xref: /openbmc/linux/drivers/md/dm-thin.c (revision ca460cc2)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20 
21 #define	DM_MSG_PREFIX	"thin"
22 
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31 
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33 
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35 		"A percentage of time allocated for copy on write");
36 
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43 
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48 
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106 
107 /*----------------------------------------------------------------*/
108 
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113 			   dm_block_t b, struct dm_cell_key *key)
114 {
115 	key->virtual = 0;
116 	key->dev = dm_thin_dev_id(td);
117 	key->block = b;
118 }
119 
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121 			      struct dm_cell_key *key)
122 {
123 	key->virtual = 1;
124 	key->dev = dm_thin_dev_id(td);
125 	key->block = b;
126 }
127 
128 /*----------------------------------------------------------------*/
129 
130 /*
131  * A pool device ties together a metadata device and a data device.  It
132  * also provides the interface for creating and destroying internal
133  * devices.
134  */
135 struct dm_thin_new_mapping;
136 
137 /*
138  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
139  */
140 enum pool_mode {
141 	PM_WRITE,		/* metadata may be changed */
142 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
143 	PM_READ_ONLY,		/* metadata may not be changed */
144 	PM_FAIL,		/* all I/O fails */
145 };
146 
147 struct pool_features {
148 	enum pool_mode mode;
149 
150 	bool zero_new_blocks:1;
151 	bool discard_enabled:1;
152 	bool discard_passdown:1;
153 	bool error_if_no_space:1;
154 };
155 
156 struct thin_c;
157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159 
160 struct pool {
161 	struct list_head list;
162 	struct dm_target *ti;	/* Only set if a pool target is bound */
163 
164 	struct mapped_device *pool_md;
165 	struct block_device *md_dev;
166 	struct dm_pool_metadata *pmd;
167 
168 	dm_block_t low_water_blocks;
169 	uint32_t sectors_per_block;
170 	int sectors_per_block_shift;
171 
172 	struct pool_features pf;
173 	bool low_water_triggered:1;	/* A dm event has been sent */
174 
175 	struct dm_bio_prison *prison;
176 	struct dm_kcopyd_client *copier;
177 
178 	struct workqueue_struct *wq;
179 	struct work_struct worker;
180 	struct delayed_work waker;
181 	struct delayed_work no_space_timeout;
182 
183 	unsigned long last_commit_jiffies;
184 	unsigned ref_count;
185 
186 	spinlock_t lock;
187 	struct bio_list deferred_flush_bios;
188 	struct list_head prepared_mappings;
189 	struct list_head prepared_discards;
190 	struct list_head active_thins;
191 
192 	struct dm_deferred_set *shared_read_ds;
193 	struct dm_deferred_set *all_io_ds;
194 
195 	struct dm_thin_new_mapping *next_mapping;
196 	mempool_t *mapping_pool;
197 
198 	process_bio_fn process_bio;
199 	process_bio_fn process_discard;
200 
201 	process_mapping_fn process_prepared_mapping;
202 	process_mapping_fn process_prepared_discard;
203 };
204 
205 static enum pool_mode get_pool_mode(struct pool *pool);
206 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207 
208 /*
209  * Target context for a pool.
210  */
211 struct pool_c {
212 	struct dm_target *ti;
213 	struct pool *pool;
214 	struct dm_dev *data_dev;
215 	struct dm_dev *metadata_dev;
216 	struct dm_target_callbacks callbacks;
217 
218 	dm_block_t low_water_blocks;
219 	struct pool_features requested_pf; /* Features requested during table load */
220 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
221 };
222 
223 /*
224  * Target context for a thin.
225  */
226 struct thin_c {
227 	struct list_head list;
228 	struct dm_dev *pool_dev;
229 	struct dm_dev *origin_dev;
230 	sector_t origin_size;
231 	dm_thin_id dev_id;
232 
233 	struct pool *pool;
234 	struct dm_thin_device *td;
235 	bool requeue_mode:1;
236 	spinlock_t lock;
237 	struct bio_list deferred_bio_list;
238 	struct bio_list retry_on_resume_list;
239 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
240 
241 	/*
242 	 * Ensures the thin is not destroyed until the worker has finished
243 	 * iterating the active_thins list.
244 	 */
245 	atomic_t refcount;
246 	struct completion can_destroy;
247 };
248 
249 /*----------------------------------------------------------------*/
250 
251 /*
252  * wake_worker() is used when new work is queued and when pool_resume is
253  * ready to continue deferred IO processing.
254  */
255 static void wake_worker(struct pool *pool)
256 {
257 	queue_work(pool->wq, &pool->worker);
258 }
259 
260 /*----------------------------------------------------------------*/
261 
262 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
263 		      struct dm_bio_prison_cell **cell_result)
264 {
265 	int r;
266 	struct dm_bio_prison_cell *cell_prealloc;
267 
268 	/*
269 	 * Allocate a cell from the prison's mempool.
270 	 * This might block but it can't fail.
271 	 */
272 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
273 
274 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
275 	if (r)
276 		/*
277 		 * We reused an old cell; we can get rid of
278 		 * the new one.
279 		 */
280 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
281 
282 	return r;
283 }
284 
285 static void cell_release(struct pool *pool,
286 			 struct dm_bio_prison_cell *cell,
287 			 struct bio_list *bios)
288 {
289 	dm_cell_release(pool->prison, cell, bios);
290 	dm_bio_prison_free_cell(pool->prison, cell);
291 }
292 
293 static void cell_release_no_holder(struct pool *pool,
294 				   struct dm_bio_prison_cell *cell,
295 				   struct bio_list *bios)
296 {
297 	dm_cell_release_no_holder(pool->prison, cell, bios);
298 	dm_bio_prison_free_cell(pool->prison, cell);
299 }
300 
301 static void cell_defer_no_holder_no_free(struct thin_c *tc,
302 					 struct dm_bio_prison_cell *cell)
303 {
304 	struct pool *pool = tc->pool;
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(&tc->lock, flags);
308 	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
309 	spin_unlock_irqrestore(&tc->lock, flags);
310 
311 	wake_worker(pool);
312 }
313 
314 static void cell_error_with_code(struct pool *pool,
315 				 struct dm_bio_prison_cell *cell, int error_code)
316 {
317 	dm_cell_error(pool->prison, cell, error_code);
318 	dm_bio_prison_free_cell(pool->prison, cell);
319 }
320 
321 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
322 {
323 	cell_error_with_code(pool, cell, -EIO);
324 }
325 
326 /*----------------------------------------------------------------*/
327 
328 /*
329  * A global list of pools that uses a struct mapped_device as a key.
330  */
331 static struct dm_thin_pool_table {
332 	struct mutex mutex;
333 	struct list_head pools;
334 } dm_thin_pool_table;
335 
336 static void pool_table_init(void)
337 {
338 	mutex_init(&dm_thin_pool_table.mutex);
339 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
340 }
341 
342 static void __pool_table_insert(struct pool *pool)
343 {
344 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345 	list_add(&pool->list, &dm_thin_pool_table.pools);
346 }
347 
348 static void __pool_table_remove(struct pool *pool)
349 {
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 	list_del(&pool->list);
352 }
353 
354 static struct pool *__pool_table_lookup(struct mapped_device *md)
355 {
356 	struct pool *pool = NULL, *tmp;
357 
358 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
359 
360 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
361 		if (tmp->pool_md == md) {
362 			pool = tmp;
363 			break;
364 		}
365 	}
366 
367 	return pool;
368 }
369 
370 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
371 {
372 	struct pool *pool = NULL, *tmp;
373 
374 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
375 
376 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
377 		if (tmp->md_dev == md_dev) {
378 			pool = tmp;
379 			break;
380 		}
381 	}
382 
383 	return pool;
384 }
385 
386 /*----------------------------------------------------------------*/
387 
388 struct dm_thin_endio_hook {
389 	struct thin_c *tc;
390 	struct dm_deferred_entry *shared_read_entry;
391 	struct dm_deferred_entry *all_io_entry;
392 	struct dm_thin_new_mapping *overwrite_mapping;
393 	struct rb_node rb_node;
394 };
395 
396 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
397 {
398 	struct bio *bio;
399 	struct bio_list bios;
400 	unsigned long flags;
401 
402 	bio_list_init(&bios);
403 
404 	spin_lock_irqsave(&tc->lock, flags);
405 	bio_list_merge(&bios, master);
406 	bio_list_init(master);
407 	spin_unlock_irqrestore(&tc->lock, flags);
408 
409 	while ((bio = bio_list_pop(&bios)))
410 		bio_endio(bio, DM_ENDIO_REQUEUE);
411 }
412 
413 static void requeue_io(struct thin_c *tc)
414 {
415 	requeue_bio_list(tc, &tc->deferred_bio_list);
416 	requeue_bio_list(tc, &tc->retry_on_resume_list);
417 }
418 
419 static void error_thin_retry_list(struct thin_c *tc)
420 {
421 	struct bio *bio;
422 	unsigned long flags;
423 	struct bio_list bios;
424 
425 	bio_list_init(&bios);
426 
427 	spin_lock_irqsave(&tc->lock, flags);
428 	bio_list_merge(&bios, &tc->retry_on_resume_list);
429 	bio_list_init(&tc->retry_on_resume_list);
430 	spin_unlock_irqrestore(&tc->lock, flags);
431 
432 	while ((bio = bio_list_pop(&bios)))
433 		bio_io_error(bio);
434 }
435 
436 static void error_retry_list(struct pool *pool)
437 {
438 	struct thin_c *tc;
439 
440 	rcu_read_lock();
441 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
442 		error_thin_retry_list(tc);
443 	rcu_read_unlock();
444 }
445 
446 /*
447  * This section of code contains the logic for processing a thin device's IO.
448  * Much of the code depends on pool object resources (lists, workqueues, etc)
449  * but most is exclusively called from the thin target rather than the thin-pool
450  * target.
451  */
452 
453 static bool block_size_is_power_of_two(struct pool *pool)
454 {
455 	return pool->sectors_per_block_shift >= 0;
456 }
457 
458 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
459 {
460 	struct pool *pool = tc->pool;
461 	sector_t block_nr = bio->bi_iter.bi_sector;
462 
463 	if (block_size_is_power_of_two(pool))
464 		block_nr >>= pool->sectors_per_block_shift;
465 	else
466 		(void) sector_div(block_nr, pool->sectors_per_block);
467 
468 	return block_nr;
469 }
470 
471 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
472 {
473 	struct pool *pool = tc->pool;
474 	sector_t bi_sector = bio->bi_iter.bi_sector;
475 
476 	bio->bi_bdev = tc->pool_dev->bdev;
477 	if (block_size_is_power_of_two(pool))
478 		bio->bi_iter.bi_sector =
479 			(block << pool->sectors_per_block_shift) |
480 			(bi_sector & (pool->sectors_per_block - 1));
481 	else
482 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
483 				 sector_div(bi_sector, pool->sectors_per_block);
484 }
485 
486 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
487 {
488 	bio->bi_bdev = tc->origin_dev->bdev;
489 }
490 
491 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
492 {
493 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
494 		dm_thin_changed_this_transaction(tc->td);
495 }
496 
497 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
498 {
499 	struct dm_thin_endio_hook *h;
500 
501 	if (bio->bi_rw & REQ_DISCARD)
502 		return;
503 
504 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
505 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
506 }
507 
508 static void issue(struct thin_c *tc, struct bio *bio)
509 {
510 	struct pool *pool = tc->pool;
511 	unsigned long flags;
512 
513 	if (!bio_triggers_commit(tc, bio)) {
514 		generic_make_request(bio);
515 		return;
516 	}
517 
518 	/*
519 	 * Complete bio with an error if earlier I/O caused changes to
520 	 * the metadata that can't be committed e.g, due to I/O errors
521 	 * on the metadata device.
522 	 */
523 	if (dm_thin_aborted_changes(tc->td)) {
524 		bio_io_error(bio);
525 		return;
526 	}
527 
528 	/*
529 	 * Batch together any bios that trigger commits and then issue a
530 	 * single commit for them in process_deferred_bios().
531 	 */
532 	spin_lock_irqsave(&pool->lock, flags);
533 	bio_list_add(&pool->deferred_flush_bios, bio);
534 	spin_unlock_irqrestore(&pool->lock, flags);
535 }
536 
537 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
538 {
539 	remap_to_origin(tc, bio);
540 	issue(tc, bio);
541 }
542 
543 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
544 			    dm_block_t block)
545 {
546 	remap(tc, bio, block);
547 	issue(tc, bio);
548 }
549 
550 /*----------------------------------------------------------------*/
551 
552 /*
553  * Bio endio functions.
554  */
555 struct dm_thin_new_mapping {
556 	struct list_head list;
557 
558 	bool pass_discard:1;
559 	bool definitely_not_shared:1;
560 
561 	/*
562 	 * Track quiescing, copying and zeroing preparation actions.  When this
563 	 * counter hits zero the block is prepared and can be inserted into the
564 	 * btree.
