xref: /openbmc/linux/drivers/md/dm-thin.c (revision afb46f79)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20 
21 #define	DM_MSG_PREFIX	"thin"
22 
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 
31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
32 		"A percentage of time allocated for copy on write");
33 
34 /*
35  * The block size of the device holding pool data must be
36  * between 64KB and 1GB.
37  */
38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 
41 /*
42  * Device id is restricted to 24 bits.
43  */
44 #define MAX_DEV_ID ((1 << 24) - 1)
45 
46 /*
47  * How do we handle breaking sharing of data blocks?
48  * =================================================
49  *
50  * We use a standard copy-on-write btree to store the mappings for the
51  * devices (note I'm talking about copy-on-write of the metadata here, not
52  * the data).  When you take an internal snapshot you clone the root node
53  * of the origin btree.  After this there is no concept of an origin or a
54  * snapshot.  They are just two device trees that happen to point to the
55  * same data blocks.
56  *
57  * When we get a write in we decide if it's to a shared data block using
58  * some timestamp magic.  If it is, we have to break sharing.
59  *
60  * Let's say we write to a shared block in what was the origin.  The
61  * steps are:
62  *
63  * i) plug io further to this physical block. (see bio_prison code).
64  *
65  * ii) quiesce any read io to that shared data block.  Obviously
66  * including all devices that share this block.  (see dm_deferred_set code)
67  *
68  * iii) copy the data block to a newly allocate block.  This step can be
69  * missed out if the io covers the block. (schedule_copy).
70  *
71  * iv) insert the new mapping into the origin's btree
72  * (process_prepared_mapping).  This act of inserting breaks some
73  * sharing of btree nodes between the two devices.  Breaking sharing only
74  * effects the btree of that specific device.  Btrees for the other
75  * devices that share the block never change.  The btree for the origin
76  * device as it was after the last commit is untouched, ie. we're using
77  * persistent data structures in the functional programming sense.
78  *
79  * v) unplug io to this physical block, including the io that triggered
80  * the breaking of sharing.
81  *
82  * Steps (ii) and (iii) occur in parallel.
83  *
84  * The metadata _doesn't_ need to be committed before the io continues.  We
85  * get away with this because the io is always written to a _new_ block.
86  * If there's a crash, then:
87  *
88  * - The origin mapping will point to the old origin block (the shared
89  * one).  This will contain the data as it was before the io that triggered
90  * the breaking of sharing came in.
91  *
92  * - The snap mapping still points to the old block.  As it would after
93  * the commit.
94  *
95  * The downside of this scheme is the timestamp magic isn't perfect, and
96  * will continue to think that data block in the snapshot device is shared
97  * even after the write to the origin has broken sharing.  I suspect data
98  * blocks will typically be shared by many different devices, so we're
99  * breaking sharing n + 1 times, rather than n, where n is the number of
100  * devices that reference this data block.  At the moment I think the
101  * benefits far, far outweigh the disadvantages.
102  */
103 
104 /*----------------------------------------------------------------*/
105 
106 /*
107  * Key building.
108  */
109 static void build_data_key(struct dm_thin_device *td,
110 			   dm_block_t b, struct dm_cell_key *key)
111 {
112 	key->virtual = 0;
113 	key->dev = dm_thin_dev_id(td);
114 	key->block = b;
115 }
116 
117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
118 			      struct dm_cell_key *key)
119 {
120 	key->virtual = 1;
121 	key->dev = dm_thin_dev_id(td);
122 	key->block = b;
123 }
124 
125 /*----------------------------------------------------------------*/
126 
127 /*
128  * A pool device ties together a metadata device and a data device.  It
129  * also provides the interface for creating and destroying internal
130  * devices.
131  */
132 struct dm_thin_new_mapping;
133 
134 /*
135  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
136  */
137 enum pool_mode {
138 	PM_WRITE,		/* metadata may be changed */
139 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
140 	PM_READ_ONLY,		/* metadata may not be changed */
141 	PM_FAIL,		/* all I/O fails */
142 };
143 
144 struct pool_features {
145 	enum pool_mode mode;
146 
147 	bool zero_new_blocks:1;
148 	bool discard_enabled:1;
149 	bool discard_passdown:1;
150 	bool error_if_no_space:1;
151 };
152 
153 struct thin_c;
154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
156 
157 struct pool {
158 	struct list_head list;
159 	struct dm_target *ti;	/* Only set if a pool target is bound */
160 
161 	struct mapped_device *pool_md;
162 	struct block_device *md_dev;
163 	struct dm_pool_metadata *pmd;
164 
165 	dm_block_t low_water_blocks;
166 	uint32_t sectors_per_block;
167 	int sectors_per_block_shift;
168 
169 	struct pool_features pf;
170 	bool low_water_triggered:1;	/* A dm event has been sent */
171 
172 	struct dm_bio_prison *prison;
173 	struct dm_kcopyd_client *copier;
174 
175 	struct workqueue_struct *wq;
176 	struct work_struct worker;
177 	struct delayed_work waker;
178 
179 	unsigned long last_commit_jiffies;
180 	unsigned ref_count;
181 
182 	spinlock_t lock;
183 	struct bio_list deferred_flush_bios;
184 	struct list_head prepared_mappings;
185 	struct list_head prepared_discards;
186 	struct list_head active_thins;
187 
188 	struct dm_deferred_set *shared_read_ds;
189 	struct dm_deferred_set *all_io_ds;
190 
191 	struct dm_thin_new_mapping *next_mapping;
192 	mempool_t *mapping_pool;
193 
194 	process_bio_fn process_bio;
195 	process_bio_fn process_discard;
196 
197 	process_mapping_fn process_prepared_mapping;
198 	process_mapping_fn process_prepared_discard;
199 };
200 
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203 
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208 	struct dm_target *ti;
209 	struct pool *pool;
210 	struct dm_dev *data_dev;
211 	struct dm_dev *metadata_dev;
212 	struct dm_target_callbacks callbacks;
213 
214 	dm_block_t low_water_blocks;
215 	struct pool_features requested_pf; /* Features requested during table load */
216 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218 
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223 	struct list_head list;
224 	struct dm_dev *pool_dev;
225 	struct dm_dev *origin_dev;
226 	dm_thin_id dev_id;
227 
228 	struct pool *pool;
229 	struct dm_thin_device *td;
230 	bool requeue_mode:1;
231 	spinlock_t lock;
232 	struct bio_list deferred_bio_list;
233 	struct bio_list retry_on_resume_list;
234 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
235 };
236 
237 /*----------------------------------------------------------------*/
238 
239 /*
240  * wake_worker() is used when new work is queued and when pool_resume is
241  * ready to continue deferred IO processing.
242  */
243 static void wake_worker(struct pool *pool)
244 {
245 	queue_work(pool->wq, &pool->worker);
246 }
247 
248 /*----------------------------------------------------------------*/
249 
250 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
251 		      struct dm_bio_prison_cell **cell_result)
252 {
253 	int r;
254 	struct dm_bio_prison_cell *cell_prealloc;
255 
256 	/*
257 	 * Allocate a cell from the prison's mempool.
258 	 * This might block but it can't fail.
259 	 */
260 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
261 
262 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
263 	if (r)
264 		/*
265 		 * We reused an old cell; we can get rid of
266 		 * the new one.
267 		 */
268 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
269 
270 	return r;
271 }
272 
273 static void cell_release(struct pool *pool,
274 			 struct dm_bio_prison_cell *cell,
275 			 struct bio_list *bios)
276 {
277 	dm_cell_release(pool->prison, cell, bios);
278 	dm_bio_prison_free_cell(pool->prison, cell);
279 }
280 
281 static void cell_release_no_holder(struct pool *pool,
282 				   struct dm_bio_prison_cell *cell,
283 				   struct bio_list *bios)
284 {
285 	dm_cell_release_no_holder(pool->prison, cell, bios);
286 	dm_bio_prison_free_cell(pool->prison, cell);
287 }
288 
289 static void cell_defer_no_holder_no_free(struct thin_c *tc,
290 					 struct dm_bio_prison_cell *cell)
291 {
292 	struct pool *pool = tc->pool;
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&tc->lock, flags);
296 	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
297 	spin_unlock_irqrestore(&tc->lock, flags);
298 
299 	wake_worker(pool);
300 }
301 
302 static void cell_error(struct pool *pool,
303 		       struct dm_bio_prison_cell *cell)
304 {
305 	dm_cell_error(pool->prison, cell);
306 	dm_bio_prison_free_cell(pool->prison, cell);
307 }
308 
309 /*----------------------------------------------------------------*/
310 
311 /*
312  * A global list of pools that uses a struct mapped_device as a key.
313  */
314 static struct dm_thin_pool_table {
315 	struct mutex mutex;
316 	struct list_head pools;
317 } dm_thin_pool_table;
318 
319 static void pool_table_init(void)
320 {
321 	mutex_init(&dm_thin_pool_table.mutex);
322 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
323 }
324 
325 static void __pool_table_insert(struct pool *pool)
326 {
327 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 	list_add(&pool->list, &dm_thin_pool_table.pools);
329 }
330 
331 static void __pool_table_remove(struct pool *pool)
332 {
333 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
334 	list_del(&pool->list);
335 }
336 
337 static struct pool *__pool_table_lookup(struct mapped_device *md)
338 {
339 	struct pool *pool = NULL, *tmp;
340 
341 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
342 
343 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
344 		if (tmp->pool_md == md) {
345 			pool = tmp;
346 			break;
347 		}
348 	}
349 
350 	return pool;
351 }
352 
353 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
354 {
355 	struct pool *pool = NULL, *tmp;
356 
357 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
358 
359 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
360 		if (tmp->md_dev == md_dev) {
361 			pool = tmp;
362 			break;
363 		}
364 	}
365 
366 	return pool;
367 }
368 
369 /*----------------------------------------------------------------*/
370 
371 struct dm_thin_endio_hook {
372 	struct thin_c *tc;
373 	struct dm_deferred_entry *shared_read_entry;
374 	struct dm_deferred_entry *all_io_entry;
375 	struct dm_thin_new_mapping *overwrite_mapping;
376 	struct rb_node rb_node;
377 };
378 
379 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
380 {
381 	struct bio *bio;
382 	struct bio_list bios;
383 	unsigned long flags;
384 
385 	bio_list_init(&bios);
386 
387 	spin_lock_irqsave(&tc->lock, flags);
388 	bio_list_merge(&bios, master);
389 	bio_list_init(master);
390 	spin_unlock_irqrestore(&tc->lock, flags);
391 
392 	while ((bio = bio_list_pop(&bios)))
393 		bio_endio(bio, DM_ENDIO_REQUEUE);
394 }
395 
396 static void requeue_io(struct thin_c *tc)
397 {
398 	requeue_bio_list(tc, &tc->deferred_bio_list);
399 	requeue_bio_list(tc, &tc->retry_on_resume_list);
400 }
401 
402 static void error_thin_retry_list(struct thin_c *tc)
403 {
404 	struct bio *bio;
405 	unsigned long flags;
406 	struct bio_list bios;
407 
408 	bio_list_init(&bios);
409 
410 	spin_lock_irqsave(&tc->lock, flags);
411 	bio_list_merge(&bios, &tc->retry_on_resume_list);
412 	bio_list_init(&tc->retry_on_resume_list);
413 	spin_unlock_irqrestore(&tc->lock, flags);
414 
415 	while ((bio = bio_list_pop(&bios)))
416 		bio_io_error(bio);
417 }
418 
419 static void error_retry_list(struct pool *pool)
420 {
421 	struct thin_c *tc;
422 
423 	rcu_read_lock();
424 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
425 		error_thin_retry_list(tc);
426 	rcu_read_unlock();
427 }
428 
429 /*
430  * This section of code contains the logic for processing a thin device's IO.
431  * Much of the code depends on pool object resources (lists, workqueues, etc)
432  * but most is exclusively called from the thin target rather than the thin-pool
433  * target.
