xref: /openbmc/linux/drivers/md/dm-thin.c (revision bc000245)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 
19 #define	DM_MSG_PREFIX	"thin"
20 
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 		"A percentage of time allocated for copy on write");
31 
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38 
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43 
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101 
102 /*----------------------------------------------------------------*/
103 
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108 			   dm_block_t b, struct dm_cell_key *key)
109 {
110 	key->virtual = 0;
111 	key->dev = dm_thin_dev_id(td);
112 	key->block = b;
113 }
114 
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 			      struct dm_cell_key *key)
117 {
118 	key->virtual = 1;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block = b;
121 }
122 
123 /*----------------------------------------------------------------*/
124 
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131 
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136 	PM_WRITE,		/* metadata may be changed */
137 	PM_READ_ONLY,		/* metadata may not be changed */
138 	PM_FAIL,		/* all I/O fails */
139 };
140 
141 struct pool_features {
142 	enum pool_mode mode;
143 
144 	bool zero_new_blocks:1;
145 	bool discard_enabled:1;
146 	bool discard_passdown:1;
147 };
148 
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152 
153 struct pool {
154 	struct list_head list;
155 	struct dm_target *ti;	/* Only set if a pool target is bound */
156 
157 	struct mapped_device *pool_md;
158 	struct block_device *md_dev;
159 	struct dm_pool_metadata *pmd;
160 
161 	dm_block_t low_water_blocks;
162 	uint32_t sectors_per_block;
163 	int sectors_per_block_shift;
164 
165 	struct pool_features pf;
166 	unsigned low_water_triggered:1;	/* A dm event has been sent */
167 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
168 
169 	struct dm_bio_prison *prison;
170 	struct dm_kcopyd_client *copier;
171 
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 	struct delayed_work waker;
175 
176 	unsigned long last_commit_jiffies;
177 	unsigned ref_count;
178 
179 	spinlock_t lock;
180 	struct bio_list deferred_bios;
181 	struct bio_list deferred_flush_bios;
182 	struct list_head prepared_mappings;
183 	struct list_head prepared_discards;
184 
185 	struct bio_list retry_on_resume_list;
186 
187 	struct dm_deferred_set *shared_read_ds;
188 	struct dm_deferred_set *all_io_ds;
189 
190 	struct dm_thin_new_mapping *next_mapping;
191 	mempool_t *mapping_pool;
192 
193 	process_bio_fn process_bio;
194 	process_bio_fn process_discard;
195 
196 	process_mapping_fn process_prepared_mapping;
197 	process_mapping_fn process_prepared_discard;
198 };
199 
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202 
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207 	struct dm_target *ti;
208 	struct pool *pool;
209 	struct dm_dev *data_dev;
210 	struct dm_dev *metadata_dev;
211 	struct dm_target_callbacks callbacks;
212 
213 	dm_block_t low_water_blocks;
214 	struct pool_features requested_pf; /* Features requested during table load */
215 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217 
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222 	struct dm_dev *pool_dev;
223 	struct dm_dev *origin_dev;
224 	dm_thin_id dev_id;
225 
226 	struct pool *pool;
227 	struct dm_thin_device *td;
228 };
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238 	queue_work(pool->wq, &pool->worker);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 		      struct dm_bio_prison_cell **cell_result)
245 {
246 	int r;
247 	struct dm_bio_prison_cell *cell_prealloc;
248 
249 	/*
250 	 * Allocate a cell from the prison's mempool.
251 	 * This might block but it can't fail.
252 	 */
253 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254 
255 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 	if (r)
257 		/*
258 		 * We reused an old cell; we can get rid of
259 		 * the new one.
260 		 */
261 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262 
263 	return r;
264 }
265 
266 static void cell_release(struct pool *pool,
267 			 struct dm_bio_prison_cell *cell,
268 			 struct bio_list *bios)
269 {
270 	dm_cell_release(pool->prison, cell, bios);
271 	dm_bio_prison_free_cell(pool->prison, cell);
272 }
273 
274 static void cell_release_no_holder(struct pool *pool,
275 				   struct dm_bio_prison_cell *cell,
276 				   struct bio_list *bios)
277 {
278 	dm_cell_release_no_holder(pool->prison, cell, bios);
279 	dm_bio_prison_free_cell(pool->prison, cell);
280 }
281 
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 					 struct dm_bio_prison_cell *cell)
284 {
285 	struct pool *pool = tc->pool;
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&pool->lock, flags);
289 	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 	spin_unlock_irqrestore(&pool->lock, flags);
291 
292 	wake_worker(pool);
293 }
294 
295 static void cell_error(struct pool *pool,
296 		       struct dm_bio_prison_cell *cell)
297 {
298 	dm_cell_error(pool->prison, cell);
299 	dm_bio_prison_free_cell(pool->prison, cell);
300 }
301 
302 /*----------------------------------------------------------------*/
303 
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308 	struct mutex mutex;
309 	struct list_head pools;
310 } dm_thin_pool_table;
311 
312 static void pool_table_init(void)
313 {
314 	mutex_init(&dm_thin_pool_table.mutex);
315 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317 
318 static void __pool_table_insert(struct pool *pool)
319 {
320 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 	list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323 
324 static void __pool_table_remove(struct pool *pool)
325 {
326 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 	list_del(&pool->list);
328 }
329 
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 	struct pool *pool = NULL, *tmp;
333 
334 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 
336 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 		if (tmp->pool_md == md) {
338 			pool = tmp;
339 			break;
340 		}
341 	}
342 
343 	return pool;
344 }
345 
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 	struct pool *pool = NULL, *tmp;
349 
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 
352 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 		if (tmp->md_dev == md_dev) {
354 			pool = tmp;
355 			break;
356 		}
357 	}
358 
359 	return pool;
360 }
361 
362 /*----------------------------------------------------------------*/
363 
364 struct dm_thin_endio_hook {
365 	struct thin_c *tc;
366 	struct dm_deferred_entry *shared_read_entry;
367 	struct dm_deferred_entry *all_io_entry;
368 	struct dm_thin_new_mapping *overwrite_mapping;
369 };
370 
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 	struct bio *bio;
374 	struct bio_list bios;
375 
376 	bio_list_init(&bios);
377 	bio_list_merge(&bios, master);
378 	bio_list_init(master);
379 
380 	while ((bio = bio_list_pop(&bios))) {
381 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382 
383 		if (h->tc == tc)
384 			bio_endio(bio, DM_ENDIO_REQUEUE);
385 		else
386 			bio_list_add(master, bio);
387 	}
388 }
389 
390 static void requeue_io(struct thin_c *tc)
391 {
392 	struct pool *pool = tc->pool;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&pool->lock, flags);
396 	__requeue_bio_list(tc, &pool->deferred_bios);
397 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
398 	spin_unlock_irqrestore(&pool->lock, flags);
399 }
400 
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407 
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 	return pool->sectors_per_block_shift >= 0;
411 }
412 
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 	struct pool *pool = tc->pool;
416 	sector_t block_nr = bio->bi_sector;
417 
418 	if (block_size_is_power_of_two(pool))
419 		block_nr >>= pool->sectors_per_block_shift;
420 	else
421 		(void) sector_div(block_nr, pool->sectors_per_block);
422 
423 	return block_nr;
424 }
425 
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 	struct pool *pool = tc->pool;
429 	sector_t bi_sector = bio->bi_sector;
430 
431 	bio->bi_bdev = tc->pool_dev->bdev;
432 	if (block_size_is_power_of_two(pool))
433 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 				(bi_sector & (pool->sectors_per_block - 1));
435 	else
436 		bio->bi_sector = (block * pool->sectors_per_block) +
437 				 sector_div(bi_sector, pool->sectors_per_block);
438 }
439 
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 	bio->bi_bdev = tc->origin_dev->bdev;
443 }
444 
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 		dm_thin_changed_this_transaction(tc->td);
449 }
450 
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 	struct dm_thin_endio_hook *h;
454 
455 	if (bio->bi_rw & REQ_DISCARD)
456 		return;
457 
458 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461 
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 	struct pool *pool = tc->pool;
465 	unsigned long flags;
466 
467 	if (!bio_triggers_commit(tc, bio)) {
468 		generic_make_request(bio);
469 		return;
470 	}
471 
472 	/*
473 	 * Complete bio with an error if earlier I/O caused changes to
474 	 * the metadata that can't be committed e.g, due to I/O errors
475 	 * on the metadata device.
476 	 */
477 	if (dm_thin_aborted_changes(tc->td)) {
478 		bio_io_error(bio);
479 		return;
480 	}
481 
482 	/*
483 	 * Batch together any bios that trigger commits and then issue a
484 	 * single commit for them in process_deferred_bios().
485 	 */
486 	spin_lock_irqsave(&pool->lock, flags);
487 	bio_list_add(&pool->deferred_flush_bios, bio);
488 	spin_unlock_irqrestore(&pool->lock, flags);
489 }
490 
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 	remap_to_origin(tc, bio);
494 	issue(tc, bio);
495 }
496 
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 			    dm_block_t block)
499 {
500 	remap(tc, bio, block);
501 	issue(tc, bio);
502 }
503 
504 /*----------------------------------------------------------------*/
505 
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510 	struct list_head list;
511 
512 	unsigned quiesced:1;
513 	unsigned prepared:1;
514 	unsigned pass_discard:1;
515 
516 	struct thin_c *tc;
517 	dm_block_t virt_block;
518 	dm_block_t data_block;
519 	struct dm_bio_prison_cell *cell, *cell2;
520 	int err;
521 
522 	/*
523 	 * If the bio covers the whole area of a block then we can avoid
524 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
525 	 * still be in the cell, so care has to be taken to avoid issuing
526 	 * the bio twice.
527 	 */
528 	struct bio *bio;
529 	bio_end_io_t *saved_bi_end_io;
530 };
531 
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 	struct pool *pool = m->tc->pool;
535 
536 	if (m->quiesced && m->prepared) {
537 		list_add(&m->list, &pool->prepared_mappings);
538 		wake_worker(pool);
539 	}
540 }
541 
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 	unsigned long flags;
545 	struct dm_thin_new_mapping *m = context;
546 	struct pool *pool = m->tc->pool;
547 
548 	m->err = read_err || write_err ? -EIO : 0;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	m->prepared = 1;
552 	__maybe_add_mapping(m);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 }
555 
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 	unsigned long flags;
559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 	struct pool *pool = m->tc->pool;
562 
563 	m->err = err;
564 
565 	spin_lock_irqsave(&pool->lock, flags);
566 	m->prepared = 1;
567 	__maybe_add_mapping(m);
568 	spin_unlock_irqrestore(&pool->lock, flags);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * Workqueue.
