1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *md_dev; 235 struct dm_pool_metadata *pmd; 236 237 dm_block_t low_water_blocks; 238 uint32_t sectors_per_block; 239 int sectors_per_block_shift; 240 241 struct pool_features pf; 242 bool low_water_triggered:1; /* A dm event has been sent */ 243 bool suspended:1; 244 bool out_of_data_space:1; 245 246 struct dm_bio_prison *prison; 247 struct dm_kcopyd_client *copier; 248 249 struct work_struct worker; 250 struct workqueue_struct *wq; 251 struct throttle throttle; 252 struct delayed_work waker; 253 struct delayed_work no_space_timeout; 254 255 unsigned long last_commit_jiffies; 256 unsigned ref_count; 257 258 spinlock_t lock; 259 struct bio_list deferred_flush_bios; 260 struct bio_list deferred_flush_completions; 261 struct list_head prepared_mappings; 262 struct list_head prepared_discards; 263 struct list_head prepared_discards_pt2; 264 struct list_head active_thins; 265 266 struct dm_deferred_set *shared_read_ds; 267 struct dm_deferred_set *all_io_ds; 268 269 struct dm_thin_new_mapping *next_mapping; 270 271 process_bio_fn process_bio; 272 process_bio_fn process_discard; 273 274 process_cell_fn process_cell; 275 process_cell_fn process_discard_cell; 276 277 process_mapping_fn process_prepared_mapping; 278 process_mapping_fn process_prepared_discard; 279 process_mapping_fn process_prepared_discard_pt2; 280 281 struct dm_bio_prison_cell **cell_sort_array; 282 283 mempool_t mapping_pool; 284 }; 285 286 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 287 288 static enum pool_mode get_pool_mode(struct pool *pool) 289 { 290 return pool->pf.mode; 291 } 292 293 static void notify_of_pool_mode_change(struct pool *pool) 294 { 295 const char *descs[] = { 296 "write", 297 "out-of-data-space", 298 "read-only", 299 "read-only", 300 "fail" 301 }; 302 const char *extra_desc = NULL; 303 enum pool_mode mode = get_pool_mode(pool); 304 305 if (mode == PM_OUT_OF_DATA_SPACE) { 306 if (!pool->pf.error_if_no_space) 307 extra_desc = " (queue IO)"; 308 else 309 extra_desc = " (error IO)"; 310 } 311 312 dm_table_event(pool->ti->table); 313 DMINFO("%s: switching pool to %s%s mode", 314 dm_device_name(pool->pool_md), 315 descs[(int)mode], extra_desc ? : ""); 316 } 317 318 /* 319 * Target context for a pool. 320 */ 321 struct pool_c { 322 struct dm_target *ti; 323 struct pool *pool; 324 struct dm_dev *data_dev; 325 struct dm_dev *metadata_dev; 326 struct dm_target_callbacks callbacks; 327 328 dm_block_t low_water_blocks; 329 struct pool_features requested_pf; /* Features requested during table load */ 330 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 331 struct bio flush_bio; 332 }; 333 334 /* 335 * Target context for a thin. 336 */ 337 struct thin_c { 338 struct list_head list; 339 struct dm_dev *pool_dev; 340 struct dm_dev *origin_dev; 341 sector_t origin_size; 342 dm_thin_id dev_id; 343 344 struct pool *pool; 345 struct dm_thin_device *td; 346 struct mapped_device *thin_md; 347 348 bool requeue_mode:1; 349 spinlock_t lock; 350 struct list_head deferred_cells; 351 struct bio_list deferred_bio_list; 352 struct bio_list retry_on_resume_list; 353 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 354 355 /* 356 * Ensures the thin is not destroyed until the worker has finished 357 * iterating the active_thins list. 358 */ 359 refcount_t refcount; 360 struct completion can_destroy; 361 }; 362 363 /*----------------------------------------------------------------*/ 364 365 static bool block_size_is_power_of_two(struct pool *pool) 366 { 367 return pool->sectors_per_block_shift >= 0; 368 } 369 370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 371 { 372 return block_size_is_power_of_two(pool) ? 373 (b << pool->sectors_per_block_shift) : 374 (b * pool->sectors_per_block); 375 } 376 377 /*----------------------------------------------------------------*/ 378 379 struct discard_op { 380 struct thin_c *tc; 381 struct blk_plug plug; 382 struct bio *parent_bio; 383 struct bio *bio; 384 }; 385 386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 387 { 388 BUG_ON(!parent); 389 390 op->tc = tc; 391 blk_start_plug(&op->plug); 392 op->parent_bio = parent; 393 op->bio = NULL; 394 } 395 396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 397 { 398 struct thin_c *tc = op->tc; 399 sector_t s = block_to_sectors(tc->pool, data_b); 400 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 401 402 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 403 GFP_NOWAIT, 0, &op->bio); 404 } 405 406 static void end_discard(struct discard_op *op, int r) 407 { 408 if (op->bio) { 409 /* 410 * Even if one of the calls to issue_discard failed, we 411 * need to wait for the chain to complete. 412 */ 413 bio_chain(op->bio, op->parent_bio); 414 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 415 submit_bio(op->bio); 416 } 417 418 blk_finish_plug(&op->plug); 419 420 /* 421 * Even if r is set, there could be sub discards in flight that we 422 * need to wait for. 423 */ 424 if (r && !op->parent_bio->bi_status) 425 op->parent_bio->bi_status = errno_to_blk_status(r); 426 bio_endio(op->parent_bio); 427 } 428 429 /*----------------------------------------------------------------*/ 430 431 /* 432 * wake_worker() is used when new work is queued and when pool_resume is 433 * ready to continue deferred IO processing. 434 */ 435 static void wake_worker(struct pool *pool) 436 { 437 queue_work(pool->wq, &pool->worker); 438 } 439 440 /*----------------------------------------------------------------*/ 441 442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 443 struct dm_bio_prison_cell **cell_result) 444 { 445 int r; 446 struct dm_bio_prison_cell *cell_prealloc; 447 448 /* 449 * Allocate a cell from the prison's mempool. 450 * This might block but it can't fail. 451 */ 452 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 453 454 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 455 if (r) 456 /* 457 * We reused an old cell; we can get rid of 458 * the new one. 459 */ 460 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 461 462 return r; 463 } 464 465 static void cell_release(struct pool *pool, 466 struct dm_bio_prison_cell *cell, 467 struct bio_list *bios) 468 { 469 dm_cell_release(pool->prison, cell, bios); 470 dm_bio_prison_free_cell(pool->prison, cell); 471 } 472 473 static void cell_visit_release(struct pool *pool, 474 void (*fn)(void *, struct dm_bio_prison_cell *), 475 void *context, 476 struct dm_bio_prison_cell *cell) 477 { 478 dm_cell_visit_release(pool->prison, fn, context, cell); 479 dm_bio_prison_free_cell(pool->prison, cell); 480 } 481 482 static void cell_release_no_holder(struct pool *pool, 483 struct dm_bio_prison_cell *cell, 484 struct bio_list *bios) 485 { 486 dm_cell_release_no_holder(pool->prison, cell, bios); 487 dm_bio_prison_free_cell(pool->prison, cell); 488 } 489 490 static void cell_error_with_code(struct pool *pool, 491 struct dm_bio_prison_cell *cell, blk_status_t error_code) 492 { 493 dm_cell_error(pool->prison, cell, error_code); 494 dm_bio_prison_free_cell(pool->prison, cell); 495 } 496 497 static blk_status_t get_pool_io_error_code(struct pool *pool) 498 { 499 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 500 } 501 502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 503 { 504 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 505 } 506 507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 508 { 509 cell_error_with_code(pool, cell, 0); 510 } 511 512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 513 { 514 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 515 } 516 517 /*----------------------------------------------------------------*/ 518 519 /* 520 * A global list of pools that uses a struct mapped_device as a key. 521 */ 522 static struct dm_thin_pool_table { 523 struct mutex mutex; 524 struct list_head pools; 525 } dm_thin_pool_table; 526 527 static void pool_table_init(void) 528 { 529 mutex_init(&dm_thin_pool_table.mutex); 530 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 531 } 532 533 static void pool_table_exit(void) 534 { 535 mutex_destroy(&dm_thin_pool_table.mutex); 536 } 537 538 static void __pool_table_insert(struct pool *pool) 539 { 540 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 541 list_add(&pool->list, &dm_thin_pool_table.pools); 542 } 543 544 static void __pool_table_remove(struct pool *pool) 545 { 546 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 547 list_del(&pool->list); 548 } 549 550 static struct pool *__pool_table_lookup(struct mapped_device *md) 551 { 552 struct pool *pool = NULL, *tmp; 553 554 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 555 556 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 557 if (tmp->pool_md == md) { 558 pool = tmp; 559 break; 560 } 561 } 562 563 return pool; 564 } 565 566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 567 { 568 struct pool *pool = NULL, *tmp; 569 570 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 571 572 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 573 if (tmp->md_dev == md_dev) { 574 pool = tmp; 575 break; 576 } 577 } 578 579 return pool; 580 } 581 582 /*----------------------------------------------------------------*/ 583 584 struct dm_thin_endio_hook { 585 struct thin_c *tc; 586 struct dm_deferred_entry *shared_read_entry; 587 struct dm_deferred_entry *all_io_entry; 588 struct dm_thin_new_mapping *overwrite_mapping; 589 struct rb_node rb_node; 590 struct dm_bio_prison_cell *cell; 591 }; 592 593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 594 { 595 bio_list_merge(bios, master); 596 bio_list_init(master); 597 } 598 599 static void error_bio_list(struct bio_list *bios, blk_status_t error) 600 { 601 struct bio *bio; 602 603 while ((bio = bio_list_pop(bios))) { 604 bio->bi_status = error; 605 bio_endio(bio); 606 } 607 } 608 609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 610 blk_status_t error) 611 { 612 struct bio_list bios; 613 614 bio_list_init(&bios); 615 616 spin_lock_irq(&tc->lock); 617 __merge_bio_list(&bios, master); 618 spin_unlock_irq(&tc->lock); 619 620 error_bio_list(&bios, error); 621 } 622 623 static void requeue_deferred_cells(struct thin_c *tc) 624 { 625 struct pool *pool = tc->pool; 626 struct list_head cells; 627 struct dm_bio_prison_cell *cell, *tmp; 628 629 INIT_LIST_HEAD(&cells); 630 631 spin_lock_irq(&tc->lock); 632 list_splice_init(&tc->deferred_cells, &cells); 633 spin_unlock_irq(&tc->lock); 634 635 list_for_each_entry_safe(cell, tmp, &cells, user_list) 636 cell_requeue(pool, cell); 637 } 638 639 static void requeue_io(struct thin_c *tc) 640 { 641 struct bio_list bios; 642 643 bio_list_init(&bios); 644 645 spin_lock_irq(&tc->lock); 646 __merge_bio_list(&bios, &tc->deferred_bio_list); 647 __merge_bio_list(&bios, &tc->retry_on_resume_list); 648 spin_unlock_irq(&tc->lock); 649 650 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 651 requeue_deferred_cells(tc); 652 } 653 654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 655 { 656 struct thin_c *tc; 657 658 rcu_read_lock(); 659 list_for_each_entry_rcu(tc, &pool->active_thins, list) 660 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 661 rcu_read_unlock(); 662 } 663 664 static void error_retry_list(struct pool *pool) 665 { 666 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 667 } 668 669 /* 670 * This section of code contains the logic for processing a thin device's IO. 671 * Much of the code depends on pool object resources (lists, workqueues, etc) 672 * but most is exclusively called from the thin target rather than the thin-pool 673 * target. 674 */ 675 676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 677 { 678 struct pool *pool = tc->pool; 679 sector_t block_nr = bio->bi_iter.bi_sector; 680 681 if (block_size_is_power_of_two(pool)) 682 block_nr >>= pool->sectors_per_block_shift; 683 else 684 (void) sector_div(block_nr, pool->sectors_per_block); 685 686 return block_nr; 687 } 688 689 /* 690 * Returns the _complete_ blocks that this bio covers. 691 */ 692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 693 dm_block_t *begin, dm_block_t *end) 694 { 695 struct pool *pool = tc->pool; 696 sector_t b = bio->bi_iter.bi_sector; 697 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 698 699 b += pool->sectors_per_block - 1ull; /* so we round up */ 700 701 if (block_size_is_power_of_two(pool)) { 702 b >>= pool->sectors_per_block_shift; 703 e >>= pool->sectors_per_block_shift; 704 } else { 705 (void) sector_div(b, pool->sectors_per_block); 706 (void) sector_div(e, pool->sectors_per_block); 707 } 708 709 if (e < b) 710 /* Can happen if the bio is within a single block. */ 711 e = b; 712 713 *begin = b; 714 *end = e; 715 } 716 717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 718 { 719 struct pool *pool = tc->pool; 720 sector_t bi_sector = bio->bi_iter.bi_sector; 721 722 bio_set_dev(bio, tc->pool_dev->bdev); 723 if (block_size_is_power_of_two(pool)) 724 bio->bi_iter.bi_sector = 725 (block << pool->sectors_per_block_shift) | 726 (bi_sector & (pool->sectors_per_block - 1)); 727 else 728 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 729 sector_div(bi_sector, pool->sectors_per_block); 730 } 731 732 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 733 { 734 bio_set_dev(bio, tc->origin_dev->bdev); 735 } 736 737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 738 { 739 return op_is_flush(bio->bi_opf) && 740 dm_thin_changed_this_transaction(tc->td); 741 } 742 743 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 744 { 745 struct dm_thin_endio_hook *h; 746 747 if (bio_op(bio) == REQ_OP_DISCARD) 748 return; 749 750 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 751 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 752 } 753 754 static void issue(struct thin_c *tc, struct bio *bio) 755 { 756 struct pool *pool = tc->pool; 757 758 if (!bio_triggers_commit(tc, bio)) { 759 generic_make_request(bio); 760 return; 761 } 762 763 /* 764 * Complete bio with an error if earlier I/O caused changes to 765 * the metadata that can't be committed e.g, due to I/O errors 766 * on the metadata device. 767 */ 768 if (dm_thin_aborted_changes(tc->td)) { 769 bio_io_error(bio); 770 return; 771 } 772 773 /* 774 * Batch together any bios that trigger commits and then issue a 775 * single commit for them in process_deferred_bios(). 776 */ 777 spin_lock_irq(&pool->lock); 778 bio_list_add(&pool->deferred_flush_bios, bio); 779 spin_unlock_irq(&pool->lock); 780 } 781 782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 783 { 784 remap_to_origin(tc, bio); 785 issue(tc, bio); 786 } 787 788 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 789 dm_block_t block) 790 { 791 remap(tc, bio, block); 792 issue(tc, bio); 793 } 794 795 /*----------------------------------------------------------------*/ 796 797 /* 798 * Bio endio functions. 