1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *md_dev; 235 struct dm_pool_metadata *pmd; 236 237 dm_block_t low_water_blocks; 238 uint32_t sectors_per_block; 239 int sectors_per_block_shift; 240 241 struct pool_features pf; 242 bool low_water_triggered:1; /* A dm event has been sent */ 243 bool suspended:1; 244 bool out_of_data_space:1; 245 246 struct dm_bio_prison *prison; 247 struct dm_kcopyd_client *copier; 248 249 struct work_struct worker; 250 struct workqueue_struct *wq; 251 struct throttle throttle; 252 struct delayed_work waker; 253 struct delayed_work no_space_timeout; 254 255 unsigned long last_commit_jiffies; 256 unsigned ref_count; 257 258 spinlock_t lock; 259 struct bio_list deferred_flush_bios; 260 struct bio_list deferred_flush_completions; 261 struct list_head prepared_mappings; 262 struct list_head prepared_discards; 263 struct list_head prepared_discards_pt2; 264 struct list_head active_thins; 265 266 struct dm_deferred_set *shared_read_ds; 267 struct dm_deferred_set *all_io_ds; 268 269 struct dm_thin_new_mapping *next_mapping; 270 271 process_bio_fn process_bio; 272 process_bio_fn process_discard; 273 274 process_cell_fn process_cell; 275 process_cell_fn process_discard_cell; 276 277 process_mapping_fn process_prepared_mapping; 278 process_mapping_fn process_prepared_discard; 279 process_mapping_fn process_prepared_discard_pt2; 280 281 struct dm_bio_prison_cell **cell_sort_array; 282 283 mempool_t mapping_pool; 284 }; 285 286 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 287 288 static enum pool_mode get_pool_mode(struct pool *pool) 289 { 290 return pool->pf.mode; 291 } 292 293 static void notify_of_pool_mode_change(struct pool *pool) 294 { 295 const char *descs[] = { 296 "write", 297 "out-of-data-space", 298 "read-only", 299 "read-only", 300 "fail" 301 }; 302 const char *extra_desc = NULL; 303 enum pool_mode mode = get_pool_mode(pool); 304 305 if (mode == PM_OUT_OF_DATA_SPACE) { 306 if (!pool->pf.error_if_no_space) 307 extra_desc = " (queue IO)"; 308 else 309 extra_desc = " (error IO)"; 310 } 311 312 dm_table_event(pool->ti->table); 313 DMINFO("%s: switching pool to %s%s mode", 314 dm_device_name(pool->pool_md), 315 descs[(int)mode], extra_desc ? : ""); 316 } 317 318 /* 319 * Target context for a pool. 320 */ 321 struct pool_c { 322 struct dm_target *ti; 323 struct pool *pool; 324 struct dm_dev *data_dev; 325 struct dm_dev *metadata_dev; 326 struct dm_target_callbacks callbacks; 327 328 dm_block_t low_water_blocks; 329 struct pool_features requested_pf; /* Features requested during table load */ 330 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 331 }; 332 333 /* 334 * Target context for a thin. 335 */ 336 struct thin_c { 337 struct list_head list; 338 struct dm_dev *pool_dev; 339 struct dm_dev *origin_dev; 340 sector_t origin_size; 341 dm_thin_id dev_id; 342 343 struct pool *pool; 344 struct dm_thin_device *td; 345 struct mapped_device *thin_md; 346 347 bool requeue_mode:1; 348 spinlock_t lock; 349 struct list_head deferred_cells; 350 struct bio_list deferred_bio_list; 351 struct bio_list retry_on_resume_list; 352 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 353 354 /* 355 * Ensures the thin is not destroyed until the worker has finished 356 * iterating the active_thins list. 357 */ 358 refcount_t refcount; 359 struct completion can_destroy; 360 }; 361 362 /*----------------------------------------------------------------*/ 363 364 static bool block_size_is_power_of_two(struct pool *pool) 365 { 366 return pool->sectors_per_block_shift >= 0; 367 } 368 369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 370 { 371 return block_size_is_power_of_two(pool) ? 372 (b << pool->sectors_per_block_shift) : 373 (b * pool->sectors_per_block); 374 } 375 376 /*----------------------------------------------------------------*/ 377 378 struct discard_op { 379 struct thin_c *tc; 380 struct blk_plug plug; 381 struct bio *parent_bio; 382 struct bio *bio; 383 }; 384 385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 386 { 387 BUG_ON(!parent); 388 389 op->tc = tc; 390 blk_start_plug(&op->plug); 391 op->parent_bio = parent; 392 op->bio = NULL; 393 } 394 395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 396 { 397 struct thin_c *tc = op->tc; 398 sector_t s = block_to_sectors(tc->pool, data_b); 399 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 400 401 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 402 GFP_NOWAIT, 0, &op->bio); 403 } 404 405 static void end_discard(struct discard_op *op, int r) 406 { 407 if (op->bio) { 408 /* 409 * Even if one of the calls to issue_discard failed, we 410 * need to wait for the chain to complete. 411 */ 412 bio_chain(op->bio, op->parent_bio); 413 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 414 submit_bio(op->bio); 415 } 416 417 blk_finish_plug(&op->plug); 418 419 /* 420 * Even if r is set, there could be sub discards in flight that we 421 * need to wait for. 422 */ 423 if (r && !op->parent_bio->bi_status) 424 op->parent_bio->bi_status = errno_to_blk_status(r); 425 bio_endio(op->parent_bio); 426 } 427 428 /*----------------------------------------------------------------*/ 429 430 /* 431 * wake_worker() is used when new work is queued and when pool_resume is 432 * ready to continue deferred IO processing. 433 */ 434 static void wake_worker(struct pool *pool) 435 { 436 queue_work(pool->wq, &pool->worker); 437 } 438 439 /*----------------------------------------------------------------*/ 440 441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 442 struct dm_bio_prison_cell **cell_result) 443 { 444 int r; 445 struct dm_bio_prison_cell *cell_prealloc; 446 447 /* 448 * Allocate a cell from the prison's mempool. 449 * This might block but it can't fail. 450 */ 451 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 452 453 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 454 if (r) 455 /* 456 * We reused an old cell; we can get rid of 457 * the new one. 458 */ 459 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 460 461 return r; 462 } 463 464 static void cell_release(struct pool *pool, 465 struct dm_bio_prison_cell *cell, 466 struct bio_list *bios) 467 { 468 dm_cell_release(pool->prison, cell, bios); 469 dm_bio_prison_free_cell(pool->prison, cell); 470 } 471 472 static void cell_visit_release(struct pool *pool, 473 void (*fn)(void *, struct dm_bio_prison_cell *), 474 void *context, 475 struct dm_bio_prison_cell *cell) 476 { 477 dm_cell_visit_release(pool->prison, fn, context, cell); 478 dm_bio_prison_free_cell(pool->prison, cell); 479 } 480 481 static void cell_release_no_holder(struct pool *pool, 482 struct dm_bio_prison_cell *cell, 483 struct bio_list *bios) 484 { 485 dm_cell_release_no_holder(pool->prison, cell, bios); 486 dm_bio_prison_free_cell(pool->prison, cell); 487 } 488 489 static void cell_error_with_code(struct pool *pool, 490 struct dm_bio_prison_cell *cell, blk_status_t error_code) 491 { 492 dm_cell_error(pool->prison, cell, error_code); 493 dm_bio_prison_free_cell(pool->prison, cell); 494 } 495 496 static blk_status_t get_pool_io_error_code(struct pool *pool) 497 { 498 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 499 } 500 501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 502 { 503 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 504 } 505 506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 507 { 508 cell_error_with_code(pool, cell, 0); 509 } 510 511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 512 { 513 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 514 } 515 516 /*----------------------------------------------------------------*/ 517 518 /* 519 * A global list of pools that uses a struct mapped_device as a key. 520 */ 521 static struct dm_thin_pool_table { 522 struct mutex mutex; 523 struct list_head pools; 524 } dm_thin_pool_table; 525 526 static void pool_table_init(void) 527 { 528 mutex_init(&dm_thin_pool_table.mutex); 529 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 530 } 531 532 static void pool_table_exit(void) 533 { 534 mutex_destroy(&dm_thin_pool_table.mutex); 535 } 536 537 static void __pool_table_insert(struct pool *pool) 538 { 539 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 540 list_add(&pool->list, &dm_thin_pool_table.pools); 541 } 542 543 static void __pool_table_remove(struct pool *pool) 544 { 545 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 546 list_del(&pool->list); 547 } 548 549 static struct pool *__pool_table_lookup(struct mapped_device *md) 550 { 551 struct pool *pool = NULL, *tmp; 552 553 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 554 555 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 556 if (tmp->pool_md == md) { 557 pool = tmp; 558 break; 559 } 560 } 561 562 return pool; 563 } 564 565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 566 { 567 struct pool *pool = NULL, *tmp; 568 569 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 570 571 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 572 if (tmp->md_dev == md_dev) { 573 pool = tmp; 574 break; 575 } 576 } 577 578 return pool; 579 } 580 581 /*----------------------------------------------------------------*/ 582 583 struct dm_thin_endio_hook { 584 struct thin_c *tc; 585 struct dm_deferred_entry *shared_read_entry; 586 struct dm_deferred_entry *all_io_entry; 587 struct dm_thin_new_mapping *overwrite_mapping; 588 struct rb_node rb_node; 589 struct dm_bio_prison_cell *cell; 590 }; 591 592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 593 { 594 bio_list_merge(bios, master); 595 bio_list_init(master); 596 } 597 598 static void error_bio_list(struct bio_list *bios, blk_status_t error) 599 { 600 struct bio *bio; 601 602 while ((bio = bio_list_pop(bios))) { 603 bio->bi_status = error; 604 bio_endio(bio); 605 } 606 } 607 608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 609 blk_status_t error) 610 { 611 struct bio_list bios; 612 unsigned long flags; 613 614 bio_list_init(&bios); 615 616 spin_lock_irqsave(&tc->lock, flags); 617 __merge_bio_list(&bios, master); 618 spin_unlock_irqrestore(&tc->lock, flags); 619 620 error_bio_list(&bios, error); 621 } 622 623 static void requeue_deferred_cells(struct thin_c *tc) 624 { 625 struct pool *pool = tc->pool; 626 unsigned long flags; 627 struct list_head cells; 628 struct dm_bio_prison_cell *cell, *tmp; 629 630 INIT_LIST_HEAD(&cells); 631 632 spin_lock_irqsave(&tc->lock, flags); 633 list_splice_init(&tc->deferred_cells, &cells); 634 spin_unlock_irqrestore(&tc->lock, flags); 635 636 list_for_each_entry_safe(cell, tmp, &cells, user_list) 637 cell_requeue(pool, cell); 638 } 639 640 static void requeue_io(struct thin_c *tc) 641 { 642 struct bio_list bios; 643 unsigned long flags; 644 645 bio_list_init(&bios); 646 647 spin_lock_irqsave(&tc->lock, flags); 648 __merge_bio_list(&bios, &tc->deferred_bio_list); 649 __merge_bio_list(&bios, &tc->retry_on_resume_list); 650 spin_unlock_irqrestore(&tc->lock, flags); 651 652 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 653 requeue_deferred_cells(tc); 654 } 655 656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 657 { 658 struct thin_c *tc; 659 660 rcu_read_lock(); 661 list_for_each_entry_rcu(tc, &pool->active_thins, list) 662 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 663 rcu_read_unlock(); 664 } 665 666 static void error_retry_list(struct pool *pool) 667 { 668 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 669 } 670 671 /* 672 * This section of code contains the logic for processing a thin device's IO. 673 * Much of the code depends on pool object resources (lists, workqueues, etc) 674 * but most is exclusively called from the thin target rather than the thin-pool 675 * target. 676 */ 677 678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 679 { 680 struct pool *pool = tc->pool; 681 sector_t block_nr = bio->bi_iter.bi_sector; 682 683 if (block_size_is_power_of_two(pool)) 684 block_nr >>= pool->sectors_per_block_shift; 685 else 686 (void) sector_div(block_nr, pool->sectors_per_block); 687 688 return block_nr; 689 } 690 691 /* 692 * Returns the _complete_ blocks that this bio covers. 693 */ 694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 695 dm_block_t *begin, dm_block_t *end) 696 { 697 struct pool *pool = tc->pool; 698 sector_t b = bio->bi_iter.bi_sector; 699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 700 701 b += pool->sectors_per_block - 1ull; /* so we round up */ 702 703 if (block_size_is_power_of_two(pool)) { 704 b >>= pool->sectors_per_block_shift; 705 e >>= pool->sectors_per_block_shift; 706 } else { 707 (void) sector_div(b, pool->sectors_per_block); 708 (void) sector_div(e, pool->sectors_per_block); 709 } 710 711 if (e < b) 712 /* Can happen if the bio is within a single block. */ 713 e = b; 714 715 *begin = b; 716 *end = e; 717 } 718 719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 720 { 721 struct pool *pool = tc->pool; 722 sector_t bi_sector = bio->bi_iter.bi_sector; 723 724 bio_set_dev(bio, tc->pool_dev->bdev); 725 if (block_size_is_power_of_two(pool)) 726 bio->bi_iter.bi_sector = 727 (block << pool->sectors_per_block_shift) | 728 (bi_sector & (pool->sectors_per_block - 1)); 729 else 730 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 731 sector_div(bi_sector, pool->sectors_per_block); 732 } 733 734 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 735 { 736 bio_set_dev(bio, tc->origin_dev->bdev); 737 } 738 739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 740 { 741 return op_is_flush(bio->bi_opf) && 742 dm_thin_changed_this_transaction(tc->td); 743 } 744 745 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 746 { 747 struct dm_thin_endio_hook *h; 748 749 if (bio_op(bio) == REQ_OP_DISCARD) 750 return; 751 752 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 753 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 754 } 755 756 static void issue(struct thin_c *tc, struct bio *bio) 757 { 758 struct pool *pool = tc->pool; 759 unsigned long flags; 760 761 if (!bio_triggers_commit(tc, bio)) { 762 generic_make_request(bio); 763 return; 764 } 765 766 /* 767 * Complete bio with an error if earlier I/O caused changes to 768 * the metadata that can't be committed e.g, due to I/O errors 769 * on the metadata device. 770 */ 771 if (dm_thin_aborted_changes(tc->td)) { 772 bio_io_error(bio); 773 return; 774 } 775 776 /* 777 * Batch together any bios that trigger commits and then issue a 778 * single commit for them in process_deferred_bios(). 