565 	 */
566 	atomic_t prepare_actions;
567 
568 	int err;
569 	struct thin_c *tc;
570 	dm_block_t virt_block;
571 	dm_block_t data_block;
572 	struct dm_bio_prison_cell *cell, *cell2;
573 
574 	/*
575 	 * If the bio covers the whole area of a block then we can avoid
576 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
577 	 * still be in the cell, so care has to be taken to avoid issuing
578 	 * the bio twice.
579 	 */
580 	struct bio *bio;
581 	bio_end_io_t *saved_bi_end_io;
582 };
583 
584 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
585 {
586 	struct pool *pool = m->tc->pool;
587 
588 	if (atomic_dec_and_test(&m->prepare_actions)) {
589 		list_add_tail(&m->list, &pool->prepared_mappings);
590 		wake_worker(pool);
591 	}
592 }
593 
594 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
595 {
596 	unsigned long flags;
597 	struct pool *pool = m->tc->pool;
598 
599 	spin_lock_irqsave(&pool->lock, flags);
600 	__complete_mapping_preparation(m);
601 	spin_unlock_irqrestore(&pool->lock, flags);
602 }
603 
604 static void copy_complete(int read_err, unsigned long write_err, void *context)
605 {
606 	struct dm_thin_new_mapping *m = context;
607 
608 	m->err = read_err || write_err ? -EIO : 0;
609 	complete_mapping_preparation(m);
610 }
611 
612 static void overwrite_endio(struct bio *bio, int err)
613 {
614 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
615 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
616 
617 	m->err = err;
618 	complete_mapping_preparation(m);
619 }
620 
621 /*----------------------------------------------------------------*/
622 
623 /*
624  * Workqueue.
625  */
626 
627 /*
628  * Prepared mapping jobs.
629  */
630 
631 /*
632  * This sends the bios in the cell back to the deferred_bios list.
633  */
634 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
635 {
636 	struct pool *pool = tc->pool;
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&tc->lock, flags);
640 	cell_release(pool, cell, &tc->deferred_bio_list);
641 	spin_unlock_irqrestore(&tc->lock, flags);
642 
643 	wake_worker(pool);
644 }
645 
646 /*
647  * Same as cell_defer above, except it omits the original holder of the cell.
648  */
649 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
650 {
651 	struct pool *pool = tc->pool;
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&tc->lock, flags);
655 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
656 	spin_unlock_irqrestore(&tc->lock, flags);
657 
658 	wake_worker(pool);
659 }
660 
661 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
662 {
663 	if (m->bio) {
664 		m->bio->bi_end_io = m->saved_bi_end_io;
665 		atomic_inc(&m->bio->bi_remaining);
666 	}
667 	cell_error(m->tc->pool, m->cell);
668 	list_del(&m->list);
669 	mempool_free(m, m->tc->pool->mapping_pool);
670 }
671 
672 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
673 {
674 	struct thin_c *tc = m->tc;
675 	struct pool *pool = tc->pool;
676 	struct bio *bio;
677 	int r;
678 
679 	bio = m->bio;
680 	if (bio) {
681 		bio->bi_end_io = m->saved_bi_end_io;
682 		atomic_inc(&bio->bi_remaining);
683 	}
684 
685 	if (m->err) {
686 		cell_error(pool, m->cell);
687 		goto out;
688 	}
689 
690 	/*
691 	 * Commit the prepared block into the mapping btree.
692 	 * Any I/O for this block arriving after this point will get
693 	 * remapped to it directly.
694 	 */
695 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
696 	if (r) {
697 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
698 		cell_error(pool, m->cell);
699 		goto out;
700 	}
701 
702 	/*
703 	 * Release any bios held while the block was being provisioned.
704 	 * If we are processing a write bio that completely covers the block,
705 	 * we already processed it so can ignore it now when processing
706 	 * the bios in the cell.
707 	 */
708 	if (bio) {
709 		cell_defer_no_holder(tc, m->cell);
710 		bio_endio(bio, 0);
711 	} else
712 		cell_defer(tc, m->cell);
713 
714 out:
715 	list_del(&m->list);
716 	mempool_free(m, pool->mapping_pool);
717 }
718 
719 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
720 {
721 	struct thin_c *tc = m->tc;
722 
723 	bio_io_error(m->bio);
724 	cell_defer_no_holder(tc, m->cell);
725 	cell_defer_no_holder(tc, m->cell2);
726 	mempool_free(m, tc->pool->mapping_pool);
727 }
728 
729 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
730 {
731 	struct thin_c *tc = m->tc;
732 
733 	inc_all_io_entry(tc->pool, m->bio);
734 	cell_defer_no_holder(tc, m->cell);
735 	cell_defer_no_holder(tc, m->cell2);
736 
737 	if (m->pass_discard)
738 		if (m->definitely_not_shared)
739 			remap_and_issue(tc, m->bio, m->data_block);
740 		else {
741 			bool used = false;
742 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
743 				bio_endio(m->bio, 0);
744 			else
745 				remap_and_issue(tc, m->bio, m->data_block);
746 		}
747 	else
748 		bio_endio(m->bio, 0);
749 
750 	mempool_free(m, tc->pool->mapping_pool);
751 }
752 
753 static void process_prepared_discard(struct dm_thin_new_mapping *m)
754 {
755 	int r;
756 	struct thin_c *tc = m->tc;
757 
758 	r = dm_thin_remove_block(tc->td, m->virt_block);
759 	if (r)
760 		DMERR_LIMIT("dm_thin_remove_block() failed");
761 
762 	process_prepared_discard_passdown(m);
763 }
764 
765 static void process_prepared(struct pool *pool, struct list_head *head,
766 			     process_mapping_fn *fn)
767 {
768 	unsigned long flags;
769 	struct list_head maps;
770 	struct dm_thin_new_mapping *m, *tmp;
771 
772 	INIT_LIST_HEAD(&maps);
773 	spin_lock_irqsave(&pool->lock, flags);
774 	list_splice_init(head, &maps);
775 	spin_unlock_irqrestore(&pool->lock, flags);
776 
777 	list_for_each_entry_safe(m, tmp, &maps, list)
778 		(*fn)(m);
779 }
780 
781 /*
782  * Deferred bio jobs.
783  */
784 static int io_overlaps_block(struct pool *pool, struct bio *bio)
785 {
786 	return bio->bi_iter.bi_size ==
787 		(pool->sectors_per_block << SECTOR_SHIFT);
788 }
789 
790 static int io_overwrites_block(struct pool *pool, struct bio *bio)
791 {
792 	return (bio_data_dir(bio) == WRITE) &&
793 		io_overlaps_block(pool, bio);
794 }
795 
796 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
797 			       bio_end_io_t *fn)
798 {
799 	*save = bio->bi_end_io;
800 	bio->bi_end_io = fn;
801 }
802 
803 static int ensure_next_mapping(struct pool *pool)
804 {
805 	if (pool->next_mapping)
806 		return 0;
807 
808 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
809 
810 	return pool->next_mapping ? 0 : -ENOMEM;
811 }
812 
813 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
814 {
815 	struct dm_thin_new_mapping *m = pool->next_mapping;
816 
817 	BUG_ON(!pool->next_mapping);
818 
819 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
820 	INIT_LIST_HEAD(&m->list);
821 	m->bio = NULL;
822 
823 	pool->next_mapping = NULL;
824 
825 	return m;
826 }
827 
828 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
829 		    sector_t begin, sector_t end)
830 {
831 	int r;
832 	struct dm_io_region to;
833 
834 	to.bdev = tc->pool_dev->bdev;
835 	to.sector = begin;
836 	to.count = end - begin;
837 
838 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
839 	if (r < 0) {
840 		DMERR_LIMIT("dm_kcopyd_zero() failed");
841 		copy_complete(1, 1, m);
842 	}
843 }
844 
845 /*
846  * A partial copy also needs to zero the uncopied region.
847  */
848 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
849 			  struct dm_dev *origin, dm_block_t data_origin,
850 			  dm_block_t data_dest,
851 			  struct dm_bio_prison_cell *cell, struct bio *bio,
852 			  sector_t len)
853 {
854 	int r;
855 	struct pool *pool = tc->pool;
856 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
857 
858 	m->tc = tc;
859 	m->virt_block = virt_block;
860 	m->data_block = data_dest;
861 	m->cell = cell;
862 
863 	/*
864 	 * quiesce action + copy action + an extra reference held for the
865 	 * duration of this function (we may need to inc later for a
866 	 * partial zero).
867 	 */
868 	atomic_set(&m->prepare_actions, 3);
869 
870 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
871 		complete_mapping_preparation(m); /* already quiesced */
872 
873 	/*
874 	 * IO to pool_dev remaps to the pool target's data_dev.
875 	 *
876 	 * If the whole block of data is being overwritten, we can issue the
877 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
878 	 */
879 	if (io_overwrites_block(pool, bio)) {
880 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
881 
882 		h->overwrite_mapping = m;
883 		m->bio = bio;
884 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
885 		inc_all_io_entry(pool, bio);
886 		remap_and_issue(tc, bio, data_dest);
887 	} else {
888 		struct dm_io_region from, to;
889 
890 		from.bdev = origin->bdev;
891 		from.sector = data_origin * pool->sectors_per_block;
892 		from.count = len;
893 
894 		to.bdev = tc->pool_dev->bdev;
895 		to.sector = data_dest * pool->sectors_per_block;
896 		to.count = len;
897 
898 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
899 				   0, copy_complete, m);
900 		if (r < 0) {
901 			DMERR_LIMIT("dm_kcopyd_copy() failed");
902 			copy_complete(1, 1, m);
903 
904 			/*
905 			 * We allow the zero to be issued, to simplify the
906 			 * error path.  Otherwise we'd need to start
907 			 * worrying about decrementing the prepare_actions
908 			 * counter.
909 			 */
910 		}
911 
912 		/*
913 		 * Do we need to zero a tail region?
914 		 */
915 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
916 			atomic_inc(&m->prepare_actions);
917 			ll_zero(tc, m,
918 				data_dest * pool->sectors_per_block + len,
919 				(data_dest + 1) * pool->sectors_per_block);
920 		}
921 	}
922 
923 	complete_mapping_preparation(m); /* drop our ref */
924 }
925 
926 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
927 				   dm_block_t data_origin, dm_block_t data_dest,
928 				   struct dm_bio_prison_cell *cell, struct bio *bio)
929 {
930 	schedule_copy(tc, virt_block, tc->pool_dev,
931 		      data_origin, data_dest, cell, bio,
932 		      tc->pool->sectors_per_block);
933 }
934 
935 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
936 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
937 			  struct bio *bio)
938 {
939 	struct pool *pool = tc->pool;
940 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
941 
942 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
943 	m->tc = tc;
944 	m->virt_block = virt_block;
945 	m->data_block = data_block;
946 	m->cell = cell;
947 
948 	/*
949 	 * If the whole block of data is being overwritten or we are not
950 	 * zeroing pre-existing data, we can issue the bio immediately.
951 	 * Otherwise we use kcopyd to zero the data first.
952 	 */
953 	if (!pool->pf.zero_new_blocks)
954 		process_prepared_mapping(m);
955 
956 	else if (io_overwrites_block(pool, bio)) {
957 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
958 
959 		h->overwrite_mapping = m;
960 		m->bio = bio;
961 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
962 		inc_all_io_entry(pool, bio);
963 		remap_and_issue(tc, bio, data_block);
964 
965 	} else
966 		ll_zero(tc, m,
967 			data_block * pool->sectors_per_block,
968 			(data_block + 1) * pool->sectors_per_block);
969 }
970 
971 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
972 				   dm_block_t data_dest,
973 				   struct dm_bio_prison_cell *cell, struct bio *bio)
974 {
975 	struct pool *pool = tc->pool;
976 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
977 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
978 
979 	if (virt_block_end <= tc->origin_size)
980 		schedule_copy(tc, virt_block, tc->origin_dev,
981 			      virt_block, data_dest, cell, bio,
982 			      pool->sectors_per_block);
983 
984 	else if (virt_block_begin < tc->origin_size)
985 		schedule_copy(tc, virt_block, tc->origin_dev,
986 			      virt_block, data_dest, cell, bio,
987 			      tc->origin_size - virt_block_begin);
988 
989 	else
990 		schedule_zero(tc, virt_block, data_dest, cell, bio);
991 }
992 
993 /*
994  * A non-zero return indicates read_only or fail_io mode.
995  * Many callers don't care about the return value.
996  */
997 static int commit(struct pool *pool)
998 {
999 	int r;
1000 
1001 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1002 		return -EINVAL;
1003 
1004 	r = dm_pool_commit_metadata(pool->pmd);
1005 	if (r)
1006 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1007 
1008 	return r;
1009 }
1010 
1011 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1012 {
1013 	unsigned long flags;
1014 
1015 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1016 		DMWARN("%s: reached low water mark for data device: sending event.",
1017 		       dm_device_name(pool->pool_md));
1018 		spin_lock_irqsave(&pool->lock, flags);
1019 		pool->low_water_triggered = true;
1020 		spin_unlock_irqrestore(&pool->lock, flags);
1021 		dm_table_event(pool->ti->table);
1022 	}
1023 }
1024 
1025 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1026 
1027 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1028 {
1029 	int r;
1030 	dm_block_t free_blocks;
1031 	struct pool *pool = tc->pool;
1032 
1033 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1034 		return -EINVAL;
1035 
1036 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1037 	if (r) {
1038 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1039 		return r;
1040 	}
1041 
1042 	check_low_water_mark(pool, free_blocks);
1043 
1044 	if (!free_blocks) {
1045 		/*
1046 		 * Try to commit to see if that will free up some
1047 		 * more space.
