sweep(struct deferred_set *ds, struct list_head *head)
420 {
421 	while ((ds->sweeper != ds->current_entry) &&
422 	       !ds->entries[ds->sweeper].count) {
423 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
424 		ds->sweeper = ds_next(ds->sweeper);
425 	}
426 
427 	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
428 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
429 }
430 
431 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432 {
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&entry->ds->lock, flags);
436 	BUG_ON(!entry->count);
437 	--entry->count;
438 	__sweep(entry->ds, head);
439 	spin_unlock_irqrestore(&entry->ds->lock, flags);
440 }
441 
442 /*
443  * Returns 1 if deferred or 0 if no pending items to delay job.
444  */
445 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
446 {
447 	int r = 1;
448 	unsigned long flags;
449 	unsigned next_entry;
450 
451 	spin_lock_irqsave(&ds->lock, flags);
452 	if ((ds->sweeper == ds->current_entry) &&
453 	    !ds->entries[ds->current_entry].count)
454 		r = 0;
455 	else {
456 		list_add(work, &ds->entries[ds->current_entry].work_items);
457 		next_entry = ds_next(ds->current_entry);
458 		if (!ds->entries[next_entry].count)
459 			ds->current_entry = next_entry;
460 	}
461 	spin_unlock_irqrestore(&ds->lock, flags);
462 
463 	return r;
464 }
465 
466 /*----------------------------------------------------------------*/
467 
468 /*
469  * Key building.
470  */
471 static void build_data_key(struct dm_thin_device *td,
472 			   dm_block_t b, struct cell_key *key)
473 {
474 	key->virtual = 0;
475 	key->dev = dm_thin_dev_id(td);
476 	key->block = b;
477 }
478 
479 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
480 			      struct cell_key *key)
481 {
482 	key->virtual = 1;
483 	key->dev = dm_thin_dev_id(td);
484 	key->block = b;
485 }
486 
487 /*----------------------------------------------------------------*/
488 
489 /*
490  * A pool device ties together a metadata device and a data device.  It
491  * also provides the interface for creating and destroying internal
492  * devices.
493  */
494 struct new_mapping;
495 
496 struct pool_features {
497 	unsigned zero_new_blocks:1;
498 	unsigned discard_enabled:1;
499 	unsigned discard_passdown:1;
500 };
501 
502 struct pool {
503 	struct list_head list;
504 	struct dm_target *ti;	/* Only set if a pool target is bound */
505 
506 	struct mapped_device *pool_md;
507 	struct block_device *md_dev;
508 	struct dm_pool_metadata *pmd;
509 
510 	uint32_t sectors_per_block;
511 	unsigned block_shift;
512 	dm_block_t offset_mask;
513 	dm_block_t low_water_blocks;
514 
515 	struct pool_features pf;
516 	unsigned low_water_triggered:1;	/* A dm event has been sent */
517 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
518 
519 	struct bio_prison *prison;
520 	struct dm_kcopyd_client *copier;
521 
522 	struct workqueue_struct *wq;
523 	struct work_struct worker;
524 	struct delayed_work waker;
525 
526 	unsigned ref_count;
527 	unsigned long last_commit_jiffies;
528 
529 	spinlock_t lock;
530 	struct bio_list deferred_bios;
531 	struct bio_list deferred_flush_bios;
532 	struct list_head prepared_mappings;
533 	struct list_head prepared_discards;
534 
535 	struct bio_list retry_on_resume_list;
536 
537 	struct deferred_set shared_read_ds;
538 	struct deferred_set all_io_ds;
539 
540 	struct new_mapping *next_mapping;
541 	mempool_t *mapping_pool;
542 	mempool_t *endio_hook_pool;
543 };
544 
545 /*
546  * Target context for a pool.
547  */
548 struct pool_c {
549 	struct dm_target *ti;
550 	struct pool *pool;
551 	struct dm_dev *data_dev;
552 	struct dm_dev *metadata_dev;
553 	struct dm_target_callbacks callbacks;
554 
555 	dm_block_t low_water_blocks;
556 	struct pool_features pf;
557 };
558 
559 /*
560  * Target context for a thin.
561  */
562 struct thin_c {
563 	struct dm_dev *pool_dev;
564 	struct dm_dev *origin_dev;
565 	dm_thin_id dev_id;
566 
567 	struct pool *pool;
568 	struct dm_thin_device *td;
569 };
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * A global list of pools that uses a struct mapped_device as a key.
575  */
576 static struct dm_thin_pool_table {
577 	struct mutex mutex;
578 	struct list_head pools;
579 } dm_thin_pool_table;
580 
581 static void pool_table_init(void)
582 {
583 	mutex_init(&dm_thin_pool_table.mutex);
584 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
585 }
586 
587 static void __pool_table_insert(struct pool *pool)
588 {
589 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
590 	list_add(&pool->list, &dm_thin_pool_table.pools);
591 }
592 
593 static void __pool_table_remove(struct pool *pool)
594 {
595 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
596 	list_del(&pool->list);
597 }
598 
599 static struct pool *__pool_table_lookup(struct mapped_device *md)
600 {
601 	struct pool *pool = NULL, *tmp;
602 
603 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
604 
605 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
606 		if (tmp->pool_md == md) {
607 			pool = tmp;
608 			break;
609 		}
610 	}
611 
612 	return pool;
613 }
614 
615 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
616 {
617 	struct pool *pool = NULL, *tmp;
618 
619 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
620 
621 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
622 		if (tmp->md_dev == md_dev) {
623 			pool = tmp;
624 			break;
625 		}
626 	}
627 
628 	return pool;
629 }
630 
631 /*----------------------------------------------------------------*/
632 
633 struct endio_hook {
634 	struct thin_c *tc;
635 	struct deferred_entry *shared_read_entry;
636 	struct deferred_entry *all_io_entry;
637 	struct new_mapping *overwrite_mapping;
638 };
639 
640 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
641 {
642 	struct bio *bio;
643 	struct bio_list bios;
644 
645 	bio_list_init(&bios);
646 	bio_list_merge(&bios, master);
647 	bio_list_init(master);
648 
649 	while ((bio = bio_list_pop(&bios))) {
650 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
651 		if (h->tc == tc)
652 			bio_endio(bio, DM_ENDIO_REQUEUE);
653 		else
654 			bio_list_add(master, bio);
655 	}
656 }
657 
658 static void requeue_io(struct thin_c *tc)
659 {
660 	struct pool *pool = tc->pool;
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&pool->lock, flags);
664 	__requeue_bio_list(tc, &pool->deferred_bios);
665 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
666 	spin_unlock_irqrestore(&pool->lock, flags);
667 }
668 
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675 
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678 	return bio->bi_sector >> tc->pool->block_shift;
679 }
680 
681 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
682 {
683 	struct pool *pool = tc->pool;
684 
685 	bio->bi_bdev = tc->pool_dev->bdev;
686 	bio->bi_sector = (block << pool->block_shift) +
687 		(bio->bi_sector & pool->offset_mask);
688 }
689 
690 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
691 {
692 	bio->bi_bdev = tc->origin_dev->bdev;
693 }
694 
695 static void issue(struct thin_c *tc, struct bio *bio)
696 {
697 	struct pool *pool = tc->pool;
698 	unsigned long flags;
699 
700 	/*
701 	 * Batch together any FUA/FLUSH bios we find and then issue
702 	 * a single commit for them in process_deferred_bios().
703 	 */
704 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
705 		spin_lock_irqsave(&pool->lock, flags);
706 		bio_list_add(&pool->deferred_flush_bios, bio);
707 		spin_unlock_irqrestore(&pool->lock, flags);
708 	} else
709 		generic_make_request(bio);
710 }
711 
712 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
713 {
714 	remap_to_origin(tc, bio);
715 	issue(tc, bio);
716 }
717 
718 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
719 			    dm_block_t block)
720 {
721 	remap(tc, bio, block);
722 	issue(tc, bio);
723 }
724 
725 /*
726  * wake_worker() is used when new work is queued and when pool_resume is
727  * ready to continue deferred IO processing.
728  */
729 static void wake_worker(struct pool *pool)
730 {
731 	queue_work(pool->wq, &pool->worker);
732 }
733 
734 /*----------------------------------------------------------------*/
735 
736 /*
737  * Bio endio functions.
738  */
739 struct new_mapping {
740 	struct list_head list;
741 
742 	unsigned quiesced:1;
743 	unsigned prepared:1;
744 	unsigned pass_discard:1;
745 
746 	struct thin_c *tc;
747 	dm_block_t virt_block;
748 	dm_block_t data_block;
749 	struct cell *cell, *cell2;
750 	int err;
751 
752 	/*
753 	 * If the bio covers the whole area of a block then we can avoid
754 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
755 	 * still be in the cell, so care has to be taken to avoid issuing
756 	 * the bio twice.