779 */ 780 spin_lock_irqsave(&pool->lock, flags); 781 bio_list_add(&pool->deferred_flush_bios, bio); 782 spin_unlock_irqrestore(&pool->lock, flags); 783 } 784 785 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 786 { 787 remap_to_origin(tc, bio); 788 issue(tc, bio); 789 } 790 791 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 792 dm_block_t block) 793 { 794 remap(tc, bio, block); 795 issue(tc, bio); 796 } 797 798 /*----------------------------------------------------------------*/ 799 800 /* 801 * Bio endio functions. 802 */ 803 struct dm_thin_new_mapping { 804 struct list_head list; 805 806 bool pass_discard:1; 807 bool maybe_shared:1; 808 809 /* 810 * Track quiescing, copying and zeroing preparation actions. When this 811 * counter hits zero the block is prepared and can be inserted into the 812 * btree. 813 */ 814 atomic_t prepare_actions; 815 816 blk_status_t status; 817 struct thin_c *tc; 818 dm_block_t virt_begin, virt_end; 819 dm_block_t data_block; 820 struct dm_bio_prison_cell *cell; 821 822 /* 823 * If the bio covers the whole area of a block then we can avoid 824 * zeroing or copying. Instead this bio is hooked. The bio will 825 * still be in the cell, so care has to be taken to avoid issuing 826 * the bio twice. 827 */ 828 struct bio *bio; 829 bio_end_io_t *saved_bi_end_io; 830 }; 831 832 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 833 { 834 struct pool *pool = m->tc->pool; 835 836 if (atomic_dec_and_test(&m->prepare_actions)) { 837 list_add_tail(&m->list, &pool->prepared_mappings); 838 wake_worker(pool); 839 } 840 } 841 842 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 843 { 844 unsigned long flags; 845 struct pool *pool = m->tc->pool; 846 847 spin_lock_irqsave(&pool->lock, flags); 848 __complete_mapping_preparation(m); 849 spin_unlock_irqrestore(&pool->lock, flags); 850 } 851 852 static void copy_complete(int read_err, unsigned long write_err, void *context) 853 { 854 struct dm_thin_new_mapping *m = context; 855 856 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 857 complete_mapping_preparation(m); 858 } 859 860 static void overwrite_endio(struct bio *bio) 861 { 862 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 863 struct dm_thin_new_mapping *m = h->overwrite_mapping; 864 865 bio->bi_end_io = m->saved_bi_end_io; 866 867 m->status = bio->bi_status; 868 complete_mapping_preparation(m); 869 } 870 871 /*----------------------------------------------------------------*/ 872 873 /* 874 * Workqueue. 875 */ 876 877 /* 878 * Prepared mapping jobs. 879 */ 880 881 /* 882 * This sends the bios in the cell, except the original holder, back 883 * to the deferred_bios list. 884 */ 885 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 886 { 887 struct pool *pool = tc->pool; 888 unsigned long flags; 889 890 spin_lock_irqsave(&tc->lock, flags); 891 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 892 spin_unlock_irqrestore(&tc->lock, flags); 893 894 wake_worker(pool); 895 } 896 897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 898 899 struct remap_info { 900 struct thin_c *tc; 901 struct bio_list defer_bios; 902 struct bio_list issue_bios; 903 }; 904 905 static void __inc_remap_and_issue_cell(void *context, 906 struct dm_bio_prison_cell *cell) 907 { 908 struct remap_info *info = context; 909 struct bio *bio; 910 911 while ((bio = bio_list_pop(&cell->bios))) { 912 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 913 bio_list_add(&info->defer_bios, bio); 914 else { 915 inc_all_io_entry(info->tc->pool, bio); 916 917 /* 918 * We can't issue the bios with the bio prison lock 919 * held, so we add them to a list to issue on 920 * return from this function. 921 */ 922 bio_list_add(&info->issue_bios, bio); 923 } 924 } 925 } 926 927 static void inc_remap_and_issue_cell(struct thin_c *tc, 928 struct dm_bio_prison_cell *cell, 929 dm_block_t block) 930 { 931 struct bio *bio; 932 struct remap_info info; 933 934 info.tc = tc; 935 bio_list_init(&info.defer_bios); 936 bio_list_init(&info.issue_bios); 937 938 /* 939 * We have to be careful to inc any bios we're about to issue 940 * before the cell is released, and avoid a race with new bios 941 * being added to the cell. 942 */ 943 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 944 &info, cell); 945 946 while ((bio = bio_list_pop(&info.defer_bios))) 947 thin_defer_bio(tc, bio); 948 949 while ((bio = bio_list_pop(&info.issue_bios))) 950 remap_and_issue(info.tc, bio, block); 951 } 952 953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 954 { 955 cell_error(m->tc->pool, m->cell); 956 list_del(&m->list); 957 mempool_free(m, &m->tc->pool->mapping_pool); 958 } 959 960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 961 { 962 struct pool *pool = tc->pool; 963 unsigned long flags; 964 965 /* 966 * If the bio has the REQ_FUA flag set we must commit the metadata 967 * before signaling its completion. 968 */ 969 if (!bio_triggers_commit(tc, bio)) { 970 bio_endio(bio); 971 return; 972 } 973 974 /* 975 * Complete bio with an error if earlier I/O caused changes to the 976 * metadata that can't be committed, e.g, due to I/O errors on the 977 * metadata device. 978 */ 979 if (dm_thin_aborted_changes(tc->td)) { 980 bio_io_error(bio); 981 return; 982 } 983 984 /* 985 * Batch together any bios that trigger commits and then issue a 986 * single commit for them in process_deferred_bios(). 987 */ 988 spin_lock_irqsave(&pool->lock, flags); 989 bio_list_add(&pool->deferred_flush_completions, bio); 990 spin_unlock_irqrestore(&pool->lock, flags); 991 } 992 993 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 994 { 995 struct thin_c *tc = m->tc; 996 struct pool *pool = tc->pool; 997 struct bio *bio = m->bio; 998 int r; 999 1000 if (m->status) { 1001 cell_error(pool, m->cell); 1002 goto out; 1003 } 1004 1005 /* 1006 * Commit the prepared block into the mapping btree. 1007 * Any I/O for this block arriving after this point will get 1008 * remapped to it directly. 1009 */ 1010 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1011 if (r) { 1012 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1013 cell_error(pool, m->cell); 1014 goto out; 1015 } 1016 1017 /* 1018 * Release any bios held while the block was being provisioned. 1019 * If we are processing a write bio that completely covers the block, 1020 * we already processed it so can ignore it now when processing 1021 * the bios in the cell. 1022 */ 1023 if (bio) { 1024 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1025 complete_overwrite_bio(tc, bio); 1026 } else { 1027 inc_all_io_entry(tc->pool, m->cell->holder); 1028 remap_and_issue(tc, m->cell->holder, m->data_block); 1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1030 } 1031 1032 out: 1033 list_del(&m->list); 1034 mempool_free(m, &pool->mapping_pool); 1035 } 1036 1037 /*----------------------------------------------------------------*/ 1038 1039 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1040 { 1041 struct thin_c *tc = m->tc; 1042 if (m->cell) 1043 cell_defer_no_holder(tc, m->cell); 1044 mempool_free(m, &tc->pool->mapping_pool); 1045 } 1046 1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1048 { 1049 bio_io_error(m->bio); 1050 free_discard_mapping(m); 1051 } 1052 1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1054 { 1055 bio_endio(m->bio); 1056 free_discard_mapping(m); 1057 } 1058 1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1060 { 1061 int r; 1062 struct thin_c *tc = m->tc; 1063 1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1065 if (r) { 1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1067 bio_io_error(m->bio); 1068 } else 1069 bio_endio(m->bio); 1070 1071 cell_defer_no_holder(tc, m->cell); 1072 mempool_free(m, &tc->pool->mapping_pool); 1073 } 1074 1075 /*----------------------------------------------------------------*/ 1076 1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1078 struct bio *discard_parent) 1079 { 1080 /* 1081 * We've already unmapped this range of blocks, but before we 1082 * passdown we have to check that these blocks are now unused. 1083 */ 1084 int r = 0; 1085 bool shared = true; 1086 struct thin_c *tc = m->tc; 1087 struct pool *pool = tc->pool; 1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1089 struct discard_op op; 1090 1091 begin_discard(&op, tc, discard_parent); 1092 while (b != end) { 1093 /* find start of unmapped run */ 1094 for (; b < end; b++) { 1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1096 if (r) 1097 goto out; 1098 1099 if (!shared) 1100 break; 1101 } 1102 1103 if (b == end) 1104 break; 1105 1106 /* find end of run */ 1107 for (e = b + 1; e != end; e++) { 1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1109 if (r) 1110 goto out; 1111 1112 if (shared) 1113 break; 1114 } 1115 1116 r = issue_discard(&op, b, e); 1117 if (r) 1118 goto out; 1119 1120 b = e; 1121 } 1122 out: 1123 end_discard(&op, r); 1124 } 1125 1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1127 { 1128 unsigned long flags; 1129 struct pool *pool = m->tc->pool; 1130 1131 spin_lock_irqsave(&pool->lock, flags); 1132 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1133 spin_unlock_irqrestore(&pool->lock, flags); 1134 wake_worker(pool); 1135 } 1136 1137 static void passdown_endio(struct bio *bio) 1138 { 1139 /* 1140 * It doesn't matter if the passdown discard failed, we still want 1141 * to unmap (we ignore err). 1142 */ 1143 queue_passdown_pt2(bio->bi_private); 1144 bio_put(bio); 1145 } 1146 1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1148 { 1149 int r; 1150 struct thin_c *tc = m->tc; 1151 struct pool *pool = tc->pool; 1152 struct bio *discard_parent; 1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1154 1155 /* 1156 * Only this thread allocates blocks, so we can be sure that the 1157 * newly unmapped blocks will not be allocated before the end of 1158 * the function. 1159 */ 1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1161 if (r) { 1162 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1163 bio_io_error(m->bio); 1164 cell_defer_no_holder(tc, m->cell); 1165 mempool_free(m, &pool->mapping_pool); 1166 return; 1167 } 1168 1169 /* 1170 * Increment the unmapped blocks. This prevents a race between the 1171 * passdown io and reallocation of freed blocks. 1172 */ 1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1174 if (r) { 1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1176 bio_io_error(m->bio); 1177 cell_defer_no_holder(tc, m->cell); 1178 mempool_free(m, &pool->mapping_pool); 1179 return; 1180 } 1181 1182 discard_parent = bio_alloc(GFP_NOIO, 1); 1183 if (!discard_parent) { 1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1185 dm_device_name(tc->pool->pool_md)); 1186 queue_passdown_pt2(m); 1187 1188 } else { 1189 discard_parent->bi_end_io = passdown_endio; 1190 discard_parent->bi_private = m; 1191 1192 if (m->maybe_shared) 1193 passdown_double_checking_shared_status(m, discard_parent); 1194 else { 1195 struct discard_op op; 1196 1197 begin_discard(&op, tc, discard_parent); 1198 r = issue_discard(&op, m->data_block, data_end); 1199 end_discard(&op, r); 1200 } 1201 } 1202 } 1203 1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1205 { 1206 int r; 1207 struct thin_c *tc = m->tc; 1208 struct pool *pool = tc->pool; 1209 1210 /* 1211 * The passdown has completed, so now we can decrement all those 1212 * unmapped blocks. 1213 */ 1214 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1215 m->data_block + (m->virt_end - m->virt_begin)); 1216 if (r) { 1217 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1218 bio_io_error(m->bio); 1219 } else 1220 bio_endio(m->bio); 1221 1222 cell_defer_no_holder(tc, m->cell); 1223 mempool_free(m, &pool->mapping_pool); 1224 } 1225 1226 static void process_prepared(struct pool *pool, struct list_head *head, 1227 process_mapping_fn *fn) 1228 { 1229 unsigned long flags; 1230 struct list_head maps; 1231 struct dm_thin_new_mapping *m, *tmp; 1232 1233 INIT_LIST_HEAD(&maps); 1234 spin_lock_irqsave(&pool->lock, flags); 1235 list_splice_init(head, &maps); 1236 spin_unlock_irqrestore(&pool->lock, flags); 1237 1238 list_for_each_entry_safe(m, tmp, &maps, list) 1239 (*fn)(m); 1240 } 1241 1242 /* 1243 * Deferred bio jobs. 1244 */ 1245 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1246 { 1247 return bio->bi_iter.bi_size == 1248 (pool->sectors_per_block << SECTOR_SHIFT); 1249 } 1250 1251 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1252 { 1253 return (bio_data_dir(bio) == WRITE) && 1254 io_overlaps_block(pool, bio); 1255 } 1256 1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1258 bio_end_io_t *fn) 1259 { 1260 *save = bio->bi_end_io; 1261 bio->bi_end_io = fn; 1262 } 1263 1264 static int ensure_next_mapping(struct pool *pool) 1265 { 1266 if (pool->next_mapping) 1267 return 0; 1268 1269 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1270 1271 return pool->next_mapping ? 0 : -ENOMEM; 1272 } 1273 1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1275 { 1276 struct dm_thin_new_mapping *m = pool->next_mapping; 1277 1278 BUG_ON(!pool->next_mapping); 1279 1280 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1281 INIT_LIST_HEAD(&m->list); 1282 m->bio = NULL; 1283 1284 pool->next_mapping = NULL; 1285 1286 return m; 1287 } 1288 1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1290 sector_t begin, sector_t end) 1291 { 1292 struct dm_io_region to; 1293 1294 to.bdev = tc->pool_dev->bdev; 1295 to.sector = begin; 1296 to.count = end - begin; 1297 1298 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1299 } 1300 1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1302 dm_block_t data_begin, 1303 struct dm_thin_new_mapping *m) 1304 { 1305 struct pool *pool = tc->pool; 1306 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1307 1308 h->overwrite_mapping = m; 1309 m->bio = bio; 1310 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1311 inc_all_io_entry(pool, bio); 1312 remap_and_issue(tc, bio, data_begin); 1313 } 1314 1315 /* 1316 * A partial copy also needs to zero the uncopied region. 1317 */ 1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1319 struct dm_dev *origin, dm_block_t data_origin, 1320 dm_block_t data_dest, 1321 struct dm_bio_prison_cell *cell, struct bio *bio, 1322 sector_t len) 1323 { 1324 struct pool *pool = tc->pool; 1325 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1326 1327 m->tc = tc; 1328 m->virt_begin = virt_block; 1329 m->virt_end = virt_block + 1u; 1330 m->data_block = data_dest; 1331 m->cell = cell; 1332 1333 /* 1334 * quiesce action + copy action + an extra reference held for the 1335 * duration of this function (we may need to inc later for a 1336 * partial zero). 1337 */ 1338 atomic_set(&m->prepare_actions, 3); 1339 1340 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1341 complete_mapping_preparation(m); /* already quiesced */ 1342 1343 /* 1344 * IO to pool_dev remaps to the pool target's data_dev. 1345 * 1346 * If the whole block of data is being overwritten, we can issue the 1347 * bio immediately. Otherwise we use kcopyd to clone the data first. 