1048 		 */
1049 		r = commit(pool);
1050 		if (r)
1051 			return r;
1052 
1053 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1054 		if (r) {
1055 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1056 			return r;
1057 		}
1058 
1059 		if (!free_blocks) {
1060 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1061 			return -ENOSPC;
1062 		}
1063 	}
1064 
1065 	r = dm_pool_alloc_data_block(pool->pmd, result);
1066 	if (r) {
1067 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1068 		return r;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  * If we have run out of space, queue bios until the device is
1076  * resumed, presumably after having been reloaded with more space.
1077  */
1078 static void retry_on_resume(struct bio *bio)
1079 {
1080 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1081 	struct thin_c *tc = h->tc;
1082 	unsigned long flags;
1083 
1084 	spin_lock_irqsave(&tc->lock, flags);
1085 	bio_list_add(&tc->retry_on_resume_list, bio);
1086 	spin_unlock_irqrestore(&tc->lock, flags);
1087 }
1088 
1089 static int should_error_unserviceable_bio(struct pool *pool)
1090 {
1091 	enum pool_mode m = get_pool_mode(pool);
1092 
1093 	switch (m) {
1094 	case PM_WRITE:
1095 		/* Shouldn't get here */
1096 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1097 		return -EIO;
1098 
1099 	case PM_OUT_OF_DATA_SPACE:
1100 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1101 
1102 	case PM_READ_ONLY:
1103 	case PM_FAIL:
1104 		return -EIO;
1105 	default:
1106 		/* Shouldn't get here */
1107 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1108 		return -EIO;
1109 	}
1110 }
1111 
1112 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1113 {
1114 	int error = should_error_unserviceable_bio(pool);
1115 
1116 	if (error)
1117 		bio_endio(bio, error);
1118 	else
1119 		retry_on_resume(bio);
1120 }
1121 
1122 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1123 {
1124 	struct bio *bio;
1125 	struct bio_list bios;
1126 	int error;
1127 
1128 	error = should_error_unserviceable_bio(pool);
1129 	if (error) {
1130 		cell_error_with_code(pool, cell, error);
1131 		return;
1132 	}
1133 
1134 	bio_list_init(&bios);
1135 	cell_release(pool, cell, &bios);
1136 
1137 	error = should_error_unserviceable_bio(pool);
1138 	if (error)
1139 		while ((bio = bio_list_pop(&bios)))
1140 			bio_endio(bio, error);
1141 	else
1142 		while ((bio = bio_list_pop(&bios)))
1143 			retry_on_resume(bio);
1144 }
1145 
1146 static void process_discard(struct thin_c *tc, struct bio *bio)
1147 {
1148 	int r;
1149 	unsigned long flags;
1150 	struct pool *pool = tc->pool;
1151 	struct dm_bio_prison_cell *cell, *cell2;
1152 	struct dm_cell_key key, key2;
1153 	dm_block_t block = get_bio_block(tc, bio);
1154 	struct dm_thin_lookup_result lookup_result;
1155 	struct dm_thin_new_mapping *m;
1156 
1157 	build_virtual_key(tc->td, block, &key);
1158 	if (bio_detain(tc->pool, &key, bio, &cell))
1159 		return;
1160 
1161 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1162 	switch (r) {
1163 	case 0:
1164 		/*
1165 		 * Check nobody is fiddling with this pool block.  This can
1166 		 * happen if someone's in the process of breaking sharing
1167 		 * on this block.
1168 		 */
1169 		build_data_key(tc->td, lookup_result.block, &key2);
1170 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1171 			cell_defer_no_holder(tc, cell);
1172 			break;
1173 		}
1174 
1175 		if (io_overlaps_block(pool, bio)) {
1176 			/*
1177 			 * IO may still be going to the destination block.  We must
1178 			 * quiesce before we can do the removal.
1179 			 */
1180 			m = get_next_mapping(pool);
1181 			m->tc = tc;
1182 			m->pass_discard = pool->pf.discard_passdown;
1183 			m->definitely_not_shared = !lookup_result.shared;
1184 			m->virt_block = block;
1185 			m->data_block = lookup_result.block;
1186 			m->cell = cell;
1187 			m->cell2 = cell2;
1188 			m->bio = bio;
1189 
1190 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1191 				spin_lock_irqsave(&pool->lock, flags);
1192 				list_add_tail(&m->list, &pool->prepared_discards);
1193 				spin_unlock_irqrestore(&pool->lock, flags);
1194 				wake_worker(pool);
1195 			}
1196 		} else {
1197 			inc_all_io_entry(pool, bio);
1198 			cell_defer_no_holder(tc, cell);
1199 			cell_defer_no_holder(tc, cell2);
1200 
1201 			/*
1202 			 * The DM core makes sure that the discard doesn't span
1203 			 * a block boundary.  So we submit the discard of a
1204 			 * partial block appropriately.
1205 			 */
1206 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1207 				remap_and_issue(tc, bio, lookup_result.block);
1208 			else
1209 				bio_endio(bio, 0);
1210 		}
1211 		break;
1212 
1213 	case -ENODATA:
1214 		/*
1215 		 * It isn't provisioned, just forget it.
1216 		 */
1217 		cell_defer_no_holder(tc, cell);
1218 		bio_endio(bio, 0);
1219 		break;
1220 
1221 	default:
1222 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1223 			    __func__, r);
1224 		cell_defer_no_holder(tc, cell);
1225 		bio_io_error(bio);
1226 		break;
1227 	}
1228 }
1229 
1230 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1231 			  struct dm_cell_key *key,
1232 			  struct dm_thin_lookup_result *lookup_result,
1233 			  struct dm_bio_prison_cell *cell)
1234 {
1235 	int r;
1236 	dm_block_t data_block;
1237 	struct pool *pool = tc->pool;
1238 
1239 	r = alloc_data_block(tc, &data_block);
1240 	switch (r) {
1241 	case 0:
1242 		schedule_internal_copy(tc, block, lookup_result->block,
1243 				       data_block, cell, bio);
1244 		break;
1245 
1246 	case -ENOSPC:
1247 		retry_bios_on_resume(pool, cell);
1248 		break;
1249 
1250 	default:
1251 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1252 			    __func__, r);
1253 		cell_error(pool, cell);
1254 		break;
1255 	}
1256 }
1257 
1258 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1259 			       dm_block_t block,
1260 			       struct dm_thin_lookup_result *lookup_result)
1261 {
1262 	struct dm_bio_prison_cell *cell;
1263 	struct pool *pool = tc->pool;
1264 	struct dm_cell_key key;
1265 
1266 	/*
1267 	 * If cell is already occupied, then sharing is already in the process
1268 	 * of being broken so we have nothing further to do here.
1269 	 */
1270 	build_data_key(tc->td, lookup_result->block, &key);
1271 	if (bio_detain(pool, &key, bio, &cell))
1272 		return;
1273 
1274 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1275 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1276 	else {
1277 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1278 
1279 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1280 		inc_all_io_entry(pool, bio);
1281 		cell_defer_no_holder(tc, cell);
1282 
1283 		remap_and_issue(tc, bio, lookup_result->block);
1284 	}
1285 }
1286 
1287 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1288 			    struct dm_bio_prison_cell *cell)
1289 {
1290 	int r;
1291 	dm_block_t data_block;
1292 	struct pool *pool = tc->pool;
1293 
1294 	/*
1295 	 * Remap empty bios (flushes) immediately, without provisioning.
1296 	 */
1297 	if (!bio->bi_iter.bi_size) {
1298 		inc_all_io_entry(pool, bio);
1299 		cell_defer_no_holder(tc, cell);
1300 
1301 		remap_and_issue(tc, bio, 0);
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * Fill read bios with zeroes and complete them immediately.
1307 	 */
1308 	if (bio_data_dir(bio) == READ) {
1309 		zero_fill_bio(bio);
1310 		cell_defer_no_holder(tc, cell);
1311 		bio_endio(bio, 0);
1312 		return;
1313 	}
1314 
1315 	r = alloc_data_block(tc, &data_block);
1316 	switch (r) {
1317 	case 0:
1318 		if (tc->origin_dev)
1319 			schedule_external_copy(tc, block, data_block, cell, bio);
1320 		else
1321 			schedule_zero(tc, block, data_block, cell, bio);
1322 		break;
1323 
1324 	case -ENOSPC:
1325 		retry_bios_on_resume(pool, cell);
1326 		break;
1327 
1328 	default:
1329 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1330 			    __func__, r);
1331 		cell_error(pool, cell);
1332 		break;
1333 	}
1334 }
1335 
1336 static void process_bio(struct thin_c *tc, struct bio *bio)
1337 {
1338 	int r;
1339 	struct pool *pool = tc->pool;
1340 	dm_block_t block = get_bio_block(tc, bio);
1341 	struct dm_bio_prison_cell *cell;
1342 	struct dm_cell_key key;
1343 	struct dm_thin_lookup_result lookup_result;
1344 
1345 	/*
1346 	 * If cell is already occupied, then the block is already
1347 	 * being provisioned so we have nothing further to do here.
1348 	 */
1349 	build_virtual_key(tc->td, block, &key);
1350 	if (bio_detain(pool, &key, bio, &cell))
1351 		return;
1352 
1353 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1354 	switch (r) {
1355 	case 0:
1356 		if (lookup_result.shared) {
1357 			process_shared_bio(tc, bio, block, &lookup_result);
1358 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1359 		} else {
1360 			inc_all_io_entry(pool, bio);
1361 			cell_defer_no_holder(tc, cell);
1362 
1363 			remap_and_issue(tc, bio, lookup_result.block);
1364 		}
1365 		break;
1366 
1367 	case -ENODATA:
1368 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1369 			inc_all_io_entry(pool, bio);
1370 			cell_defer_no_holder(tc, cell);
1371 
1372 			if (bio_end_sector(bio) <= tc->origin_size)
1373 				remap_to_origin_and_issue(tc, bio);
1374 
1375 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1376 				zero_fill_bio(bio);
1377 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1378 				remap_to_origin_and_issue(tc, bio);
1379 
1380 			} else {
1381 				zero_fill_bio(bio);
1382 				bio_endio(bio, 0);
1383 			}
1384 		} else
1385 			provision_block(tc, bio, block, cell);
1386 		break;
1387 
1388 	default:
1389 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1390 			    __func__, r);
1391 		cell_defer_no_holder(tc, cell);
1392 		bio_io_error(bio);
1393 		break;
1394 	}
1395 }
1396 
1397 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1398 {
1399 	int r;
1400 	int rw = bio_data_dir(bio);
1401 	dm_block_t block = get_bio_block(tc, bio);
1402 	struct dm_thin_lookup_result lookup_result;
1403 
1404 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1405 	switch (r) {
1406 	case 0:
1407 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1408 			handle_unserviceable_bio(tc->pool, bio);
1409 		else {
1410 			inc_all_io_entry(tc->pool, bio);
1411 			remap_and_issue(tc, bio, lookup_result.block);
1412 		}
1413 		break;
1414 
1415 	case -ENODATA:
1416 		if (rw != READ) {
1417 			handle_unserviceable_bio(tc->pool, bio);
1418 			break;
1419 		}
1420 
1421 		if (tc->origin_dev) {
1422 			inc_all_io_entry(tc->pool, bio);
1423 			remap_to_origin_and_issue(tc, bio);
1424 			break;
1425 		}
1426 
1427 		zero_fill_bio(bio);
1428 		bio_endio(bio, 0);
1429 		break;
1430 
1431 	default:
1432 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1433 			    __func__, r);
1434 		bio_io_error(bio);
1435 		break;
1436 	}
1437 }
1438 
1439 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1440 {
1441 	bio_endio(bio, 0);
1442 }
1443 
1444 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1445 {
1446 	bio_io_error(bio);
1447 }
1448 
1449 /*
1450  * FIXME: should we also commit due to size of transaction, measured in
1451  * metadata blocks?