799 */ 800 struct dm_thin_new_mapping { 801 struct list_head list; 802 803 bool pass_discard:1; 804 bool maybe_shared:1; 805 806 /* 807 * Track quiescing, copying and zeroing preparation actions. When this 808 * counter hits zero the block is prepared and can be inserted into the 809 * btree. 810 */ 811 atomic_t prepare_actions; 812 813 blk_status_t status; 814 struct thin_c *tc; 815 dm_block_t virt_begin, virt_end; 816 dm_block_t data_block; 817 struct dm_bio_prison_cell *cell; 818 819 /* 820 * If the bio covers the whole area of a block then we can avoid 821 * zeroing or copying. Instead this bio is hooked. The bio will 822 * still be in the cell, so care has to be taken to avoid issuing 823 * the bio twice. 824 */ 825 struct bio *bio; 826 bio_end_io_t *saved_bi_end_io; 827 }; 828 829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 830 { 831 struct pool *pool = m->tc->pool; 832 833 if (atomic_dec_and_test(&m->prepare_actions)) { 834 list_add_tail(&m->list, &pool->prepared_mappings); 835 wake_worker(pool); 836 } 837 } 838 839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 840 { 841 unsigned long flags; 842 struct pool *pool = m->tc->pool; 843 844 spin_lock_irqsave(&pool->lock, flags); 845 __complete_mapping_preparation(m); 846 spin_unlock_irqrestore(&pool->lock, flags); 847 } 848 849 static void copy_complete(int read_err, unsigned long write_err, void *context) 850 { 851 struct dm_thin_new_mapping *m = context; 852 853 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 854 complete_mapping_preparation(m); 855 } 856 857 static void overwrite_endio(struct bio *bio) 858 { 859 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 860 struct dm_thin_new_mapping *m = h->overwrite_mapping; 861 862 bio->bi_end_io = m->saved_bi_end_io; 863 864 m->status = bio->bi_status; 865 complete_mapping_preparation(m); 866 } 867 868 /*----------------------------------------------------------------*/ 869 870 /* 871 * Workqueue. 872 */ 873 874 /* 875 * Prepared mapping jobs. 876 */ 877 878 /* 879 * This sends the bios in the cell, except the original holder, back 880 * to the deferred_bios list. 881 */ 882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 883 { 884 struct pool *pool = tc->pool; 885 unsigned long flags; 886 int has_work; 887 888 spin_lock_irqsave(&tc->lock, flags); 889 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 890 has_work = !bio_list_empty(&tc->deferred_bio_list); 891 spin_unlock_irqrestore(&tc->lock, flags); 892 893 if (has_work) 894 wake_worker(pool); 895 } 896 897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 898 899 struct remap_info { 900 struct thin_c *tc; 901 struct bio_list defer_bios; 902 struct bio_list issue_bios; 903 }; 904 905 static void __inc_remap_and_issue_cell(void *context, 906 struct dm_bio_prison_cell *cell) 907 { 908 struct remap_info *info = context; 909 struct bio *bio; 910 911 while ((bio = bio_list_pop(&cell->bios))) { 912 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 913 bio_list_add(&info->defer_bios, bio); 914 else { 915 inc_all_io_entry(info->tc->pool, bio); 916 917 /* 918 * We can't issue the bios with the bio prison lock 919 * held, so we add them to a list to issue on 920 * return from this function. 921 */ 922 bio_list_add(&info->issue_bios, bio); 923 } 924 } 925 } 926 927 static void inc_remap_and_issue_cell(struct thin_c *tc, 928 struct dm_bio_prison_cell *cell, 929 dm_block_t block) 930 { 931 struct bio *bio; 932 struct remap_info info; 933 934 info.tc = tc; 935 bio_list_init(&info.defer_bios); 936 bio_list_init(&info.issue_bios); 937 938 /* 939 * We have to be careful to inc any bios we're about to issue 940 * before the cell is released, and avoid a race with new bios 941 * being added to the cell. 942 */ 943 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 944 &info, cell); 945 946 while ((bio = bio_list_pop(&info.defer_bios))) 947 thin_defer_bio(tc, bio); 948 949 while ((bio = bio_list_pop(&info.issue_bios))) 950 remap_and_issue(info.tc, bio, block); 951 } 952 953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 954 { 955 cell_error(m->tc->pool, m->cell); 956 list_del(&m->list); 957 mempool_free(m, &m->tc->pool->mapping_pool); 958 } 959 960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 961 { 962 struct pool *pool = tc->pool; 963 964 /* 965 * If the bio has the REQ_FUA flag set we must commit the metadata 966 * before signaling its completion. 967 */ 968 if (!bio_triggers_commit(tc, bio)) { 969 bio_endio(bio); 970 return; 971 } 972 973 /* 974 * Complete bio with an error if earlier I/O caused changes to the 975 * metadata that can't be committed, e.g, due to I/O errors on the 976 * metadata device. 977 */ 978 if (dm_thin_aborted_changes(tc->td)) { 979 bio_io_error(bio); 980 return; 981 } 982 983 /* 984 * Batch together any bios that trigger commits and then issue a 985 * single commit for them in process_deferred_bios(). 986 */ 987 spin_lock_irq(&pool->lock); 988 bio_list_add(&pool->deferred_flush_completions, bio); 989 spin_unlock_irq(&pool->lock); 990 } 991 992 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 993 { 994 struct thin_c *tc = m->tc; 995 struct pool *pool = tc->pool; 996 struct bio *bio = m->bio; 997 int r; 998 999 if (m->status) { 1000 cell_error(pool, m->cell); 1001 goto out; 1002 } 1003 1004 /* 1005 * Commit the prepared block into the mapping btree. 1006 * Any I/O for this block arriving after this point will get 1007 * remapped to it directly. 1008 */ 1009 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1010 if (r) { 1011 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1012 cell_error(pool, m->cell); 1013 goto out; 1014 } 1015 1016 /* 1017 * Release any bios held while the block was being provisioned. 1018 * If we are processing a write bio that completely covers the block, 1019 * we already processed it so can ignore it now when processing 1020 * the bios in the cell. 1021 */ 1022 if (bio) { 1023 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1024 complete_overwrite_bio(tc, bio); 1025 } else { 1026 inc_all_io_entry(tc->pool, m->cell->holder); 1027 remap_and_issue(tc, m->cell->holder, m->data_block); 1028 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1029 } 1030 1031 out: 1032 list_del(&m->list); 1033 mempool_free(m, &pool->mapping_pool); 1034 } 1035 1036 /*----------------------------------------------------------------*/ 1037 1038 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1039 { 1040 struct thin_c *tc = m->tc; 1041 if (m->cell) 1042 cell_defer_no_holder(tc, m->cell); 1043 mempool_free(m, &tc->pool->mapping_pool); 1044 } 1045 1046 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1047 { 1048 bio_io_error(m->bio); 1049 free_discard_mapping(m); 1050 } 1051 1052 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1053 { 1054 bio_endio(m->bio); 1055 free_discard_mapping(m); 1056 } 1057 1058 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1059 { 1060 int r; 1061 struct thin_c *tc = m->tc; 1062 1063 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1064 if (r) { 1065 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1066 bio_io_error(m->bio); 1067 } else 1068 bio_endio(m->bio); 1069 1070 cell_defer_no_holder(tc, m->cell); 1071 mempool_free(m, &tc->pool->mapping_pool); 1072 } 1073 1074 /*----------------------------------------------------------------*/ 1075 1076 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1077 struct bio *discard_parent) 1078 { 1079 /* 1080 * We've already unmapped this range of blocks, but before we 1081 * passdown we have to check that these blocks are now unused. 1082 */ 1083 int r = 0; 1084 bool shared = true; 1085 struct thin_c *tc = m->tc; 1086 struct pool *pool = tc->pool; 1087 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1088 struct discard_op op; 1089 1090 begin_discard(&op, tc, discard_parent); 1091 while (b != end) { 1092 /* find start of unmapped run */ 1093 for (; b < end; b++) { 1094 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1095 if (r) 1096 goto out; 1097 1098 if (!shared) 1099 break; 1100 } 1101 1102 if (b == end) 1103 break; 1104 1105 /* find end of run */ 1106 for (e = b + 1; e != end; e++) { 1107 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1108 if (r) 1109 goto out; 1110 1111 if (shared) 1112 break; 1113 } 1114 1115 r = issue_discard(&op, b, e); 1116 if (r) 1117 goto out; 1118 1119 b = e; 1120 } 1121 out: 1122 end_discard(&op, r); 1123 } 1124 1125 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1126 { 1127 unsigned long flags; 1128 struct pool *pool = m->tc->pool; 1129 1130 spin_lock_irqsave(&pool->lock, flags); 1131 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1132 spin_unlock_irqrestore(&pool->lock, flags); 1133 wake_worker(pool); 1134 } 1135 1136 static void passdown_endio(struct bio *bio) 1137 { 1138 /* 1139 * It doesn't matter if the passdown discard failed, we still want 1140 * to unmap (we ignore err). 1141 */ 1142 queue_passdown_pt2(bio->bi_private); 1143 bio_put(bio); 1144 } 1145 1146 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1147 { 1148 int r; 1149 struct thin_c *tc = m->tc; 1150 struct pool *pool = tc->pool; 1151 struct bio *discard_parent; 1152 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1153 1154 /* 1155 * Only this thread allocates blocks, so we can be sure that the 1156 * newly unmapped blocks will not be allocated before the end of 1157 * the function. 1158 */ 1159 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1160 if (r) { 1161 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1162 bio_io_error(m->bio); 1163 cell_defer_no_holder(tc, m->cell); 1164 mempool_free(m, &pool->mapping_pool); 1165 return; 1166 } 1167 1168 /* 1169 * Increment the unmapped blocks. This prevents a race between the 1170 * passdown io and reallocation of freed blocks. 1171 */ 1172 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1173 if (r) { 1174 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1175 bio_io_error(m->bio); 1176 cell_defer_no_holder(tc, m->cell); 1177 mempool_free(m, &pool->mapping_pool); 1178 return; 1179 } 1180 1181 discard_parent = bio_alloc(GFP_NOIO, 1); 1182 if (!discard_parent) { 1183 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1184 dm_device_name(tc->pool->pool_md)); 1185 queue_passdown_pt2(m); 1186 1187 } else { 1188 discard_parent->bi_end_io = passdown_endio; 1189 discard_parent->bi_private = m; 1190 1191 if (m->maybe_shared) 1192 passdown_double_checking_shared_status(m, discard_parent); 1193 else { 1194 struct discard_op op; 1195 1196 begin_discard(&op, tc, discard_parent); 1197 r = issue_discard(&op, m->data_block, data_end); 1198 end_discard(&op, r); 1199 } 1200 } 1201 } 1202 1203 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1204 { 1205 int r; 1206 struct thin_c *tc = m->tc; 1207 struct pool *pool = tc->pool; 1208 1209 /* 1210 * The passdown has completed, so now we can decrement all those 1211 * unmapped blocks. 1212 */ 1213 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1214 m->data_block + (m->virt_end - m->virt_begin)); 1215 if (r) { 1216 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1217 bio_io_error(m->bio); 1218 } else 1219 bio_endio(m->bio); 1220 1221 cell_defer_no_holder(tc, m->cell); 1222 mempool_free(m, &pool->mapping_pool); 1223 } 1224 1225 static void process_prepared(struct pool *pool, struct list_head *head, 1226 process_mapping_fn *fn) 1227 { 1228 struct list_head maps; 1229 struct dm_thin_new_mapping *m, *tmp; 1230 1231 INIT_LIST_HEAD(&maps); 1232 spin_lock_irq(&pool->lock); 1233 list_splice_init(head, &maps); 1234 spin_unlock_irq(&pool->lock); 1235 1236 list_for_each_entry_safe(m, tmp, &maps, list) 1237 (*fn)(m); 1238 } 1239 1240 /* 1241 * Deferred bio jobs. 1242 */ 1243 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1244 { 1245 return bio->bi_iter.bi_size == 1246 (pool->sectors_per_block << SECTOR_SHIFT); 1247 } 1248 1249 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1250 { 1251 return (bio_data_dir(bio) == WRITE) && 1252 io_overlaps_block(pool, bio); 1253 } 1254 1255 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1256 bio_end_io_t *fn) 1257 { 1258 *save = bio->bi_end_io; 1259 bio->bi_end_io = fn; 1260 } 1261 1262 static int ensure_next_mapping(struct pool *pool) 1263 { 1264 if (pool->next_mapping) 1265 return 0; 1266 1267 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1268 1269 return pool->next_mapping ? 0 : -ENOMEM; 1270 } 1271 1272 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1273 { 1274 struct dm_thin_new_mapping *m = pool->next_mapping; 1275 1276 BUG_ON(!pool->next_mapping); 1277 1278 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1279 INIT_LIST_HEAD(&m->list); 1280 m->bio = NULL; 1281 1282 pool->next_mapping = NULL; 1283 1284 return m; 1285 } 1286 1287 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1288 sector_t begin, sector_t end) 1289 { 1290 struct dm_io_region to; 1291 1292 to.bdev = tc->pool_dev->bdev; 1293 to.sector = begin; 1294 to.count = end - begin; 1295 1296 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1297 } 1298 1299 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1300 dm_block_t data_begin, 1301 struct dm_thin_new_mapping *m) 1302 { 1303 struct pool *pool = tc->pool; 1304 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1305 1306 h->overwrite_mapping = m; 1307 m->bio = bio; 1308 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1309 inc_all_io_entry(pool, bio); 1310 remap_and_issue(tc, bio, data_begin); 1311 } 1312 1313 /* 1314 * A partial copy also needs to zero the uncopied region. 1315 */ 1316 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1317 struct dm_dev *origin, dm_block_t data_origin, 1318 dm_block_t data_dest, 1319 struct dm_bio_prison_cell *cell, struct bio *bio, 1320 sector_t len) 1321 { 1322 struct pool *pool = tc->pool; 1323 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1324 1325 m->tc = tc; 1326 m->virt_begin = virt_block; 1327 m->virt_end = virt_block + 1u; 1328 m->data_block = data_dest; 1329 m->cell = cell; 1330 1331 /* 1332 * quiesce action + copy action + an extra reference held for the 1333 * duration of this function (we may need to inc later for a 1334 * partial zero). 1335 */ 1336 atomic_set(&m->prepare_actions, 3); 1337 1338 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1339 complete_mapping_preparation(m); /* already quiesced */ 1340 1341 /* 1342 * IO to pool_dev remaps to the pool target's data_dev. 1343 * 1344 * If the whole block of data is being overwritten, we can issue the 1345 * bio immediately. Otherwise we use kcopyd to clone the data first. 