575  */
576 
577 /*
578  * Prepared mapping jobs.
579  */
580 
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 	struct pool *pool = tc->pool;
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&pool->lock, flags);
590 	cell_release(pool, cell, &pool->deferred_bios);
591 	spin_unlock_irqrestore(&tc->pool->lock, flags);
592 
593 	wake_worker(pool);
594 }
595 
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 	struct pool *pool = tc->pool;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&pool->lock, flags);
605 	cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 	spin_unlock_irqrestore(&pool->lock, flags);
607 
608 	wake_worker(pool);
609 }
610 
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 	if (m->bio)
614 		m->bio->bi_end_io = m->saved_bi_end_io;
615 	cell_error(m->tc->pool, m->cell);
616 	list_del(&m->list);
617 	mempool_free(m, m->tc->pool->mapping_pool);
618 }
619 
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 	struct thin_c *tc = m->tc;
623 	struct pool *pool = tc->pool;
624 	struct bio *bio;
625 	int r;
626 
627 	bio = m->bio;
628 	if (bio)
629 		bio->bi_end_io = m->saved_bi_end_io;
630 
631 	if (m->err) {
632 		cell_error(pool, m->cell);
633 		goto out;
634 	}
635 
636 	/*
637 	 * Commit the prepared block into the mapping btree.
638 	 * Any I/O for this block arriving after this point will get
639 	 * remapped to it directly.
640 	 */
641 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 	if (r) {
643 		DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
644 			    dm_device_name(pool->pool_md), r);
645 		set_pool_mode(pool, PM_READ_ONLY);
646 		cell_error(pool, m->cell);
647 		goto out;
648 	}
649 
650 	/*
651 	 * Release any bios held while the block was being provisioned.
652 	 * If we are processing a write bio that completely covers the block,
653 	 * we already processed it so can ignore it now when processing
654 	 * the bios in the cell.
655 	 */
656 	if (bio) {
657 		cell_defer_no_holder(tc, m->cell);
658 		bio_endio(bio, 0);
659 	} else
660 		cell_defer(tc, m->cell);
661 
662 out:
663 	list_del(&m->list);
664 	mempool_free(m, pool->mapping_pool);
665 }
666 
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669 	struct thin_c *tc = m->tc;
670 
671 	bio_io_error(m->bio);
672 	cell_defer_no_holder(tc, m->cell);
673 	cell_defer_no_holder(tc, m->cell2);
674 	mempool_free(m, tc->pool->mapping_pool);
675 }
676 
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679 	struct thin_c *tc = m->tc;
680 
681 	inc_all_io_entry(tc->pool, m->bio);
682 	cell_defer_no_holder(tc, m->cell);
683 	cell_defer_no_holder(tc, m->cell2);
684 
685 	if (m->pass_discard)
686 		remap_and_issue(tc, m->bio, m->data_block);
687 	else
688 		bio_endio(m->bio, 0);
689 
690 	mempool_free(m, tc->pool->mapping_pool);
691 }
692 
693 static void process_prepared_discard(struct dm_thin_new_mapping *m)
694 {
695 	int r;
696 	struct thin_c *tc = m->tc;
697 
698 	r = dm_thin_remove_block(tc->td, m->virt_block);
699 	if (r)
700 		DMERR_LIMIT("dm_thin_remove_block() failed");
701 
702 	process_prepared_discard_passdown(m);
703 }
704 
705 static void process_prepared(struct pool *pool, struct list_head *head,
706 			     process_mapping_fn *fn)
707 {
708 	unsigned long flags;
709 	struct list_head maps;
710 	struct dm_thin_new_mapping *m, *tmp;
711 
712 	INIT_LIST_HEAD(&maps);
713 	spin_lock_irqsave(&pool->lock, flags);
714 	list_splice_init(head, &maps);
715 	spin_unlock_irqrestore(&pool->lock, flags);
716 
717 	list_for_each_entry_safe(m, tmp, &maps, list)
718 		(*fn)(m);
719 }
720 
721 /*
722  * Deferred bio jobs.
723  */
724 static int io_overlaps_block(struct pool *pool, struct bio *bio)
725 {
726 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
727 }
728 
729 static int io_overwrites_block(struct pool *pool, struct bio *bio)
730 {
731 	return (bio_data_dir(bio) == WRITE) &&
732 		io_overlaps_block(pool, bio);
733 }
734 
735 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
736 			       bio_end_io_t *fn)
737 {
738 	*save = bio->bi_end_io;
739 	bio->bi_end_io = fn;
740 }
741 
742 static int ensure_next_mapping(struct pool *pool)
743 {
744 	if (pool->next_mapping)
745 		return 0;
746 
747 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
748 
749 	return pool->next_mapping ? 0 : -ENOMEM;
750 }
751 
752 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
753 {
754 	struct dm_thin_new_mapping *r = pool->next_mapping;
755 
756 	BUG_ON(!pool->next_mapping);
757 
758 	pool->next_mapping = NULL;
759 
760 	return r;
761 }
762 
763 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
764 			  struct dm_dev *origin, dm_block_t data_origin,
765 			  dm_block_t data_dest,
766 			  struct dm_bio_prison_cell *cell, struct bio *bio)
767 {
768 	int r;
769 	struct pool *pool = tc->pool;
770 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
771 
772 	INIT_LIST_HEAD(&m->list);
773 	m->quiesced = 0;
774 	m->prepared = 0;
775 	m->tc = tc;
776 	m->virt_block = virt_block;
777 	m->data_block = data_dest;
778 	m->cell = cell;
779 	m->err = 0;
780 	m->bio = NULL;
781 
782 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
783 		m->quiesced = 1;
784 
785 	/*
786 	 * IO to pool_dev remaps to the pool target's data_dev.
787 	 *
788 	 * If the whole block of data is being overwritten, we can issue the
789 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
790 	 */
791 	if (io_overwrites_block(pool, bio)) {
792 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
793 
794 		h->overwrite_mapping = m;
795 		m->bio = bio;
796 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
797 		inc_all_io_entry(pool, bio);
798 		remap_and_issue(tc, bio, data_dest);
799 	} else {
800 		struct dm_io_region from, to;
801 
802 		from.bdev = origin->bdev;
803 		from.sector = data_origin * pool->sectors_per_block;
804 		from.count = pool->sectors_per_block;
805 
806 		to.bdev = tc->pool_dev->bdev;
807 		to.sector = data_dest * pool->sectors_per_block;
808 		to.count = pool->sectors_per_block;
809 
810 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
811 				   0, copy_complete, m);
812 		if (r < 0) {
813 			mempool_free(m, pool->mapping_pool);
814 			DMERR_LIMIT("dm_kcopyd_copy() failed");
815 			cell_error(pool, cell);
816 		}
817 	}
818 }
819 
820 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
821 				   dm_block_t data_origin, dm_block_t data_dest,
822 				   struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824 	schedule_copy(tc, virt_block, tc->pool_dev,
825 		      data_origin, data_dest, cell, bio);
826 }
827 
828 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
829 				   dm_block_t data_dest,
830 				   struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832 	schedule_copy(tc, virt_block, tc->origin_dev,
833 		      virt_block, data_dest, cell, bio);
834 }
835 
836 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
837 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
838 			  struct bio *bio)
839 {
840 	struct pool *pool = tc->pool;
841 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
842 
843 	INIT_LIST_HEAD(&m->list);
844 	m->quiesced = 1;
845 	m->prepared = 0;
846 	m->tc = tc;
847 	m->virt_block = virt_block;
848 	m->data_block = data_block;
849 	m->cell = cell;
850 	m->err = 0;
851 	m->bio = NULL;
852 
853 	/*
854 	 * If the whole block of data is being overwritten or we are not
855 	 * zeroing pre-existing data, we can issue the bio immediately.
856 	 * Otherwise we use kcopyd to zero the data first.
857 	 */
858 	if (!pool->pf.zero_new_blocks)
859 		process_prepared_mapping(m);
860 
861 	else if (io_overwrites_block(pool, bio)) {
862 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863 
864 		h->overwrite_mapping = m;
865 		m->bio = bio;
866 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
867 		inc_all_io_entry(pool, bio);
868 		remap_and_issue(tc, bio, data_block);
869 	} else {
870 		int r;
871 		struct dm_io_region to;
872 
873 		to.bdev = tc->pool_dev->bdev;
874 		to.sector = data_block * pool->sectors_per_block;
875 		to.count = pool->sectors_per_block;
876 
877 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
878 		if (r < 0) {
879 			mempool_free(m, pool->mapping_pool);
880 			DMERR_LIMIT("dm_kcopyd_zero() failed");
881 			cell_error(pool, cell);
882 		}
883 	}
884 }
885 
886 /*
887  * A non-zero return indicates read_only or fail_io mode.
888  * Many callers don't care about the return value.
889  */
890 static int commit(struct pool *pool)
891 {
892 	int r;
893 
894 	if (get_pool_mode(pool) != PM_WRITE)
895 		return -EINVAL;
896 
897 	r = dm_pool_commit_metadata(pool->pmd);
898 	if (r) {
899 		DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
900 			    dm_device_name(pool->pool_md), r);
901 		set_pool_mode(pool, PM_READ_ONLY);
902 	}
903 
904 	return r;
905 }
906 
907 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
908 {
909 	int r;
910 	dm_block_t free_blocks;
911 	unsigned long flags;
912 	struct pool *pool = tc->pool;
913 
914 	/*
915 	 * Once no_free_space is set we must not allow allocation to succeed.
916 	 * Otherwise it is difficult to explain, debug, test and support.
917 	 */
918 	if (pool->no_free_space)
919 		return -ENOSPC;
920 
921 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
922 	if (r)
923 		return r;
924 
925 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
926 		DMWARN("%s: reached low water mark for data device: sending event.",
927 		       dm_device_name(pool->pool_md));
928 		spin_lock_irqsave(&pool->lock, flags);
929 		pool->low_water_triggered = 1;
930 		spin_unlock_irqrestore(&pool->lock, flags);
931 		dm_table_event(pool->ti->table);
932 	}
933 
934 	if (!free_blocks) {
935 		/*
936 		 * Try to commit to see if that will free up some
937 		 * more space.
938 		 */
939 		r = commit(pool);
940 		if (r)
941 			return r;
942 
943 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 		if (r)
945 			return r;
946 
947 		/*
948 		 * If we still have no space we set a flag to avoid
949 		 * doing all this checking and return -ENOSPC.  This
950 		 * flag serves as a latch that disallows allocations from
951 		 * this pool until the admin takes action (e.g. resize or
952 		 * table reload).