1452  */
1453 static int need_commit_due_to_time(struct pool *pool)
1454 {
1455 	return jiffies < pool->last_commit_jiffies ||
1456 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1457 }
1458 
1459 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1460 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1461 
1462 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1463 {
1464 	struct rb_node **rbp, *parent;
1465 	struct dm_thin_endio_hook *pbd;
1466 	sector_t bi_sector = bio->bi_iter.bi_sector;
1467 
1468 	rbp = &tc->sort_bio_list.rb_node;
1469 	parent = NULL;
1470 	while (*rbp) {
1471 		parent = *rbp;
1472 		pbd = thin_pbd(parent);
1473 
1474 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1475 			rbp = &(*rbp)->rb_left;
1476 		else
1477 			rbp = &(*rbp)->rb_right;
1478 	}
1479 
1480 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1481 	rb_link_node(&pbd->rb_node, parent, rbp);
1482 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1483 }
1484 
1485 static void __extract_sorted_bios(struct thin_c *tc)
1486 {
1487 	struct rb_node *node;
1488 	struct dm_thin_endio_hook *pbd;
1489 	struct bio *bio;
1490 
1491 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1492 		pbd = thin_pbd(node);
1493 		bio = thin_bio(pbd);
1494 
1495 		bio_list_add(&tc->deferred_bio_list, bio);
1496 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1497 	}
1498 
1499 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1500 }
1501 
1502 static void __sort_thin_deferred_bios(struct thin_c *tc)
1503 {
1504 	struct bio *bio;
1505 	struct bio_list bios;
1506 
1507 	bio_list_init(&bios);
1508 	bio_list_merge(&bios, &tc->deferred_bio_list);
1509 	bio_list_init(&tc->deferred_bio_list);
1510 
1511 	/* Sort deferred_bio_list using rb-tree */
1512 	while ((bio = bio_list_pop(&bios)))
1513 		__thin_bio_rb_add(tc, bio);
1514 
1515 	/*
1516 	 * Transfer the sorted bios in sort_bio_list back to
1517 	 * deferred_bio_list to allow lockless submission of
1518 	 * all bios.
1519 	 */
1520 	__extract_sorted_bios(tc);
1521 }
1522 
1523 static void process_thin_deferred_bios(struct thin_c *tc)
1524 {
1525 	struct pool *pool = tc->pool;
1526 	unsigned long flags;
1527 	struct bio *bio;
1528 	struct bio_list bios;
1529 	struct blk_plug plug;
1530 
1531 	if (tc->requeue_mode) {
1532 		requeue_bio_list(tc, &tc->deferred_bio_list);
1533 		return;
1534 	}
1535 
1536 	bio_list_init(&bios);
1537 
1538 	spin_lock_irqsave(&tc->lock, flags);
1539 
1540 	if (bio_list_empty(&tc->deferred_bio_list)) {
1541 		spin_unlock_irqrestore(&tc->lock, flags);
1542 		return;
1543 	}
1544 
1545 	__sort_thin_deferred_bios(tc);
1546 
1547 	bio_list_merge(&bios, &tc->deferred_bio_list);
1548 	bio_list_init(&tc->deferred_bio_list);
1549 
1550 	spin_unlock_irqrestore(&tc->lock, flags);
1551 
1552 	blk_start_plug(&plug);
1553 	while ((bio = bio_list_pop(&bios))) {
1554 		/*
1555 		 * If we've got no free new_mapping structs, and processing
1556 		 * this bio might require one, we pause until there are some
1557 		 * prepared mappings to process.
1558 		 */
1559 		if (ensure_next_mapping(pool)) {
1560 			spin_lock_irqsave(&tc->lock, flags);
1561 			bio_list_add(&tc->deferred_bio_list, bio);
1562 			bio_list_merge(&tc->deferred_bio_list, &bios);
1563 			spin_unlock_irqrestore(&tc->lock, flags);
1564 			break;
1565 		}
1566 
1567 		if (bio->bi_rw & REQ_DISCARD)
1568 			pool->process_discard(tc, bio);
1569 		else
1570 			pool->process_bio(tc, bio);
1571 	}
1572 	blk_finish_plug(&plug);
1573 }
1574 
1575 static void thin_get(struct thin_c *tc);
1576 static void thin_put(struct thin_c *tc);
1577 
1578 /*
1579  * We can't hold rcu_read_lock() around code that can block.  So we
1580  * find a thin with the rcu lock held; bump a refcount; then drop
1581  * the lock.
1582  */
1583 static struct thin_c *get_first_thin(struct pool *pool)
1584 {
1585 	struct thin_c *tc = NULL;
1586 
1587 	rcu_read_lock();
1588 	if (!list_empty(&pool->active_thins)) {
1589 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1590 		thin_get(tc);
1591 	}
1592 	rcu_read_unlock();
1593 
1594 	return tc;
1595 }
1596 
1597 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1598 {
1599 	struct thin_c *old_tc = tc;
1600 
1601 	rcu_read_lock();
1602 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1603 		thin_get(tc);
1604 		thin_put(old_tc);
1605 		rcu_read_unlock();
1606 		return tc;
1607 	}
1608 	thin_put(old_tc);
1609 	rcu_read_unlock();
1610 
1611 	return NULL;
1612 }
1613 
1614 static void process_deferred_bios(struct pool *pool)
1615 {
1616 	unsigned long flags;
1617 	struct bio *bio;
1618 	struct bio_list bios;
1619 	struct thin_c *tc;
1620 
1621 	tc = get_first_thin(pool);
1622 	while (tc) {
1623 		process_thin_deferred_bios(tc);
1624 		tc = get_next_thin(pool, tc);
1625 	}
1626 
1627 	/*
1628 	 * If there are any deferred flush bios, we must commit
1629 	 * the metadata before issuing them.
1630 	 */
1631 	bio_list_init(&bios);
1632 	spin_lock_irqsave(&pool->lock, flags);
1633 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1634 	bio_list_init(&pool->deferred_flush_bios);
1635 	spin_unlock_irqrestore(&pool->lock, flags);
1636 
1637 	if (bio_list_empty(&bios) &&
1638 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1639 		return;
1640 
1641 	if (commit(pool)) {
1642 		while ((bio = bio_list_pop(&bios)))
1643 			bio_io_error(bio);
1644 		return;
1645 	}
1646 	pool->last_commit_jiffies = jiffies;
1647 
1648 	while ((bio = bio_list_pop(&bios)))
1649 		generic_make_request(bio);
1650 }
1651 
1652 static void do_worker(struct work_struct *ws)
1653 {
1654 	struct pool *pool = container_of(ws, struct pool, worker);
1655 
1656 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1657 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1658 	process_deferred_bios(pool);
1659 }
1660 
1661 /*
1662  * We want to commit periodically so that not too much
1663  * unwritten data builds up.
1664  */
1665 static void do_waker(struct work_struct *ws)
1666 {
1667 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1668 	wake_worker(pool);
1669 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1670 }
1671 
1672 /*
1673  * We're holding onto IO to allow userland time to react.  After the
1674  * timeout either the pool will have been resized (and thus back in
1675  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1676  */
1677 static void do_no_space_timeout(struct work_struct *ws)
1678 {
1679 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1680 					 no_space_timeout);
1681 
1682 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1683 		set_pool_mode(pool, PM_READ_ONLY);
1684 }
1685 
1686 /*----------------------------------------------------------------*/
1687 
1688 struct pool_work {
1689 	struct work_struct worker;
1690 	struct completion complete;
1691 };
1692 
1693 static struct pool_work *to_pool_work(struct work_struct *ws)
1694 {
1695 	return container_of(ws, struct pool_work, worker);
1696 }
1697 
1698 static void pool_work_complete(struct pool_work *pw)
1699 {
1700 	complete(&pw->complete);
1701 }
1702 
1703 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1704 			   void (*fn)(struct work_struct *))
1705 {
1706 	INIT_WORK_ONSTACK(&pw->worker, fn);
1707 	init_completion(&pw->complete);
1708 	queue_work(pool->wq, &pw->worker);
1709 	wait_for_completion(&pw->complete);
1710 }
1711 
1712 /*----------------------------------------------------------------*/
1713 
1714 struct noflush_work {
1715 	struct pool_work pw;
1716 	struct thin_c *tc;
1717 };
1718 
1719 static struct noflush_work *to_noflush(struct work_struct *ws)
1720 {
1721 	return container_of(to_pool_work(ws), struct noflush_work, pw);
1722 }
1723 
1724 static void do_noflush_start(struct work_struct *ws)
1725 {
1726 	struct noflush_work *w = to_noflush(ws);
1727 	w->tc->requeue_mode = true;
1728 	requeue_io(w->tc);
1729 	pool_work_complete(&w->pw);
1730 }
1731 
1732 static void do_noflush_stop(struct work_struct *ws)
1733 {
1734 	struct noflush_work *w = to_noflush(ws);
1735 	w->tc->requeue_mode = false;
1736 	pool_work_complete(&w->pw);
1737 }
1738 
1739 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1740 {
1741 	struct noflush_work w;
1742 
1743 	w.tc = tc;
1744 	pool_work_wait(&w.pw, tc->pool, fn);
1745 }
1746 
1747 /*----------------------------------------------------------------*/
1748 
1749 static enum pool_mode get_pool_mode(struct pool *pool)
1750 {
1751 	return pool->pf.mode;
1752 }
1753 
1754 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1755 {
1756 	dm_table_event(pool->ti->table);
1757 	DMINFO("%s: switching pool to %s mode",
1758 	       dm_device_name(pool->pool_md), new_mode);
1759 }
1760 
1761 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1762 {
1763 	struct pool_c *pt = pool->ti->private;
1764 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1765 	enum pool_mode old_mode = get_pool_mode(pool);
1766 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1767 
1768 	/*
1769 	 * Never allow the pool to transition to PM_WRITE mode if user
1770 	 * intervention is required to verify metadata and data consistency.
1771 	 */
1772 	if (new_mode == PM_WRITE && needs_check) {
1773 		DMERR("%s: unable to switch pool to write mode until repaired.",
1774 		      dm_device_name(pool->pool_md));
1775 		if (old_mode != new_mode)
1776 			new_mode = old_mode;
1777 		else
1778 			new_mode = PM_READ_ONLY;
1779 	}
1780 	/*
1781 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1782 	 * not going to recover without a thin_repair.	So we never let the
1783 	 * pool move out of the old mode.
1784 	 */
1785 	if (old_mode == PM_FAIL)
1786 		new_mode = old_mode;
1787 
1788 	switch (new_mode) {
1789 	case PM_FAIL:
1790 		if (old_mode != new_mode)
1791 			notify_of_pool_mode_change(pool, "failure");
1792 		dm_pool_metadata_read_only(pool->pmd);
1793 		pool->process_bio = process_bio_fail;
1794 		pool->process_discard = process_bio_fail;
1795 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1796 		pool->process_prepared_discard = process_prepared_discard_fail;
1797 
1798 		error_retry_list(pool);
1799 		break;
1800 
1801 	case PM_READ_ONLY:
1802 		if (old_mode != new_mode)
1803 			notify_of_pool_mode_change(pool, "read-only");
1804 		dm_pool_metadata_read_only(pool->pmd);
1805 		pool->process_bio = process_bio_read_only;
1806 		pool->process_discard = process_bio_success;
1807 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1808 		pool->process_prepared_discard = process_prepared_discard_passdown;
1809 
1810 		error_retry_list(pool);
1811 		break;
1812 
1813 	case PM_OUT_OF_DATA_SPACE:
1814 		/*
1815 		 * Ideally we'd never hit this state; the low water mark
1816 		 * would trigger userland to extend the pool before we
1817 		 * completely run out of data space.  However, many small
1818 		 * IOs to unprovisioned space can consume data space at an
1819 		 * alarming rate.  Adjust your low water mark if you're
1820 		 * frequently seeing this mode.
1821 		 */
1822 		if (old_mode != new_mode)
1823 			notify_of_pool_mode_change(pool, "out-of-data-space");
1824 		pool->process_bio = process_bio_read_only;
1825 		pool->process_discard = process_discard;
1826 		pool->process_prepared_mapping = process_prepared_mapping;
1827 		pool->process_prepared_discard = process_prepared_discard_passdown;
1828 
1829 		if (!pool->pf.error_if_no_space && no_space_timeout)
1830 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1831 		break;
1832 
1833 	case PM_WRITE:
1834 		if (old_mode != new_mode)
1835 			notify_of_pool_mode_change(pool, "write");
1836 		dm_pool_metadata_read_write(pool->pmd);
1837 		pool->process_bio = process_bio;
1838 		pool->process_discard = process_discard;
1839 		pool->process_prepared_mapping = process_prepared_mapping;
1840 		pool->process_prepared_discard = process_prepared_discard;
1841 		break;
1842 	}
1843 
1844 	pool->pf.mode = new_mode;
1845 	/*
1846 	 * The pool mode may have changed, sync it so bind_control_target()
1847 	 * doesn't cause an unexpected mode transition on resume.
1848 	 */
1849 	pt->adjusted_pf.mode = new_mode;
1850 }
1851 
1852 static void abort_transaction(struct pool *pool)
1853 {
1854 	const char *dev_name = dm_device_name(pool->pool_md);
1855 
1856 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1857 	if (dm_pool_abort_metadata(pool->pmd)) {
1858 		DMERR("%s: failed to abort metadata transaction", dev_name);
1859 		set_pool_mode(pool, PM_FAIL);
1860 	}
1861 
1862 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1863 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1864 		set_pool_mode(pool, PM_FAIL);
1865 	}
1866 }
1867 
1868 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1869 {
1870 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1871 		    dm_device_name(pool->pool_md), op, r);
1872 
1873 	abort_transaction(pool);
1874 	set_pool_mode(pool, PM_READ_ONLY);
1875 }
1876 
1877 /*----------------------------------------------------------------*/
1878 
1879 /*
1880  * Mapping functions.
