1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct workqueue_struct *wq; 244 struct throttle throttle; 245 struct work_struct worker; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head prepared_discards_pt2; 257 struct list_head active_thins; 258 259 struct dm_deferred_set *shared_read_ds; 260 struct dm_deferred_set *all_io_ds; 261 262 struct dm_thin_new_mapping *next_mapping; 263 mempool_t *mapping_pool; 264 265 process_bio_fn process_bio; 266 process_bio_fn process_discard; 267 268 process_cell_fn process_cell; 269 process_cell_fn process_discard_cell; 270 271 process_mapping_fn process_prepared_mapping; 272 process_mapping_fn process_prepared_discard; 273 process_mapping_fn process_prepared_discard_pt2; 274 275 struct dm_bio_prison_cell **cell_sort_array; 276 }; 277 278 static enum pool_mode get_pool_mode(struct pool *pool); 279 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 280 281 /* 282 * Target context for a pool. 283 */ 284 struct pool_c { 285 struct dm_target *ti; 286 struct pool *pool; 287 struct dm_dev *data_dev; 288 struct dm_dev *metadata_dev; 289 struct dm_target_callbacks callbacks; 290 291 dm_block_t low_water_blocks; 292 struct pool_features requested_pf; /* Features requested during table load */ 293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 294 }; 295 296 /* 297 * Target context for a thin. 298 */ 299 struct thin_c { 300 struct list_head list; 301 struct dm_dev *pool_dev; 302 struct dm_dev *origin_dev; 303 sector_t origin_size; 304 dm_thin_id dev_id; 305 306 struct pool *pool; 307 struct dm_thin_device *td; 308 struct mapped_device *thin_md; 309 310 bool requeue_mode:1; 311 spinlock_t lock; 312 struct list_head deferred_cells; 313 struct bio_list deferred_bio_list; 314 struct bio_list retry_on_resume_list; 315 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 316 317 /* 318 * Ensures the thin is not destroyed until the worker has finished 319 * iterating the active_thins list. 320 */ 321 atomic_t refcount; 322 struct completion can_destroy; 323 }; 324 325 /*----------------------------------------------------------------*/ 326 327 static bool block_size_is_power_of_two(struct pool *pool) 328 { 329 return pool->sectors_per_block_shift >= 0; 330 } 331 332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 333 { 334 return block_size_is_power_of_two(pool) ? 335 (b << pool->sectors_per_block_shift) : 336 (b * pool->sectors_per_block); 337 } 338 339 /*----------------------------------------------------------------*/ 340 341 struct discard_op { 342 struct thin_c *tc; 343 struct blk_plug plug; 344 struct bio *parent_bio; 345 struct bio *bio; 346 }; 347 348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 349 { 350 BUG_ON(!parent); 351 352 op->tc = tc; 353 blk_start_plug(&op->plug); 354 op->parent_bio = parent; 355 op->bio = NULL; 356 } 357 358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 359 { 360 struct thin_c *tc = op->tc; 361 sector_t s = block_to_sectors(tc->pool, data_b); 362 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 363 364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 365 GFP_NOWAIT, 0, &op->bio); 366 } 367 368 static void end_discard(struct discard_op *op, int r) 369 { 370 if (op->bio) { 371 /* 372 * Even if one of the calls to issue_discard failed, we 373 * need to wait for the chain to complete. 374 */ 375 bio_chain(op->bio, op->parent_bio); 376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 377 submit_bio(op->bio); 378 } 379 380 blk_finish_plug(&op->plug); 381 382 /* 383 * Even if r is set, there could be sub discards in flight that we 384 * need to wait for. 385 */ 386 if (r && !op->parent_bio->bi_status) 387 op->parent_bio->bi_status = errno_to_blk_status(r); 388 bio_endio(op->parent_bio); 389 } 390 391 /*----------------------------------------------------------------*/ 392 393 /* 394 * wake_worker() is used when new work is queued and when pool_resume is 395 * ready to continue deferred IO processing. 396 */ 397 static void wake_worker(struct pool *pool) 398 { 399 queue_work(pool->wq, &pool->worker); 400 } 401 402 /*----------------------------------------------------------------*/ 403 404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 405 struct dm_bio_prison_cell **cell_result) 406 { 407 int r; 408 struct dm_bio_prison_cell *cell_prealloc; 409 410 /* 411 * Allocate a cell from the prison's mempool. 412 * This might block but it can't fail. 413 */ 414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 415 416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 417 if (r) 418 /* 419 * We reused an old cell; we can get rid of 420 * the new one. 421 */ 422 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 423 424 return r; 425 } 426 427 static void cell_release(struct pool *pool, 428 struct dm_bio_prison_cell *cell, 429 struct bio_list *bios) 430 { 431 dm_cell_release(pool->prison, cell, bios); 432 dm_bio_prison_free_cell(pool->prison, cell); 433 } 434 435 static void cell_visit_release(struct pool *pool, 436 void (*fn)(void *, struct dm_bio_prison_cell *), 437 void *context, 438 struct dm_bio_prison_cell *cell) 439 { 440 dm_cell_visit_release(pool->prison, fn, context, cell); 441 dm_bio_prison_free_cell(pool->prison, cell); 442 } 443 444 static void cell_release_no_holder(struct pool *pool, 445 struct dm_bio_prison_cell *cell, 446 struct bio_list *bios) 447 { 448 dm_cell_release_no_holder(pool->prison, cell, bios); 449 dm_bio_prison_free_cell(pool->prison, cell); 450 } 451 452 static void cell_error_with_code(struct pool *pool, 453 struct dm_bio_prison_cell *cell, blk_status_t error_code) 454 { 455 dm_cell_error(pool->prison, cell, error_code); 456 dm_bio_prison_free_cell(pool->prison, cell); 457 } 458 459 static blk_status_t get_pool_io_error_code(struct pool *pool) 460 { 461 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 462 } 463 464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 465 { 466 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 467 } 468 469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 470 { 471 cell_error_with_code(pool, cell, 0); 472 } 473 474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 475 { 476 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 477 } 478 479 /*----------------------------------------------------------------*/ 480 481 /* 482 * A global list of pools that uses a struct mapped_device as a key. 483 */ 484 static struct dm_thin_pool_table { 485 struct mutex mutex; 486 struct list_head pools; 487 } dm_thin_pool_table; 488 489 static void pool_table_init(void) 490 { 491 mutex_init(&dm_thin_pool_table.mutex); 492 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 493 } 494 495 static void __pool_table_insert(struct pool *pool) 496 { 497 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 498 list_add(&pool->list, &dm_thin_pool_table.pools); 499 } 500 501 static void __pool_table_remove(struct pool *pool) 502 { 503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 504 list_del(&pool->list); 505 } 506 507 static struct pool *__pool_table_lookup(struct mapped_device *md) 508 { 509 struct pool *pool = NULL, *tmp; 510 511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 512 513 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 514 if (tmp->pool_md == md) { 515 pool = tmp; 516 break; 517 } 518 } 519 520 return pool; 521 } 522 523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 524 { 525 struct pool *pool = NULL, *tmp; 526 527 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 528 529 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 530 if (tmp->md_dev == md_dev) { 531 pool = tmp; 532 break; 533 } 534 } 535 536 return pool; 537 } 538 539 /*----------------------------------------------------------------*/ 540 541 struct dm_thin_endio_hook { 542 struct thin_c *tc; 543 struct dm_deferred_entry *shared_read_entry; 544 struct dm_deferred_entry *all_io_entry; 545 struct dm_thin_new_mapping *overwrite_mapping; 546 struct rb_node rb_node; 547 struct dm_bio_prison_cell *cell; 548 }; 549 550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 551 { 552 bio_list_merge(bios, master); 553 bio_list_init(master); 554 } 555 556 static void error_bio_list(struct bio_list *bios, blk_status_t error) 557 { 558 struct bio *bio; 559 560 while ((bio = bio_list_pop(bios))) { 561 bio->bi_status = error; 562 bio_endio(bio); 563 } 564 } 565 566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 567 blk_status_t error) 568 { 569 struct bio_list bios; 570 unsigned long flags; 571 572 bio_list_init(&bios); 573 574 spin_lock_irqsave(&tc->lock, flags); 575 __merge_bio_list(&bios, master); 576 spin_unlock_irqrestore(&tc->lock, flags); 577 578 error_bio_list(&bios, error); 579 } 580 581 static void requeue_deferred_cells(struct thin_c *tc) 582 { 583 struct pool *pool = tc->pool; 584 unsigned long flags; 585 struct list_head cells; 586 struct dm_bio_prison_cell *cell, *tmp; 587 588 INIT_LIST_HEAD(&cells); 589 590 spin_lock_irqsave(&tc->lock, flags); 591 list_splice_init(&tc->deferred_cells, &cells); 592 spin_unlock_irqrestore(&tc->lock, flags); 593 594 list_for_each_entry_safe(cell, tmp, &cells, user_list) 595 cell_requeue(pool, cell); 596 } 597 598 static void requeue_io(struct thin_c *tc) 599 { 600 struct bio_list bios; 601 unsigned long flags; 602 603 bio_list_init(&bios); 604 605 spin_lock_irqsave(&tc->lock, flags); 606 __merge_bio_list(&bios, &tc->deferred_bio_list); 607 __merge_bio_list(&bios, &tc->retry_on_resume_list); 608 spin_unlock_irqrestore(&tc->lock, flags); 609 610 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 611 requeue_deferred_cells(tc); 612 } 613 614 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 615 { 616 struct thin_c *tc; 617 618 rcu_read_lock(); 619 list_for_each_entry_rcu(tc, &pool->active_thins, list) 620 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 621 rcu_read_unlock(); 622 } 623 624 static void error_retry_list(struct pool *pool) 625 { 626 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 627 } 628 629 /* 630 * This section of code contains the logic for processing a thin device's IO. 631 * Much of the code depends on pool object resources (lists, workqueues, etc) 632 * but most is exclusively called from the thin target rather than the thin-pool 633 * target. 634 */ 635 636 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 637 { 638 struct pool *pool = tc->pool; 639 sector_t block_nr = bio->bi_iter.bi_sector; 640 641 if (block_size_is_power_of_two(pool)) 642 block_nr >>= pool->sectors_per_block_shift; 643 else 644 (void) sector_div(block_nr, pool->sectors_per_block); 645 646 return block_nr; 647 } 648 649 /* 650 * Returns the _complete_ blocks that this bio covers. 651 */ 652 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 653 dm_block_t *begin, dm_block_t *end) 654 { 655 struct pool *pool = tc->pool; 656 sector_t b = bio->bi_iter.bi_sector; 657 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 658 659 b += pool->sectors_per_block - 1ull; /* so we round up */ 660 661 if (block_size_is_power_of_two(pool)) { 662 b >>= pool->sectors_per_block_shift; 663 e >>= pool->sectors_per_block_shift; 664 } else { 665 (void) sector_div(b, pool->sectors_per_block); 666 (void) sector_div(e, pool->sectors_per_block); 667 } 668 669 if (e < b) 670 /* Can happen if the bio is within a single block. */ 671 e = b; 672 673 *begin = b; 674 *end = e; 675 } 676 677 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 678 { 679 struct pool *pool = tc->pool; 680 sector_t bi_sector = bio->bi_iter.bi_sector; 681 682 bio_set_dev(bio, tc->pool_dev->bdev); 683 if (block_size_is_power_of_two(pool)) 684 bio->bi_iter.bi_sector = 685 (block << pool->sectors_per_block_shift) | 686 (bi_sector & (pool->sectors_per_block - 1)); 687 else 688 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 689 sector_div(bi_sector, pool->sectors_per_block); 690 } 691 692 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 693 { 694 bio_set_dev(bio, tc->origin_dev->bdev); 695 } 696 697 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 698 { 699 return op_is_flush(bio->bi_opf) && 700 dm_thin_changed_this_transaction(tc->td); 701 } 702 703 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 704 { 705 struct dm_thin_endio_hook *h; 706 707 if (bio_op(bio) == REQ_OP_DISCARD) 708 return; 709 710 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 711 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 712 } 713 714 static void issue(struct thin_c *tc, struct bio *bio) 715 { 716 struct pool *pool = tc->pool; 717 unsigned long flags; 718 719 if (!bio_triggers_commit(tc, bio)) { 720 generic_make_request(bio); 721 return; 722 } 723 724 /* 725 * Complete bio with an error if earlier I/O caused changes to 726 * the metadata that can't be committed e.g, due to I/O errors 727 * on the metadata device. 728 */ 729 if (dm_thin_aborted_changes(tc->td)) { 730 bio_io_error(bio); 731 return; 732 } 733 734 /* 735 * Batch together any bios that trigger commits and then issue a 736 * single commit for them in process_deferred_bios(). 737 */ 738 spin_lock_irqsave(&pool->lock, flags); 739 bio_list_add(&pool->deferred_flush_bios, bio); 740 spin_unlock_irqrestore(&pool->lock, flags); 741 } 742 743 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 744 { 745 remap_to_origin(tc, bio); 746 issue(tc, bio); 747 } 748 749 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 750 dm_block_t block) 751 { 752 remap(tc, bio, block); 753 issue(tc, bio); 754 } 755 756 /*----------------------------------------------------------------*/ 757 758 /* 759 * Bio endio functions. 760 */ 761 struct dm_thin_new_mapping { 762 struct list_head list; 763 764 bool pass_discard:1; 765 bool maybe_shared:1; 766 767 /* 768 * Track quiescing, copying and zeroing preparation actions. When this 769 * counter hits zero the block is prepared and can be inserted into the 770 * btree. 771 */ 772 atomic_t prepare_actions; 773 774 blk_status_t status; 775 struct thin_c *tc; 776 dm_block_t virt_begin, virt_end; 777 dm_block_t data_block; 778 struct dm_bio_prison_cell *cell; 779 780 /* 781 * If the bio covers the whole area of a block then we can avoid 782 * zeroing or copying. Instead this bio is hooked. The bio will 783 * still be in the cell, so care has to be taken to avoid issuing 784 * the bio twice. 