953 		 */
954 		if (!free_blocks) {
955 			DMWARN("%s: no free data space available.",
956 			       dm_device_name(pool->pool_md));
957 			spin_lock_irqsave(&pool->lock, flags);
958 			pool->no_free_space = 1;
959 			spin_unlock_irqrestore(&pool->lock, flags);
960 			return -ENOSPC;
961 		}
962 	}
963 
964 	r = dm_pool_alloc_data_block(pool->pmd, result);
965 	if (r) {
966 		if (r == -ENOSPC &&
967 		    !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
968 		    !free_blocks) {
969 			DMWARN("%s: no free metadata space available.",
970 			       dm_device_name(pool->pool_md));
971 			set_pool_mode(pool, PM_READ_ONLY);
972 		}
973 		return r;
974 	}
975 
976 	return 0;
977 }
978 
979 /*
980  * If we have run out of space, queue bios until the device is
981  * resumed, presumably after having been reloaded with more space.
982  */
983 static void retry_on_resume(struct bio *bio)
984 {
985 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986 	struct thin_c *tc = h->tc;
987 	struct pool *pool = tc->pool;
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&pool->lock, flags);
991 	bio_list_add(&pool->retry_on_resume_list, bio);
992 	spin_unlock_irqrestore(&pool->lock, flags);
993 }
994 
995 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
996 {
997 	struct bio *bio;
998 	struct bio_list bios;
999 
1000 	bio_list_init(&bios);
1001 	cell_release(pool, cell, &bios);
1002 
1003 	while ((bio = bio_list_pop(&bios)))
1004 		retry_on_resume(bio);
1005 }
1006 
1007 static void process_discard(struct thin_c *tc, struct bio *bio)
1008 {
1009 	int r;
1010 	unsigned long flags;
1011 	struct pool *pool = tc->pool;
1012 	struct dm_bio_prison_cell *cell, *cell2;
1013 	struct dm_cell_key key, key2;
1014 	dm_block_t block = get_bio_block(tc, bio);
1015 	struct dm_thin_lookup_result lookup_result;
1016 	struct dm_thin_new_mapping *m;
1017 
1018 	build_virtual_key(tc->td, block, &key);
1019 	if (bio_detain(tc->pool, &key, bio, &cell))
1020 		return;
1021 
1022 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1023 	switch (r) {
1024 	case 0:
1025 		/*
1026 		 * Check nobody is fiddling with this pool block.  This can
1027 		 * happen if someone's in the process of breaking sharing
1028 		 * on this block.
1029 		 */
1030 		build_data_key(tc->td, lookup_result.block, &key2);
1031 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1032 			cell_defer_no_holder(tc, cell);
1033 			break;
1034 		}
1035 
1036 		if (io_overlaps_block(pool, bio)) {
1037 			/*
1038 			 * IO may still be going to the destination block.  We must
1039 			 * quiesce before we can do the removal.
1040 			 */
1041 			m = get_next_mapping(pool);
1042 			m->tc = tc;
1043 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1044 			m->virt_block = block;
1045 			m->data_block = lookup_result.block;
1046 			m->cell = cell;
1047 			m->cell2 = cell2;
1048 			m->err = 0;
1049 			m->bio = bio;
1050 
1051 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1052 				spin_lock_irqsave(&pool->lock, flags);
1053 				list_add(&m->list, &pool->prepared_discards);
1054 				spin_unlock_irqrestore(&pool->lock, flags);
1055 				wake_worker(pool);
1056 			}
1057 		} else {
1058 			inc_all_io_entry(pool, bio);
1059 			cell_defer_no_holder(tc, cell);
1060 			cell_defer_no_holder(tc, cell2);
1061 
1062 			/*
1063 			 * The DM core makes sure that the discard doesn't span
1064 			 * a block boundary.  So we submit the discard of a
1065 			 * partial block appropriately.
1066 			 */
1067 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1068 				remap_and_issue(tc, bio, lookup_result.block);
1069 			else
1070 				bio_endio(bio, 0);
1071 		}
1072 		break;
1073 
1074 	case -ENODATA:
1075 		/*
1076 		 * It isn't provisioned, just forget it.
1077 		 */
1078 		cell_defer_no_holder(tc, cell);
1079 		bio_endio(bio, 0);
1080 		break;
1081 
1082 	default:
1083 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1084 			    __func__, r);
1085 		cell_defer_no_holder(tc, cell);
1086 		bio_io_error(bio);
1087 		break;
1088 	}
1089 }
1090 
1091 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1092 			  struct dm_cell_key *key,
1093 			  struct dm_thin_lookup_result *lookup_result,
1094 			  struct dm_bio_prison_cell *cell)
1095 {
1096 	int r;
1097 	dm_block_t data_block;
1098 	struct pool *pool = tc->pool;
1099 
1100 	r = alloc_data_block(tc, &data_block);
1101 	switch (r) {
1102 	case 0:
1103 		schedule_internal_copy(tc, block, lookup_result->block,
1104 				       data_block, cell, bio);
1105 		break;
1106 
1107 	case -ENOSPC:
1108 		no_space(pool, cell);
1109 		break;
1110 
1111 	default:
1112 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1113 			    __func__, r);
1114 		set_pool_mode(pool, PM_READ_ONLY);
1115 		cell_error(pool, cell);
1116 		break;
1117 	}
1118 }
1119 
1120 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1121 			       dm_block_t block,
1122 			       struct dm_thin_lookup_result *lookup_result)
1123 {
1124 	struct dm_bio_prison_cell *cell;
1125 	struct pool *pool = tc->pool;
1126 	struct dm_cell_key key;
1127 
1128 	/*
1129 	 * If cell is already occupied, then sharing is already in the process
1130 	 * of being broken so we have nothing further to do here.
1131 	 */
1132 	build_data_key(tc->td, lookup_result->block, &key);
1133 	if (bio_detain(pool, &key, bio, &cell))
1134 		return;
1135 
1136 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1137 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1138 	else {
1139 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1140 
1141 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1142 		inc_all_io_entry(pool, bio);
1143 		cell_defer_no_holder(tc, cell);
1144 
1145 		remap_and_issue(tc, bio, lookup_result->block);
1146 	}
1147 }
1148 
1149 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1150 			    struct dm_bio_prison_cell *cell)
1151 {
1152 	int r;
1153 	dm_block_t data_block;
1154 	struct pool *pool = tc->pool;
1155 
1156 	/*
1157 	 * Remap empty bios (flushes) immediately, without provisioning.
1158 	 */
1159 	if (!bio->bi_size) {
1160 		inc_all_io_entry(pool, bio);
1161 		cell_defer_no_holder(tc, cell);
1162 
1163 		remap_and_issue(tc, bio, 0);
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * Fill read bios with zeroes and complete them immediately.
1169 	 */
1170 	if (bio_data_dir(bio) == READ) {
1171 		zero_fill_bio(bio);
1172 		cell_defer_no_holder(tc, cell);
1173 		bio_endio(bio, 0);
1174 		return;
1175 	}
1176 
1177 	r = alloc_data_block(tc, &data_block);
1178 	switch (r) {
1179 	case 0:
1180 		if (tc->origin_dev)
1181 			schedule_external_copy(tc, block, data_block, cell, bio);
1182 		else
1183 			schedule_zero(tc, block, data_block, cell, bio);
1184 		break;
1185 
1186 	case -ENOSPC:
1187 		no_space(pool, cell);
1188 		break;
1189 
1190 	default:
1191 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1192 			    __func__, r);
1193 		set_pool_mode(pool, PM_READ_ONLY);
1194 		cell_error(pool, cell);
1195 		break;
1196 	}
1197 }
1198 
1199 static void process_bio(struct thin_c *tc, struct bio *bio)
1200 {
1201 	int r;
1202 	struct pool *pool = tc->pool;
1203 	dm_block_t block = get_bio_block(tc, bio);
1204 	struct dm_bio_prison_cell *cell;
1205 	struct dm_cell_key key;
1206 	struct dm_thin_lookup_result lookup_result;
1207 
1208 	/*
1209 	 * If cell is already occupied, then the block is already
1210 	 * being provisioned so we have nothing further to do here.
1211 	 */
1212 	build_virtual_key(tc->td, block, &key);
1213 	if (bio_detain(pool, &key, bio, &cell))
1214 		return;
1215 
1216 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1217 	switch (r) {
1218 	case 0:
1219 		if (lookup_result.shared) {
1220 			process_shared_bio(tc, bio, block, &lookup_result);
1221 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1222 		} else {
1223 			inc_all_io_entry(pool, bio);
1224 			cell_defer_no_holder(tc, cell);
1225 
1226 			remap_and_issue(tc, bio, lookup_result.block);
1227 		}
1228 		break;
1229 
1230 	case -ENODATA:
1231 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1232 			inc_all_io_entry(pool, bio);
1233 			cell_defer_no_holder(tc, cell);
1234 
1235 			remap_to_origin_and_issue(tc, bio);
1236 		} else
1237 			provision_block(tc, bio, block, cell);
1238 		break;
1239 
1240 	default:
1241 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1242 			    __func__, r);
1243 		cell_defer_no_holder(tc, cell);
1244 		bio_io_error(bio);
1245 		break;
1246 	}
1247 }
1248 
1249 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1250 {
1251 	int r;
1252 	int rw = bio_data_dir(bio);
1253 	dm_block_t block = get_bio_block(tc, bio);
1254 	struct dm_thin_lookup_result lookup_result;
1255 
1256 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1257 	switch (r) {
1258 	case 0:
1259 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1260 			bio_io_error(bio);
1261 		else {
1262 			inc_all_io_entry(tc->pool, bio);
1263 			remap_and_issue(tc, bio, lookup_result.block);
1264 		}
1265 		break;
1266 
1267 	case -ENODATA:
1268 		if (rw != READ) {
1269 			bio_io_error(bio);
1270 			break;
1271 		}
1272 
1273 		if (tc->origin_dev) {
1274 			inc_all_io_entry(tc->pool, bio);
1275 			remap_to_origin_and_issue(tc, bio);
1276 			break;
1277 		}
1278 
1279 		zero_fill_bio(bio);
1280 		bio_endio(bio, 0);
1281 		break;
1282 
1283 	default:
1284 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1285 			    __func__, r);
1286 		bio_io_error(bio);
1287 		break;
1288 	}
1289 }
1290 
1291 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1292 {
1293 	bio_io_error(bio);
1294 }
1295 
1296 /*
1297  * FIXME: should we also commit due to size of transaction, measured in
1298  * metadata blocks?