1348 */ 1349 if (io_overwrites_block(pool, bio)) 1350 remap_and_issue_overwrite(tc, bio, data_dest, m); 1351 else { 1352 struct dm_io_region from, to; 1353 1354 from.bdev = origin->bdev; 1355 from.sector = data_origin * pool->sectors_per_block; 1356 from.count = len; 1357 1358 to.bdev = tc->pool_dev->bdev; 1359 to.sector = data_dest * pool->sectors_per_block; 1360 to.count = len; 1361 1362 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1363 0, copy_complete, m); 1364 1365 /* 1366 * Do we need to zero a tail region? 1367 */ 1368 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1369 atomic_inc(&m->prepare_actions); 1370 ll_zero(tc, m, 1371 data_dest * pool->sectors_per_block + len, 1372 (data_dest + 1) * pool->sectors_per_block); 1373 } 1374 } 1375 1376 complete_mapping_preparation(m); /* drop our ref */ 1377 } 1378 1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1380 dm_block_t data_origin, dm_block_t data_dest, 1381 struct dm_bio_prison_cell *cell, struct bio *bio) 1382 { 1383 schedule_copy(tc, virt_block, tc->pool_dev, 1384 data_origin, data_dest, cell, bio, 1385 tc->pool->sectors_per_block); 1386 } 1387 1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1389 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1390 struct bio *bio) 1391 { 1392 struct pool *pool = tc->pool; 1393 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1394 1395 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1396 m->tc = tc; 1397 m->virt_begin = virt_block; 1398 m->virt_end = virt_block + 1u; 1399 m->data_block = data_block; 1400 m->cell = cell; 1401 1402 /* 1403 * If the whole block of data is being overwritten or we are not 1404 * zeroing pre-existing data, we can issue the bio immediately. 1405 * Otherwise we use kcopyd to zero the data first. 1406 */ 1407 if (pool->pf.zero_new_blocks) { 1408 if (io_overwrites_block(pool, bio)) 1409 remap_and_issue_overwrite(tc, bio, data_block, m); 1410 else 1411 ll_zero(tc, m, data_block * pool->sectors_per_block, 1412 (data_block + 1) * pool->sectors_per_block); 1413 } else 1414 process_prepared_mapping(m); 1415 } 1416 1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1418 dm_block_t data_dest, 1419 struct dm_bio_prison_cell *cell, struct bio *bio) 1420 { 1421 struct pool *pool = tc->pool; 1422 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1423 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1424 1425 if (virt_block_end <= tc->origin_size) 1426 schedule_copy(tc, virt_block, tc->origin_dev, 1427 virt_block, data_dest, cell, bio, 1428 pool->sectors_per_block); 1429 1430 else if (virt_block_begin < tc->origin_size) 1431 schedule_copy(tc, virt_block, tc->origin_dev, 1432 virt_block, data_dest, cell, bio, 1433 tc->origin_size - virt_block_begin); 1434 1435 else 1436 schedule_zero(tc, virt_block, data_dest, cell, bio); 1437 } 1438 1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1440 1441 static void requeue_bios(struct pool *pool); 1442 1443 static bool is_read_only_pool_mode(enum pool_mode mode) 1444 { 1445 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1446 } 1447 1448 static bool is_read_only(struct pool *pool) 1449 { 1450 return is_read_only_pool_mode(get_pool_mode(pool)); 1451 } 1452 1453 static void check_for_metadata_space(struct pool *pool) 1454 { 1455 int r; 1456 const char *ooms_reason = NULL; 1457 dm_block_t nr_free; 1458 1459 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1460 if (r) 1461 ooms_reason = "Could not get free metadata blocks"; 1462 else if (!nr_free) 1463 ooms_reason = "No free metadata blocks"; 1464 1465 if (ooms_reason && !is_read_only(pool)) { 1466 DMERR("%s", ooms_reason); 1467 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1468 } 1469 } 1470 1471 static void check_for_data_space(struct pool *pool) 1472 { 1473 int r; 1474 dm_block_t nr_free; 1475 1476 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1477 return; 1478 1479 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1480 if (r) 1481 return; 1482 1483 if (nr_free) { 1484 set_pool_mode(pool, PM_WRITE); 1485 requeue_bios(pool); 1486 } 1487 } 1488 1489 /* 1490 * A non-zero return indicates read_only or fail_io mode. 1491 * Many callers don't care about the return value. 1492 */ 1493 static int commit(struct pool *pool) 1494 { 1495 int r; 1496 1497 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1498 return -EINVAL; 1499 1500 r = dm_pool_commit_metadata(pool->pmd); 1501 if (r) 1502 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1503 else { 1504 check_for_metadata_space(pool); 1505 check_for_data_space(pool); 1506 } 1507 1508 return r; 1509 } 1510 1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1512 { 1513 unsigned long flags; 1514 1515 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1516 DMWARN("%s: reached low water mark for data device: sending event.", 1517 dm_device_name(pool->pool_md)); 1518 spin_lock_irqsave(&pool->lock, flags); 1519 pool->low_water_triggered = true; 1520 spin_unlock_irqrestore(&pool->lock, flags); 1521 dm_table_event(pool->ti->table); 1522 } 1523 } 1524 1525 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1526 { 1527 int r; 1528 dm_block_t free_blocks; 1529 struct pool *pool = tc->pool; 1530 1531 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1532 return -EINVAL; 1533 1534 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1535 if (r) { 1536 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1537 return r; 1538 } 1539 1540 check_low_water_mark(pool, free_blocks); 1541 1542 if (!free_blocks) { 1543 /* 1544 * Try to commit to see if that will free up some 1545 * more space. 1546 */ 1547 r = commit(pool); 1548 if (r) 1549 return r; 1550 1551 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1552 if (r) { 1553 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1554 return r; 1555 } 1556 1557 if (!free_blocks) { 1558 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1559 return -ENOSPC; 1560 } 1561 } 1562 1563 r = dm_pool_alloc_data_block(pool->pmd, result); 1564 if (r) { 1565 if (r == -ENOSPC) 1566 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1567 else 1568 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1569 return r; 1570 } 1571 1572 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1573 if (r) { 1574 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1575 return r; 1576 } 1577 1578 if (!free_blocks) { 1579 /* Let's commit before we use up the metadata reserve. */ 1580 r = commit(pool); 1581 if (r) 1582 return r; 1583 } 1584 1585 return 0; 1586 } 1587 1588 /* 1589 * If we have run out of space, queue bios until the device is 1590 * resumed, presumably after having been reloaded with more space. 1591 */ 1592 static void retry_on_resume(struct bio *bio) 1593 { 1594 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1595 struct thin_c *tc = h->tc; 1596 unsigned long flags; 1597 1598 spin_lock_irqsave(&tc->lock, flags); 1599 bio_list_add(&tc->retry_on_resume_list, bio); 1600 spin_unlock_irqrestore(&tc->lock, flags); 1601 } 1602 1603 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1604 { 1605 enum pool_mode m = get_pool_mode(pool); 1606 1607 switch (m) { 1608 case PM_WRITE: 1609 /* Shouldn't get here */ 1610 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1611 return BLK_STS_IOERR; 1612 1613 case PM_OUT_OF_DATA_SPACE: 1614 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1615 1616 case PM_OUT_OF_METADATA_SPACE: 1617 case PM_READ_ONLY: 1618 case PM_FAIL: 1619 return BLK_STS_IOERR; 1620 default: 1621 /* Shouldn't get here */ 1622 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1623 return BLK_STS_IOERR; 1624 } 1625 } 1626 1627 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1628 { 1629 blk_status_t error = should_error_unserviceable_bio(pool); 1630 1631 if (error) { 1632 bio->bi_status = error; 1633 bio_endio(bio); 1634 } else 1635 retry_on_resume(bio); 1636 } 1637 1638 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1639 { 1640 struct bio *bio; 1641 struct bio_list bios; 1642 blk_status_t error; 1643 1644 error = should_error_unserviceable_bio(pool); 1645 if (error) { 1646 cell_error_with_code(pool, cell, error); 1647 return; 1648 } 1649 1650 bio_list_init(&bios); 1651 cell_release(pool, cell, &bios); 1652 1653 while ((bio = bio_list_pop(&bios))) 1654 retry_on_resume(bio); 1655 } 1656 1657 static void process_discard_cell_no_passdown(struct thin_c *tc, 1658 struct dm_bio_prison_cell *virt_cell) 1659 { 1660 struct pool *pool = tc->pool; 1661 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1662 1663 /* 1664 * We don't need to lock the data blocks, since there's no 1665 * passdown. We only lock data blocks for allocation and breaking sharing. 1666 */ 1667 m->tc = tc; 1668 m->virt_begin = virt_cell->key.block_begin; 1669 m->virt_end = virt_cell->key.block_end; 1670 m->cell = virt_cell; 1671 m->bio = virt_cell->holder; 1672 1673 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1674 pool->process_prepared_discard(m); 1675 } 1676 1677 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1678 struct bio *bio) 1679 { 1680 struct pool *pool = tc->pool; 1681 1682 int r; 1683 bool maybe_shared; 1684 struct dm_cell_key data_key; 1685 struct dm_bio_prison_cell *data_cell; 1686 struct dm_thin_new_mapping *m; 1687 dm_block_t virt_begin, virt_end, data_begin; 1688 1689 while (begin != end) { 1690 r = ensure_next_mapping(pool); 1691 if (r) 1692 /* we did our best */ 1693 return; 1694 1695 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1696 &data_begin, &maybe_shared); 1697 if (r) 1698 /* 1699 * Silently fail, letting any mappings we've 1700 * created complete. 1701 */ 1702 break; 1703 1704 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1705 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1706 /* contention, we'll give up with this range */ 1707 begin = virt_end; 1708 continue; 1709 } 1710 1711 /* 1712 * IO may still be going to the destination block. We must 1713 * quiesce before we can do the removal. 1714 */ 1715 m = get_next_mapping(pool); 1716 m->tc = tc; 1717 m->maybe_shared = maybe_shared; 1718 m->virt_begin = virt_begin; 1719 m->virt_end = virt_end; 1720 m->data_block = data_begin; 1721 m->cell = data_cell; 1722 m->bio = bio; 1723 1724 /* 1725 * The parent bio must not complete before sub discard bios are 1726 * chained to it (see end_discard's bio_chain)! 1727 * 1728 * This per-mapping bi_remaining increment is paired with 1729 * the implicit decrement that occurs via bio_endio() in 1730 * end_discard(). 1731 */ 1732 bio_inc_remaining(bio); 1733 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1734 pool->process_prepared_discard(m); 1735 1736 begin = virt_end; 1737 } 1738 } 1739 1740 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1741 { 1742 struct bio *bio = virt_cell->holder; 1743 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1744 1745 /* 1746 * The virt_cell will only get freed once the origin bio completes. 1747 * This means it will remain locked while all the individual 1748 * passdown bios are in flight. 1749 */ 1750 h->cell = virt_cell; 1751 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1752 1753 /* 1754 * We complete the bio now, knowing that the bi_remaining field 1755 * will prevent completion until the sub range discards have 1756 * completed. 1757 */ 1758 bio_endio(bio); 1759 } 1760 1761 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1762 { 1763 dm_block_t begin, end; 1764 struct dm_cell_key virt_key; 1765 struct dm_bio_prison_cell *virt_cell; 1766 1767 get_bio_block_range(tc, bio, &begin, &end); 1768 if (begin == end) { 1769 /* 1770 * The discard covers less than a block. 1771 */ 1772 bio_endio(bio); 1773 return; 1774 } 1775 1776 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1777 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1778 /* 1779 * Potential starvation issue: We're relying on the 1780 * fs/application being well behaved, and not trying to 1781 * send IO to a region at the same time as discarding it. 1782 * If they do this persistently then it's possible this 1783 * cell will never be granted. 1784 */ 1785 return; 1786 1787 tc->pool->process_discard_cell(tc, virt_cell); 1788 } 1789 1790 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1791 struct dm_cell_key *key, 1792 struct dm_thin_lookup_result *lookup_result, 1793 struct dm_bio_prison_cell *cell) 1794 { 1795 int r; 1796 dm_block_t data_block; 1797 struct pool *pool = tc->pool; 1798 1799 r = alloc_data_block(tc, &data_block); 1800 switch (r) { 1801 case 0: 1802 schedule_internal_copy(tc, block, lookup_result->block, 1803 data_block, cell, bio); 1804 break; 1805 1806 case -ENOSPC: 1807 retry_bios_on_resume(pool, cell); 1808 break; 1809 1810 default: 1811 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1812 __func__, r); 1813 cell_error(pool, cell); 1814 break; 1815 } 1816 } 1817 1818 static void __remap_and_issue_shared_cell(void *context, 1819 struct dm_bio_prison_cell *cell) 1820 { 1821 struct remap_info *info = context; 1822 struct bio *bio; 1823 1824 while ((bio = bio_list_pop(&cell->bios))) { 1825 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1826 bio_op(bio) == REQ_OP_DISCARD) 1827 bio_list_add(&info->defer_bios, bio); 1828 else { 1829 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1830 1831 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1832 inc_all_io_entry(info->tc->pool, bio); 1833 bio_list_add(&info->issue_bios, bio); 1834 } 1835 } 1836 } 1837 1838 static void remap_and_issue_shared_cell(struct thin_c *tc, 1839 struct dm_bio_prison_cell *cell, 1840 dm_block_t block) 1841 { 1842 struct bio *bio; 1843 struct remap_info info; 1844 1845 info.tc = tc; 1846 bio_list_init(&info.defer_bios); 1847 bio_list_init(&info.issue_bios); 1848 1849 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1850 &info, cell); 1851 1852 while ((bio = bio_list_pop(&info.defer_bios))) 1853 thin_defer_bio(tc, bio); 1854 1855 while ((bio = bio_list_pop(&info.issue_bios))) 1856 remap_and_issue(tc, bio, block); 1857 } 1858 1859 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1860 dm_block_t block, 1861 struct dm_thin_lookup_result *lookup_result, 1862 struct dm_bio_prison_cell *virt_cell) 1863 { 1864 struct dm_bio_prison_cell *data_cell; 1865 struct pool *pool = tc->pool; 1866 struct dm_cell_key key; 1867 1868 /* 1869 * If cell is already occupied, then sharing is already in the process 1870 * of being broken so we have nothing further to do here. 1871 */ 1872 build_data_key(tc->td, lookup_result->block, &key); 1873 if (bio_detain(pool, &key, bio, &data_cell)) { 1874 cell_defer_no_holder(tc, virt_cell); 1875 return; 1876 } 1877 1878 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1879 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1880 cell_defer_no_holder(tc, virt_cell); 1881 } else { 1882 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1883 1884 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1885 inc_all_io_entry(pool, bio); 1886 remap_and_issue(tc, bio, lookup_result->block); 1887 1888 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1889 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1890 } 1891 } 1892 1893 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1894 struct dm_bio_prison_cell *cell) 1895 { 1896 int r; 1897 dm_block_t data_block; 1898 struct pool *pool = tc->pool; 1899 1900 /* 1901 * Remap empty bios (flushes) immediately, without provisioning. 