785 */ 786 struct bio *bio; 787 bio_end_io_t *saved_bi_end_io; 788 }; 789 790 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 791 { 792 struct pool *pool = m->tc->pool; 793 794 if (atomic_dec_and_test(&m->prepare_actions)) { 795 list_add_tail(&m->list, &pool->prepared_mappings); 796 wake_worker(pool); 797 } 798 } 799 800 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 801 { 802 unsigned long flags; 803 struct pool *pool = m->tc->pool; 804 805 spin_lock_irqsave(&pool->lock, flags); 806 __complete_mapping_preparation(m); 807 spin_unlock_irqrestore(&pool->lock, flags); 808 } 809 810 static void copy_complete(int read_err, unsigned long write_err, void *context) 811 { 812 struct dm_thin_new_mapping *m = context; 813 814 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 815 complete_mapping_preparation(m); 816 } 817 818 static void overwrite_endio(struct bio *bio) 819 { 820 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 821 struct dm_thin_new_mapping *m = h->overwrite_mapping; 822 823 bio->bi_end_io = m->saved_bi_end_io; 824 825 m->status = bio->bi_status; 826 complete_mapping_preparation(m); 827 } 828 829 /*----------------------------------------------------------------*/ 830 831 /* 832 * Workqueue. 833 */ 834 835 /* 836 * Prepared mapping jobs. 837 */ 838 839 /* 840 * This sends the bios in the cell, except the original holder, back 841 * to the deferred_bios list. 842 */ 843 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 844 { 845 struct pool *pool = tc->pool; 846 unsigned long flags; 847 848 spin_lock_irqsave(&tc->lock, flags); 849 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 850 spin_unlock_irqrestore(&tc->lock, flags); 851 852 wake_worker(pool); 853 } 854 855 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 856 857 struct remap_info { 858 struct thin_c *tc; 859 struct bio_list defer_bios; 860 struct bio_list issue_bios; 861 }; 862 863 static void __inc_remap_and_issue_cell(void *context, 864 struct dm_bio_prison_cell *cell) 865 { 866 struct remap_info *info = context; 867 struct bio *bio; 868 869 while ((bio = bio_list_pop(&cell->bios))) { 870 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 871 bio_list_add(&info->defer_bios, bio); 872 else { 873 inc_all_io_entry(info->tc->pool, bio); 874 875 /* 876 * We can't issue the bios with the bio prison lock 877 * held, so we add them to a list to issue on 878 * return from this function. 879 */ 880 bio_list_add(&info->issue_bios, bio); 881 } 882 } 883 } 884 885 static void inc_remap_and_issue_cell(struct thin_c *tc, 886 struct dm_bio_prison_cell *cell, 887 dm_block_t block) 888 { 889 struct bio *bio; 890 struct remap_info info; 891 892 info.tc = tc; 893 bio_list_init(&info.defer_bios); 894 bio_list_init(&info.issue_bios); 895 896 /* 897 * We have to be careful to inc any bios we're about to issue 898 * before the cell is released, and avoid a race with new bios 899 * being added to the cell. 900 */ 901 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 902 &info, cell); 903 904 while ((bio = bio_list_pop(&info.defer_bios))) 905 thin_defer_bio(tc, bio); 906 907 while ((bio = bio_list_pop(&info.issue_bios))) 908 remap_and_issue(info.tc, bio, block); 909 } 910 911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 912 { 913 cell_error(m->tc->pool, m->cell); 914 list_del(&m->list); 915 mempool_free(m, m->tc->pool->mapping_pool); 916 } 917 918 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 919 { 920 struct thin_c *tc = m->tc; 921 struct pool *pool = tc->pool; 922 struct bio *bio = m->bio; 923 int r; 924 925 if (m->status) { 926 cell_error(pool, m->cell); 927 goto out; 928 } 929 930 /* 931 * Commit the prepared block into the mapping btree. 932 * Any I/O for this block arriving after this point will get 933 * remapped to it directly. 934 */ 935 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 936 if (r) { 937 metadata_operation_failed(pool, "dm_thin_insert_block", r); 938 cell_error(pool, m->cell); 939 goto out; 940 } 941 942 /* 943 * Release any bios held while the block was being provisioned. 944 * If we are processing a write bio that completely covers the block, 945 * we already processed it so can ignore it now when processing 946 * the bios in the cell. 947 */ 948 if (bio) { 949 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 950 bio_endio(bio); 951 } else { 952 inc_all_io_entry(tc->pool, m->cell->holder); 953 remap_and_issue(tc, m->cell->holder, m->data_block); 954 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 955 } 956 957 out: 958 list_del(&m->list); 959 mempool_free(m, pool->mapping_pool); 960 } 961 962 /*----------------------------------------------------------------*/ 963 964 static void free_discard_mapping(struct dm_thin_new_mapping *m) 965 { 966 struct thin_c *tc = m->tc; 967 if (m->cell) 968 cell_defer_no_holder(tc, m->cell); 969 mempool_free(m, tc->pool->mapping_pool); 970 } 971 972 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 973 { 974 bio_io_error(m->bio); 975 free_discard_mapping(m); 976 } 977 978 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 979 { 980 bio_endio(m->bio); 981 free_discard_mapping(m); 982 } 983 984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 985 { 986 int r; 987 struct thin_c *tc = m->tc; 988 989 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 990 if (r) { 991 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 992 bio_io_error(m->bio); 993 } else 994 bio_endio(m->bio); 995 996 cell_defer_no_holder(tc, m->cell); 997 mempool_free(m, tc->pool->mapping_pool); 998 } 999 1000 /*----------------------------------------------------------------*/ 1001 1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1003 struct bio *discard_parent) 1004 { 1005 /* 1006 * We've already unmapped this range of blocks, but before we 1007 * passdown we have to check that these blocks are now unused. 1008 */ 1009 int r = 0; 1010 bool used = true; 1011 struct thin_c *tc = m->tc; 1012 struct pool *pool = tc->pool; 1013 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1014 struct discard_op op; 1015 1016 begin_discard(&op, tc, discard_parent); 1017 while (b != end) { 1018 /* find start of unmapped run */ 1019 for (; b < end; b++) { 1020 r = dm_pool_block_is_used(pool->pmd, b, &used); 1021 if (r) 1022 goto out; 1023 1024 if (!used) 1025 break; 1026 } 1027 1028 if (b == end) 1029 break; 1030 1031 /* find end of run */ 1032 for (e = b + 1; e != end; e++) { 1033 r = dm_pool_block_is_used(pool->pmd, e, &used); 1034 if (r) 1035 goto out; 1036 1037 if (used) 1038 break; 1039 } 1040 1041 r = issue_discard(&op, b, e); 1042 if (r) 1043 goto out; 1044 1045 b = e; 1046 } 1047 out: 1048 end_discard(&op, r); 1049 } 1050 1051 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1052 { 1053 unsigned long flags; 1054 struct pool *pool = m->tc->pool; 1055 1056 spin_lock_irqsave(&pool->lock, flags); 1057 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1058 spin_unlock_irqrestore(&pool->lock, flags); 1059 wake_worker(pool); 1060 } 1061 1062 static void passdown_endio(struct bio *bio) 1063 { 1064 /* 1065 * It doesn't matter if the passdown discard failed, we still want 1066 * to unmap (we ignore err). 1067 */ 1068 queue_passdown_pt2(bio->bi_private); 1069 bio_put(bio); 1070 } 1071 1072 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1073 { 1074 int r; 1075 struct thin_c *tc = m->tc; 1076 struct pool *pool = tc->pool; 1077 struct bio *discard_parent; 1078 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1079 1080 /* 1081 * Only this thread allocates blocks, so we can be sure that the 1082 * newly unmapped blocks will not be allocated before the end of 1083 * the function. 1084 */ 1085 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1086 if (r) { 1087 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1088 bio_io_error(m->bio); 1089 cell_defer_no_holder(tc, m->cell); 1090 mempool_free(m, pool->mapping_pool); 1091 return; 1092 } 1093 1094 /* 1095 * Increment the unmapped blocks. This prevents a race between the 1096 * passdown io and reallocation of freed blocks. 1097 */ 1098 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1099 if (r) { 1100 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1101 bio_io_error(m->bio); 1102 cell_defer_no_holder(tc, m->cell); 1103 mempool_free(m, pool->mapping_pool); 1104 return; 1105 } 1106 1107 discard_parent = bio_alloc(GFP_NOIO, 1); 1108 if (!discard_parent) { 1109 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1110 dm_device_name(tc->pool->pool_md)); 1111 queue_passdown_pt2(m); 1112 1113 } else { 1114 discard_parent->bi_end_io = passdown_endio; 1115 discard_parent->bi_private = m; 1116 1117 if (m->maybe_shared) 1118 passdown_double_checking_shared_status(m, discard_parent); 1119 else { 1120 struct discard_op op; 1121 1122 begin_discard(&op, tc, discard_parent); 1123 r = issue_discard(&op, m->data_block, data_end); 1124 end_discard(&op, r); 1125 } 1126 } 1127 } 1128 1129 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1130 { 1131 int r; 1132 struct thin_c *tc = m->tc; 1133 struct pool *pool = tc->pool; 1134 1135 /* 1136 * The passdown has completed, so now we can decrement all those 1137 * unmapped blocks. 1138 */ 1139 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1140 m->data_block + (m->virt_end - m->virt_begin)); 1141 if (r) { 1142 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1143 bio_io_error(m->bio); 1144 } else 1145 bio_endio(m->bio); 1146 1147 cell_defer_no_holder(tc, m->cell); 1148 mempool_free(m, pool->mapping_pool); 1149 } 1150 1151 static void process_prepared(struct pool *pool, struct list_head *head, 1152 process_mapping_fn *fn) 1153 { 1154 unsigned long flags; 1155 struct list_head maps; 1156 struct dm_thin_new_mapping *m, *tmp; 1157 1158 INIT_LIST_HEAD(&maps); 1159 spin_lock_irqsave(&pool->lock, flags); 1160 list_splice_init(head, &maps); 1161 spin_unlock_irqrestore(&pool->lock, flags); 1162 1163 list_for_each_entry_safe(m, tmp, &maps, list) 1164 (*fn)(m); 1165 } 1166 1167 /* 1168 * Deferred bio jobs. 1169 */ 1170 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1171 { 1172 return bio->bi_iter.bi_size == 1173 (pool->sectors_per_block << SECTOR_SHIFT); 1174 } 1175 1176 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1177 { 1178 return (bio_data_dir(bio) == WRITE) && 1179 io_overlaps_block(pool, bio); 1180 } 1181 1182 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1183 bio_end_io_t *fn) 1184 { 1185 *save = bio->bi_end_io; 1186 bio->bi_end_io = fn; 1187 } 1188 1189 static int ensure_next_mapping(struct pool *pool) 1190 { 1191 if (pool->next_mapping) 1192 return 0; 1193 1194 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1195 1196 return pool->next_mapping ? 0 : -ENOMEM; 1197 } 1198 1199 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1200 { 1201 struct dm_thin_new_mapping *m = pool->next_mapping; 1202 1203 BUG_ON(!pool->next_mapping); 1204 1205 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1206 INIT_LIST_HEAD(&m->list); 1207 m->bio = NULL; 1208 1209 pool->next_mapping = NULL; 1210 1211 return m; 1212 } 1213 1214 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1215 sector_t begin, sector_t end) 1216 { 1217 int r; 1218 struct dm_io_region to; 1219 1220 to.bdev = tc->pool_dev->bdev; 1221 to.sector = begin; 1222 to.count = end - begin; 1223 1224 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1225 if (r < 0) { 1226 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1227 copy_complete(1, 1, m); 1228 } 1229 } 1230 1231 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1232 dm_block_t data_begin, 1233 struct dm_thin_new_mapping *m) 1234 { 1235 struct pool *pool = tc->pool; 1236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1237 1238 h->overwrite_mapping = m; 1239 m->bio = bio; 1240 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1241 inc_all_io_entry(pool, bio); 1242 remap_and_issue(tc, bio, data_begin); 1243 } 1244 1245 /* 1246 * A partial copy also needs to zero the uncopied region. 1247 */ 1248 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1249 struct dm_dev *origin, dm_block_t data_origin, 1250 dm_block_t data_dest, 1251 struct dm_bio_prison_cell *cell, struct bio *bio, 1252 sector_t len) 1253 { 1254 int r; 1255 struct pool *pool = tc->pool; 1256 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1257 1258 m->tc = tc; 1259 m->virt_begin = virt_block; 1260 m->virt_end = virt_block + 1u; 1261 m->data_block = data_dest; 1262 m->cell = cell; 1263 1264 /* 1265 * quiesce action + copy action + an extra reference held for the 1266 * duration of this function (we may need to inc later for a 1267 * partial zero). 1268 */ 1269 atomic_set(&m->prepare_actions, 3); 1270 1271 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1272 complete_mapping_preparation(m); /* already quiesced */ 1273 1274 /* 1275 * IO to pool_dev remaps to the pool target's data_dev. 1276 * 1277 * If the whole block of data is being overwritten, we can issue the 1278 * bio immediately. Otherwise we use kcopyd to clone the data first. 1279 */ 1280 if (io_overwrites_block(pool, bio)) 1281 remap_and_issue_overwrite(tc, bio, data_dest, m); 1282 else { 1283 struct dm_io_region from, to; 1284 1285 from.bdev = origin->bdev; 1286 from.sector = data_origin * pool->sectors_per_block; 1287 from.count = len; 1288 1289 to.bdev = tc->pool_dev->bdev; 1290 to.sector = data_dest * pool->sectors_per_block; 1291 to.count = len; 1292 1293 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1294 0, copy_complete, m); 1295 if (r < 0) { 1296 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1297 copy_complete(1, 1, m); 1298 1299 /* 1300 * We allow the zero to be issued, to simplify the 1301 * error path. Otherwise we'd need to start 1302 * worrying about decrementing the prepare_actions 1303 * counter. 1304 */ 1305 } 1306 1307 /* 1308 * Do we need to zero a tail region? 