1299  */
1300 static int need_commit_due_to_time(struct pool *pool)
1301 {
1302 	return jiffies < pool->last_commit_jiffies ||
1303 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1304 }
1305 
1306 static void process_deferred_bios(struct pool *pool)
1307 {
1308 	unsigned long flags;
1309 	struct bio *bio;
1310 	struct bio_list bios;
1311 
1312 	bio_list_init(&bios);
1313 
1314 	spin_lock_irqsave(&pool->lock, flags);
1315 	bio_list_merge(&bios, &pool->deferred_bios);
1316 	bio_list_init(&pool->deferred_bios);
1317 	spin_unlock_irqrestore(&pool->lock, flags);
1318 
1319 	while ((bio = bio_list_pop(&bios))) {
1320 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1321 		struct thin_c *tc = h->tc;
1322 
1323 		/*
1324 		 * If we've got no free new_mapping structs, and processing
1325 		 * this bio might require one, we pause until there are some
1326 		 * prepared mappings to process.
1327 		 */
1328 		if (ensure_next_mapping(pool)) {
1329 			spin_lock_irqsave(&pool->lock, flags);
1330 			bio_list_merge(&pool->deferred_bios, &bios);
1331 			spin_unlock_irqrestore(&pool->lock, flags);
1332 
1333 			break;
1334 		}
1335 
1336 		if (bio->bi_rw & REQ_DISCARD)
1337 			pool->process_discard(tc, bio);
1338 		else
1339 			pool->process_bio(tc, bio);
1340 	}
1341 
1342 	/*
1343 	 * If there are any deferred flush bios, we must commit
1344 	 * the metadata before issuing them.
1345 	 */
1346 	bio_list_init(&bios);
1347 	spin_lock_irqsave(&pool->lock, flags);
1348 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1349 	bio_list_init(&pool->deferred_flush_bios);
1350 	spin_unlock_irqrestore(&pool->lock, flags);
1351 
1352 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1353 		return;
1354 
1355 	if (commit(pool)) {
1356 		while ((bio = bio_list_pop(&bios)))
1357 			bio_io_error(bio);
1358 		return;
1359 	}
1360 	pool->last_commit_jiffies = jiffies;
1361 
1362 	while ((bio = bio_list_pop(&bios)))
1363 		generic_make_request(bio);
1364 }
1365 
1366 static void do_worker(struct work_struct *ws)
1367 {
1368 	struct pool *pool = container_of(ws, struct pool, worker);
1369 
1370 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1371 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1372 	process_deferred_bios(pool);
1373 }
1374 
1375 /*
1376  * We want to commit periodically so that not too much
1377  * unwritten data builds up.
1378  */
1379 static void do_waker(struct work_struct *ws)
1380 {
1381 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1382 	wake_worker(pool);
1383 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1384 }
1385 
1386 /*----------------------------------------------------------------*/
1387 
1388 static enum pool_mode get_pool_mode(struct pool *pool)
1389 {
1390 	return pool->pf.mode;
1391 }
1392 
1393 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1394 {
1395 	int r;
1396 
1397 	pool->pf.mode = mode;
1398 
1399 	switch (mode) {
1400 	case PM_FAIL:
1401 		DMERR("%s: switching pool to failure mode",
1402 		      dm_device_name(pool->pool_md));
1403 		dm_pool_metadata_read_only(pool->pmd);
1404 		pool->process_bio = process_bio_fail;
1405 		pool->process_discard = process_bio_fail;
1406 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1407 		pool->process_prepared_discard = process_prepared_discard_fail;
1408 		break;
1409 
1410 	case PM_READ_ONLY:
1411 		DMERR("%s: switching pool to read-only mode",
1412 		      dm_device_name(pool->pool_md));
1413 		r = dm_pool_abort_metadata(pool->pmd);
1414 		if (r) {
1415 			DMERR("%s: aborting transaction failed",
1416 			      dm_device_name(pool->pool_md));
1417 			set_pool_mode(pool, PM_FAIL);
1418 		} else {
1419 			dm_pool_metadata_read_only(pool->pmd);
1420 			pool->process_bio = process_bio_read_only;
1421 			pool->process_discard = process_discard;
1422 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1423 			pool->process_prepared_discard = process_prepared_discard_passdown;
1424 		}
1425 		break;
1426 
1427 	case PM_WRITE:
1428 		dm_pool_metadata_read_write(pool->pmd);
1429 		pool->process_bio = process_bio;
1430 		pool->process_discard = process_discard;
1431 		pool->process_prepared_mapping = process_prepared_mapping;
1432 		pool->process_prepared_discard = process_prepared_discard;
1433 		break;
1434 	}
1435 }
1436 
1437 /*----------------------------------------------------------------*/
1438 
1439 /*
1440  * Mapping functions.
1441  */
1442 
1443 /*
1444  * Called only while mapping a thin bio to hand it over to the workqueue.
1445  */
1446 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1447 {
1448 	unsigned long flags;
1449 	struct pool *pool = tc->pool;
1450 
1451 	spin_lock_irqsave(&pool->lock, flags);
1452 	bio_list_add(&pool->deferred_bios, bio);
1453 	spin_unlock_irqrestore(&pool->lock, flags);
1454 
1455 	wake_worker(pool);
1456 }
1457 
1458 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1459 {
1460 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1461 
1462 	h->tc = tc;
1463 	h->shared_read_entry = NULL;
1464 	h->all_io_entry = NULL;
1465 	h->overwrite_mapping = NULL;
1466 }
1467 
1468 /*
1469  * Non-blocking function called from the thin target's map function.
1470  */
1471 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1472 {
1473 	int r;
1474 	struct thin_c *tc = ti->private;
1475 	dm_block_t block = get_bio_block(tc, bio);
1476 	struct dm_thin_device *td = tc->td;
1477 	struct dm_thin_lookup_result result;
1478 	struct dm_bio_prison_cell cell1, cell2;
1479 	struct dm_bio_prison_cell *cell_result;
1480 	struct dm_cell_key key;
1481 
1482 	thin_hook_bio(tc, bio);
1483 
1484 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1485 		bio_io_error(bio);
1486 		return DM_MAPIO_SUBMITTED;
1487 	}
1488 
1489 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1490 		thin_defer_bio(tc, bio);
1491 		return DM_MAPIO_SUBMITTED;
1492 	}
1493 
1494 	r = dm_thin_find_block(td, block, 0, &result);
1495 
1496 	/*
1497 	 * Note that we defer readahead too.
1498 	 */
1499 	switch (r) {
1500 	case 0:
1501 		if (unlikely(result.shared)) {
1502 			/*
1503 			 * We have a race condition here between the
1504 			 * result.shared value returned by the lookup and
1505 			 * snapshot creation, which may cause new
1506 			 * sharing.
1507 			 *
1508 			 * To avoid this always quiesce the origin before
1509 			 * taking the snap.  You want to do this anyway to
1510 			 * ensure a consistent application view
1511 			 * (i.e. lockfs).
1512 			 *
1513 			 * More distant ancestors are irrelevant. The
1514 			 * shared flag will be set in their case.
1515 			 */
1516 			thin_defer_bio(tc, bio);
1517 			return DM_MAPIO_SUBMITTED;
1518 		}
1519 
1520 		build_virtual_key(tc->td, block, &key);
1521 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1522 			return DM_MAPIO_SUBMITTED;
1523 
1524 		build_data_key(tc->td, result.block, &key);
1525 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1526 			cell_defer_no_holder_no_free(tc, &cell1);
1527 			return DM_MAPIO_SUBMITTED;
1528 		}
1529 
1530 		inc_all_io_entry(tc->pool, bio);
1531 		cell_defer_no_holder_no_free(tc, &cell2);
1532 		cell_defer_no_holder_no_free(tc, &cell1);
1533 
1534 		remap(tc, bio, result.block);
1535 		return DM_MAPIO_REMAPPED;
1536 
1537 	case -ENODATA:
1538 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1539 			/*
1540 			 * This block isn't provisioned, and we have no way
1541 			 * of doing so.  Just error it.
1542 			 */
1543 			bio_io_error(bio);
1544 			return DM_MAPIO_SUBMITTED;
1545 		}
1546 		/* fall through */
1547 
1548 	case -EWOULDBLOCK:
1549 		/*
1550 		 * In future, the failed dm_thin_find_block above could
1551 		 * provide the hint to load the metadata into cache.
1552 		 */
1553 		thin_defer_bio(tc, bio);
1554 		return DM_MAPIO_SUBMITTED;
1555 
1556 	default:
1557 		/*
1558 		 * Must always call bio_io_error on failure.
1559 		 * dm_thin_find_block can fail with -EINVAL if the
1560 		 * pool is switched to fail-io mode.
1561 		 */
1562 		bio_io_error(bio);
1563 		return DM_MAPIO_SUBMITTED;
1564 	}
1565 }
1566 
1567 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1568 {
1569 	int r;
1570 	unsigned long flags;
1571 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1572 
1573 	spin_lock_irqsave(&pt->pool->lock, flags);
1574 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1575 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1576 
1577 	if (!r) {
1578 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1579 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1580 	}
1581 
1582 	return r;
1583 }
1584 
1585 static void __requeue_bios(struct pool *pool)
1586 {
1587 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1588 	bio_list_init(&pool->retry_on_resume_list);
1589 }
1590 
1591 /*----------------------------------------------------------------
1592  * Binding of control targets to a pool object
1593  *--------------------------------------------------------------*/
1594 static bool data_dev_supports_discard(struct pool_c *pt)
1595 {
1596 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1597 
1598 	return q && blk_queue_discard(q);
1599 }
1600 
1601 static bool is_factor(sector_t block_size, uint32_t n)
1602 {
1603 	return !sector_div(block_size, n);
1604 }
1605 
1606 /*
1607  * If discard_passdown was enabled verify that the data device
1608  * supports discards.  Disable discard_passdown if not.
1609  */
1610 static void disable_passdown_if_not_supported(struct pool_c *pt)
1611 {
1612 	struct pool *pool = pt->pool;
1613 	struct block_device *data_bdev = pt->data_dev->bdev;
1614 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1615 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1616 	const char *reason = NULL;
1617 	char buf[BDEVNAME_SIZE];
1618 
1619 	if (!pt->adjusted_pf.discard_passdown)
1620 		return;
1621 
1622 	if (!data_dev_supports_discard(pt))
1623 		reason = "discard unsupported";
1624 
1625 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1626 		reason = "max discard sectors smaller than a block";
1627 
1628 	else if (data_limits->discard_granularity > block_size)
1629 		reason = "discard granularity larger than a block";
1630 
1631 	else if (!is_factor(block_size, data_limits->discard_granularity))
1632 		reason = "discard granularity not a factor of block size";
1633 
1634 	if (reason) {
1635 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1636 		pt->adjusted_pf.discard_passdown = false;
1637 	}
1638 }
1639 
1640 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1641 {
1642 	struct pool_c *pt = ti->private;
1643 
1644 	/*
1645 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1646 	 */
1647 	enum pool_mode old_mode = pool->pf.mode;
1648 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1649 
1650 	/*
1651 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1652 	 * not going to recover without a thin_repair.  So we never let the
1653 	 * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1654 	 * may have been due to a lack of metadata or data space, and may
1655 	 * now work (ie. if the underlying devices have been resized).