757 	 */
758 	struct bio *bio;
759 	bio_end_io_t *saved_bi_end_io;
760 };
761 
762 static void __maybe_add_mapping(struct new_mapping *m)
763 {
764 	struct pool *pool = m->tc->pool;
765 
766 	if (m->quiesced && m->prepared) {
767 		list_add(&m->list, &pool->prepared_mappings);
768 		wake_worker(pool);
769 	}
770 }
771 
772 static void copy_complete(int read_err, unsigned long write_err, void *context)
773 {
774 	unsigned long flags;
775 	struct new_mapping *m = context;
776 	struct pool *pool = m->tc->pool;
777 
778 	m->err = read_err || write_err ? -EIO : 0;
779 
780 	spin_lock_irqsave(&pool->lock, flags);
781 	m->prepared = 1;
782 	__maybe_add_mapping(m);
783 	spin_unlock_irqrestore(&pool->lock, flags);
784 }
785 
786 static void overwrite_endio(struct bio *bio, int err)
787 {
788 	unsigned long flags;
789 	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
790 	struct new_mapping *m = h->overwrite_mapping;
791 	struct pool *pool = m->tc->pool;
792 
793 	m->err = err;
794 
795 	spin_lock_irqsave(&pool->lock, flags);
796 	m->prepared = 1;
797 	__maybe_add_mapping(m);
798 	spin_unlock_irqrestore(&pool->lock, flags);
799 }
800 
801 /*----------------------------------------------------------------*/
802 
803 /*
804  * Workqueue.
805  */
806 
807 /*
808  * Prepared mapping jobs.
809  */
810 
811 /*
812  * This sends the bios in the cell back to the deferred_bios list.
813  */
814 static void cell_defer(struct thin_c *tc, struct cell *cell,
815 		       dm_block_t data_block)
816 {
817 	struct pool *pool = tc->pool;
818 	unsigned long flags;
819 
820 	spin_lock_irqsave(&pool->lock, flags);
821 	cell_release(cell, &pool->deferred_bios);
822 	spin_unlock_irqrestore(&tc->pool->lock, flags);
823 
824 	wake_worker(pool);
825 }
826 
827 /*
828  * Same as cell_defer above, except it omits one particular detainee,
829  * a write bio that covers the block and has already been processed.
830  */
831 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
832 {
833 	struct bio_list bios;
834 	struct pool *pool = tc->pool;
835 	unsigned long flags;
836 
837 	bio_list_init(&bios);
838 
839 	spin_lock_irqsave(&pool->lock, flags);
840 	cell_release_no_holder(cell, &pool->deferred_bios);
841 	spin_unlock_irqrestore(&pool->lock, flags);
842 
843 	wake_worker(pool);
844 }
845 
846 static void process_prepared_mapping(struct new_mapping *m)
847 {
848 	struct thin_c *tc = m->tc;
849 	struct bio *bio;
850 	int r;
851 
852 	bio = m->bio;
853 	if (bio)
854 		bio->bi_end_io = m->saved_bi_end_io;
855 
856 	if (m->err) {
857 		cell_error(m->cell);
858 		return;
859 	}
860 
861 	/*
862 	 * Commit the prepared block into the mapping btree.
863 	 * Any I/O for this block arriving after this point will get
864 	 * remapped to it directly.
865 	 */
866 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
867 	if (r) {
868 		DMERR("dm_thin_insert_block() failed");
869 		cell_error(m->cell);
870 		return;
871 	}
872 
873 	/*
874 	 * Release any bios held while the block was being provisioned.
875 	 * If we are processing a write bio that completely covers the block,
876 	 * we already processed it so can ignore it now when processing
877 	 * the bios in the cell.
878 	 */
879 	if (bio) {
880 		cell_defer_except(tc, m->cell);
881 		bio_endio(bio, 0);
882 	} else
883 		cell_defer(tc, m->cell, m->data_block);
884 
885 	list_del(&m->list);
886 	mempool_free(m, tc->pool->mapping_pool);
887 }
888 
889 static void process_prepared_discard(struct new_mapping *m)
890 {
891 	int r;
892 	struct thin_c *tc = m->tc;
893 
894 	r = dm_thin_remove_block(tc->td, m->virt_block);
895 	if (r)
896 		DMERR("dm_thin_remove_block() failed");
897 
898 	/*
899 	 * Pass the discard down to the underlying device?
900 	 */
901 	if (m->pass_discard)
902 		remap_and_issue(tc, m->bio, m->data_block);
903 	else
904 		bio_endio(m->bio, 0);
905 
906 	cell_defer_except(tc, m->cell);
907 	cell_defer_except(tc, m->cell2);
908 	mempool_free(m, tc->pool->mapping_pool);
909 }
910 
911 static void process_prepared(struct pool *pool, struct list_head *head,
912 			     void (*fn)(struct new_mapping *))
913 {
914 	unsigned long flags;
915 	struct list_head maps;
916 	struct new_mapping *m, *tmp;
917 
918 	INIT_LIST_HEAD(&maps);
919 	spin_lock_irqsave(&pool->lock, flags);
920 	list_splice_init(head, &maps);
921 	spin_unlock_irqrestore(&pool->lock, flags);
922 
923 	list_for_each_entry_safe(m, tmp, &maps, list)
924 		fn(m);
925 }
926 
927 /*
928  * Deferred bio jobs.
929  */
930 static int io_overlaps_block(struct pool *pool, struct bio *bio)
931 {
932 	return !(bio->bi_sector & pool->offset_mask) &&
933 		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
934 
935 }
936 
937 static int io_overwrites_block(struct pool *pool, struct bio *bio)
938 {
939 	return (bio_data_dir(bio) == WRITE) &&
940 		io_overlaps_block(pool, bio);
941 }
942 
943 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
944 			       bio_end_io_t *fn)
945 {
946 	*save = bio->bi_end_io;
947 	bio->bi_end_io = fn;
948 }
949 
950 static int ensure_next_mapping(struct pool *pool)
951 {
952 	if (pool->next_mapping)
953 		return 0;
954 
955 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
956 
957 	return pool->next_mapping ? 0 : -ENOMEM;
958 }
959 
960 static struct new_mapping *get_next_mapping(struct pool *pool)
961 {
962 	struct new_mapping *r = pool->next_mapping;
963 
964 	BUG_ON(!pool->next_mapping);
965 
966 	pool->next_mapping = NULL;
967 
968 	return r;
969 }
970 
971 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
972 			  struct dm_dev *origin, dm_block_t data_origin,
973 			  dm_block_t data_dest,
974 			  struct cell *cell, struct bio *bio)
975 {
976 	int r;
977 	struct pool *pool = tc->pool;
978 	struct new_mapping *m = get_next_mapping(pool);
979 
980 	INIT_LIST_HEAD(&m->list);
981 	m->quiesced = 0;
982 	m->prepared = 0;
983 	m->tc = tc;
984 	m->virt_block = virt_block;
985 	m->data_block = data_dest;
986 	m->cell = cell;
987 	m->err = 0;
988 	m->bio = NULL;
989 
990 	if (!ds_add_work(&pool->shared_read_ds, &m->list))
991 		m->quiesced = 1;
992 
993 	/*
994 	 * IO to pool_dev remaps to the pool target's data_dev.
995 	 *
996 	 * If the whole block of data is being overwritten, we can issue the
997 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
998 	 */
999 	if (io_overwrites_block(pool, bio)) {
1000 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1001 		h->overwrite_mapping = m;
1002 		m->bio = bio;
1003 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1004 		remap_and_issue(tc, bio, data_dest);
1005 	} else {
1006 		struct dm_io_region from, to;
1007 
1008 		from.bdev = origin->bdev;
1009 		from.sector = data_origin * pool->sectors_per_block;
1010 		from.count = pool->sectors_per_block;
1011 
1012 		to.bdev = tc->pool_dev->bdev;
1013 		to.sector = data_dest * pool->sectors_per_block;
1014 		to.count = pool->sectors_per_block;
1015 
1016 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1017 				   0, copy_complete, m);
1018 		if (r < 0) {
1019 			mempool_free(m, pool->mapping_pool);
1020 			DMERR("dm_kcopyd_copy() failed");
1021 			cell_error(cell);
1022 		}
1023 	}
1024 }
1025 
1026 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1027 				   dm_block_t data_origin, dm_block_t data_dest,
1028 				   struct cell *cell, struct bio *bio)
1029 {
1030 	schedule_copy(tc, virt_block, tc->pool_dev,
1031 		      data_origin, data_dest, cell, bio);
1032 }
1033 
1034 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1035 				   dm_block_t data_dest,
1036 				   struct cell *cell, struct bio *bio)
1037 {
1038 	schedule_copy(tc, virt_block, tc->origin_dev,
1039 		      virt_block, data_dest, cell, bio);
1040 }
1041 
1042 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1043 			  dm_block_t data_block, struct cell *cell,
1044 			  struct bio *bio)
1045 {
1046 	struct pool *pool = tc->pool;
1047 	struct new_mapping *m = get_next_mapping(pool);
1048 
1049 	INIT_LIST_HEAD(&m->list);
1050 	m->quiesced = 1;
1051 	m->prepared = 0;
1052 	m->tc = tc;
1053 	m->virt_block = virt_block;
1054 	m->data_block = data_block;
1055 	m->cell = cell;
1056 	m->err = 0;
1057 	m->bio = NULL;
1058 
1059 	/*
1060 	 * If the whole block of data is being overwritten or we are not
1061 	 * zeroing pre-existing data, we can issue the bio immediately.