1309 */ 1310 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1311 atomic_inc(&m->prepare_actions); 1312 ll_zero(tc, m, 1313 data_dest * pool->sectors_per_block + len, 1314 (data_dest + 1) * pool->sectors_per_block); 1315 } 1316 } 1317 1318 complete_mapping_preparation(m); /* drop our ref */ 1319 } 1320 1321 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1322 dm_block_t data_origin, dm_block_t data_dest, 1323 struct dm_bio_prison_cell *cell, struct bio *bio) 1324 { 1325 schedule_copy(tc, virt_block, tc->pool_dev, 1326 data_origin, data_dest, cell, bio, 1327 tc->pool->sectors_per_block); 1328 } 1329 1330 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1331 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1332 struct bio *bio) 1333 { 1334 struct pool *pool = tc->pool; 1335 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1336 1337 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1338 m->tc = tc; 1339 m->virt_begin = virt_block; 1340 m->virt_end = virt_block + 1u; 1341 m->data_block = data_block; 1342 m->cell = cell; 1343 1344 /* 1345 * If the whole block of data is being overwritten or we are not 1346 * zeroing pre-existing data, we can issue the bio immediately. 1347 * Otherwise we use kcopyd to zero the data first. 1348 */ 1349 if (pool->pf.zero_new_blocks) { 1350 if (io_overwrites_block(pool, bio)) 1351 remap_and_issue_overwrite(tc, bio, data_block, m); 1352 else 1353 ll_zero(tc, m, data_block * pool->sectors_per_block, 1354 (data_block + 1) * pool->sectors_per_block); 1355 } else 1356 process_prepared_mapping(m); 1357 } 1358 1359 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1360 dm_block_t data_dest, 1361 struct dm_bio_prison_cell *cell, struct bio *bio) 1362 { 1363 struct pool *pool = tc->pool; 1364 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1365 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1366 1367 if (virt_block_end <= tc->origin_size) 1368 schedule_copy(tc, virt_block, tc->origin_dev, 1369 virt_block, data_dest, cell, bio, 1370 pool->sectors_per_block); 1371 1372 else if (virt_block_begin < tc->origin_size) 1373 schedule_copy(tc, virt_block, tc->origin_dev, 1374 virt_block, data_dest, cell, bio, 1375 tc->origin_size - virt_block_begin); 1376 1377 else 1378 schedule_zero(tc, virt_block, data_dest, cell, bio); 1379 } 1380 1381 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1382 1383 static void check_for_space(struct pool *pool) 1384 { 1385 int r; 1386 dm_block_t nr_free; 1387 1388 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1389 return; 1390 1391 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1392 if (r) 1393 return; 1394 1395 if (nr_free) 1396 set_pool_mode(pool, PM_WRITE); 1397 } 1398 1399 /* 1400 * A non-zero return indicates read_only or fail_io mode. 1401 * Many callers don't care about the return value. 1402 */ 1403 static int commit(struct pool *pool) 1404 { 1405 int r; 1406 1407 if (get_pool_mode(pool) >= PM_READ_ONLY) 1408 return -EINVAL; 1409 1410 r = dm_pool_commit_metadata(pool->pmd); 1411 if (r) 1412 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1413 else 1414 check_for_space(pool); 1415 1416 return r; 1417 } 1418 1419 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1420 { 1421 unsigned long flags; 1422 1423 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1424 DMWARN("%s: reached low water mark for data device: sending event.", 1425 dm_device_name(pool->pool_md)); 1426 spin_lock_irqsave(&pool->lock, flags); 1427 pool->low_water_triggered = true; 1428 spin_unlock_irqrestore(&pool->lock, flags); 1429 dm_table_event(pool->ti->table); 1430 } 1431 } 1432 1433 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1434 { 1435 int r; 1436 dm_block_t free_blocks; 1437 struct pool *pool = tc->pool; 1438 1439 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1440 return -EINVAL; 1441 1442 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1443 if (r) { 1444 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1445 return r; 1446 } 1447 1448 check_low_water_mark(pool, free_blocks); 1449 1450 if (!free_blocks) { 1451 /* 1452 * Try to commit to see if that will free up some 1453 * more space. 1454 */ 1455 r = commit(pool); 1456 if (r) 1457 return r; 1458 1459 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1460 if (r) { 1461 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1462 return r; 1463 } 1464 1465 if (!free_blocks) { 1466 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1467 return -ENOSPC; 1468 } 1469 } 1470 1471 r = dm_pool_alloc_data_block(pool->pmd, result); 1472 if (r) { 1473 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1474 return r; 1475 } 1476 1477 return 0; 1478 } 1479 1480 /* 1481 * If we have run out of space, queue bios until the device is 1482 * resumed, presumably after having been reloaded with more space. 1483 */ 1484 static void retry_on_resume(struct bio *bio) 1485 { 1486 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1487 struct thin_c *tc = h->tc; 1488 unsigned long flags; 1489 1490 spin_lock_irqsave(&tc->lock, flags); 1491 bio_list_add(&tc->retry_on_resume_list, bio); 1492 spin_unlock_irqrestore(&tc->lock, flags); 1493 } 1494 1495 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1496 { 1497 enum pool_mode m = get_pool_mode(pool); 1498 1499 switch (m) { 1500 case PM_WRITE: 1501 /* Shouldn't get here */ 1502 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1503 return BLK_STS_IOERR; 1504 1505 case PM_OUT_OF_DATA_SPACE: 1506 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1507 1508 case PM_READ_ONLY: 1509 case PM_FAIL: 1510 return BLK_STS_IOERR; 1511 default: 1512 /* Shouldn't get here */ 1513 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1514 return BLK_STS_IOERR; 1515 } 1516 } 1517 1518 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1519 { 1520 blk_status_t error = should_error_unserviceable_bio(pool); 1521 1522 if (error) { 1523 bio->bi_status = error; 1524 bio_endio(bio); 1525 } else 1526 retry_on_resume(bio); 1527 } 1528 1529 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1530 { 1531 struct bio *bio; 1532 struct bio_list bios; 1533 blk_status_t error; 1534 1535 error = should_error_unserviceable_bio(pool); 1536 if (error) { 1537 cell_error_with_code(pool, cell, error); 1538 return; 1539 } 1540 1541 bio_list_init(&bios); 1542 cell_release(pool, cell, &bios); 1543 1544 while ((bio = bio_list_pop(&bios))) 1545 retry_on_resume(bio); 1546 } 1547 1548 static void process_discard_cell_no_passdown(struct thin_c *tc, 1549 struct dm_bio_prison_cell *virt_cell) 1550 { 1551 struct pool *pool = tc->pool; 1552 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1553 1554 /* 1555 * We don't need to lock the data blocks, since there's no 1556 * passdown. We only lock data blocks for allocation and breaking sharing. 1557 */ 1558 m->tc = tc; 1559 m->virt_begin = virt_cell->key.block_begin; 1560 m->virt_end = virt_cell->key.block_end; 1561 m->cell = virt_cell; 1562 m->bio = virt_cell->holder; 1563 1564 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1565 pool->process_prepared_discard(m); 1566 } 1567 1568 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1569 struct bio *bio) 1570 { 1571 struct pool *pool = tc->pool; 1572 1573 int r; 1574 bool maybe_shared; 1575 struct dm_cell_key data_key; 1576 struct dm_bio_prison_cell *data_cell; 1577 struct dm_thin_new_mapping *m; 1578 dm_block_t virt_begin, virt_end, data_begin; 1579 1580 while (begin != end) { 1581 r = ensure_next_mapping(pool); 1582 if (r) 1583 /* we did our best */ 1584 return; 1585 1586 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1587 &data_begin, &maybe_shared); 1588 if (r) 1589 /* 1590 * Silently fail, letting any mappings we've 1591 * created complete. 1592 */ 1593 break; 1594 1595 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1596 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1597 /* contention, we'll give up with this range */ 1598 begin = virt_end; 1599 continue; 1600 } 1601 1602 /* 1603 * IO may still be going to the destination block. We must 1604 * quiesce before we can do the removal. 1605 */ 1606 m = get_next_mapping(pool); 1607 m->tc = tc; 1608 m->maybe_shared = maybe_shared; 1609 m->virt_begin = virt_begin; 1610 m->virt_end = virt_end; 1611 m->data_block = data_begin; 1612 m->cell = data_cell; 1613 m->bio = bio; 1614 1615 /* 1616 * The parent bio must not complete before sub discard bios are 1617 * chained to it (see end_discard's bio_chain)! 1618 * 1619 * This per-mapping bi_remaining increment is paired with 1620 * the implicit decrement that occurs via bio_endio() in 1621 * end_discard(). 1622 */ 1623 bio_inc_remaining(bio); 1624 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1625 pool->process_prepared_discard(m); 1626 1627 begin = virt_end; 1628 } 1629 } 1630 1631 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1632 { 1633 struct bio *bio = virt_cell->holder; 1634 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1635 1636 /* 1637 * The virt_cell will only get freed once the origin bio completes. 1638 * This means it will remain locked while all the individual 1639 * passdown bios are in flight. 1640 */ 1641 h->cell = virt_cell; 1642 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1643 1644 /* 1645 * We complete the bio now, knowing that the bi_remaining field 1646 * will prevent completion until the sub range discards have 1647 * completed. 1648 */ 1649 bio_endio(bio); 1650 } 1651 1652 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1653 { 1654 dm_block_t begin, end; 1655 struct dm_cell_key virt_key; 1656 struct dm_bio_prison_cell *virt_cell; 1657 1658 get_bio_block_range(tc, bio, &begin, &end); 1659 if (begin == end) { 1660 /* 1661 * The discard covers less than a block. 1662 */ 1663 bio_endio(bio); 1664 return; 1665 } 1666 1667 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1668 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1669 /* 1670 * Potential starvation issue: We're relying on the 1671 * fs/application being well behaved, and not trying to 1672 * send IO to a region at the same time as discarding it. 1673 * If they do this persistently then it's possible this 1674 * cell will never be granted. 1675 */ 1676 return; 1677 1678 tc->pool->process_discard_cell(tc, virt_cell); 1679 } 1680 1681 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1682 struct dm_cell_key *key, 1683 struct dm_thin_lookup_result *lookup_result, 1684 struct dm_bio_prison_cell *cell) 1685 { 1686 int r; 1687 dm_block_t data_block; 1688 struct pool *pool = tc->pool; 1689 1690 r = alloc_data_block(tc, &data_block); 1691 switch (r) { 1692 case 0: 1693 schedule_internal_copy(tc, block, lookup_result->block, 1694 data_block, cell, bio); 1695 break; 1696 1697 case -ENOSPC: 1698 retry_bios_on_resume(pool, cell); 1699 break; 1700 1701 default: 1702 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1703 __func__, r); 1704 cell_error(pool, cell); 1705 break; 1706 } 1707 } 1708 1709 static void __remap_and_issue_shared_cell(void *context, 1710 struct dm_bio_prison_cell *cell) 1711 { 1712 struct remap_info *info = context; 1713 struct bio *bio; 1714 1715 while ((bio = bio_list_pop(&cell->bios))) { 1716 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1717 bio_op(bio) == REQ_OP_DISCARD) 1718 bio_list_add(&info->defer_bios, bio); 1719 else { 1720 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1721 1722 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1723 inc_all_io_entry(info->tc->pool, bio); 1724 bio_list_add(&info->issue_bios, bio); 1725 } 1726 } 1727 } 1728 1729 static void remap_and_issue_shared_cell(struct thin_c *tc, 1730 struct dm_bio_prison_cell *cell, 1731 dm_block_t block) 1732 { 1733 struct bio *bio; 1734 struct remap_info info; 1735 1736 info.tc = tc; 1737 bio_list_init(&info.defer_bios); 1738 bio_list_init(&info.issue_bios); 1739 1740 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1741 &info, cell); 1742 1743 while ((bio = bio_list_pop(&info.defer_bios))) 1744 thin_defer_bio(tc, bio); 1745 1746 while ((bio = bio_list_pop(&info.issue_bios))) 1747 remap_and_issue(tc, bio, block); 1748 } 1749 1750 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1751 dm_block_t block, 1752 struct dm_thin_lookup_result *lookup_result, 1753 struct dm_bio_prison_cell *virt_cell) 1754 { 1755 struct dm_bio_prison_cell *data_cell; 1756 struct pool *pool = tc->pool; 1757 struct dm_cell_key key; 1758 1759 /* 1760 * If cell is already occupied, then sharing is already in the process 1761 * of being broken so we have nothing further to do here. 1762 */ 1763 build_data_key(tc->td, lookup_result->block, &key); 1764 if (bio_detain(pool, &key, bio, &data_cell)) { 1765 cell_defer_no_holder(tc, virt_cell); 1766 return; 1767 } 1768 1769 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1770 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1771 cell_defer_no_holder(tc, virt_cell); 1772 } else { 1773 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1774 1775 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1776 inc_all_io_entry(pool, bio); 1777 remap_and_issue(tc, bio, lookup_result->block); 1778 1779 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1780 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1781 } 1782 } 1783 1784 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1785 struct dm_bio_prison_cell *cell) 1786 { 1787 int r; 1788 dm_block_t data_block; 1789 struct pool *pool = tc->pool; 1790 1791 /* 1792 * Remap empty bios (flushes) immediately, without provisioning. 1793 */ 1794 if (!bio->bi_iter.bi_size) { 1795 inc_all_io_entry(pool, bio); 1796 cell_defer_no_holder(tc, cell); 1797 1798 remap_and_issue(tc, bio, 0); 1799 return; 1800 } 1801 1802 /* 1803 * Fill read bios with zeroes and complete them immediately. 