1881  */
1882 
1883 /*
1884  * Called only while mapping a thin bio to hand it over to the workqueue.
1885  */
1886 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1887 {
1888 	unsigned long flags;
1889 	struct pool *pool = tc->pool;
1890 
1891 	spin_lock_irqsave(&tc->lock, flags);
1892 	bio_list_add(&tc->deferred_bio_list, bio);
1893 	spin_unlock_irqrestore(&tc->lock, flags);
1894 
1895 	wake_worker(pool);
1896 }
1897 
1898 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1899 {
1900 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1901 
1902 	h->tc = tc;
1903 	h->shared_read_entry = NULL;
1904 	h->all_io_entry = NULL;
1905 	h->overwrite_mapping = NULL;
1906 }
1907 
1908 /*
1909  * Non-blocking function called from the thin target's map function.
1910  */
1911 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1912 {
1913 	int r;
1914 	struct thin_c *tc = ti->private;
1915 	dm_block_t block = get_bio_block(tc, bio);
1916 	struct dm_thin_device *td = tc->td;
1917 	struct dm_thin_lookup_result result;
1918 	struct dm_bio_prison_cell cell1, cell2;
1919 	struct dm_bio_prison_cell *cell_result;
1920 	struct dm_cell_key key;
1921 
1922 	thin_hook_bio(tc, bio);
1923 
1924 	if (tc->requeue_mode) {
1925 		bio_endio(bio, DM_ENDIO_REQUEUE);
1926 		return DM_MAPIO_SUBMITTED;
1927 	}
1928 
1929 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1930 		bio_io_error(bio);
1931 		return DM_MAPIO_SUBMITTED;
1932 	}
1933 
1934 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1935 		thin_defer_bio(tc, bio);
1936 		return DM_MAPIO_SUBMITTED;
1937 	}
1938 
1939 	/*
1940 	 * We must hold the virtual cell before doing the lookup, otherwise
1941 	 * there's a race with discard.
1942 	 */
1943 	build_virtual_key(tc->td, block, &key);
1944 	if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1945 		return DM_MAPIO_SUBMITTED;
1946 
1947 	r = dm_thin_find_block(td, block, 0, &result);
1948 
1949 	/*
1950 	 * Note that we defer readahead too.
1951 	 */
1952 	switch (r) {
1953 	case 0:
1954 		if (unlikely(result.shared)) {
1955 			/*
1956 			 * We have a race condition here between the
1957 			 * result.shared value returned by the lookup and
1958 			 * snapshot creation, which may cause new
1959 			 * sharing.
1960 			 *
1961 			 * To avoid this always quiesce the origin before
1962 			 * taking the snap.  You want to do this anyway to
1963 			 * ensure a consistent application view
1964 			 * (i.e. lockfs).
1965 			 *
1966 			 * More distant ancestors are irrelevant. The
1967 			 * shared flag will be set in their case.
1968 			 */
1969 			thin_defer_bio(tc, bio);
1970 			cell_defer_no_holder_no_free(tc, &cell1);
1971 			return DM_MAPIO_SUBMITTED;
1972 		}
1973 
1974 		build_data_key(tc->td, result.block, &key);
1975 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1976 			cell_defer_no_holder_no_free(tc, &cell1);
1977 			return DM_MAPIO_SUBMITTED;
1978 		}
1979 
1980 		inc_all_io_entry(tc->pool, bio);
1981 		cell_defer_no_holder_no_free(tc, &cell2);
1982 		cell_defer_no_holder_no_free(tc, &cell1);
1983 
1984 		remap(tc, bio, result.block);
1985 		return DM_MAPIO_REMAPPED;
1986 
1987 	case -ENODATA:
1988 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1989 			/*
1990 			 * This block isn't provisioned, and we have no way
1991 			 * of doing so.
1992 			 */
1993 			handle_unserviceable_bio(tc->pool, bio);
1994 			cell_defer_no_holder_no_free(tc, &cell1);
1995 			return DM_MAPIO_SUBMITTED;
1996 		}
1997 		/* fall through */
1998 
1999 	case -EWOULDBLOCK:
2000 		/*
2001 		 * In future, the failed dm_thin_find_block above could
2002 		 * provide the hint to load the metadata into cache.
2003 		 */
2004 		thin_defer_bio(tc, bio);
2005 		cell_defer_no_holder_no_free(tc, &cell1);
2006 		return DM_MAPIO_SUBMITTED;
2007 
2008 	default:
2009 		/*
2010 		 * Must always call bio_io_error on failure.
2011 		 * dm_thin_find_block can fail with -EINVAL if the
2012 		 * pool is switched to fail-io mode.
2013 		 */
2014 		bio_io_error(bio);
2015 		cell_defer_no_holder_no_free(tc, &cell1);
2016 		return DM_MAPIO_SUBMITTED;
2017 	}
2018 }
2019 
2020 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2021 {
2022 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2023 	struct request_queue *q;
2024 
2025 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2026 		return 1;
2027 
2028 	q = bdev_get_queue(pt->data_dev->bdev);
2029 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2030 }
2031 
2032 static void requeue_bios(struct pool *pool)
2033 {
2034 	unsigned long flags;
2035 	struct thin_c *tc;
2036 
2037 	rcu_read_lock();
2038 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2039 		spin_lock_irqsave(&tc->lock, flags);
2040 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2041 		bio_list_init(&tc->retry_on_resume_list);
2042 		spin_unlock_irqrestore(&tc->lock, flags);
2043 	}
2044 	rcu_read_unlock();
2045 }
2046 
2047 /*----------------------------------------------------------------
2048  * Binding of control targets to a pool object
2049  *--------------------------------------------------------------*/
2050 static bool data_dev_supports_discard(struct pool_c *pt)
2051 {
2052 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2053 
2054 	return q && blk_queue_discard(q);
2055 }
2056 
2057 static bool is_factor(sector_t block_size, uint32_t n)
2058 {
2059 	return !sector_div(block_size, n);
2060 }
2061 
2062 /*
2063  * If discard_passdown was enabled verify that the data device
2064  * supports discards.  Disable discard_passdown if not.
2065  */
2066 static void disable_passdown_if_not_supported(struct pool_c *pt)
2067 {
2068 	struct pool *pool = pt->pool;
2069 	struct block_device *data_bdev = pt->data_dev->bdev;
2070 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2071 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2072 	const char *reason = NULL;
2073 	char buf[BDEVNAME_SIZE];
2074 
2075 	if (!pt->adjusted_pf.discard_passdown)
2076 		return;
2077 
2078 	if (!data_dev_supports_discard(pt))
2079 		reason = "discard unsupported";
2080 
2081 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2082 		reason = "max discard sectors smaller than a block";
2083 
2084 	else if (data_limits->discard_granularity > block_size)
2085 		reason = "discard granularity larger than a block";
2086 
2087 	else if (!is_factor(block_size, data_limits->discard_granularity))
2088 		reason = "discard granularity not a factor of block size";
2089 
2090 	if (reason) {
2091 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2092 		pt->adjusted_pf.discard_passdown = false;
2093 	}
2094 }
2095 
2096 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2097 {
2098 	struct pool_c *pt = ti->private;
2099 
2100 	/*
2101 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2102 	 */
2103 	enum pool_mode old_mode = get_pool_mode(pool);
2104 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2105 
2106 	/*
2107 	 * Don't change the pool's mode until set_pool_mode() below.
2108 	 * Otherwise the pool's process_* function pointers may
2109 	 * not match the desired pool mode.
2110 	 */
2111 	pt->adjusted_pf.mode = old_mode;
2112 
2113 	pool->ti = ti;
2114 	pool->pf = pt->adjusted_pf;
2115 	pool->low_water_blocks = pt->low_water_blocks;
2116 
2117 	set_pool_mode(pool, new_mode);
2118 
2119 	return 0;
2120 }
2121 
2122 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2123 {
2124 	if (pool->ti == ti)
2125 		pool->ti = NULL;
2126 }
2127 
2128 /*----------------------------------------------------------------
2129  * Pool creation
2130  *--------------------------------------------------------------*/
2131 /* Initialize pool features. */
2132 static void pool_features_init(struct pool_features *pf)
2133 {
2134 	pf->mode = PM_WRITE;
2135 	pf->zero_new_blocks = true;
2136 	pf->discard_enabled = true;
2137 	pf->discard_passdown = true;
2138 	pf->error_if_no_space = false;
2139 }
2140 
2141 static void __pool_destroy(struct pool *pool)
2142 {
2143 	__pool_table_remove(pool);
2144 
2145 	if (dm_pool_metadata_close(pool->pmd) < 0)
2146 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2147 
2148 	dm_bio_prison_destroy(pool->prison);
2149 	dm_kcopyd_client_destroy(pool->copier);
2150 
2151 	if (pool->wq)
2152 		destroy_workqueue(pool->wq);
2153 
2154 	if (pool->next_mapping)
2155 		mempool_free(pool->next_mapping, pool->mapping_pool);
2156 	mempool_destroy(pool->mapping_pool);
2157 	dm_deferred_set_destroy(pool->shared_read_ds);
2158 	dm_deferred_set_destroy(pool->all_io_ds);
2159 	kfree(pool);
2160 }
2161 
2162 static struct kmem_cache *_new_mapping_cache;
2163 
2164 static struct pool *pool_create(struct mapped_device *pool_md,
2165 				struct block_device *metadata_dev,
2166 				unsigned long block_size,
2167 				int read_only, char **error)
2168 {
2169 	int r;
2170 	void *err_p;
2171 	struct pool *pool;
2172 	struct dm_pool_metadata *pmd;
2173 	bool format_device = read_only ? false : true;
2174 
2175 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2176 	if (IS_ERR(pmd)) {
2177 		*error = "Error creating metadata object";
2178 		return (struct pool *)pmd;
2179 	}
2180 
2181 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2182 	if (!pool) {
2183 		*error = "Error allocating memory for pool";
2184 		err_p = ERR_PTR(-ENOMEM);
2185 		goto bad_pool;
2186 	}
2187 
2188 	pool->pmd = pmd;
2189 	pool->sectors_per_block = block_size;
2190 	if (block_size & (block_size - 1))
2191 		pool->sectors_per_block_shift = -1;
2192 	else
2193 		pool->sectors_per_block_shift = __ffs(block_size);
2194 	pool->low_water_blocks = 0;
2195 	pool_features_init(&pool->pf);
2196 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2197 	if (!pool->prison) {
2198 		*error = "Error creating pool's bio prison";
2199 		err_p = ERR_PTR(-ENOMEM);
2200 		goto bad_prison;
2201 	}
2202 
2203 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2204 	if (IS_ERR(pool->copier)) {
2205 		r = PTR_ERR(pool->copier);
2206 		*error = "Error creating pool's kcopyd client";
2207 		err_p = ERR_PTR(r);
2208 		goto bad_kcopyd_client;
2209 	}
2210 
2211 	/*
2212 	 * Create singlethreaded workqueue that will service all devices
2213 	 * that use this metadata.