434  */
435 
436 static bool block_size_is_power_of_two(struct pool *pool)
437 {
438 	return pool->sectors_per_block_shift >= 0;
439 }
440 
441 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
442 {
443 	struct pool *pool = tc->pool;
444 	sector_t block_nr = bio->bi_iter.bi_sector;
445 
446 	if (block_size_is_power_of_two(pool))
447 		block_nr >>= pool->sectors_per_block_shift;
448 	else
449 		(void) sector_div(block_nr, pool->sectors_per_block);
450 
451 	return block_nr;
452 }
453 
454 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
455 {
456 	struct pool *pool = tc->pool;
457 	sector_t bi_sector = bio->bi_iter.bi_sector;
458 
459 	bio->bi_bdev = tc->pool_dev->bdev;
460 	if (block_size_is_power_of_two(pool))
461 		bio->bi_iter.bi_sector =
462 			(block << pool->sectors_per_block_shift) |
463 			(bi_sector & (pool->sectors_per_block - 1));
464 	else
465 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
466 				 sector_div(bi_sector, pool->sectors_per_block);
467 }
468 
469 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
470 {
471 	bio->bi_bdev = tc->origin_dev->bdev;
472 }
473 
474 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
475 {
476 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
477 		dm_thin_changed_this_transaction(tc->td);
478 }
479 
480 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
481 {
482 	struct dm_thin_endio_hook *h;
483 
484 	if (bio->bi_rw & REQ_DISCARD)
485 		return;
486 
487 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
488 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
489 }
490 
491 static void issue(struct thin_c *tc, struct bio *bio)
492 {
493 	struct pool *pool = tc->pool;
494 	unsigned long flags;
495 
496 	if (!bio_triggers_commit(tc, bio)) {
497 		generic_make_request(bio);
498 		return;
499 	}
500 
501 	/*
502 	 * Complete bio with an error if earlier I/O caused changes to
503 	 * the metadata that can't be committed e.g, due to I/O errors
504 	 * on the metadata device.
505 	 */
506 	if (dm_thin_aborted_changes(tc->td)) {
507 		bio_io_error(bio);
508 		return;
509 	}
510 
511 	/*
512 	 * Batch together any bios that trigger commits and then issue a
513 	 * single commit for them in process_deferred_bios().
514 	 */
515 	spin_lock_irqsave(&pool->lock, flags);
516 	bio_list_add(&pool->deferred_flush_bios, bio);
517 	spin_unlock_irqrestore(&pool->lock, flags);
518 }
519 
520 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
521 {
522 	remap_to_origin(tc, bio);
523 	issue(tc, bio);
524 }
525 
526 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
527 			    dm_block_t block)
528 {
529 	remap(tc, bio, block);
530 	issue(tc, bio);
531 }
532 
533 /*----------------------------------------------------------------*/
534 
535 /*
536  * Bio endio functions.
537  */
538 struct dm_thin_new_mapping {
539 	struct list_head list;
540 
541 	bool quiesced:1;
542 	bool prepared:1;
543 	bool pass_discard:1;
544 	bool definitely_not_shared:1;
545 
546 	int err;
547 	struct thin_c *tc;
548 	dm_block_t virt_block;
549 	dm_block_t data_block;
550 	struct dm_bio_prison_cell *cell, *cell2;
551 
552 	/*
553 	 * If the bio covers the whole area of a block then we can avoid
554 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
555 	 * still be in the cell, so care has to be taken to avoid issuing
556 	 * the bio twice.
557 	 */
558 	struct bio *bio;
559 	bio_end_io_t *saved_bi_end_io;
560 };
561 
562 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
563 {
564 	struct pool *pool = m->tc->pool;
565 
566 	if (m->quiesced && m->prepared) {
567 		list_add_tail(&m->list, &pool->prepared_mappings);
568 		wake_worker(pool);
569 	}
570 }
571 
572 static void copy_complete(int read_err, unsigned long write_err, void *context)
573 {
574 	unsigned long flags;
575 	struct dm_thin_new_mapping *m = context;
576 	struct pool *pool = m->tc->pool;
577 
578 	m->err = read_err || write_err ? -EIO : 0;
579 
580 	spin_lock_irqsave(&pool->lock, flags);
581 	m->prepared = true;
582 	__maybe_add_mapping(m);
583 	spin_unlock_irqrestore(&pool->lock, flags);
584 }
585 
586 static void overwrite_endio(struct bio *bio, int err)
587 {
588 	unsigned long flags;
589 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
590 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
591 	struct pool *pool = m->tc->pool;
592 
593 	m->err = err;
594 
595 	spin_lock_irqsave(&pool->lock, flags);
596 	m->prepared = true;
597 	__maybe_add_mapping(m);
598 	spin_unlock_irqrestore(&pool->lock, flags);
599 }
600 
601 /*----------------------------------------------------------------*/
602 
603 /*
604  * Workqueue.
605  */
606 
607 /*
608  * Prepared mapping jobs.
609  */
610 
611 /*
612  * This sends the bios in the cell back to the deferred_bios list.
613  */
614 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
615 {
616 	struct pool *pool = tc->pool;
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&tc->lock, flags);
620 	cell_release(pool, cell, &tc->deferred_bio_list);
621 	spin_unlock_irqrestore(&tc->lock, flags);
622 
623 	wake_worker(pool);
624 }
625 
626 /*
627  * Same as cell_defer above, except it omits the original holder of the cell.
628  */
629 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
630 {
631 	struct pool *pool = tc->pool;
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&tc->lock, flags);
635 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
636 	spin_unlock_irqrestore(&tc->lock, flags);
637 
638 	wake_worker(pool);
639 }
640 
641 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
642 {
643 	if (m->bio) {
644 		m->bio->bi_end_io = m->saved_bi_end_io;
645 		atomic_inc(&m->bio->bi_remaining);
646 	}
647 	cell_error(m->tc->pool, m->cell);
648 	list_del(&m->list);
649 	mempool_free(m, m->tc->pool->mapping_pool);
650 }
651 
652 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
653 {
654 	struct thin_c *tc = m->tc;
655 	struct pool *pool = tc->pool;
656 	struct bio *bio;
657 	int r;
658 
659 	bio = m->bio;
660 	if (bio) {
661 		bio->bi_end_io = m->saved_bi_end_io;
662 		atomic_inc(&bio->bi_remaining);
663 	}
664 
665 	if (m->err) {
666 		cell_error(pool, m->cell);
667 		goto out;
668 	}
669 
670 	/*
671 	 * Commit the prepared block into the mapping btree.
672 	 * Any I/O for this block arriving after this point will get
673 	 * remapped to it directly.
674 	 */
675 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
676 	if (r) {
677 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
678 		cell_error(pool, m->cell);
679 		goto out;
680 	}
681 
682 	/*
683 	 * Release any bios held while the block was being provisioned.
684 	 * If we are processing a write bio that completely covers the block,
685 	 * we already processed it so can ignore it now when processing
686 	 * the bios in the cell.
687 	 */
688 	if (bio) {
689 		cell_defer_no_holder(tc, m->cell);
690 		bio_endio(bio, 0);
691 	} else
692 		cell_defer(tc, m->cell);
693 
694 out:
695 	list_del(&m->list);
696 	mempool_free(m, pool->mapping_pool);
697 }
698 
699 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
700 {
701 	struct thin_c *tc = m->tc;
702 
703 	bio_io_error(m->bio);
704 	cell_defer_no_holder(tc, m->cell);
705 	cell_defer_no_holder(tc, m->cell2);
706 	mempool_free(m, tc->pool->mapping_pool);
707 }
708 
709 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
710 {
711 	struct thin_c *tc = m->tc;
712 
713 	inc_all_io_entry(tc->pool, m->bio);
714 	cell_defer_no_holder(tc, m->cell);
715 	cell_defer_no_holder(tc, m->cell2);
716 
717 	if (m->pass_discard)
718 		if (m->definitely_not_shared)
719 			remap_and_issue(tc, m->bio, m->data_block);
720 		else {
721 			bool used = false;
722 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
723 				bio_endio(m->bio, 0);
724 			else
725 				remap_and_issue(tc, m->bio, m->data_block);
726 		}
727 	else
728 		bio_endio(m->bio, 0);
729 
730 	mempool_free(m, tc->pool->mapping_pool);
731 }
732 
733 static void process_prepared_discard(struct dm_thin_new_mapping *m)
734 {
735 	int r;
736 	struct thin_c *tc = m->tc;
737 
738 	r = dm_thin_remove_block(tc->td, m->virt_block);
739 	if (r)
740 		DMERR_LIMIT("dm_thin_remove_block() failed");
741 
742 	process_prepared_discard_passdown(m);
743 }
744 
745 static void process_prepared(struct pool *pool, struct list_head *head,
746 			     process_mapping_fn *fn)
747 {
748 	unsigned long flags;
749 	struct list_head maps;
750 	struct dm_thin_new_mapping *m, *tmp;
751 
752 	INIT_LIST_HEAD(&maps);
753 	spin_lock_irqsave(&pool->lock, flags);
754 	list_splice_init(head, &maps);
755 	spin_unlock_irqrestore(&pool->lock, flags);
756 
757 	list_for_each_entry_safe(m, tmp, &maps, list)
758 		(*fn)(m);
759 }
760 
761 /*
762  * Deferred bio jobs.
763  */
764 static int io_overlaps_block(struct pool *pool, struct bio *bio)
765 {
766 	return bio->bi_iter.bi_size ==
767 		(pool->sectors_per_block << SECTOR_SHIFT);
768 }
769 
770 static int io_overwrites_block(struct pool *pool, struct bio *bio)
771 {
772 	return (bio_data_dir(bio) == WRITE) &&
773 		io_overlaps_block(pool, bio);
774 }
775 
776 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
777 			       bio_end_io_t *fn)
778 {
779 	*save = bio->bi_end_io;
780 	bio->bi_end_io = fn;
781 }
782 
783 static int ensure_next_mapping(struct pool *pool)
784 {
785 	if (pool->next_mapping)
786 		return 0;
787 
788 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
789 
790 	return pool->next_mapping ? 0 : -ENOMEM;
791 }
792 
793 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
794 {
795 	struct dm_thin_new_mapping *m = pool->next_mapping;
796 
797 	BUG_ON(!pool->next_mapping);
798 
799 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
800 	INIT_LIST_HEAD(&m->list);
801 	m->bio = NULL;
802 
803 	pool->next_mapping = NULL;
804 
805 	return m;
806 }
807 
808 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
809 			  struct dm_dev *origin, dm_block_t data_origin,
810 			  dm_block_t data_dest,
811 			  struct dm_bio_prison_cell *cell, struct bio *bio)
812 {
813 	int r;
814 	struct pool *pool = tc->pool;
815 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
816 
817 	m->tc = tc;
818 	m->virt_block = virt_block;
819 	m->data_block = data_dest;
820 	m->cell = cell;
821 
822 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
823 		m->quiesced = true;
824 
825 	/*
826 	 * IO to pool_dev remaps to the pool target's data_dev.
827 	 *
828 	 * If the whole block of data is being overwritten, we can issue the
829 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
830 	 */
831 	if (io_overwrites_block(pool, bio)) {
832 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
833 
834 		h->overwrite_mapping = m;
835 		m->bio = bio;
836 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
837 		inc_all_io_entry(pool, bio);
838 		remap_and_issue(tc, bio, data_dest);
839 	} else {
840 		struct dm_io_region from, to;
841 
842 		from.bdev = origin->bdev;
843 		from.sector = data_origin * pool->sectors_per_block;
844 		from.count = pool->sectors_per_block;
845 
846 		to.bdev = tc->pool_dev->bdev;
847 		to.sector = data_dest * pool->sectors_per_block;
848 		to.count = pool->sectors_per_block;
849 
850 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
851 				   0, copy_complete, m);
852 		if (r < 0) {
853 			mempool_free(m, pool->mapping_pool);
854 			DMERR_LIMIT("dm_kcopyd_copy() failed");
855 			cell_error(pool, cell);
856 		}
857 	}
858 }
859 
860 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
861 				   dm_block_t data_origin, dm_block_t data_dest,
862 				   struct dm_bio_prison_cell *cell, struct bio *bio)
863 {
864 	schedule_copy(tc, virt_block, tc->pool_dev,
865 		      data_origin, data_dest, cell, bio);
866 }
867 
868 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
869 				   dm_block_t data_dest,
870 				   struct dm_bio_prison_cell *cell, struct bio *bio)
871 {
872 	schedule_copy(tc, virt_block, tc->origin_dev,
873 		      virt_block, data_dest, cell, bio);
874 }
875 
876 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
877 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
878 			  struct bio *bio)
879 {
880 	struct pool *pool = tc->pool;
881 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
882 
883 	m->quiesced = true;
884 	m->prepared = false;
885 	m->tc = tc;
886 	m->virt_block = virt_block;
887 	m->data_block = data_block;
888 	m->cell = cell;
889 
890 	/*
891 	 * If the whole block of data is being overwritten or we are not
892 	 * zeroing pre-existing data, we can issue the bio immediately.
893 	 * Otherwise we use kcopyd to zero the data first.