1902 */ 1903 if (!bio->bi_iter.bi_size) { 1904 inc_all_io_entry(pool, bio); 1905 cell_defer_no_holder(tc, cell); 1906 1907 remap_and_issue(tc, bio, 0); 1908 return; 1909 } 1910 1911 /* 1912 * Fill read bios with zeroes and complete them immediately. 1913 */ 1914 if (bio_data_dir(bio) == READ) { 1915 zero_fill_bio(bio); 1916 cell_defer_no_holder(tc, cell); 1917 bio_endio(bio); 1918 return; 1919 } 1920 1921 r = alloc_data_block(tc, &data_block); 1922 switch (r) { 1923 case 0: 1924 if (tc->origin_dev) 1925 schedule_external_copy(tc, block, data_block, cell, bio); 1926 else 1927 schedule_zero(tc, block, data_block, cell, bio); 1928 break; 1929 1930 case -ENOSPC: 1931 retry_bios_on_resume(pool, cell); 1932 break; 1933 1934 default: 1935 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1936 __func__, r); 1937 cell_error(pool, cell); 1938 break; 1939 } 1940 } 1941 1942 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1943 { 1944 int r; 1945 struct pool *pool = tc->pool; 1946 struct bio *bio = cell->holder; 1947 dm_block_t block = get_bio_block(tc, bio); 1948 struct dm_thin_lookup_result lookup_result; 1949 1950 if (tc->requeue_mode) { 1951 cell_requeue(pool, cell); 1952 return; 1953 } 1954 1955 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1956 switch (r) { 1957 case 0: 1958 if (lookup_result.shared) 1959 process_shared_bio(tc, bio, block, &lookup_result, cell); 1960 else { 1961 inc_all_io_entry(pool, bio); 1962 remap_and_issue(tc, bio, lookup_result.block); 1963 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1964 } 1965 break; 1966 1967 case -ENODATA: 1968 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1969 inc_all_io_entry(pool, bio); 1970 cell_defer_no_holder(tc, cell); 1971 1972 if (bio_end_sector(bio) <= tc->origin_size) 1973 remap_to_origin_and_issue(tc, bio); 1974 1975 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1976 zero_fill_bio(bio); 1977 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1978 remap_to_origin_and_issue(tc, bio); 1979 1980 } else { 1981 zero_fill_bio(bio); 1982 bio_endio(bio); 1983 } 1984 } else 1985 provision_block(tc, bio, block, cell); 1986 break; 1987 1988 default: 1989 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1990 __func__, r); 1991 cell_defer_no_holder(tc, cell); 1992 bio_io_error(bio); 1993 break; 1994 } 1995 } 1996 1997 static void process_bio(struct thin_c *tc, struct bio *bio) 1998 { 1999 struct pool *pool = tc->pool; 2000 dm_block_t block = get_bio_block(tc, bio); 2001 struct dm_bio_prison_cell *cell; 2002 struct dm_cell_key key; 2003 2004 /* 2005 * If cell is already occupied, then the block is already 2006 * being provisioned so we have nothing further to do here. 2007 */ 2008 build_virtual_key(tc->td, block, &key); 2009 if (bio_detain(pool, &key, bio, &cell)) 2010 return; 2011 2012 process_cell(tc, cell); 2013 } 2014 2015 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2016 struct dm_bio_prison_cell *cell) 2017 { 2018 int r; 2019 int rw = bio_data_dir(bio); 2020 dm_block_t block = get_bio_block(tc, bio); 2021 struct dm_thin_lookup_result lookup_result; 2022 2023 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2024 switch (r) { 2025 case 0: 2026 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2027 handle_unserviceable_bio(tc->pool, bio); 2028 if (cell) 2029 cell_defer_no_holder(tc, cell); 2030 } else { 2031 inc_all_io_entry(tc->pool, bio); 2032 remap_and_issue(tc, bio, lookup_result.block); 2033 if (cell) 2034 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2035 } 2036 break; 2037 2038 case -ENODATA: 2039 if (cell) 2040 cell_defer_no_holder(tc, cell); 2041 if (rw != READ) { 2042 handle_unserviceable_bio(tc->pool, bio); 2043 break; 2044 } 2045 2046 if (tc->origin_dev) { 2047 inc_all_io_entry(tc->pool, bio); 2048 remap_to_origin_and_issue(tc, bio); 2049 break; 2050 } 2051 2052 zero_fill_bio(bio); 2053 bio_endio(bio); 2054 break; 2055 2056 default: 2057 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2058 __func__, r); 2059 if (cell) 2060 cell_defer_no_holder(tc, cell); 2061 bio_io_error(bio); 2062 break; 2063 } 2064 } 2065 2066 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2067 { 2068 __process_bio_read_only(tc, bio, NULL); 2069 } 2070 2071 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2072 { 2073 __process_bio_read_only(tc, cell->holder, cell); 2074 } 2075 2076 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2077 { 2078 bio_endio(bio); 2079 } 2080 2081 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2082 { 2083 bio_io_error(bio); 2084 } 2085 2086 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2087 { 2088 cell_success(tc->pool, cell); 2089 } 2090 2091 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2092 { 2093 cell_error(tc->pool, cell); 2094 } 2095 2096 /* 2097 * FIXME: should we also commit due to size of transaction, measured in 2098 * metadata blocks? 2099 */ 2100 static int need_commit_due_to_time(struct pool *pool) 2101 { 2102 return !time_in_range(jiffies, pool->last_commit_jiffies, 2103 pool->last_commit_jiffies + COMMIT_PERIOD); 2104 } 2105 2106 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2107 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2108 2109 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2110 { 2111 struct rb_node **rbp, *parent; 2112 struct dm_thin_endio_hook *pbd; 2113 sector_t bi_sector = bio->bi_iter.bi_sector; 2114 2115 rbp = &tc->sort_bio_list.rb_node; 2116 parent = NULL; 2117 while (*rbp) { 2118 parent = *rbp; 2119 pbd = thin_pbd(parent); 2120 2121 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2122 rbp = &(*rbp)->rb_left; 2123 else 2124 rbp = &(*rbp)->rb_right; 2125 } 2126 2127 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2128 rb_link_node(&pbd->rb_node, parent, rbp); 2129 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2130 } 2131 2132 static void __extract_sorted_bios(struct thin_c *tc) 2133 { 2134 struct rb_node *node; 2135 struct dm_thin_endio_hook *pbd; 2136 struct bio *bio; 2137 2138 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2139 pbd = thin_pbd(node); 2140 bio = thin_bio(pbd); 2141 2142 bio_list_add(&tc->deferred_bio_list, bio); 2143 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2144 } 2145 2146 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2147 } 2148 2149 static void __sort_thin_deferred_bios(struct thin_c *tc) 2150 { 2151 struct bio *bio; 2152 struct bio_list bios; 2153 2154 bio_list_init(&bios); 2155 bio_list_merge(&bios, &tc->deferred_bio_list); 2156 bio_list_init(&tc->deferred_bio_list); 2157 2158 /* Sort deferred_bio_list using rb-tree */ 2159 while ((bio = bio_list_pop(&bios))) 2160 __thin_bio_rb_add(tc, bio); 2161 2162 /* 2163 * Transfer the sorted bios in sort_bio_list back to 2164 * deferred_bio_list to allow lockless submission of 2165 * all bios. 2166 */ 2167 __extract_sorted_bios(tc); 2168 } 2169 2170 static void process_thin_deferred_bios(struct thin_c *tc) 2171 { 2172 struct pool *pool = tc->pool; 2173 unsigned long flags; 2174 struct bio *bio; 2175 struct bio_list bios; 2176 struct blk_plug plug; 2177 unsigned count = 0; 2178 2179 if (tc->requeue_mode) { 2180 error_thin_bio_list(tc, &tc->deferred_bio_list, 2181 BLK_STS_DM_REQUEUE); 2182 return; 2183 } 2184 2185 bio_list_init(&bios); 2186 2187 spin_lock_irqsave(&tc->lock, flags); 2188 2189 if (bio_list_empty(&tc->deferred_bio_list)) { 2190 spin_unlock_irqrestore(&tc->lock, flags); 2191 return; 2192 } 2193 2194 __sort_thin_deferred_bios(tc); 2195 2196 bio_list_merge(&bios, &tc->deferred_bio_list); 2197 bio_list_init(&tc->deferred_bio_list); 2198 2199 spin_unlock_irqrestore(&tc->lock, flags); 2200 2201 blk_start_plug(&plug); 2202 while ((bio = bio_list_pop(&bios))) { 2203 /* 2204 * If we've got no free new_mapping structs, and processing 2205 * this bio might require one, we pause until there are some 2206 * prepared mappings to process. 2207 */ 2208 if (ensure_next_mapping(pool)) { 2209 spin_lock_irqsave(&tc->lock, flags); 2210 bio_list_add(&tc->deferred_bio_list, bio); 2211 bio_list_merge(&tc->deferred_bio_list, &bios); 2212 spin_unlock_irqrestore(&tc->lock, flags); 2213 break; 2214 } 2215 2216 if (bio_op(bio) == REQ_OP_DISCARD) 2217 pool->process_discard(tc, bio); 2218 else 2219 pool->process_bio(tc, bio); 2220 2221 if ((count++ & 127) == 0) { 2222 throttle_work_update(&pool->throttle); 2223 dm_pool_issue_prefetches(pool->pmd); 2224 } 2225 } 2226 blk_finish_plug(&plug); 2227 } 2228 2229 static int cmp_cells(const void *lhs, const void *rhs) 2230 { 2231 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2232 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2233 2234 BUG_ON(!lhs_cell->holder); 2235 BUG_ON(!rhs_cell->holder); 2236 2237 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2238 return -1; 2239 2240 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2241 return 1; 2242 2243 return 0; 2244 } 2245 2246 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2247 { 2248 unsigned count = 0; 2249 struct dm_bio_prison_cell *cell, *tmp; 2250 2251 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2252 if (count >= CELL_SORT_ARRAY_SIZE) 2253 break; 2254 2255 pool->cell_sort_array[count++] = cell; 2256 list_del(&cell->user_list); 2257 } 2258 2259 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2260 2261 return count; 2262 } 2263 2264 static void process_thin_deferred_cells(struct thin_c *tc) 2265 { 2266 struct pool *pool = tc->pool; 2267 unsigned long flags; 2268 struct list_head cells; 2269 struct dm_bio_prison_cell *cell; 2270 unsigned i, j, count; 2271 2272 INIT_LIST_HEAD(&cells); 2273 2274 spin_lock_irqsave(&tc->lock, flags); 2275 list_splice_init(&tc->deferred_cells, &cells); 2276 spin_unlock_irqrestore(&tc->lock, flags); 2277 2278 if (list_empty(&cells)) 2279 return; 2280 2281 do { 2282 count = sort_cells(tc->pool, &cells); 2283 2284 for (i = 0; i < count; i++) { 2285 cell = pool->cell_sort_array[i]; 2286 BUG_ON(!cell->holder); 2287 2288 /* 2289 * If we've got no free new_mapping structs, and processing 2290 * this bio might require one, we pause until there are some 2291 * prepared mappings to process. 2292 */ 2293 if (ensure_next_mapping(pool)) { 2294 for (j = i; j < count; j++) 2295 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2296 2297 spin_lock_irqsave(&tc->lock, flags); 2298 list_splice(&cells, &tc->deferred_cells); 2299 spin_unlock_irqrestore(&tc->lock, flags); 2300 return; 2301 } 2302 2303 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2304 pool->process_discard_cell(tc, cell); 2305 else 2306 pool->process_cell(tc, cell); 2307 } 2308 } while (!list_empty(&cells)); 2309 } 2310 2311 static void thin_get(struct thin_c *tc); 2312 static void thin_put(struct thin_c *tc); 2313 2314 /* 2315 * We can't hold rcu_read_lock() around code that can block. So we 2316 * find a thin with the rcu lock held; bump a refcount; then drop 2317 * the lock. 2318 */ 2319 static struct thin_c *get_first_thin(struct pool *pool) 2320 { 2321 struct thin_c *tc = NULL; 2322 2323 rcu_read_lock(); 2324 if (!list_empty(&pool->active_thins)) { 2325 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2326 thin_get(tc); 2327 } 2328 rcu_read_unlock(); 2329 2330 return tc; 2331 } 2332 2333 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2334 { 2335 struct thin_c *old_tc = tc; 2336 2337 rcu_read_lock(); 2338 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2339 thin_get(tc); 2340 thin_put(old_tc); 2341 rcu_read_unlock(); 2342 return tc; 2343 } 2344 thin_put(old_tc); 2345 rcu_read_unlock(); 2346 2347 return NULL; 2348 } 2349 2350 static void process_deferred_bios(struct pool *pool) 2351 { 2352 unsigned long flags; 2353 struct bio *bio; 2354 struct bio_list bios, bio_completions; 2355 struct thin_c *tc; 2356 2357 tc = get_first_thin(pool); 2358 while (tc) { 2359 process_thin_deferred_cells(tc); 2360 process_thin_deferred_bios(tc); 2361 tc = get_next_thin(pool, tc); 2362 } 2363 2364 /* 2365 * If there are any deferred flush bios, we must commit the metadata 2366 * before issuing them or signaling their completion. 