2214 	 */
2215 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2216 	if (!pool->wq) {
2217 		*error = "Error creating pool's workqueue";
2218 		err_p = ERR_PTR(-ENOMEM);
2219 		goto bad_wq;
2220 	}
2221 
2222 	INIT_WORK(&pool->worker, do_worker);
2223 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2224 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2225 	spin_lock_init(&pool->lock);
2226 	bio_list_init(&pool->deferred_flush_bios);
2227 	INIT_LIST_HEAD(&pool->prepared_mappings);
2228 	INIT_LIST_HEAD(&pool->prepared_discards);
2229 	INIT_LIST_HEAD(&pool->active_thins);
2230 	pool->low_water_triggered = false;
2231 
2232 	pool->shared_read_ds = dm_deferred_set_create();
2233 	if (!pool->shared_read_ds) {
2234 		*error = "Error creating pool's shared read deferred set";
2235 		err_p = ERR_PTR(-ENOMEM);
2236 		goto bad_shared_read_ds;
2237 	}
2238 
2239 	pool->all_io_ds = dm_deferred_set_create();
2240 	if (!pool->all_io_ds) {
2241 		*error = "Error creating pool's all io deferred set";
2242 		err_p = ERR_PTR(-ENOMEM);
2243 		goto bad_all_io_ds;
2244 	}
2245 
2246 	pool->next_mapping = NULL;
2247 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2248 						      _new_mapping_cache);
2249 	if (!pool->mapping_pool) {
2250 		*error = "Error creating pool's mapping mempool";
2251 		err_p = ERR_PTR(-ENOMEM);
2252 		goto bad_mapping_pool;
2253 	}
2254 
2255 	pool->ref_count = 1;
2256 	pool->last_commit_jiffies = jiffies;
2257 	pool->pool_md = pool_md;
2258 	pool->md_dev = metadata_dev;
2259 	__pool_table_insert(pool);
2260 
2261 	return pool;
2262 
2263 bad_mapping_pool:
2264 	dm_deferred_set_destroy(pool->all_io_ds);
2265 bad_all_io_ds:
2266 	dm_deferred_set_destroy(pool->shared_read_ds);
2267 bad_shared_read_ds:
2268 	destroy_workqueue(pool->wq);
2269 bad_wq:
2270 	dm_kcopyd_client_destroy(pool->copier);
2271 bad_kcopyd_client:
2272 	dm_bio_prison_destroy(pool->prison);
2273 bad_prison:
2274 	kfree(pool);
2275 bad_pool:
2276 	if (dm_pool_metadata_close(pmd))
2277 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2278 
2279 	return err_p;
2280 }
2281 
2282 static void __pool_inc(struct pool *pool)
2283 {
2284 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2285 	pool->ref_count++;
2286 }
2287 
2288 static void __pool_dec(struct pool *pool)
2289 {
2290 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2291 	BUG_ON(!pool->ref_count);
2292 	if (!--pool->ref_count)
2293 		__pool_destroy(pool);
2294 }
2295 
2296 static struct pool *__pool_find(struct mapped_device *pool_md,
2297 				struct block_device *metadata_dev,
2298 				unsigned long block_size, int read_only,
2299 				char **error, int *created)
2300 {
2301 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2302 
2303 	if (pool) {
2304 		if (pool->pool_md != pool_md) {
2305 			*error = "metadata device already in use by a pool";
2306 			return ERR_PTR(-EBUSY);
2307 		}
2308 		__pool_inc(pool);
2309 
2310 	} else {
2311 		pool = __pool_table_lookup(pool_md);
2312 		if (pool) {
2313 			if (pool->md_dev != metadata_dev) {
2314 				*error = "different pool cannot replace a pool";
2315 				return ERR_PTR(-EINVAL);
2316 			}
2317 			__pool_inc(pool);
2318 
2319 		} else {
2320 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2321 			*created = 1;
2322 		}
2323 	}
2324 
2325 	return pool;
2326 }
2327 
2328 /*----------------------------------------------------------------
2329  * Pool target methods
2330  *--------------------------------------------------------------*/
2331 static void pool_dtr(struct dm_target *ti)
2332 {
2333 	struct pool_c *pt = ti->private;
2334 
2335 	mutex_lock(&dm_thin_pool_table.mutex);
2336 
2337 	unbind_control_target(pt->pool, ti);
2338 	__pool_dec(pt->pool);
2339 	dm_put_device(ti, pt->metadata_dev);
2340 	dm_put_device(ti, pt->data_dev);
2341 	kfree(pt);
2342 
2343 	mutex_unlock(&dm_thin_pool_table.mutex);
2344 }
2345 
2346 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2347 			       struct dm_target *ti)
2348 {
2349 	int r;
2350 	unsigned argc;
2351 	const char *arg_name;
2352 
2353 	static struct dm_arg _args[] = {
2354 		{0, 4, "Invalid number of pool feature arguments"},
2355 	};
2356 
2357 	/*
2358 	 * No feature arguments supplied.
2359 	 */
2360 	if (!as->argc)
2361 		return 0;
2362 
2363 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2364 	if (r)
2365 		return -EINVAL;
2366 
2367 	while (argc && !r) {
2368 		arg_name = dm_shift_arg(as);
2369 		argc--;
2370 
2371 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2372 			pf->zero_new_blocks = false;
2373 
2374 		else if (!strcasecmp(arg_name, "ignore_discard"))
2375 			pf->discard_enabled = false;
2376 
2377 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2378 			pf->discard_passdown = false;
2379 
2380 		else if (!strcasecmp(arg_name, "read_only"))
2381 			pf->mode = PM_READ_ONLY;
2382 
2383 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2384 			pf->error_if_no_space = true;
2385 
2386 		else {
2387 			ti->error = "Unrecognised pool feature requested";
2388 			r = -EINVAL;
2389 			break;
2390 		}
2391 	}
2392 
2393 	return r;
2394 }
2395 
2396 static void metadata_low_callback(void *context)
2397 {
2398 	struct pool *pool = context;
2399 
2400 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2401 	       dm_device_name(pool->pool_md));
2402 
2403 	dm_table_event(pool->ti->table);
2404 }
2405 
2406 static sector_t get_dev_size(struct block_device *bdev)
2407 {
2408 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2409 }
2410 
2411 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2412 {
2413 	sector_t metadata_dev_size = get_dev_size(bdev);
2414 	char buffer[BDEVNAME_SIZE];
2415 
2416 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2417 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2418 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2419 }
2420 
2421 static sector_t get_metadata_dev_size(struct block_device *bdev)
2422 {
2423 	sector_t metadata_dev_size = get_dev_size(bdev);
2424 
2425 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2426 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2427 
2428 	return metadata_dev_size;
2429 }
2430 
2431 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2432 {
2433 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2434 
2435 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2436 
2437 	return metadata_dev_size;
2438 }
2439 
2440 /*
2441  * When a metadata threshold is crossed a dm event is triggered, and
2442  * userland should respond by growing the metadata device.  We could let
2443  * userland set the threshold, like we do with the data threshold, but I'm
2444  * not sure they know enough to do this well.
2445  */
2446 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2447 {
2448 	/*
2449 	 * 4M is ample for all ops with the possible exception of thin
2450 	 * device deletion which is harmless if it fails (just retry the
2451 	 * delete after you've grown the device).
2452 	 */
2453 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2454 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2455 }
2456 
2457 /*
2458  * thin-pool <metadata dev> <data dev>
2459  *	     <data block size (sectors)>
2460  *	     <low water mark (blocks)>
2461  *	     [<#feature args> [<arg>]*]
2462  *
2463  * Optional feature arguments are:
2464  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2465  *	     ignore_discard: disable discard
2466  *	     no_discard_passdown: don't pass discards down to the data device
2467  *	     read_only: Don't allow any changes to be made to the pool metadata.
2468  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2469  */
2470 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2471 {
2472 	int r, pool_created = 0;
2473 	struct pool_c *pt;
2474 	struct pool *pool;
2475 	struct pool_features pf;
2476 	struct dm_arg_set as;
2477 	struct dm_dev *data_dev;
2478 	unsigned long block_size;
2479 	dm_block_t low_water_blocks;
2480 	struct dm_dev *metadata_dev;
2481 	fmode_t metadata_mode;
2482 
2483 	/*
2484 	 * FIXME Remove validation from scope of lock.
2485 	 */
2486 	mutex_lock(&dm_thin_pool_table.mutex);
2487 
2488 	if (argc < 4) {
2489 		ti->error = "Invalid argument count";
2490 		r = -EINVAL;
2491 		goto out_unlock;
2492 	}
2493 
2494 	as.argc = argc;
2495 	as.argv = argv;
2496 
2497 	/*
2498 	 * Set default pool features.
2499 	 */
2500 	pool_features_init(&pf);
2501 
2502 	dm_consume_args(&as, 4);
2503 	r = parse_pool_features(&as, &pf, ti);
2504 	if (r)
2505 		goto out_unlock;
2506 
2507 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2508 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2509 	if (r) {
2510 		ti->error = "Error opening metadata block device";
2511 		goto out_unlock;
2512 	}
2513 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2514 
2515 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2516 	if (r) {
2517 		ti->error = "Error getting data device";
2518 		goto out_metadata;
2519 	}
2520 
2521 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2522 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2523 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2524 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2525 		ti->error = "Invalid block size";
2526 		r = -EINVAL;
2527 		goto out;
2528 	}
2529 
2530 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2531 		ti->error = "Invalid low water mark";
2532 		r = -EINVAL;
2533 		goto out;
2534 	}
2535 
2536 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2537 	if (!pt) {
2538 		r = -ENOMEM;
2539 		goto out;
2540 	}
2541 
2542 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2543 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2544 	if (IS_ERR(pool)) {
2545 		r = PTR_ERR(pool);
2546 		goto out_free_pt;
2547 	}
2548 
2549 	/*
2550 	 * 'pool_created' reflects whether this is the first table load.
2551 	 * Top level discard support is not allowed to be changed after
2552 	 * initial load.  This would require a pool reload to trigger thin
2553 	 * device changes.
2554 	 */
2555 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2556 		ti->error = "Discard support cannot be disabled once enabled";
2557 		r = -EINVAL;
2558 		goto out_flags_changed;
2559 	}
2560 
2561 	pt->pool = pool;
2562 	pt->ti = ti;
2563 	pt->metadata_dev = metadata_dev;
2564 	pt->data_dev = data_dev;
2565 	pt->low_water_blocks = low_water_blocks;
2566 	pt->adjusted_pf = pt->requested_pf = pf;
2567 	ti->num_flush_bios = 1;
2568 
2569 	/*
2570 	 * Only need to enable discards if the pool should pass
2571 	 * them down to the data device.  The thin device's discard
2572 	 * processing will cause mappings to be removed from the btree.
2573 	 */
2574 	ti->discard_zeroes_data_unsupported = true;
2575 	if (pf.discard_enabled && pf.discard_passdown) {
2576 		ti->num_discard_bios = 1;
2577 
2578 		/*
2579 		 * Setting 'discards_supported' circumvents the normal
2580 		 * stacking of discard limits (this keeps the pool and
2581 		 * thin devices' discard limits consistent).
2582 		 */
2583 		ti->discards_supported = true;
2584 	}
2585 	ti->private = pt;
2586 
2587 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2588 						calc_metadata_threshold(pt),
2589 						metadata_low_callback,
2590 						pool);
2591 	if (r)
2592 		goto out_free_pt;
2593 
2594 	pt->callbacks.congested_fn = pool_is_congested;
2595 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2596 
2597 	mutex_unlock(&dm_thin_pool_table.mutex);
2598 
2599 	return 0;
2600 
2601 out_flags_changed:
2602 	__pool_dec(pool);
2603 out_free_pt:
2604 	kfree(pt);
2605 out:
2606 	dm_put_device(ti, data_dev);
2607 out_metadata:
2608 	dm_put_device(ti, metadata_dev);
2609 out_unlock:
2610 	mutex_unlock(&dm_thin_pool_table.mutex);
2611 
2612 	return r;
2613 }
2614 
2615 static int pool_map(struct dm_target *ti, struct bio *bio)
2616 {
2617 	int r;
2618 	struct pool_c *pt = ti->private;
2619 	struct pool *pool = pt->pool;
2620 	unsigned long flags;
2621 
2622 	/*
2623 	 * As this is a singleton target, ti->begin is always zero.
2624 	 */
2625 	spin_lock_irqsave(&pool->lock, flags);
2626 	bio->bi_bdev = pt->data_dev->bdev;
2627 	r = DM_MAPIO_REMAPPED;
2628 	spin_unlock_irqrestore(&pool->lock, flags);
2629 
2630 	return r;
2631 }
2632 
2633 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2634 {
2635 	int r;
2636 	struct pool_c *pt = ti->private;
2637 	struct pool *pool = pt->pool;
2638 	sector_t data_size = ti->len;
2639 	dm_block_t sb_data_size;
2640 
2641 	*need_commit = false;
2642 
2643 	(void) sector_div(data_size, pool->sectors_per_block);
2644 
2645 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2646 	if (r) {
2647 		DMERR("%s: failed to retrieve data device size",
2648 		      dm_device_name(pool->pool_md));
2649 		return r;
2650 	}
2651 
2652 	if (data_size < sb_data_size) {
2653 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2654 		      dm_device_name(pool->pool_md),
2655 		      (unsigned long long)data_size, sb_data_size);
2656 		return -EINVAL;
2657 
2658 	} else if (data_size > sb_data_size) {
2659 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2660 			DMERR("%s: unable to grow the data device until repaired.",
2661 			      dm_device_name(pool->pool_md));
2662 			return 0;
2663 		}
2664 
2665 		if (sb_data_size)
2666 			DMINFO("%s: growing the data device from %llu to %llu blocks",
2667 			       dm_device_name(pool->pool_md),
2668 			       sb_data_size, (unsigned long long)data_size);
2669 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2670 		if (r) {
2671 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2672 			return r;
2673 		}
2674 
2675 		*need_commit = true;
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2682 {
2683 	int r;
2684 	struct pool_c *pt = ti->private;
2685 	struct pool *pool = pt->pool;
2686 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2687 
2688 	*need_commit = false;
2689 
2690 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2691 
2692 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2693 	if (r) {
2694 		DMERR("%s: failed to retrieve metadata device size",
2695 		      dm_device_name(pool->pool_md));
2696 		return r;
2697 	}
2698 
2699 	if (metadata_dev_size < sb_metadata_dev_size) {
2700 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2701 		      dm_device_name(pool->pool_md),
2702 		      metadata_dev_size, sb_metadata_dev_size);
2703 		return -EINVAL;
2704 
2705 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2706 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2707 			DMERR("%s: unable to grow the metadata device until repaired.",
2708 			      dm_device_name(pool->pool_md));
2709 			return 0;
2710 		}
2711 
2712 		warn_if_metadata_device_too_big(pool->md_dev);
2713 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2714 		       dm_device_name(pool->pool_md),
2715 		       sb_metadata_dev_size, metadata_dev_size);
2716 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2717 		if (r) {
2718 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2719 			return r;
2720 		}
2721 
2722 		*need_commit = true;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 /*
2729  * Retrieves the number of blocks of the data device from
2730  * the superblock and compares it to the actual device size,
2731  * thus resizing the data device in case it has grown.