1062 	 * Otherwise we use kcopyd to zero the data first.
1063 	 */
1064 	if (!pool->pf.zero_new_blocks)
1065 		process_prepared_mapping(m);
1066 
1067 	else if (io_overwrites_block(pool, bio)) {
1068 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1069 		h->overwrite_mapping = m;
1070 		m->bio = bio;
1071 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1072 		remap_and_issue(tc, bio, data_block);
1073 
1074 	} else {
1075 		int r;
1076 		struct dm_io_region to;
1077 
1078 		to.bdev = tc->pool_dev->bdev;
1079 		to.sector = data_block * pool->sectors_per_block;
1080 		to.count = pool->sectors_per_block;
1081 
1082 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1083 		if (r < 0) {
1084 			mempool_free(m, pool->mapping_pool);
1085 			DMERR("dm_kcopyd_zero() failed");
1086 			cell_error(cell);
1087 		}
1088 	}
1089 }
1090 
1091 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1092 {
1093 	int r;
1094 	dm_block_t free_blocks;
1095 	unsigned long flags;
1096 	struct pool *pool = tc->pool;
1097 
1098 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1099 	if (r)
1100 		return r;
1101 
1102 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1103 		DMWARN("%s: reached low water mark, sending event.",
1104 		       dm_device_name(pool->pool_md));
1105 		spin_lock_irqsave(&pool->lock, flags);
1106 		pool->low_water_triggered = 1;
1107 		spin_unlock_irqrestore(&pool->lock, flags);
1108 		dm_table_event(pool->ti->table);
1109 	}
1110 
1111 	if (!free_blocks) {
1112 		if (pool->no_free_space)
1113 			return -ENOSPC;
1114 		else {
1115 			/*
1116 			 * Try to commit to see if that will free up some
1117 			 * more space.
1118 			 */
1119 			r = dm_pool_commit_metadata(pool->pmd);
1120 			if (r) {
1121 				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1122 				      __func__, r);
1123 				return r;
1124 			}
1125 
1126 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1127 			if (r)
1128 				return r;
1129 
1130 			/*
1131 			 * If we still have no space we set a flag to avoid
1132 			 * doing all this checking and return -ENOSPC.
1133 			 */
1134 			if (!free_blocks) {
1135 				DMWARN("%s: no free space available.",
1136 				       dm_device_name(pool->pool_md));
1137 				spin_lock_irqsave(&pool->lock, flags);
1138 				pool->no_free_space = 1;
1139 				spin_unlock_irqrestore(&pool->lock, flags);
1140 				return -ENOSPC;
1141 			}
1142 		}
1143 	}
1144 
1145 	r = dm_pool_alloc_data_block(pool->pmd, result);
1146 	if (r)
1147 		return r;
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * If we have run out of space, queue bios until the device is
1154  * resumed, presumably after having been reloaded with more space.
1155  */
1156 static void retry_on_resume(struct bio *bio)
1157 {
1158 	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1159 	struct thin_c *tc = h->tc;
1160 	struct pool *pool = tc->pool;
1161 	unsigned long flags;
1162 
1163 	spin_lock_irqsave(&pool->lock, flags);
1164 	bio_list_add(&pool->retry_on_resume_list, bio);
1165 	spin_unlock_irqrestore(&pool->lock, flags);
1166 }
1167 
1168 static void no_space(struct cell *cell)
1169 {
1170 	struct bio *bio;
1171 	struct bio_list bios;
1172 
1173 	bio_list_init(&bios);
1174 	cell_release(cell, &bios);
1175 
1176 	while ((bio = bio_list_pop(&bios)))
1177 		retry_on_resume(bio);
1178 }
1179 
1180 static void process_discard(struct thin_c *tc, struct bio *bio)
1181 {
1182 	int r;
1183 	unsigned long flags;
1184 	struct pool *pool = tc->pool;
1185 	struct cell *cell, *cell2;
1186 	struct cell_key key, key2;
1187 	dm_block_t block = get_bio_block(tc, bio);
1188 	struct dm_thin_lookup_result lookup_result;
1189 	struct new_mapping *m;
1190 
1191 	build_virtual_key(tc->td, block, &key);
1192 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1193 		return;
1194 
1195 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1196 	switch (r) {
1197 	case 0:
1198 		/*
1199 		 * Check nobody is fiddling with this pool block.  This can
1200 		 * happen if someone's in the process of breaking sharing
1201 		 * on this block.
1202 		 */
1203 		build_data_key(tc->td, lookup_result.block, &key2);
1204 		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1205 			cell_release_singleton(cell, bio);
1206 			break;
1207 		}
1208 
1209 		if (io_overlaps_block(pool, bio)) {
1210 			/*
1211 			 * IO may still be going to the destination block.  We must
1212 			 * quiesce before we can do the removal.
1213 			 */
1214 			m = get_next_mapping(pool);
1215 			m->tc = tc;
1216 			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1217 			m->virt_block = block;
1218 			m->data_block = lookup_result.block;
1219 			m->cell = cell;
1220 			m->cell2 = cell2;
1221 			m->err = 0;
1222 			m->bio = bio;
1223 
1224 			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1225 				spin_lock_irqsave(&pool->lock, flags);
1226 				list_add(&m->list, &pool->prepared_discards);
1227 				spin_unlock_irqrestore(&pool->lock, flags);
1228 				wake_worker(pool);
1229 			}
1230 		} else {
1231 			/*
1232 			 * This path is hit if people are ignoring
1233 			 * limits->discard_granularity.  It ignores any
1234 			 * part of the discard that is in a subsequent
1235 			 * block.
1236 			 */
1237 			sector_t offset = bio->bi_sector - (block << pool->block_shift);
1238 			unsigned remaining = (pool->sectors_per_block - offset) << 9;
1239 			bio->bi_size = min(bio->bi_size, remaining);
1240 
1241 			cell_release_singleton(cell, bio);
1242 			cell_release_singleton(cell2, bio);
1243 			remap_and_issue(tc, bio, lookup_result.block);
1244 		}
1245 		break;
1246 
1247 	case -ENODATA:
1248 		/*
1249 		 * It isn't provisioned, just forget it.
1250 		 */
1251 		cell_release_singleton(cell, bio);
1252 		bio_endio(bio, 0);
1253 		break;
1254 
1255 	default:
1256 		DMERR("discard: find block unexpectedly returned %d", r);
1257 		cell_release_singleton(cell, bio);
1258 		bio_io_error(bio);
1259 		break;
1260 	}
1261 }
1262 
1263 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1264 			  struct cell_key *key,
1265 			  struct dm_thin_lookup_result *lookup_result,
1266 			  struct cell *cell)
1267 {
1268 	int r;
1269 	dm_block_t data_block;
1270 
1271 	r = alloc_data_block(tc, &data_block);
1272 	switch (r) {
1273 	case 0:
1274 		schedule_internal_copy(tc, block, lookup_result->block,
1275 				       data_block, cell, bio);
1276 		break;
1277 
1278 	case -ENOSPC:
1279 		no_space(cell);
1280 		break;
1281 
1282 	default:
1283 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1284 		cell_error(cell);
1285 		break;
1286 	}
1287 }
1288 
1289 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1290 			       dm_block_t block,
1291 			       struct dm_thin_lookup_result *lookup_result)
1292 {
1293 	struct cell *cell;
1294 	struct pool *pool = tc->pool;
1295 	struct cell_key key;
1296 
1297 	/*
1298 	 * If cell is already occupied, then sharing is already in the process
1299 	 * of being broken so we have nothing further to do here.
1300 	 */
1301 	build_data_key(tc->td, lookup_result->block, &key);
1302 	if (bio_detain(pool->prison, &key, bio, &cell))
1303 		return;
1304 
1305 	if (bio_data_dir(bio) == WRITE)
1306 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1307 	else {
1308 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1309 
1310 		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1311 
1312 		cell_release_singleton(cell, bio);
1313 		remap_and_issue(tc, bio, lookup_result->block);
1314 	}
1315 }
1316 
1317 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1318 			    struct cell *cell)
1319 {
1320 	int r;
1321 	dm_block_t data_block;
1322 
1323 	/*
1324 	 * Remap empty bios (flushes) immediately, without provisioning.