2367 */ 2368 bio_list_init(&bios); 2369 bio_list_init(&bio_completions); 2370 2371 spin_lock_irqsave(&pool->lock, flags); 2372 bio_list_merge(&bios, &pool->deferred_flush_bios); 2373 bio_list_init(&pool->deferred_flush_bios); 2374 2375 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2376 bio_list_init(&pool->deferred_flush_completions); 2377 spin_unlock_irqrestore(&pool->lock, flags); 2378 2379 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2380 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2381 return; 2382 2383 if (commit(pool)) { 2384 bio_list_merge(&bios, &bio_completions); 2385 2386 while ((bio = bio_list_pop(&bios))) 2387 bio_io_error(bio); 2388 return; 2389 } 2390 pool->last_commit_jiffies = jiffies; 2391 2392 while ((bio = bio_list_pop(&bio_completions))) 2393 bio_endio(bio); 2394 2395 while ((bio = bio_list_pop(&bios))) 2396 generic_make_request(bio); 2397 } 2398 2399 static void do_worker(struct work_struct *ws) 2400 { 2401 struct pool *pool = container_of(ws, struct pool, worker); 2402 2403 throttle_work_start(&pool->throttle); 2404 dm_pool_issue_prefetches(pool->pmd); 2405 throttle_work_update(&pool->throttle); 2406 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2407 throttle_work_update(&pool->throttle); 2408 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2409 throttle_work_update(&pool->throttle); 2410 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2411 throttle_work_update(&pool->throttle); 2412 process_deferred_bios(pool); 2413 throttle_work_complete(&pool->throttle); 2414 } 2415 2416 /* 2417 * We want to commit periodically so that not too much 2418 * unwritten data builds up. 2419 */ 2420 static void do_waker(struct work_struct *ws) 2421 { 2422 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2423 wake_worker(pool); 2424 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2425 } 2426 2427 /* 2428 * We're holding onto IO to allow userland time to react. After the 2429 * timeout either the pool will have been resized (and thus back in 2430 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2431 */ 2432 static void do_no_space_timeout(struct work_struct *ws) 2433 { 2434 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2435 no_space_timeout); 2436 2437 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2438 pool->pf.error_if_no_space = true; 2439 notify_of_pool_mode_change(pool); 2440 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2441 } 2442 } 2443 2444 /*----------------------------------------------------------------*/ 2445 2446 struct pool_work { 2447 struct work_struct worker; 2448 struct completion complete; 2449 }; 2450 2451 static struct pool_work *to_pool_work(struct work_struct *ws) 2452 { 2453 return container_of(ws, struct pool_work, worker); 2454 } 2455 2456 static void pool_work_complete(struct pool_work *pw) 2457 { 2458 complete(&pw->complete); 2459 } 2460 2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2462 void (*fn)(struct work_struct *)) 2463 { 2464 INIT_WORK_ONSTACK(&pw->worker, fn); 2465 init_completion(&pw->complete); 2466 queue_work(pool->wq, &pw->worker); 2467 wait_for_completion(&pw->complete); 2468 } 2469 2470 /*----------------------------------------------------------------*/ 2471 2472 struct noflush_work { 2473 struct pool_work pw; 2474 struct thin_c *tc; 2475 }; 2476 2477 static struct noflush_work *to_noflush(struct work_struct *ws) 2478 { 2479 return container_of(to_pool_work(ws), struct noflush_work, pw); 2480 } 2481 2482 static void do_noflush_start(struct work_struct *ws) 2483 { 2484 struct noflush_work *w = to_noflush(ws); 2485 w->tc->requeue_mode = true; 2486 requeue_io(w->tc); 2487 pool_work_complete(&w->pw); 2488 } 2489 2490 static void do_noflush_stop(struct work_struct *ws) 2491 { 2492 struct noflush_work *w = to_noflush(ws); 2493 w->tc->requeue_mode = false; 2494 pool_work_complete(&w->pw); 2495 } 2496 2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2498 { 2499 struct noflush_work w; 2500 2501 w.tc = tc; 2502 pool_work_wait(&w.pw, tc->pool, fn); 2503 } 2504 2505 /*----------------------------------------------------------------*/ 2506 2507 static bool passdown_enabled(struct pool_c *pt) 2508 { 2509 return pt->adjusted_pf.discard_passdown; 2510 } 2511 2512 static void set_discard_callbacks(struct pool *pool) 2513 { 2514 struct pool_c *pt = pool->ti->private; 2515 2516 if (passdown_enabled(pt)) { 2517 pool->process_discard_cell = process_discard_cell_passdown; 2518 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2519 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2520 } else { 2521 pool->process_discard_cell = process_discard_cell_no_passdown; 2522 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2523 } 2524 } 2525 2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2527 { 2528 struct pool_c *pt = pool->ti->private; 2529 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2530 enum pool_mode old_mode = get_pool_mode(pool); 2531 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2532 2533 /* 2534 * Never allow the pool to transition to PM_WRITE mode if user 2535 * intervention is required to verify metadata and data consistency. 2536 */ 2537 if (new_mode == PM_WRITE && needs_check) { 2538 DMERR("%s: unable to switch pool to write mode until repaired.", 2539 dm_device_name(pool->pool_md)); 2540 if (old_mode != new_mode) 2541 new_mode = old_mode; 2542 else 2543 new_mode = PM_READ_ONLY; 2544 } 2545 /* 2546 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2547 * not going to recover without a thin_repair. So we never let the 2548 * pool move out of the old mode. 2549 */ 2550 if (old_mode == PM_FAIL) 2551 new_mode = old_mode; 2552 2553 switch (new_mode) { 2554 case PM_FAIL: 2555 dm_pool_metadata_read_only(pool->pmd); 2556 pool->process_bio = process_bio_fail; 2557 pool->process_discard = process_bio_fail; 2558 pool->process_cell = process_cell_fail; 2559 pool->process_discard_cell = process_cell_fail; 2560 pool->process_prepared_mapping = process_prepared_mapping_fail; 2561 pool->process_prepared_discard = process_prepared_discard_fail; 2562 2563 error_retry_list(pool); 2564 break; 2565 2566 case PM_OUT_OF_METADATA_SPACE: 2567 case PM_READ_ONLY: 2568 dm_pool_metadata_read_only(pool->pmd); 2569 pool->process_bio = process_bio_read_only; 2570 pool->process_discard = process_bio_success; 2571 pool->process_cell = process_cell_read_only; 2572 pool->process_discard_cell = process_cell_success; 2573 pool->process_prepared_mapping = process_prepared_mapping_fail; 2574 pool->process_prepared_discard = process_prepared_discard_success; 2575 2576 error_retry_list(pool); 2577 break; 2578 2579 case PM_OUT_OF_DATA_SPACE: 2580 /* 2581 * Ideally we'd never hit this state; the low water mark 2582 * would trigger userland to extend the pool before we 2583 * completely run out of data space. However, many small 2584 * IOs to unprovisioned space can consume data space at an 2585 * alarming rate. Adjust your low water mark if you're 2586 * frequently seeing this mode. 2587 */ 2588 pool->out_of_data_space = true; 2589 pool->process_bio = process_bio_read_only; 2590 pool->process_discard = process_discard_bio; 2591 pool->process_cell = process_cell_read_only; 2592 pool->process_prepared_mapping = process_prepared_mapping; 2593 set_discard_callbacks(pool); 2594 2595 if (!pool->pf.error_if_no_space && no_space_timeout) 2596 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2597 break; 2598 2599 case PM_WRITE: 2600 if (old_mode == PM_OUT_OF_DATA_SPACE) 2601 cancel_delayed_work_sync(&pool->no_space_timeout); 2602 pool->out_of_data_space = false; 2603 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2604 dm_pool_metadata_read_write(pool->pmd); 2605 pool->process_bio = process_bio; 2606 pool->process_discard = process_discard_bio; 2607 pool->process_cell = process_cell; 2608 pool->process_prepared_mapping = process_prepared_mapping; 2609 set_discard_callbacks(pool); 2610 break; 2611 } 2612 2613 pool->pf.mode = new_mode; 2614 /* 2615 * The pool mode may have changed, sync it so bind_control_target() 2616 * doesn't cause an unexpected mode transition on resume. 2617 */ 2618 pt->adjusted_pf.mode = new_mode; 2619 2620 if (old_mode != new_mode) 2621 notify_of_pool_mode_change(pool); 2622 } 2623 2624 static void abort_transaction(struct pool *pool) 2625 { 2626 const char *dev_name = dm_device_name(pool->pool_md); 2627 2628 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2629 if (dm_pool_abort_metadata(pool->pmd)) { 2630 DMERR("%s: failed to abort metadata transaction", dev_name); 2631 set_pool_mode(pool, PM_FAIL); 2632 } 2633 2634 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2635 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2636 set_pool_mode(pool, PM_FAIL); 2637 } 2638 } 2639 2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2641 { 2642 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2643 dm_device_name(pool->pool_md), op, r); 2644 2645 abort_transaction(pool); 2646 set_pool_mode(pool, PM_READ_ONLY); 2647 } 2648 2649 /*----------------------------------------------------------------*/ 2650 2651 /* 2652 * Mapping functions. 2653 */ 2654 2655 /* 2656 * Called only while mapping a thin bio to hand it over to the workqueue. 2657 */ 2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2659 { 2660 unsigned long flags; 2661 struct pool *pool = tc->pool; 2662 2663 spin_lock_irqsave(&tc->lock, flags); 2664 bio_list_add(&tc->deferred_bio_list, bio); 2665 spin_unlock_irqrestore(&tc->lock, flags); 2666 2667 wake_worker(pool); 2668 } 2669 2670 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2671 { 2672 struct pool *pool = tc->pool; 2673 2674 throttle_lock(&pool->throttle); 2675 thin_defer_bio(tc, bio); 2676 throttle_unlock(&pool->throttle); 2677 } 2678 2679 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2680 { 2681 unsigned long flags; 2682 struct pool *pool = tc->pool; 2683 2684 throttle_lock(&pool->throttle); 2685 spin_lock_irqsave(&tc->lock, flags); 2686 list_add_tail(&cell->user_list, &tc->deferred_cells); 2687 spin_unlock_irqrestore(&tc->lock, flags); 2688 throttle_unlock(&pool->throttle); 2689 2690 wake_worker(pool); 2691 } 2692 2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2694 { 2695 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2696 2697 h->tc = tc; 2698 h->shared_read_entry = NULL; 2699 h->all_io_entry = NULL; 2700 h->overwrite_mapping = NULL; 2701 h->cell = NULL; 2702 } 2703 2704 /* 2705 * Non-blocking function called from the thin target's map function. 2706 */ 2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2708 { 2709 int r; 2710 struct thin_c *tc = ti->private; 2711 dm_block_t block = get_bio_block(tc, bio); 2712 struct dm_thin_device *td = tc->td; 2713 struct dm_thin_lookup_result result; 2714 struct dm_bio_prison_cell *virt_cell, *data_cell; 2715 struct dm_cell_key key; 2716 2717 thin_hook_bio(tc, bio); 2718 2719 if (tc->requeue_mode) { 2720 bio->bi_status = BLK_STS_DM_REQUEUE; 2721 bio_endio(bio); 2722 return DM_MAPIO_SUBMITTED; 2723 } 2724 2725 if (get_pool_mode(tc->pool) == PM_FAIL) { 2726 bio_io_error(bio); 2727 return DM_MAPIO_SUBMITTED; 2728 } 2729 2730 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2731 thin_defer_bio_with_throttle(tc, bio); 2732 return DM_MAPIO_SUBMITTED; 2733 } 2734 2735 /* 2736 * We must hold the virtual cell before doing the lookup, otherwise 2737 * there's a race with discard. 2738 */ 2739 build_virtual_key(tc->td, block, &key); 2740 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2741 return DM_MAPIO_SUBMITTED; 2742 2743 r = dm_thin_find_block(td, block, 0, &result); 2744 2745 /* 2746 * Note that we defer readahead too. 2747 */ 2748 switch (r) { 2749 case 0: 2750 if (unlikely(result.shared)) { 2751 /* 2752 * We have a race condition here between the 2753 * result.shared value returned by the lookup and 2754 * snapshot creation, which may cause new 2755 * sharing. 2756 * 2757 * To avoid this always quiesce the origin before 2758 * taking the snap. You want to do this anyway to 2759 * ensure a consistent application view 2760 * (i.e. lockfs). 2761 * 2762 * More distant ancestors are irrelevant. The 2763 * shared flag will be set in their case. 2764 */ 2765 thin_defer_cell(tc, virt_cell); 2766 return DM_MAPIO_SUBMITTED; 2767 } 2768 2769 build_data_key(tc->td, result.block, &key); 2770 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2771 cell_defer_no_holder(tc, virt_cell); 2772 return DM_MAPIO_SUBMITTED; 2773 } 2774 2775 inc_all_io_entry(tc->pool, bio); 2776 cell_defer_no_holder(tc, data_cell); 2777 cell_defer_no_holder(tc, virt_cell); 2778 2779 remap(tc, bio, result.block); 2780 return DM_MAPIO_REMAPPED; 2781 2782 case -ENODATA: 2783 case -EWOULDBLOCK: 2784 thin_defer_cell(tc, virt_cell); 2785 return DM_MAPIO_SUBMITTED; 2786 2787 default: 2788 /* 2789 * Must always call bio_io_error on failure. 2790 * dm_thin_find_block can fail with -EINVAL if the 2791 * pool is switched to fail-io mode. 2792 */ 2793 bio_io_error(bio); 2794 cell_defer_no_holder(tc, virt_cell); 2795 return DM_MAPIO_SUBMITTED; 2796 } 2797 } 2798 2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2800 { 2801 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2802 struct request_queue *q; 2803 2804 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2805 return 1; 2806 2807 q = bdev_get_queue(pt->data_dev->bdev); 2808 return bdi_congested(q->backing_dev_info, bdi_bits); 2809 } 2810 2811 static void requeue_bios(struct pool *pool) 2812 { 2813 unsigned long flags; 2814 struct thin_c *tc; 2815 2816 rcu_read_lock(); 2817 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2818 spin_lock_irqsave(&tc->lock, flags); 2819 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2820 bio_list_init(&tc->retry_on_resume_list); 2821 spin_unlock_irqrestore(&tc->lock, flags); 2822 } 2823 rcu_read_unlock(); 2824 } 2825 2826 /*---------------------------------------------------------------- 2827 * Binding of control targets to a pool object 2828 *--------------------------------------------------------------*/ 2829 static bool data_dev_supports_discard(struct pool_c *pt) 2830 { 2831 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2832 2833 return q && blk_queue_discard(q); 2834 } 2835 2836 static bool is_factor(sector_t block_size, uint32_t n) 2837 { 2838 return !sector_div(block_size, n); 2839 } 2840 2841 /* 2842 * If discard_passdown was enabled verify that the data device 2843 * supports discards. Disable discard_passdown if not. 2844 */ 2845 static void disable_passdown_if_not_supported(struct pool_c *pt) 2846 { 2847 struct pool *pool = pt->pool; 2848 struct block_device *data_bdev = pt->data_dev->bdev; 2849 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2850 const char *reason = NULL; 2851 char buf[BDEVNAME_SIZE]; 2852 2853 if (!pt->adjusted_pf.discard_passdown) 2854 return; 2855 2856 if (!data_dev_supports_discard(pt)) 2857 reason = "discard unsupported"; 2858 2859 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2860 reason = "max discard sectors smaller than a block"; 2861 2862 if (reason) { 2863 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2864 pt->adjusted_pf.discard_passdown = false; 2865 } 2866 } 2867 2868 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2869 { 2870 struct pool_c *pt = ti->private; 2871 2872 /* 2873 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2874 */ 2875 enum pool_mode old_mode = get_pool_mode(pool); 2876 enum pool_mode new_mode = pt->adjusted_pf.mode; 2877 2878 /* 2879 * Don't change the pool's mode until set_pool_mode() below. 