1804 */ 1805 if (bio_data_dir(bio) == READ) { 1806 zero_fill_bio(bio); 1807 cell_defer_no_holder(tc, cell); 1808 bio_endio(bio); 1809 return; 1810 } 1811 1812 r = alloc_data_block(tc, &data_block); 1813 switch (r) { 1814 case 0: 1815 if (tc->origin_dev) 1816 schedule_external_copy(tc, block, data_block, cell, bio); 1817 else 1818 schedule_zero(tc, block, data_block, cell, bio); 1819 break; 1820 1821 case -ENOSPC: 1822 retry_bios_on_resume(pool, cell); 1823 break; 1824 1825 default: 1826 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1827 __func__, r); 1828 cell_error(pool, cell); 1829 break; 1830 } 1831 } 1832 1833 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1834 { 1835 int r; 1836 struct pool *pool = tc->pool; 1837 struct bio *bio = cell->holder; 1838 dm_block_t block = get_bio_block(tc, bio); 1839 struct dm_thin_lookup_result lookup_result; 1840 1841 if (tc->requeue_mode) { 1842 cell_requeue(pool, cell); 1843 return; 1844 } 1845 1846 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1847 switch (r) { 1848 case 0: 1849 if (lookup_result.shared) 1850 process_shared_bio(tc, bio, block, &lookup_result, cell); 1851 else { 1852 inc_all_io_entry(pool, bio); 1853 remap_and_issue(tc, bio, lookup_result.block); 1854 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1855 } 1856 break; 1857 1858 case -ENODATA: 1859 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1860 inc_all_io_entry(pool, bio); 1861 cell_defer_no_holder(tc, cell); 1862 1863 if (bio_end_sector(bio) <= tc->origin_size) 1864 remap_to_origin_and_issue(tc, bio); 1865 1866 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1867 zero_fill_bio(bio); 1868 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1869 remap_to_origin_and_issue(tc, bio); 1870 1871 } else { 1872 zero_fill_bio(bio); 1873 bio_endio(bio); 1874 } 1875 } else 1876 provision_block(tc, bio, block, cell); 1877 break; 1878 1879 default: 1880 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1881 __func__, r); 1882 cell_defer_no_holder(tc, cell); 1883 bio_io_error(bio); 1884 break; 1885 } 1886 } 1887 1888 static void process_bio(struct thin_c *tc, struct bio *bio) 1889 { 1890 struct pool *pool = tc->pool; 1891 dm_block_t block = get_bio_block(tc, bio); 1892 struct dm_bio_prison_cell *cell; 1893 struct dm_cell_key key; 1894 1895 /* 1896 * If cell is already occupied, then the block is already 1897 * being provisioned so we have nothing further to do here. 1898 */ 1899 build_virtual_key(tc->td, block, &key); 1900 if (bio_detain(pool, &key, bio, &cell)) 1901 return; 1902 1903 process_cell(tc, cell); 1904 } 1905 1906 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1907 struct dm_bio_prison_cell *cell) 1908 { 1909 int r; 1910 int rw = bio_data_dir(bio); 1911 dm_block_t block = get_bio_block(tc, bio); 1912 struct dm_thin_lookup_result lookup_result; 1913 1914 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1915 switch (r) { 1916 case 0: 1917 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1918 handle_unserviceable_bio(tc->pool, bio); 1919 if (cell) 1920 cell_defer_no_holder(tc, cell); 1921 } else { 1922 inc_all_io_entry(tc->pool, bio); 1923 remap_and_issue(tc, bio, lookup_result.block); 1924 if (cell) 1925 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1926 } 1927 break; 1928 1929 case -ENODATA: 1930 if (cell) 1931 cell_defer_no_holder(tc, cell); 1932 if (rw != READ) { 1933 handle_unserviceable_bio(tc->pool, bio); 1934 break; 1935 } 1936 1937 if (tc->origin_dev) { 1938 inc_all_io_entry(tc->pool, bio); 1939 remap_to_origin_and_issue(tc, bio); 1940 break; 1941 } 1942 1943 zero_fill_bio(bio); 1944 bio_endio(bio); 1945 break; 1946 1947 default: 1948 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1949 __func__, r); 1950 if (cell) 1951 cell_defer_no_holder(tc, cell); 1952 bio_io_error(bio); 1953 break; 1954 } 1955 } 1956 1957 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1958 { 1959 __process_bio_read_only(tc, bio, NULL); 1960 } 1961 1962 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1963 { 1964 __process_bio_read_only(tc, cell->holder, cell); 1965 } 1966 1967 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1968 { 1969 bio_endio(bio); 1970 } 1971 1972 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1973 { 1974 bio_io_error(bio); 1975 } 1976 1977 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1978 { 1979 cell_success(tc->pool, cell); 1980 } 1981 1982 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1983 { 1984 cell_error(tc->pool, cell); 1985 } 1986 1987 /* 1988 * FIXME: should we also commit due to size of transaction, measured in 1989 * metadata blocks? 1990 */ 1991 static int need_commit_due_to_time(struct pool *pool) 1992 { 1993 return !time_in_range(jiffies, pool->last_commit_jiffies, 1994 pool->last_commit_jiffies + COMMIT_PERIOD); 1995 } 1996 1997 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1998 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1999 2000 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2001 { 2002 struct rb_node **rbp, *parent; 2003 struct dm_thin_endio_hook *pbd; 2004 sector_t bi_sector = bio->bi_iter.bi_sector; 2005 2006 rbp = &tc->sort_bio_list.rb_node; 2007 parent = NULL; 2008 while (*rbp) { 2009 parent = *rbp; 2010 pbd = thin_pbd(parent); 2011 2012 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2013 rbp = &(*rbp)->rb_left; 2014 else 2015 rbp = &(*rbp)->rb_right; 2016 } 2017 2018 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2019 rb_link_node(&pbd->rb_node, parent, rbp); 2020 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2021 } 2022 2023 static void __extract_sorted_bios(struct thin_c *tc) 2024 { 2025 struct rb_node *node; 2026 struct dm_thin_endio_hook *pbd; 2027 struct bio *bio; 2028 2029 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2030 pbd = thin_pbd(node); 2031 bio = thin_bio(pbd); 2032 2033 bio_list_add(&tc->deferred_bio_list, bio); 2034 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2035 } 2036 2037 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2038 } 2039 2040 static void __sort_thin_deferred_bios(struct thin_c *tc) 2041 { 2042 struct bio *bio; 2043 struct bio_list bios; 2044 2045 bio_list_init(&bios); 2046 bio_list_merge(&bios, &tc->deferred_bio_list); 2047 bio_list_init(&tc->deferred_bio_list); 2048 2049 /* Sort deferred_bio_list using rb-tree */ 2050 while ((bio = bio_list_pop(&bios))) 2051 __thin_bio_rb_add(tc, bio); 2052 2053 /* 2054 * Transfer the sorted bios in sort_bio_list back to 2055 * deferred_bio_list to allow lockless submission of 2056 * all bios. 2057 */ 2058 __extract_sorted_bios(tc); 2059 } 2060 2061 static void process_thin_deferred_bios(struct thin_c *tc) 2062 { 2063 struct pool *pool = tc->pool; 2064 unsigned long flags; 2065 struct bio *bio; 2066 struct bio_list bios; 2067 struct blk_plug plug; 2068 unsigned count = 0; 2069 2070 if (tc->requeue_mode) { 2071 error_thin_bio_list(tc, &tc->deferred_bio_list, 2072 BLK_STS_DM_REQUEUE); 2073 return; 2074 } 2075 2076 bio_list_init(&bios); 2077 2078 spin_lock_irqsave(&tc->lock, flags); 2079 2080 if (bio_list_empty(&tc->deferred_bio_list)) { 2081 spin_unlock_irqrestore(&tc->lock, flags); 2082 return; 2083 } 2084 2085 __sort_thin_deferred_bios(tc); 2086 2087 bio_list_merge(&bios, &tc->deferred_bio_list); 2088 bio_list_init(&tc->deferred_bio_list); 2089 2090 spin_unlock_irqrestore(&tc->lock, flags); 2091 2092 blk_start_plug(&plug); 2093 while ((bio = bio_list_pop(&bios))) { 2094 /* 2095 * If we've got no free new_mapping structs, and processing 2096 * this bio might require one, we pause until there are some 2097 * prepared mappings to process. 2098 */ 2099 if (ensure_next_mapping(pool)) { 2100 spin_lock_irqsave(&tc->lock, flags); 2101 bio_list_add(&tc->deferred_bio_list, bio); 2102 bio_list_merge(&tc->deferred_bio_list, &bios); 2103 spin_unlock_irqrestore(&tc->lock, flags); 2104 break; 2105 } 2106 2107 if (bio_op(bio) == REQ_OP_DISCARD) 2108 pool->process_discard(tc, bio); 2109 else 2110 pool->process_bio(tc, bio); 2111 2112 if ((count++ & 127) == 0) { 2113 throttle_work_update(&pool->throttle); 2114 dm_pool_issue_prefetches(pool->pmd); 2115 } 2116 } 2117 blk_finish_plug(&plug); 2118 } 2119 2120 static int cmp_cells(const void *lhs, const void *rhs) 2121 { 2122 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2123 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2124 2125 BUG_ON(!lhs_cell->holder); 2126 BUG_ON(!rhs_cell->holder); 2127 2128 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2129 return -1; 2130 2131 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2132 return 1; 2133 2134 return 0; 2135 } 2136 2137 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2138 { 2139 unsigned count = 0; 2140 struct dm_bio_prison_cell *cell, *tmp; 2141 2142 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2143 if (count >= CELL_SORT_ARRAY_SIZE) 2144 break; 2145 2146 pool->cell_sort_array[count++] = cell; 2147 list_del(&cell->user_list); 2148 } 2149 2150 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2151 2152 return count; 2153 } 2154 2155 static void process_thin_deferred_cells(struct thin_c *tc) 2156 { 2157 struct pool *pool = tc->pool; 2158 unsigned long flags; 2159 struct list_head cells; 2160 struct dm_bio_prison_cell *cell; 2161 unsigned i, j, count; 2162 2163 INIT_LIST_HEAD(&cells); 2164 2165 spin_lock_irqsave(&tc->lock, flags); 2166 list_splice_init(&tc->deferred_cells, &cells); 2167 spin_unlock_irqrestore(&tc->lock, flags); 2168 2169 if (list_empty(&cells)) 2170 return; 2171 2172 do { 2173 count = sort_cells(tc->pool, &cells); 2174 2175 for (i = 0; i < count; i++) { 2176 cell = pool->cell_sort_array[i]; 2177 BUG_ON(!cell->holder); 2178 2179 /* 2180 * If we've got no free new_mapping structs, and processing 2181 * this bio might require one, we pause until there are some 2182 * prepared mappings to process. 2183 */ 2184 if (ensure_next_mapping(pool)) { 2185 for (j = i; j < count; j++) 2186 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2187 2188 spin_lock_irqsave(&tc->lock, flags); 2189 list_splice(&cells, &tc->deferred_cells); 2190 spin_unlock_irqrestore(&tc->lock, flags); 2191 return; 2192 } 2193 2194 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2195 pool->process_discard_cell(tc, cell); 2196 else 2197 pool->process_cell(tc, cell); 2198 } 2199 } while (!list_empty(&cells)); 2200 } 2201 2202 static void thin_get(struct thin_c *tc); 2203 static void thin_put(struct thin_c *tc); 2204 2205 /* 2206 * We can't hold rcu_read_lock() around code that can block. So we 2207 * find a thin with the rcu lock held; bump a refcount; then drop 2208 * the lock. 2209 */ 2210 static struct thin_c *get_first_thin(struct pool *pool) 2211 { 2212 struct thin_c *tc = NULL; 2213 2214 rcu_read_lock(); 2215 if (!list_empty(&pool->active_thins)) { 2216 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2217 thin_get(tc); 2218 } 2219 rcu_read_unlock(); 2220 2221 return tc; 2222 } 2223 2224 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2225 { 2226 struct thin_c *old_tc = tc; 2227 2228 rcu_read_lock(); 2229 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2230 thin_get(tc); 2231 thin_put(old_tc); 2232 rcu_read_unlock(); 2233 return tc; 2234 } 2235 thin_put(old_tc); 2236 rcu_read_unlock(); 2237 2238 return NULL; 2239 } 2240 2241 static void process_deferred_bios(struct pool *pool) 2242 { 2243 unsigned long flags; 2244 struct bio *bio; 2245 struct bio_list bios; 2246 struct thin_c *tc; 2247 2248 tc = get_first_thin(pool); 2249 while (tc) { 2250 process_thin_deferred_cells(tc); 2251 process_thin_deferred_bios(tc); 2252 tc = get_next_thin(pool, tc); 2253 } 2254 2255 /* 2256 * If there are any deferred flush bios, we must commit 2257 * the metadata before issuing them. 2258 */ 2259 bio_list_init(&bios); 2260 spin_lock_irqsave(&pool->lock, flags); 2261 bio_list_merge(&bios, &pool->deferred_flush_bios); 2262 bio_list_init(&pool->deferred_flush_bios); 2263 spin_unlock_irqrestore(&pool->lock, flags); 2264 2265 if (bio_list_empty(&bios) && 2266 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2267 return; 2268 2269 if (commit(pool)) { 2270 while ((bio = bio_list_pop(&bios))) 2271 bio_io_error(bio); 2272 return; 2273 } 2274 pool->last_commit_jiffies = jiffies; 2275 2276 while ((bio = bio_list_pop(&bios))) 2277 generic_make_request(bio); 2278 } 2279 2280 static void do_worker(struct work_struct *ws) 2281 { 2282 struct pool *pool = container_of(ws, struct pool, worker); 2283 2284 throttle_work_start(&pool->throttle); 2285 dm_pool_issue_prefetches(pool->pmd); 2286 throttle_work_update(&pool->throttle); 2287 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2288 throttle_work_update(&pool->throttle); 2289 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2290 throttle_work_update(&pool->throttle); 2291 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2292 throttle_work_update(&pool->throttle); 2293 process_deferred_bios(pool); 2294 throttle_work_complete(&pool->throttle); 2295 } 2296 2297 /* 2298 * We want to commit periodically so that not too much 2299 * unwritten data builds up. 2300 */ 2301 static void do_waker(struct work_struct *ws) 2302 { 2303 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2304 wake_worker(pool); 2305 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2306 } 2307 2308 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2309 2310 /* 2311 * We're holding onto IO to allow userland time to react. After the 2312 * timeout either the pool will have been resized (and thus back in 2313 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2314 */ 2315 static void do_no_space_timeout(struct work_struct *ws) 2316 { 2317 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2318 no_space_timeout); 2319 2320 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2321 pool->pf.error_if_no_space = true; 2322 notify_of_pool_mode_change_to_oods(pool); 2323 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2324 } 2325 } 2326 2327 /*----------------------------------------------------------------*/ 2328 2329 struct pool_work { 2330 struct work_struct worker; 2331 struct completion complete; 2332 }; 2333 2334 static struct pool_work *to_pool_work(struct work_struct *ws) 2335 { 2336 return container_of(ws, struct pool_work, worker); 2337 } 2338 2339 static void pool_work_complete(struct pool_work *pw) 2340 { 2341 complete(&pw->complete); 2342 } 2343 2344 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2345 void (*fn)(struct work_struct *)) 2346 { 2347 INIT_WORK_ONSTACK(&pw->worker, fn); 2348 init_completion(&pw->complete); 2349 queue_work(pool->wq, &pw->worker); 2350 wait_for_completion(&pw->complete); 2351 } 2352 2353 /*----------------------------------------------------------------*/ 2354 2355 struct noflush_work { 2356 struct pool_work pw; 2357 struct thin_c *tc; 2358 }; 2359 2360 static struct noflush_work *to_noflush(struct work_struct *ws) 2361 { 2362 return container_of(to_pool_work(ws), struct noflush_work, pw); 2363 } 2364 2365 static void do_noflush_start(struct work_struct *ws) 2366 { 2367 struct noflush_work *w = to_noflush(ws); 2368 w->tc->requeue_mode = true; 2369 requeue_io(w->tc); 2370 pool_work_complete(&w->pw); 2371 } 2372 2373 static void do_noflush_stop(struct work_struct *ws) 2374 { 2375 struct noflush_work *w = to_noflush(ws); 2376 w->tc->requeue_mode = false; 2377 pool_work_complete(&w->pw); 2378 } 2379 2380 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2381 { 2382 struct noflush_work w; 2383 2384 w.tc = tc; 2385 pool_work_wait(&w.pw, tc->pool, fn); 2386 } 2387 2388 /*----------------------------------------------------------------*/ 2389 2390 static enum pool_mode get_pool_mode(struct pool *pool) 2391 { 2392 return pool->pf.mode; 2393 } 2394 2395 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2396 { 2397 dm_table_event(pool->ti->table); 2398 DMINFO("%s: switching pool to %s mode", 2399 dm_device_name(pool->pool_md), new_mode); 2400 } 2401 2402 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2403 { 2404 if (!pool->pf.error_if_no_space) 2405 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2406 else 2407 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2408 } 2409 2410 static bool passdown_enabled(struct pool_c *pt) 2411 { 2412 return pt->adjusted_pf.discard_passdown; 2413 } 2414 2415 static void set_discard_callbacks(struct pool *pool) 2416 { 2417 struct pool_c *pt = pool->ti->private; 2418 2419 if (passdown_enabled(pt)) { 2420 pool->process_discard_cell = process_discard_cell_passdown; 2421 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2422 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2423 } else { 2424 pool->process_discard_cell = process_discard_cell_no_passdown; 2425 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2426 } 2427 } 2428 2429 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2430 { 2431 struct pool_c *pt = pool->ti->private; 2432 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2433 enum pool_mode old_mode = get_pool_mode(pool); 2434 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2435 2436 /* 2437 * Never allow the pool to transition to PM_WRITE mode if user 2438 * intervention is required to verify metadata and data consistency. 