894 	 */
895 	if (!pool->pf.zero_new_blocks)
896 		process_prepared_mapping(m);
897 
898 	else if (io_overwrites_block(pool, bio)) {
899 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
900 
901 		h->overwrite_mapping = m;
902 		m->bio = bio;
903 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
904 		inc_all_io_entry(pool, bio);
905 		remap_and_issue(tc, bio, data_block);
906 	} else {
907 		int r;
908 		struct dm_io_region to;
909 
910 		to.bdev = tc->pool_dev->bdev;
911 		to.sector = data_block * pool->sectors_per_block;
912 		to.count = pool->sectors_per_block;
913 
914 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
915 		if (r < 0) {
916 			mempool_free(m, pool->mapping_pool);
917 			DMERR_LIMIT("dm_kcopyd_zero() failed");
918 			cell_error(pool, cell);
919 		}
920 	}
921 }
922 
923 /*
924  * A non-zero return indicates read_only or fail_io mode.
925  * Many callers don't care about the return value.
926  */
927 static int commit(struct pool *pool)
928 {
929 	int r;
930 
931 	if (get_pool_mode(pool) != PM_WRITE)
932 		return -EINVAL;
933 
934 	r = dm_pool_commit_metadata(pool->pmd);
935 	if (r)
936 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
937 
938 	return r;
939 }
940 
941 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
942 {
943 	unsigned long flags;
944 
945 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
946 		DMWARN("%s: reached low water mark for data device: sending event.",
947 		       dm_device_name(pool->pool_md));
948 		spin_lock_irqsave(&pool->lock, flags);
949 		pool->low_water_triggered = true;
950 		spin_unlock_irqrestore(&pool->lock, flags);
951 		dm_table_event(pool->ti->table);
952 	}
953 }
954 
955 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
956 
957 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
958 {
959 	int r;
960 	dm_block_t free_blocks;
961 	struct pool *pool = tc->pool;
962 
963 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
964 		return -EINVAL;
965 
966 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
967 	if (r) {
968 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
969 		return r;
970 	}
971 
972 	check_low_water_mark(pool, free_blocks);
973 
974 	if (!free_blocks) {
975 		/*
976 		 * Try to commit to see if that will free up some
977 		 * more space.
978 		 */
979 		r = commit(pool);
980 		if (r)
981 			return r;
982 
983 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
984 		if (r) {
985 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
986 			return r;
987 		}
988 
989 		if (!free_blocks) {
990 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
991 			return -ENOSPC;
992 		}
993 	}
994 
995 	r = dm_pool_alloc_data_block(pool->pmd, result);
996 	if (r) {
997 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
998 		return r;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * If we have run out of space, queue bios until the device is
1006  * resumed, presumably after having been reloaded with more space.
1007  */
1008 static void retry_on_resume(struct bio *bio)
1009 {
1010 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1011 	struct thin_c *tc = h->tc;
1012 	unsigned long flags;
1013 
1014 	spin_lock_irqsave(&tc->lock, flags);
1015 	bio_list_add(&tc->retry_on_resume_list, bio);
1016 	spin_unlock_irqrestore(&tc->lock, flags);
1017 }
1018 
1019 static bool should_error_unserviceable_bio(struct pool *pool)
1020 {
1021 	enum pool_mode m = get_pool_mode(pool);
1022 
1023 	switch (m) {
1024 	case PM_WRITE:
1025 		/* Shouldn't get here */
1026 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1027 		return true;
1028 
1029 	case PM_OUT_OF_DATA_SPACE:
1030 		return pool->pf.error_if_no_space;
1031 
1032 	case PM_READ_ONLY:
1033 	case PM_FAIL:
1034 		return true;
1035 	default:
1036 		/* Shouldn't get here */
1037 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1038 		return true;
1039 	}
1040 }
1041 
1042 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1043 {
1044 	if (should_error_unserviceable_bio(pool))
1045 		bio_io_error(bio);
1046 	else
1047 		retry_on_resume(bio);
1048 }
1049 
1050 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1051 {
1052 	struct bio *bio;
1053 	struct bio_list bios;
1054 
1055 	if (should_error_unserviceable_bio(pool)) {
1056 		cell_error(pool, cell);
1057 		return;
1058 	}
1059 
1060 	bio_list_init(&bios);
1061 	cell_release(pool, cell, &bios);
1062 
1063 	if (should_error_unserviceable_bio(pool))
1064 		while ((bio = bio_list_pop(&bios)))
1065 			bio_io_error(bio);
1066 	else
1067 		while ((bio = bio_list_pop(&bios)))
1068 			retry_on_resume(bio);
1069 }
1070 
1071 static void process_discard(struct thin_c *tc, struct bio *bio)
1072 {
1073 	int r;
1074 	unsigned long flags;
1075 	struct pool *pool = tc->pool;
1076 	struct dm_bio_prison_cell *cell, *cell2;
1077 	struct dm_cell_key key, key2;
1078 	dm_block_t block = get_bio_block(tc, bio);
1079 	struct dm_thin_lookup_result lookup_result;
1080 	struct dm_thin_new_mapping *m;
1081 
1082 	build_virtual_key(tc->td, block, &key);
1083 	if (bio_detain(tc->pool, &key, bio, &cell))
1084 		return;
1085 
1086 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1087 	switch (r) {
1088 	case 0:
1089 		/*
1090 		 * Check nobody is fiddling with this pool block.  This can
1091 		 * happen if someone's in the process of breaking sharing
1092 		 * on this block.
1093 		 */
1094 		build_data_key(tc->td, lookup_result.block, &key2);
1095 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1096 			cell_defer_no_holder(tc, cell);
1097 			break;
1098 		}
1099 
1100 		if (io_overlaps_block(pool, bio)) {
1101 			/*
1102 			 * IO may still be going to the destination block.  We must
1103 			 * quiesce before we can do the removal.
1104 			 */
1105 			m = get_next_mapping(pool);
1106 			m->tc = tc;
1107 			m->pass_discard = pool->pf.discard_passdown;
1108 			m->definitely_not_shared = !lookup_result.shared;
1109 			m->virt_block = block;
1110 			m->data_block = lookup_result.block;
1111 			m->cell = cell;
1112 			m->cell2 = cell2;
1113 			m->bio = bio;
1114 
1115 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1116 				spin_lock_irqsave(&pool->lock, flags);
1117 				list_add_tail(&m->list, &pool->prepared_discards);
1118 				spin_unlock_irqrestore(&pool->lock, flags);
1119 				wake_worker(pool);
1120 			}
1121 		} else {
1122 			inc_all_io_entry(pool, bio);
1123 			cell_defer_no_holder(tc, cell);
1124 			cell_defer_no_holder(tc, cell2);
1125 
1126 			/*
1127 			 * The DM core makes sure that the discard doesn't span
1128 			 * a block boundary.  So we submit the discard of a
1129 			 * partial block appropriately.
1130 			 */
1131 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1132 				remap_and_issue(tc, bio, lookup_result.block);
1133 			else
1134 				bio_endio(bio, 0);
1135 		}
1136 		break;
1137 
1138 	case -ENODATA:
1139 		/*
1140 		 * It isn't provisioned, just forget it.
1141 		 */
1142 		cell_defer_no_holder(tc, cell);
1143 		bio_endio(bio, 0);
1144 		break;
1145 
1146 	default:
1147 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1148 			    __func__, r);
1149 		cell_defer_no_holder(tc, cell);
1150 		bio_io_error(bio);
1151 		break;
1152 	}
1153 }
1154 
1155 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1156 			  struct dm_cell_key *key,
1157 			  struct dm_thin_lookup_result *lookup_result,
1158 			  struct dm_bio_prison_cell *cell)
1159 {
1160 	int r;
1161 	dm_block_t data_block;
1162 	struct pool *pool = tc->pool;
1163 
1164 	r = alloc_data_block(tc, &data_block);
1165 	switch (r) {
1166 	case 0:
1167 		schedule_internal_copy(tc, block, lookup_result->block,
1168 				       data_block, cell, bio);
1169 		break;
1170 
1171 	case -ENOSPC:
1172 		retry_bios_on_resume(pool, cell);
1173 		break;
1174 
1175 	default:
1176 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1177 			    __func__, r);
1178 		cell_error(pool, cell);
1179 		break;
1180 	}
1181 }
1182 
1183 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1184 			       dm_block_t block,
1185 			       struct dm_thin_lookup_result *lookup_result)
1186 {
1187 	struct dm_bio_prison_cell *cell;
1188 	struct pool *pool = tc->pool;
1189 	struct dm_cell_key key;
1190 
1191 	/*
1192 	 * If cell is already occupied, then sharing is already in the process
1193 	 * of being broken so we have nothing further to do here.
1194 	 */
1195 	build_data_key(tc->td, lookup_result->block, &key);
1196 	if (bio_detain(pool, &key, bio, &cell))
1197 		return;
1198 
1199 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1200 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1201 	else {
1202 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1203 
1204 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1205 		inc_all_io_entry(pool, bio);
1206 		cell_defer_no_holder(tc, cell);
1207 
1208 		remap_and_issue(tc, bio, lookup_result->block);
1209 	}
1210 }
1211 
1212 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1213 			    struct dm_bio_prison_cell *cell)
1214 {
1215 	int r;
1216 	dm_block_t data_block;
1217 	struct pool *pool = tc->pool;
1218 
1219 	/*
1220 	 * Remap empty bios (flushes) immediately, without provisioning.
1221 	 */
1222 	if (!bio->bi_iter.bi_size) {
1223 		inc_all_io_entry(pool, bio);
1224 		cell_defer_no_holder(tc, cell);
1225 
1226 		remap_and_issue(tc, bio, 0);
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * Fill read bios with zeroes and complete them immediately.
1232 	 */
1233 	if (bio_data_dir(bio) == READ) {
1234 		zero_fill_bio(bio);
1235 		cell_defer_no_holder(tc, cell);
1236 		bio_endio(bio, 0);
1237 		return;
1238 	}
1239 
1240 	r = alloc_data_block(tc, &data_block);
1241 	switch (r) {
1242 	case 0:
1243 		if (tc->origin_dev)
1244 			schedule_external_copy(tc, block, data_block, cell, bio);
1245 		else
1246 			schedule_zero(tc, block, data_block, cell, bio);
1247 		break;
1248 
1249 	case -ENOSPC:
1250 		retry_bios_on_resume(pool, cell);
1251 		break;
1252 
1253 	default:
1254 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1255 			    __func__, r);
1256 		cell_error(pool, cell);
1257 		break;
1258 	}
1259 }
1260 
1261 static void process_bio(struct thin_c *tc, struct bio *bio)
1262 {
1263 	int r;
1264 	struct pool *pool = tc->pool;
1265 	dm_block_t block = get_bio_block(tc, bio);
1266 	struct dm_bio_prison_cell *cell;
1267 	struct dm_cell_key key;
1268 	struct dm_thin_lookup_result lookup_result;
1269 
1270 	/*
1271 	 * If cell is already occupied, then the block is already
1272 	 * being provisioned so we have nothing further to do here.
1273 	 */
1274 	build_virtual_key(tc->td, block, &key);
1275 	if (bio_detain(pool, &key, bio, &cell))
1276 		return;
1277 
1278 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1279 	switch (r) {
1280 	case 0:
1281 		if (lookup_result.shared) {
1282 			process_shared_bio(tc, bio, block, &lookup_result);
1283 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1284 		} else {
1285 			inc_all_io_entry(pool, bio);
1286 			cell_defer_no_holder(tc, cell);
1287 
1288 			remap_and_issue(tc, bio, lookup_result.block);
1289 		}
1290 		break;
1291 
1292 	case -ENODATA:
1293 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1294 			inc_all_io_entry(pool, bio);
1295 			cell_defer_no_holder(tc, cell);
1296 
1297 			remap_to_origin_and_issue(tc, bio);
1298 		} else
1299 			provision_block(tc, bio, block, cell);
1300 		break;
1301 
1302 	default:
1303 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1304 			    __func__, r);
1305 		cell_defer_no_holder(tc, cell);
1306 		bio_io_error(bio);
1307 		break;
1308 	}
1309 }
1310 
1311 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1312 {
1313 	int r;
1314 	int rw = bio_data_dir(bio);
1315 	dm_block_t block = get_bio_block(tc, bio);
1316 	struct dm_thin_lookup_result lookup_result;
1317 
1318 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1319 	switch (r) {
1320 	case 0:
1321 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1322 			handle_unserviceable_bio(tc->pool, bio);
1323 		else {
1324 			inc_all_io_entry(tc->pool, bio);
1325 			remap_and_issue(tc, bio, lookup_result.block);
1326 		}
1327 		break;
1328 
1329 	case -ENODATA:
1330 		if (rw != READ) {
1331 			handle_unserviceable_bio(tc->pool, bio);
1332 			break;
1333 		}
1334 
1335 		if (tc->origin_dev) {
1336 			inc_all_io_entry(tc->pool, bio);
1337 			remap_to_origin_and_issue(tc, bio);
1338 			break;
1339 		}
1340 
1341 		zero_fill_bio(bio);
1342 		bio_endio(bio, 0);
1343 		break;
1344 
1345 	default:
1346 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1347 			    __func__, r);
1348 		bio_io_error(bio);
1349 		break;
1350 	}
1351 }
1352 
1353 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1354 {
1355 	bio_endio(bio, 0);
1356 }
1357 
1358 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1359 {
1360 	bio_io_error(bio);
1361 }
1362 
1363 /*
1364  * FIXME: should we also commit due to size of transaction, measured in
1365  * metadata blocks?