1325 	 */
1326 	if (!bio->bi_size) {
1327 		cell_release_singleton(cell, bio);
1328 		remap_and_issue(tc, bio, 0);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Fill read bios with zeroes and complete them immediately.
1334 	 */
1335 	if (bio_data_dir(bio) == READ) {
1336 		zero_fill_bio(bio);
1337 		cell_release_singleton(cell, bio);
1338 		bio_endio(bio, 0);
1339 		return;
1340 	}
1341 
1342 	r = alloc_data_block(tc, &data_block);
1343 	switch (r) {
1344 	case 0:
1345 		if (tc->origin_dev)
1346 			schedule_external_copy(tc, block, data_block, cell, bio);
1347 		else
1348 			schedule_zero(tc, block, data_block, cell, bio);
1349 		break;
1350 
1351 	case -ENOSPC:
1352 		no_space(cell);
1353 		break;
1354 
1355 	default:
1356 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1357 		cell_error(cell);
1358 		break;
1359 	}
1360 }
1361 
1362 static void process_bio(struct thin_c *tc, struct bio *bio)
1363 {
1364 	int r;
1365 	dm_block_t block = get_bio_block(tc, bio);
1366 	struct cell *cell;
1367 	struct cell_key key;
1368 	struct dm_thin_lookup_result lookup_result;
1369 
1370 	/*
1371 	 * If cell is already occupied, then the block is already
1372 	 * being provisioned so we have nothing further to do here.
1373 	 */
1374 	build_virtual_key(tc->td, block, &key);
1375 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1376 		return;
1377 
1378 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1379 	switch (r) {
1380 	case 0:
1381 		/*
1382 		 * We can release this cell now.  This thread is the only
1383 		 * one that puts bios into a cell, and we know there were
1384 		 * no preceding bios.
1385 		 */
1386 		/*
1387 		 * TODO: this will probably have to change when discard goes
1388 		 * back in.
1389 		 */
1390 		cell_release_singleton(cell, bio);
1391 
1392 		if (lookup_result.shared)
1393 			process_shared_bio(tc, bio, block, &lookup_result);
1394 		else
1395 			remap_and_issue(tc, bio, lookup_result.block);
1396 		break;
1397 
1398 	case -ENODATA:
1399 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1400 			cell_release_singleton(cell, bio);
1401 			remap_to_origin_and_issue(tc, bio);
1402 		} else
1403 			provision_block(tc, bio, block, cell);
1404 		break;
1405 
1406 	default:
1407 		DMERR("dm_thin_find_block() failed, error = %d", r);
1408 		cell_release_singleton(cell, bio);
1409 		bio_io_error(bio);
1410 		break;
1411 	}
1412 }
1413 
1414 static int need_commit_due_to_time(struct pool *pool)
1415 {
1416 	return jiffies < pool->last_commit_jiffies ||
1417 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1418 }
1419 
1420 static void process_deferred_bios(struct pool *pool)
1421 {
1422 	unsigned long flags;
1423 	struct bio *bio;
1424 	struct bio_list bios;
1425 	int r;
1426 
1427 	bio_list_init(&bios);
1428 
1429 	spin_lock_irqsave(&pool->lock, flags);
1430 	bio_list_merge(&bios, &pool->deferred_bios);
1431 	bio_list_init(&pool->deferred_bios);
1432 	spin_unlock_irqrestore(&pool->lock, flags);
1433 
1434 	while ((bio = bio_list_pop(&bios))) {
1435 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1436 		struct thin_c *tc = h->tc;
1437 
1438 		/*
1439 		 * If we've got no free new_mapping structs, and processing
1440 		 * this bio might require one, we pause until there are some
1441 		 * prepared mappings to process.
1442 		 */
1443 		if (ensure_next_mapping(pool)) {
1444 			spin_lock_irqsave(&pool->lock, flags);
1445 			bio_list_merge(&pool->deferred_bios, &bios);
1446 			spin_unlock_irqrestore(&pool->lock, flags);
1447 
1448 			break;
1449 		}
1450 
1451 		if (bio->bi_rw & REQ_DISCARD)
1452 			process_discard(tc, bio);
1453 		else
1454 			process_bio(tc, bio);
1455 	}
1456 
1457 	/*
1458 	 * If there are any deferred flush bios, we must commit
1459 	 * the metadata before issuing them.
1460 	 */
1461 	bio_list_init(&bios);
1462 	spin_lock_irqsave(&pool->lock, flags);
1463 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1464 	bio_list_init(&pool->deferred_flush_bios);
1465 	spin_unlock_irqrestore(&pool->lock, flags);
1466 
1467 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1468 		return;
1469 
1470 	r = dm_pool_commit_metadata(pool->pmd);
1471 	if (r) {
1472 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1473 		      __func__, r);
1474 		while ((bio = bio_list_pop(&bios)))
1475 			bio_io_error(bio);
1476 		return;
1477 	}
1478 	pool->last_commit_jiffies = jiffies;
1479 
1480 	while ((bio = bio_list_pop(&bios)))
1481 		generic_make_request(bio);
1482 }
1483 
1484 static void do_worker(struct work_struct *ws)
1485 {
1486 	struct pool *pool = container_of(ws, struct pool, worker);
1487 
1488 	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1489 	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1490 	process_deferred_bios(pool);
1491 }
1492 
1493 /*
1494  * We want to commit periodically so that not too much
1495  * unwritten data builds up.
1496  */
1497 static void do_waker(struct work_struct *ws)
1498 {
1499 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1500 	wake_worker(pool);
1501 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1502 }
1503 
1504 /*----------------------------------------------------------------*/
1505 
1506 /*
1507  * Mapping functions.
1508  */
1509 
1510 /*
1511  * Called only while mapping a thin bio to hand it over to the workqueue.
1512  */
1513 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1514 {
1515 	unsigned long flags;
1516 	struct pool *pool = tc->pool;
1517 
1518 	spin_lock_irqsave(&pool->lock, flags);
1519 	bio_list_add(&pool->deferred_bios, bio);
1520 	spin_unlock_irqrestore(&pool->lock, flags);
1521 
1522 	wake_worker(pool);
1523 }
1524 
1525 static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1526 {
1527 	struct pool *pool = tc->pool;
1528 	struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1529 
1530 	h->tc = tc;
1531 	h->shared_read_entry = NULL;
1532 	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1533 	h->overwrite_mapping = NULL;
1534 
1535 	return h;
1536 }
1537 
1538 /*
1539  * Non-blocking function called from the thin target's map function.
1540  */
1541 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1542 			union map_info *map_context)
1543 {
1544 	int r;
1545 	struct thin_c *tc = ti->private;
1546 	dm_block_t block = get_bio_block(tc, bio);
1547 	struct dm_thin_device *td = tc->td;
1548 	struct dm_thin_lookup_result result;
1549 
1550 	map_context->ptr = thin_hook_bio(tc, bio);
1551 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1552 		thin_defer_bio(tc, bio);
1553 		return DM_MAPIO_SUBMITTED;
1554 	}
1555 
1556 	r = dm_thin_find_block(td, block, 0, &result);
1557 
1558 	/*
1559 	 * Note that we defer readahead too.
1560 	 */
1561 	switch (r) {
1562 	case 0:
1563 		if (unlikely(result.shared)) {
1564 			/*
1565 			 * We have a race condition here between the
1566 			 * result.shared value returned by the lookup and
1567 			 * snapshot creation, which may cause new
1568 			 * sharing.
1569 			 *
1570 			 * To avoid this always quiesce the origin before
1571 			 * taking the snap.  You want to do this anyway to
1572 			 * ensure a consistent application view
1573 			 * (i.e. lockfs).
1574 			 *
1575 			 * More distant ancestors are irrelevant. The
1576 			 * shared flag will be set in their case.
1577 			 */
1578 			thin_defer_bio(tc, bio);
1579 			r = DM_MAPIO_SUBMITTED;
1580 		} else {
1581 			remap(tc, bio, result.block);
1582 			r = DM_MAPIO_REMAPPED;
1583 		}
1584 		break;
1585 
1586 	case -ENODATA:
1587 		/*
1588 		 * In future, the failed dm_thin_find_block above could
1589 		 * provide the hint to load the metadata into cache.