2439 */ 2440 if (new_mode == PM_WRITE && needs_check) { 2441 DMERR("%s: unable to switch pool to write mode until repaired.", 2442 dm_device_name(pool->pool_md)); 2443 if (old_mode != new_mode) 2444 new_mode = old_mode; 2445 else 2446 new_mode = PM_READ_ONLY; 2447 } 2448 /* 2449 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2450 * not going to recover without a thin_repair. So we never let the 2451 * pool move out of the old mode. 2452 */ 2453 if (old_mode == PM_FAIL) 2454 new_mode = old_mode; 2455 2456 switch (new_mode) { 2457 case PM_FAIL: 2458 if (old_mode != new_mode) 2459 notify_of_pool_mode_change(pool, "failure"); 2460 dm_pool_metadata_read_only(pool->pmd); 2461 pool->process_bio = process_bio_fail; 2462 pool->process_discard = process_bio_fail; 2463 pool->process_cell = process_cell_fail; 2464 pool->process_discard_cell = process_cell_fail; 2465 pool->process_prepared_mapping = process_prepared_mapping_fail; 2466 pool->process_prepared_discard = process_prepared_discard_fail; 2467 2468 error_retry_list(pool); 2469 break; 2470 2471 case PM_READ_ONLY: 2472 if (old_mode != new_mode) 2473 notify_of_pool_mode_change(pool, "read-only"); 2474 dm_pool_metadata_read_only(pool->pmd); 2475 pool->process_bio = process_bio_read_only; 2476 pool->process_discard = process_bio_success; 2477 pool->process_cell = process_cell_read_only; 2478 pool->process_discard_cell = process_cell_success; 2479 pool->process_prepared_mapping = process_prepared_mapping_fail; 2480 pool->process_prepared_discard = process_prepared_discard_success; 2481 2482 error_retry_list(pool); 2483 break; 2484 2485 case PM_OUT_OF_DATA_SPACE: 2486 /* 2487 * Ideally we'd never hit this state; the low water mark 2488 * would trigger userland to extend the pool before we 2489 * completely run out of data space. However, many small 2490 * IOs to unprovisioned space can consume data space at an 2491 * alarming rate. Adjust your low water mark if you're 2492 * frequently seeing this mode. 2493 */ 2494 if (old_mode != new_mode) 2495 notify_of_pool_mode_change_to_oods(pool); 2496 pool->out_of_data_space = true; 2497 pool->process_bio = process_bio_read_only; 2498 pool->process_discard = process_discard_bio; 2499 pool->process_cell = process_cell_read_only; 2500 pool->process_prepared_mapping = process_prepared_mapping; 2501 set_discard_callbacks(pool); 2502 2503 if (!pool->pf.error_if_no_space && no_space_timeout) 2504 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2505 break; 2506 2507 case PM_WRITE: 2508 if (old_mode != new_mode) 2509 notify_of_pool_mode_change(pool, "write"); 2510 pool->out_of_data_space = false; 2511 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2512 dm_pool_metadata_read_write(pool->pmd); 2513 pool->process_bio = process_bio; 2514 pool->process_discard = process_discard_bio; 2515 pool->process_cell = process_cell; 2516 pool->process_prepared_mapping = process_prepared_mapping; 2517 set_discard_callbacks(pool); 2518 break; 2519 } 2520 2521 pool->pf.mode = new_mode; 2522 /* 2523 * The pool mode may have changed, sync it so bind_control_target() 2524 * doesn't cause an unexpected mode transition on resume. 2525 */ 2526 pt->adjusted_pf.mode = new_mode; 2527 } 2528 2529 static void abort_transaction(struct pool *pool) 2530 { 2531 const char *dev_name = dm_device_name(pool->pool_md); 2532 2533 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2534 if (dm_pool_abort_metadata(pool->pmd)) { 2535 DMERR("%s: failed to abort metadata transaction", dev_name); 2536 set_pool_mode(pool, PM_FAIL); 2537 } 2538 2539 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2540 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2541 set_pool_mode(pool, PM_FAIL); 2542 } 2543 } 2544 2545 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2546 { 2547 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2548 dm_device_name(pool->pool_md), op, r); 2549 2550 abort_transaction(pool); 2551 set_pool_mode(pool, PM_READ_ONLY); 2552 } 2553 2554 /*----------------------------------------------------------------*/ 2555 2556 /* 2557 * Mapping functions. 2558 */ 2559 2560 /* 2561 * Called only while mapping a thin bio to hand it over to the workqueue. 2562 */ 2563 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2564 { 2565 unsigned long flags; 2566 struct pool *pool = tc->pool; 2567 2568 spin_lock_irqsave(&tc->lock, flags); 2569 bio_list_add(&tc->deferred_bio_list, bio); 2570 spin_unlock_irqrestore(&tc->lock, flags); 2571 2572 wake_worker(pool); 2573 } 2574 2575 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2576 { 2577 struct pool *pool = tc->pool; 2578 2579 throttle_lock(&pool->throttle); 2580 thin_defer_bio(tc, bio); 2581 throttle_unlock(&pool->throttle); 2582 } 2583 2584 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2585 { 2586 unsigned long flags; 2587 struct pool *pool = tc->pool; 2588 2589 throttle_lock(&pool->throttle); 2590 spin_lock_irqsave(&tc->lock, flags); 2591 list_add_tail(&cell->user_list, &tc->deferred_cells); 2592 spin_unlock_irqrestore(&tc->lock, flags); 2593 throttle_unlock(&pool->throttle); 2594 2595 wake_worker(pool); 2596 } 2597 2598 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2599 { 2600 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2601 2602 h->tc = tc; 2603 h->shared_read_entry = NULL; 2604 h->all_io_entry = NULL; 2605 h->overwrite_mapping = NULL; 2606 h->cell = NULL; 2607 } 2608 2609 /* 2610 * Non-blocking function called from the thin target's map function. 2611 */ 2612 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2613 { 2614 int r; 2615 struct thin_c *tc = ti->private; 2616 dm_block_t block = get_bio_block(tc, bio); 2617 struct dm_thin_device *td = tc->td; 2618 struct dm_thin_lookup_result result; 2619 struct dm_bio_prison_cell *virt_cell, *data_cell; 2620 struct dm_cell_key key; 2621 2622 thin_hook_bio(tc, bio); 2623 2624 if (tc->requeue_mode) { 2625 bio->bi_status = BLK_STS_DM_REQUEUE; 2626 bio_endio(bio); 2627 return DM_MAPIO_SUBMITTED; 2628 } 2629 2630 if (get_pool_mode(tc->pool) == PM_FAIL) { 2631 bio_io_error(bio); 2632 return DM_MAPIO_SUBMITTED; 2633 } 2634 2635 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2636 thin_defer_bio_with_throttle(tc, bio); 2637 return DM_MAPIO_SUBMITTED; 2638 } 2639 2640 /* 2641 * We must hold the virtual cell before doing the lookup, otherwise 2642 * there's a race with discard. 2643 */ 2644 build_virtual_key(tc->td, block, &key); 2645 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2646 return DM_MAPIO_SUBMITTED; 2647 2648 r = dm_thin_find_block(td, block, 0, &result); 2649 2650 /* 2651 * Note that we defer readahead too. 2652 */ 2653 switch (r) { 2654 case 0: 2655 if (unlikely(result.shared)) { 2656 /* 2657 * We have a race condition here between the 2658 * result.shared value returned by the lookup and 2659 * snapshot creation, which may cause new 2660 * sharing. 2661 * 2662 * To avoid this always quiesce the origin before 2663 * taking the snap. You want to do this anyway to 2664 * ensure a consistent application view 2665 * (i.e. lockfs). 2666 * 2667 * More distant ancestors are irrelevant. The 2668 * shared flag will be set in their case. 2669 */ 2670 thin_defer_cell(tc, virt_cell); 2671 return DM_MAPIO_SUBMITTED; 2672 } 2673 2674 build_data_key(tc->td, result.block, &key); 2675 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2676 cell_defer_no_holder(tc, virt_cell); 2677 return DM_MAPIO_SUBMITTED; 2678 } 2679 2680 inc_all_io_entry(tc->pool, bio); 2681 cell_defer_no_holder(tc, data_cell); 2682 cell_defer_no_holder(tc, virt_cell); 2683 2684 remap(tc, bio, result.block); 2685 return DM_MAPIO_REMAPPED; 2686 2687 case -ENODATA: 2688 case -EWOULDBLOCK: 2689 thin_defer_cell(tc, virt_cell); 2690 return DM_MAPIO_SUBMITTED; 2691 2692 default: 2693 /* 2694 * Must always call bio_io_error on failure. 2695 * dm_thin_find_block can fail with -EINVAL if the 2696 * pool is switched to fail-io mode. 2697 */ 2698 bio_io_error(bio); 2699 cell_defer_no_holder(tc, virt_cell); 2700 return DM_MAPIO_SUBMITTED; 2701 } 2702 } 2703 2704 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2705 { 2706 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2707 struct request_queue *q; 2708 2709 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2710 return 1; 2711 2712 q = bdev_get_queue(pt->data_dev->bdev); 2713 return bdi_congested(q->backing_dev_info, bdi_bits); 2714 } 2715 2716 static void requeue_bios(struct pool *pool) 2717 { 2718 unsigned long flags; 2719 struct thin_c *tc; 2720 2721 rcu_read_lock(); 2722 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2723 spin_lock_irqsave(&tc->lock, flags); 2724 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2725 bio_list_init(&tc->retry_on_resume_list); 2726 spin_unlock_irqrestore(&tc->lock, flags); 2727 } 2728 rcu_read_unlock(); 2729 } 2730 2731 /*---------------------------------------------------------------- 2732 * Binding of control targets to a pool object 2733 *--------------------------------------------------------------*/ 2734 static bool data_dev_supports_discard(struct pool_c *pt) 2735 { 2736 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2737 2738 return q && blk_queue_discard(q); 2739 } 2740 2741 static bool is_factor(sector_t block_size, uint32_t n) 2742 { 2743 return !sector_div(block_size, n); 2744 } 2745 2746 /* 2747 * If discard_passdown was enabled verify that the data device 2748 * supports discards. Disable discard_passdown if not. 2749 */ 2750 static void disable_passdown_if_not_supported(struct pool_c *pt) 2751 { 2752 struct pool *pool = pt->pool; 2753 struct block_device *data_bdev = pt->data_dev->bdev; 2754 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2755 const char *reason = NULL; 2756 char buf[BDEVNAME_SIZE]; 2757 2758 if (!pt->adjusted_pf.discard_passdown) 2759 return; 2760 2761 if (!data_dev_supports_discard(pt)) 2762 reason = "discard unsupported"; 2763 2764 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2765 reason = "max discard sectors smaller than a block"; 2766 2767 if (reason) { 2768 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2769 pt->adjusted_pf.discard_passdown = false; 2770 } 2771 } 2772 2773 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2774 { 2775 struct pool_c *pt = ti->private; 2776 2777 /* 2778 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2779 */ 2780 enum pool_mode old_mode = get_pool_mode(pool); 2781 enum pool_mode new_mode = pt->adjusted_pf.mode; 2782 2783 /* 2784 * Don't change the pool's mode until set_pool_mode() below. 2785 * Otherwise the pool's process_* function pointers may 2786 * not match the desired pool mode. 2787 */ 2788 pt->adjusted_pf.mode = old_mode; 2789 2790 pool->ti = ti; 2791 pool->pf = pt->adjusted_pf; 2792 pool->low_water_blocks = pt->low_water_blocks; 2793 2794 set_pool_mode(pool, new_mode); 2795 2796 return 0; 2797 } 2798 2799 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2800 { 2801 if (pool->ti == ti) 2802 pool->ti = NULL; 2803 } 2804 2805 /*---------------------------------------------------------------- 2806 * Pool creation 2807 *--------------------------------------------------------------*/ 2808 /* Initialize pool features. */ 2809 static void pool_features_init(struct pool_features *pf) 2810 { 2811 pf->mode = PM_WRITE; 2812 pf->zero_new_blocks = true; 2813 pf->discard_enabled = true; 2814 pf->discard_passdown = true; 2815 pf->error_if_no_space = false; 2816 } 2817 2818 static void __pool_destroy(struct pool *pool) 2819 { 2820 __pool_table_remove(pool); 2821 2822 vfree(pool->cell_sort_array); 2823 if (dm_pool_metadata_close(pool->pmd) < 0) 2824 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2825 2826 dm_bio_prison_destroy(pool->prison); 2827 dm_kcopyd_client_destroy(pool->copier); 2828 2829 if (pool->wq) 2830 destroy_workqueue(pool->wq); 2831 2832 if (pool->next_mapping) 2833 mempool_free(pool->next_mapping, pool->mapping_pool); 2834 mempool_destroy(pool->mapping_pool); 2835 dm_deferred_set_destroy(pool->shared_read_ds); 2836 dm_deferred_set_destroy(pool->all_io_ds); 2837 kfree(pool); 2838 } 2839 2840 static struct kmem_cache *_new_mapping_cache; 2841 2842 static struct pool *pool_create(struct mapped_device *pool_md, 2843 struct block_device *metadata_dev, 2844 unsigned long block_size, 2845 int read_only, char **error) 2846 { 2847 int r; 2848 void *err_p; 2849 struct pool *pool; 2850 struct dm_pool_metadata *pmd; 2851 bool format_device = read_only ? false : true; 2852 2853 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2854 if (IS_ERR(pmd)) { 2855 *error = "Error creating metadata object"; 2856 return (struct pool *)pmd; 2857 } 2858 2859 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2860 if (!pool) { 2861 *error = "Error allocating memory for pool"; 2862 err_p = ERR_PTR(-ENOMEM); 2863 goto bad_pool; 2864 } 2865 2866 pool->pmd = pmd; 2867 pool->sectors_per_block = block_size; 2868 if (block_size & (block_size - 1)) 2869 pool->sectors_per_block_shift = -1; 2870 else 2871 pool->sectors_per_block_shift = __ffs(block_size); 2872 pool->low_water_blocks = 0; 2873 pool_features_init(&pool->pf); 2874 pool->prison = dm_bio_prison_create(); 2875 if (!pool->prison) { 2876 *error = "Error creating pool's bio prison"; 2877 err_p = ERR_PTR(-ENOMEM); 2878 goto bad_prison; 2879 } 2880 2881 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2882 if (IS_ERR(pool->copier)) { 2883 r = PTR_ERR(pool->copier); 2884 *error = "Error creating pool's kcopyd client"; 2885 err_p = ERR_PTR(r); 2886 goto bad_kcopyd_client; 2887 } 2888 2889 /* 2890 * Create singlethreaded workqueue that will service all devices 2891 * that use this metadata. 