2880 * Otherwise the pool's process_* function pointers may 2881 * not match the desired pool mode. 2882 */ 2883 pt->adjusted_pf.mode = old_mode; 2884 2885 pool->ti = ti; 2886 pool->pf = pt->adjusted_pf; 2887 pool->low_water_blocks = pt->low_water_blocks; 2888 2889 set_pool_mode(pool, new_mode); 2890 2891 return 0; 2892 } 2893 2894 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2895 { 2896 if (pool->ti == ti) 2897 pool->ti = NULL; 2898 } 2899 2900 /*---------------------------------------------------------------- 2901 * Pool creation 2902 *--------------------------------------------------------------*/ 2903 /* Initialize pool features. */ 2904 static void pool_features_init(struct pool_features *pf) 2905 { 2906 pf->mode = PM_WRITE; 2907 pf->zero_new_blocks = true; 2908 pf->discard_enabled = true; 2909 pf->discard_passdown = true; 2910 pf->error_if_no_space = false; 2911 } 2912 2913 static void __pool_destroy(struct pool *pool) 2914 { 2915 __pool_table_remove(pool); 2916 2917 vfree(pool->cell_sort_array); 2918 if (dm_pool_metadata_close(pool->pmd) < 0) 2919 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2920 2921 dm_bio_prison_destroy(pool->prison); 2922 dm_kcopyd_client_destroy(pool->copier); 2923 2924 if (pool->wq) 2925 destroy_workqueue(pool->wq); 2926 2927 if (pool->next_mapping) 2928 mempool_free(pool->next_mapping, &pool->mapping_pool); 2929 mempool_exit(&pool->mapping_pool); 2930 dm_deferred_set_destroy(pool->shared_read_ds); 2931 dm_deferred_set_destroy(pool->all_io_ds); 2932 kfree(pool); 2933 } 2934 2935 static struct kmem_cache *_new_mapping_cache; 2936 2937 static struct pool *pool_create(struct mapped_device *pool_md, 2938 struct block_device *metadata_dev, 2939 unsigned long block_size, 2940 int read_only, char **error) 2941 { 2942 int r; 2943 void *err_p; 2944 struct pool *pool; 2945 struct dm_pool_metadata *pmd; 2946 bool format_device = read_only ? false : true; 2947 2948 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2949 if (IS_ERR(pmd)) { 2950 *error = "Error creating metadata object"; 2951 return (struct pool *)pmd; 2952 } 2953 2954 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2955 if (!pool) { 2956 *error = "Error allocating memory for pool"; 2957 err_p = ERR_PTR(-ENOMEM); 2958 goto bad_pool; 2959 } 2960 2961 pool->pmd = pmd; 2962 pool->sectors_per_block = block_size; 2963 if (block_size & (block_size - 1)) 2964 pool->sectors_per_block_shift = -1; 2965 else 2966 pool->sectors_per_block_shift = __ffs(block_size); 2967 pool->low_water_blocks = 0; 2968 pool_features_init(&pool->pf); 2969 pool->prison = dm_bio_prison_create(); 2970 if (!pool->prison) { 2971 *error = "Error creating pool's bio prison"; 2972 err_p = ERR_PTR(-ENOMEM); 2973 goto bad_prison; 2974 } 2975 2976 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2977 if (IS_ERR(pool->copier)) { 2978 r = PTR_ERR(pool->copier); 2979 *error = "Error creating pool's kcopyd client"; 2980 err_p = ERR_PTR(r); 2981 goto bad_kcopyd_client; 2982 } 2983 2984 /* 2985 * Create singlethreaded workqueue that will service all devices 2986 * that use this metadata. 2987 */ 2988 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2989 if (!pool->wq) { 2990 *error = "Error creating pool's workqueue"; 2991 err_p = ERR_PTR(-ENOMEM); 2992 goto bad_wq; 2993 } 2994 2995 throttle_init(&pool->throttle); 2996 INIT_WORK(&pool->worker, do_worker); 2997 INIT_DELAYED_WORK(&pool->waker, do_waker); 2998 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2999 spin_lock_init(&pool->lock); 3000 bio_list_init(&pool->deferred_flush_bios); 3001 bio_list_init(&pool->deferred_flush_completions); 3002 INIT_LIST_HEAD(&pool->prepared_mappings); 3003 INIT_LIST_HEAD(&pool->prepared_discards); 3004 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3005 INIT_LIST_HEAD(&pool->active_thins); 3006 pool->low_water_triggered = false; 3007 pool->suspended = true; 3008 pool->out_of_data_space = false; 3009 3010 pool->shared_read_ds = dm_deferred_set_create(); 3011 if (!pool->shared_read_ds) { 3012 *error = "Error creating pool's shared read deferred set"; 3013 err_p = ERR_PTR(-ENOMEM); 3014 goto bad_shared_read_ds; 3015 } 3016 3017 pool->all_io_ds = dm_deferred_set_create(); 3018 if (!pool->all_io_ds) { 3019 *error = "Error creating pool's all io deferred set"; 3020 err_p = ERR_PTR(-ENOMEM); 3021 goto bad_all_io_ds; 3022 } 3023 3024 pool->next_mapping = NULL; 3025 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3026 _new_mapping_cache); 3027 if (r) { 3028 *error = "Error creating pool's mapping mempool"; 3029 err_p = ERR_PTR(r); 3030 goto bad_mapping_pool; 3031 } 3032 3033 pool->cell_sort_array = 3034 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3035 sizeof(*pool->cell_sort_array))); 3036 if (!pool->cell_sort_array) { 3037 *error = "Error allocating cell sort array"; 3038 err_p = ERR_PTR(-ENOMEM); 3039 goto bad_sort_array; 3040 } 3041 3042 pool->ref_count = 1; 3043 pool->last_commit_jiffies = jiffies; 3044 pool->pool_md = pool_md; 3045 pool->md_dev = metadata_dev; 3046 __pool_table_insert(pool); 3047 3048 return pool; 3049 3050 bad_sort_array: 3051 mempool_exit(&pool->mapping_pool); 3052 bad_mapping_pool: 3053 dm_deferred_set_destroy(pool->all_io_ds); 3054 bad_all_io_ds: 3055 dm_deferred_set_destroy(pool->shared_read_ds); 3056 bad_shared_read_ds: 3057 destroy_workqueue(pool->wq); 3058 bad_wq: 3059 dm_kcopyd_client_destroy(pool->copier); 3060 bad_kcopyd_client: 3061 dm_bio_prison_destroy(pool->prison); 3062 bad_prison: 3063 kfree(pool); 3064 bad_pool: 3065 if (dm_pool_metadata_close(pmd)) 3066 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3067 3068 return err_p; 3069 } 3070 3071 static void __pool_inc(struct pool *pool) 3072 { 3073 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3074 pool->ref_count++; 3075 } 3076 3077 static void __pool_dec(struct pool *pool) 3078 { 3079 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3080 BUG_ON(!pool->ref_count); 3081 if (!--pool->ref_count) 3082 __pool_destroy(pool); 3083 } 3084 3085 static struct pool *__pool_find(struct mapped_device *pool_md, 3086 struct block_device *metadata_dev, 3087 unsigned long block_size, int read_only, 3088 char **error, int *created) 3089 { 3090 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3091 3092 if (pool) { 3093 if (pool->pool_md != pool_md) { 3094 *error = "metadata device already in use by a pool"; 3095 return ERR_PTR(-EBUSY); 3096 } 3097 __pool_inc(pool); 3098 3099 } else { 3100 pool = __pool_table_lookup(pool_md); 3101 if (pool) { 3102 if (pool->md_dev != metadata_dev) { 3103 *error = "different pool cannot replace a pool"; 3104 return ERR_PTR(-EINVAL); 3105 } 3106 __pool_inc(pool); 3107 3108 } else { 3109 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3110 *created = 1; 3111 } 3112 } 3113 3114 return pool; 3115 } 3116 3117 /*---------------------------------------------------------------- 3118 * Pool target methods 3119 *--------------------------------------------------------------*/ 3120 static void pool_dtr(struct dm_target *ti) 3121 { 3122 struct pool_c *pt = ti->private; 3123 3124 mutex_lock(&dm_thin_pool_table.mutex); 3125 3126 unbind_control_target(pt->pool, ti); 3127 __pool_dec(pt->pool); 3128 dm_put_device(ti, pt->metadata_dev); 3129 dm_put_device(ti, pt->data_dev); 3130 kfree(pt); 3131 3132 mutex_unlock(&dm_thin_pool_table.mutex); 3133 } 3134 3135 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3136 struct dm_target *ti) 3137 { 3138 int r; 3139 unsigned argc; 3140 const char *arg_name; 3141 3142 static const struct dm_arg _args[] = { 3143 {0, 4, "Invalid number of pool feature arguments"}, 3144 }; 3145 3146 /* 3147 * No feature arguments supplied. 3148 */ 3149 if (!as->argc) 3150 return 0; 3151 3152 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3153 if (r) 3154 return -EINVAL; 3155 3156 while (argc && !r) { 3157 arg_name = dm_shift_arg(as); 3158 argc--; 3159 3160 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3161 pf->zero_new_blocks = false; 3162 3163 else if (!strcasecmp(arg_name, "ignore_discard")) 3164 pf->discard_enabled = false; 3165 3166 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3167 pf->discard_passdown = false; 3168 3169 else if (!strcasecmp(arg_name, "read_only")) 3170 pf->mode = PM_READ_ONLY; 3171 3172 else if (!strcasecmp(arg_name, "error_if_no_space")) 3173 pf->error_if_no_space = true; 3174 3175 else { 3176 ti->error = "Unrecognised pool feature requested"; 3177 r = -EINVAL; 3178 break; 3179 } 3180 } 3181 3182 return r; 3183 } 3184 3185 static void metadata_low_callback(void *context) 3186 { 3187 struct pool *pool = context; 3188 3189 DMWARN("%s: reached low water mark for metadata device: sending event.", 3190 dm_device_name(pool->pool_md)); 3191 3192 dm_table_event(pool->ti->table); 3193 } 3194 3195 static sector_t get_dev_size(struct block_device *bdev) 3196 { 3197 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3198 } 3199 3200 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3201 { 3202 sector_t metadata_dev_size = get_dev_size(bdev); 3203 char buffer[BDEVNAME_SIZE]; 3204 3205 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3206 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3207 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3208 } 3209 3210 static sector_t get_metadata_dev_size(struct block_device *bdev) 3211 { 3212 sector_t metadata_dev_size = get_dev_size(bdev); 3213 3214 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3215 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3216 3217 return metadata_dev_size; 3218 } 3219 3220 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3221 { 3222 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3223 3224 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3225 3226 return metadata_dev_size; 3227 } 3228 3229 /* 3230 * When a metadata threshold is crossed a dm event is triggered, and 3231 * userland should respond by growing the metadata device. We could let 3232 * userland set the threshold, like we do with the data threshold, but I'm 3233 * not sure they know enough to do this well. 3234 */ 3235 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3236 { 3237 /* 3238 * 4M is ample for all ops with the possible exception of thin 3239 * device deletion which is harmless if it fails (just retry the 3240 * delete after you've grown the device). 3241 */ 3242 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3243 return min((dm_block_t)1024ULL /* 4M */, quarter); 3244 } 3245 3246 /* 3247 * thin-pool <metadata dev> <data dev> 3248 * <data block size (sectors)> 3249 * <low water mark (blocks)> 3250 * [<#feature args> [<arg>]*] 3251 * 3252 * Optional feature arguments are: 3253 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3254 * ignore_discard: disable discard 3255 * no_discard_passdown: don't pass discards down to the data device 3256 * read_only: Don't allow any changes to be made to the pool metadata. 3257 * error_if_no_space: error IOs, instead of queueing, if no space. 3258 */ 3259 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3260 { 3261 int r, pool_created = 0; 3262 struct pool_c *pt; 3263 struct pool *pool; 3264 struct pool_features pf; 3265 struct dm_arg_set as; 3266 struct dm_dev *data_dev; 3267 unsigned long block_size; 3268 dm_block_t low_water_blocks; 3269 struct dm_dev *metadata_dev; 3270 fmode_t metadata_mode; 3271 3272 /* 3273 * FIXME Remove validation from scope of lock. 3274 */ 3275 mutex_lock(&dm_thin_pool_table.mutex); 3276 3277 if (argc < 4) { 3278 ti->error = "Invalid argument count"; 3279 r = -EINVAL; 3280 goto out_unlock; 3281 } 3282 3283 as.argc = argc; 3284 as.argv = argv; 3285 3286 /* make sure metadata and data are different devices */ 3287 if (!strcmp(argv[0], argv[1])) { 3288 ti->error = "Error setting metadata or data device"; 3289 r = -EINVAL; 3290 goto out_unlock; 3291 } 3292 3293 /* 3294 * Set default pool features. 3295 */ 3296 pool_features_init(&pf); 3297 3298 dm_consume_args(&as, 4); 3299 r = parse_pool_features(&as, &pf, ti); 3300 if (r) 3301 goto out_unlock; 3302 3303 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3304 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3305 if (r) { 3306 ti->error = "Error opening metadata block device"; 3307 goto out_unlock; 3308 } 3309 warn_if_metadata_device_too_big(metadata_dev->bdev); 3310 3311 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3312 if (r) { 3313 ti->error = "Error getting data device"; 3314 goto out_metadata; 3315 } 3316 3317 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3318 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3319 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3320 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3321 ti->error = "Invalid block size"; 3322 r = -EINVAL; 3323 goto out; 3324 } 3325 3326 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3327 ti->error = "Invalid low water mark"; 3328 r = -EINVAL; 3329 goto out; 3330 } 3331 3332 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3333 if (!pt) { 3334 r = -ENOMEM; 3335 goto out; 3336 } 3337 3338 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3339 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3340 if (IS_ERR(pool)) { 3341 r = PTR_ERR(pool); 3342 goto out_free_pt; 3343 } 3344 3345 /* 3346 * 'pool_created' reflects whether this is the first table load. 3347 * Top level discard support is not allowed to be changed after 3348 * initial load. This would require a pool reload to trigger thin 3349 * device changes. 3350 */ 3351 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3352 ti->error = "Discard support cannot be disabled once enabled"; 3353 r = -EINVAL; 3354 goto out_flags_changed; 3355 } 3356 3357 pt->pool = pool; 3358 pt->ti = ti; 3359 pt->metadata_dev = metadata_dev; 3360 pt->data_dev = data_dev; 3361 pt->low_water_blocks = low_water_blocks; 3362 pt->adjusted_pf = pt->requested_pf = pf; 3363 ti->num_flush_bios = 1; 3364 3365 /* 3366 * Only need to enable discards if the pool should pass 3367 * them down to the data device. The thin device's discard 3368 * processing will cause mappings to be removed from the btree. 3369 */ 3370 if (pf.discard_enabled && pf.discard_passdown) { 3371 ti->num_discard_bios = 1; 3372 3373 /* 3374 * Setting 'discards_supported' circumvents the normal 3375 * stacking of discard limits (this keeps the pool and 3376 * thin devices' discard limits consistent). 