1366  */
1367 static int need_commit_due_to_time(struct pool *pool)
1368 {
1369 	return jiffies < pool->last_commit_jiffies ||
1370 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1371 }
1372 
1373 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1374 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1375 
1376 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1377 {
1378 	struct rb_node **rbp, *parent;
1379 	struct dm_thin_endio_hook *pbd;
1380 	sector_t bi_sector = bio->bi_iter.bi_sector;
1381 
1382 	rbp = &tc->sort_bio_list.rb_node;
1383 	parent = NULL;
1384 	while (*rbp) {
1385 		parent = *rbp;
1386 		pbd = thin_pbd(parent);
1387 
1388 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1389 			rbp = &(*rbp)->rb_left;
1390 		else
1391 			rbp = &(*rbp)->rb_right;
1392 	}
1393 
1394 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1395 	rb_link_node(&pbd->rb_node, parent, rbp);
1396 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1397 }
1398 
1399 static void __extract_sorted_bios(struct thin_c *tc)
1400 {
1401 	struct rb_node *node;
1402 	struct dm_thin_endio_hook *pbd;
1403 	struct bio *bio;
1404 
1405 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1406 		pbd = thin_pbd(node);
1407 		bio = thin_bio(pbd);
1408 
1409 		bio_list_add(&tc->deferred_bio_list, bio);
1410 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1411 	}
1412 
1413 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1414 }
1415 
1416 static void __sort_thin_deferred_bios(struct thin_c *tc)
1417 {
1418 	struct bio *bio;
1419 	struct bio_list bios;
1420 
1421 	bio_list_init(&bios);
1422 	bio_list_merge(&bios, &tc->deferred_bio_list);
1423 	bio_list_init(&tc->deferred_bio_list);
1424 
1425 	/* Sort deferred_bio_list using rb-tree */
1426 	while ((bio = bio_list_pop(&bios)))
1427 		__thin_bio_rb_add(tc, bio);
1428 
1429 	/*
1430 	 * Transfer the sorted bios in sort_bio_list back to
1431 	 * deferred_bio_list to allow lockless submission of
1432 	 * all bios.
1433 	 */
1434 	__extract_sorted_bios(tc);
1435 }
1436 
1437 static void process_thin_deferred_bios(struct thin_c *tc)
1438 {
1439 	struct pool *pool = tc->pool;
1440 	unsigned long flags;
1441 	struct bio *bio;
1442 	struct bio_list bios;
1443 	struct blk_plug plug;
1444 
1445 	if (tc->requeue_mode) {
1446 		requeue_bio_list(tc, &tc->deferred_bio_list);
1447 		return;
1448 	}
1449 
1450 	bio_list_init(&bios);
1451 
1452 	spin_lock_irqsave(&tc->lock, flags);
1453 
1454 	if (bio_list_empty(&tc->deferred_bio_list)) {
1455 		spin_unlock_irqrestore(&tc->lock, flags);
1456 		return;
1457 	}
1458 
1459 	__sort_thin_deferred_bios(tc);
1460 
1461 	bio_list_merge(&bios, &tc->deferred_bio_list);
1462 	bio_list_init(&tc->deferred_bio_list);
1463 
1464 	spin_unlock_irqrestore(&tc->lock, flags);
1465 
1466 	blk_start_plug(&plug);
1467 	while ((bio = bio_list_pop(&bios))) {
1468 		/*
1469 		 * If we've got no free new_mapping structs, and processing
1470 		 * this bio might require one, we pause until there are some
1471 		 * prepared mappings to process.
1472 		 */
1473 		if (ensure_next_mapping(pool)) {
1474 			spin_lock_irqsave(&tc->lock, flags);
1475 			bio_list_add(&tc->deferred_bio_list, bio);
1476 			bio_list_merge(&tc->deferred_bio_list, &bios);
1477 			spin_unlock_irqrestore(&tc->lock, flags);
1478 			break;
1479 		}
1480 
1481 		if (bio->bi_rw & REQ_DISCARD)
1482 			pool->process_discard(tc, bio);
1483 		else
1484 			pool->process_bio(tc, bio);
1485 	}
1486 	blk_finish_plug(&plug);
1487 }
1488 
1489 static void process_deferred_bios(struct pool *pool)
1490 {
1491 	unsigned long flags;
1492 	struct bio *bio;
1493 	struct bio_list bios;
1494 	struct thin_c *tc;
1495 
1496 	rcu_read_lock();
1497 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
1498 		process_thin_deferred_bios(tc);
1499 	rcu_read_unlock();
1500 
1501 	/*
1502 	 * If there are any deferred flush bios, we must commit
1503 	 * the metadata before issuing them.
1504 	 */
1505 	bio_list_init(&bios);
1506 	spin_lock_irqsave(&pool->lock, flags);
1507 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1508 	bio_list_init(&pool->deferred_flush_bios);
1509 	spin_unlock_irqrestore(&pool->lock, flags);
1510 
1511 	if (bio_list_empty(&bios) &&
1512 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1513 		return;
1514 
1515 	if (commit(pool)) {
1516 		while ((bio = bio_list_pop(&bios)))
1517 			bio_io_error(bio);
1518 		return;
1519 	}
1520 	pool->last_commit_jiffies = jiffies;
1521 
1522 	while ((bio = bio_list_pop(&bios)))
1523 		generic_make_request(bio);
1524 }
1525 
1526 static void do_worker(struct work_struct *ws)
1527 {
1528 	struct pool *pool = container_of(ws, struct pool, worker);
1529 
1530 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1531 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1532 	process_deferred_bios(pool);
1533 }
1534 
1535 /*
1536  * We want to commit periodically so that not too much
1537  * unwritten data builds up.
1538  */
1539 static void do_waker(struct work_struct *ws)
1540 {
1541 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1542 	wake_worker(pool);
1543 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1544 }
1545 
1546 /*----------------------------------------------------------------*/
1547 
1548 struct noflush_work {
1549 	struct work_struct worker;
1550 	struct thin_c *tc;
1551 
1552 	atomic_t complete;
1553 	wait_queue_head_t wait;
1554 };
1555 
1556 static void complete_noflush_work(struct noflush_work *w)
1557 {
1558 	atomic_set(&w->complete, 1);
1559 	wake_up(&w->wait);
1560 }
1561 
1562 static void do_noflush_start(struct work_struct *ws)
1563 {
1564 	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1565 	w->tc->requeue_mode = true;
1566 	requeue_io(w->tc);
1567 	complete_noflush_work(w);
1568 }
1569 
1570 static void do_noflush_stop(struct work_struct *ws)
1571 {
1572 	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1573 	w->tc->requeue_mode = false;
1574 	complete_noflush_work(w);
1575 }
1576 
1577 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1578 {
1579 	struct noflush_work w;
1580 
1581 	INIT_WORK(&w.worker, fn);
1582 	w.tc = tc;
1583 	atomic_set(&w.complete, 0);
1584 	init_waitqueue_head(&w.wait);
1585 
1586 	queue_work(tc->pool->wq, &w.worker);
1587 
1588 	wait_event(w.wait, atomic_read(&w.complete));
1589 }
1590 
1591 /*----------------------------------------------------------------*/
1592 
1593 static enum pool_mode get_pool_mode(struct pool *pool)
1594 {
1595 	return pool->pf.mode;
1596 }
1597 
1598 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1599 {
1600 	dm_table_event(pool->ti->table);
1601 	DMINFO("%s: switching pool to %s mode",
1602 	       dm_device_name(pool->pool_md), new_mode);
1603 }
1604 
1605 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1606 {
1607 	struct pool_c *pt = pool->ti->private;
1608 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1609 	enum pool_mode old_mode = get_pool_mode(pool);
1610 
1611 	/*
1612 	 * Never allow the pool to transition to PM_WRITE mode if user
1613 	 * intervention is required to verify metadata and data consistency.
1614 	 */
1615 	if (new_mode == PM_WRITE && needs_check) {
1616 		DMERR("%s: unable to switch pool to write mode until repaired.",
1617 		      dm_device_name(pool->pool_md));
1618 		if (old_mode != new_mode)
1619 			new_mode = old_mode;
1620 		else
1621 			new_mode = PM_READ_ONLY;
1622 	}
1623 	/*
1624 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1625 	 * not going to recover without a thin_repair.	So we never let the
1626 	 * pool move out of the old mode.
1627 	 */
1628 	if (old_mode == PM_FAIL)
1629 		new_mode = old_mode;
1630 
1631 	switch (new_mode) {
1632 	case PM_FAIL:
1633 		if (old_mode != new_mode)
1634 			notify_of_pool_mode_change(pool, "failure");
1635 		dm_pool_metadata_read_only(pool->pmd);
1636 		pool->process_bio = process_bio_fail;
1637 		pool->process_discard = process_bio_fail;
1638 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1639 		pool->process_prepared_discard = process_prepared_discard_fail;
1640 
1641 		error_retry_list(pool);
1642 		break;
1643 
1644 	case PM_READ_ONLY:
1645 		if (old_mode != new_mode)
1646 			notify_of_pool_mode_change(pool, "read-only");
1647 		dm_pool_metadata_read_only(pool->pmd);
1648 		pool->process_bio = process_bio_read_only;
1649 		pool->process_discard = process_bio_success;
1650 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1651 		pool->process_prepared_discard = process_prepared_discard_passdown;
1652 
1653 		error_retry_list(pool);
1654 		break;
1655 
1656 	case PM_OUT_OF_DATA_SPACE:
1657 		/*
1658 		 * Ideally we'd never hit this state; the low water mark
1659 		 * would trigger userland to extend the pool before we
1660 		 * completely run out of data space.  However, many small
1661 		 * IOs to unprovisioned space can consume data space at an
1662 		 * alarming rate.  Adjust your low water mark if you're
1663 		 * frequently seeing this mode.
1664 		 */
1665 		if (old_mode != new_mode)
1666 			notify_of_pool_mode_change(pool, "out-of-data-space");
1667 		pool->process_bio = process_bio_read_only;
1668 		pool->process_discard = process_discard;
1669 		pool->process_prepared_mapping = process_prepared_mapping;
1670 		pool->process_prepared_discard = process_prepared_discard_passdown;
1671 		break;
1672 
1673 	case PM_WRITE:
1674 		if (old_mode != new_mode)
1675 			notify_of_pool_mode_change(pool, "write");
1676 		dm_pool_metadata_read_write(pool->pmd);
1677 		pool->process_bio = process_bio;
1678 		pool->process_discard = process_discard;
1679 		pool->process_prepared_mapping = process_prepared_mapping;
1680 		pool->process_prepared_discard = process_prepared_discard;
1681 		break;
1682 	}
1683 
1684 	pool->pf.mode = new_mode;
1685 	/*
1686 	 * The pool mode may have changed, sync it so bind_control_target()
1687 	 * doesn't cause an unexpected mode transition on resume.
1688 	 */
1689 	pt->adjusted_pf.mode = new_mode;
1690 }
1691 
1692 static void abort_transaction(struct pool *pool)
1693 {
1694 	const char *dev_name = dm_device_name(pool->pool_md);
1695 
1696 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1697 	if (dm_pool_abort_metadata(pool->pmd)) {
1698 		DMERR("%s: failed to abort metadata transaction", dev_name);
1699 		set_pool_mode(pool, PM_FAIL);
1700 	}
1701 
1702 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1703 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1704 		set_pool_mode(pool, PM_FAIL);
1705 	}
1706 }
1707 
1708 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1709 {
1710 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1711 		    dm_device_name(pool->pool_md), op, r);
1712 
1713 	abort_transaction(pool);
1714 	set_pool_mode(pool, PM_READ_ONLY);
1715 }
1716 
1717 /*----------------------------------------------------------------*/
1718 
1719 /*
1720  * Mapping functions.
1721  */
1722 
1723 /*
1724  * Called only while mapping a thin bio to hand it over to the workqueue.