1346 */ 1347 if (io_overwrites_block(pool, bio)) 1348 remap_and_issue_overwrite(tc, bio, data_dest, m); 1349 else { 1350 struct dm_io_region from, to; 1351 1352 from.bdev = origin->bdev; 1353 from.sector = data_origin * pool->sectors_per_block; 1354 from.count = len; 1355 1356 to.bdev = tc->pool_dev->bdev; 1357 to.sector = data_dest * pool->sectors_per_block; 1358 to.count = len; 1359 1360 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1361 0, copy_complete, m); 1362 1363 /* 1364 * Do we need to zero a tail region? 1365 */ 1366 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1367 atomic_inc(&m->prepare_actions); 1368 ll_zero(tc, m, 1369 data_dest * pool->sectors_per_block + len, 1370 (data_dest + 1) * pool->sectors_per_block); 1371 } 1372 } 1373 1374 complete_mapping_preparation(m); /* drop our ref */ 1375 } 1376 1377 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1378 dm_block_t data_origin, dm_block_t data_dest, 1379 struct dm_bio_prison_cell *cell, struct bio *bio) 1380 { 1381 schedule_copy(tc, virt_block, tc->pool_dev, 1382 data_origin, data_dest, cell, bio, 1383 tc->pool->sectors_per_block); 1384 } 1385 1386 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1387 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1388 struct bio *bio) 1389 { 1390 struct pool *pool = tc->pool; 1391 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1392 1393 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1394 m->tc = tc; 1395 m->virt_begin = virt_block; 1396 m->virt_end = virt_block + 1u; 1397 m->data_block = data_block; 1398 m->cell = cell; 1399 1400 /* 1401 * If the whole block of data is being overwritten or we are not 1402 * zeroing pre-existing data, we can issue the bio immediately. 1403 * Otherwise we use kcopyd to zero the data first. 1404 */ 1405 if (pool->pf.zero_new_blocks) { 1406 if (io_overwrites_block(pool, bio)) 1407 remap_and_issue_overwrite(tc, bio, data_block, m); 1408 else 1409 ll_zero(tc, m, data_block * pool->sectors_per_block, 1410 (data_block + 1) * pool->sectors_per_block); 1411 } else 1412 process_prepared_mapping(m); 1413 } 1414 1415 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1416 dm_block_t data_dest, 1417 struct dm_bio_prison_cell *cell, struct bio *bio) 1418 { 1419 struct pool *pool = tc->pool; 1420 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1421 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1422 1423 if (virt_block_end <= tc->origin_size) 1424 schedule_copy(tc, virt_block, tc->origin_dev, 1425 virt_block, data_dest, cell, bio, 1426 pool->sectors_per_block); 1427 1428 else if (virt_block_begin < tc->origin_size) 1429 schedule_copy(tc, virt_block, tc->origin_dev, 1430 virt_block, data_dest, cell, bio, 1431 tc->origin_size - virt_block_begin); 1432 1433 else 1434 schedule_zero(tc, virt_block, data_dest, cell, bio); 1435 } 1436 1437 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1438 1439 static void requeue_bios(struct pool *pool); 1440 1441 static bool is_read_only_pool_mode(enum pool_mode mode) 1442 { 1443 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1444 } 1445 1446 static bool is_read_only(struct pool *pool) 1447 { 1448 return is_read_only_pool_mode(get_pool_mode(pool)); 1449 } 1450 1451 static void check_for_metadata_space(struct pool *pool) 1452 { 1453 int r; 1454 const char *ooms_reason = NULL; 1455 dm_block_t nr_free; 1456 1457 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1458 if (r) 1459 ooms_reason = "Could not get free metadata blocks"; 1460 else if (!nr_free) 1461 ooms_reason = "No free metadata blocks"; 1462 1463 if (ooms_reason && !is_read_only(pool)) { 1464 DMERR("%s", ooms_reason); 1465 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1466 } 1467 } 1468 1469 static void check_for_data_space(struct pool *pool) 1470 { 1471 int r; 1472 dm_block_t nr_free; 1473 1474 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1475 return; 1476 1477 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1478 if (r) 1479 return; 1480 1481 if (nr_free) { 1482 set_pool_mode(pool, PM_WRITE); 1483 requeue_bios(pool); 1484 } 1485 } 1486 1487 /* 1488 * A non-zero return indicates read_only or fail_io mode. 1489 * Many callers don't care about the return value. 1490 */ 1491 static int commit(struct pool *pool) 1492 { 1493 int r; 1494 1495 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1496 return -EINVAL; 1497 1498 r = dm_pool_commit_metadata(pool->pmd); 1499 if (r) 1500 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1501 else { 1502 check_for_metadata_space(pool); 1503 check_for_data_space(pool); 1504 } 1505 1506 return r; 1507 } 1508 1509 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1510 { 1511 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1512 DMWARN("%s: reached low water mark for data device: sending event.", 1513 dm_device_name(pool->pool_md)); 1514 spin_lock_irq(&pool->lock); 1515 pool->low_water_triggered = true; 1516 spin_unlock_irq(&pool->lock); 1517 dm_table_event(pool->ti->table); 1518 } 1519 } 1520 1521 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1522 { 1523 int r; 1524 dm_block_t free_blocks; 1525 struct pool *pool = tc->pool; 1526 1527 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1528 return -EINVAL; 1529 1530 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1531 if (r) { 1532 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1533 return r; 1534 } 1535 1536 check_low_water_mark(pool, free_blocks); 1537 1538 if (!free_blocks) { 1539 /* 1540 * Try to commit to see if that will free up some 1541 * more space. 1542 */ 1543 r = commit(pool); 1544 if (r) 1545 return r; 1546 1547 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1548 if (r) { 1549 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1550 return r; 1551 } 1552 1553 if (!free_blocks) { 1554 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1555 return -ENOSPC; 1556 } 1557 } 1558 1559 r = dm_pool_alloc_data_block(pool->pmd, result); 1560 if (r) { 1561 if (r == -ENOSPC) 1562 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1563 else 1564 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1565 return r; 1566 } 1567 1568 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1569 if (r) { 1570 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1571 return r; 1572 } 1573 1574 if (!free_blocks) { 1575 /* Let's commit before we use up the metadata reserve. */ 1576 r = commit(pool); 1577 if (r) 1578 return r; 1579 } 1580 1581 return 0; 1582 } 1583 1584 /* 1585 * If we have run out of space, queue bios until the device is 1586 * resumed, presumably after having been reloaded with more space. 1587 */ 1588 static void retry_on_resume(struct bio *bio) 1589 { 1590 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1591 struct thin_c *tc = h->tc; 1592 1593 spin_lock_irq(&tc->lock); 1594 bio_list_add(&tc->retry_on_resume_list, bio); 1595 spin_unlock_irq(&tc->lock); 1596 } 1597 1598 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1599 { 1600 enum pool_mode m = get_pool_mode(pool); 1601 1602 switch (m) { 1603 case PM_WRITE: 1604 /* Shouldn't get here */ 1605 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1606 return BLK_STS_IOERR; 1607 1608 case PM_OUT_OF_DATA_SPACE: 1609 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1610 1611 case PM_OUT_OF_METADATA_SPACE: 1612 case PM_READ_ONLY: 1613 case PM_FAIL: 1614 return BLK_STS_IOERR; 1615 default: 1616 /* Shouldn't get here */ 1617 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1618 return BLK_STS_IOERR; 1619 } 1620 } 1621 1622 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1623 { 1624 blk_status_t error = should_error_unserviceable_bio(pool); 1625 1626 if (error) { 1627 bio->bi_status = error; 1628 bio_endio(bio); 1629 } else 1630 retry_on_resume(bio); 1631 } 1632 1633 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1634 { 1635 struct bio *bio; 1636 struct bio_list bios; 1637 blk_status_t error; 1638 1639 error = should_error_unserviceable_bio(pool); 1640 if (error) { 1641 cell_error_with_code(pool, cell, error); 1642 return; 1643 } 1644 1645 bio_list_init(&bios); 1646 cell_release(pool, cell, &bios); 1647 1648 while ((bio = bio_list_pop(&bios))) 1649 retry_on_resume(bio); 1650 } 1651 1652 static void process_discard_cell_no_passdown(struct thin_c *tc, 1653 struct dm_bio_prison_cell *virt_cell) 1654 { 1655 struct pool *pool = tc->pool; 1656 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1657 1658 /* 1659 * We don't need to lock the data blocks, since there's no 1660 * passdown. We only lock data blocks for allocation and breaking sharing. 1661 */ 1662 m->tc = tc; 1663 m->virt_begin = virt_cell->key.block_begin; 1664 m->virt_end = virt_cell->key.block_end; 1665 m->cell = virt_cell; 1666 m->bio = virt_cell->holder; 1667 1668 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1669 pool->process_prepared_discard(m); 1670 } 1671 1672 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1673 struct bio *bio) 1674 { 1675 struct pool *pool = tc->pool; 1676 1677 int r; 1678 bool maybe_shared; 1679 struct dm_cell_key data_key; 1680 struct dm_bio_prison_cell *data_cell; 1681 struct dm_thin_new_mapping *m; 1682 dm_block_t virt_begin, virt_end, data_begin; 1683 1684 while (begin != end) { 1685 r = ensure_next_mapping(pool); 1686 if (r) 1687 /* we did our best */ 1688 return; 1689 1690 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1691 &data_begin, &maybe_shared); 1692 if (r) 1693 /* 1694 * Silently fail, letting any mappings we've 1695 * created complete. 1696 */ 1697 break; 1698 1699 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1700 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1701 /* contention, we'll give up with this range */ 1702 begin = virt_end; 1703 continue; 1704 } 1705 1706 /* 1707 * IO may still be going to the destination block. We must 1708 * quiesce before we can do the removal. 1709 */ 1710 m = get_next_mapping(pool); 1711 m->tc = tc; 1712 m->maybe_shared = maybe_shared; 1713 m->virt_begin = virt_begin; 1714 m->virt_end = virt_end; 1715 m->data_block = data_begin; 1716 m->cell = data_cell; 1717 m->bio = bio; 1718 1719 /* 1720 * The parent bio must not complete before sub discard bios are 1721 * chained to it (see end_discard's bio_chain)! 1722 * 1723 * This per-mapping bi_remaining increment is paired with 1724 * the implicit decrement that occurs via bio_endio() in 1725 * end_discard(). 1726 */ 1727 bio_inc_remaining(bio); 1728 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1729 pool->process_prepared_discard(m); 1730 1731 begin = virt_end; 1732 } 1733 } 1734 1735 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1736 { 1737 struct bio *bio = virt_cell->holder; 1738 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1739 1740 /* 1741 * The virt_cell will only get freed once the origin bio completes. 1742 * This means it will remain locked while all the individual 1743 * passdown bios are in flight. 1744 */ 1745 h->cell = virt_cell; 1746 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1747 1748 /* 1749 * We complete the bio now, knowing that the bi_remaining field 1750 * will prevent completion until the sub range discards have 1751 * completed. 1752 */ 1753 bio_endio(bio); 1754 } 1755 1756 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1757 { 1758 dm_block_t begin, end; 1759 struct dm_cell_key virt_key; 1760 struct dm_bio_prison_cell *virt_cell; 1761 1762 get_bio_block_range(tc, bio, &begin, &end); 1763 if (begin == end) { 1764 /* 1765 * The discard covers less than a block. 1766 */ 1767 bio_endio(bio); 1768 return; 1769 } 1770 1771 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1772 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1773 /* 1774 * Potential starvation issue: We're relying on the 1775 * fs/application being well behaved, and not trying to 1776 * send IO to a region at the same time as discarding it. 1777 * If they do this persistently then it's possible this 1778 * cell will never be granted. 1779 */ 1780 return; 1781 1782 tc->pool->process_discard_cell(tc, virt_cell); 1783 } 1784 1785 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1786 struct dm_cell_key *key, 1787 struct dm_thin_lookup_result *lookup_result, 1788 struct dm_bio_prison_cell *cell) 1789 { 1790 int r; 1791 dm_block_t data_block; 1792 struct pool *pool = tc->pool; 1793 1794 r = alloc_data_block(tc, &data_block); 1795 switch (r) { 1796 case 0: 1797 schedule_internal_copy(tc, block, lookup_result->block, 1798 data_block, cell, bio); 1799 break; 1800 1801 case -ENOSPC: 1802 retry_bios_on_resume(pool, cell); 1803 break; 1804 1805 default: 1806 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1807 __func__, r); 1808 cell_error(pool, cell); 1809 break; 1810 } 1811 } 1812 1813 static void __remap_and_issue_shared_cell(void *context, 1814 struct dm_bio_prison_cell *cell) 1815 { 1816 struct remap_info *info = context; 1817 struct bio *bio; 1818 1819 while ((bio = bio_list_pop(&cell->bios))) { 1820 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1821 bio_op(bio) == REQ_OP_DISCARD) 1822 bio_list_add(&info->defer_bios, bio); 1823 else { 1824 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1825 1826 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1827 inc_all_io_entry(info->tc->pool, bio); 1828 bio_list_add(&info->issue_bios, bio); 1829 } 1830 } 1831 } 1832 1833 static void remap_and_issue_shared_cell(struct thin_c *tc, 1834 struct dm_bio_prison_cell *cell, 1835 dm_block_t block) 1836 { 1837 struct bio *bio; 1838 struct remap_info info; 1839 1840 info.tc = tc; 1841 bio_list_init(&info.defer_bios); 1842 bio_list_init(&info.issue_bios); 1843 1844 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1845 &info, cell); 1846 1847 while ((bio = bio_list_pop(&info.defer_bios))) 1848 thin_defer_bio(tc, bio); 1849 1850 while ((bio = bio_list_pop(&info.issue_bios))) 1851 remap_and_issue(tc, bio, block); 1852 } 1853 1854 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1855 dm_block_t block, 1856 struct dm_thin_lookup_result *lookup_result, 1857 struct dm_bio_prison_cell *virt_cell) 1858 { 1859 struct dm_bio_prison_cell *data_cell; 1860 struct pool *pool = tc->pool; 1861 struct dm_cell_key key; 1862 1863 /* 1864 * If cell is already occupied, then sharing is already in the process 1865 * of being broken so we have nothing further to do here. 1866 */ 1867 build_data_key(tc->td, lookup_result->block, &key); 1868 if (bio_detain(pool, &key, bio, &data_cell)) { 1869 cell_defer_no_holder(tc, virt_cell); 1870 return; 1871 } 1872 1873 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1874 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1875 cell_defer_no_holder(tc, virt_cell); 1876 } else { 1877 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1878 1879 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1880 inc_all_io_entry(pool, bio); 1881 remap_and_issue(tc, bio, lookup_result->block); 1882 1883 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1884 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1885 } 1886 } 1887 1888 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1889 struct dm_bio_prison_cell *cell) 1890 { 1891 int r; 1892 dm_block_t data_block; 1893 struct pool *pool = tc->pool; 1894 1895 /* 1896 * Remap empty bios (flushes) immediately, without provisioning. 