2892 */ 2893 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2894 if (!pool->wq) { 2895 *error = "Error creating pool's workqueue"; 2896 err_p = ERR_PTR(-ENOMEM); 2897 goto bad_wq; 2898 } 2899 2900 throttle_init(&pool->throttle); 2901 INIT_WORK(&pool->worker, do_worker); 2902 INIT_DELAYED_WORK(&pool->waker, do_waker); 2903 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2904 spin_lock_init(&pool->lock); 2905 bio_list_init(&pool->deferred_flush_bios); 2906 INIT_LIST_HEAD(&pool->prepared_mappings); 2907 INIT_LIST_HEAD(&pool->prepared_discards); 2908 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2909 INIT_LIST_HEAD(&pool->active_thins); 2910 pool->low_water_triggered = false; 2911 pool->suspended = true; 2912 pool->out_of_data_space = false; 2913 2914 pool->shared_read_ds = dm_deferred_set_create(); 2915 if (!pool->shared_read_ds) { 2916 *error = "Error creating pool's shared read deferred set"; 2917 err_p = ERR_PTR(-ENOMEM); 2918 goto bad_shared_read_ds; 2919 } 2920 2921 pool->all_io_ds = dm_deferred_set_create(); 2922 if (!pool->all_io_ds) { 2923 *error = "Error creating pool's all io deferred set"; 2924 err_p = ERR_PTR(-ENOMEM); 2925 goto bad_all_io_ds; 2926 } 2927 2928 pool->next_mapping = NULL; 2929 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2930 _new_mapping_cache); 2931 if (!pool->mapping_pool) { 2932 *error = "Error creating pool's mapping mempool"; 2933 err_p = ERR_PTR(-ENOMEM); 2934 goto bad_mapping_pool; 2935 } 2936 2937 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2938 if (!pool->cell_sort_array) { 2939 *error = "Error allocating cell sort array"; 2940 err_p = ERR_PTR(-ENOMEM); 2941 goto bad_sort_array; 2942 } 2943 2944 pool->ref_count = 1; 2945 pool->last_commit_jiffies = jiffies; 2946 pool->pool_md = pool_md; 2947 pool->md_dev = metadata_dev; 2948 __pool_table_insert(pool); 2949 2950 return pool; 2951 2952 bad_sort_array: 2953 mempool_destroy(pool->mapping_pool); 2954 bad_mapping_pool: 2955 dm_deferred_set_destroy(pool->all_io_ds); 2956 bad_all_io_ds: 2957 dm_deferred_set_destroy(pool->shared_read_ds); 2958 bad_shared_read_ds: 2959 destroy_workqueue(pool->wq); 2960 bad_wq: 2961 dm_kcopyd_client_destroy(pool->copier); 2962 bad_kcopyd_client: 2963 dm_bio_prison_destroy(pool->prison); 2964 bad_prison: 2965 kfree(pool); 2966 bad_pool: 2967 if (dm_pool_metadata_close(pmd)) 2968 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2969 2970 return err_p; 2971 } 2972 2973 static void __pool_inc(struct pool *pool) 2974 { 2975 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2976 pool->ref_count++; 2977 } 2978 2979 static void __pool_dec(struct pool *pool) 2980 { 2981 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2982 BUG_ON(!pool->ref_count); 2983 if (!--pool->ref_count) 2984 __pool_destroy(pool); 2985 } 2986 2987 static struct pool *__pool_find(struct mapped_device *pool_md, 2988 struct block_device *metadata_dev, 2989 unsigned long block_size, int read_only, 2990 char **error, int *created) 2991 { 2992 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2993 2994 if (pool) { 2995 if (pool->pool_md != pool_md) { 2996 *error = "metadata device already in use by a pool"; 2997 return ERR_PTR(-EBUSY); 2998 } 2999 __pool_inc(pool); 3000 3001 } else { 3002 pool = __pool_table_lookup(pool_md); 3003 if (pool) { 3004 if (pool->md_dev != metadata_dev) { 3005 *error = "different pool cannot replace a pool"; 3006 return ERR_PTR(-EINVAL); 3007 } 3008 __pool_inc(pool); 3009 3010 } else { 3011 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3012 *created = 1; 3013 } 3014 } 3015 3016 return pool; 3017 } 3018 3019 /*---------------------------------------------------------------- 3020 * Pool target methods 3021 *--------------------------------------------------------------*/ 3022 static void pool_dtr(struct dm_target *ti) 3023 { 3024 struct pool_c *pt = ti->private; 3025 3026 mutex_lock(&dm_thin_pool_table.mutex); 3027 3028 unbind_control_target(pt->pool, ti); 3029 __pool_dec(pt->pool); 3030 dm_put_device(ti, pt->metadata_dev); 3031 dm_put_device(ti, pt->data_dev); 3032 kfree(pt); 3033 3034 mutex_unlock(&dm_thin_pool_table.mutex); 3035 } 3036 3037 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3038 struct dm_target *ti) 3039 { 3040 int r; 3041 unsigned argc; 3042 const char *arg_name; 3043 3044 static const struct dm_arg _args[] = { 3045 {0, 4, "Invalid number of pool feature arguments"}, 3046 }; 3047 3048 /* 3049 * No feature arguments supplied. 3050 */ 3051 if (!as->argc) 3052 return 0; 3053 3054 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3055 if (r) 3056 return -EINVAL; 3057 3058 while (argc && !r) { 3059 arg_name = dm_shift_arg(as); 3060 argc--; 3061 3062 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3063 pf->zero_new_blocks = false; 3064 3065 else if (!strcasecmp(arg_name, "ignore_discard")) 3066 pf->discard_enabled = false; 3067 3068 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3069 pf->discard_passdown = false; 3070 3071 else if (!strcasecmp(arg_name, "read_only")) 3072 pf->mode = PM_READ_ONLY; 3073 3074 else if (!strcasecmp(arg_name, "error_if_no_space")) 3075 pf->error_if_no_space = true; 3076 3077 else { 3078 ti->error = "Unrecognised pool feature requested"; 3079 r = -EINVAL; 3080 break; 3081 } 3082 } 3083 3084 return r; 3085 } 3086 3087 static void metadata_low_callback(void *context) 3088 { 3089 struct pool *pool = context; 3090 3091 DMWARN("%s: reached low water mark for metadata device: sending event.", 3092 dm_device_name(pool->pool_md)); 3093 3094 dm_table_event(pool->ti->table); 3095 } 3096 3097 static sector_t get_dev_size(struct block_device *bdev) 3098 { 3099 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3100 } 3101 3102 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3103 { 3104 sector_t metadata_dev_size = get_dev_size(bdev); 3105 char buffer[BDEVNAME_SIZE]; 3106 3107 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3108 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3109 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3110 } 3111 3112 static sector_t get_metadata_dev_size(struct block_device *bdev) 3113 { 3114 sector_t metadata_dev_size = get_dev_size(bdev); 3115 3116 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3117 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3118 3119 return metadata_dev_size; 3120 } 3121 3122 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3123 { 3124 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3125 3126 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3127 3128 return metadata_dev_size; 3129 } 3130 3131 /* 3132 * When a metadata threshold is crossed a dm event is triggered, and 3133 * userland should respond by growing the metadata device. We could let 3134 * userland set the threshold, like we do with the data threshold, but I'm 3135 * not sure they know enough to do this well. 3136 */ 3137 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3138 { 3139 /* 3140 * 4M is ample for all ops with the possible exception of thin 3141 * device deletion which is harmless if it fails (just retry the 3142 * delete after you've grown the device). 3143 */ 3144 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3145 return min((dm_block_t)1024ULL /* 4M */, quarter); 3146 } 3147 3148 /* 3149 * thin-pool <metadata dev> <data dev> 3150 * <data block size (sectors)> 3151 * <low water mark (blocks)> 3152 * [<#feature args> [<arg>]*] 3153 * 3154 * Optional feature arguments are: 3155 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3156 * ignore_discard: disable discard 3157 * no_discard_passdown: don't pass discards down to the data device 3158 * read_only: Don't allow any changes to be made to the pool metadata. 3159 * error_if_no_space: error IOs, instead of queueing, if no space. 3160 */ 3161 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3162 { 3163 int r, pool_created = 0; 3164 struct pool_c *pt; 3165 struct pool *pool; 3166 struct pool_features pf; 3167 struct dm_arg_set as; 3168 struct dm_dev *data_dev; 3169 unsigned long block_size; 3170 dm_block_t low_water_blocks; 3171 struct dm_dev *metadata_dev; 3172 fmode_t metadata_mode; 3173 3174 /* 3175 * FIXME Remove validation from scope of lock. 3176 */ 3177 mutex_lock(&dm_thin_pool_table.mutex); 3178 3179 if (argc < 4) { 3180 ti->error = "Invalid argument count"; 3181 r = -EINVAL; 3182 goto out_unlock; 3183 } 3184 3185 as.argc = argc; 3186 as.argv = argv; 3187 3188 /* 3189 * Set default pool features. 3190 */ 3191 pool_features_init(&pf); 3192 3193 dm_consume_args(&as, 4); 3194 r = parse_pool_features(&as, &pf, ti); 3195 if (r) 3196 goto out_unlock; 3197 3198 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3199 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3200 if (r) { 3201 ti->error = "Error opening metadata block device"; 3202 goto out_unlock; 3203 } 3204 warn_if_metadata_device_too_big(metadata_dev->bdev); 3205 3206 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3207 if (r) { 3208 ti->error = "Error getting data device"; 3209 goto out_metadata; 3210 } 3211 3212 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3213 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3214 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3215 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3216 ti->error = "Invalid block size"; 3217 r = -EINVAL; 3218 goto out; 3219 } 3220 3221 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3222 ti->error = "Invalid low water mark"; 3223 r = -EINVAL; 3224 goto out; 3225 } 3226 3227 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3228 if (!pt) { 3229 r = -ENOMEM; 3230 goto out; 3231 } 3232 3233 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3234 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3235 if (IS_ERR(pool)) { 3236 r = PTR_ERR(pool); 3237 goto out_free_pt; 3238 } 3239 3240 /* 3241 * 'pool_created' reflects whether this is the first table load. 3242 * Top level discard support is not allowed to be changed after 3243 * initial load. This would require a pool reload to trigger thin 3244 * device changes. 3245 */ 3246 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3247 ti->error = "Discard support cannot be disabled once enabled"; 3248 r = -EINVAL; 3249 goto out_flags_changed; 3250 } 3251 3252 pt->pool = pool; 3253 pt->ti = ti; 3254 pt->metadata_dev = metadata_dev; 3255 pt->data_dev = data_dev; 3256 pt->low_water_blocks = low_water_blocks; 3257 pt->adjusted_pf = pt->requested_pf = pf; 3258 ti->num_flush_bios = 1; 3259 3260 /* 3261 * Only need to enable discards if the pool should pass 3262 * them down to the data device. The thin device's discard 3263 * processing will cause mappings to be removed from the btree. 3264 */ 3265 if (pf.discard_enabled && pf.discard_passdown) { 3266 ti->num_discard_bios = 1; 3267 3268 /* 3269 * Setting 'discards_supported' circumvents the normal 3270 * stacking of discard limits (this keeps the pool and 3271 * thin devices' discard limits consistent). 