1656 	 */
1657 	if (old_mode == PM_FAIL)
1658 		new_mode = old_mode;
1659 
1660 	pool->ti = ti;
1661 	pool->low_water_blocks = pt->low_water_blocks;
1662 	pool->pf = pt->adjusted_pf;
1663 
1664 	set_pool_mode(pool, new_mode);
1665 
1666 	return 0;
1667 }
1668 
1669 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1670 {
1671 	if (pool->ti == ti)
1672 		pool->ti = NULL;
1673 }
1674 
1675 /*----------------------------------------------------------------
1676  * Pool creation
1677  *--------------------------------------------------------------*/
1678 /* Initialize pool features. */
1679 static void pool_features_init(struct pool_features *pf)
1680 {
1681 	pf->mode = PM_WRITE;
1682 	pf->zero_new_blocks = true;
1683 	pf->discard_enabled = true;
1684 	pf->discard_passdown = true;
1685 }
1686 
1687 static void __pool_destroy(struct pool *pool)
1688 {
1689 	__pool_table_remove(pool);
1690 
1691 	if (dm_pool_metadata_close(pool->pmd) < 0)
1692 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1693 
1694 	dm_bio_prison_destroy(pool->prison);
1695 	dm_kcopyd_client_destroy(pool->copier);
1696 
1697 	if (pool->wq)
1698 		destroy_workqueue(pool->wq);
1699 
1700 	if (pool->next_mapping)
1701 		mempool_free(pool->next_mapping, pool->mapping_pool);
1702 	mempool_destroy(pool->mapping_pool);
1703 	dm_deferred_set_destroy(pool->shared_read_ds);
1704 	dm_deferred_set_destroy(pool->all_io_ds);
1705 	kfree(pool);
1706 }
1707 
1708 static struct kmem_cache *_new_mapping_cache;
1709 
1710 static struct pool *pool_create(struct mapped_device *pool_md,
1711 				struct block_device *metadata_dev,
1712 				unsigned long block_size,
1713 				int read_only, char **error)
1714 {
1715 	int r;
1716 	void *err_p;
1717 	struct pool *pool;
1718 	struct dm_pool_metadata *pmd;
1719 	bool format_device = read_only ? false : true;
1720 
1721 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1722 	if (IS_ERR(pmd)) {
1723 		*error = "Error creating metadata object";
1724 		return (struct pool *)pmd;
1725 	}
1726 
1727 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1728 	if (!pool) {
1729 		*error = "Error allocating memory for pool";
1730 		err_p = ERR_PTR(-ENOMEM);
1731 		goto bad_pool;
1732 	}
1733 
1734 	pool->pmd = pmd;
1735 	pool->sectors_per_block = block_size;
1736 	if (block_size & (block_size - 1))
1737 		pool->sectors_per_block_shift = -1;
1738 	else
1739 		pool->sectors_per_block_shift = __ffs(block_size);
1740 	pool->low_water_blocks = 0;
1741 	pool_features_init(&pool->pf);
1742 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
1743 	if (!pool->prison) {
1744 		*error = "Error creating pool's bio prison";
1745 		err_p = ERR_PTR(-ENOMEM);
1746 		goto bad_prison;
1747 	}
1748 
1749 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1750 	if (IS_ERR(pool->copier)) {
1751 		r = PTR_ERR(pool->copier);
1752 		*error = "Error creating pool's kcopyd client";
1753 		err_p = ERR_PTR(r);
1754 		goto bad_kcopyd_client;
1755 	}
1756 
1757 	/*
1758 	 * Create singlethreaded workqueue that will service all devices
1759 	 * that use this metadata.
1760 	 */
1761 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1762 	if (!pool->wq) {
1763 		*error = "Error creating pool's workqueue";
1764 		err_p = ERR_PTR(-ENOMEM);
1765 		goto bad_wq;
1766 	}
1767 
1768 	INIT_WORK(&pool->worker, do_worker);
1769 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1770 	spin_lock_init(&pool->lock);
1771 	bio_list_init(&pool->deferred_bios);
1772 	bio_list_init(&pool->deferred_flush_bios);
1773 	INIT_LIST_HEAD(&pool->prepared_mappings);
1774 	INIT_LIST_HEAD(&pool->prepared_discards);
1775 	pool->low_water_triggered = 0;
1776 	pool->no_free_space = 0;
1777 	bio_list_init(&pool->retry_on_resume_list);
1778 
1779 	pool->shared_read_ds = dm_deferred_set_create();
1780 	if (!pool->shared_read_ds) {
1781 		*error = "Error creating pool's shared read deferred set";
1782 		err_p = ERR_PTR(-ENOMEM);
1783 		goto bad_shared_read_ds;
1784 	}
1785 
1786 	pool->all_io_ds = dm_deferred_set_create();
1787 	if (!pool->all_io_ds) {
1788 		*error = "Error creating pool's all io deferred set";
1789 		err_p = ERR_PTR(-ENOMEM);
1790 		goto bad_all_io_ds;
1791 	}
1792 
1793 	pool->next_mapping = NULL;
1794 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1795 						      _new_mapping_cache);
1796 	if (!pool->mapping_pool) {
1797 		*error = "Error creating pool's mapping mempool";
1798 		err_p = ERR_PTR(-ENOMEM);
1799 		goto bad_mapping_pool;
1800 	}
1801 
1802 	pool->ref_count = 1;
1803 	pool->last_commit_jiffies = jiffies;
1804 	pool->pool_md = pool_md;
1805 	pool->md_dev = metadata_dev;
1806 	__pool_table_insert(pool);
1807 
1808 	return pool;
1809 
1810 bad_mapping_pool:
1811 	dm_deferred_set_destroy(pool->all_io_ds);
1812 bad_all_io_ds:
1813 	dm_deferred_set_destroy(pool->shared_read_ds);
1814 bad_shared_read_ds:
1815 	destroy_workqueue(pool->wq);
1816 bad_wq:
1817 	dm_kcopyd_client_destroy(pool->copier);
1818 bad_kcopyd_client:
1819 	dm_bio_prison_destroy(pool->prison);
1820 bad_prison:
1821 	kfree(pool);
1822 bad_pool:
1823 	if (dm_pool_metadata_close(pmd))
1824 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1825 
1826 	return err_p;
1827 }
1828 
1829 static void __pool_inc(struct pool *pool)
1830 {
1831 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1832 	pool->ref_count++;
1833 }
1834 
1835 static void __pool_dec(struct pool *pool)
1836 {
1837 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1838 	BUG_ON(!pool->ref_count);
1839 	if (!--pool->ref_count)
1840 		__pool_destroy(pool);
1841 }
1842 
1843 static struct pool *__pool_find(struct mapped_device *pool_md,
1844 				struct block_device *metadata_dev,
1845 				unsigned long block_size, int read_only,
1846 				char **error, int *created)
1847 {
1848 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1849 
1850 	if (pool) {
1851 		if (pool->pool_md != pool_md) {
1852 			*error = "metadata device already in use by a pool";
1853 			return ERR_PTR(-EBUSY);
1854 		}
1855 		__pool_inc(pool);
1856 
1857 	} else {
1858 		pool = __pool_table_lookup(pool_md);
1859 		if (pool) {
1860 			if (pool->md_dev != metadata_dev) {
1861 				*error = "different pool cannot replace a pool";
1862 				return ERR_PTR(-EINVAL);
1863 			}
1864 			__pool_inc(pool);
1865 
1866 		} else {
1867 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1868 			*created = 1;
1869 		}
1870 	}
1871 
1872 	return pool;
1873 }
1874 
1875 /*----------------------------------------------------------------
1876  * Pool target methods
1877  *--------------------------------------------------------------*/
1878 static void pool_dtr(struct dm_target *ti)
1879 {
1880 	struct pool_c *pt = ti->private;
1881 
1882 	mutex_lock(&dm_thin_pool_table.mutex);
1883 
1884 	unbind_control_target(pt->pool, ti);
1885 	__pool_dec(pt->pool);
1886 	dm_put_device(ti, pt->metadata_dev);
1887 	dm_put_device(ti, pt->data_dev);
1888 	kfree(pt);
1889 
1890 	mutex_unlock(&dm_thin_pool_table.mutex);
1891 }
1892 
1893 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1894 			       struct dm_target *ti)
1895 {
1896 	int r;
1897 	unsigned argc;
1898 	const char *arg_name;
1899 
1900 	static struct dm_arg _args[] = {
1901 		{0, 3, "Invalid number of pool feature arguments"},
1902 	};
1903 
1904 	/*
1905 	 * No feature arguments supplied.
1906 	 */
1907 	if (!as->argc)
1908 		return 0;
1909 
1910 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1911 	if (r)
1912 		return -EINVAL;
1913 
1914 	while (argc && !r) {
1915 		arg_name = dm_shift_arg(as);
1916 		argc--;
1917 
1918 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
1919 			pf->zero_new_blocks = false;
1920 
1921 		else if (!strcasecmp(arg_name, "ignore_discard"))
1922 			pf->discard_enabled = false;
1923 
1924 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
1925 			pf->discard_passdown = false;
1926 
1927 		else if (!strcasecmp(arg_name, "read_only"))
1928 			pf->mode = PM_READ_ONLY;
1929 
1930 		else {
1931 			ti->error = "Unrecognised pool feature requested";
1932 			r = -EINVAL;
1933 			break;
1934 		}
1935 	}
1936 
1937 	return r;
1938 }
1939 
1940 static void metadata_low_callback(void *context)
1941 {
1942 	struct pool *pool = context;
1943 
1944 	DMWARN("%s: reached low water mark for metadata device: sending event.",
1945 	       dm_device_name(pool->pool_md));
1946 
1947 	dm_table_event(pool->ti->table);
1948 }
1949 
1950 static sector_t get_metadata_dev_size(struct block_device *bdev)
1951 {
1952 	sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1953 	char buffer[BDEVNAME_SIZE];
1954 
1955 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1956 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1957 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1958 		metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1959 	}
1960 
1961 	return metadata_dev_size;
1962 }
1963 
1964 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1965 {
1966 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1967 
1968 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1969 
1970 	return metadata_dev_size;
1971 }
1972 
1973 /*
1974  * When a metadata threshold is crossed a dm event is triggered, and
1975  * userland should respond by growing the metadata device.  We could let
1976  * userland set the threshold, like we do with the data threshold, but I'm
1977  * not sure they know enough to do this well.