1897 */ 1898 if (!bio->bi_iter.bi_size) { 1899 inc_all_io_entry(pool, bio); 1900 cell_defer_no_holder(tc, cell); 1901 1902 remap_and_issue(tc, bio, 0); 1903 return; 1904 } 1905 1906 /* 1907 * Fill read bios with zeroes and complete them immediately. 1908 */ 1909 if (bio_data_dir(bio) == READ) { 1910 zero_fill_bio(bio); 1911 cell_defer_no_holder(tc, cell); 1912 bio_endio(bio); 1913 return; 1914 } 1915 1916 r = alloc_data_block(tc, &data_block); 1917 switch (r) { 1918 case 0: 1919 if (tc->origin_dev) 1920 schedule_external_copy(tc, block, data_block, cell, bio); 1921 else 1922 schedule_zero(tc, block, data_block, cell, bio); 1923 break; 1924 1925 case -ENOSPC: 1926 retry_bios_on_resume(pool, cell); 1927 break; 1928 1929 default: 1930 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1931 __func__, r); 1932 cell_error(pool, cell); 1933 break; 1934 } 1935 } 1936 1937 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1938 { 1939 int r; 1940 struct pool *pool = tc->pool; 1941 struct bio *bio = cell->holder; 1942 dm_block_t block = get_bio_block(tc, bio); 1943 struct dm_thin_lookup_result lookup_result; 1944 1945 if (tc->requeue_mode) { 1946 cell_requeue(pool, cell); 1947 return; 1948 } 1949 1950 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1951 switch (r) { 1952 case 0: 1953 if (lookup_result.shared) 1954 process_shared_bio(tc, bio, block, &lookup_result, cell); 1955 else { 1956 inc_all_io_entry(pool, bio); 1957 remap_and_issue(tc, bio, lookup_result.block); 1958 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1959 } 1960 break; 1961 1962 case -ENODATA: 1963 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1964 inc_all_io_entry(pool, bio); 1965 cell_defer_no_holder(tc, cell); 1966 1967 if (bio_end_sector(bio) <= tc->origin_size) 1968 remap_to_origin_and_issue(tc, bio); 1969 1970 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1971 zero_fill_bio(bio); 1972 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1973 remap_to_origin_and_issue(tc, bio); 1974 1975 } else { 1976 zero_fill_bio(bio); 1977 bio_endio(bio); 1978 } 1979 } else 1980 provision_block(tc, bio, block, cell); 1981 break; 1982 1983 default: 1984 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1985 __func__, r); 1986 cell_defer_no_holder(tc, cell); 1987 bio_io_error(bio); 1988 break; 1989 } 1990 } 1991 1992 static void process_bio(struct thin_c *tc, struct bio *bio) 1993 { 1994 struct pool *pool = tc->pool; 1995 dm_block_t block = get_bio_block(tc, bio); 1996 struct dm_bio_prison_cell *cell; 1997 struct dm_cell_key key; 1998 1999 /* 2000 * If cell is already occupied, then the block is already 2001 * being provisioned so we have nothing further to do here. 2002 */ 2003 build_virtual_key(tc->td, block, &key); 2004 if (bio_detain(pool, &key, bio, &cell)) 2005 return; 2006 2007 process_cell(tc, cell); 2008 } 2009 2010 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2011 struct dm_bio_prison_cell *cell) 2012 { 2013 int r; 2014 int rw = bio_data_dir(bio); 2015 dm_block_t block = get_bio_block(tc, bio); 2016 struct dm_thin_lookup_result lookup_result; 2017 2018 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2019 switch (r) { 2020 case 0: 2021 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2022 handle_unserviceable_bio(tc->pool, bio); 2023 if (cell) 2024 cell_defer_no_holder(tc, cell); 2025 } else { 2026 inc_all_io_entry(tc->pool, bio); 2027 remap_and_issue(tc, bio, lookup_result.block); 2028 if (cell) 2029 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2030 } 2031 break; 2032 2033 case -ENODATA: 2034 if (cell) 2035 cell_defer_no_holder(tc, cell); 2036 if (rw != READ) { 2037 handle_unserviceable_bio(tc->pool, bio); 2038 break; 2039 } 2040 2041 if (tc->origin_dev) { 2042 inc_all_io_entry(tc->pool, bio); 2043 remap_to_origin_and_issue(tc, bio); 2044 break; 2045 } 2046 2047 zero_fill_bio(bio); 2048 bio_endio(bio); 2049 break; 2050 2051 default: 2052 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2053 __func__, r); 2054 if (cell) 2055 cell_defer_no_holder(tc, cell); 2056 bio_io_error(bio); 2057 break; 2058 } 2059 } 2060 2061 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2062 { 2063 __process_bio_read_only(tc, bio, NULL); 2064 } 2065 2066 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2067 { 2068 __process_bio_read_only(tc, cell->holder, cell); 2069 } 2070 2071 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2072 { 2073 bio_endio(bio); 2074 } 2075 2076 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2077 { 2078 bio_io_error(bio); 2079 } 2080 2081 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2082 { 2083 cell_success(tc->pool, cell); 2084 } 2085 2086 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2087 { 2088 cell_error(tc->pool, cell); 2089 } 2090 2091 /* 2092 * FIXME: should we also commit due to size of transaction, measured in 2093 * metadata blocks? 2094 */ 2095 static int need_commit_due_to_time(struct pool *pool) 2096 { 2097 return !time_in_range(jiffies, pool->last_commit_jiffies, 2098 pool->last_commit_jiffies + COMMIT_PERIOD); 2099 } 2100 2101 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2102 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2103 2104 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2105 { 2106 struct rb_node **rbp, *parent; 2107 struct dm_thin_endio_hook *pbd; 2108 sector_t bi_sector = bio->bi_iter.bi_sector; 2109 2110 rbp = &tc->sort_bio_list.rb_node; 2111 parent = NULL; 2112 while (*rbp) { 2113 parent = *rbp; 2114 pbd = thin_pbd(parent); 2115 2116 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2117 rbp = &(*rbp)->rb_left; 2118 else 2119 rbp = &(*rbp)->rb_right; 2120 } 2121 2122 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2123 rb_link_node(&pbd->rb_node, parent, rbp); 2124 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2125 } 2126 2127 static void __extract_sorted_bios(struct thin_c *tc) 2128 { 2129 struct rb_node *node; 2130 struct dm_thin_endio_hook *pbd; 2131 struct bio *bio; 2132 2133 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2134 pbd = thin_pbd(node); 2135 bio = thin_bio(pbd); 2136 2137 bio_list_add(&tc->deferred_bio_list, bio); 2138 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2139 } 2140 2141 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2142 } 2143 2144 static void __sort_thin_deferred_bios(struct thin_c *tc) 2145 { 2146 struct bio *bio; 2147 struct bio_list bios; 2148 2149 bio_list_init(&bios); 2150 bio_list_merge(&bios, &tc->deferred_bio_list); 2151 bio_list_init(&tc->deferred_bio_list); 2152 2153 /* Sort deferred_bio_list using rb-tree */ 2154 while ((bio = bio_list_pop(&bios))) 2155 __thin_bio_rb_add(tc, bio); 2156 2157 /* 2158 * Transfer the sorted bios in sort_bio_list back to 2159 * deferred_bio_list to allow lockless submission of 2160 * all bios. 2161 */ 2162 __extract_sorted_bios(tc); 2163 } 2164 2165 static void process_thin_deferred_bios(struct thin_c *tc) 2166 { 2167 struct pool *pool = tc->pool; 2168 struct bio *bio; 2169 struct bio_list bios; 2170 struct blk_plug plug; 2171 unsigned count = 0; 2172 2173 if (tc->requeue_mode) { 2174 error_thin_bio_list(tc, &tc->deferred_bio_list, 2175 BLK_STS_DM_REQUEUE); 2176 return; 2177 } 2178 2179 bio_list_init(&bios); 2180 2181 spin_lock_irq(&tc->lock); 2182 2183 if (bio_list_empty(&tc->deferred_bio_list)) { 2184 spin_unlock_irq(&tc->lock); 2185 return; 2186 } 2187 2188 __sort_thin_deferred_bios(tc); 2189 2190 bio_list_merge(&bios, &tc->deferred_bio_list); 2191 bio_list_init(&tc->deferred_bio_list); 2192 2193 spin_unlock_irq(&tc->lock); 2194 2195 blk_start_plug(&plug); 2196 while ((bio = bio_list_pop(&bios))) { 2197 /* 2198 * If we've got no free new_mapping structs, and processing 2199 * this bio might require one, we pause until there are some 2200 * prepared mappings to process. 2201 */ 2202 if (ensure_next_mapping(pool)) { 2203 spin_lock_irq(&tc->lock); 2204 bio_list_add(&tc->deferred_bio_list, bio); 2205 bio_list_merge(&tc->deferred_bio_list, &bios); 2206 spin_unlock_irq(&tc->lock); 2207 break; 2208 } 2209 2210 if (bio_op(bio) == REQ_OP_DISCARD) 2211 pool->process_discard(tc, bio); 2212 else 2213 pool->process_bio(tc, bio); 2214 2215 if ((count++ & 127) == 0) { 2216 throttle_work_update(&pool->throttle); 2217 dm_pool_issue_prefetches(pool->pmd); 2218 } 2219 } 2220 blk_finish_plug(&plug); 2221 } 2222 2223 static int cmp_cells(const void *lhs, const void *rhs) 2224 { 2225 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2226 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2227 2228 BUG_ON(!lhs_cell->holder); 2229 BUG_ON(!rhs_cell->holder); 2230 2231 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2232 return -1; 2233 2234 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2235 return 1; 2236 2237 return 0; 2238 } 2239 2240 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2241 { 2242 unsigned count = 0; 2243 struct dm_bio_prison_cell *cell, *tmp; 2244 2245 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2246 if (count >= CELL_SORT_ARRAY_SIZE) 2247 break; 2248 2249 pool->cell_sort_array[count++] = cell; 2250 list_del(&cell->user_list); 2251 } 2252 2253 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2254 2255 return count; 2256 } 2257 2258 static void process_thin_deferred_cells(struct thin_c *tc) 2259 { 2260 struct pool *pool = tc->pool; 2261 struct list_head cells; 2262 struct dm_bio_prison_cell *cell; 2263 unsigned i, j, count; 2264 2265 INIT_LIST_HEAD(&cells); 2266 2267 spin_lock_irq(&tc->lock); 2268 list_splice_init(&tc->deferred_cells, &cells); 2269 spin_unlock_irq(&tc->lock); 2270 2271 if (list_empty(&cells)) 2272 return; 2273 2274 do { 2275 count = sort_cells(tc->pool, &cells); 2276 2277 for (i = 0; i < count; i++) { 2278 cell = pool->cell_sort_array[i]; 2279 BUG_ON(!cell->holder); 2280 2281 /* 2282 * If we've got no free new_mapping structs, and processing 2283 * this bio might require one, we pause until there are some 2284 * prepared mappings to process. 2285 */ 2286 if (ensure_next_mapping(pool)) { 2287 for (j = i; j < count; j++) 2288 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2289 2290 spin_lock_irq(&tc->lock); 2291 list_splice(&cells, &tc->deferred_cells); 2292 spin_unlock_irq(&tc->lock); 2293 return; 2294 } 2295 2296 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2297 pool->process_discard_cell(tc, cell); 2298 else 2299 pool->process_cell(tc, cell); 2300 } 2301 } while (!list_empty(&cells)); 2302 } 2303 2304 static void thin_get(struct thin_c *tc); 2305 static void thin_put(struct thin_c *tc); 2306 2307 /* 2308 * We can't hold rcu_read_lock() around code that can block. So we 2309 * find a thin with the rcu lock held; bump a refcount; then drop 2310 * the lock. 2311 */ 2312 static struct thin_c *get_first_thin(struct pool *pool) 2313 { 2314 struct thin_c *tc = NULL; 2315 2316 rcu_read_lock(); 2317 if (!list_empty(&pool->active_thins)) { 2318 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2319 thin_get(tc); 2320 } 2321 rcu_read_unlock(); 2322 2323 return tc; 2324 } 2325 2326 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2327 { 2328 struct thin_c *old_tc = tc; 2329 2330 rcu_read_lock(); 2331 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2332 thin_get(tc); 2333 thin_put(old_tc); 2334 rcu_read_unlock(); 2335 return tc; 2336 } 2337 thin_put(old_tc); 2338 rcu_read_unlock(); 2339 2340 return NULL; 2341 } 2342 2343 static void process_deferred_bios(struct pool *pool) 2344 { 2345 struct bio *bio; 2346 struct bio_list bios, bio_completions; 2347 struct thin_c *tc; 2348 2349 tc = get_first_thin(pool); 2350 while (tc) { 2351 process_thin_deferred_cells(tc); 2352 process_thin_deferred_bios(tc); 2353 tc = get_next_thin(pool, tc); 2354 } 2355 2356 /* 2357 * If there are any deferred flush bios, we must commit the metadata 2358 * before issuing them or signaling their completion. 2359 */ 2360 bio_list_init(&bios); 2361 bio_list_init(&bio_completions); 2362 2363 spin_lock_irq(&pool->lock); 2364 bio_list_merge(&bios, &pool->deferred_flush_bios); 2365 bio_list_init(&pool->deferred_flush_bios); 2366 2367 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2368 bio_list_init(&pool->deferred_flush_completions); 2369 spin_unlock_irq(&pool->lock); 2370 2371 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2372 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2373 return; 2374 2375 if (commit(pool)) { 2376 bio_list_merge(&bios, &bio_completions); 2377 2378 while ((bio = bio_list_pop(&bios))) 2379 bio_io_error(bio); 2380 return; 2381 } 2382 pool->last_commit_jiffies = jiffies; 2383 2384 while ((bio = bio_list_pop(&bio_completions))) 2385 bio_endio(bio); 2386 2387 while ((bio = bio_list_pop(&bios))) { 2388 /* 2389 * The data device was flushed as part of metadata commit, 2390 * so complete redundant flushes immediately. 