3272 */ 3273 ti->discards_supported = true; 3274 } 3275 ti->private = pt; 3276 3277 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3278 calc_metadata_threshold(pt), 3279 metadata_low_callback, 3280 pool); 3281 if (r) 3282 goto out_flags_changed; 3283 3284 pt->callbacks.congested_fn = pool_is_congested; 3285 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3286 3287 mutex_unlock(&dm_thin_pool_table.mutex); 3288 3289 return 0; 3290 3291 out_flags_changed: 3292 __pool_dec(pool); 3293 out_free_pt: 3294 kfree(pt); 3295 out: 3296 dm_put_device(ti, data_dev); 3297 out_metadata: 3298 dm_put_device(ti, metadata_dev); 3299 out_unlock: 3300 mutex_unlock(&dm_thin_pool_table.mutex); 3301 3302 return r; 3303 } 3304 3305 static int pool_map(struct dm_target *ti, struct bio *bio) 3306 { 3307 int r; 3308 struct pool_c *pt = ti->private; 3309 struct pool *pool = pt->pool; 3310 unsigned long flags; 3311 3312 /* 3313 * As this is a singleton target, ti->begin is always zero. 3314 */ 3315 spin_lock_irqsave(&pool->lock, flags); 3316 bio_set_dev(bio, pt->data_dev->bdev); 3317 r = DM_MAPIO_REMAPPED; 3318 spin_unlock_irqrestore(&pool->lock, flags); 3319 3320 return r; 3321 } 3322 3323 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3324 { 3325 int r; 3326 struct pool_c *pt = ti->private; 3327 struct pool *pool = pt->pool; 3328 sector_t data_size = ti->len; 3329 dm_block_t sb_data_size; 3330 3331 *need_commit = false; 3332 3333 (void) sector_div(data_size, pool->sectors_per_block); 3334 3335 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3336 if (r) { 3337 DMERR("%s: failed to retrieve data device size", 3338 dm_device_name(pool->pool_md)); 3339 return r; 3340 } 3341 3342 if (data_size < sb_data_size) { 3343 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3344 dm_device_name(pool->pool_md), 3345 (unsigned long long)data_size, sb_data_size); 3346 return -EINVAL; 3347 3348 } else if (data_size > sb_data_size) { 3349 if (dm_pool_metadata_needs_check(pool->pmd)) { 3350 DMERR("%s: unable to grow the data device until repaired.", 3351 dm_device_name(pool->pool_md)); 3352 return 0; 3353 } 3354 3355 if (sb_data_size) 3356 DMINFO("%s: growing the data device from %llu to %llu blocks", 3357 dm_device_name(pool->pool_md), 3358 sb_data_size, (unsigned long long)data_size); 3359 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3360 if (r) { 3361 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3362 return r; 3363 } 3364 3365 *need_commit = true; 3366 } 3367 3368 return 0; 3369 } 3370 3371 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3372 { 3373 int r; 3374 struct pool_c *pt = ti->private; 3375 struct pool *pool = pt->pool; 3376 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3377 3378 *need_commit = false; 3379 3380 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3381 3382 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3383 if (r) { 3384 DMERR("%s: failed to retrieve metadata device size", 3385 dm_device_name(pool->pool_md)); 3386 return r; 3387 } 3388 3389 if (metadata_dev_size < sb_metadata_dev_size) { 3390 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3391 dm_device_name(pool->pool_md), 3392 metadata_dev_size, sb_metadata_dev_size); 3393 return -EINVAL; 3394 3395 } else if (metadata_dev_size > sb_metadata_dev_size) { 3396 if (dm_pool_metadata_needs_check(pool->pmd)) { 3397 DMERR("%s: unable to grow the metadata device until repaired.", 3398 dm_device_name(pool->pool_md)); 3399 return 0; 3400 } 3401 3402 warn_if_metadata_device_too_big(pool->md_dev); 3403 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3404 dm_device_name(pool->pool_md), 3405 sb_metadata_dev_size, metadata_dev_size); 3406 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3407 if (r) { 3408 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3409 return r; 3410 } 3411 3412 *need_commit = true; 3413 } 3414 3415 return 0; 3416 } 3417 3418 /* 3419 * Retrieves the number of blocks of the data device from 3420 * the superblock and compares it to the actual device size, 3421 * thus resizing the data device in case it has grown. 3422 * 3423 * This both copes with opening preallocated data devices in the ctr 3424 * being followed by a resume 3425 * -and- 3426 * calling the resume method individually after userspace has 3427 * grown the data device in reaction to a table event. 3428 */ 3429 static int pool_preresume(struct dm_target *ti) 3430 { 3431 int r; 3432 bool need_commit1, need_commit2; 3433 struct pool_c *pt = ti->private; 3434 struct pool *pool = pt->pool; 3435 3436 /* 3437 * Take control of the pool object. 3438 */ 3439 r = bind_control_target(pool, ti); 3440 if (r) 3441 return r; 3442 3443 r = maybe_resize_data_dev(ti, &need_commit1); 3444 if (r) 3445 return r; 3446 3447 r = maybe_resize_metadata_dev(ti, &need_commit2); 3448 if (r) 3449 return r; 3450 3451 if (need_commit1 || need_commit2) 3452 (void) commit(pool); 3453 3454 return 0; 3455 } 3456 3457 static void pool_suspend_active_thins(struct pool *pool) 3458 { 3459 struct thin_c *tc; 3460 3461 /* Suspend all active thin devices */ 3462 tc = get_first_thin(pool); 3463 while (tc) { 3464 dm_internal_suspend_noflush(tc->thin_md); 3465 tc = get_next_thin(pool, tc); 3466 } 3467 } 3468 3469 static void pool_resume_active_thins(struct pool *pool) 3470 { 3471 struct thin_c *tc; 3472 3473 /* Resume all active thin devices */ 3474 tc = get_first_thin(pool); 3475 while (tc) { 3476 dm_internal_resume(tc->thin_md); 3477 tc = get_next_thin(pool, tc); 3478 } 3479 } 3480 3481 static void pool_resume(struct dm_target *ti) 3482 { 3483 struct pool_c *pt = ti->private; 3484 struct pool *pool = pt->pool; 3485 unsigned long flags; 3486 3487 /* 3488 * Must requeue active_thins' bios and then resume 3489 * active_thins _before_ clearing 'suspend' flag. 3490 */ 3491 requeue_bios(pool); 3492 pool_resume_active_thins(pool); 3493 3494 spin_lock_irqsave(&pool->lock, flags); 3495 pool->low_water_triggered = false; 3496 pool->suspended = false; 3497 spin_unlock_irqrestore(&pool->lock, flags); 3498 3499 do_waker(&pool->waker.work); 3500 } 3501 3502 static void pool_presuspend(struct dm_target *ti) 3503 { 3504 struct pool_c *pt = ti->private; 3505 struct pool *pool = pt->pool; 3506 unsigned long flags; 3507 3508 spin_lock_irqsave(&pool->lock, flags); 3509 pool->suspended = true; 3510 spin_unlock_irqrestore(&pool->lock, flags); 3511 3512 pool_suspend_active_thins(pool); 3513 } 3514 3515 static void pool_presuspend_undo(struct dm_target *ti) 3516 { 3517 struct pool_c *pt = ti->private; 3518 struct pool *pool = pt->pool; 3519 unsigned long flags; 3520 3521 pool_resume_active_thins(pool); 3522 3523 spin_lock_irqsave(&pool->lock, flags); 3524 pool->suspended = false; 3525 spin_unlock_irqrestore(&pool->lock, flags); 3526 } 3527 3528 static void pool_postsuspend(struct dm_target *ti) 3529 { 3530 struct pool_c *pt = ti->private; 3531 struct pool *pool = pt->pool; 3532 3533 cancel_delayed_work_sync(&pool->waker); 3534 cancel_delayed_work_sync(&pool->no_space_timeout); 3535 flush_workqueue(pool->wq); 3536 (void) commit(pool); 3537 } 3538 3539 static int check_arg_count(unsigned argc, unsigned args_required) 3540 { 3541 if (argc != args_required) { 3542 DMWARN("Message received with %u arguments instead of %u.", 3543 argc, args_required); 3544 return -EINVAL; 3545 } 3546 3547 return 0; 3548 } 3549 3550 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3551 { 3552 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3553 *dev_id <= MAX_DEV_ID) 3554 return 0; 3555 3556 if (warning) 3557 DMWARN("Message received with invalid device id: %s", arg); 3558 3559 return -EINVAL; 3560 } 3561 3562 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3563 { 3564 dm_thin_id dev_id; 3565 int r; 3566 3567 r = check_arg_count(argc, 2); 3568 if (r) 3569 return r; 3570 3571 r = read_dev_id(argv[1], &dev_id, 1); 3572 if (r) 3573 return r; 3574 3575 r = dm_pool_create_thin(pool->pmd, dev_id); 3576 if (r) { 3577 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3578 argv[1]); 3579 return r; 3580 } 3581 3582 return 0; 3583 } 3584 3585 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3586 { 3587 dm_thin_id dev_id; 3588 dm_thin_id origin_dev_id; 3589 int r; 3590 3591 r = check_arg_count(argc, 3); 3592 if (r) 3593 return r; 3594 3595 r = read_dev_id(argv[1], &dev_id, 1); 3596 if (r) 3597 return r; 3598 3599 r = read_dev_id(argv[2], &origin_dev_id, 1); 3600 if (r) 3601 return r; 3602 3603 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3604 if (r) { 3605 DMWARN("Creation of new snapshot %s of device %s failed.", 3606 argv[1], argv[2]); 3607 return r; 3608 } 3609 3610 return 0; 3611 } 3612 3613 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3614 { 3615 dm_thin_id dev_id; 3616 int r; 3617 3618 r = check_arg_count(argc, 2); 3619 if (r) 3620 return r; 3621 3622 r = read_dev_id(argv[1], &dev_id, 1); 3623 if (r) 3624 return r; 3625 3626 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3627 if (r) 3628 DMWARN("Deletion of thin device %s failed.", argv[1]); 3629 3630 return r; 3631 } 3632 3633 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3634 { 3635 dm_thin_id old_id, new_id; 3636 int r; 3637 3638 r = check_arg_count(argc, 3); 3639 if (r) 3640 return r; 3641 3642 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3643 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3644 return -EINVAL; 3645 } 3646 3647 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3648 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3649 return -EINVAL; 3650 } 3651 3652 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3653 if (r) { 3654 DMWARN("Failed to change transaction id from %s to %s.", 3655 argv[1], argv[2]); 3656 return r; 3657 } 3658 3659 return 0; 3660 } 3661 3662 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3663 { 3664 int r; 3665 3666 r = check_arg_count(argc, 1); 3667 if (r) 3668 return r; 3669 3670 (void) commit(pool); 3671 3672 r = dm_pool_reserve_metadata_snap(pool->pmd); 3673 if (r) 3674 DMWARN("reserve_metadata_snap message failed."); 3675 3676 return r; 3677 } 3678 3679 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3680 { 3681 int r; 3682 3683 r = check_arg_count(argc, 1); 3684 if (r) 3685 return r; 3686 3687 r = dm_pool_release_metadata_snap(pool->pmd); 3688 if (r) 3689 DMWARN("release_metadata_snap message failed."); 3690 3691 return r; 3692 } 3693 3694 /* 3695 * Messages supported: 3696 * create_thin <dev_id> 3697 * create_snap <dev_id> <origin_id> 3698 * delete <dev_id> 3699 * set_transaction_id <current_trans_id> <new_trans_id> 3700 * reserve_metadata_snap 3701 * release_metadata_snap 3702 */ 3703 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3704 { 3705 int r = -EINVAL; 3706 struct pool_c *pt = ti->private; 3707 struct pool *pool = pt->pool; 3708 3709 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3710 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3711 dm_device_name(pool->pool_md)); 3712 return -EOPNOTSUPP; 3713 } 3714 3715 if (!strcasecmp(argv[0], "create_thin")) 3716 r = process_create_thin_mesg(argc, argv, pool); 3717 3718 else if (!strcasecmp(argv[0], "create_snap")) 3719 r = process_create_snap_mesg(argc, argv, pool); 3720 3721 else if (!strcasecmp(argv[0], "delete")) 3722 r = process_delete_mesg(argc, argv, pool); 3723 3724 else if (!strcasecmp(argv[0], "set_transaction_id")) 3725 r = process_set_transaction_id_mesg(argc, argv, pool); 3726 3727 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3728 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3729 3730 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3731 r = process_release_metadata_snap_mesg(argc, argv, pool); 3732 3733 else 3734 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3735 3736 if (!r) 3737 (void) commit(pool); 3738 3739 return r; 3740 } 3741 3742 static void emit_flags(struct pool_features *pf, char *result, 3743 unsigned sz, unsigned maxlen) 3744 { 3745 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3746 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3747 pf->error_if_no_space; 3748 DMEMIT("%u ", count); 3749 3750 if (!pf->zero_new_blocks) 3751 DMEMIT("skip_block_zeroing "); 3752 3753 if (!pf->discard_enabled) 3754 DMEMIT("ignore_discard "); 3755 3756 if (!pf->discard_passdown) 3757 DMEMIT("no_discard_passdown "); 3758 3759 if (pf->mode == PM_READ_ONLY) 3760 DMEMIT("read_only "); 3761 3762 if (pf->error_if_no_space) 3763 DMEMIT("error_if_no_space "); 3764 } 3765 3766 /* 3767 * Status line is: 3768 * <transaction id> <used metadata sectors>/<total metadata sectors> 3769 * <used data sectors>/<total data sectors> <held metadata root> 3770 * <pool mode> <discard config> <no space config> <needs_check> 3771 */ 3772 static void pool_status(struct dm_target *ti, status_type_t type, 3773 unsigned status_flags, char *result, unsigned maxlen) 3774 { 3775 int r; 3776 unsigned sz = 0; 3777 uint64_t transaction_id; 3778 dm_block_t nr_free_blocks_data; 3779 dm_block_t nr_free_blocks_metadata; 3780 dm_block_t nr_blocks_data; 3781 dm_block_t nr_blocks_metadata; 3782 dm_block_t held_root; 3783 char buf[BDEVNAME_SIZE]; 3784 char buf2[BDEVNAME_SIZE]; 3785 struct pool_c *pt = ti->private; 3786 struct pool *pool = pt->pool; 3787 3788 switch (type) { 3789 case STATUSTYPE_INFO: 3790 if (get_pool_mode(pool) == PM_FAIL) { 3791 DMEMIT("Fail"); 3792 break; 3793 } 3794 3795 /* Commit to ensure statistics aren't out-of-date */ 3796 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3797 (void) commit(pool); 3798 3799 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3800 if (r) { 3801 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3802 dm_device_name(pool->pool_md), r); 3803 goto err; 3804 } 3805 3806 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3807 if (r) { 3808 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3809 dm_device_name(pool->pool_md), r); 3810 goto err; 3811 } 3812 3813 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3814 if (r) { 3815 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3816 dm_device_name(pool->pool_md), r); 3817 goto err; 3818 } 3819 3820 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3821 if (r) { 3822 DMERR("%s: dm_pool_get_free_block_count returned %d", 3823 dm_device_name(pool->pool_md), r); 3824 goto err; 3825 } 3826 3827 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3828 if (r) { 3829 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3830 dm_device_name(pool->pool_md), r); 3831 goto err; 3832 } 3833 3834 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3835 if (r) { 3836 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3837 dm_device_name(pool->pool_md), r); 3838 goto err; 3839 } 3840 3841 DMEMIT("%llu %llu/%llu %llu/%llu ", 3842 (unsigned long long)transaction_id, 3843 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3844 (unsigned long long)nr_blocks_metadata, 3845 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3846 (unsigned long long)nr_blocks_data); 3847 3848 if (held_root) 3849 DMEMIT("%llu ", held_root); 3850 else 3851 DMEMIT("- "); 3852 3853 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3854 DMEMIT("out_of_data_space "); 3855 else if (pool->pf.mode == PM_READ_ONLY) 3856 DMEMIT("ro "); 3857 else 3858 DMEMIT("rw "); 3859 3860 if (!pool->pf.discard_enabled) 3861 DMEMIT("ignore_discard "); 3862 else if (pool->pf.discard_passdown) 3863 DMEMIT("discard_passdown "); 3864 else 3865 DMEMIT("no_discard_passdown "); 3866 3867 if (pool->pf.error_if_no_space) 3868 DMEMIT("error_if_no_space "); 3869 else 3870 DMEMIT("queue_if_no_space "); 3871 3872 if (dm_pool_metadata_needs_check(pool->pmd)) 3873 DMEMIT("needs_check "); 3874 else 3875 DMEMIT("- "); 3876 3877 break; 3878 3879 case STATUSTYPE_TABLE: 3880 DMEMIT("%s %s %lu %llu ", 3881 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3882 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3883 (unsigned long)pool->sectors_per_block, 3884 (unsigned long long)pt->low_water_blocks); 3885 emit_flags(&pt->requested_pf, result, sz, maxlen); 3886 break; 3887 } 3888 return; 3889 3890 err: 3891 DMEMIT("Error"); 3892 } 3893 3894 static int pool_iterate_devices(struct dm_target *ti, 3895 iterate_devices_callout_fn fn, void *data) 3896 { 3897 struct pool_c *pt = ti->private; 3898 3899 return fn(ti, pt->data_dev, 0, ti->len, data); 3900 } 3901 3902 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3903 { 3904 struct pool_c *pt = ti->private; 3905 struct pool *pool = pt->pool; 3906 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3907 3908 /* 3909 * If max_sectors is smaller than pool->sectors_per_block adjust it 3910 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3911 * This is especially beneficial when the pool's data device is a RAID 3912 * device that has a full stripe width that matches pool->sectors_per_block 3913 * -- because even though partial RAID stripe-sized IOs will be issued to a 3914 * single RAID stripe; when aggregated they will end on a full RAID stripe 3915 * boundary.. which avoids additional partial RAID stripe writes cascading 3916 */ 3917 if (limits->max_sectors < pool->sectors_per_block) { 3918 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3919 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3920 limits->max_sectors--; 3921 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3922 } 3923 } 3924 3925 /* 3926 * If the system-determined stacked limits are compatible with the 3927 * pool's blocksize (io_opt is a factor) do not override them. 3928 */ 3929 if (io_opt_sectors < pool->sectors_per_block || 3930 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3931 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3932 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3933 else 3934 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3935 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3936 } 3937 3938 /* 3939 * pt->adjusted_pf is a staging area for the actual features to use. 3940 * They get transferred to the live pool in bind_control_target() 3941 * called from pool_preresume(). 