2732  *
2733  * This both copes with opening preallocated data devices in the ctr
2734  * being followed by a resume
2735  * -and-
2736  * calling the resume method individually after userspace has
2737  * grown the data device in reaction to a table event.
2738  */
2739 static int pool_preresume(struct dm_target *ti)
2740 {
2741 	int r;
2742 	bool need_commit1, need_commit2;
2743 	struct pool_c *pt = ti->private;
2744 	struct pool *pool = pt->pool;
2745 
2746 	/*
2747 	 * Take control of the pool object.
2748 	 */
2749 	r = bind_control_target(pool, ti);
2750 	if (r)
2751 		return r;
2752 
2753 	r = maybe_resize_data_dev(ti, &need_commit1);
2754 	if (r)
2755 		return r;
2756 
2757 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2758 	if (r)
2759 		return r;
2760 
2761 	if (need_commit1 || need_commit2)
2762 		(void) commit(pool);
2763 
2764 	return 0;
2765 }
2766 
2767 static void pool_resume(struct dm_target *ti)
2768 {
2769 	struct pool_c *pt = ti->private;
2770 	struct pool *pool = pt->pool;
2771 	unsigned long flags;
2772 
2773 	spin_lock_irqsave(&pool->lock, flags);
2774 	pool->low_water_triggered = false;
2775 	spin_unlock_irqrestore(&pool->lock, flags);
2776 	requeue_bios(pool);
2777 
2778 	do_waker(&pool->waker.work);
2779 }
2780 
2781 static void pool_postsuspend(struct dm_target *ti)
2782 {
2783 	struct pool_c *pt = ti->private;
2784 	struct pool *pool = pt->pool;
2785 
2786 	cancel_delayed_work(&pool->waker);
2787 	cancel_delayed_work(&pool->no_space_timeout);
2788 	flush_workqueue(pool->wq);
2789 	(void) commit(pool);
2790 }
2791 
2792 static int check_arg_count(unsigned argc, unsigned args_required)
2793 {
2794 	if (argc != args_required) {
2795 		DMWARN("Message received with %u arguments instead of %u.",
2796 		       argc, args_required);
2797 		return -EINVAL;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2804 {
2805 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2806 	    *dev_id <= MAX_DEV_ID)
2807 		return 0;
2808 
2809 	if (warning)
2810 		DMWARN("Message received with invalid device id: %s", arg);
2811 
2812 	return -EINVAL;
2813 }
2814 
2815 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2816 {
2817 	dm_thin_id dev_id;
2818 	int r;
2819 
2820 	r = check_arg_count(argc, 2);
2821 	if (r)
2822 		return r;
2823 
2824 	r = read_dev_id(argv[1], &dev_id, 1);
2825 	if (r)
2826 		return r;
2827 
2828 	r = dm_pool_create_thin(pool->pmd, dev_id);
2829 	if (r) {
2830 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2831 		       argv[1]);
2832 		return r;
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2839 {
2840 	dm_thin_id dev_id;
2841 	dm_thin_id origin_dev_id;
2842 	int r;
2843 
2844 	r = check_arg_count(argc, 3);
2845 	if (r)
2846 		return r;
2847 
2848 	r = read_dev_id(argv[1], &dev_id, 1);
2849 	if (r)
2850 		return r;
2851 
2852 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2853 	if (r)
2854 		return r;
2855 
2856 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2857 	if (r) {
2858 		DMWARN("Creation of new snapshot %s of device %s failed.",
2859 		       argv[1], argv[2]);
2860 		return r;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2867 {
2868 	dm_thin_id dev_id;
2869 	int r;
2870 
2871 	r = check_arg_count(argc, 2);
2872 	if (r)
2873 		return r;
2874 
2875 	r = read_dev_id(argv[1], &dev_id, 1);
2876 	if (r)
2877 		return r;
2878 
2879 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2880 	if (r)
2881 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2882 
2883 	return r;
2884 }
2885 
2886 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2887 {
2888 	dm_thin_id old_id, new_id;
2889 	int r;
2890 
2891 	r = check_arg_count(argc, 3);
2892 	if (r)
2893 		return r;
2894 
2895 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2896 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2901 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2902 		return -EINVAL;
2903 	}
2904 
2905 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2906 	if (r) {
2907 		DMWARN("Failed to change transaction id from %s to %s.",
2908 		       argv[1], argv[2]);
2909 		return r;
2910 	}
2911 
2912 	return 0;
2913 }
2914 
2915 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2916 {
2917 	int r;
2918 
2919 	r = check_arg_count(argc, 1);
2920 	if (r)
2921 		return r;
2922 
2923 	(void) commit(pool);
2924 
2925 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2926 	if (r)
2927 		DMWARN("reserve_metadata_snap message failed.");
2928 
2929 	return r;
2930 }
2931 
2932 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2933 {
2934 	int r;
2935 
2936 	r = check_arg_count(argc, 1);
2937 	if (r)
2938 		return r;
2939 
2940 	r = dm_pool_release_metadata_snap(pool->pmd);
2941 	if (r)
2942 		DMWARN("release_metadata_snap message failed.");
2943 
2944 	return r;
2945 }
2946 
2947 /*
2948  * Messages supported:
2949  *   create_thin	<dev_id>
2950  *   create_snap	<dev_id> <origin_id>
2951  *   delete		<dev_id>
2952  *   trim		<dev_id> <new_size_in_sectors>
2953  *   set_transaction_id <current_trans_id> <new_trans_id>
2954  *   reserve_metadata_snap
2955  *   release_metadata_snap
2956  */
2957 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2958 {
2959 	int r = -EINVAL;
2960 	struct pool_c *pt = ti->private;
2961 	struct pool *pool = pt->pool;
2962 
2963 	if (!strcasecmp(argv[0], "create_thin"))
2964 		r = process_create_thin_mesg(argc, argv, pool);
2965 
2966 	else if (!strcasecmp(argv[0], "create_snap"))
2967 		r = process_create_snap_mesg(argc, argv, pool);
2968 
2969 	else if (!strcasecmp(argv[0], "delete"))
2970 		r = process_delete_mesg(argc, argv, pool);
2971 
2972 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2973 		r = process_set_transaction_id_mesg(argc, argv, pool);
2974 
2975 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2976 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2977 
2978 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2979 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2980 
2981 	else
2982 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2983 
2984 	if (!r)
2985 		(void) commit(pool);
2986 
2987 	return r;
2988 }
2989 
2990 static void emit_flags(struct pool_features *pf, char *result,
2991 		       unsigned sz, unsigned maxlen)
2992 {
2993 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2994 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2995 		pf->error_if_no_space;
2996 	DMEMIT("%u ", count);
2997 
2998 	if (!pf->zero_new_blocks)
2999 		DMEMIT("skip_block_zeroing ");
3000 
3001 	if (!pf->discard_enabled)
3002 		DMEMIT("ignore_discard ");
3003 
3004 	if (!pf->discard_passdown)
3005 		DMEMIT("no_discard_passdown ");
3006 
3007 	if (pf->mode == PM_READ_ONLY)
3008 		DMEMIT("read_only ");
3009 
3010 	if (pf->error_if_no_space)
3011 		DMEMIT("error_if_no_space ");
3012 }
3013 
3014 /*
3015  * Status line is:
3016  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3017  *    <used data sectors>/<total data sectors> <held metadata root>
3018  */
3019 static void pool_status(struct dm_target *ti, status_type_t type,
3020 			unsigned status_flags, char *result, unsigned maxlen)
3021 {
3022 	int r;
3023 	unsigned sz = 0;
3024 	uint64_t transaction_id;
3025 	dm_block_t nr_free_blocks_data;
3026 	dm_block_t nr_free_blocks_metadata;
3027 	dm_block_t nr_blocks_data;
3028 	dm_block_t nr_blocks_metadata;
3029 	dm_block_t held_root;
3030 	char buf[BDEVNAME_SIZE];
3031 	char buf2[BDEVNAME_SIZE];
3032 	struct pool_c *pt = ti->private;
3033 	struct pool *pool = pt->pool;
3034 
3035 	switch (type) {
3036 	case STATUSTYPE_INFO:
3037 		if (get_pool_mode(pool) == PM_FAIL) {
3038 			DMEMIT("Fail");
3039 			break;
3040 		}
3041 
3042 		/* Commit to ensure statistics aren't out-of-date */
3043 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3044 			(void) commit(pool);
3045 
3046 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3047 		if (r) {
3048 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3049 			      dm_device_name(pool->pool_md), r);
3050 			goto err;
3051 		}
3052 
3053 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3054 		if (r) {
3055 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3056 			      dm_device_name(pool->pool_md), r);
3057 			goto err;
3058 		}
3059 
3060 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3061 		if (r) {
3062 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3063 			      dm_device_name(pool->pool_md), r);
3064 			goto err;
3065 		}
3066 
3067 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3068 		if (r) {
3069 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3070 			      dm_device_name(pool->pool_md), r);
3071 			goto err;
3072 		}
3073 
3074 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3075 		if (r) {
3076 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3077 			      dm_device_name(pool->pool_md), r);
3078 			goto err;
3079 		}
3080 
3081 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3082 		if (r) {
3083 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3084 			      dm_device_name(pool->pool_md), r);
3085 			goto err;
3086 		}
3087 
3088 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3089 		       (unsigned long long)transaction_id,
3090 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3091 		       (unsigned long long)nr_blocks_metadata,
3092 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3093 		       (unsigned long long)nr_blocks_data);
3094 
3095 		if (held_root)
3096 			DMEMIT("%llu ", held_root);
3097 		else
3098 			DMEMIT("- ");
3099 
3100 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3101 			DMEMIT("out_of_data_space ");
3102 		else if (pool->pf.mode == PM_READ_ONLY)
3103 			DMEMIT("ro ");
3104 		else
3105 			DMEMIT("rw ");
3106 
3107 		if (!pool->pf.discard_enabled)
3108 			DMEMIT("ignore_discard ");
3109 		else if (pool->pf.discard_passdown)
3110 			DMEMIT("discard_passdown ");
3111 		else
3112 			DMEMIT("no_discard_passdown ");
3113 
3114 		if (pool->pf.error_if_no_space)
3115 			DMEMIT("error_if_no_space ");
3116 		else
3117 			DMEMIT("queue_if_no_space ");
3118 
3119 		break;
3120 
3121 	case STATUSTYPE_TABLE:
3122 		DMEMIT("%s %s %lu %llu ",
3123 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3124 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3125 		       (unsigned long)pool->sectors_per_block,
3126 		       (unsigned long long)pt->low_water_blocks);
3127 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3128 		break;
3129 	}
3130 	return;
3131 
3132 err:
3133 	DMEMIT("Error");
3134 }
3135 
3136 static int pool_iterate_devices(struct dm_target *ti,
3137 				iterate_devices_callout_fn fn, void *data)
3138 {
3139 	struct pool_c *pt = ti->private;
3140 
3141 	return fn(ti, pt->data_dev, 0, ti->len, data);
3142 }
3143 
3144 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3145 		      struct bio_vec *biovec, int max_size)
3146 {
3147 	struct pool_c *pt = ti->private;
3148 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3149 
3150 	if (!q->merge_bvec_fn)
3151 		return max_size;
3152 
3153 	bvm->bi_bdev = pt->data_dev->bdev;
3154 
3155 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3156 }
3157 
3158 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3159 {
3160 	struct pool *pool = pt->pool;
3161 	struct queue_limits *data_limits;
3162 
3163 	limits->max_discard_sectors = pool->sectors_per_block;
3164 
3165 	/*
3166 	 * discard_granularity is just a hint, and not enforced.
3167 	 */
3168 	if (pt->adjusted_pf.discard_passdown) {
3169 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3170 		limits->discard_granularity = max(data_limits->discard_granularity,
3171 						  pool->sectors_per_block << SECTOR_SHIFT);
3172 	} else
3173 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3174 }
3175 
3176 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3177 {
3178 	struct pool_c *pt = ti->private;
3179 	struct pool *pool = pt->pool;
3180 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3181 
3182 	/*
3183 	 * If the system-determined stacked limits are compatible with the
3184 	 * pool's blocksize (io_opt is a factor) do not override them.
3185 	 */
3186 	if (io_opt_sectors < pool->sectors_per_block ||
3187 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3188 		blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3189 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3190 	}
3191 
3192 	/*
3193 	 * pt->adjusted_pf is a staging area for the actual features to use.
3194 	 * They get transferred to the live pool in bind_control_target()
3195 	 * called from pool_preresume().
3196 	 */
3197 	if (!pt->adjusted_pf.discard_enabled) {
3198 		/*
3199 		 * Must explicitly disallow stacking discard limits otherwise the
3200 		 * block layer will stack them if pool's data device has support.
3201 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3202 		 * user to see that, so make sure to set all discard limits to 0.