1725  */
1726 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1727 {
1728 	unsigned long flags;
1729 	struct pool *pool = tc->pool;
1730 
1731 	spin_lock_irqsave(&tc->lock, flags);
1732 	bio_list_add(&tc->deferred_bio_list, bio);
1733 	spin_unlock_irqrestore(&tc->lock, flags);
1734 
1735 	wake_worker(pool);
1736 }
1737 
1738 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1739 {
1740 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1741 
1742 	h->tc = tc;
1743 	h->shared_read_entry = NULL;
1744 	h->all_io_entry = NULL;
1745 	h->overwrite_mapping = NULL;
1746 }
1747 
1748 /*
1749  * Non-blocking function called from the thin target's map function.
1750  */
1751 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1752 {
1753 	int r;
1754 	struct thin_c *tc = ti->private;
1755 	dm_block_t block = get_bio_block(tc, bio);
1756 	struct dm_thin_device *td = tc->td;
1757 	struct dm_thin_lookup_result result;
1758 	struct dm_bio_prison_cell cell1, cell2;
1759 	struct dm_bio_prison_cell *cell_result;
1760 	struct dm_cell_key key;
1761 
1762 	thin_hook_bio(tc, bio);
1763 
1764 	if (tc->requeue_mode) {
1765 		bio_endio(bio, DM_ENDIO_REQUEUE);
1766 		return DM_MAPIO_SUBMITTED;
1767 	}
1768 
1769 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1770 		bio_io_error(bio);
1771 		return DM_MAPIO_SUBMITTED;
1772 	}
1773 
1774 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1775 		thin_defer_bio(tc, bio);
1776 		return DM_MAPIO_SUBMITTED;
1777 	}
1778 
1779 	r = dm_thin_find_block(td, block, 0, &result);
1780 
1781 	/*
1782 	 * Note that we defer readahead too.
1783 	 */
1784 	switch (r) {
1785 	case 0:
1786 		if (unlikely(result.shared)) {
1787 			/*
1788 			 * We have a race condition here between the
1789 			 * result.shared value returned by the lookup and
1790 			 * snapshot creation, which may cause new
1791 			 * sharing.
1792 			 *
1793 			 * To avoid this always quiesce the origin before
1794 			 * taking the snap.  You want to do this anyway to
1795 			 * ensure a consistent application view
1796 			 * (i.e. lockfs).
1797 			 *
1798 			 * More distant ancestors are irrelevant. The
1799 			 * shared flag will be set in their case.
1800 			 */
1801 			thin_defer_bio(tc, bio);
1802 			return DM_MAPIO_SUBMITTED;
1803 		}
1804 
1805 		build_virtual_key(tc->td, block, &key);
1806 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1807 			return DM_MAPIO_SUBMITTED;
1808 
1809 		build_data_key(tc->td, result.block, &key);
1810 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1811 			cell_defer_no_holder_no_free(tc, &cell1);
1812 			return DM_MAPIO_SUBMITTED;
1813 		}
1814 
1815 		inc_all_io_entry(tc->pool, bio);
1816 		cell_defer_no_holder_no_free(tc, &cell2);
1817 		cell_defer_no_holder_no_free(tc, &cell1);
1818 
1819 		remap(tc, bio, result.block);
1820 		return DM_MAPIO_REMAPPED;
1821 
1822 	case -ENODATA:
1823 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1824 			/*
1825 			 * This block isn't provisioned, and we have no way
1826 			 * of doing so.
1827 			 */
1828 			handle_unserviceable_bio(tc->pool, bio);
1829 			return DM_MAPIO_SUBMITTED;
1830 		}
1831 		/* fall through */
1832 
1833 	case -EWOULDBLOCK:
1834 		/*
1835 		 * In future, the failed dm_thin_find_block above could
1836 		 * provide the hint to load the metadata into cache.
1837 		 */
1838 		thin_defer_bio(tc, bio);
1839 		return DM_MAPIO_SUBMITTED;
1840 
1841 	default:
1842 		/*
1843 		 * Must always call bio_io_error on failure.
1844 		 * dm_thin_find_block can fail with -EINVAL if the
1845 		 * pool is switched to fail-io mode.
1846 		 */
1847 		bio_io_error(bio);
1848 		return DM_MAPIO_SUBMITTED;
1849 	}
1850 }
1851 
1852 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1853 {
1854 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1855 	struct request_queue *q;
1856 
1857 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1858 		return 1;
1859 
1860 	q = bdev_get_queue(pt->data_dev->bdev);
1861 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1862 }
1863 
1864 static void requeue_bios(struct pool *pool)
1865 {
1866 	unsigned long flags;
1867 	struct thin_c *tc;
1868 
1869 	rcu_read_lock();
1870 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1871 		spin_lock_irqsave(&tc->lock, flags);
1872 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1873 		bio_list_init(&tc->retry_on_resume_list);
1874 		spin_unlock_irqrestore(&tc->lock, flags);
1875 	}
1876 	rcu_read_unlock();
1877 }
1878 
1879 /*----------------------------------------------------------------
1880  * Binding of control targets to a pool object
1881  *--------------------------------------------------------------*/
1882 static bool data_dev_supports_discard(struct pool_c *pt)
1883 {
1884 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1885 
1886 	return q && blk_queue_discard(q);
1887 }
1888 
1889 static bool is_factor(sector_t block_size, uint32_t n)
1890 {
1891 	return !sector_div(block_size, n);
1892 }
1893 
1894 /*
1895  * If discard_passdown was enabled verify that the data device
1896  * supports discards.  Disable discard_passdown if not.
1897  */
1898 static void disable_passdown_if_not_supported(struct pool_c *pt)
1899 {
1900 	struct pool *pool = pt->pool;
1901 	struct block_device *data_bdev = pt->data_dev->bdev;
1902 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1903 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1904 	const char *reason = NULL;
1905 	char buf[BDEVNAME_SIZE];
1906 
1907 	if (!pt->adjusted_pf.discard_passdown)
1908 		return;
1909 
1910 	if (!data_dev_supports_discard(pt))
1911 		reason = "discard unsupported";
1912 
1913 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1914 		reason = "max discard sectors smaller than a block";
1915 
1916 	else if (data_limits->discard_granularity > block_size)
1917 		reason = "discard granularity larger than a block";
1918 
1919 	else if (!is_factor(block_size, data_limits->discard_granularity))
1920 		reason = "discard granularity not a factor of block size";
1921 
1922 	if (reason) {
1923 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1924 		pt->adjusted_pf.discard_passdown = false;
1925 	}
1926 }
1927 
1928 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1929 {
1930 	struct pool_c *pt = ti->private;
1931 
1932 	/*
1933 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1934 	 */
1935 	enum pool_mode old_mode = get_pool_mode(pool);
1936 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1937 
1938 	/*
1939 	 * Don't change the pool's mode until set_pool_mode() below.
1940 	 * Otherwise the pool's process_* function pointers may
1941 	 * not match the desired pool mode.
1942 	 */
1943 	pt->adjusted_pf.mode = old_mode;
1944 
1945 	pool->ti = ti;
1946 	pool->pf = pt->adjusted_pf;
1947 	pool->low_water_blocks = pt->low_water_blocks;
1948 
1949 	set_pool_mode(pool, new_mode);
1950 
1951 	return 0;
1952 }
1953 
1954 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1955 {
1956 	if (pool->ti == ti)
1957 		pool->ti = NULL;
1958 }
1959 
1960 /*----------------------------------------------------------------
1961  * Pool creation
1962  *--------------------------------------------------------------*/
1963 /* Initialize pool features. */
1964 static void pool_features_init(struct pool_features *pf)
1965 {
1966 	pf->mode = PM_WRITE;
1967 	pf->zero_new_blocks = true;
1968 	pf->discard_enabled = true;
1969 	pf->discard_passdown = true;
1970 	pf->error_if_no_space = false;
1971 }
1972 
1973 static void __pool_destroy(struct pool *pool)
1974 {
1975 	__pool_table_remove(pool);
1976 
1977 	if (dm_pool_metadata_close(pool->pmd) < 0)
1978 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1979 
1980 	dm_bio_prison_destroy(pool->prison);
1981 	dm_kcopyd_client_destroy(pool->copier);
1982 
1983 	if (pool->wq)
1984 		destroy_workqueue(pool->wq);
1985 
1986 	if (pool->next_mapping)
1987 		mempool_free(pool->next_mapping, pool->mapping_pool);
1988 	mempool_destroy(pool->mapping_pool);
1989 	dm_deferred_set_destroy(pool->shared_read_ds);
1990 	dm_deferred_set_destroy(pool->all_io_ds);
1991 	kfree(pool);
1992 }
1993 
1994 static struct kmem_cache *_new_mapping_cache;
1995 
1996 static struct pool *pool_create(struct mapped_device *pool_md,
1997 				struct block_device *metadata_dev,
1998 				unsigned long block_size,
1999 				int read_only, char **error)
2000 {
2001 	int r;
2002 	void *err_p;
2003 	struct pool *pool;
2004 	struct dm_pool_metadata *pmd;
2005 	bool format_device = read_only ? false : true;
2006 
2007 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2008 	if (IS_ERR(pmd)) {
2009 		*error = "Error creating metadata object";
2010 		return (struct pool *)pmd;
2011 	}
2012 
2013 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2014 	if (!pool) {
2015 		*error = "Error allocating memory for pool";
2016 		err_p = ERR_PTR(-ENOMEM);
2017 		goto bad_pool;
2018 	}
2019 
2020 	pool->pmd = pmd;
2021 	pool->sectors_per_block = block_size;
2022 	if (block_size & (block_size - 1))
2023 		pool->sectors_per_block_shift = -1;
2024 	else
2025 		pool->sectors_per_block_shift = __ffs(block_size);
2026 	pool->low_water_blocks = 0;
2027 	pool_features_init(&pool->pf);
2028 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2029 	if (!pool->prison) {
2030 		*error = "Error creating pool's bio prison";
2031 		err_p = ERR_PTR(-ENOMEM);
2032 		goto bad_prison;
2033 	}
2034 
2035 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2036 	if (IS_ERR(pool->copier)) {
2037 		r = PTR_ERR(pool->copier);
2038 		*error = "Error creating pool's kcopyd client";
2039 		err_p = ERR_PTR(r);
2040 		goto bad_kcopyd_client;
2041 	}
2042 
2043 	/*
2044 	 * Create singlethreaded workqueue that will service all devices
2045 	 * that use this metadata.