1590 		 */
1591 	case -EWOULDBLOCK:
1592 		thin_defer_bio(tc, bio);
1593 		r = DM_MAPIO_SUBMITTED;
1594 		break;
1595 	}
1596 
1597 	return r;
1598 }
1599 
1600 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1601 {
1602 	int r;
1603 	unsigned long flags;
1604 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1605 
1606 	spin_lock_irqsave(&pt->pool->lock, flags);
1607 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1608 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1609 
1610 	if (!r) {
1611 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1612 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1613 	}
1614 
1615 	return r;
1616 }
1617 
1618 static void __requeue_bios(struct pool *pool)
1619 {
1620 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1621 	bio_list_init(&pool->retry_on_resume_list);
1622 }
1623 
1624 /*----------------------------------------------------------------
1625  * Binding of control targets to a pool object
1626  *--------------------------------------------------------------*/
1627 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1628 {
1629 	struct pool_c *pt = ti->private;
1630 
1631 	pool->ti = ti;
1632 	pool->low_water_blocks = pt->low_water_blocks;
1633 	pool->pf = pt->pf;
1634 
1635 	return 0;
1636 }
1637 
1638 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1639 {
1640 	if (pool->ti == ti)
1641 		pool->ti = NULL;
1642 }
1643 
1644 /*----------------------------------------------------------------
1645  * Pool creation
1646  *--------------------------------------------------------------*/
1647 /* Initialize pool features. */
1648 static void pool_features_init(struct pool_features *pf)
1649 {
1650 	pf->zero_new_blocks = 1;
1651 	pf->discard_enabled = 1;
1652 	pf->discard_passdown = 1;
1653 }
1654 
1655 static void __pool_destroy(struct pool *pool)
1656 {
1657 	__pool_table_remove(pool);
1658 
1659 	if (dm_pool_metadata_close(pool->pmd) < 0)
1660 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1661 
1662 	prison_destroy(pool->prison);
1663 	dm_kcopyd_client_destroy(pool->copier);
1664 
1665 	if (pool->wq)
1666 		destroy_workqueue(pool->wq);
1667 
1668 	if (pool->next_mapping)
1669 		mempool_free(pool->next_mapping, pool->mapping_pool);
1670 	mempool_destroy(pool->mapping_pool);
1671 	mempool_destroy(pool->endio_hook_pool);
1672 	kfree(pool);
1673 }
1674 
1675 static struct pool *pool_create(struct mapped_device *pool_md,
1676 				struct block_device *metadata_dev,
1677 				unsigned long block_size, char **error)
1678 {
1679 	int r;
1680 	void *err_p;
1681 	struct pool *pool;
1682 	struct dm_pool_metadata *pmd;
1683 
1684 	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1685 	if (IS_ERR(pmd)) {
1686 		*error = "Error creating metadata object";
1687 		return (struct pool *)pmd;
1688 	}
1689 
1690 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1691 	if (!pool) {
1692 		*error = "Error allocating memory for pool";
1693 		err_p = ERR_PTR(-ENOMEM);
1694 		goto bad_pool;
1695 	}
1696 
1697 	pool->pmd = pmd;
1698 	pool->sectors_per_block = block_size;
1699 	pool->block_shift = ffs(block_size) - 1;
1700 	pool->offset_mask = block_size - 1;
1701 	pool->low_water_blocks = 0;
1702 	pool_features_init(&pool->pf);
1703 	pool->prison = prison_create(PRISON_CELLS);
1704 	if (!pool->prison) {
1705 		*error = "Error creating pool's bio prison";
1706 		err_p = ERR_PTR(-ENOMEM);
1707 		goto bad_prison;
1708 	}
1709 
1710 	pool->copier = dm_kcopyd_client_create();
1711 	if (IS_ERR(pool->copier)) {
1712 		r = PTR_ERR(pool->copier);
1713 		*error = "Error creating pool's kcopyd client";
1714 		err_p = ERR_PTR(r);
1715 		goto bad_kcopyd_client;
1716 	}
1717 
1718 	/*
1719 	 * Create singlethreaded workqueue that will service all devices
1720 	 * that use this metadata.
1721 	 */
1722 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1723 	if (!pool->wq) {
1724 		*error = "Error creating pool's workqueue";
1725 		err_p = ERR_PTR(-ENOMEM);
1726 		goto bad_wq;
1727 	}
1728 
1729 	INIT_WORK(&pool->worker, do_worker);
1730 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1731 	spin_lock_init(&pool->lock);
1732 	bio_list_init(&pool->deferred_bios);
1733 	bio_list_init(&pool->deferred_flush_bios);
1734 	INIT_LIST_HEAD(&pool->prepared_mappings);
1735 	INIT_LIST_HEAD(&pool->prepared_discards);
1736 	pool->low_water_triggered = 0;
1737 	pool->no_free_space = 0;
1738 	bio_list_init(&pool->retry_on_resume_list);
1739 	ds_init(&pool->shared_read_ds);
1740 	ds_init(&pool->all_io_ds);
1741 
1742 	pool->next_mapping = NULL;
1743 	pool->mapping_pool =
1744 		mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1745 	if (!pool->mapping_pool) {
1746 		*error = "Error creating pool's mapping mempool";
1747 		err_p = ERR_PTR(-ENOMEM);
1748 		goto bad_mapping_pool;
1749 	}
1750 
1751 	pool->endio_hook_pool =
1752 		mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1753 	if (!pool->endio_hook_pool) {
1754 		*error = "Error creating pool's endio_hook mempool";
1755 		err_p = ERR_PTR(-ENOMEM);
1756 		goto bad_endio_hook_pool;
1757 	}
1758 	pool->ref_count = 1;
1759 	pool->last_commit_jiffies = jiffies;
1760 	pool->pool_md = pool_md;
1761 	pool->md_dev = metadata_dev;
1762 	__pool_table_insert(pool);
1763 
1764 	return pool;
1765 
1766 bad_endio_hook_pool:
1767 	mempool_destroy(pool->mapping_pool);
1768 bad_mapping_pool:
1769 	destroy_workqueue(pool->wq);
1770 bad_wq:
1771 	dm_kcopyd_client_destroy(pool->copier);
1772 bad_kcopyd_client:
1773 	prison_destroy(pool->prison);
1774 bad_prison:
1775 	kfree(pool);
1776 bad_pool:
1777 	if (dm_pool_metadata_close(pmd))
1778 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1779 
1780 	return err_p;
1781 }
1782 
1783 static void __pool_inc(struct pool *pool)
1784 {
1785 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1786 	pool->ref_count++;
1787 }
1788 
1789 static void __pool_dec(struct pool *pool)
1790 {
1791 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1792 	BUG_ON(!pool->ref_count);
1793 	if (!--pool->ref_count)
1794 		__pool_destroy(pool);
1795 }
1796 
1797 static struct pool *__pool_find(struct mapped_device *pool_md,
1798 				struct block_device *metadata_dev,
1799 				unsigned long block_size, char **error,
1800 				int *created)
1801 {
1802 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1803 
1804 	if (pool) {
1805 		if (pool->pool_md != pool_md)
1806 			return ERR_PTR(-EBUSY);
1807 		__pool_inc(pool);
1808 
1809 	} else {
1810 		pool = __pool_table_lookup(pool_md);
1811 		if (pool) {
1812 			if (pool->md_dev != metadata_dev)
1813 				return ERR_PTR(-EINVAL);
1814 			__pool_inc(pool);
1815 
1816 		} else {
1817 			pool = pool_create(pool_md, metadata_dev, block_size, error);
1818 			*created = 1;
1819 		}
1820 	}
1821 
1822 	return pool;
1823 }
1824 
1825 /*----------------------------------------------------------------
1826  * Pool target methods
1827  *--------------------------------------------------------------*/
1828 static void pool_dtr(struct dm_target *ti)
1829 {
1830 	struct pool_c *pt = ti->private;
1831 
1832 	mutex_lock(&dm_thin_pool_table.mutex);
1833 
1834 	unbind_control_target(pt->pool, ti);
1835 	__pool_dec(pt->pool);
1836 	dm_put_device(ti, pt->metadata_dev);
1837 	dm_put_device(ti, pt->data_dev);
1838 	kfree(pt);
1839 
1840 	mutex_unlock(&dm_thin_pool_table.mutex);
1841 }
1842 
1843 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1844 			       struct dm_target *ti)
1845 {
1846 	int r;
1847 	unsigned argc;
1848 	const char *arg_name;
1849 
1850 	static struct dm_arg _args[] = {
1851 		{0, 3, "Invalid number of pool feature arguments"},
1852 	};
1853 
1854 	/*
1855 	 * No feature arguments supplied.