2391 */ 2392 if (bio->bi_opf & REQ_PREFLUSH) 2393 bio_endio(bio); 2394 else 2395 generic_make_request(bio); 2396 } 2397 } 2398 2399 static void do_worker(struct work_struct *ws) 2400 { 2401 struct pool *pool = container_of(ws, struct pool, worker); 2402 2403 throttle_work_start(&pool->throttle); 2404 dm_pool_issue_prefetches(pool->pmd); 2405 throttle_work_update(&pool->throttle); 2406 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2407 throttle_work_update(&pool->throttle); 2408 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2409 throttle_work_update(&pool->throttle); 2410 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2411 throttle_work_update(&pool->throttle); 2412 process_deferred_bios(pool); 2413 throttle_work_complete(&pool->throttle); 2414 } 2415 2416 /* 2417 * We want to commit periodically so that not too much 2418 * unwritten data builds up. 2419 */ 2420 static void do_waker(struct work_struct *ws) 2421 { 2422 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2423 wake_worker(pool); 2424 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2425 } 2426 2427 /* 2428 * We're holding onto IO to allow userland time to react. After the 2429 * timeout either the pool will have been resized (and thus back in 2430 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2431 */ 2432 static void do_no_space_timeout(struct work_struct *ws) 2433 { 2434 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2435 no_space_timeout); 2436 2437 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2438 pool->pf.error_if_no_space = true; 2439 notify_of_pool_mode_change(pool); 2440 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2441 } 2442 } 2443 2444 /*----------------------------------------------------------------*/ 2445 2446 struct pool_work { 2447 struct work_struct worker; 2448 struct completion complete; 2449 }; 2450 2451 static struct pool_work *to_pool_work(struct work_struct *ws) 2452 { 2453 return container_of(ws, struct pool_work, worker); 2454 } 2455 2456 static void pool_work_complete(struct pool_work *pw) 2457 { 2458 complete(&pw->complete); 2459 } 2460 2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2462 void (*fn)(struct work_struct *)) 2463 { 2464 INIT_WORK_ONSTACK(&pw->worker, fn); 2465 init_completion(&pw->complete); 2466 queue_work(pool->wq, &pw->worker); 2467 wait_for_completion(&pw->complete); 2468 } 2469 2470 /*----------------------------------------------------------------*/ 2471 2472 struct noflush_work { 2473 struct pool_work pw; 2474 struct thin_c *tc; 2475 }; 2476 2477 static struct noflush_work *to_noflush(struct work_struct *ws) 2478 { 2479 return container_of(to_pool_work(ws), struct noflush_work, pw); 2480 } 2481 2482 static void do_noflush_start(struct work_struct *ws) 2483 { 2484 struct noflush_work *w = to_noflush(ws); 2485 w->tc->requeue_mode = true; 2486 requeue_io(w->tc); 2487 pool_work_complete(&w->pw); 2488 } 2489 2490 static void do_noflush_stop(struct work_struct *ws) 2491 { 2492 struct noflush_work *w = to_noflush(ws); 2493 w->tc->requeue_mode = false; 2494 pool_work_complete(&w->pw); 2495 } 2496 2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2498 { 2499 struct noflush_work w; 2500 2501 w.tc = tc; 2502 pool_work_wait(&w.pw, tc->pool, fn); 2503 } 2504 2505 /*----------------------------------------------------------------*/ 2506 2507 static bool passdown_enabled(struct pool_c *pt) 2508 { 2509 return pt->adjusted_pf.discard_passdown; 2510 } 2511 2512 static void set_discard_callbacks(struct pool *pool) 2513 { 2514 struct pool_c *pt = pool->ti->private; 2515 2516 if (passdown_enabled(pt)) { 2517 pool->process_discard_cell = process_discard_cell_passdown; 2518 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2519 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2520 } else { 2521 pool->process_discard_cell = process_discard_cell_no_passdown; 2522 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2523 } 2524 } 2525 2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2527 { 2528 struct pool_c *pt = pool->ti->private; 2529 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2530 enum pool_mode old_mode = get_pool_mode(pool); 2531 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2532 2533 /* 2534 * Never allow the pool to transition to PM_WRITE mode if user 2535 * intervention is required to verify metadata and data consistency. 2536 */ 2537 if (new_mode == PM_WRITE && needs_check) { 2538 DMERR("%s: unable to switch pool to write mode until repaired.", 2539 dm_device_name(pool->pool_md)); 2540 if (old_mode != new_mode) 2541 new_mode = old_mode; 2542 else 2543 new_mode = PM_READ_ONLY; 2544 } 2545 /* 2546 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2547 * not going to recover without a thin_repair. So we never let the 2548 * pool move out of the old mode. 2549 */ 2550 if (old_mode == PM_FAIL) 2551 new_mode = old_mode; 2552 2553 switch (new_mode) { 2554 case PM_FAIL: 2555 dm_pool_metadata_read_only(pool->pmd); 2556 pool->process_bio = process_bio_fail; 2557 pool->process_discard = process_bio_fail; 2558 pool->process_cell = process_cell_fail; 2559 pool->process_discard_cell = process_cell_fail; 2560 pool->process_prepared_mapping = process_prepared_mapping_fail; 2561 pool->process_prepared_discard = process_prepared_discard_fail; 2562 2563 error_retry_list(pool); 2564 break; 2565 2566 case PM_OUT_OF_METADATA_SPACE: 2567 case PM_READ_ONLY: 2568 dm_pool_metadata_read_only(pool->pmd); 2569 pool->process_bio = process_bio_read_only; 2570 pool->process_discard = process_bio_success; 2571 pool->process_cell = process_cell_read_only; 2572 pool->process_discard_cell = process_cell_success; 2573 pool->process_prepared_mapping = process_prepared_mapping_fail; 2574 pool->process_prepared_discard = process_prepared_discard_success; 2575 2576 error_retry_list(pool); 2577 break; 2578 2579 case PM_OUT_OF_DATA_SPACE: 2580 /* 2581 * Ideally we'd never hit this state; the low water mark 2582 * would trigger userland to extend the pool before we 2583 * completely run out of data space. However, many small 2584 * IOs to unprovisioned space can consume data space at an 2585 * alarming rate. Adjust your low water mark if you're 2586 * frequently seeing this mode. 2587 */ 2588 pool->out_of_data_space = true; 2589 pool->process_bio = process_bio_read_only; 2590 pool->process_discard = process_discard_bio; 2591 pool->process_cell = process_cell_read_only; 2592 pool->process_prepared_mapping = process_prepared_mapping; 2593 set_discard_callbacks(pool); 2594 2595 if (!pool->pf.error_if_no_space && no_space_timeout) 2596 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2597 break; 2598 2599 case PM_WRITE: 2600 if (old_mode == PM_OUT_OF_DATA_SPACE) 2601 cancel_delayed_work_sync(&pool->no_space_timeout); 2602 pool->out_of_data_space = false; 2603 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2604 dm_pool_metadata_read_write(pool->pmd); 2605 pool->process_bio = process_bio; 2606 pool->process_discard = process_discard_bio; 2607 pool->process_cell = process_cell; 2608 pool->process_prepared_mapping = process_prepared_mapping; 2609 set_discard_callbacks(pool); 2610 break; 2611 } 2612 2613 pool->pf.mode = new_mode; 2614 /* 2615 * The pool mode may have changed, sync it so bind_control_target() 2616 * doesn't cause an unexpected mode transition on resume. 2617 */ 2618 pt->adjusted_pf.mode = new_mode; 2619 2620 if (old_mode != new_mode) 2621 notify_of_pool_mode_change(pool); 2622 } 2623 2624 static void abort_transaction(struct pool *pool) 2625 { 2626 const char *dev_name = dm_device_name(pool->pool_md); 2627 2628 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2629 if (dm_pool_abort_metadata(pool->pmd)) { 2630 DMERR("%s: failed to abort metadata transaction", dev_name); 2631 set_pool_mode(pool, PM_FAIL); 2632 } 2633 2634 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2635 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2636 set_pool_mode(pool, PM_FAIL); 2637 } 2638 } 2639 2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2641 { 2642 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2643 dm_device_name(pool->pool_md), op, r); 2644 2645 abort_transaction(pool); 2646 set_pool_mode(pool, PM_READ_ONLY); 2647 } 2648 2649 /*----------------------------------------------------------------*/ 2650 2651 /* 2652 * Mapping functions. 2653 */ 2654 2655 /* 2656 * Called only while mapping a thin bio to hand it over to the workqueue. 2657 */ 2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2659 { 2660 struct pool *pool = tc->pool; 2661 2662 spin_lock_irq(&tc->lock); 2663 bio_list_add(&tc->deferred_bio_list, bio); 2664 spin_unlock_irq(&tc->lock); 2665 2666 wake_worker(pool); 2667 } 2668 2669 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2670 { 2671 struct pool *pool = tc->pool; 2672 2673 throttle_lock(&pool->throttle); 2674 thin_defer_bio(tc, bio); 2675 throttle_unlock(&pool->throttle); 2676 } 2677 2678 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2679 { 2680 struct pool *pool = tc->pool; 2681 2682 throttle_lock(&pool->throttle); 2683 spin_lock_irq(&tc->lock); 2684 list_add_tail(&cell->user_list, &tc->deferred_cells); 2685 spin_unlock_irq(&tc->lock); 2686 throttle_unlock(&pool->throttle); 2687 2688 wake_worker(pool); 2689 } 2690 2691 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2692 { 2693 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2694 2695 h->tc = tc; 2696 h->shared_read_entry = NULL; 2697 h->all_io_entry = NULL; 2698 h->overwrite_mapping = NULL; 2699 h->cell = NULL; 2700 } 2701 2702 /* 2703 * Non-blocking function called from the thin target's map function. 2704 */ 2705 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2706 { 2707 int r; 2708 struct thin_c *tc = ti->private; 2709 dm_block_t block = get_bio_block(tc, bio); 2710 struct dm_thin_device *td = tc->td; 2711 struct dm_thin_lookup_result result; 2712 struct dm_bio_prison_cell *virt_cell, *data_cell; 2713 struct dm_cell_key key; 2714 2715 thin_hook_bio(tc, bio); 2716 2717 if (tc->requeue_mode) { 2718 bio->bi_status = BLK_STS_DM_REQUEUE; 2719 bio_endio(bio); 2720 return DM_MAPIO_SUBMITTED; 2721 } 2722 2723 if (get_pool_mode(tc->pool) == PM_FAIL) { 2724 bio_io_error(bio); 2725 return DM_MAPIO_SUBMITTED; 2726 } 2727 2728 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2729 thin_defer_bio_with_throttle(tc, bio); 2730 return DM_MAPIO_SUBMITTED; 2731 } 2732 2733 /* 2734 * We must hold the virtual cell before doing the lookup, otherwise 2735 * there's a race with discard. 2736 */ 2737 build_virtual_key(tc->td, block, &key); 2738 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2739 return DM_MAPIO_SUBMITTED; 2740 2741 r = dm_thin_find_block(td, block, 0, &result); 2742 2743 /* 2744 * Note that we defer readahead too. 2745 */ 2746 switch (r) { 2747 case 0: 2748 if (unlikely(result.shared)) { 2749 /* 2750 * We have a race condition here between the 2751 * result.shared value returned by the lookup and 2752 * snapshot creation, which may cause new 2753 * sharing. 2754 * 2755 * To avoid this always quiesce the origin before 2756 * taking the snap. You want to do this anyway to 2757 * ensure a consistent application view 2758 * (i.e. lockfs). 2759 * 2760 * More distant ancestors are irrelevant. The 2761 * shared flag will be set in their case. 2762 */ 2763 thin_defer_cell(tc, virt_cell); 2764 return DM_MAPIO_SUBMITTED; 2765 } 2766 2767 build_data_key(tc->td, result.block, &key); 2768 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2769 cell_defer_no_holder(tc, virt_cell); 2770 return DM_MAPIO_SUBMITTED; 2771 } 2772 2773 inc_all_io_entry(tc->pool, bio); 2774 cell_defer_no_holder(tc, data_cell); 2775 cell_defer_no_holder(tc, virt_cell); 2776 2777 remap(tc, bio, result.block); 2778 return DM_MAPIO_REMAPPED; 2779 2780 case -ENODATA: 2781 case -EWOULDBLOCK: 2782 thin_defer_cell(tc, virt_cell); 2783 return DM_MAPIO_SUBMITTED; 2784 2785 default: 2786 /* 2787 * Must always call bio_io_error on failure. 2788 * dm_thin_find_block can fail with -EINVAL if the 2789 * pool is switched to fail-io mode. 2790 */ 2791 bio_io_error(bio); 2792 cell_defer_no_holder(tc, virt_cell); 2793 return DM_MAPIO_SUBMITTED; 2794 } 2795 } 2796 2797 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2798 { 2799 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2800 struct request_queue *q; 2801 2802 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2803 return 1; 2804 2805 q = bdev_get_queue(pt->data_dev->bdev); 2806 return bdi_congested(q->backing_dev_info, bdi_bits); 2807 } 2808 2809 static void requeue_bios(struct pool *pool) 2810 { 2811 struct thin_c *tc; 2812 2813 rcu_read_lock(); 2814 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2815 spin_lock_irq(&tc->lock); 2816 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2817 bio_list_init(&tc->retry_on_resume_list); 2818 spin_unlock_irq(&tc->lock); 2819 } 2820 rcu_read_unlock(); 2821 } 2822 2823 /*---------------------------------------------------------------- 2824 * Binding of control targets to a pool object 2825 *--------------------------------------------------------------*/ 2826 static bool data_dev_supports_discard(struct pool_c *pt) 2827 { 2828 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2829 2830 return q && blk_queue_discard(q); 2831 } 2832 2833 static bool is_factor(sector_t block_size, uint32_t n) 2834 { 2835 return !sector_div(block_size, n); 2836 } 2837 2838 /* 2839 * If discard_passdown was enabled verify that the data device 2840 * supports discards. Disable discard_passdown if not. 2841 */ 2842 static void disable_passdown_if_not_supported(struct pool_c *pt) 2843 { 2844 struct pool *pool = pt->pool; 2845 struct block_device *data_bdev = pt->data_dev->bdev; 2846 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2847 const char *reason = NULL; 2848 char buf[BDEVNAME_SIZE]; 2849 2850 if (!pt->adjusted_pf.discard_passdown) 2851 return; 2852 2853 if (!data_dev_supports_discard(pt)) 2854 reason = "discard unsupported"; 2855 2856 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2857 reason = "max discard sectors smaller than a block"; 2858 2859 if (reason) { 2860 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2861 pt->adjusted_pf.discard_passdown = false; 2862 } 2863 } 2864 2865 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2866 { 2867 struct pool_c *pt = ti->private; 2868 2869 /* 2870 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2871 */ 2872 enum pool_mode old_mode = get_pool_mode(pool); 2873 enum pool_mode new_mode = pt->adjusted_pf.mode; 2874 2875 /* 2876 * Don't change the pool's mode until set_pool_mode() below. 2877 * Otherwise the pool's process_* function pointers may 2878 * not match the desired pool mode. 2879 */ 2880 pt->adjusted_pf.mode = old_mode; 2881 2882 pool->ti = ti; 2883 pool->pf = pt->adjusted_pf; 2884 pool->low_water_blocks = pt->low_water_blocks; 2885 2886 set_pool_mode(pool, new_mode); 2887 2888 return 0; 2889 } 2890 2891 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2892 { 2893 if (pool->ti == ti) 2894 pool->ti = NULL; 2895 } 2896 2897 /*---------------------------------------------------------------- 2898 * Pool creation 2899 *--------------------------------------------------------------*/ 2900 /* Initialize pool features. */ 2901 static void pool_features_init(struct pool_features *pf) 2902 { 2903 pf->mode = PM_WRITE; 2904 pf->zero_new_blocks = true; 2905 pf->discard_enabled = true; 2906 pf->discard_passdown = true; 2907 pf->error_if_no_space = false; 2908 } 2909 2910 static void __pool_destroy(struct pool *pool) 2911 { 2912 __pool_table_remove(pool); 2913 2914 vfree(pool->cell_sort_array); 2915 if (dm_pool_metadata_close(pool->pmd) < 0) 2916 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2917 2918 dm_bio_prison_destroy(pool->prison); 2919 dm_kcopyd_client_destroy(pool->copier); 2920 2921 if (pool->wq) 2922 destroy_workqueue(pool->wq); 2923 2924 if (pool->next_mapping) 2925 mempool_free(pool->next_mapping, &pool->mapping_pool); 2926 mempool_exit(&pool->mapping_pool); 2927 dm_deferred_set_destroy(pool->shared_read_ds); 2928 dm_deferred_set_destroy(pool->all_io_ds); 2929 kfree(pool); 2930 } 2931 2932 static struct kmem_cache *_new_mapping_cache; 2933 2934 static struct pool *pool_create(struct mapped_device *pool_md, 2935 struct block_device *metadata_dev, 2936 unsigned long block_size, 2937 int read_only, char **error) 2938 { 2939 int r; 2940 void *err_p; 2941 struct pool *pool; 2942 struct dm_pool_metadata *pmd; 2943 bool format_device = read_only ? false : true; 2944 2945 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2946 if (IS_ERR(pmd)) { 2947 *error = "Error creating metadata object"; 2948 return (struct pool *)pmd; 2949 } 2950 2951 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2952 if (!pool) { 2953 *error = "Error allocating memory for pool"; 2954 err_p = ERR_PTR(-ENOMEM); 2955 goto bad_pool; 2956 } 2957 2958 pool->pmd = pmd; 2959 pool->sectors_per_block = block_size; 2960 if (block_size & (block_size - 1)) 2961 pool->sectors_per_block_shift = -1; 2962 else 2963 pool->sectors_per_block_shift = __ffs(block_size); 2964 pool->low_water_blocks = 0; 2965 pool_features_init(&pool->pf); 2966 pool->prison = dm_bio_prison_create(); 2967 if (!pool->prison) { 2968 *error = "Error creating pool's bio prison"; 2969 err_p = ERR_PTR(-ENOMEM); 2970 goto bad_prison; 2971 } 2972 2973 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2974 if (IS_ERR(pool->copier)) { 2975 r = PTR_ERR(pool->copier); 2976 *error = "Error creating pool's kcopyd client"; 2977 err_p = ERR_PTR(r); 2978 goto bad_kcopyd_client; 2979 } 2980 2981 /* 2982 * Create singlethreaded workqueue that will service all devices 2983 * that use this metadata. 