2046 	 */
2047 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2048 	if (!pool->wq) {
2049 		*error = "Error creating pool's workqueue";
2050 		err_p = ERR_PTR(-ENOMEM);
2051 		goto bad_wq;
2052 	}
2053 
2054 	INIT_WORK(&pool->worker, do_worker);
2055 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2056 	spin_lock_init(&pool->lock);
2057 	bio_list_init(&pool->deferred_flush_bios);
2058 	INIT_LIST_HEAD(&pool->prepared_mappings);
2059 	INIT_LIST_HEAD(&pool->prepared_discards);
2060 	INIT_LIST_HEAD(&pool->active_thins);
2061 	pool->low_water_triggered = false;
2062 
2063 	pool->shared_read_ds = dm_deferred_set_create();
2064 	if (!pool->shared_read_ds) {
2065 		*error = "Error creating pool's shared read deferred set";
2066 		err_p = ERR_PTR(-ENOMEM);
2067 		goto bad_shared_read_ds;
2068 	}
2069 
2070 	pool->all_io_ds = dm_deferred_set_create();
2071 	if (!pool->all_io_ds) {
2072 		*error = "Error creating pool's all io deferred set";
2073 		err_p = ERR_PTR(-ENOMEM);
2074 		goto bad_all_io_ds;
2075 	}
2076 
2077 	pool->next_mapping = NULL;
2078 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2079 						      _new_mapping_cache);
2080 	if (!pool->mapping_pool) {
2081 		*error = "Error creating pool's mapping mempool";
2082 		err_p = ERR_PTR(-ENOMEM);
2083 		goto bad_mapping_pool;
2084 	}
2085 
2086 	pool->ref_count = 1;
2087 	pool->last_commit_jiffies = jiffies;
2088 	pool->pool_md = pool_md;
2089 	pool->md_dev = metadata_dev;
2090 	__pool_table_insert(pool);
2091 
2092 	return pool;
2093 
2094 bad_mapping_pool:
2095 	dm_deferred_set_destroy(pool->all_io_ds);
2096 bad_all_io_ds:
2097 	dm_deferred_set_destroy(pool->shared_read_ds);
2098 bad_shared_read_ds:
2099 	destroy_workqueue(pool->wq);
2100 bad_wq:
2101 	dm_kcopyd_client_destroy(pool->copier);
2102 bad_kcopyd_client:
2103 	dm_bio_prison_destroy(pool->prison);
2104 bad_prison:
2105 	kfree(pool);
2106 bad_pool:
2107 	if (dm_pool_metadata_close(pmd))
2108 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2109 
2110 	return err_p;
2111 }
2112 
2113 static void __pool_inc(struct pool *pool)
2114 {
2115 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2116 	pool->ref_count++;
2117 }
2118 
2119 static void __pool_dec(struct pool *pool)
2120 {
2121 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2122 	BUG_ON(!pool->ref_count);
2123 	if (!--pool->ref_count)
2124 		__pool_destroy(pool);
2125 }
2126 
2127 static struct pool *__pool_find(struct mapped_device *pool_md,
2128 				struct block_device *metadata_dev,
2129 				unsigned long block_size, int read_only,
2130 				char **error, int *created)
2131 {
2132 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2133 
2134 	if (pool) {
2135 		if (pool->pool_md != pool_md) {
2136 			*error = "metadata device already in use by a pool";
2137 			return ERR_PTR(-EBUSY);
2138 		}
2139 		__pool_inc(pool);
2140 
2141 	} else {
2142 		pool = __pool_table_lookup(pool_md);
2143 		if (pool) {
2144 			if (pool->md_dev != metadata_dev) {
2145 				*error = "different pool cannot replace a pool";
2146 				return ERR_PTR(-EINVAL);
2147 			}
2148 			__pool_inc(pool);
2149 
2150 		} else {
2151 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2152 			*created = 1;
2153 		}
2154 	}
2155 
2156 	return pool;
2157 }
2158 
2159 /*----------------------------------------------------------------
2160  * Pool target methods
2161  *--------------------------------------------------------------*/
2162 static void pool_dtr(struct dm_target *ti)
2163 {
2164 	struct pool_c *pt = ti->private;
2165 
2166 	mutex_lock(&dm_thin_pool_table.mutex);
2167 
2168 	unbind_control_target(pt->pool, ti);
2169 	__pool_dec(pt->pool);
2170 	dm_put_device(ti, pt->metadata_dev);
2171 	dm_put_device(ti, pt->data_dev);
2172 	kfree(pt);
2173 
2174 	mutex_unlock(&dm_thin_pool_table.mutex);
2175 }
2176 
2177 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2178 			       struct dm_target *ti)
2179 {
2180 	int r;
2181 	unsigned argc;
2182 	const char *arg_name;
2183 
2184 	static struct dm_arg _args[] = {
2185 		{0, 4, "Invalid number of pool feature arguments"},
2186 	};
2187 
2188 	/*
2189 	 * No feature arguments supplied.
2190 	 */
2191 	if (!as->argc)
2192 		return 0;
2193 
2194 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2195 	if (r)
2196 		return -EINVAL;
2197 
2198 	while (argc && !r) {
2199 		arg_name = dm_shift_arg(as);
2200 		argc--;
2201 
2202 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2203 			pf->zero_new_blocks = false;
2204 
2205 		else if (!strcasecmp(arg_name, "ignore_discard"))
2206 			pf->discard_enabled = false;
2207 
2208 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2209 			pf->discard_passdown = false;
2210 
2211 		else if (!strcasecmp(arg_name, "read_only"))
2212 			pf->mode = PM_READ_ONLY;
2213 
2214 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2215 			pf->error_if_no_space = true;
2216 
2217 		else {
2218 			ti->error = "Unrecognised pool feature requested";
2219 			r = -EINVAL;
2220 			break;
2221 		}
2222 	}
2223 
2224 	return r;
2225 }
2226 
2227 static void metadata_low_callback(void *context)
2228 {
2229 	struct pool *pool = context;
2230 
2231 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2232 	       dm_device_name(pool->pool_md));
2233 
2234 	dm_table_event(pool->ti->table);
2235 }
2236 
2237 static sector_t get_dev_size(struct block_device *bdev)
2238 {
2239 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2240 }
2241 
2242 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2243 {
2244 	sector_t metadata_dev_size = get_dev_size(bdev);
2245 	char buffer[BDEVNAME_SIZE];
2246 
2247 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2248 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2249 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2250 }
2251 
2252 static sector_t get_metadata_dev_size(struct block_device *bdev)
2253 {
2254 	sector_t metadata_dev_size = get_dev_size(bdev);
2255 
2256 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2257 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2258 
2259 	return metadata_dev_size;
2260 }
2261 
2262 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2263 {
2264 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2265 
2266 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2267 
2268 	return metadata_dev_size;
2269 }
2270 
2271 /*
2272  * When a metadata threshold is crossed a dm event is triggered, and
2273  * userland should respond by growing the metadata device.  We could let
2274  * userland set the threshold, like we do with the data threshold, but I'm
2275  * not sure they know enough to do this well.
2276  */
2277 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2278 {
2279 	/*
2280 	 * 4M is ample for all ops with the possible exception of thin
2281 	 * device deletion which is harmless if it fails (just retry the
2282 	 * delete after you've grown the device).
2283 	 */
2284 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2285 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2286 }
2287 
2288 /*
2289  * thin-pool <metadata dev> <data dev>
2290  *	     <data block size (sectors)>
2291  *	     <low water mark (blocks)>
2292  *	     [<#feature args> [<arg>]*]
2293  *
2294  * Optional feature arguments are:
2295  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2296  *	     ignore_discard: disable discard
2297  *	     no_discard_passdown: don't pass discards down to the data device
2298  *	     read_only: Don't allow any changes to be made to the pool metadata.
2299  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2300  */
2301 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2302 {
2303 	int r, pool_created = 0;
2304 	struct pool_c *pt;
2305 	struct pool *pool;
2306 	struct pool_features pf;
2307 	struct dm_arg_set as;
2308 	struct dm_dev *data_dev;
2309 	unsigned long block_size;
2310 	dm_block_t low_water_blocks;
2311 	struct dm_dev *metadata_dev;
2312 	fmode_t metadata_mode;
2313 
2314 	/*
2315 	 * FIXME Remove validation from scope of lock.
2316 	 */
2317 	mutex_lock(&dm_thin_pool_table.mutex);
2318 
2319 	if (argc < 4) {
2320 		ti->error = "Invalid argument count";
2321 		r = -EINVAL;
2322 		goto out_unlock;
2323 	}
2324 
2325 	as.argc = argc;
2326 	as.argv = argv;
2327 
2328 	/*
2329 	 * Set default pool features.
2330 	 */
2331 	pool_features_init(&pf);
2332 
2333 	dm_consume_args(&as, 4);
2334 	r = parse_pool_features(&as, &pf, ti);
2335 	if (r)
2336 		goto out_unlock;
2337 
2338 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2339 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2340 	if (r) {
2341 		ti->error = "Error opening metadata block device";
2342 		goto out_unlock;
2343 	}
2344 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2345 
2346 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2347 	if (r) {
2348 		ti->error = "Error getting data device";
2349 		goto out_metadata;
2350 	}
2351 
2352 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2353 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2354 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2355 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2356 		ti->error = "Invalid block size";
2357 		r = -EINVAL;
2358 		goto out;
2359 	}
2360 
2361 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2362 		ti->error = "Invalid low water mark";
2363 		r = -EINVAL;
2364 		goto out;
2365 	}
2366 
2367 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2368 	if (!pt) {
2369 		r = -ENOMEM;
2370 		goto out;
2371 	}
2372 
2373 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2374 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2375 	if (IS_ERR(pool)) {
2376 		r = PTR_ERR(pool);
2377 		goto out_free_pt;
2378 	}
2379 
2380 	/*
2381 	 * 'pool_created' reflects whether this is the first table load.
2382 	 * Top level discard support is not allowed to be changed after
2383 	 * initial load.  This would require a pool reload to trigger thin
2384 	 * device changes.
2385 	 */
2386 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2387 		ti->error = "Discard support cannot be disabled once enabled";
2388 		r = -EINVAL;
2389 		goto out_flags_changed;
2390 	}
2391 
2392 	pt->pool = pool;
2393 	pt->ti = ti;
2394 	pt->metadata_dev = metadata_dev;
2395 	pt->data_dev = data_dev;
2396 	pt->low_water_blocks = low_water_blocks;
2397 	pt->adjusted_pf = pt->requested_pf = pf;
2398 	ti->num_flush_bios = 1;
2399 
2400 	/*
2401 	 * Only need to enable discards if the pool should pass
2402 	 * them down to the data device.  The thin device's discard
2403 	 * processing will cause mappings to be removed from the btree.
2404 	 */
2405 	ti->discard_zeroes_data_unsupported = true;
2406 	if (pf.discard_enabled && pf.discard_passdown) {
2407 		ti->num_discard_bios = 1;
2408 
2409 		/*
2410 		 * Setting 'discards_supported' circumvents the normal
2411 		 * stacking of discard limits (this keeps the pool and
2412 		 * thin devices' discard limits consistent).
2413 		 */
2414 		ti->discards_supported = true;
2415 	}
2416 	ti->private = pt;
2417 
2418 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2419 						calc_metadata_threshold(pt),
2420 						metadata_low_callback,
2421 						pool);
2422 	if (r)
2423 		goto out_free_pt;
2424 
2425 	pt->callbacks.congested_fn = pool_is_congested;
2426 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2427 
2428 	mutex_unlock(&dm_thin_pool_table.mutex);
2429 
2430 	return 0;
2431 
2432 out_flags_changed:
2433 	__pool_dec(pool);
2434 out_free_pt:
2435 	kfree(pt);
2436 out:
2437 	dm_put_device(ti, data_dev);
2438 out_metadata:
2439 	dm_put_device(ti, metadata_dev);
2440 out_unlock:
2441 	mutex_unlock(&dm_thin_pool_table.mutex);
2442 
2443 	return r;
2444 }
2445 
2446 static int pool_map(struct dm_target *ti, struct bio *bio)
2447 {
2448 	int r;
2449 	struct pool_c *pt = ti->private;
2450 	struct pool *pool = pt->pool;
2451 	unsigned long flags;
2452 
2453 	/*
2454 	 * As this is a singleton target, ti->begin is always zero.
2455 	 */
2456 	spin_lock_irqsave(&pool->lock, flags);
2457 	bio->bi_bdev = pt->data_dev->bdev;
2458 	r = DM_MAPIO_REMAPPED;
2459 	spin_unlock_irqrestore(&pool->lock, flags);
2460 
2461 	return r;
2462 }
2463 
2464 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2465 {
2466 	int r;
2467 	struct pool_c *pt = ti->private;
2468 	struct pool *pool = pt->pool;
2469 	sector_t data_size = ti->len;
2470 	dm_block_t sb_data_size;
2471 
2472 	*need_commit = false;
2473 
2474 	(void) sector_div(data_size, pool->sectors_per_block);
2475 
2476 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2477 	if (r) {
2478 		DMERR("%s: failed to retrieve data device size",
2479 		      dm_device_name(pool->pool_md));
2480 		return r;
2481 	}
2482 
2483 	if (data_size < sb_data_size) {
2484 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2485 		      dm_device_name(pool->pool_md),
2486 		      (unsigned long long)data_size, sb_data_size);
2487 		return -EINVAL;
2488 
2489 	} else if (data_size > sb_data_size) {
2490 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2491 			DMERR("%s: unable to grow the data device until repaired.",
2492 			      dm_device_name(pool->pool_md));
2493 			return 0;
2494 		}
2495 
2496 		if (sb_data_size)
2497 			DMINFO("%s: growing the data device from %llu to %llu blocks",
2498 			       dm_device_name(pool->pool_md),
2499 			       sb_data_size, (unsigned long long)data_size);
2500 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2501 		if (r) {
2502 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2503 			return r;
2504 		}
2505 
2506 		*need_commit = true;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2513 {
2514 	int r;
2515 	struct pool_c *pt = ti->private;
2516 	struct pool *pool = pt->pool;
2517 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2518 
2519 	*need_commit = false;
2520 
2521 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2522 
2523 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2524 	if (r) {
2525 		DMERR("%s: failed to retrieve metadata device size",
2526 		      dm_device_name(pool->pool_md));
2527 		return r;
2528 	}
2529 
2530 	if (metadata_dev_size < sb_metadata_dev_size) {
2531 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2532 		      dm_device_name(pool->pool_md),
2533 		      metadata_dev_size, sb_metadata_dev_size);
2534 		return -EINVAL;
2535 
2536 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2537 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2538 			DMERR("%s: unable to grow the metadata device until repaired.",
2539 			      dm_device_name(pool->pool_md));
2540 			return 0;
2541 		}
2542 
2543 		warn_if_metadata_device_too_big(pool->md_dev);
2544 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2545 		       dm_device_name(pool->pool_md),
2546 		       sb_metadata_dev_size, metadata_dev_size);
2547 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2548 		if (r) {
2549 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2550 			return r;
2551 		}
2552 
2553 		*need_commit = true;
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 /*
2560  * Retrieves the number of blocks of the data device from
2561  * the superblock and compares it to the actual device size,
2562  * thus resizing the data device in case it has grown.