1856 	 */
1857 	if (!as->argc)
1858 		return 0;
1859 
1860 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1861 	if (r)
1862 		return -EINVAL;
1863 
1864 	while (argc && !r) {
1865 		arg_name = dm_shift_arg(as);
1866 		argc--;
1867 
1868 		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1869 			pf->zero_new_blocks = 0;
1870 			continue;
1871 		} else if (!strcasecmp(arg_name, "ignore_discard")) {
1872 			pf->discard_enabled = 0;
1873 			continue;
1874 		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1875 			pf->discard_passdown = 0;
1876 			continue;
1877 		}
1878 
1879 		ti->error = "Unrecognised pool feature requested";
1880 		r = -EINVAL;
1881 	}
1882 
1883 	return r;
1884 }
1885 
1886 /*
1887  * thin-pool <metadata dev> <data dev>
1888  *	     <data block size (sectors)>
1889  *	     <low water mark (blocks)>
1890  *	     [<#feature args> [<arg>]*]
1891  *
1892  * Optional feature arguments are:
1893  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1894  *	     ignore_discard: disable discard
1895  *	     no_discard_passdown: don't pass discards down to the data device
1896  */
1897 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1898 {
1899 	int r, pool_created = 0;
1900 	struct pool_c *pt;
1901 	struct pool *pool;
1902 	struct pool_features pf;
1903 	struct dm_arg_set as;
1904 	struct dm_dev *data_dev;
1905 	unsigned long block_size;
1906 	dm_block_t low_water_blocks;
1907 	struct dm_dev *metadata_dev;
1908 	sector_t metadata_dev_size;
1909 	char b[BDEVNAME_SIZE];
1910 
1911 	/*
1912 	 * FIXME Remove validation from scope of lock.
1913 	 */
1914 	mutex_lock(&dm_thin_pool_table.mutex);
1915 
1916 	if (argc < 4) {
1917 		ti->error = "Invalid argument count";
1918 		r = -EINVAL;
1919 		goto out_unlock;
1920 	}
1921 	as.argc = argc;
1922 	as.argv = argv;
1923 
1924 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1925 	if (r) {
1926 		ti->error = "Error opening metadata block device";
1927 		goto out_unlock;
1928 	}
1929 
1930 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1931 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1932 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1933 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1934 
1935 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1936 	if (r) {
1937 		ti->error = "Error getting data device";
1938 		goto out_metadata;
1939 	}
1940 
1941 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1942 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1943 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1944 	    !is_power_of_2(block_size)) {
1945 		ti->error = "Invalid block size";
1946 		r = -EINVAL;
1947 		goto out;
1948 	}
1949 
1950 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1951 		ti->error = "Invalid low water mark";
1952 		r = -EINVAL;
1953 		goto out;
1954 	}
1955 
1956 	/*
1957 	 * Set default pool features.
1958 	 */
1959 	pool_features_init(&pf);
1960 
1961 	dm_consume_args(&as, 4);
1962 	r = parse_pool_features(&as, &pf, ti);
1963 	if (r)
1964 		goto out;
1965 
1966 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1967 	if (!pt) {
1968 		r = -ENOMEM;
1969 		goto out;
1970 	}
1971 
1972 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1973 			   block_size, &ti->error, &pool_created);
1974 	if (IS_ERR(pool)) {
1975 		r = PTR_ERR(pool);
1976 		goto out_free_pt;
1977 	}
1978 
1979 	/*
1980 	 * 'pool_created' reflects whether this is the first table load.
1981 	 * Top level discard support is not allowed to be changed after
1982 	 * initial load.  This would require a pool reload to trigger thin
1983 	 * device changes.
1984 	 */
1985 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1986 		ti->error = "Discard support cannot be disabled once enabled";
1987 		r = -EINVAL;
1988 		goto out_flags_changed;
1989 	}
1990 
1991 	/*
1992 	 * If discard_passdown was enabled verify that the data device
1993 	 * supports discards.  Disable discard_passdown if not; otherwise
1994 	 * -EOPNOTSUPP will be returned.
1995 	 */
1996 	if (pf.discard_passdown) {
1997 		struct request_queue *q = bdev_get_queue(data_dev->bdev);
1998 		if (!q || !blk_queue_discard(q)) {
1999 			DMWARN("Discard unsupported by data device: Disabling discard passdown.");
2000 			pf.discard_passdown = 0;
2001 		}
2002 	}
2003 
2004 	pt->pool = pool;
2005 	pt->ti = ti;
2006 	pt->metadata_dev = metadata_dev;
2007 	pt->data_dev = data_dev;
2008 	pt->low_water_blocks = low_water_blocks;
2009 	pt->pf = pf;
2010 	ti->num_flush_requests = 1;
2011 	/*
2012 	 * Only need to enable discards if the pool should pass
2013 	 * them down to the data device.  The thin device's discard
2014 	 * processing will cause mappings to be removed from the btree.
2015 	 */
2016 	if (pf.discard_enabled && pf.discard_passdown) {
2017 		ti->num_discard_requests = 1;
2018 		/*
2019 		 * Setting 'discards_supported' circumvents the normal
2020 		 * stacking of discard limits (this keeps the pool and
2021 		 * thin devices' discard limits consistent).
2022 		 */
2023 		ti->discards_supported = 1;
2024 	}
2025 	ti->private = pt;
2026 
2027 	pt->callbacks.congested_fn = pool_is_congested;
2028 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2029 
2030 	mutex_unlock(&dm_thin_pool_table.mutex);
2031 
2032 	return 0;
2033 
2034 out_flags_changed:
2035 	__pool_dec(pool);
2036 out_free_pt:
2037 	kfree(pt);
2038 out:
2039 	dm_put_device(ti, data_dev);
2040 out_metadata:
2041 	dm_put_device(ti, metadata_dev);
2042 out_unlock:
2043 	mutex_unlock(&dm_thin_pool_table.mutex);
2044 
2045 	return r;
2046 }
2047 
2048 static int pool_map(struct dm_target *ti, struct bio *bio,
2049 		    union map_info *map_context)
2050 {
2051 	int r;
2052 	struct pool_c *pt = ti->private;
2053 	struct pool *pool = pt->pool;
2054 	unsigned long flags;
2055 
2056 	/*
2057 	 * As this is a singleton target, ti->begin is always zero.
2058 	 */
2059 	spin_lock_irqsave(&pool->lock, flags);
2060 	bio->bi_bdev = pt->data_dev->bdev;
2061 	r = DM_MAPIO_REMAPPED;
2062 	spin_unlock_irqrestore(&pool->lock, flags);
2063 
2064 	return r;
2065 }
2066 
2067 /*
2068  * Retrieves the number of blocks of the data device from
2069  * the superblock and compares it to the actual device size,
2070  * thus resizing the data device in case it has grown.
2071  *
2072  * This both copes with opening preallocated data devices in the ctr
2073  * being followed by a resume
2074  * -and-
2075  * calling the resume method individually after userspace has
2076  * grown the data device in reaction to a table event.
2077  */
2078 static int pool_preresume(struct dm_target *ti)
2079 {
2080 	int r;
2081 	struct pool_c *pt = ti->private;
2082 	struct pool *pool = pt->pool;
2083 	dm_block_t data_size, sb_data_size;
2084 
2085 	/*
2086 	 * Take control of the pool object.