3942 */ 3943 if (!pt->adjusted_pf.discard_enabled) { 3944 /* 3945 * Must explicitly disallow stacking discard limits otherwise the 3946 * block layer will stack them if pool's data device has support. 3947 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3948 * user to see that, so make sure to set all discard limits to 0. 3949 */ 3950 limits->discard_granularity = 0; 3951 return; 3952 } 3953 3954 disable_passdown_if_not_supported(pt); 3955 3956 /* 3957 * The pool uses the same discard limits as the underlying data 3958 * device. DM core has already set this up. 3959 */ 3960 } 3961 3962 static struct target_type pool_target = { 3963 .name = "thin-pool", 3964 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3965 DM_TARGET_IMMUTABLE, 3966 .version = {1, 19, 0}, 3967 .module = THIS_MODULE, 3968 .ctr = pool_ctr, 3969 .dtr = pool_dtr, 3970 .map = pool_map, 3971 .presuspend = pool_presuspend, 3972 .presuspend_undo = pool_presuspend_undo, 3973 .postsuspend = pool_postsuspend, 3974 .preresume = pool_preresume, 3975 .resume = pool_resume, 3976 .message = pool_message, 3977 .status = pool_status, 3978 .iterate_devices = pool_iterate_devices, 3979 .io_hints = pool_io_hints, 3980 }; 3981 3982 /*---------------------------------------------------------------- 3983 * Thin target methods 3984 *--------------------------------------------------------------*/ 3985 static void thin_get(struct thin_c *tc) 3986 { 3987 atomic_inc(&tc->refcount); 3988 } 3989 3990 static void thin_put(struct thin_c *tc) 3991 { 3992 if (atomic_dec_and_test(&tc->refcount)) 3993 complete(&tc->can_destroy); 3994 } 3995 3996 static void thin_dtr(struct dm_target *ti) 3997 { 3998 struct thin_c *tc = ti->private; 3999 unsigned long flags; 4000 4001 spin_lock_irqsave(&tc->pool->lock, flags); 4002 list_del_rcu(&tc->list); 4003 spin_unlock_irqrestore(&tc->pool->lock, flags); 4004 synchronize_rcu(); 4005 4006 thin_put(tc); 4007 wait_for_completion(&tc->can_destroy); 4008 4009 mutex_lock(&dm_thin_pool_table.mutex); 4010 4011 __pool_dec(tc->pool); 4012 dm_pool_close_thin_device(tc->td); 4013 dm_put_device(ti, tc->pool_dev); 4014 if (tc->origin_dev) 4015 dm_put_device(ti, tc->origin_dev); 4016 kfree(tc); 4017 4018 mutex_unlock(&dm_thin_pool_table.mutex); 4019 } 4020 4021 /* 4022 * Thin target parameters: 4023 * 4024 * <pool_dev> <dev_id> [origin_dev] 4025 * 4026 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4027 * dev_id: the internal device identifier 4028 * origin_dev: a device external to the pool that should act as the origin 4029 * 4030 * If the pool device has discards disabled, they get disabled for the thin 4031 * device as well. 4032 */ 4033 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4034 { 4035 int r; 4036 struct thin_c *tc; 4037 struct dm_dev *pool_dev, *origin_dev; 4038 struct mapped_device *pool_md; 4039 unsigned long flags; 4040 4041 mutex_lock(&dm_thin_pool_table.mutex); 4042 4043 if (argc != 2 && argc != 3) { 4044 ti->error = "Invalid argument count"; 4045 r = -EINVAL; 4046 goto out_unlock; 4047 } 4048 4049 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4050 if (!tc) { 4051 ti->error = "Out of memory"; 4052 r = -ENOMEM; 4053 goto out_unlock; 4054 } 4055 tc->thin_md = dm_table_get_md(ti->table); 4056 spin_lock_init(&tc->lock); 4057 INIT_LIST_HEAD(&tc->deferred_cells); 4058 bio_list_init(&tc->deferred_bio_list); 4059 bio_list_init(&tc->retry_on_resume_list); 4060 tc->sort_bio_list = RB_ROOT; 4061 4062 if (argc == 3) { 4063 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4064 if (r) { 4065 ti->error = "Error opening origin device"; 4066 goto bad_origin_dev; 4067 } 4068 tc->origin_dev = origin_dev; 4069 } 4070 4071 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4072 if (r) { 4073 ti->error = "Error opening pool device"; 4074 goto bad_pool_dev; 4075 } 4076 tc->pool_dev = pool_dev; 4077 4078 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4079 ti->error = "Invalid device id"; 4080 r = -EINVAL; 4081 goto bad_common; 4082 } 4083 4084 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4085 if (!pool_md) { 4086 ti->error = "Couldn't get pool mapped device"; 4087 r = -EINVAL; 4088 goto bad_common; 4089 } 4090 4091 tc->pool = __pool_table_lookup(pool_md); 4092 if (!tc->pool) { 4093 ti->error = "Couldn't find pool object"; 4094 r = -EINVAL; 4095 goto bad_pool_lookup; 4096 } 4097 __pool_inc(tc->pool); 4098 4099 if (get_pool_mode(tc->pool) == PM_FAIL) { 4100 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4101 r = -EINVAL; 4102 goto bad_pool; 4103 } 4104 4105 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4106 if (r) { 4107 ti->error = "Couldn't open thin internal device"; 4108 goto bad_pool; 4109 } 4110 4111 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4112 if (r) 4113 goto bad; 4114 4115 ti->num_flush_bios = 1; 4116 ti->flush_supported = true; 4117 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4118 4119 /* In case the pool supports discards, pass them on. */ 4120 if (tc->pool->pf.discard_enabled) { 4121 ti->discards_supported = true; 4122 ti->num_discard_bios = 1; 4123 ti->split_discard_bios = false; 4124 } 4125 4126 mutex_unlock(&dm_thin_pool_table.mutex); 4127 4128 spin_lock_irqsave(&tc->pool->lock, flags); 4129 if (tc->pool->suspended) { 4130 spin_unlock_irqrestore(&tc->pool->lock, flags); 4131 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4132 ti->error = "Unable to activate thin device while pool is suspended"; 4133 r = -EINVAL; 4134 goto bad; 4135 } 4136 atomic_set(&tc->refcount, 1); 4137 init_completion(&tc->can_destroy); 4138 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4139 spin_unlock_irqrestore(&tc->pool->lock, flags); 4140 /* 4141 * This synchronize_rcu() call is needed here otherwise we risk a 4142 * wake_worker() call finding no bios to process (because the newly 4143 * added tc isn't yet visible). So this reduces latency since we 4144 * aren't then dependent on the periodic commit to wake_worker(). 4145 */ 4146 synchronize_rcu(); 4147 4148 dm_put(pool_md); 4149 4150 return 0; 4151 4152 bad: 4153 dm_pool_close_thin_device(tc->td); 4154 bad_pool: 4155 __pool_dec(tc->pool); 4156 bad_pool_lookup: 4157 dm_put(pool_md); 4158 bad_common: 4159 dm_put_device(ti, tc->pool_dev); 4160 bad_pool_dev: 4161 if (tc->origin_dev) 4162 dm_put_device(ti, tc->origin_dev); 4163 bad_origin_dev: 4164 kfree(tc); 4165 out_unlock: 4166 mutex_unlock(&dm_thin_pool_table.mutex); 4167 4168 return r; 4169 } 4170 4171 static int thin_map(struct dm_target *ti, struct bio *bio) 4172 { 4173 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4174 4175 return thin_bio_map(ti, bio); 4176 } 4177 4178 static int thin_endio(struct dm_target *ti, struct bio *bio, 4179 blk_status_t *err) 4180 { 4181 unsigned long flags; 4182 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4183 struct list_head work; 4184 struct dm_thin_new_mapping *m, *tmp; 4185 struct pool *pool = h->tc->pool; 4186 4187 if (h->shared_read_entry) { 4188 INIT_LIST_HEAD(&work); 4189 dm_deferred_entry_dec(h->shared_read_entry, &work); 4190 4191 spin_lock_irqsave(&pool->lock, flags); 4192 list_for_each_entry_safe(m, tmp, &work, list) { 4193 list_del(&m->list); 4194 __complete_mapping_preparation(m); 4195 } 4196 spin_unlock_irqrestore(&pool->lock, flags); 4197 } 4198 4199 if (h->all_io_entry) { 4200 INIT_LIST_HEAD(&work); 4201 dm_deferred_entry_dec(h->all_io_entry, &work); 4202 if (!list_empty(&work)) { 4203 spin_lock_irqsave(&pool->lock, flags); 4204 list_for_each_entry_safe(m, tmp, &work, list) 4205 list_add_tail(&m->list, &pool->prepared_discards); 4206 spin_unlock_irqrestore(&pool->lock, flags); 4207 wake_worker(pool); 4208 } 4209 } 4210 4211 if (h->cell) 4212 cell_defer_no_holder(h->tc, h->cell); 4213 4214 return DM_ENDIO_DONE; 4215 } 4216 4217 static void thin_presuspend(struct dm_target *ti) 4218 { 4219 struct thin_c *tc = ti->private; 4220 4221 if (dm_noflush_suspending(ti)) 4222 noflush_work(tc, do_noflush_start); 4223 } 4224 4225 static void thin_postsuspend(struct dm_target *ti) 4226 { 4227 struct thin_c *tc = ti->private; 4228 4229 /* 4230 * The dm_noflush_suspending flag has been cleared by now, so 4231 * unfortunately we must always run this. 4232 */ 4233 noflush_work(tc, do_noflush_stop); 4234 } 4235 4236 static int thin_preresume(struct dm_target *ti) 4237 { 4238 struct thin_c *tc = ti->private; 4239 4240 if (tc->origin_dev) 4241 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4242 4243 return 0; 4244 } 4245 4246 /* 4247 * <nr mapped sectors> <highest mapped sector> 4248 */ 4249 static void thin_status(struct dm_target *ti, status_type_t type, 4250 unsigned status_flags, char *result, unsigned maxlen) 4251 { 4252 int r; 4253 ssize_t sz = 0; 4254 dm_block_t mapped, highest; 4255 char buf[BDEVNAME_SIZE]; 4256 struct thin_c *tc = ti->private; 4257 4258 if (get_pool_mode(tc->pool) == PM_FAIL) { 4259 DMEMIT("Fail"); 4260 return; 4261 } 4262 4263 if (!tc->td) 4264 DMEMIT("-"); 4265 else { 4266 switch (type) { 4267 case STATUSTYPE_INFO: 4268 r = dm_thin_get_mapped_count(tc->td, &mapped); 4269 if (r) { 4270 DMERR("dm_thin_get_mapped_count returned %d", r); 4271 goto err; 4272 } 4273 4274 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4275 if (r < 0) { 4276 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4277 goto err; 4278 } 4279 4280 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4281 if (r) 4282 DMEMIT("%llu", ((highest + 1) * 4283 tc->pool->sectors_per_block) - 1); 4284 else 4285 DMEMIT("-"); 4286 break; 4287 4288 case STATUSTYPE_TABLE: 4289 DMEMIT("%s %lu", 4290 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4291 (unsigned long) tc->dev_id); 4292 if (tc->origin_dev) 4293 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4294 break; 4295 } 4296 } 4297 4298 return; 4299 4300 err: 4301 DMEMIT("Error"); 4302 } 4303 4304 static int thin_iterate_devices(struct dm_target *ti, 4305 iterate_devices_callout_fn fn, void *data) 4306 { 4307 sector_t blocks; 4308 struct thin_c *tc = ti->private; 4309 struct pool *pool = tc->pool; 4310 4311 /* 4312 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4313 * we follow a more convoluted path through to the pool's target. 4314 */ 4315 if (!pool->ti) 4316 return 0; /* nothing is bound */ 4317 4318 blocks = pool->ti->len; 4319 (void) sector_div(blocks, pool->sectors_per_block); 4320 if (blocks) 4321 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4322 4323 return 0; 4324 } 4325 4326 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4327 { 4328 struct thin_c *tc = ti->private; 4329 struct pool *pool = tc->pool; 4330 4331 if (!pool->pf.discard_enabled) 4332 return; 4333 4334 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4335 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4336 } 4337 4338 static struct target_type thin_target = { 4339 .name = "thin", 4340 .version = {1, 19, 0}, 4341 .module = THIS_MODULE, 4342 .ctr = thin_ctr, 4343 .dtr = thin_dtr, 4344 .map = thin_map, 4345 .end_io = thin_endio, 4346 .preresume = thin_preresume, 4347 .presuspend = thin_presuspend, 4348 .postsuspend = thin_postsuspend, 4349 .status = thin_status, 4350 .iterate_devices = thin_iterate_devices, 4351 .io_hints = thin_io_hints, 4352 }; 4353 4354 /*----------------------------------------------------------------*/ 4355 4356 static int __init dm_thin_init(void) 4357 { 4358 int r; 4359 4360 pool_table_init(); 4361 4362 r = dm_register_target(&thin_target); 4363 if (r) 4364 return r; 4365 4366 r = dm_register_target(&pool_target); 4367 if (r) 4368 goto bad_pool_target; 4369 4370 r = -ENOMEM; 4371 4372 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4373 if (!_new_mapping_cache) 4374 goto bad_new_mapping_cache; 4375 4376 return 0; 4377 4378 bad_new_mapping_cache: 4379 dm_unregister_target(&pool_target); 4380 bad_pool_target: 4381 dm_unregister_target(&thin_target); 4382 4383 return r; 4384 } 4385 4386 static void dm_thin_exit(void) 4387 { 4388 dm_unregister_target(&thin_target); 4389 dm_unregister_target(&pool_target); 4390 4391 kmem_cache_destroy(_new_mapping_cache); 4392 } 4393 4394 module_init(dm_thin_init); 4395 module_exit(dm_thin_exit); 4396 4397 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4398 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4399 4400 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4401 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4402 MODULE_LICENSE("GPL"); 4403