2984 */ 2985 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2986 if (!pool->wq) { 2987 *error = "Error creating pool's workqueue"; 2988 err_p = ERR_PTR(-ENOMEM); 2989 goto bad_wq; 2990 } 2991 2992 throttle_init(&pool->throttle); 2993 INIT_WORK(&pool->worker, do_worker); 2994 INIT_DELAYED_WORK(&pool->waker, do_waker); 2995 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2996 spin_lock_init(&pool->lock); 2997 bio_list_init(&pool->deferred_flush_bios); 2998 bio_list_init(&pool->deferred_flush_completions); 2999 INIT_LIST_HEAD(&pool->prepared_mappings); 3000 INIT_LIST_HEAD(&pool->prepared_discards); 3001 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3002 INIT_LIST_HEAD(&pool->active_thins); 3003 pool->low_water_triggered = false; 3004 pool->suspended = true; 3005 pool->out_of_data_space = false; 3006 3007 pool->shared_read_ds = dm_deferred_set_create(); 3008 if (!pool->shared_read_ds) { 3009 *error = "Error creating pool's shared read deferred set"; 3010 err_p = ERR_PTR(-ENOMEM); 3011 goto bad_shared_read_ds; 3012 } 3013 3014 pool->all_io_ds = dm_deferred_set_create(); 3015 if (!pool->all_io_ds) { 3016 *error = "Error creating pool's all io deferred set"; 3017 err_p = ERR_PTR(-ENOMEM); 3018 goto bad_all_io_ds; 3019 } 3020 3021 pool->next_mapping = NULL; 3022 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3023 _new_mapping_cache); 3024 if (r) { 3025 *error = "Error creating pool's mapping mempool"; 3026 err_p = ERR_PTR(r); 3027 goto bad_mapping_pool; 3028 } 3029 3030 pool->cell_sort_array = 3031 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3032 sizeof(*pool->cell_sort_array))); 3033 if (!pool->cell_sort_array) { 3034 *error = "Error allocating cell sort array"; 3035 err_p = ERR_PTR(-ENOMEM); 3036 goto bad_sort_array; 3037 } 3038 3039 pool->ref_count = 1; 3040 pool->last_commit_jiffies = jiffies; 3041 pool->pool_md = pool_md; 3042 pool->md_dev = metadata_dev; 3043 __pool_table_insert(pool); 3044 3045 return pool; 3046 3047 bad_sort_array: 3048 mempool_exit(&pool->mapping_pool); 3049 bad_mapping_pool: 3050 dm_deferred_set_destroy(pool->all_io_ds); 3051 bad_all_io_ds: 3052 dm_deferred_set_destroy(pool->shared_read_ds); 3053 bad_shared_read_ds: 3054 destroy_workqueue(pool->wq); 3055 bad_wq: 3056 dm_kcopyd_client_destroy(pool->copier); 3057 bad_kcopyd_client: 3058 dm_bio_prison_destroy(pool->prison); 3059 bad_prison: 3060 kfree(pool); 3061 bad_pool: 3062 if (dm_pool_metadata_close(pmd)) 3063 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3064 3065 return err_p; 3066 } 3067 3068 static void __pool_inc(struct pool *pool) 3069 { 3070 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3071 pool->ref_count++; 3072 } 3073 3074 static void __pool_dec(struct pool *pool) 3075 { 3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3077 BUG_ON(!pool->ref_count); 3078 if (!--pool->ref_count) 3079 __pool_destroy(pool); 3080 } 3081 3082 static struct pool *__pool_find(struct mapped_device *pool_md, 3083 struct block_device *metadata_dev, 3084 unsigned long block_size, int read_only, 3085 char **error, int *created) 3086 { 3087 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3088 3089 if (pool) { 3090 if (pool->pool_md != pool_md) { 3091 *error = "metadata device already in use by a pool"; 3092 return ERR_PTR(-EBUSY); 3093 } 3094 __pool_inc(pool); 3095 3096 } else { 3097 pool = __pool_table_lookup(pool_md); 3098 if (pool) { 3099 if (pool->md_dev != metadata_dev) { 3100 *error = "different pool cannot replace a pool"; 3101 return ERR_PTR(-EINVAL); 3102 } 3103 __pool_inc(pool); 3104 3105 } else { 3106 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3107 *created = 1; 3108 } 3109 } 3110 3111 return pool; 3112 } 3113 3114 /*---------------------------------------------------------------- 3115 * Pool target methods 3116 *--------------------------------------------------------------*/ 3117 static void pool_dtr(struct dm_target *ti) 3118 { 3119 struct pool_c *pt = ti->private; 3120 3121 mutex_lock(&dm_thin_pool_table.mutex); 3122 3123 unbind_control_target(pt->pool, ti); 3124 __pool_dec(pt->pool); 3125 dm_put_device(ti, pt->metadata_dev); 3126 dm_put_device(ti, pt->data_dev); 3127 bio_uninit(&pt->flush_bio); 3128 kfree(pt); 3129 3130 mutex_unlock(&dm_thin_pool_table.mutex); 3131 } 3132 3133 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3134 struct dm_target *ti) 3135 { 3136 int r; 3137 unsigned argc; 3138 const char *arg_name; 3139 3140 static const struct dm_arg _args[] = { 3141 {0, 4, "Invalid number of pool feature arguments"}, 3142 }; 3143 3144 /* 3145 * No feature arguments supplied. 3146 */ 3147 if (!as->argc) 3148 return 0; 3149 3150 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3151 if (r) 3152 return -EINVAL; 3153 3154 while (argc && !r) { 3155 arg_name = dm_shift_arg(as); 3156 argc--; 3157 3158 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3159 pf->zero_new_blocks = false; 3160 3161 else if (!strcasecmp(arg_name, "ignore_discard")) 3162 pf->discard_enabled = false; 3163 3164 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3165 pf->discard_passdown = false; 3166 3167 else if (!strcasecmp(arg_name, "read_only")) 3168 pf->mode = PM_READ_ONLY; 3169 3170 else if (!strcasecmp(arg_name, "error_if_no_space")) 3171 pf->error_if_no_space = true; 3172 3173 else { 3174 ti->error = "Unrecognised pool feature requested"; 3175 r = -EINVAL; 3176 break; 3177 } 3178 } 3179 3180 return r; 3181 } 3182 3183 static void metadata_low_callback(void *context) 3184 { 3185 struct pool *pool = context; 3186 3187 DMWARN("%s: reached low water mark for metadata device: sending event.", 3188 dm_device_name(pool->pool_md)); 3189 3190 dm_table_event(pool->ti->table); 3191 } 3192 3193 /* 3194 * We need to flush the data device **before** committing the metadata. 3195 * 3196 * This ensures that the data blocks of any newly inserted mappings are 3197 * properly written to non-volatile storage and won't be lost in case of a 3198 * crash. 3199 * 3200 * Failure to do so can result in data corruption in the case of internal or 3201 * external snapshots and in the case of newly provisioned blocks, when block 3202 * zeroing is enabled. 3203 */ 3204 static int metadata_pre_commit_callback(void *context) 3205 { 3206 struct pool_c *pt = context; 3207 struct bio *flush_bio = &pt->flush_bio; 3208 3209 bio_reset(flush_bio); 3210 bio_set_dev(flush_bio, pt->data_dev->bdev); 3211 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3212 3213 return submit_bio_wait(flush_bio); 3214 } 3215 3216 static sector_t get_dev_size(struct block_device *bdev) 3217 { 3218 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3219 } 3220 3221 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3222 { 3223 sector_t metadata_dev_size = get_dev_size(bdev); 3224 char buffer[BDEVNAME_SIZE]; 3225 3226 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3227 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3228 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3229 } 3230 3231 static sector_t get_metadata_dev_size(struct block_device *bdev) 3232 { 3233 sector_t metadata_dev_size = get_dev_size(bdev); 3234 3235 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3236 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3237 3238 return metadata_dev_size; 3239 } 3240 3241 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3242 { 3243 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3244 3245 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3246 3247 return metadata_dev_size; 3248 } 3249 3250 /* 3251 * When a metadata threshold is crossed a dm event is triggered, and 3252 * userland should respond by growing the metadata device. We could let 3253 * userland set the threshold, like we do with the data threshold, but I'm 3254 * not sure they know enough to do this well. 3255 */ 3256 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3257 { 3258 /* 3259 * 4M is ample for all ops with the possible exception of thin 3260 * device deletion which is harmless if it fails (just retry the 3261 * delete after you've grown the device). 3262 */ 3263 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3264 return min((dm_block_t)1024ULL /* 4M */, quarter); 3265 } 3266 3267 /* 3268 * thin-pool <metadata dev> <data dev> 3269 * <data block size (sectors)> 3270 * <low water mark (blocks)> 3271 * [<#feature args> [<arg>]*] 3272 * 3273 * Optional feature arguments are: 3274 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3275 * ignore_discard: disable discard 3276 * no_discard_passdown: don't pass discards down to the data device 3277 * read_only: Don't allow any changes to be made to the pool metadata. 3278 * error_if_no_space: error IOs, instead of queueing, if no space. 3279 */ 3280 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3281 { 3282 int r, pool_created = 0; 3283 struct pool_c *pt; 3284 struct pool *pool; 3285 struct pool_features pf; 3286 struct dm_arg_set as; 3287 struct dm_dev *data_dev; 3288 unsigned long block_size; 3289 dm_block_t low_water_blocks; 3290 struct dm_dev *metadata_dev; 3291 fmode_t metadata_mode; 3292 3293 /* 3294 * FIXME Remove validation from scope of lock. 3295 */ 3296 mutex_lock(&dm_thin_pool_table.mutex); 3297 3298 if (argc < 4) { 3299 ti->error = "Invalid argument count"; 3300 r = -EINVAL; 3301 goto out_unlock; 3302 } 3303 3304 as.argc = argc; 3305 as.argv = argv; 3306 3307 /* make sure metadata and data are different devices */ 3308 if (!strcmp(argv[0], argv[1])) { 3309 ti->error = "Error setting metadata or data device"; 3310 r = -EINVAL; 3311 goto out_unlock; 3312 } 3313 3314 /* 3315 * Set default pool features. 3316 */ 3317 pool_features_init(&pf); 3318 3319 dm_consume_args(&as, 4); 3320 r = parse_pool_features(&as, &pf, ti); 3321 if (r) 3322 goto out_unlock; 3323 3324 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3325 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3326 if (r) { 3327 ti->error = "Error opening metadata block device"; 3328 goto out_unlock; 3329 } 3330 warn_if_metadata_device_too_big(metadata_dev->bdev); 3331 3332 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3333 if (r) { 3334 ti->error = "Error getting data device"; 3335 goto out_metadata; 3336 } 3337 3338 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3339 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3340 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3341 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3342 ti->error = "Invalid block size"; 3343 r = -EINVAL; 3344 goto out; 3345 } 3346 3347 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3348 ti->error = "Invalid low water mark"; 3349 r = -EINVAL; 3350 goto out; 3351 } 3352 3353 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3354 if (!pt) { 3355 r = -ENOMEM; 3356 goto out; 3357 } 3358 3359 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3360 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3361 if (IS_ERR(pool)) { 3362 r = PTR_ERR(pool); 3363 goto out_free_pt; 3364 } 3365 3366 /* 3367 * 'pool_created' reflects whether this is the first table load. 3368 * Top level discard support is not allowed to be changed after 3369 * initial load. This would require a pool reload to trigger thin 3370 * device changes. 3371 */ 3372 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3373 ti->error = "Discard support cannot be disabled once enabled"; 3374 r = -EINVAL; 3375 goto out_flags_changed; 3376 } 3377 3378 pt->pool = pool; 3379 pt->ti = ti; 3380 pt->metadata_dev = metadata_dev; 3381 pt->data_dev = data_dev; 3382 pt->low_water_blocks = low_water_blocks; 3383 pt->adjusted_pf = pt->requested_pf = pf; 3384 bio_init(&pt->flush_bio, NULL, 0); 3385 ti->num_flush_bios = 1; 3386 3387 /* 3388 * Only need to enable discards if the pool should pass 3389 * them down to the data device. The thin device's discard 3390 * processing will cause mappings to be removed from the btree. 3391 */ 3392 if (pf.discard_enabled && pf.discard_passdown) { 3393 ti->num_discard_bios = 1; 3394 3395 /* 3396 * Setting 'discards_supported' circumvents the normal 3397 * stacking of discard limits (this keeps the pool and 3398 * thin devices' discard limits consistent). 