2087 	 */
2088 	r = bind_control_target(pool, ti);
2089 	if (r)
2090 		return r;
2091 
2092 	data_size = ti->len >> pool->block_shift;
2093 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2094 	if (r) {
2095 		DMERR("failed to retrieve data device size");
2096 		return r;
2097 	}
2098 
2099 	if (data_size < sb_data_size) {
2100 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2101 		      data_size, sb_data_size);
2102 		return -EINVAL;
2103 
2104 	} else if (data_size > sb_data_size) {
2105 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2106 		if (r) {
2107 			DMERR("failed to resize data device");
2108 			return r;
2109 		}
2110 
2111 		r = dm_pool_commit_metadata(pool->pmd);
2112 		if (r) {
2113 			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2114 			      __func__, r);
2115 			return r;
2116 		}
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 static void pool_resume(struct dm_target *ti)
2123 {
2124 	struct pool_c *pt = ti->private;
2125 	struct pool *pool = pt->pool;
2126 	unsigned long flags;
2127 
2128 	spin_lock_irqsave(&pool->lock, flags);
2129 	pool->low_water_triggered = 0;
2130 	pool->no_free_space = 0;
2131 	__requeue_bios(pool);
2132 	spin_unlock_irqrestore(&pool->lock, flags);
2133 
2134 	do_waker(&pool->waker.work);
2135 }
2136 
2137 static void pool_postsuspend(struct dm_target *ti)
2138 {
2139 	int r;
2140 	struct pool_c *pt = ti->private;
2141 	struct pool *pool = pt->pool;
2142 
2143 	cancel_delayed_work(&pool->waker);
2144 	flush_workqueue(pool->wq);
2145 
2146 	r = dm_pool_commit_metadata(pool->pmd);
2147 	if (r < 0) {
2148 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2149 		      __func__, r);
2150 		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2151 	}
2152 }
2153 
2154 static int check_arg_count(unsigned argc, unsigned args_required)
2155 {
2156 	if (argc != args_required) {
2157 		DMWARN("Message received with %u arguments instead of %u.",
2158 		       argc, args_required);
2159 		return -EINVAL;
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2166 {
2167 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2168 	    *dev_id <= MAX_DEV_ID)
2169 		return 0;
2170 
2171 	if (warning)
2172 		DMWARN("Message received with invalid device id: %s", arg);
2173 
2174 	return -EINVAL;
2175 }
2176 
2177 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2178 {
2179 	dm_thin_id dev_id;
2180 	int r;
2181 
2182 	r = check_arg_count(argc, 2);
2183 	if (r)
2184 		return r;
2185 
2186 	r = read_dev_id(argv[1], &dev_id, 1);
2187 	if (r)
2188 		return r;
2189 
2190 	r = dm_pool_create_thin(pool->pmd, dev_id);
2191 	if (r) {
2192 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2193 		       argv[1]);
2194 		return r;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2201 {
2202 	dm_thin_id dev_id;
2203 	dm_thin_id origin_dev_id;
2204 	int r;
2205 
2206 	r = check_arg_count(argc, 3);
2207 	if (r)
2208 		return r;
2209 
2210 	r = read_dev_id(argv[1], &dev_id, 1);
2211 	if (r)
2212 		return r;
2213 
2214 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2215 	if (r)
2216 		return r;
2217 
2218 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2219 	if (r) {
2220 		DMWARN("Creation of new snapshot %s of device %s failed.",
2221 		       argv[1], argv[2]);
2222 		return r;
2223 	}
2224 
2225 	return 0;
2226 }
2227 
2228 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2229 {
2230 	dm_thin_id dev_id;
2231 	int r;
2232 
2233 	r = check_arg_count(argc, 2);
2234 	if (r)
2235 		return r;
2236 
2237 	r = read_dev_id(argv[1], &dev_id, 1);
2238 	if (r)
2239 		return r;
2240 
2241 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2242 	if (r)
2243 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2244 
2245 	return r;
2246 }
2247 
2248 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2249 {
2250 	dm_thin_id old_id, new_id;
2251 	int r;
2252 
2253 	r = check_arg_count(argc, 3);
2254 	if (r)
2255 		return r;
2256 
2257 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2258 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2259 		return -EINVAL;
2260 	}
2261 
2262 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2263 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2264 		return -EINVAL;
2265 	}
2266 
2267 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2268 	if (r) {
2269 		DMWARN("Failed to change transaction id from %s to %s.",
2270 		       argv[1], argv[2]);
2271 		return r;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 /*
2278  * Messages supported:
2279  *   create_thin	<dev_id>
2280  *   create_snap	<dev_id> <origin_id>
2281  *   delete		<dev_id>
2282  *   trim		<dev_id> <new_size_in_sectors>
2283  *   set_transaction_id <current_trans_id> <new_trans_id>
2284  */
2285 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2286 {
2287 	int r = -EINVAL;
2288 	struct pool_c *pt = ti->private;
2289 	struct pool *pool = pt->pool;
2290 
2291 	if (!strcasecmp(argv[0], "create_thin"))
2292 		r = process_create_thin_mesg(argc, argv, pool);
2293 
2294 	else if (!strcasecmp(argv[0], "create_snap"))
2295 		r = process_create_snap_mesg(argc, argv, pool);
2296 
2297 	else if (!strcasecmp(argv[0], "delete"))
2298 		r = process_delete_mesg(argc, argv, pool);
2299 
2300 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2301 		r = process_set_transaction_id_mesg(argc, argv, pool);
2302 
2303 	else
2304 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2305 
2306 	if (!r) {
2307 		r = dm_pool_commit_metadata(pool->pmd);
2308 		if (r)
2309 			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2310 			      argv[0], r);
2311 	}
2312 
2313 	return r;
2314 }
2315 
2316 /*
2317  * Status line is:
2318  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2319  *    <used data sectors>/<total data sectors> <held metadata root>
2320  */
2321 static int pool_status(struct dm_target *ti, status_type_t type,
2322 		       char *result, unsigned maxlen)
2323 {
2324 	int r, count;
2325 	unsigned sz = 0;
2326 	uint64_t transaction_id;
2327 	dm_block_t nr_free_blocks_data;
2328 	dm_block_t nr_free_blocks_metadata;
2329 	dm_block_t nr_blocks_data;
2330 	dm_block_t nr_blocks_metadata;
2331 	dm_block_t held_root;
2332 	char buf[BDEVNAME_SIZE];
2333 	char buf2[BDEVNAME_SIZE];
2334 	struct pool_c *pt = ti->private;
2335 	struct pool *pool = pt->pool;
2336 
2337 	switch (type) {
2338 	case STATUSTYPE_INFO:
2339 		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2340 							&transaction_id);
2341 		if (r)
2342 			return r;
2343 
2344 		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2345 							  &nr_free_blocks_metadata);
2346 		if (r)
2347 			return r;
2348 
2349 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2350 		if (r)
2351 			return r;
2352 
2353 		r = dm_pool_get_free_block_count(pool->pmd,
2354 						 &nr_free_blocks_data);
2355 		if (r)
2356 			return r;
2357 
2358 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2359 		if (r)
2360 			return r;
2361 
2362 		r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2363 		if (r)
2364 			return r;
2365 
2366 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2367 		       (unsigned long long)transaction_id,
2368 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2369 		       (unsigned long long)nr_blocks_metadata,
2370 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2371 		       (unsigned long long)nr_blocks_data);
2372 
2373 		if (held_root)
2374 			DMEMIT("%llu", held_root);
2375 		else
2376 			DMEMIT("-");
2377 
2378 		break;
2379 
2380 	case STATUSTYPE_TABLE:
2381 		DMEMIT("%s %s %lu %llu ",
2382 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2383 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2384 		       (unsigned long)pool->sectors_per_block,
2385 		       (unsigned long long)pt->low_water_blocks);
2386 
2387 		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2388 			!pool->pf.discard_passdown;
2389 		DMEMIT("%u ", count);
2390 
2391 		if (!pool->pf.zero_new_blocks)
2392 			DMEMIT("skip_block_zeroing ");
2393 
2394 		if (!pool->pf.discard_enabled)
2395 			DMEMIT("ignore_discard ");
2396 
2397 		if (!pool->pf.discard_passdown)
2398 			DMEMIT("no_discard_passdown ");
2399 
2400 		break;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int pool_iterate_devices(struct dm_target *ti,
2407 				iterate_devices_callout_fn fn, void *data)
2408 {
2409 	struct pool_c *pt = ti->private;
2410 
2411 	return fn(ti, pt->data_dev, 0, ti->len, data);
2412 }
2413 
2414 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2415 		      struct bio_vec *biovec, int max_size)
2416 {
2417 	struct pool_c *pt = ti->private;
2418 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2419 
2420 	if (!q->merge_bvec_fn)
2421 		return max_size;
2422 
2423 	bvm->bi_bdev = pt->data_dev->bdev;
2424 
2425 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2426 }
2427 
2428 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2429 {
2430 	/*
2431 	 * FIXME: these limits may be incompatible with the pool's data device
2432 	 */
2433 	limits->max_discard_sectors = pool->sectors_per_block;
2434 
2435 	/*
2436 	 * This is just a hint, and not enforced.  We have to cope with
2437 	 * bios that overlap 2 blocks.
2438 	 */
2439 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2440 	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2441 }
2442 
2443 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2444 {
2445 	struct pool_c *pt = ti->private;
2446 	struct pool *pool = pt->pool;
2447 
2448 	blk_limits_io_min(limits, 0);
2449 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2450 	if (pool->pf.discard_enabled)
2451 		set_discard_limits(pool, limits);
2452 }
2453 
2454 static struct target_type pool_target = {
2455 	.name = "thin-pool",
2456 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2457 		    DM_TARGET_IMMUTABLE,
2458 	.version = {1, 1, 0},
2459 	.module = THIS_MODULE,
2460 	.ctr = pool_ctr,
2461 	.dtr = pool_dtr,
2462 	.map = pool_map,
2463 	.postsuspend = pool_postsuspend,
2464 	.preresume = pool_preresume,
2465 	.resume = pool_resume,
2466 	.message = pool_message,
2467 	.status = pool_status,
2468 	.merge = pool_merge,
2469 	.iterate_devices = pool_iterate_devices,
2470 	.io_hints = pool_io_hints,
2471 };
2472 
2473 /*----------------------------------------------------------------
2474  * Thin target methods
2475  *--------------------------------------------------------------*/
2476 static void thin_dtr(struct dm_target *ti)
2477 {
2478 	struct thin_c *tc = ti->private;
2479 
2480 	mutex_lock(&dm_thin_pool_table.mutex);
2481 
2482 	__pool_dec(tc->pool);
2483 	dm_pool_close_thin_device(tc->td);
2484 	dm_put_device(ti, tc->pool_dev);
2485 	if (tc->origin_dev)
2486 		dm_put_device(ti, tc->origin_dev);
2487 	kfree(tc);
2488 
2489 	mutex_unlock(&dm_thin_pool_table.mutex);
2490 }
2491 
2492 /*
2493  * Thin target parameters:
2494  *
2495  * <pool_dev> <dev_id> [origin_dev]
2496  *
2497  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2498  * dev_id: the internal device identifier
2499  * origin_dev: a device external to the pool that should act as the origin
2500  *
2501  * If the pool device has discards disabled, they get disabled for the thin
2502  * device as well.