3203 		 */
3204 		limits->discard_granularity = 0;
3205 		return;
3206 	}
3207 
3208 	disable_passdown_if_not_supported(pt);
3209 
3210 	set_discard_limits(pt, limits);
3211 }
3212 
3213 static struct target_type pool_target = {
3214 	.name = "thin-pool",
3215 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3216 		    DM_TARGET_IMMUTABLE,
3217 	.version = {1, 13, 0},
3218 	.module = THIS_MODULE,
3219 	.ctr = pool_ctr,
3220 	.dtr = pool_dtr,
3221 	.map = pool_map,
3222 	.postsuspend = pool_postsuspend,
3223 	.preresume = pool_preresume,
3224 	.resume = pool_resume,
3225 	.message = pool_message,
3226 	.status = pool_status,
3227 	.merge = pool_merge,
3228 	.iterate_devices = pool_iterate_devices,
3229 	.io_hints = pool_io_hints,
3230 };
3231 
3232 /*----------------------------------------------------------------
3233  * Thin target methods
3234  *--------------------------------------------------------------*/
3235 static void thin_get(struct thin_c *tc)
3236 {
3237 	atomic_inc(&tc->refcount);
3238 }
3239 
3240 static void thin_put(struct thin_c *tc)
3241 {
3242 	if (atomic_dec_and_test(&tc->refcount))
3243 		complete(&tc->can_destroy);
3244 }
3245 
3246 static void thin_dtr(struct dm_target *ti)
3247 {
3248 	struct thin_c *tc = ti->private;
3249 	unsigned long flags;
3250 
3251 	thin_put(tc);
3252 	wait_for_completion(&tc->can_destroy);
3253 
3254 	spin_lock_irqsave(&tc->pool->lock, flags);
3255 	list_del_rcu(&tc->list);
3256 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3257 	synchronize_rcu();
3258 
3259 	mutex_lock(&dm_thin_pool_table.mutex);
3260 
3261 	__pool_dec(tc->pool);
3262 	dm_pool_close_thin_device(tc->td);
3263 	dm_put_device(ti, tc->pool_dev);
3264 	if (tc->origin_dev)
3265 		dm_put_device(ti, tc->origin_dev);
3266 	kfree(tc);
3267 
3268 	mutex_unlock(&dm_thin_pool_table.mutex);
3269 }
3270 
3271 /*
3272  * Thin target parameters:
3273  *
3274  * <pool_dev> <dev_id> [origin_dev]
3275  *
3276  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3277  * dev_id: the internal device identifier
3278  * origin_dev: a device external to the pool that should act as the origin
3279  *
3280  * If the pool device has discards disabled, they get disabled for the thin
3281  * device as well.
3282  */
3283 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3284 {
3285 	int r;
3286 	struct thin_c *tc;
3287 	struct dm_dev *pool_dev, *origin_dev;
3288 	struct mapped_device *pool_md;
3289 	unsigned long flags;
3290 
3291 	mutex_lock(&dm_thin_pool_table.mutex);
3292 
3293 	if (argc != 2 && argc != 3) {
3294 		ti->error = "Invalid argument count";
3295 		r = -EINVAL;
3296 		goto out_unlock;
3297 	}
3298 
3299 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3300 	if (!tc) {
3301 		ti->error = "Out of memory";
3302 		r = -ENOMEM;
3303 		goto out_unlock;
3304 	}
3305 	spin_lock_init(&tc->lock);
3306 	bio_list_init(&tc->deferred_bio_list);
3307 	bio_list_init(&tc->retry_on_resume_list);
3308 	tc->sort_bio_list = RB_ROOT;
3309 
3310 	if (argc == 3) {
3311 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3312 		if (r) {
3313 			ti->error = "Error opening origin device";
3314 			goto bad_origin_dev;
3315 		}
3316 		tc->origin_dev = origin_dev;
3317 	}
3318 
3319 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3320 	if (r) {
3321 		ti->error = "Error opening pool device";
3322 		goto bad_pool_dev;
3323 	}
3324 	tc->pool_dev = pool_dev;
3325 
3326 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3327 		ti->error = "Invalid device id";
3328 		r = -EINVAL;
3329 		goto bad_common;
3330 	}
3331 
3332 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3333 	if (!pool_md) {
3334 		ti->error = "Couldn't get pool mapped device";
3335 		r = -EINVAL;
3336 		goto bad_common;
3337 	}
3338 
3339 	tc->pool = __pool_table_lookup(pool_md);
3340 	if (!tc->pool) {
3341 		ti->error = "Couldn't find pool object";
3342 		r = -EINVAL;
3343 		goto bad_pool_lookup;
3344 	}
3345 	__pool_inc(tc->pool);
3346 
3347 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3348 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3349 		r = -EINVAL;
3350 		goto bad_thin_open;
3351 	}
3352 
3353 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3354 	if (r) {
3355 		ti->error = "Couldn't open thin internal device";
3356 		goto bad_thin_open;
3357 	}
3358 
3359 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3360 	if (r)
3361 		goto bad_target_max_io_len;
3362 
3363 	ti->num_flush_bios = 1;
3364 	ti->flush_supported = true;
3365 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3366 
3367 	/* In case the pool supports discards, pass them on. */
3368 	ti->discard_zeroes_data_unsupported = true;
3369 	if (tc->pool->pf.discard_enabled) {
3370 		ti->discards_supported = true;
3371 		ti->num_discard_bios = 1;
3372 		/* Discard bios must be split on a block boundary */
3373 		ti->split_discard_bios = true;
3374 	}
3375 
3376 	dm_put(pool_md);
3377 
3378 	mutex_unlock(&dm_thin_pool_table.mutex);
3379 
3380 	atomic_set(&tc->refcount, 1);
3381 	init_completion(&tc->can_destroy);
3382 
3383 	spin_lock_irqsave(&tc->pool->lock, flags);
3384 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3385 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3386 	/*
3387 	 * This synchronize_rcu() call is needed here otherwise we risk a
3388 	 * wake_worker() call finding no bios to process (because the newly
3389 	 * added tc isn't yet visible).  So this reduces latency since we
3390 	 * aren't then dependent on the periodic commit to wake_worker().
3391 	 */
3392 	synchronize_rcu();
3393 
3394 	return 0;
3395 
3396 bad_target_max_io_len:
3397 	dm_pool_close_thin_device(tc->td);
3398 bad_thin_open:
3399 	__pool_dec(tc->pool);
3400 bad_pool_lookup:
3401 	dm_put(pool_md);
3402 bad_common:
3403 	dm_put_device(ti, tc->pool_dev);
3404 bad_pool_dev:
3405 	if (tc->origin_dev)
3406 		dm_put_device(ti, tc->origin_dev);
3407 bad_origin_dev:
3408 	kfree(tc);
3409 out_unlock:
3410 	mutex_unlock(&dm_thin_pool_table.mutex);
3411 
3412 	return r;
3413 }
3414 
3415 static int thin_map(struct dm_target *ti, struct bio *bio)
3416 {
3417 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3418 
3419 	return thin_bio_map(ti, bio);
3420 }
3421 
3422 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3423 {
3424 	unsigned long flags;
3425 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3426 	struct list_head work;
3427 	struct dm_thin_new_mapping *m, *tmp;
3428 	struct pool *pool = h->tc->pool;
3429 
3430 	if (h->shared_read_entry) {
3431 		INIT_LIST_HEAD(&work);
3432 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3433 
3434 		spin_lock_irqsave(&pool->lock, flags);
3435 		list_for_each_entry_safe(m, tmp, &work, list) {
3436 			list_del(&m->list);
3437 			__complete_mapping_preparation(m);
3438 		}
3439 		spin_unlock_irqrestore(&pool->lock, flags);
3440 	}
3441 
3442 	if (h->all_io_entry) {
3443 		INIT_LIST_HEAD(&work);
3444 		dm_deferred_entry_dec(h->all_io_entry, &work);
3445 		if (!list_empty(&work)) {
3446 			spin_lock_irqsave(&pool->lock, flags);
3447 			list_for_each_entry_safe(m, tmp, &work, list)
3448 				list_add_tail(&m->list, &pool->prepared_discards);
3449 			spin_unlock_irqrestore(&pool->lock, flags);
3450 			wake_worker(pool);
3451 		}
3452 	}
3453 
3454 	return 0;
3455 }
3456 
3457 static void thin_presuspend(struct dm_target *ti)
3458 {
3459 	struct thin_c *tc = ti->private;
3460 
3461 	if (dm_noflush_suspending(ti))
3462 		noflush_work(tc, do_noflush_start);
3463 }
3464 
3465 static void thin_postsuspend(struct dm_target *ti)
3466 {
3467 	struct thin_c *tc = ti->private;
3468 
3469 	/*
3470 	 * The dm_noflush_suspending flag has been cleared by now, so
3471 	 * unfortunately we must always run this.
3472 	 */
3473 	noflush_work(tc, do_noflush_stop);
3474 }
3475 
3476 static int thin_preresume(struct dm_target *ti)
3477 {
3478 	struct thin_c *tc = ti->private;
3479 
3480 	if (tc->origin_dev)
3481 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3482 
3483 	return 0;
3484 }
3485 
3486 /*
3487  * <nr mapped sectors> <highest mapped sector>
3488  */
3489 static void thin_status(struct dm_target *ti, status_type_t type,
3490 			unsigned status_flags, char *result, unsigned maxlen)
3491 {
3492 	int r;
3493 	ssize_t sz = 0;
3494 	dm_block_t mapped, highest;
3495 	char buf[BDEVNAME_SIZE];
3496 	struct thin_c *tc = ti->private;
3497 
3498 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3499 		DMEMIT("Fail");
3500 		return;
3501 	}
3502 
3503 	if (!tc->td)
3504 		DMEMIT("-");
3505 	else {
3506 		switch (type) {
3507 		case STATUSTYPE_INFO:
3508 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3509 			if (r) {
3510 				DMERR("dm_thin_get_mapped_count returned %d", r);
3511 				goto err;
3512 			}
3513 
3514 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3515 			if (r < 0) {
3516 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3517 				goto err;
3518 			}
3519 
3520 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3521 			if (r)
3522 				DMEMIT("%llu", ((highest + 1) *
3523 						tc->pool->sectors_per_block) - 1);
3524 			else
3525 				DMEMIT("-");
3526 			break;
3527 
3528 		case STATUSTYPE_TABLE:
3529 			DMEMIT("%s %lu",
3530 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3531 			       (unsigned long) tc->dev_id);
3532 			if (tc->origin_dev)
3533 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3534 			break;
3535 		}
3536 	}
3537 
3538 	return;
3539 
3540 err:
3541 	DMEMIT("Error");
3542 }
3543 
3544 static int thin_iterate_devices(struct dm_target *ti,
3545 				iterate_devices_callout_fn fn, void *data)
3546 {
3547 	sector_t blocks;
3548 	struct thin_c *tc = ti->private;
3549 	struct pool *pool = tc->pool;
3550 
3551 	/*
3552 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3553 	 * we follow a more convoluted path through to the pool's target.
3554 	 */
3555 	if (!pool->ti)
3556 		return 0;	/* nothing is bound */
3557 
3558 	blocks = pool->ti->len;
3559 	(void) sector_div(blocks, pool->sectors_per_block);
3560 	if (blocks)
3561 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3562 
3563 	return 0;
3564 }
3565 
3566 static struct target_type thin_target = {
3567 	.name = "thin",
3568 	.version = {1, 13, 0},
3569 	.module	= THIS_MODULE,
3570 	.ctr = thin_ctr,
3571 	.dtr = thin_dtr,
3572 	.map = thin_map,
3573 	.end_io = thin_endio,
3574 	.preresume = thin_preresume,
3575 	.presuspend = thin_presuspend,
3576 	.postsuspend = thin_postsuspend,
3577 	.status = thin_status,
3578 	.iterate_devices = thin_iterate_devices,
3579 };
3580 
3581 /*----------------------------------------------------------------*/
3582 
3583 static int __init dm_thin_init(void)
3584 {
3585 	int r;
3586 
3587 	pool_table_init();
3588 
3589 	r = dm_register_target(&thin_target);
3590 	if (r)
3591 		return r;
3592 
3593 	r = dm_register_target(&pool_target);
3594 	if (r)
3595 		goto bad_pool_target;
3596 
3597 	r = -ENOMEM;
3598 
3599 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3600 	if (!_new_mapping_cache)
3601 		goto bad_new_mapping_cache;
3602 
3603 	return 0;
3604 
3605 bad_new_mapping_cache:
3606 	dm_unregister_target(&pool_target);
3607 bad_pool_target:
3608 	dm_unregister_target(&thin_target);
3609 
3610 	return r;
3611 }
3612 
3613 static void dm_thin_exit(void)
3614 {
3615 	dm_unregister_target(&thin_target);
3616 	dm_unregister_target(&pool_target);
3617 
3618 	kmem_cache_destroy(_new_mapping_cache);
3619 }
3620 
3621 module_init(dm_thin_init);
3622 module_exit(dm_thin_exit);
3623 
3624 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3625 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3626 
3627 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3628 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3629 MODULE_LICENSE("GPL");
3630