2563  *
2564  * This both copes with opening preallocated data devices in the ctr
2565  * being followed by a resume
2566  * -and-
2567  * calling the resume method individually after userspace has
2568  * grown the data device in reaction to a table event.
2569  */
2570 static int pool_preresume(struct dm_target *ti)
2571 {
2572 	int r;
2573 	bool need_commit1, need_commit2;
2574 	struct pool_c *pt = ti->private;
2575 	struct pool *pool = pt->pool;
2576 
2577 	/*
2578 	 * Take control of the pool object.
2579 	 */
2580 	r = bind_control_target(pool, ti);
2581 	if (r)
2582 		return r;
2583 
2584 	r = maybe_resize_data_dev(ti, &need_commit1);
2585 	if (r)
2586 		return r;
2587 
2588 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2589 	if (r)
2590 		return r;
2591 
2592 	if (need_commit1 || need_commit2)
2593 		(void) commit(pool);
2594 
2595 	return 0;
2596 }
2597 
2598 static void pool_resume(struct dm_target *ti)
2599 {
2600 	struct pool_c *pt = ti->private;
2601 	struct pool *pool = pt->pool;
2602 	unsigned long flags;
2603 
2604 	spin_lock_irqsave(&pool->lock, flags);
2605 	pool->low_water_triggered = false;
2606 	spin_unlock_irqrestore(&pool->lock, flags);
2607 	requeue_bios(pool);
2608 
2609 	do_waker(&pool->waker.work);
2610 }
2611 
2612 static void pool_postsuspend(struct dm_target *ti)
2613 {
2614 	struct pool_c *pt = ti->private;
2615 	struct pool *pool = pt->pool;
2616 
2617 	cancel_delayed_work(&pool->waker);
2618 	flush_workqueue(pool->wq);
2619 	(void) commit(pool);
2620 }
2621 
2622 static int check_arg_count(unsigned argc, unsigned args_required)
2623 {
2624 	if (argc != args_required) {
2625 		DMWARN("Message received with %u arguments instead of %u.",
2626 		       argc, args_required);
2627 		return -EINVAL;
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2634 {
2635 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2636 	    *dev_id <= MAX_DEV_ID)
2637 		return 0;
2638 
2639 	if (warning)
2640 		DMWARN("Message received with invalid device id: %s", arg);
2641 
2642 	return -EINVAL;
2643 }
2644 
2645 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2646 {
2647 	dm_thin_id dev_id;
2648 	int r;
2649 
2650 	r = check_arg_count(argc, 2);
2651 	if (r)
2652 		return r;
2653 
2654 	r = read_dev_id(argv[1], &dev_id, 1);
2655 	if (r)
2656 		return r;
2657 
2658 	r = dm_pool_create_thin(pool->pmd, dev_id);
2659 	if (r) {
2660 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2661 		       argv[1]);
2662 		return r;
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2669 {
2670 	dm_thin_id dev_id;
2671 	dm_thin_id origin_dev_id;
2672 	int r;
2673 
2674 	r = check_arg_count(argc, 3);
2675 	if (r)
2676 		return r;
2677 
2678 	r = read_dev_id(argv[1], &dev_id, 1);
2679 	if (r)
2680 		return r;
2681 
2682 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2683 	if (r)
2684 		return r;
2685 
2686 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2687 	if (r) {
2688 		DMWARN("Creation of new snapshot %s of device %s failed.",
2689 		       argv[1], argv[2]);
2690 		return r;
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2697 {
2698 	dm_thin_id dev_id;
2699 	int r;
2700 
2701 	r = check_arg_count(argc, 2);
2702 	if (r)
2703 		return r;
2704 
2705 	r = read_dev_id(argv[1], &dev_id, 1);
2706 	if (r)
2707 		return r;
2708 
2709 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2710 	if (r)
2711 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2712 
2713 	return r;
2714 }
2715 
2716 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2717 {
2718 	dm_thin_id old_id, new_id;
2719 	int r;
2720 
2721 	r = check_arg_count(argc, 3);
2722 	if (r)
2723 		return r;
2724 
2725 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2726 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2727 		return -EINVAL;
2728 	}
2729 
2730 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2731 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2732 		return -EINVAL;
2733 	}
2734 
2735 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2736 	if (r) {
2737 		DMWARN("Failed to change transaction id from %s to %s.",
2738 		       argv[1], argv[2]);
2739 		return r;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2746 {
2747 	int r;
2748 
2749 	r = check_arg_count(argc, 1);
2750 	if (r)
2751 		return r;
2752 
2753 	(void) commit(pool);
2754 
2755 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2756 	if (r)
2757 		DMWARN("reserve_metadata_snap message failed.");
2758 
2759 	return r;
2760 }
2761 
2762 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2763 {
2764 	int r;
2765 
2766 	r = check_arg_count(argc, 1);
2767 	if (r)
2768 		return r;
2769 
2770 	r = dm_pool_release_metadata_snap(pool->pmd);
2771 	if (r)
2772 		DMWARN("release_metadata_snap message failed.");
2773 
2774 	return r;
2775 }
2776 
2777 /*
2778  * Messages supported:
2779  *   create_thin	<dev_id>
2780  *   create_snap	<dev_id> <origin_id>
2781  *   delete		<dev_id>
2782  *   trim		<dev_id> <new_size_in_sectors>
2783  *   set_transaction_id <current_trans_id> <new_trans_id>
2784  *   reserve_metadata_snap
2785  *   release_metadata_snap
2786  */
2787 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2788 {
2789 	int r = -EINVAL;
2790 	struct pool_c *pt = ti->private;
2791 	struct pool *pool = pt->pool;
2792 
2793 	if (!strcasecmp(argv[0], "create_thin"))
2794 		r = process_create_thin_mesg(argc, argv, pool);
2795 
2796 	else if (!strcasecmp(argv[0], "create_snap"))
2797 		r = process_create_snap_mesg(argc, argv, pool);
2798 
2799 	else if (!strcasecmp(argv[0], "delete"))
2800 		r = process_delete_mesg(argc, argv, pool);
2801 
2802 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2803 		r = process_set_transaction_id_mesg(argc, argv, pool);
2804 
2805 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2806 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2807 
2808 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2809 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2810 
2811 	else
2812 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2813 
2814 	if (!r)
2815 		(void) commit(pool);
2816 
2817 	return r;
2818 }
2819 
2820 static void emit_flags(struct pool_features *pf, char *result,
2821 		       unsigned sz, unsigned maxlen)
2822 {
2823 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2824 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2825 		pf->error_if_no_space;
2826 	DMEMIT("%u ", count);
2827 
2828 	if (!pf->zero_new_blocks)
2829 		DMEMIT("skip_block_zeroing ");
2830 
2831 	if (!pf->discard_enabled)
2832 		DMEMIT("ignore_discard ");
2833 
2834 	if (!pf->discard_passdown)
2835 		DMEMIT("no_discard_passdown ");
2836 
2837 	if (pf->mode == PM_READ_ONLY)
2838 		DMEMIT("read_only ");
2839 
2840 	if (pf->error_if_no_space)
2841 		DMEMIT("error_if_no_space ");
2842 }
2843 
2844 /*
2845  * Status line is:
2846  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2847  *    <used data sectors>/<total data sectors> <held metadata root>
2848  */
2849 static void pool_status(struct dm_target *ti, status_type_t type,
2850 			unsigned status_flags, char *result, unsigned maxlen)
2851 {
2852 	int r;
2853 	unsigned sz = 0;
2854 	uint64_t transaction_id;
2855 	dm_block_t nr_free_blocks_data;
2856 	dm_block_t nr_free_blocks_metadata;
2857 	dm_block_t nr_blocks_data;
2858 	dm_block_t nr_blocks_metadata;
2859 	dm_block_t held_root;
2860 	char buf[BDEVNAME_SIZE];
2861 	char buf2[BDEVNAME_SIZE];
2862 	struct pool_c *pt = ti->private;
2863 	struct pool *pool = pt->pool;
2864 
2865 	switch (type) {
2866 	case STATUSTYPE_INFO:
2867 		if (get_pool_mode(pool) == PM_FAIL) {
2868 			DMEMIT("Fail");
2869 			break;
2870 		}
2871 
2872 		/* Commit to ensure statistics aren't out-of-date */
2873 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2874 			(void) commit(pool);
2875 
2876 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2877 		if (r) {
2878 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2879 			      dm_device_name(pool->pool_md), r);
2880 			goto err;
2881 		}
2882 
2883 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2884 		if (r) {
2885 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2886 			      dm_device_name(pool->pool_md), r);
2887 			goto err;
2888 		}
2889 
2890 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2891 		if (r) {
2892 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2893 			      dm_device_name(pool->pool_md), r);
2894 			goto err;
2895 		}
2896 
2897 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2898 		if (r) {
2899 			DMERR("%s: dm_pool_get_free_block_count returned %d",
2900 			      dm_device_name(pool->pool_md), r);
2901 			goto err;
2902 		}
2903 
2904 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2905 		if (r) {
2906 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2907 			      dm_device_name(pool->pool_md), r);
2908 			goto err;
2909 		}
2910 
2911 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2912 		if (r) {
2913 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2914 			      dm_device_name(pool->pool_md), r);
2915 			goto err;
2916 		}
2917 
2918 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2919 		       (unsigned long long)transaction_id,
2920 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2921 		       (unsigned long long)nr_blocks_metadata,
2922 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2923 		       (unsigned long long)nr_blocks_data);
2924 
2925 		if (held_root)
2926 			DMEMIT("%llu ", held_root);
2927 		else
2928 			DMEMIT("- ");
2929 
2930 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2931 			DMEMIT("out_of_data_space ");
2932 		else if (pool->pf.mode == PM_READ_ONLY)
2933 			DMEMIT("ro ");
2934 		else
2935 			DMEMIT("rw ");
2936 
2937 		if (!pool->pf.discard_enabled)
2938 			DMEMIT("ignore_discard ");
2939 		else if (pool->pf.discard_passdown)
2940 			DMEMIT("discard_passdown ");
2941 		else
2942 			DMEMIT("no_discard_passdown ");
2943 
2944 		if (pool->pf.error_if_no_space)
2945 			DMEMIT("error_if_no_space ");
2946 		else
2947 			DMEMIT("queue_if_no_space ");
2948 
2949 		break;
2950 
2951 	case STATUSTYPE_TABLE:
2952 		DMEMIT("%s %s %lu %llu ",
2953 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2954 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2955 		       (unsigned long)pool->sectors_per_block,
2956 		       (unsigned long long)pt->low_water_blocks);
2957 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2958 		break;
2959 	}
2960 	return;
2961 
2962 err:
2963 	DMEMIT("Error");
2964 }
2965 
2966 static int pool_iterate_devices(struct dm_target *ti,
2967 				iterate_devices_callout_fn fn, void *data)
2968 {
2969 	struct pool_c *pt = ti->private;
2970 
2971 	return fn(ti, pt->data_dev, 0, ti->len, data);
2972 }
2973 
2974 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2975 		      struct bio_vec *biovec, int max_size)
2976 {
2977 	struct pool_c *pt = ti->private;
2978 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2979 
2980 	if (!q->merge_bvec_fn)
2981 		return max_size;
2982 
2983 	bvm->bi_bdev = pt->data_dev->bdev;
2984 
2985 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2986 }
2987 
2988 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2989 {
2990 	struct pool *pool = pt->pool;
2991 	struct queue_limits *data_limits;
2992 
2993 	limits->max_discard_sectors = pool->sectors_per_block;
2994 
2995 	/*
2996 	 * discard_granularity is just a hint, and not enforced.
2997 	 */
2998 	if (pt->adjusted_pf.discard_passdown) {
2999 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3000 		limits->discard_granularity = data_limits->discard_granularity;
3001 	} else
3002 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3003 }
3004 
3005 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3006 {
3007 	struct pool_c *pt = ti->private;
3008 	struct pool *pool = pt->pool;
3009 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3010 
3011 	/*
3012 	 * If the system-determined stacked limits are compatible with the
3013 	 * pool's blocksize (io_opt is a factor) do not override them.
3014 	 */
3015 	if (io_opt_sectors < pool->sectors_per_block ||
3016 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3017 		blk_limits_io_min(limits, 0);
3018 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3019 	}
3020 
3021 	/*
3022 	 * pt->adjusted_pf is a staging area for the actual features to use.