2503  */
2504 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2505 {
2506 	int r;
2507 	struct thin_c *tc;
2508 	struct dm_dev *pool_dev, *origin_dev;
2509 	struct mapped_device *pool_md;
2510 
2511 	mutex_lock(&dm_thin_pool_table.mutex);
2512 
2513 	if (argc != 2 && argc != 3) {
2514 		ti->error = "Invalid argument count";
2515 		r = -EINVAL;
2516 		goto out_unlock;
2517 	}
2518 
2519 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2520 	if (!tc) {
2521 		ti->error = "Out of memory";
2522 		r = -ENOMEM;
2523 		goto out_unlock;
2524 	}
2525 
2526 	if (argc == 3) {
2527 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2528 		if (r) {
2529 			ti->error = "Error opening origin device";
2530 			goto bad_origin_dev;
2531 		}
2532 		tc->origin_dev = origin_dev;
2533 	}
2534 
2535 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2536 	if (r) {
2537 		ti->error = "Error opening pool device";
2538 		goto bad_pool_dev;
2539 	}
2540 	tc->pool_dev = pool_dev;
2541 
2542 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2543 		ti->error = "Invalid device id";
2544 		r = -EINVAL;
2545 		goto bad_common;
2546 	}
2547 
2548 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2549 	if (!pool_md) {
2550 		ti->error = "Couldn't get pool mapped device";
2551 		r = -EINVAL;
2552 		goto bad_common;
2553 	}
2554 
2555 	tc->pool = __pool_table_lookup(pool_md);
2556 	if (!tc->pool) {
2557 		ti->error = "Couldn't find pool object";
2558 		r = -EINVAL;
2559 		goto bad_pool_lookup;
2560 	}
2561 	__pool_inc(tc->pool);
2562 
2563 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2564 	if (r) {
2565 		ti->error = "Couldn't open thin internal device";
2566 		goto bad_thin_open;
2567 	}
2568 
2569 	ti->split_io = tc->pool->sectors_per_block;
2570 	ti->num_flush_requests = 1;
2571 
2572 	/* In case the pool supports discards, pass them on. */
2573 	if (tc->pool->pf.discard_enabled) {
2574 		ti->discards_supported = 1;
2575 		ti->num_discard_requests = 1;
2576 	}
2577 
2578 	dm_put(pool_md);
2579 
2580 	mutex_unlock(&dm_thin_pool_table.mutex);
2581 
2582 	return 0;
2583 
2584 bad_thin_open:
2585 	__pool_dec(tc->pool);
2586 bad_pool_lookup:
2587 	dm_put(pool_md);
2588 bad_common:
2589 	dm_put_device(ti, tc->pool_dev);
2590 bad_pool_dev:
2591 	if (tc->origin_dev)
2592 		dm_put_device(ti, tc->origin_dev);
2593 bad_origin_dev:
2594 	kfree(tc);
2595 out_unlock:
2596 	mutex_unlock(&dm_thin_pool_table.mutex);
2597 
2598 	return r;
2599 }
2600 
2601 static int thin_map(struct dm_target *ti, struct bio *bio,
2602 		    union map_info *map_context)
2603 {
2604 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2605 
2606 	return thin_bio_map(ti, bio, map_context);
2607 }
2608 
2609 static int thin_endio(struct dm_target *ti,
2610 		      struct bio *bio, int err,
2611 		      union map_info *map_context)
2612 {
2613 	unsigned long flags;
2614 	struct endio_hook *h = map_context->ptr;
2615 	struct list_head work;
2616 	struct new_mapping *m, *tmp;
2617 	struct pool *pool = h->tc->pool;
2618 
2619 	if (h->shared_read_entry) {
2620 		INIT_LIST_HEAD(&work);
2621 		ds_dec(h->shared_read_entry, &work);
2622 
2623 		spin_lock_irqsave(&pool->lock, flags);
2624 		list_for_each_entry_safe(m, tmp, &work, list) {
2625 			list_del(&m->list);
2626 			m->quiesced = 1;
2627 			__maybe_add_mapping(m);
2628 		}
2629 		spin_unlock_irqrestore(&pool->lock, flags);
2630 	}
2631 
2632 	if (h->all_io_entry) {
2633 		INIT_LIST_HEAD(&work);
2634 		ds_dec(h->all_io_entry, &work);
2635 		spin_lock_irqsave(&pool->lock, flags);
2636 		list_for_each_entry_safe(m, tmp, &work, list)
2637 			list_add(&m->list, &pool->prepared_discards);
2638 		spin_unlock_irqrestore(&pool->lock, flags);
2639 	}
2640 
2641 	mempool_free(h, pool->endio_hook_pool);
2642 
2643 	return 0;
2644 }
2645 
2646 static void thin_postsuspend(struct dm_target *ti)
2647 {
2648 	if (dm_noflush_suspending(ti))
2649 		requeue_io((struct thin_c *)ti->private);
2650 }
2651 
2652 /*
2653  * <nr mapped sectors> <highest mapped sector>
2654  */
2655 static int thin_status(struct dm_target *ti, status_type_t type,
2656 		       char *result, unsigned maxlen)
2657 {
2658 	int r;
2659 	ssize_t sz = 0;
2660 	dm_block_t mapped, highest;
2661 	char buf[BDEVNAME_SIZE];
2662 	struct thin_c *tc = ti->private;
2663 
2664 	if (!tc->td)
2665 		DMEMIT("-");
2666 	else {
2667 		switch (type) {
2668 		case STATUSTYPE_INFO:
2669 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2670 			if (r)
2671 				return r;
2672 
2673 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2674 			if (r < 0)
2675 				return r;
2676 
2677 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2678 			if (r)
2679 				DMEMIT("%llu", ((highest + 1) *
2680 						tc->pool->sectors_per_block) - 1);
2681 			else
2682 				DMEMIT("-");
2683 			break;
2684 
2685 		case STATUSTYPE_TABLE:
2686 			DMEMIT("%s %lu",
2687 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2688 			       (unsigned long) tc->dev_id);
2689 			if (tc->origin_dev)
2690 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2691 			break;
2692 		}
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 static int thin_iterate_devices(struct dm_target *ti,
2699 				iterate_devices_callout_fn fn, void *data)
2700 {
2701 	dm_block_t blocks;
2702 	struct thin_c *tc = ti->private;
2703 
2704 	/*
2705 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2706 	 * we follow a more convoluted path through to the pool's target.
2707 	 */
2708 	if (!tc->pool->ti)
2709 		return 0;	/* nothing is bound */
2710 
2711 	blocks = tc->pool->ti->len >> tc->pool->block_shift;
2712 	if (blocks)
2713 		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2714 
2715 	return 0;
2716 }
2717 
2718 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2719 {
2720 	struct thin_c *tc = ti->private;
2721 	struct pool *pool = tc->pool;
2722 
2723 	blk_limits_io_min(limits, 0);
2724 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2725 	set_discard_limits(pool, limits);
2726 }
2727 
2728 static struct target_type thin_target = {
2729 	.name = "thin",
2730 	.version = {1, 1, 0},
2731 	.module	= THIS_MODULE,
2732 	.ctr = thin_ctr,
2733 	.dtr = thin_dtr,
2734 	.map = thin_map,
2735 	.end_io = thin_endio,
2736 	.postsuspend = thin_postsuspend,
2737 	.status = thin_status,
2738 	.iterate_devices = thin_iterate_devices,
2739 	.io_hints = thin_io_hints,
2740 };
2741 
2742 /*----------------------------------------------------------------*/
2743 
2744 static int __init dm_thin_init(void)
2745 {
2746 	int r;
2747 
2748 	pool_table_init();
2749 
2750 	r = dm_register_target(&thin_target);
2751 	if (r)
2752 		return r;
2753 
2754 	r = dm_register_target(&pool_target);
2755 	if (r)
2756 		dm_unregister_target(&thin_target);
2757 
2758 	return r;
2759 }
2760 
2761 static void dm_thin_exit(void)
2762 {
2763 	dm_unregister_target(&thin_target);
2764 	dm_unregister_target(&pool_target);
2765 }
2766 
2767 module_init(dm_thin_init);
2768 module_exit(dm_thin_exit);
2769 
2770 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");
2773