3377 */ 3378 ti->discards_supported = true; 3379 } 3380 ti->private = pt; 3381 3382 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3383 calc_metadata_threshold(pt), 3384 metadata_low_callback, 3385 pool); 3386 if (r) 3387 goto out_flags_changed; 3388 3389 pt->callbacks.congested_fn = pool_is_congested; 3390 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3391 3392 mutex_unlock(&dm_thin_pool_table.mutex); 3393 3394 return 0; 3395 3396 out_flags_changed: 3397 __pool_dec(pool); 3398 out_free_pt: 3399 kfree(pt); 3400 out: 3401 dm_put_device(ti, data_dev); 3402 out_metadata: 3403 dm_put_device(ti, metadata_dev); 3404 out_unlock: 3405 mutex_unlock(&dm_thin_pool_table.mutex); 3406 3407 return r; 3408 } 3409 3410 static int pool_map(struct dm_target *ti, struct bio *bio) 3411 { 3412 int r; 3413 struct pool_c *pt = ti->private; 3414 struct pool *pool = pt->pool; 3415 unsigned long flags; 3416 3417 /* 3418 * As this is a singleton target, ti->begin is always zero. 3419 */ 3420 spin_lock_irqsave(&pool->lock, flags); 3421 bio_set_dev(bio, pt->data_dev->bdev); 3422 r = DM_MAPIO_REMAPPED; 3423 spin_unlock_irqrestore(&pool->lock, flags); 3424 3425 return r; 3426 } 3427 3428 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3429 { 3430 int r; 3431 struct pool_c *pt = ti->private; 3432 struct pool *pool = pt->pool; 3433 sector_t data_size = ti->len; 3434 dm_block_t sb_data_size; 3435 3436 *need_commit = false; 3437 3438 (void) sector_div(data_size, pool->sectors_per_block); 3439 3440 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3441 if (r) { 3442 DMERR("%s: failed to retrieve data device size", 3443 dm_device_name(pool->pool_md)); 3444 return r; 3445 } 3446 3447 if (data_size < sb_data_size) { 3448 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3449 dm_device_name(pool->pool_md), 3450 (unsigned long long)data_size, sb_data_size); 3451 return -EINVAL; 3452 3453 } else if (data_size > sb_data_size) { 3454 if (dm_pool_metadata_needs_check(pool->pmd)) { 3455 DMERR("%s: unable to grow the data device until repaired.", 3456 dm_device_name(pool->pool_md)); 3457 return 0; 3458 } 3459 3460 if (sb_data_size) 3461 DMINFO("%s: growing the data device from %llu to %llu blocks", 3462 dm_device_name(pool->pool_md), 3463 sb_data_size, (unsigned long long)data_size); 3464 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3465 if (r) { 3466 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3467 return r; 3468 } 3469 3470 *need_commit = true; 3471 } 3472 3473 return 0; 3474 } 3475 3476 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3477 { 3478 int r; 3479 struct pool_c *pt = ti->private; 3480 struct pool *pool = pt->pool; 3481 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3482 3483 *need_commit = false; 3484 3485 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3486 3487 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3488 if (r) { 3489 DMERR("%s: failed to retrieve metadata device size", 3490 dm_device_name(pool->pool_md)); 3491 return r; 3492 } 3493 3494 if (metadata_dev_size < sb_metadata_dev_size) { 3495 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3496 dm_device_name(pool->pool_md), 3497 metadata_dev_size, sb_metadata_dev_size); 3498 return -EINVAL; 3499 3500 } else if (metadata_dev_size > sb_metadata_dev_size) { 3501 if (dm_pool_metadata_needs_check(pool->pmd)) { 3502 DMERR("%s: unable to grow the metadata device until repaired.", 3503 dm_device_name(pool->pool_md)); 3504 return 0; 3505 } 3506 3507 warn_if_metadata_device_too_big(pool->md_dev); 3508 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3509 dm_device_name(pool->pool_md), 3510 sb_metadata_dev_size, metadata_dev_size); 3511 3512 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3513 set_pool_mode(pool, PM_WRITE); 3514 3515 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3516 if (r) { 3517 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3518 return r; 3519 } 3520 3521 *need_commit = true; 3522 } 3523 3524 return 0; 3525 } 3526 3527 /* 3528 * Retrieves the number of blocks of the data device from 3529 * the superblock and compares it to the actual device size, 3530 * thus resizing the data device in case it has grown. 3531 * 3532 * This both copes with opening preallocated data devices in the ctr 3533 * being followed by a resume 3534 * -and- 3535 * calling the resume method individually after userspace has 3536 * grown the data device in reaction to a table event. 3537 */ 3538 static int pool_preresume(struct dm_target *ti) 3539 { 3540 int r; 3541 bool need_commit1, need_commit2; 3542 struct pool_c *pt = ti->private; 3543 struct pool *pool = pt->pool; 3544 3545 /* 3546 * Take control of the pool object. 3547 */ 3548 r = bind_control_target(pool, ti); 3549 if (r) 3550 return r; 3551 3552 r = maybe_resize_data_dev(ti, &need_commit1); 3553 if (r) 3554 return r; 3555 3556 r = maybe_resize_metadata_dev(ti, &need_commit2); 3557 if (r) 3558 return r; 3559 3560 if (need_commit1 || need_commit2) 3561 (void) commit(pool); 3562 3563 return 0; 3564 } 3565 3566 static void pool_suspend_active_thins(struct pool *pool) 3567 { 3568 struct thin_c *tc; 3569 3570 /* Suspend all active thin devices */ 3571 tc = get_first_thin(pool); 3572 while (tc) { 3573 dm_internal_suspend_noflush(tc->thin_md); 3574 tc = get_next_thin(pool, tc); 3575 } 3576 } 3577 3578 static void pool_resume_active_thins(struct pool *pool) 3579 { 3580 struct thin_c *tc; 3581 3582 /* Resume all active thin devices */ 3583 tc = get_first_thin(pool); 3584 while (tc) { 3585 dm_internal_resume(tc->thin_md); 3586 tc = get_next_thin(pool, tc); 3587 } 3588 } 3589 3590 static void pool_resume(struct dm_target *ti) 3591 { 3592 struct pool_c *pt = ti->private; 3593 struct pool *pool = pt->pool; 3594 unsigned long flags; 3595 3596 /* 3597 * Must requeue active_thins' bios and then resume 3598 * active_thins _before_ clearing 'suspend' flag. 3599 */ 3600 requeue_bios(pool); 3601 pool_resume_active_thins(pool); 3602 3603 spin_lock_irqsave(&pool->lock, flags); 3604 pool->low_water_triggered = false; 3605 pool->suspended = false; 3606 spin_unlock_irqrestore(&pool->lock, flags); 3607 3608 do_waker(&pool->waker.work); 3609 } 3610 3611 static void pool_presuspend(struct dm_target *ti) 3612 { 3613 struct pool_c *pt = ti->private; 3614 struct pool *pool = pt->pool; 3615 unsigned long flags; 3616 3617 spin_lock_irqsave(&pool->lock, flags); 3618 pool->suspended = true; 3619 spin_unlock_irqrestore(&pool->lock, flags); 3620 3621 pool_suspend_active_thins(pool); 3622 } 3623 3624 static void pool_presuspend_undo(struct dm_target *ti) 3625 { 3626 struct pool_c *pt = ti->private; 3627 struct pool *pool = pt->pool; 3628 unsigned long flags; 3629 3630 pool_resume_active_thins(pool); 3631 3632 spin_lock_irqsave(&pool->lock, flags); 3633 pool->suspended = false; 3634 spin_unlock_irqrestore(&pool->lock, flags); 3635 } 3636 3637 static void pool_postsuspend(struct dm_target *ti) 3638 { 3639 struct pool_c *pt = ti->private; 3640 struct pool *pool = pt->pool; 3641 3642 cancel_delayed_work_sync(&pool->waker); 3643 cancel_delayed_work_sync(&pool->no_space_timeout); 3644 flush_workqueue(pool->wq); 3645 (void) commit(pool); 3646 } 3647 3648 static int check_arg_count(unsigned argc, unsigned args_required) 3649 { 3650 if (argc != args_required) { 3651 DMWARN("Message received with %u arguments instead of %u.", 3652 argc, args_required); 3653 return -EINVAL; 3654 } 3655 3656 return 0; 3657 } 3658 3659 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3660 { 3661 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3662 *dev_id <= MAX_DEV_ID) 3663 return 0; 3664 3665 if (warning) 3666 DMWARN("Message received with invalid device id: %s", arg); 3667 3668 return -EINVAL; 3669 } 3670 3671 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3672 { 3673 dm_thin_id dev_id; 3674 int r; 3675 3676 r = check_arg_count(argc, 2); 3677 if (r) 3678 return r; 3679 3680 r = read_dev_id(argv[1], &dev_id, 1); 3681 if (r) 3682 return r; 3683 3684 r = dm_pool_create_thin(pool->pmd, dev_id); 3685 if (r) { 3686 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3687 argv[1]); 3688 return r; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3695 { 3696 dm_thin_id dev_id; 3697 dm_thin_id origin_dev_id; 3698 int r; 3699 3700 r = check_arg_count(argc, 3); 3701 if (r) 3702 return r; 3703 3704 r = read_dev_id(argv[1], &dev_id, 1); 3705 if (r) 3706 return r; 3707 3708 r = read_dev_id(argv[2], &origin_dev_id, 1); 3709 if (r) 3710 return r; 3711 3712 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3713 if (r) { 3714 DMWARN("Creation of new snapshot %s of device %s failed.", 3715 argv[1], argv[2]); 3716 return r; 3717 } 3718 3719 return 0; 3720 } 3721 3722 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3723 { 3724 dm_thin_id dev_id; 3725 int r; 3726 3727 r = check_arg_count(argc, 2); 3728 if (r) 3729 return r; 3730 3731 r = read_dev_id(argv[1], &dev_id, 1); 3732 if (r) 3733 return r; 3734 3735 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3736 if (r) 3737 DMWARN("Deletion of thin device %s failed.", argv[1]); 3738 3739 return r; 3740 } 3741 3742 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3743 { 3744 dm_thin_id old_id, new_id; 3745 int r; 3746 3747 r = check_arg_count(argc, 3); 3748 if (r) 3749 return r; 3750 3751 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3752 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3753 return -EINVAL; 3754 } 3755 3756 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3757 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3758 return -EINVAL; 3759 } 3760 3761 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3762 if (r) { 3763 DMWARN("Failed to change transaction id from %s to %s.", 3764 argv[1], argv[2]); 3765 return r; 3766 } 3767 3768 return 0; 3769 } 3770 3771 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3772 { 3773 int r; 3774 3775 r = check_arg_count(argc, 1); 3776 if (r) 3777 return r; 3778 3779 (void) commit(pool); 3780 3781 r = dm_pool_reserve_metadata_snap(pool->pmd); 3782 if (r) 3783 DMWARN("reserve_metadata_snap message failed."); 3784 3785 return r; 3786 } 3787 3788 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3789 { 3790 int r; 3791 3792 r = check_arg_count(argc, 1); 3793 if (r) 3794 return r; 3795 3796 r = dm_pool_release_metadata_snap(pool->pmd); 3797 if (r) 3798 DMWARN("release_metadata_snap message failed."); 3799 3800 return r; 3801 } 3802 3803 /* 3804 * Messages supported: 3805 * create_thin <dev_id> 3806 * create_snap <dev_id> <origin_id> 3807 * delete <dev_id> 3808 * set_transaction_id <current_trans_id> <new_trans_id> 3809 * reserve_metadata_snap 3810 * release_metadata_snap 3811 */ 3812 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3813 char *result, unsigned maxlen) 3814 { 3815 int r = -EINVAL; 3816 struct pool_c *pt = ti->private; 3817 struct pool *pool = pt->pool; 3818 3819 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3820 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3821 dm_device_name(pool->pool_md)); 3822 return -EOPNOTSUPP; 3823 } 3824 3825 if (!strcasecmp(argv[0], "create_thin")) 3826 r = process_create_thin_mesg(argc, argv, pool); 3827 3828 else if (!strcasecmp(argv[0], "create_snap")) 3829 r = process_create_snap_mesg(argc, argv, pool); 3830 3831 else if (!strcasecmp(argv[0], "delete")) 3832 r = process_delete_mesg(argc, argv, pool); 3833 3834 else if (!strcasecmp(argv[0], "set_transaction_id")) 3835 r = process_set_transaction_id_mesg(argc, argv, pool); 3836 3837 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3838 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3839 3840 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3841 r = process_release_metadata_snap_mesg(argc, argv, pool); 3842 3843 else 3844 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3845 3846 if (!r) 3847 (void) commit(pool); 3848 3849 return r; 3850 } 3851 3852 static void emit_flags(struct pool_features *pf, char *result, 3853 unsigned sz, unsigned maxlen) 3854 { 3855 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3856 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3857 pf->error_if_no_space; 3858 DMEMIT("%u ", count); 3859 3860 if (!pf->zero_new_blocks) 3861 DMEMIT("skip_block_zeroing "); 3862 3863 if (!pf->discard_enabled) 3864 DMEMIT("ignore_discard "); 3865 3866 if (!pf->discard_passdown) 3867 DMEMIT("no_discard_passdown "); 3868 3869 if (pf->mode == PM_READ_ONLY) 3870 DMEMIT("read_only "); 3871 3872 if (pf->error_if_no_space) 3873 DMEMIT("error_if_no_space "); 3874 } 3875 3876 /* 3877 * Status line is: 3878 * <transaction id> <used metadata sectors>/<total metadata sectors> 3879 * <used data sectors>/<total data sectors> <held metadata root> 3880 * <pool mode> <discard config> <no space config> <needs_check> 3881 */ 3882 static void pool_status(struct dm_target *ti, status_type_t type, 3883 unsigned status_flags, char *result, unsigned maxlen) 3884 { 3885 int r; 3886 unsigned sz = 0; 3887 uint64_t transaction_id; 3888 dm_block_t nr_free_blocks_data; 3889 dm_block_t nr_free_blocks_metadata; 3890 dm_block_t nr_blocks_data; 3891 dm_block_t nr_blocks_metadata; 3892 dm_block_t held_root; 3893 enum pool_mode mode; 3894 char buf[BDEVNAME_SIZE]; 3895 char buf2[BDEVNAME_SIZE]; 3896 struct pool_c *pt = ti->private; 3897 struct pool *pool = pt->pool; 3898 3899 switch (type) { 3900 case STATUSTYPE_INFO: 3901 if (get_pool_mode(pool) == PM_FAIL) { 3902 DMEMIT("Fail"); 3903 break; 3904 } 3905 3906 /* Commit to ensure statistics aren't out-of-date */ 3907 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3908 (void) commit(pool); 3909 3910 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3911 if (r) { 3912 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3913 dm_device_name(pool->pool_md), r); 3914 goto err; 3915 } 3916 3917 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3918 if (r) { 3919 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3920 dm_device_name(pool->pool_md), r); 3921 goto err; 3922 } 3923 3924 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3925 if (r) { 3926 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3927 dm_device_name(pool->pool_md), r); 3928 goto err; 3929 } 3930 3931 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3932 if (r) { 3933 DMERR("%s: dm_pool_get_free_block_count returned %d", 3934 dm_device_name(pool->pool_md), r); 3935 goto err; 3936 } 3937 3938 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3939 if (r) { 3940 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3941 dm_device_name(pool->pool_md), r); 3942 goto err; 3943 } 3944 3945 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3946 if (r) { 3947 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3948 dm_device_name(pool->pool_md), r); 3949 goto err; 3950 } 3951 3952 DMEMIT("%llu %llu/%llu %llu/%llu ", 3953 (unsigned long long)transaction_id, 3954 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3955 (unsigned long long)nr_blocks_metadata, 3956 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3957 (unsigned long long)nr_blocks_data); 3958 3959 if (held_root) 3960 DMEMIT("%llu ", held_root); 3961 else 3962 DMEMIT("- "); 3963 3964 mode = get_pool_mode(pool); 3965 if (mode == PM_OUT_OF_DATA_SPACE) 3966 DMEMIT("out_of_data_space "); 3967 else if (is_read_only_pool_mode(mode)) 3968 DMEMIT("ro "); 3969 else 3970 DMEMIT("rw "); 3971 3972 if (!pool->pf.discard_enabled) 3973 DMEMIT("ignore_discard "); 3974 else if (pool->pf.discard_passdown) 3975 DMEMIT("discard_passdown "); 3976 else 3977 DMEMIT("no_discard_passdown "); 3978 3979 if (pool->pf.error_if_no_space) 3980 DMEMIT("error_if_no_space "); 3981 else 3982 DMEMIT("queue_if_no_space "); 3983 3984 if (dm_pool_metadata_needs_check(pool->pmd)) 3985 DMEMIT("needs_check "); 3986 else 3987 DMEMIT("- "); 3988 3989 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 3990 3991 break; 3992 3993 case STATUSTYPE_TABLE: 3994 DMEMIT("%s %s %lu %llu ", 3995 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3996 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3997 (unsigned long)pool->sectors_per_block, 3998 (unsigned long long)pt->low_water_blocks); 3999 emit_flags(&pt->requested_pf, result, sz, maxlen); 4000 break; 4001 } 4002 return; 4003 4004 err: 4005 DMEMIT("Error"); 4006 } 4007 4008 static int pool_iterate_devices(struct dm_target *ti, 4009 iterate_devices_callout_fn fn, void *data) 4010 { 4011 struct pool_c *pt = ti->private; 4012 4013 return fn(ti, pt->data_dev, 0, ti->len, data); 4014 } 4015 4016 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4017 { 4018 struct pool_c *pt = ti->private; 4019 struct pool *pool = pt->pool; 4020 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4021 4022 /* 4023 * If max_sectors is smaller than pool->sectors_per_block adjust it 4024 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4025 * This is especially beneficial when the pool's data device is a RAID 4026 * device that has a full stripe width that matches pool->sectors_per_block 4027 * -- because even though partial RAID stripe-sized IOs will be issued to a 4028 * single RAID stripe; when aggregated they will end on a full RAID stripe 4029 * boundary.. which avoids additional partial RAID stripe writes cascading 4030 */ 4031 if (limits->max_sectors < pool->sectors_per_block) { 4032 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4033 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4034 limits->max_sectors--; 4035 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4036 } 4037 } 4038 4039 /* 4040 * If the system-determined stacked limits are compatible with the 4041 * pool's blocksize (io_opt is a factor) do not override them. 4042 */ 4043 if (io_opt_sectors < pool->sectors_per_block || 4044 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4045 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4046 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4047 else 4048 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4049 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4050 } 4051 4052 /* 4053 * pt->adjusted_pf is a staging area for the actual features to use. 4054 * They get transferred to the live pool in bind_control_target() 4055 * called from pool_preresume(). 