3023 	 * They get transferred to the live pool in bind_control_target()
3024 	 * called from pool_preresume().
3025 	 */
3026 	if (!pt->adjusted_pf.discard_enabled) {
3027 		/*
3028 		 * Must explicitly disallow stacking discard limits otherwise the
3029 		 * block layer will stack them if pool's data device has support.
3030 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3031 		 * user to see that, so make sure to set all discard limits to 0.
3032 		 */
3033 		limits->discard_granularity = 0;
3034 		return;
3035 	}
3036 
3037 	disable_passdown_if_not_supported(pt);
3038 
3039 	set_discard_limits(pt, limits);
3040 }
3041 
3042 static struct target_type pool_target = {
3043 	.name = "thin-pool",
3044 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3045 		    DM_TARGET_IMMUTABLE,
3046 	.version = {1, 12, 0},
3047 	.module = THIS_MODULE,
3048 	.ctr = pool_ctr,
3049 	.dtr = pool_dtr,
3050 	.map = pool_map,
3051 	.postsuspend = pool_postsuspend,
3052 	.preresume = pool_preresume,
3053 	.resume = pool_resume,
3054 	.message = pool_message,
3055 	.status = pool_status,
3056 	.merge = pool_merge,
3057 	.iterate_devices = pool_iterate_devices,
3058 	.io_hints = pool_io_hints,
3059 };
3060 
3061 /*----------------------------------------------------------------
3062  * Thin target methods
3063  *--------------------------------------------------------------*/
3064 static void thin_dtr(struct dm_target *ti)
3065 {
3066 	struct thin_c *tc = ti->private;
3067 	unsigned long flags;
3068 
3069 	spin_lock_irqsave(&tc->pool->lock, flags);
3070 	list_del_rcu(&tc->list);
3071 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3072 	synchronize_rcu();
3073 
3074 	mutex_lock(&dm_thin_pool_table.mutex);
3075 
3076 	__pool_dec(tc->pool);
3077 	dm_pool_close_thin_device(tc->td);
3078 	dm_put_device(ti, tc->pool_dev);
3079 	if (tc->origin_dev)
3080 		dm_put_device(ti, tc->origin_dev);
3081 	kfree(tc);
3082 
3083 	mutex_unlock(&dm_thin_pool_table.mutex);
3084 }
3085 
3086 /*
3087  * Thin target parameters:
3088  *
3089  * <pool_dev> <dev_id> [origin_dev]
3090  *
3091  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3092  * dev_id: the internal device identifier
3093  * origin_dev: a device external to the pool that should act as the origin
3094  *
3095  * If the pool device has discards disabled, they get disabled for the thin
3096  * device as well.
3097  */
3098 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3099 {
3100 	int r;
3101 	struct thin_c *tc;
3102 	struct dm_dev *pool_dev, *origin_dev;
3103 	struct mapped_device *pool_md;
3104 
3105 	mutex_lock(&dm_thin_pool_table.mutex);
3106 
3107 	if (argc != 2 && argc != 3) {
3108 		ti->error = "Invalid argument count";
3109 		r = -EINVAL;
3110 		goto out_unlock;
3111 	}
3112 
3113 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3114 	if (!tc) {
3115 		ti->error = "Out of memory";
3116 		r = -ENOMEM;
3117 		goto out_unlock;
3118 	}
3119 	spin_lock_init(&tc->lock);
3120 	bio_list_init(&tc->deferred_bio_list);
3121 	bio_list_init(&tc->retry_on_resume_list);
3122 	tc->sort_bio_list = RB_ROOT;
3123 
3124 	if (argc == 3) {
3125 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3126 		if (r) {
3127 			ti->error = "Error opening origin device";
3128 			goto bad_origin_dev;
3129 		}
3130 		tc->origin_dev = origin_dev;
3131 	}
3132 
3133 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3134 	if (r) {
3135 		ti->error = "Error opening pool device";
3136 		goto bad_pool_dev;
3137 	}
3138 	tc->pool_dev = pool_dev;
3139 
3140 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3141 		ti->error = "Invalid device id";
3142 		r = -EINVAL;
3143 		goto bad_common;
3144 	}
3145 
3146 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3147 	if (!pool_md) {
3148 		ti->error = "Couldn't get pool mapped device";
3149 		r = -EINVAL;
3150 		goto bad_common;
3151 	}
3152 
3153 	tc->pool = __pool_table_lookup(pool_md);
3154 	if (!tc->pool) {
3155 		ti->error = "Couldn't find pool object";
3156 		r = -EINVAL;
3157 		goto bad_pool_lookup;
3158 	}
3159 	__pool_inc(tc->pool);
3160 
3161 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3162 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3163 		r = -EINVAL;
3164 		goto bad_thin_open;
3165 	}
3166 
3167 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3168 	if (r) {
3169 		ti->error = "Couldn't open thin internal device";
3170 		goto bad_thin_open;
3171 	}
3172 
3173 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3174 	if (r)
3175 		goto bad_target_max_io_len;
3176 
3177 	ti->num_flush_bios = 1;
3178 	ti->flush_supported = true;
3179 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3180 
3181 	/* In case the pool supports discards, pass them on. */
3182 	ti->discard_zeroes_data_unsupported = true;
3183 	if (tc->pool->pf.discard_enabled) {
3184 		ti->discards_supported = true;
3185 		ti->num_discard_bios = 1;
3186 		/* Discard bios must be split on a block boundary */
3187 		ti->split_discard_bios = true;
3188 	}
3189 
3190 	dm_put(pool_md);
3191 
3192 	mutex_unlock(&dm_thin_pool_table.mutex);
3193 
3194 	spin_lock(&tc->pool->lock);
3195 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3196 	spin_unlock(&tc->pool->lock);
3197 	/*
3198 	 * This synchronize_rcu() call is needed here otherwise we risk a
3199 	 * wake_worker() call finding no bios to process (because the newly
3200 	 * added tc isn't yet visible).  So this reduces latency since we
3201 	 * aren't then dependent on the periodic commit to wake_worker().
3202 	 */
3203 	synchronize_rcu();
3204 
3205 	return 0;
3206 
3207 bad_target_max_io_len:
3208 	dm_pool_close_thin_device(tc->td);
3209 bad_thin_open:
3210 	__pool_dec(tc->pool);
3211 bad_pool_lookup:
3212 	dm_put(pool_md);
3213 bad_common:
3214 	dm_put_device(ti, tc->pool_dev);
3215 bad_pool_dev:
3216 	if (tc->origin_dev)
3217 		dm_put_device(ti, tc->origin_dev);
3218 bad_origin_dev:
3219 	kfree(tc);
3220 out_unlock:
3221 	mutex_unlock(&dm_thin_pool_table.mutex);
3222 
3223 	return r;
3224 }
3225 
3226 static int thin_map(struct dm_target *ti, struct bio *bio)
3227 {
3228 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3229 
3230 	return thin_bio_map(ti, bio);
3231 }
3232 
3233 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3234 {
3235 	unsigned long flags;
3236 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3237 	struct list_head work;
3238 	struct dm_thin_new_mapping *m, *tmp;
3239 	struct pool *pool = h->tc->pool;
3240 
3241 	if (h->shared_read_entry) {
3242 		INIT_LIST_HEAD(&work);
3243 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3244 
3245 		spin_lock_irqsave(&pool->lock, flags);
3246 		list_for_each_entry_safe(m, tmp, &work, list) {
3247 			list_del(&m->list);
3248 			m->quiesced = true;
3249 			__maybe_add_mapping(m);
3250 		}
3251 		spin_unlock_irqrestore(&pool->lock, flags);
3252 	}
3253 
3254 	if (h->all_io_entry) {
3255 		INIT_LIST_HEAD(&work);
3256 		dm_deferred_entry_dec(h->all_io_entry, &work);
3257 		if (!list_empty(&work)) {
3258 			spin_lock_irqsave(&pool->lock, flags);
3259 			list_for_each_entry_safe(m, tmp, &work, list)
3260 				list_add_tail(&m->list, &pool->prepared_discards);
3261 			spin_unlock_irqrestore(&pool->lock, flags);
3262 			wake_worker(pool);
3263 		}
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 static void thin_presuspend(struct dm_target *ti)
3270 {
3271 	struct thin_c *tc = ti->private;
3272 
3273 	if (dm_noflush_suspending(ti))
3274 		noflush_work(tc, do_noflush_start);
3275 }
3276 
3277 static void thin_postsuspend(struct dm_target *ti)
3278 {
3279 	struct thin_c *tc = ti->private;
3280 
3281 	/*
3282 	 * The dm_noflush_suspending flag has been cleared by now, so
3283 	 * unfortunately we must always run this.
3284 	 */
3285 	noflush_work(tc, do_noflush_stop);
3286 }
3287 
3288 /*
3289  * <nr mapped sectors> <highest mapped sector>
3290  */
3291 static void thin_status(struct dm_target *ti, status_type_t type,
3292 			unsigned status_flags, char *result, unsigned maxlen)
3293 {
3294 	int r;
3295 	ssize_t sz = 0;
3296 	dm_block_t mapped, highest;
3297 	char buf[BDEVNAME_SIZE];
3298 	struct thin_c *tc = ti->private;
3299 
3300 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3301 		DMEMIT("Fail");
3302 		return;
3303 	}
3304 
3305 	if (!tc->td)
3306 		DMEMIT("-");
3307 	else {
3308 		switch (type) {
3309 		case STATUSTYPE_INFO:
3310 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3311 			if (r) {
3312 				DMERR("dm_thin_get_mapped_count returned %d", r);
3313 				goto err;
3314 			}
3315 
3316 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3317 			if (r < 0) {
3318 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3319 				goto err;
3320 			}
3321 
3322 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3323 			if (r)
3324 				DMEMIT("%llu", ((highest + 1) *
3325 						tc->pool->sectors_per_block) - 1);
3326 			else
3327 				DMEMIT("-");
3328 			break;
3329 
3330 		case STATUSTYPE_TABLE:
3331 			DMEMIT("%s %lu",
3332 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3333 			       (unsigned long) tc->dev_id);
3334 			if (tc->origin_dev)
3335 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3336 			break;
3337 		}
3338 	}
3339 
3340 	return;
3341 
3342 err:
3343 	DMEMIT("Error");
3344 }
3345 
3346 static int thin_iterate_devices(struct dm_target *ti,
3347 				iterate_devices_callout_fn fn, void *data)
3348 {
3349 	sector_t blocks;
3350 	struct thin_c *tc = ti->private;
3351 	struct pool *pool = tc->pool;
3352 
3353 	/*
3354 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3355 	 * we follow a more convoluted path through to the pool's target.
3356 	 */
3357 	if (!pool->ti)
3358 		return 0;	/* nothing is bound */
3359 
3360 	blocks = pool->ti->len;
3361 	(void) sector_div(blocks, pool->sectors_per_block);
3362 	if (blocks)
3363 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3364 
3365 	return 0;
3366 }
3367 
3368 static struct target_type thin_target = {
3369 	.name = "thin",
3370 	.version = {1, 12, 0},
3371 	.module	= THIS_MODULE,
3372 	.ctr = thin_ctr,
3373 	.dtr = thin_dtr,
3374 	.map = thin_map,
3375 	.end_io = thin_endio,
3376 	.presuspend = thin_presuspend,
3377 	.postsuspend = thin_postsuspend,
3378 	.status = thin_status,
3379 	.iterate_devices = thin_iterate_devices,
3380 };
3381 
3382 /*----------------------------------------------------------------*/
3383 
3384 static int __init dm_thin_init(void)
3385 {
3386 	int r;
3387 
3388 	pool_table_init();
3389 
3390 	r = dm_register_target(&thin_target);
3391 	if (r)
3392 		return r;
3393 
3394 	r = dm_register_target(&pool_target);
3395 	if (r)
3396 		goto bad_pool_target;
3397 
3398 	r = -ENOMEM;
3399 
3400 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3401 	if (!_new_mapping_cache)
3402 		goto bad_new_mapping_cache;
3403 
3404 	return 0;
3405 
3406 bad_new_mapping_cache:
3407 	dm_unregister_target(&pool_target);
3408 bad_pool_target:
3409 	dm_unregister_target(&thin_target);
3410 
3411 	return r;
3412 }
3413 
3414 static void dm_thin_exit(void)
3415 {
3416 	dm_unregister_target(&thin_target);
3417 	dm_unregister_target(&pool_target);
3418 
3419 	kmem_cache_destroy(_new_mapping_cache);
3420 }
3421 
3422 module_init(dm_thin_init);
3423 module_exit(dm_thin_exit);
3424 
3425 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3426 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3427 MODULE_LICENSE("GPL");
3428