1978  */
1979 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1980 {
1981 	/*
1982 	 * 4M is ample for all ops with the possible exception of thin
1983 	 * device deletion which is harmless if it fails (just retry the
1984 	 * delete after you've grown the device).
1985 	 */
1986 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1987 	return min((dm_block_t)1024ULL /* 4M */, quarter);
1988 }
1989 
1990 /*
1991  * thin-pool <metadata dev> <data dev>
1992  *	     <data block size (sectors)>
1993  *	     <low water mark (blocks)>
1994  *	     [<#feature args> [<arg>]*]
1995  *
1996  * Optional feature arguments are:
1997  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1998  *	     ignore_discard: disable discard
1999  *	     no_discard_passdown: don't pass discards down to the data device
2000  */
2001 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2002 {
2003 	int r, pool_created = 0;
2004 	struct pool_c *pt;
2005 	struct pool *pool;
2006 	struct pool_features pf;
2007 	struct dm_arg_set as;
2008 	struct dm_dev *data_dev;
2009 	unsigned long block_size;
2010 	dm_block_t low_water_blocks;
2011 	struct dm_dev *metadata_dev;
2012 	fmode_t metadata_mode;
2013 
2014 	/*
2015 	 * FIXME Remove validation from scope of lock.
2016 	 */
2017 	mutex_lock(&dm_thin_pool_table.mutex);
2018 
2019 	if (argc < 4) {
2020 		ti->error = "Invalid argument count";
2021 		r = -EINVAL;
2022 		goto out_unlock;
2023 	}
2024 
2025 	as.argc = argc;
2026 	as.argv = argv;
2027 
2028 	/*
2029 	 * Set default pool features.
2030 	 */
2031 	pool_features_init(&pf);
2032 
2033 	dm_consume_args(&as, 4);
2034 	r = parse_pool_features(&as, &pf, ti);
2035 	if (r)
2036 		goto out_unlock;
2037 
2038 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2039 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2040 	if (r) {
2041 		ti->error = "Error opening metadata block device";
2042 		goto out_unlock;
2043 	}
2044 
2045 	/*
2046 	 * Run for the side-effect of possibly issuing a warning if the
2047 	 * device is too big.
2048 	 */
2049 	(void) get_metadata_dev_size(metadata_dev->bdev);
2050 
2051 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2052 	if (r) {
2053 		ti->error = "Error getting data device";
2054 		goto out_metadata;
2055 	}
2056 
2057 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2058 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2059 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2060 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2061 		ti->error = "Invalid block size";
2062 		r = -EINVAL;
2063 		goto out;
2064 	}
2065 
2066 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2067 		ti->error = "Invalid low water mark";
2068 		r = -EINVAL;
2069 		goto out;
2070 	}
2071 
2072 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2073 	if (!pt) {
2074 		r = -ENOMEM;
2075 		goto out;
2076 	}
2077 
2078 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2079 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2080 	if (IS_ERR(pool)) {
2081 		r = PTR_ERR(pool);
2082 		goto out_free_pt;
2083 	}
2084 
2085 	/*
2086 	 * 'pool_created' reflects whether this is the first table load.
2087 	 * Top level discard support is not allowed to be changed after
2088 	 * initial load.  This would require a pool reload to trigger thin
2089 	 * device changes.
2090 	 */
2091 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2092 		ti->error = "Discard support cannot be disabled once enabled";
2093 		r = -EINVAL;
2094 		goto out_flags_changed;
2095 	}
2096 
2097 	pt->pool = pool;
2098 	pt->ti = ti;
2099 	pt->metadata_dev = metadata_dev;
2100 	pt->data_dev = data_dev;
2101 	pt->low_water_blocks = low_water_blocks;
2102 	pt->adjusted_pf = pt->requested_pf = pf;
2103 	ti->num_flush_bios = 1;
2104 
2105 	/*
2106 	 * Only need to enable discards if the pool should pass
2107 	 * them down to the data device.  The thin device's discard
2108 	 * processing will cause mappings to be removed from the btree.
2109 	 */
2110 	ti->discard_zeroes_data_unsupported = true;
2111 	if (pf.discard_enabled && pf.discard_passdown) {
2112 		ti->num_discard_bios = 1;
2113 
2114 		/*
2115 		 * Setting 'discards_supported' circumvents the normal
2116 		 * stacking of discard limits (this keeps the pool and
2117 		 * thin devices' discard limits consistent).
2118 		 */
2119 		ti->discards_supported = true;
2120 	}
2121 	ti->private = pt;
2122 
2123 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2124 						calc_metadata_threshold(pt),
2125 						metadata_low_callback,
2126 						pool);
2127 	if (r)
2128 		goto out_free_pt;
2129 
2130 	pt->callbacks.congested_fn = pool_is_congested;
2131 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2132 
2133 	mutex_unlock(&dm_thin_pool_table.mutex);
2134 
2135 	return 0;
2136 
2137 out_flags_changed:
2138 	__pool_dec(pool);
2139 out_free_pt:
2140 	kfree(pt);
2141 out:
2142 	dm_put_device(ti, data_dev);
2143 out_metadata:
2144 	dm_put_device(ti, metadata_dev);
2145 out_unlock:
2146 	mutex_unlock(&dm_thin_pool_table.mutex);
2147 
2148 	return r;
2149 }
2150 
2151 static int pool_map(struct dm_target *ti, struct bio *bio)
2152 {
2153 	int r;
2154 	struct pool_c *pt = ti->private;
2155 	struct pool *pool = pt->pool;
2156 	unsigned long flags;
2157 
2158 	/*
2159 	 * As this is a singleton target, ti->begin is always zero.
2160 	 */
2161 	spin_lock_irqsave(&pool->lock, flags);
2162 	bio->bi_bdev = pt->data_dev->bdev;
2163 	r = DM_MAPIO_REMAPPED;
2164 	spin_unlock_irqrestore(&pool->lock, flags);
2165 
2166 	return r;
2167 }
2168 
2169 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2170 {
2171 	int r;
2172 	struct pool_c *pt = ti->private;
2173 	struct pool *pool = pt->pool;
2174 	sector_t data_size = ti->len;
2175 	dm_block_t sb_data_size;
2176 
2177 	*need_commit = false;
2178 
2179 	(void) sector_div(data_size, pool->sectors_per_block);
2180 
2181 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2182 	if (r) {
2183 		DMERR("%s: failed to retrieve data device size",
2184 		      dm_device_name(pool->pool_md));
2185 		return r;
2186 	}
2187 
2188 	if (data_size < sb_data_size) {
2189 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2190 		      dm_device_name(pool->pool_md),
2191 		      (unsigned long long)data_size, sb_data_size);
2192 		return -EINVAL;
2193 
2194 	} else if (data_size > sb_data_size) {
2195 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2196 		if (r) {
2197 			DMERR("%s: failed to resize data device",
2198 			      dm_device_name(pool->pool_md));
2199 			set_pool_mode(pool, PM_READ_ONLY);
2200 			return r;
2201 		}
2202 
2203 		*need_commit = true;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2210 {
2211 	int r;
2212 	struct pool_c *pt = ti->private;
2213 	struct pool *pool = pt->pool;
2214 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2215 
2216 	*need_commit = false;
2217 
2218 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2219 
2220 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2221 	if (r) {
2222 		DMERR("%s: failed to retrieve metadata device size",
2223 		      dm_device_name(pool->pool_md));
2224 		return r;
2225 	}
2226 
2227 	if (metadata_dev_size < sb_metadata_dev_size) {
2228 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2229 		      dm_device_name(pool->pool_md),
2230 		      metadata_dev_size, sb_metadata_dev_size);
2231 		return -EINVAL;
2232 
2233 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2234 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2235 		if (r) {
2236 			DMERR("%s: failed to resize metadata device",
2237 			      dm_device_name(pool->pool_md));
2238 			return r;
2239 		}
2240 
2241 		*need_commit = true;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /*
2248  * Retrieves the number of blocks of the data device from
2249  * the superblock and compares it to the actual device size,
2250  * thus resizing the data device in case it has grown.
2251  *
2252  * This both copes with opening preallocated data devices in the ctr
2253  * being followed by a resume
2254  * -and-
2255  * calling the resume method individually after userspace has
2256  * grown the data device in reaction to a table event.
2257  */
2258 static int pool_preresume(struct dm_target *ti)
2259 {
2260 	int r;
2261 	bool need_commit1, need_commit2;
2262 	struct pool_c *pt = ti->private;
2263 	struct pool *pool = pt->pool;
2264 
2265 	/*
2266 	 * Take control of the pool object.