4056 */ 4057 if (!pt->adjusted_pf.discard_enabled) { 4058 /* 4059 * Must explicitly disallow stacking discard limits otherwise the 4060 * block layer will stack them if pool's data device has support. 4061 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4062 * user to see that, so make sure to set all discard limits to 0. 4063 */ 4064 limits->discard_granularity = 0; 4065 return; 4066 } 4067 4068 disable_passdown_if_not_supported(pt); 4069 4070 /* 4071 * The pool uses the same discard limits as the underlying data 4072 * device. DM core has already set this up. 4073 */ 4074 } 4075 4076 static struct target_type pool_target = { 4077 .name = "thin-pool", 4078 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4079 DM_TARGET_IMMUTABLE, 4080 .version = {1, 21, 0}, 4081 .module = THIS_MODULE, 4082 .ctr = pool_ctr, 4083 .dtr = pool_dtr, 4084 .map = pool_map, 4085 .presuspend = pool_presuspend, 4086 .presuspend_undo = pool_presuspend_undo, 4087 .postsuspend = pool_postsuspend, 4088 .preresume = pool_preresume, 4089 .resume = pool_resume, 4090 .message = pool_message, 4091 .status = pool_status, 4092 .iterate_devices = pool_iterate_devices, 4093 .io_hints = pool_io_hints, 4094 }; 4095 4096 /*---------------------------------------------------------------- 4097 * Thin target methods 4098 *--------------------------------------------------------------*/ 4099 static void thin_get(struct thin_c *tc) 4100 { 4101 refcount_inc(&tc->refcount); 4102 } 4103 4104 static void thin_put(struct thin_c *tc) 4105 { 4106 if (refcount_dec_and_test(&tc->refcount)) 4107 complete(&tc->can_destroy); 4108 } 4109 4110 static void thin_dtr(struct dm_target *ti) 4111 { 4112 struct thin_c *tc = ti->private; 4113 unsigned long flags; 4114 4115 spin_lock_irqsave(&tc->pool->lock, flags); 4116 list_del_rcu(&tc->list); 4117 spin_unlock_irqrestore(&tc->pool->lock, flags); 4118 synchronize_rcu(); 4119 4120 thin_put(tc); 4121 wait_for_completion(&tc->can_destroy); 4122 4123 mutex_lock(&dm_thin_pool_table.mutex); 4124 4125 __pool_dec(tc->pool); 4126 dm_pool_close_thin_device(tc->td); 4127 dm_put_device(ti, tc->pool_dev); 4128 if (tc->origin_dev) 4129 dm_put_device(ti, tc->origin_dev); 4130 kfree(tc); 4131 4132 mutex_unlock(&dm_thin_pool_table.mutex); 4133 } 4134 4135 /* 4136 * Thin target parameters: 4137 * 4138 * <pool_dev> <dev_id> [origin_dev] 4139 * 4140 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4141 * dev_id: the internal device identifier 4142 * origin_dev: a device external to the pool that should act as the origin 4143 * 4144 * If the pool device has discards disabled, they get disabled for the thin 4145 * device as well. 4146 */ 4147 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4148 { 4149 int r; 4150 struct thin_c *tc; 4151 struct dm_dev *pool_dev, *origin_dev; 4152 struct mapped_device *pool_md; 4153 unsigned long flags; 4154 4155 mutex_lock(&dm_thin_pool_table.mutex); 4156 4157 if (argc != 2 && argc != 3) { 4158 ti->error = "Invalid argument count"; 4159 r = -EINVAL; 4160 goto out_unlock; 4161 } 4162 4163 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4164 if (!tc) { 4165 ti->error = "Out of memory"; 4166 r = -ENOMEM; 4167 goto out_unlock; 4168 } 4169 tc->thin_md = dm_table_get_md(ti->table); 4170 spin_lock_init(&tc->lock); 4171 INIT_LIST_HEAD(&tc->deferred_cells); 4172 bio_list_init(&tc->deferred_bio_list); 4173 bio_list_init(&tc->retry_on_resume_list); 4174 tc->sort_bio_list = RB_ROOT; 4175 4176 if (argc == 3) { 4177 if (!strcmp(argv[0], argv[2])) { 4178 ti->error = "Error setting origin device"; 4179 r = -EINVAL; 4180 goto bad_origin_dev; 4181 } 4182 4183 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4184 if (r) { 4185 ti->error = "Error opening origin device"; 4186 goto bad_origin_dev; 4187 } 4188 tc->origin_dev = origin_dev; 4189 } 4190 4191 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4192 if (r) { 4193 ti->error = "Error opening pool device"; 4194 goto bad_pool_dev; 4195 } 4196 tc->pool_dev = pool_dev; 4197 4198 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4199 ti->error = "Invalid device id"; 4200 r = -EINVAL; 4201 goto bad_common; 4202 } 4203 4204 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4205 if (!pool_md) { 4206 ti->error = "Couldn't get pool mapped device"; 4207 r = -EINVAL; 4208 goto bad_common; 4209 } 4210 4211 tc->pool = __pool_table_lookup(pool_md); 4212 if (!tc->pool) { 4213 ti->error = "Couldn't find pool object"; 4214 r = -EINVAL; 4215 goto bad_pool_lookup; 4216 } 4217 __pool_inc(tc->pool); 4218 4219 if (get_pool_mode(tc->pool) == PM_FAIL) { 4220 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4221 r = -EINVAL; 4222 goto bad_pool; 4223 } 4224 4225 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4226 if (r) { 4227 ti->error = "Couldn't open thin internal device"; 4228 goto bad_pool; 4229 } 4230 4231 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4232 if (r) 4233 goto bad; 4234 4235 ti->num_flush_bios = 1; 4236 ti->flush_supported = true; 4237 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4238 4239 /* In case the pool supports discards, pass them on. */ 4240 if (tc->pool->pf.discard_enabled) { 4241 ti->discards_supported = true; 4242 ti->num_discard_bios = 1; 4243 } 4244 4245 mutex_unlock(&dm_thin_pool_table.mutex); 4246 4247 spin_lock_irqsave(&tc->pool->lock, flags); 4248 if (tc->pool->suspended) { 4249 spin_unlock_irqrestore(&tc->pool->lock, flags); 4250 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4251 ti->error = "Unable to activate thin device while pool is suspended"; 4252 r = -EINVAL; 4253 goto bad; 4254 } 4255 refcount_set(&tc->refcount, 1); 4256 init_completion(&tc->can_destroy); 4257 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4258 spin_unlock_irqrestore(&tc->pool->lock, flags); 4259 /* 4260 * This synchronize_rcu() call is needed here otherwise we risk a 4261 * wake_worker() call finding no bios to process (because the newly 4262 * added tc isn't yet visible). So this reduces latency since we 4263 * aren't then dependent on the periodic commit to wake_worker(). 4264 */ 4265 synchronize_rcu(); 4266 4267 dm_put(pool_md); 4268 4269 return 0; 4270 4271 bad: 4272 dm_pool_close_thin_device(tc->td); 4273 bad_pool: 4274 __pool_dec(tc->pool); 4275 bad_pool_lookup: 4276 dm_put(pool_md); 4277 bad_common: 4278 dm_put_device(ti, tc->pool_dev); 4279 bad_pool_dev: 4280 if (tc->origin_dev) 4281 dm_put_device(ti, tc->origin_dev); 4282 bad_origin_dev: 4283 kfree(tc); 4284 out_unlock: 4285 mutex_unlock(&dm_thin_pool_table.mutex); 4286 4287 return r; 4288 } 4289 4290 static int thin_map(struct dm_target *ti, struct bio *bio) 4291 { 4292 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4293 4294 return thin_bio_map(ti, bio); 4295 } 4296 4297 static int thin_endio(struct dm_target *ti, struct bio *bio, 4298 blk_status_t *err) 4299 { 4300 unsigned long flags; 4301 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4302 struct list_head work; 4303 struct dm_thin_new_mapping *m, *tmp; 4304 struct pool *pool = h->tc->pool; 4305 4306 if (h->shared_read_entry) { 4307 INIT_LIST_HEAD(&work); 4308 dm_deferred_entry_dec(h->shared_read_entry, &work); 4309 4310 spin_lock_irqsave(&pool->lock, flags); 4311 list_for_each_entry_safe(m, tmp, &work, list) { 4312 list_del(&m->list); 4313 __complete_mapping_preparation(m); 4314 } 4315 spin_unlock_irqrestore(&pool->lock, flags); 4316 } 4317 4318 if (h->all_io_entry) { 4319 INIT_LIST_HEAD(&work); 4320 dm_deferred_entry_dec(h->all_io_entry, &work); 4321 if (!list_empty(&work)) { 4322 spin_lock_irqsave(&pool->lock, flags); 4323 list_for_each_entry_safe(m, tmp, &work, list) 4324 list_add_tail(&m->list, &pool->prepared_discards); 4325 spin_unlock_irqrestore(&pool->lock, flags); 4326 wake_worker(pool); 4327 } 4328 } 4329 4330 if (h->cell) 4331 cell_defer_no_holder(h->tc, h->cell); 4332 4333 return DM_ENDIO_DONE; 4334 } 4335 4336 static void thin_presuspend(struct dm_target *ti) 4337 { 4338 struct thin_c *tc = ti->private; 4339 4340 if (dm_noflush_suspending(ti)) 4341 noflush_work(tc, do_noflush_start); 4342 } 4343 4344 static void thin_postsuspend(struct dm_target *ti) 4345 { 4346 struct thin_c *tc = ti->private; 4347 4348 /* 4349 * The dm_noflush_suspending flag has been cleared by now, so 4350 * unfortunately we must always run this. 4351 */ 4352 noflush_work(tc, do_noflush_stop); 4353 } 4354 4355 static int thin_preresume(struct dm_target *ti) 4356 { 4357 struct thin_c *tc = ti->private; 4358 4359 if (tc->origin_dev) 4360 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4361 4362 return 0; 4363 } 4364 4365 /* 4366 * <nr mapped sectors> <highest mapped sector> 4367 */ 4368 static void thin_status(struct dm_target *ti, status_type_t type, 4369 unsigned status_flags, char *result, unsigned maxlen) 4370 { 4371 int r; 4372 ssize_t sz = 0; 4373 dm_block_t mapped, highest; 4374 char buf[BDEVNAME_SIZE]; 4375 struct thin_c *tc = ti->private; 4376 4377 if (get_pool_mode(tc->pool) == PM_FAIL) { 4378 DMEMIT("Fail"); 4379 return; 4380 } 4381 4382 if (!tc->td) 4383 DMEMIT("-"); 4384 else { 4385 switch (type) { 4386 case STATUSTYPE_INFO: 4387 r = dm_thin_get_mapped_count(tc->td, &mapped); 4388 if (r) { 4389 DMERR("dm_thin_get_mapped_count returned %d", r); 4390 goto err; 4391 } 4392 4393 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4394 if (r < 0) { 4395 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4396 goto err; 4397 } 4398 4399 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4400 if (r) 4401 DMEMIT("%llu", ((highest + 1) * 4402 tc->pool->sectors_per_block) - 1); 4403 else 4404 DMEMIT("-"); 4405 break; 4406 4407 case STATUSTYPE_TABLE: 4408 DMEMIT("%s %lu", 4409 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4410 (unsigned long) tc->dev_id); 4411 if (tc->origin_dev) 4412 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4413 break; 4414 } 4415 } 4416 4417 return; 4418 4419 err: 4420 DMEMIT("Error"); 4421 } 4422 4423 static int thin_iterate_devices(struct dm_target *ti, 4424 iterate_devices_callout_fn fn, void *data) 4425 { 4426 sector_t blocks; 4427 struct thin_c *tc = ti->private; 4428 struct pool *pool = tc->pool; 4429 4430 /* 4431 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4432 * we follow a more convoluted path through to the pool's target. 4433 */ 4434 if (!pool->ti) 4435 return 0; /* nothing is bound */ 4436 4437 blocks = pool->ti->len; 4438 (void) sector_div(blocks, pool->sectors_per_block); 4439 if (blocks) 4440 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4441 4442 return 0; 4443 } 4444 4445 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4446 { 4447 struct thin_c *tc = ti->private; 4448 struct pool *pool = tc->pool; 4449 4450 if (!pool->pf.discard_enabled) 4451 return; 4452 4453 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4454 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4455 } 4456 4457 static struct target_type thin_target = { 4458 .name = "thin", 4459 .version = {1, 21, 0}, 4460 .module = THIS_MODULE, 4461 .ctr = thin_ctr, 4462 .dtr = thin_dtr, 4463 .map = thin_map, 4464 .end_io = thin_endio, 4465 .preresume = thin_preresume, 4466 .presuspend = thin_presuspend, 4467 .postsuspend = thin_postsuspend, 4468 .status = thin_status, 4469 .iterate_devices = thin_iterate_devices, 4470 .io_hints = thin_io_hints, 4471 }; 4472 4473 /*----------------------------------------------------------------*/ 4474 4475 static int __init dm_thin_init(void) 4476 { 4477 int r = -ENOMEM; 4478 4479 pool_table_init(); 4480 4481 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4482 if (!_new_mapping_cache) 4483 return r; 4484 4485 r = dm_register_target(&thin_target); 4486 if (r) 4487 goto bad_new_mapping_cache; 4488 4489 r = dm_register_target(&pool_target); 4490 if (r) 4491 goto bad_thin_target; 4492 4493 return 0; 4494 4495 bad_thin_target: 4496 dm_unregister_target(&thin_target); 4497 bad_new_mapping_cache: 4498 kmem_cache_destroy(_new_mapping_cache); 4499 4500 return r; 4501 } 4502 4503 static void dm_thin_exit(void) 4504 { 4505 dm_unregister_target(&thin_target); 4506 dm_unregister_target(&pool_target); 4507 4508 kmem_cache_destroy(_new_mapping_cache); 4509 4510 pool_table_exit(); 4511 } 4512 4513 module_init(dm_thin_init); 4514 module_exit(dm_thin_exit); 4515 4516 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4517 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4518 4519 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4520 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4521 MODULE_LICENSE("GPL"); 4522