3399 */ 3400 ti->discards_supported = true; 3401 } 3402 ti->private = pt; 3403 3404 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3405 calc_metadata_threshold(pt), 3406 metadata_low_callback, 3407 pool); 3408 if (r) 3409 goto out_flags_changed; 3410 3411 dm_pool_register_pre_commit_callback(pt->pool->pmd, 3412 metadata_pre_commit_callback, 3413 pt); 3414 3415 pt->callbacks.congested_fn = pool_is_congested; 3416 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3417 3418 mutex_unlock(&dm_thin_pool_table.mutex); 3419 3420 return 0; 3421 3422 out_flags_changed: 3423 __pool_dec(pool); 3424 out_free_pt: 3425 kfree(pt); 3426 out: 3427 dm_put_device(ti, data_dev); 3428 out_metadata: 3429 dm_put_device(ti, metadata_dev); 3430 out_unlock: 3431 mutex_unlock(&dm_thin_pool_table.mutex); 3432 3433 return r; 3434 } 3435 3436 static int pool_map(struct dm_target *ti, struct bio *bio) 3437 { 3438 int r; 3439 struct pool_c *pt = ti->private; 3440 struct pool *pool = pt->pool; 3441 3442 /* 3443 * As this is a singleton target, ti->begin is always zero. 3444 */ 3445 spin_lock_irq(&pool->lock); 3446 bio_set_dev(bio, pt->data_dev->bdev); 3447 r = DM_MAPIO_REMAPPED; 3448 spin_unlock_irq(&pool->lock); 3449 3450 return r; 3451 } 3452 3453 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3454 { 3455 int r; 3456 struct pool_c *pt = ti->private; 3457 struct pool *pool = pt->pool; 3458 sector_t data_size = ti->len; 3459 dm_block_t sb_data_size; 3460 3461 *need_commit = false; 3462 3463 (void) sector_div(data_size, pool->sectors_per_block); 3464 3465 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3466 if (r) { 3467 DMERR("%s: failed to retrieve data device size", 3468 dm_device_name(pool->pool_md)); 3469 return r; 3470 } 3471 3472 if (data_size < sb_data_size) { 3473 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3474 dm_device_name(pool->pool_md), 3475 (unsigned long long)data_size, sb_data_size); 3476 return -EINVAL; 3477 3478 } else if (data_size > sb_data_size) { 3479 if (dm_pool_metadata_needs_check(pool->pmd)) { 3480 DMERR("%s: unable to grow the data device until repaired.", 3481 dm_device_name(pool->pool_md)); 3482 return 0; 3483 } 3484 3485 if (sb_data_size) 3486 DMINFO("%s: growing the data device from %llu to %llu blocks", 3487 dm_device_name(pool->pool_md), 3488 sb_data_size, (unsigned long long)data_size); 3489 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3490 if (r) { 3491 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3492 return r; 3493 } 3494 3495 *need_commit = true; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3502 { 3503 int r; 3504 struct pool_c *pt = ti->private; 3505 struct pool *pool = pt->pool; 3506 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3507 3508 *need_commit = false; 3509 3510 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3511 3512 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3513 if (r) { 3514 DMERR("%s: failed to retrieve metadata device size", 3515 dm_device_name(pool->pool_md)); 3516 return r; 3517 } 3518 3519 if (metadata_dev_size < sb_metadata_dev_size) { 3520 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3521 dm_device_name(pool->pool_md), 3522 metadata_dev_size, sb_metadata_dev_size); 3523 return -EINVAL; 3524 3525 } else if (metadata_dev_size > sb_metadata_dev_size) { 3526 if (dm_pool_metadata_needs_check(pool->pmd)) { 3527 DMERR("%s: unable to grow the metadata device until repaired.", 3528 dm_device_name(pool->pool_md)); 3529 return 0; 3530 } 3531 3532 warn_if_metadata_device_too_big(pool->md_dev); 3533 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3534 dm_device_name(pool->pool_md), 3535 sb_metadata_dev_size, metadata_dev_size); 3536 3537 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3538 set_pool_mode(pool, PM_WRITE); 3539 3540 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3541 if (r) { 3542 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3543 return r; 3544 } 3545 3546 *need_commit = true; 3547 } 3548 3549 return 0; 3550 } 3551 3552 /* 3553 * Retrieves the number of blocks of the data device from 3554 * the superblock and compares it to the actual device size, 3555 * thus resizing the data device in case it has grown. 3556 * 3557 * This both copes with opening preallocated data devices in the ctr 3558 * being followed by a resume 3559 * -and- 3560 * calling the resume method individually after userspace has 3561 * grown the data device in reaction to a table event. 3562 */ 3563 static int pool_preresume(struct dm_target *ti) 3564 { 3565 int r; 3566 bool need_commit1, need_commit2; 3567 struct pool_c *pt = ti->private; 3568 struct pool *pool = pt->pool; 3569 3570 /* 3571 * Take control of the pool object. 3572 */ 3573 r = bind_control_target(pool, ti); 3574 if (r) 3575 return r; 3576 3577 r = maybe_resize_data_dev(ti, &need_commit1); 3578 if (r) 3579 return r; 3580 3581 r = maybe_resize_metadata_dev(ti, &need_commit2); 3582 if (r) 3583 return r; 3584 3585 if (need_commit1 || need_commit2) 3586 (void) commit(pool); 3587 3588 return 0; 3589 } 3590 3591 static void pool_suspend_active_thins(struct pool *pool) 3592 { 3593 struct thin_c *tc; 3594 3595 /* Suspend all active thin devices */ 3596 tc = get_first_thin(pool); 3597 while (tc) { 3598 dm_internal_suspend_noflush(tc->thin_md); 3599 tc = get_next_thin(pool, tc); 3600 } 3601 } 3602 3603 static void pool_resume_active_thins(struct pool *pool) 3604 { 3605 struct thin_c *tc; 3606 3607 /* Resume all active thin devices */ 3608 tc = get_first_thin(pool); 3609 while (tc) { 3610 dm_internal_resume(tc->thin_md); 3611 tc = get_next_thin(pool, tc); 3612 } 3613 } 3614 3615 static void pool_resume(struct dm_target *ti) 3616 { 3617 struct pool_c *pt = ti->private; 3618 struct pool *pool = pt->pool; 3619 3620 /* 3621 * Must requeue active_thins' bios and then resume 3622 * active_thins _before_ clearing 'suspend' flag. 3623 */ 3624 requeue_bios(pool); 3625 pool_resume_active_thins(pool); 3626 3627 spin_lock_irq(&pool->lock); 3628 pool->low_water_triggered = false; 3629 pool->suspended = false; 3630 spin_unlock_irq(&pool->lock); 3631 3632 do_waker(&pool->waker.work); 3633 } 3634 3635 static void pool_presuspend(struct dm_target *ti) 3636 { 3637 struct pool_c *pt = ti->private; 3638 struct pool *pool = pt->pool; 3639 3640 spin_lock_irq(&pool->lock); 3641 pool->suspended = true; 3642 spin_unlock_irq(&pool->lock); 3643 3644 pool_suspend_active_thins(pool); 3645 } 3646 3647 static void pool_presuspend_undo(struct dm_target *ti) 3648 { 3649 struct pool_c *pt = ti->private; 3650 struct pool *pool = pt->pool; 3651 3652 pool_resume_active_thins(pool); 3653 3654 spin_lock_irq(&pool->lock); 3655 pool->suspended = false; 3656 spin_unlock_irq(&pool->lock); 3657 } 3658 3659 static void pool_postsuspend(struct dm_target *ti) 3660 { 3661 struct pool_c *pt = ti->private; 3662 struct pool *pool = pt->pool; 3663 3664 cancel_delayed_work_sync(&pool->waker); 3665 cancel_delayed_work_sync(&pool->no_space_timeout); 3666 flush_workqueue(pool->wq); 3667 (void) commit(pool); 3668 } 3669 3670 static int check_arg_count(unsigned argc, unsigned args_required) 3671 { 3672 if (argc != args_required) { 3673 DMWARN("Message received with %u arguments instead of %u.", 3674 argc, args_required); 3675 return -EINVAL; 3676 } 3677 3678 return 0; 3679 } 3680 3681 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3682 { 3683 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3684 *dev_id <= MAX_DEV_ID) 3685 return 0; 3686 3687 if (warning) 3688 DMWARN("Message received with invalid device id: %s", arg); 3689 3690 return -EINVAL; 3691 } 3692 3693 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3694 { 3695 dm_thin_id dev_id; 3696 int r; 3697 3698 r = check_arg_count(argc, 2); 3699 if (r) 3700 return r; 3701 3702 r = read_dev_id(argv[1], &dev_id, 1); 3703 if (r) 3704 return r; 3705 3706 r = dm_pool_create_thin(pool->pmd, dev_id); 3707 if (r) { 3708 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3709 argv[1]); 3710 return r; 3711 } 3712 3713 return 0; 3714 } 3715 3716 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3717 { 3718 dm_thin_id dev_id; 3719 dm_thin_id origin_dev_id; 3720 int r; 3721 3722 r = check_arg_count(argc, 3); 3723 if (r) 3724 return r; 3725 3726 r = read_dev_id(argv[1], &dev_id, 1); 3727 if (r) 3728 return r; 3729 3730 r = read_dev_id(argv[2], &origin_dev_id, 1); 3731 if (r) 3732 return r; 3733 3734 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3735 if (r) { 3736 DMWARN("Creation of new snapshot %s of device %s failed.", 3737 argv[1], argv[2]); 3738 return r; 3739 } 3740 3741 return 0; 3742 } 3743 3744 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3745 { 3746 dm_thin_id dev_id; 3747 int r; 3748 3749 r = check_arg_count(argc, 2); 3750 if (r) 3751 return r; 3752 3753 r = read_dev_id(argv[1], &dev_id, 1); 3754 if (r) 3755 return r; 3756 3757 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3758 if (r) 3759 DMWARN("Deletion of thin device %s failed.", argv[1]); 3760 3761 return r; 3762 } 3763 3764 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3765 { 3766 dm_thin_id old_id, new_id; 3767 int r; 3768 3769 r = check_arg_count(argc, 3); 3770 if (r) 3771 return r; 3772 3773 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3774 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3775 return -EINVAL; 3776 } 3777 3778 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3779 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3780 return -EINVAL; 3781 } 3782 3783 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3784 if (r) { 3785 DMWARN("Failed to change transaction id from %s to %s.", 3786 argv[1], argv[2]); 3787 return r; 3788 } 3789 3790 return 0; 3791 } 3792 3793 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3794 { 3795 int r; 3796 3797 r = check_arg_count(argc, 1); 3798 if (r) 3799 return r; 3800 3801 (void) commit(pool); 3802 3803 r = dm_pool_reserve_metadata_snap(pool->pmd); 3804 if (r) 3805 DMWARN("reserve_metadata_snap message failed."); 3806 3807 return r; 3808 } 3809 3810 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3811 { 3812 int r; 3813 3814 r = check_arg_count(argc, 1); 3815 if (r) 3816 return r; 3817 3818 r = dm_pool_release_metadata_snap(pool->pmd); 3819 if (r) 3820 DMWARN("release_metadata_snap message failed."); 3821 3822 return r; 3823 } 3824 3825 /* 3826 * Messages supported: 3827 * create_thin <dev_id> 3828 * create_snap <dev_id> <origin_id> 3829 * delete <dev_id> 3830 * set_transaction_id <current_trans_id> <new_trans_id> 3831 * reserve_metadata_snap 3832 * release_metadata_snap 3833 */ 3834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3835 char *result, unsigned maxlen) 3836 { 3837 int r = -EINVAL; 3838 struct pool_c *pt = ti->private; 3839 struct pool *pool = pt->pool; 3840 3841 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3842 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3843 dm_device_name(pool->pool_md)); 3844 return -EOPNOTSUPP; 3845 } 3846 3847 if (!strcasecmp(argv[0], "create_thin")) 3848 r = process_create_thin_mesg(argc, argv, pool); 3849 3850 else if (!strcasecmp(argv[0], "create_snap")) 3851 r = process_create_snap_mesg(argc, argv, pool); 3852 3853 else if (!strcasecmp(argv[0], "delete")) 3854 r = process_delete_mesg(argc, argv, pool); 3855 3856 else if (!strcasecmp(argv[0], "set_transaction_id")) 3857 r = process_set_transaction_id_mesg(argc, argv, pool); 3858 3859 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3860 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3861 3862 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3863 r = process_release_metadata_snap_mesg(argc, argv, pool); 3864 3865 else 3866 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3867 3868 if (!r) 3869 (void) commit(pool); 3870 3871 return r; 3872 } 3873 3874 static void emit_flags(struct pool_features *pf, char *result, 3875 unsigned sz, unsigned maxlen) 3876 { 3877 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3878 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3879 pf->error_if_no_space; 3880 DMEMIT("%u ", count); 3881 3882 if (!pf->zero_new_blocks) 3883 DMEMIT("skip_block_zeroing "); 3884 3885 if (!pf->discard_enabled) 3886 DMEMIT("ignore_discard "); 3887 3888 if (!pf->discard_passdown) 3889 DMEMIT("no_discard_passdown "); 3890 3891 if (pf->mode == PM_READ_ONLY) 3892 DMEMIT("read_only "); 3893 3894 if (pf->error_if_no_space) 3895 DMEMIT("error_if_no_space "); 3896 } 3897 3898 /* 3899 * Status line is: 3900 * <transaction id> <used metadata sectors>/<total metadata sectors> 3901 * <used data sectors>/<total data sectors> <held metadata root> 3902 * <pool mode> <discard config> <no space config> <needs_check> 3903 */ 3904 static void pool_status(struct dm_target *ti, status_type_t type, 3905 unsigned status_flags, char *result, unsigned maxlen) 3906 { 3907 int r; 3908 unsigned sz = 0; 3909 uint64_t transaction_id; 3910 dm_block_t nr_free_blocks_data; 3911 dm_block_t nr_free_blocks_metadata; 3912 dm_block_t nr_blocks_data; 3913 dm_block_t nr_blocks_metadata; 3914 dm_block_t held_root; 3915 enum pool_mode mode; 3916 char buf[BDEVNAME_SIZE]; 3917 char buf2[BDEVNAME_SIZE]; 3918 struct pool_c *pt = ti->private; 3919 struct pool *pool = pt->pool; 3920 3921 switch (type) { 3922 case STATUSTYPE_INFO: 3923 if (get_pool_mode(pool) == PM_FAIL) { 3924 DMEMIT("Fail"); 3925 break; 3926 } 3927 3928 /* Commit to ensure statistics aren't out-of-date */ 3929 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3930 (void) commit(pool); 3931 3932 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3933 if (r) { 3934 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3935 dm_device_name(pool->pool_md), r); 3936 goto err; 3937 } 3938 3939 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3940 if (r) { 3941 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3942 dm_device_name(pool->pool_md), r); 3943 goto err; 3944 } 3945 3946 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3947 if (r) { 3948 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3949 dm_device_name(pool->pool_md), r); 3950 goto err; 3951 } 3952 3953 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3954 if (r) { 3955 DMERR("%s: dm_pool_get_free_block_count returned %d", 3956 dm_device_name(pool->pool_md), r); 3957 goto err; 3958 } 3959 3960 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3961 if (r) { 3962 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3963 dm_device_name(pool->pool_md), r); 3964 goto err; 3965 } 3966 3967 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3968 if (r) { 3969 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3970 dm_device_name(pool->pool_md), r); 3971 goto err; 3972 } 3973 3974 DMEMIT("%llu %llu/%llu %llu/%llu ", 3975 (unsigned long long)transaction_id, 3976 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3977 (unsigned long long)nr_blocks_metadata, 3978 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3979 (unsigned long long)nr_blocks_data); 3980 3981 if (held_root) 3982 DMEMIT("%llu ", held_root); 3983 else 3984 DMEMIT("- "); 3985 3986 mode = get_pool_mode(pool); 3987 if (mode == PM_OUT_OF_DATA_SPACE) 3988 DMEMIT("out_of_data_space "); 3989 else if (is_read_only_pool_mode(mode)) 3990 DMEMIT("ro "); 3991 else 3992 DMEMIT("rw "); 3993 3994 if (!pool->pf.discard_enabled) 3995 DMEMIT("ignore_discard "); 3996 else if (pool->pf.discard_passdown) 3997 DMEMIT("discard_passdown "); 3998 else 3999 DMEMIT("no_discard_passdown "); 4000 4001 if (pool->pf.error_if_no_space) 4002 DMEMIT("error_if_no_space "); 4003 else 4004 DMEMIT("queue_if_no_space "); 4005 4006 if (dm_pool_metadata_needs_check(pool->pmd)) 4007 DMEMIT("needs_check "); 4008 else 4009 DMEMIT("- "); 4010 4011 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4012 4013 break; 4014 