2267 	 */
2268 	r = bind_control_target(pool, ti);
2269 	if (r)
2270 		return r;
2271 
2272 	r = maybe_resize_data_dev(ti, &need_commit1);
2273 	if (r)
2274 		return r;
2275 
2276 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2277 	if (r)
2278 		return r;
2279 
2280 	if (need_commit1 || need_commit2)
2281 		(void) commit(pool);
2282 
2283 	return 0;
2284 }
2285 
2286 static void pool_resume(struct dm_target *ti)
2287 {
2288 	struct pool_c *pt = ti->private;
2289 	struct pool *pool = pt->pool;
2290 	unsigned long flags;
2291 
2292 	spin_lock_irqsave(&pool->lock, flags);
2293 	pool->low_water_triggered = 0;
2294 	pool->no_free_space = 0;
2295 	__requeue_bios(pool);
2296 	spin_unlock_irqrestore(&pool->lock, flags);
2297 
2298 	do_waker(&pool->waker.work);
2299 }
2300 
2301 static void pool_postsuspend(struct dm_target *ti)
2302 {
2303 	struct pool_c *pt = ti->private;
2304 	struct pool *pool = pt->pool;
2305 
2306 	cancel_delayed_work(&pool->waker);
2307 	flush_workqueue(pool->wq);
2308 	(void) commit(pool);
2309 }
2310 
2311 static int check_arg_count(unsigned argc, unsigned args_required)
2312 {
2313 	if (argc != args_required) {
2314 		DMWARN("Message received with %u arguments instead of %u.",
2315 		       argc, args_required);
2316 		return -EINVAL;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2323 {
2324 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2325 	    *dev_id <= MAX_DEV_ID)
2326 		return 0;
2327 
2328 	if (warning)
2329 		DMWARN("Message received with invalid device id: %s", arg);
2330 
2331 	return -EINVAL;
2332 }
2333 
2334 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2335 {
2336 	dm_thin_id dev_id;
2337 	int r;
2338 
2339 	r = check_arg_count(argc, 2);
2340 	if (r)
2341 		return r;
2342 
2343 	r = read_dev_id(argv[1], &dev_id, 1);
2344 	if (r)
2345 		return r;
2346 
2347 	r = dm_pool_create_thin(pool->pmd, dev_id);
2348 	if (r) {
2349 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2350 		       argv[1]);
2351 		return r;
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2358 {
2359 	dm_thin_id dev_id;
2360 	dm_thin_id origin_dev_id;
2361 	int r;
2362 
2363 	r = check_arg_count(argc, 3);
2364 	if (r)
2365 		return r;
2366 
2367 	r = read_dev_id(argv[1], &dev_id, 1);
2368 	if (r)
2369 		return r;
2370 
2371 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2372 	if (r)
2373 		return r;
2374 
2375 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2376 	if (r) {
2377 		DMWARN("Creation of new snapshot %s of device %s failed.",
2378 		       argv[1], argv[2]);
2379 		return r;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2386 {
2387 	dm_thin_id dev_id;
2388 	int r;
2389 
2390 	r = check_arg_count(argc, 2);
2391 	if (r)
2392 		return r;
2393 
2394 	r = read_dev_id(argv[1], &dev_id, 1);
2395 	if (r)
2396 		return r;
2397 
2398 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2399 	if (r)
2400 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2401 
2402 	return r;
2403 }
2404 
2405 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2406 {
2407 	dm_thin_id old_id, new_id;
2408 	int r;
2409 
2410 	r = check_arg_count(argc, 3);
2411 	if (r)
2412 		return r;
2413 
2414 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2415 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2416 		return -EINVAL;
2417 	}
2418 
2419 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2420 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2421 		return -EINVAL;
2422 	}
2423 
2424 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2425 	if (r) {
2426 		DMWARN("Failed to change transaction id from %s to %s.",
2427 		       argv[1], argv[2]);
2428 		return r;
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2435 {
2436 	int r;
2437 
2438 	r = check_arg_count(argc, 1);
2439 	if (r)
2440 		return r;
2441 
2442 	(void) commit(pool);
2443 
2444 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2445 	if (r)
2446 		DMWARN("reserve_metadata_snap message failed.");
2447 
2448 	return r;
2449 }
2450 
2451 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2452 {
2453 	int r;
2454 
2455 	r = check_arg_count(argc, 1);
2456 	if (r)
2457 		return r;
2458 
2459 	r = dm_pool_release_metadata_snap(pool->pmd);
2460 	if (r)
2461 		DMWARN("release_metadata_snap message failed.");
2462 
2463 	return r;
2464 }
2465 
2466 /*
2467  * Messages supported:
2468  *   create_thin	<dev_id>
2469  *   create_snap	<dev_id> <origin_id>
2470  *   delete		<dev_id>
2471  *   trim		<dev_id> <new_size_in_sectors>
2472  *   set_transaction_id <current_trans_id> <new_trans_id>
2473  *   reserve_metadata_snap
2474  *   release_metadata_snap
2475  */
2476 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2477 {
2478 	int r = -EINVAL;
2479 	struct pool_c *pt = ti->private;
2480 	struct pool *pool = pt->pool;
2481 
2482 	if (!strcasecmp(argv[0], "create_thin"))
2483 		r = process_create_thin_mesg(argc, argv, pool);
2484 
2485 	else if (!strcasecmp(argv[0], "create_snap"))
2486 		r = process_create_snap_mesg(argc, argv, pool);
2487 
2488 	else if (!strcasecmp(argv[0], "delete"))
2489 		r = process_delete_mesg(argc, argv, pool);
2490 
2491 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2492 		r = process_set_transaction_id_mesg(argc, argv, pool);
2493 
2494 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2495 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2496 
2497 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2498 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2499 
2500 	else
2501 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2502 
2503 	if (!r)
2504 		(void) commit(pool);
2505 
2506 	return r;
2507 }
2508 
2509 static void emit_flags(struct pool_features *pf, char *result,
2510 		       unsigned sz, unsigned maxlen)
2511 {
2512 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2513 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2514 	DMEMIT("%u ", count);
2515 
2516 	if (!pf->zero_new_blocks)
2517 		DMEMIT("skip_block_zeroing ");
2518 
2519 	if (!pf->discard_enabled)
2520 		DMEMIT("ignore_discard ");
2521 
2522 	if (!pf->discard_passdown)
2523 		DMEMIT("no_discard_passdown ");
2524 
2525 	if (pf->mode == PM_READ_ONLY)
2526 		DMEMIT("read_only ");
2527 }
2528 
2529 /*
2530  * Status line is:
2531  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2532  *    <used data sectors>/<total data sectors> <held metadata root>
2533  */
2534 static void pool_status(struct dm_target *ti, status_type_t type,
2535 			unsigned status_flags, char *result, unsigned maxlen)
2536 {
2537 	int r;
2538 	unsigned sz = 0;
2539 	uint64_t transaction_id;
2540 	dm_block_t nr_free_blocks_data;
2541 	dm_block_t nr_free_blocks_metadata;
2542 	dm_block_t nr_blocks_data;
2543 	dm_block_t nr_blocks_metadata;
2544 	dm_block_t held_root;
2545 	char buf[BDEVNAME_SIZE];
2546 	char buf2[BDEVNAME_SIZE];
2547 	struct pool_c *pt = ti->private;
2548 	struct pool *pool = pt->pool;
2549 
2550 	switch (type) {
2551 	case STATUSTYPE_INFO:
2552 		if (get_pool_mode(pool) == PM_FAIL) {
2553 			DMEMIT("Fail");
2554 			break;
2555 		}
2556 
2557 		/* Commit to ensure statistics aren't out-of-date */
2558 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2559 			(void) commit(pool);
2560 
2561 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2562 		if (r) {
2563 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2564 			      dm_device_name(pool->pool_md), r);
2565 			goto err;
2566 		}
2567 
2568 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2569 		if (r) {
2570 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2571 			      dm_device_name(pool->pool_md), r);
2572 			goto err;
2573 		}
2574 
2575 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2576 		if (r) {
2577 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2578 			      dm_device_name(pool->pool_md), r);
2579 			goto err;
2580 		}
2581 
2582 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2583 		if (r) {
2584 			DMERR("%s: dm_pool_get_free_block_count returned %d",
2585 			      dm_device_name(pool->pool_md), r);
2586 			goto err;
2587 		}
2588 
2589 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2590 		if (r) {
2591 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2592 			      dm_device_name(pool->pool_md), r);
2593 			goto err;
2594 		}
2595 
2596 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2597 		if (r) {
2598 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2599 			      dm_device_name(pool->pool_md), r);
2600 			goto err;
2601 		}
2602 
2603 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2604 		       (unsigned long long)transaction_id,
2605 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2606 		       (unsigned long long)nr_blocks_metadata,
2607 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2608 		       (unsigned long long)nr_blocks_data);
2609 
2610 		if (held_root)
2611 			DMEMIT("%llu ", held_root);
2612 		else
2613 			DMEMIT("- ");
2614 
2615 		if (pool->pf.mode == PM_READ_ONLY)
2616 			DMEMIT("ro ");
2617 		else
2618 			DMEMIT("rw ");
2619 
2620 		if (!pool->pf.discard_enabled)
2621 			DMEMIT("ignore_discard");
2622 		else if (pool->pf.discard_passdown)
2623 			DMEMIT("discard_passdown");
2624 		else
2625 			DMEMIT("no_discard_passdown");
2626 
2627 		break;
2628 
2629 	case STATUSTYPE_TABLE:
2630 		DMEMIT("%s %s %lu %llu ",
2631 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2632 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2633 		       (unsigned long)pool->sectors_per_block,
2634 		       (unsigned long long)pt->low_water_blocks);
2635 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2636 		break;
2637 	}
2638 	return;
2639 
2640 err:
2641 	DMEMIT("Error");
2642 }
2643 
2644 static int pool_iterate_devices(struct dm_target *ti,
2645 				iterate_devices_callout_fn fn, void *data)
2646 {
2647 	struct pool_c *pt = ti->private;
2648 
2649 	return fn(ti, pt->data_dev, 0, ti->len, data);
2650 }
2651 
2652 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2653 		      struct bio_vec *biovec, int max_size)
2654 {
2655 	struct pool_c *pt = ti->private;
2656 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2657 
2658 	if (!q->merge_bvec_fn)
2659 		return max_size;
2660 
2661 	bvm->bi_bdev = pt->data_dev->bdev;
2662 
2663 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2664 }
2665 
2666 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2667 {
2668 	struct pool *pool = pt->pool;
2669 	struct queue_limits *data_limits;
2670 
2671 	limits->max_discard_sectors = pool->sectors_per_block;
2672 
2673 	/*
2674 	 * discard_granularity is just a hint, and not enforced.
2675 	 */
2676 	if (pt->adjusted_pf.discard_passdown) {
2677 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2678 		limits->discard_granularity = data_limits->discard_granularity;
2679 	} else
2680 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2681 }
2682 
2683 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2684 {
2685 	struct pool_c *pt = ti->private;
2686 	struct pool *pool = pt->pool;
2687 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2688 
2689 	/*
2690 	 * If the system-determined stacked limits are compatible with the
2691 	 * pool's blocksize (io_opt is a factor) do not override them.
2692 	 */
2693 	if (io_opt_sectors < pool->sectors_per_block ||
2694 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
2695 		blk_limits_io_min(limits, 0);
2696 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2697 	}
2698 
2699 	/*
2700 	 * pt->adjusted_pf is a staging area for the actual features to use.
2701 	 * They get transferred to the live pool in bind_control_target()
2702 	 * called from pool_preresume().
2703 	 */
2704 	if (!pt->adjusted_pf.discard_enabled) {
2705 		/*
2706 		 * Must explicitly disallow stacking discard limits otherwise the
2707 		 * block layer will stack them if pool's data device has support.
2708 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2709 		 * user to see that, so make sure to set all discard limits to 0.
2710 		 */
2711 		limits->discard_granularity = 0;
2712 		return;
2713 	}
2714 
2715 	disable_passdown_if_not_supported(pt);
2716 
2717 	set_discard_limits(pt, limits);
2718 }
2719 
2720 static struct target_type pool_target = {
2721 	.name = "thin-pool",
2722 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2723 		    DM_TARGET_IMMUTABLE,
2724 	.version = {1, 9, 0},
2725 	.module = THIS_MODULE,
2726 	.ctr = pool_ctr,
2727 	.dtr = pool_dtr,
2728 	.map = pool_map,
2729 	.postsuspend = pool_postsuspend,
2730 	.preresume = pool_preresume,
2731 	.resume = pool_resume,
2732 	.message = pool_message,
2733 	.status = pool_status,
2734 	.merge = pool_merge,
2735 	.iterate_devices = pool_iterate_devices,
2736 	.io_hints = pool_io_hints,
2737 };
2738 
2739 /*----------------------------------------------------------------
2740  * Thin target methods
2741  *--------------------------------------------------------------*/
2742 static void thin_dtr(struct dm_target *ti)
2743 {
2744 	struct thin_c *tc = ti->private;
2745 
2746 	mutex_lock(&dm_thin_pool_table.mutex);
2747 
2748 	__pool_dec(tc->pool);
2749 	dm_pool_close_thin_device(tc->td);
2750 	dm_put_device(ti, tc->pool_dev);
2751 	if (tc->origin_dev)
2752 		dm_put_device(ti, tc->origin_dev);
2753 	kfree(tc);
2754 
2755 	mutex_unlock(&dm_thin_pool_table.mutex);
2756 }
2757 
2758 /*
2759  * Thin target parameters:
2760  *
2761  * <pool_dev> <dev_id> [origin_dev]
2762  *
2763  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2764  * dev_id: the internal device identifier
2765  * origin_dev: a device external to the pool that should act as the origin
2766  *
2767  * If the pool device has discards disabled, they get disabled for the thin
2768  * device as well.
2769  */
2770 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2771 {
2772 	int r;
2773 	struct thin_c *tc;
2774 	struct dm_dev *pool_dev, *origin_dev;
2775 	struct mapped_device *pool_md;
2776 
2777 	mutex_lock(&dm_thin_pool_table.mutex);
2778 
2779 	if (argc != 2 && argc != 3) {
2780 		ti->error = "Invalid argument count";
2781 		r = -EINVAL;
2782 		goto out_unlock;
2783 	}
2784 
2785 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2786 	if (!tc) {
2787 		ti->error = "Out of memory";
2788 		r = -ENOMEM;
2789 		goto out_unlock;
2790 	}
2791 
2792 	if (argc == 3) {
2793 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2794 		if (r) {
2795 			ti->error = "Error opening origin device";
2796 			goto bad_origin_dev;
2797 		}
2798 		tc->origin_dev = origin_dev;
2799 	}
2800 
2801 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2802 	if (r) {
2803 		ti->error = "Error opening pool device";
2804 		goto bad_pool_dev;
2805 	}
2806 	tc->pool_dev = pool_dev;
2807 
2808 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2809 		ti->error = "Invalid device id";
2810 		r = -EINVAL;
2811 		goto bad_common;
2812 	}
2813 
2814 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2815 	if (!pool_md) {
2816 		ti->error = "Couldn't get pool mapped device";
2817 		r = -EINVAL;
2818 		goto bad_common;
2819 	}
2820 
2821 	tc->pool = __pool_table_lookup(pool_md);
2822 	if (!tc->pool) {
2823 		ti->error = "Couldn't find pool object";
2824 		r = -EINVAL;
2825 		goto bad_pool_lookup;
2826 	}
2827 	__pool_inc(tc->pool);
2828 
2829 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2830 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2831 		goto bad_thin_open;
2832 	}
2833 
2834 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2835 	if (r) {
2836 		ti->error = "Couldn't open thin internal device";
2837 		goto bad_thin_open;
2838 	}
2839 
2840 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2841 	if (r)
2842 		goto bad_thin_open;
2843 
2844 	ti->num_flush_bios = 1;
2845 	ti->flush_supported = true;
2846 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2847 
2848 	/* In case the pool supports discards, pass them on. */
2849 	ti->discard_zeroes_data_unsupported = true;
2850 	if (tc->pool->pf.discard_enabled) {
2851 		ti->discards_supported = true;
2852 		ti->num_discard_bios = 1;
2853 		/* Discard bios must be split on a block boundary */
2854 		ti->split_discard_bios = true;
2855 	}
2856 
2857 	dm_put(pool_md);
2858 
2859 	mutex_unlock(&dm_thin_pool_table.mutex);
2860 
2861 	return 0;
2862 
2863 bad_thin_open:
2864 	__pool_dec(tc->pool);
2865 bad_pool_lookup:
2866 	dm_put(pool_md);
2867 bad_common:
2868 	dm_put_device(ti, tc->pool_dev);
2869 bad_pool_dev:
2870 	if (tc->origin_dev)
2871 		dm_put_device(ti, tc->origin_dev);
2872 bad_origin_dev:
2873 	kfree(tc);
2874 out_unlock:
2875 	mutex_unlock(&dm_thin_pool_table.mutex);
2876 
2877 	return r;
2878 }
2879 
2880 static int thin_map(struct dm_target *ti, struct bio *bio)
2881 {
2882 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2883 
2884 	return thin_bio_map(ti, bio);
2885 }
2886 
2887 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2888 {
2889 	unsigned long flags;
2890 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2891 	struct list_head work;
2892 	struct dm_thin_new_mapping *m, *tmp;
2893 	struct pool *pool = h->tc->pool;
2894 
2895 	if (h->shared_read_entry) {
2896 		INIT_LIST_HEAD(&work);
2897 		dm_deferred_entry_dec(h->shared_read_entry, &work);
2898 
2899 		spin_lock_irqsave(&pool->lock, flags);
2900 		list_for_each_entry_safe(m, tmp, &work, list) {
2901 			list_del(&m->list);
2902 			m->quiesced = 1;
2903 			__maybe_add_mapping(m);
2904 		}
2905 		spin_unlock_irqrestore(&pool->lock, flags);
2906 	}
2907 
2908 	if (h->all_io_entry) {
2909 		INIT_LIST_HEAD(&work);
2910 		dm_deferred_entry_dec(h->all_io_entry, &work);
2911 		if (!list_empty(&work)) {
2912 			spin_lock_irqsave(&pool->lock, flags);
2913 			list_for_each_entry_safe(m, tmp, &work, list)
2914 				list_add(&m->list, &pool->prepared_discards);
2915 			spin_unlock_irqrestore(&pool->lock, flags);
2916 			wake_worker(pool);
2917 		}
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 static void thin_postsuspend(struct dm_target *ti)
2924 {
2925 	if (dm_noflush_suspending(ti))
2926 		requeue_io((struct thin_c *)ti->private);
2927 }
2928 
2929 /*
2930  * <nr mapped sectors> <highest mapped sector>
2931  */
2932 static void thin_status(struct dm_target *ti, status_type_t type,
2933 			unsigned status_flags, char *result, unsigned maxlen)
2934 {
2935 	int r;
2936 	ssize_t sz = 0;
2937 	dm_block_t mapped, highest;
2938 	char buf[BDEVNAME_SIZE];
2939 	struct thin_c *tc = ti->private;
2940 
2941 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2942 		DMEMIT("Fail");
2943 		return;
2944 	}
2945 
2946 	if (!tc->td)
2947 		DMEMIT("-");
2948 	else {
2949 		switch (type) {
2950 		case STATUSTYPE_INFO:
2951 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2952 			if (r) {
2953 				DMERR("dm_thin_get_mapped_count returned %d", r);
2954 				goto err;
2955 			}
2956 
2957 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2958 			if (r < 0) {
2959 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2960 				goto err;
2961 			}
2962 
2963 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2964 			if (r)
2965 				DMEMIT("%llu", ((highest + 1) *
2966 						tc->pool->sectors_per_block) - 1);
2967 			else
2968 				DMEMIT("-");
2969 			break;
2970 
2971 		case STATUSTYPE_TABLE:
2972 			DMEMIT("%s %lu",
2973 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2974 			       (unsigned long) tc->dev_id);
2975 			if (tc->origin_dev)
2976 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2977 			break;
2978 		}
2979 	}
2980 
2981 	return;
2982 
2983 err:
2984 	DMEMIT("Error");
2985 }
2986 
2987 static int thin_iterate_devices(struct dm_target *ti,
2988 				iterate_devices_callout_fn fn, void *data)
2989 {
2990 	sector_t blocks;
2991 	struct thin_c *tc = ti->private;
2992 	struct pool *pool = tc->pool;
2993 
2994 	/*
2995 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2996 	 * we follow a more convoluted path through to the pool's target.
2997 	 */
2998 	if (!pool->ti)
2999 		return 0;	/* nothing is bound */
3000 
3001 	blocks = pool->ti->len;
3002 	(void) sector_div(blocks, pool->sectors_per_block);
3003 	if (blocks)
3004 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3005 
3006 	return 0;
3007 }
3008 
3009 static struct target_type thin_target = {
3010 	.name = "thin",
3011 	.version = {1, 9, 0},
3012 	.module	= THIS_MODULE,
3013 	.ctr = thin_ctr,
3014 	.dtr = thin_dtr,
3015 	.map = thin_map,
3016 	.end_io = thin_endio,
3017 	.postsuspend = thin_postsuspend,
3018 	.status = thin_status,
3019 	.iterate_devices = thin_iterate_devices,
3020 };
3021 
3022 /*----------------------------------------------------------------*/
3023 
3024 static int __init dm_thin_init(void)
3025 {
3026 	int r;
3027 
3028 	pool_table_init();
3029 
3030 	r = dm_register_target(&thin_target);
3031 	if (r)
3032 		return r;
3033 
3034 	r = dm_register_target(&pool_target);
3035 	if (r)
3036 		goto bad_pool_target;
3037 
3038 	r = -ENOMEM;
3039 
3040 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3041 	if (!_new_mapping_cache)
3042 		goto bad_new_mapping_cache;
3043 
3044 	return 0;
3045 
3046 bad_new_mapping_cache:
3047 	dm_unregister_target(&pool_target);
3048 bad_pool_target:
3049 	dm_unregister_target(&thin_target);
3050 
3051 	return r;
3052 }
3053 
3054 static void dm_thin_exit(void)
3055 {
3056 	dm_unregister_target(&thin_target);
3057 	dm_unregister_target(&pool_target);
3058 
3059 	kmem_cache_destroy(_new_mapping_cache);
3060 }
3061 
3062 module_init(dm_thin_init);
3063 module_exit(dm_thin_exit);
3064 
3065 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3066 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3067 MODULE_LICENSE("GPL");
3068