4015 case STATUSTYPE_TABLE: 4016 DMEMIT("%s %s %lu %llu ", 4017 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4018 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4019 (unsigned long)pool->sectors_per_block, 4020 (unsigned long long)pt->low_water_blocks); 4021 emit_flags(&pt->requested_pf, result, sz, maxlen); 4022 break; 4023 } 4024 return; 4025 4026 err: 4027 DMEMIT("Error"); 4028 } 4029 4030 static int pool_iterate_devices(struct dm_target *ti, 4031 iterate_devices_callout_fn fn, void *data) 4032 { 4033 struct pool_c *pt = ti->private; 4034 4035 return fn(ti, pt->data_dev, 0, ti->len, data); 4036 } 4037 4038 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4039 { 4040 struct pool_c *pt = ti->private; 4041 struct pool *pool = pt->pool; 4042 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4043 4044 /* 4045 * If max_sectors is smaller than pool->sectors_per_block adjust it 4046 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4047 * This is especially beneficial when the pool's data device is a RAID 4048 * device that has a full stripe width that matches pool->sectors_per_block 4049 * -- because even though partial RAID stripe-sized IOs will be issued to a 4050 * single RAID stripe; when aggregated they will end on a full RAID stripe 4051 * boundary.. which avoids additional partial RAID stripe writes cascading 4052 */ 4053 if (limits->max_sectors < pool->sectors_per_block) { 4054 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4055 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4056 limits->max_sectors--; 4057 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4058 } 4059 } 4060 4061 /* 4062 * If the system-determined stacked limits are compatible with the 4063 * pool's blocksize (io_opt is a factor) do not override them. 4064 */ 4065 if (io_opt_sectors < pool->sectors_per_block || 4066 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4067 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4068 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4069 else 4070 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4071 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4072 } 4073 4074 /* 4075 * pt->adjusted_pf is a staging area for the actual features to use. 4076 * They get transferred to the live pool in bind_control_target() 4077 * called from pool_preresume(). 4078 */ 4079 if (!pt->adjusted_pf.discard_enabled) { 4080 /* 4081 * Must explicitly disallow stacking discard limits otherwise the 4082 * block layer will stack them if pool's data device has support. 4083 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4084 * user to see that, so make sure to set all discard limits to 0. 4085 */ 4086 limits->discard_granularity = 0; 4087 return; 4088 } 4089 4090 disable_passdown_if_not_supported(pt); 4091 4092 /* 4093 * The pool uses the same discard limits as the underlying data 4094 * device. DM core has already set this up. 4095 */ 4096 } 4097 4098 static struct target_type pool_target = { 4099 .name = "thin-pool", 4100 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4101 DM_TARGET_IMMUTABLE, 4102 .version = {1, 21, 0}, 4103 .module = THIS_MODULE, 4104 .ctr = pool_ctr, 4105 .dtr = pool_dtr, 4106 .map = pool_map, 4107 .presuspend = pool_presuspend, 4108 .presuspend_undo = pool_presuspend_undo, 4109 .postsuspend = pool_postsuspend, 4110 .preresume = pool_preresume, 4111 .resume = pool_resume, 4112 .message = pool_message, 4113 .status = pool_status, 4114 .iterate_devices = pool_iterate_devices, 4115 .io_hints = pool_io_hints, 4116 }; 4117 4118 /*---------------------------------------------------------------- 4119 * Thin target methods 4120 *--------------------------------------------------------------*/ 4121 static void thin_get(struct thin_c *tc) 4122 { 4123 refcount_inc(&tc->refcount); 4124 } 4125 4126 static void thin_put(struct thin_c *tc) 4127 { 4128 if (refcount_dec_and_test(&tc->refcount)) 4129 complete(&tc->can_destroy); 4130 } 4131 4132 static void thin_dtr(struct dm_target *ti) 4133 { 4134 struct thin_c *tc = ti->private; 4135 4136 spin_lock_irq(&tc->pool->lock); 4137 list_del_rcu(&tc->list); 4138 spin_unlock_irq(&tc->pool->lock); 4139 synchronize_rcu(); 4140 4141 thin_put(tc); 4142 wait_for_completion(&tc->can_destroy); 4143 4144 mutex_lock(&dm_thin_pool_table.mutex); 4145 4146 __pool_dec(tc->pool); 4147 dm_pool_close_thin_device(tc->td); 4148 dm_put_device(ti, tc->pool_dev); 4149 if (tc->origin_dev) 4150 dm_put_device(ti, tc->origin_dev); 4151 kfree(tc); 4152 4153 mutex_unlock(&dm_thin_pool_table.mutex); 4154 } 4155 4156 /* 4157 * Thin target parameters: 4158 * 4159 * <pool_dev> <dev_id> [origin_dev] 4160 * 4161 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4162 * dev_id: the internal device identifier 4163 * origin_dev: a device external to the pool that should act as the origin 4164 * 4165 * If the pool device has discards disabled, they get disabled for the thin 4166 * device as well. 4167 */ 4168 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4169 { 4170 int r; 4171 struct thin_c *tc; 4172 struct dm_dev *pool_dev, *origin_dev; 4173 struct mapped_device *pool_md; 4174 4175 mutex_lock(&dm_thin_pool_table.mutex); 4176 4177 if (argc != 2 && argc != 3) { 4178 ti->error = "Invalid argument count"; 4179 r = -EINVAL; 4180 goto out_unlock; 4181 } 4182 4183 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4184 if (!tc) { 4185 ti->error = "Out of memory"; 4186 r = -ENOMEM; 4187 goto out_unlock; 4188 } 4189 tc->thin_md = dm_table_get_md(ti->table); 4190 spin_lock_init(&tc->lock); 4191 INIT_LIST_HEAD(&tc->deferred_cells); 4192 bio_list_init(&tc->deferred_bio_list); 4193 bio_list_init(&tc->retry_on_resume_list); 4194 tc->sort_bio_list = RB_ROOT; 4195 4196 if (argc == 3) { 4197 if (!strcmp(argv[0], argv[2])) { 4198 ti->error = "Error setting origin device"; 4199 r = -EINVAL; 4200 goto bad_origin_dev; 4201 } 4202 4203 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4204 if (r) { 4205 ti->error = "Error opening origin device"; 4206 goto bad_origin_dev; 4207 } 4208 tc->origin_dev = origin_dev; 4209 } 4210 4211 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4212 if (r) { 4213 ti->error = "Error opening pool device"; 4214 goto bad_pool_dev; 4215 } 4216 tc->pool_dev = pool_dev; 4217 4218 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4219 ti->error = "Invalid device id"; 4220 r = -EINVAL; 4221 goto bad_common; 4222 } 4223 4224 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4225 if (!pool_md) { 4226 ti->error = "Couldn't get pool mapped device"; 4227 r = -EINVAL; 4228 goto bad_common; 4229 } 4230 4231 tc->pool = __pool_table_lookup(pool_md); 4232 if (!tc->pool) { 4233 ti->error = "Couldn't find pool object"; 4234 r = -EINVAL; 4235 goto bad_pool_lookup; 4236 } 4237 __pool_inc(tc->pool); 4238 4239 if (get_pool_mode(tc->pool) == PM_FAIL) { 4240 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4241 r = -EINVAL; 4242 goto bad_pool; 4243 } 4244 4245 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4246 if (r) { 4247 ti->error = "Couldn't open thin internal device"; 4248 goto bad_pool; 4249 } 4250 4251 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4252 if (r) 4253 goto bad; 4254 4255 ti->num_flush_bios = 1; 4256 ti->flush_supported = true; 4257 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4258 4259 /* In case the pool supports discards, pass them on. */ 4260 if (tc->pool->pf.discard_enabled) { 4261 ti->discards_supported = true; 4262 ti->num_discard_bios = 1; 4263 } 4264 4265 mutex_unlock(&dm_thin_pool_table.mutex); 4266 4267 spin_lock_irq(&tc->pool->lock); 4268 if (tc->pool->suspended) { 4269 spin_unlock_irq(&tc->pool->lock); 4270 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4271 ti->error = "Unable to activate thin device while pool is suspended"; 4272 r = -EINVAL; 4273 goto bad; 4274 } 4275 refcount_set(&tc->refcount, 1); 4276 init_completion(&tc->can_destroy); 4277 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4278 spin_unlock_irq(&tc->pool->lock); 4279 /* 4280 * This synchronize_rcu() call is needed here otherwise we risk a 4281 * wake_worker() call finding no bios to process (because the newly 4282 * added tc isn't yet visible). So this reduces latency since we 4283 * aren't then dependent on the periodic commit to wake_worker(). 4284 */ 4285 synchronize_rcu(); 4286 4287 dm_put(pool_md); 4288 4289 return 0; 4290 4291 bad: 4292 dm_pool_close_thin_device(tc->td); 4293 bad_pool: 4294 __pool_dec(tc->pool); 4295 bad_pool_lookup: 4296 dm_put(pool_md); 4297 bad_common: 4298 dm_put_device(ti, tc->pool_dev); 4299 bad_pool_dev: 4300 if (tc->origin_dev) 4301 dm_put_device(ti, tc->origin_dev); 4302 bad_origin_dev: 4303 kfree(tc); 4304 out_unlock: 4305 mutex_unlock(&dm_thin_pool_table.mutex); 4306 4307 return r; 4308 } 4309 4310 static int thin_map(struct dm_target *ti, struct bio *bio) 4311 { 4312 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4313 4314 return thin_bio_map(ti, bio); 4315 } 4316 4317 static int thin_endio(struct dm_target *ti, struct bio *bio, 4318 blk_status_t *err) 4319 { 4320 unsigned long flags; 4321 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4322 struct list_head work; 4323 struct dm_thin_new_mapping *m, *tmp; 4324 struct pool *pool = h->tc->pool; 4325 4326 if (h->shared_read_entry) { 4327 INIT_LIST_HEAD(&work); 4328 dm_deferred_entry_dec(h->shared_read_entry, &work); 4329 4330 spin_lock_irqsave(&pool->lock, flags); 4331 list_for_each_entry_safe(m, tmp, &work, list) { 4332 list_del(&m->list); 4333 __complete_mapping_preparation(m); 4334 } 4335 spin_unlock_irqrestore(&pool->lock, flags); 4336 } 4337 4338 if (h->all_io_entry) { 4339 INIT_LIST_HEAD(&work); 4340 dm_deferred_entry_dec(h->all_io_entry, &work); 4341 if (!list_empty(&work)) { 4342 spin_lock_irqsave(&pool->lock, flags); 4343 list_for_each_entry_safe(m, tmp, &work, list) 4344 list_add_tail(&m->list, &pool->prepared_discards); 4345 spin_unlock_irqrestore(&pool->lock, flags); 4346 wake_worker(pool); 4347 } 4348 } 4349 4350 if (h->cell) 4351 cell_defer_no_holder(h->tc, h->cell); 4352 4353 return DM_ENDIO_DONE; 4354 } 4355 4356 static void thin_presuspend(struct dm_target *ti) 4357 { 4358 struct thin_c *tc = ti->private; 4359 4360 if (dm_noflush_suspending(ti)) 4361 noflush_work(tc, do_noflush_start); 4362 } 4363 4364 static void thin_postsuspend(struct dm_target *ti) 4365 { 4366 struct thin_c *tc = ti->private; 4367 4368 /* 4369 * The dm_noflush_suspending flag has been cleared by now, so 4370 * unfortunately we must always run this. 4371 */ 4372 noflush_work(tc, do_noflush_stop); 4373 } 4374 4375 static int thin_preresume(struct dm_target *ti) 4376 { 4377 struct thin_c *tc = ti->private; 4378 4379 if (tc->origin_dev) 4380 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4381 4382 return 0; 4383 } 4384 4385 /* 4386 * <nr mapped sectors> <highest mapped sector> 4387 */ 4388 static void thin_status(struct dm_target *ti, status_type_t type, 4389 unsigned status_flags, char *result, unsigned maxlen) 4390 { 4391 int r; 4392 ssize_t sz = 0; 4393 dm_block_t mapped, highest; 4394 char buf[BDEVNAME_SIZE]; 4395 struct thin_c *tc = ti->private; 4396 4397 if (get_pool_mode(tc->pool) == PM_FAIL) { 4398 DMEMIT("Fail"); 4399 return; 4400 } 4401 4402 if (!tc->td) 4403 DMEMIT("-"); 4404 else { 4405 switch (type) { 4406 case STATUSTYPE_INFO: 4407 r = dm_thin_get_mapped_count(tc->td, &mapped); 4408 if (r) { 4409 DMERR("dm_thin_get_mapped_count returned %d", r); 4410 goto err; 4411 } 4412 4413 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4414 if (r < 0) { 4415 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4416 goto err; 4417 } 4418 4419 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4420 if (r) 4421 DMEMIT("%llu", ((highest + 1) * 4422 tc->pool->sectors_per_block) - 1); 4423 else 4424 DMEMIT("-"); 4425 break; 4426 4427 case STATUSTYPE_TABLE: 4428 DMEMIT("%s %lu", 4429 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4430 (unsigned long) tc->dev_id); 4431 if (tc->origin_dev) 4432 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4433 break; 4434 } 4435 } 4436 4437 return; 4438 4439 err: 4440 DMEMIT("Error"); 4441 } 4442 4443 static int thin_iterate_devices(struct dm_target *ti, 4444 iterate_devices_callout_fn fn, void *data) 4445 { 4446 sector_t blocks; 4447 struct thin_c *tc = ti->private; 4448 struct pool *pool = tc->pool; 4449 4450 /* 4451 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4452 * we follow a more convoluted path through to the pool's target. 4453 */ 4454 if (!pool->ti) 4455 return 0; /* nothing is bound */ 4456 4457 blocks = pool->ti->len; 4458 (void) sector_div(blocks, pool->sectors_per_block); 4459 if (blocks) 4460 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4461 4462 return 0; 4463 } 4464 4465 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4466 { 4467 struct thin_c *tc = ti->private; 4468 struct pool *pool = tc->pool; 4469 4470 if (!pool->pf.discard_enabled) 4471 return; 4472 4473 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4474 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4475 } 4476 4477 static struct target_type thin_target = { 4478 .name = "thin", 4479 .version = {1, 21, 0}, 4480 .module = THIS_MODULE, 4481 .ctr = thin_ctr, 4482 .dtr = thin_dtr, 4483 .map = thin_map, 4484 .end_io = thin_endio, 4485 .preresume = thin_preresume, 4486 .presuspend = thin_presuspend, 4487 .postsuspend = thin_postsuspend, 4488 .status = thin_status, 4489 .iterate_devices = thin_iterate_devices, 4490 .io_hints = thin_io_hints, 4491 }; 4492 4493 /*----------------------------------------------------------------*/ 4494 4495 static int __init dm_thin_init(void) 4496 { 4497 int r = -ENOMEM; 4498 4499 pool_table_init(); 4500 4501 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4502 if (!_new_mapping_cache) 4503 return r; 4504 4505 r = dm_register_target(&thin_target); 4506 if (r) 4507 goto bad_new_mapping_cache; 4508 4509 r = dm_register_target(&pool_target); 4510 if (r) 4511 goto bad_thin_target; 4512 4513 return 0; 4514 4515 bad_thin_target: 4516 dm_unregister_target(&thin_target); 4517 bad_new_mapping_cache: 4518 kmem_cache_destroy(_new_mapping_cache); 4519 4520 return r; 4521 } 4522 4523 static void dm_thin_exit(void) 4524 { 4525 dm_unregister_target(&thin_target); 4526 dm_unregister_target(&pool_target); 4527 4528 kmem_cache_destroy(_new_mapping_cache); 4529 4530 pool_table_exit(); 4531 } 4532 4533 module_init(dm_thin_init); 4534 module_exit(dm_thin_exit); 4535 4536 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4537 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4538 4539 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4540 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4541 MODULE_LICENSE("GPL"); 4542