xref: /openbmc/linux/drivers/md/dm-thin.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 
239 	struct dm_bio_prison *prison;
240 	struct dm_kcopyd_client *copier;
241 
242 	struct workqueue_struct *wq;
243 	struct throttle throttle;
244 	struct work_struct worker;
245 	struct delayed_work waker;
246 	struct delayed_work no_space_timeout;
247 
248 	unsigned long last_commit_jiffies;
249 	unsigned ref_count;
250 
251 	spinlock_t lock;
252 	struct bio_list deferred_flush_bios;
253 	struct list_head prepared_mappings;
254 	struct list_head prepared_discards;
255 	struct list_head active_thins;
256 
257 	struct dm_deferred_set *shared_read_ds;
258 	struct dm_deferred_set *all_io_ds;
259 
260 	struct dm_thin_new_mapping *next_mapping;
261 	mempool_t *mapping_pool;
262 
263 	process_bio_fn process_bio;
264 	process_bio_fn process_discard;
265 
266 	process_cell_fn process_cell;
267 	process_cell_fn process_discard_cell;
268 
269 	process_mapping_fn process_prepared_mapping;
270 	process_mapping_fn process_prepared_discard;
271 
272 	struct dm_bio_prison_cell **cell_sort_array;
273 };
274 
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277 
278 /*
279  * Target context for a pool.
280  */
281 struct pool_c {
282 	struct dm_target *ti;
283 	struct pool *pool;
284 	struct dm_dev *data_dev;
285 	struct dm_dev *metadata_dev;
286 	struct dm_target_callbacks callbacks;
287 
288 	dm_block_t low_water_blocks;
289 	struct pool_features requested_pf; /* Features requested during table load */
290 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291 };
292 
293 /*
294  * Target context for a thin.
295  */
296 struct thin_c {
297 	struct list_head list;
298 	struct dm_dev *pool_dev;
299 	struct dm_dev *origin_dev;
300 	sector_t origin_size;
301 	dm_thin_id dev_id;
302 
303 	struct pool *pool;
304 	struct dm_thin_device *td;
305 	struct mapped_device *thin_md;
306 
307 	bool requeue_mode:1;
308 	spinlock_t lock;
309 	struct list_head deferred_cells;
310 	struct bio_list deferred_bio_list;
311 	struct bio_list retry_on_resume_list;
312 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
313 
314 	/*
315 	 * Ensures the thin is not destroyed until the worker has finished
316 	 * iterating the active_thins list.
317 	 */
318 	atomic_t refcount;
319 	struct completion can_destroy;
320 };
321 
322 /*----------------------------------------------------------------*/
323 
324 /**
325  * __blkdev_issue_discard_async - queue a discard with async completion
326  * @bdev:	blockdev to issue discard for
327  * @sector:	start sector
328  * @nr_sects:	number of sectors to discard
329  * @gfp_mask:	memory allocation flags (for bio_alloc)
330  * @flags:	BLKDEV_IFL_* flags to control behaviour
331  * @parent_bio: parent discard bio that all sub discards get chained to
332  *
333  * Description:
334  *    Asynchronously issue a discard request for the sectors in question.
335  */
336 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
337 					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
338 					struct bio *parent_bio)
339 {
340 	struct request_queue *q = bdev_get_queue(bdev);
341 	int type = REQ_WRITE | REQ_DISCARD;
342 	struct bio *bio;
343 
344 	if (!q || !nr_sects)
345 		return -ENXIO;
346 
347 	if (!blk_queue_discard(q))
348 		return -EOPNOTSUPP;
349 
350 	if (flags & BLKDEV_DISCARD_SECURE) {
351 		if (!blk_queue_secdiscard(q))
352 			return -EOPNOTSUPP;
353 		type |= REQ_SECURE;
354 	}
355 
356 	/*
357 	 * Required bio_put occurs in bio_endio thanks to bio_chain below
358 	 */
359 	bio = bio_alloc(gfp_mask, 1);
360 	if (!bio)
361 		return -ENOMEM;
362 
363 	bio_chain(bio, parent_bio);
364 
365 	bio->bi_iter.bi_sector = sector;
366 	bio->bi_bdev = bdev;
367 	bio->bi_iter.bi_size = nr_sects << 9;
368 
369 	submit_bio(type, bio);
370 
371 	return 0;
372 }
373 
374 static bool block_size_is_power_of_two(struct pool *pool)
375 {
376 	return pool->sectors_per_block_shift >= 0;
377 }
378 
379 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
380 {
381 	return block_size_is_power_of_two(pool) ?
382 		(b << pool->sectors_per_block_shift) :
383 		(b * pool->sectors_per_block);
384 }
385 
386 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
387 			 struct bio *parent_bio)
388 {
389 	sector_t s = block_to_sectors(tc->pool, data_b);
390 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
391 
392 	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
393 					    GFP_NOWAIT, 0, parent_bio);
394 }
395 
396 /*----------------------------------------------------------------*/
397 
398 /*
399  * wake_worker() is used when new work is queued and when pool_resume is
400  * ready to continue deferred IO processing.
401  */
402 static void wake_worker(struct pool *pool)
403 {
404 	queue_work(pool->wq, &pool->worker);
405 }
406 
407 /*----------------------------------------------------------------*/
408 
409 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
410 		      struct dm_bio_prison_cell **cell_result)
411 {
412 	int r;
413 	struct dm_bio_prison_cell *cell_prealloc;
414 
415 	/*
416 	 * Allocate a cell from the prison's mempool.
417 	 * This might block but it can't fail.
418 	 */
419 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
420 
421 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
422 	if (r)
423 		/*
424 		 * We reused an old cell; we can get rid of
425 		 * the new one.
426 		 */
427 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
428 
429 	return r;
430 }
431 
432 static void cell_release(struct pool *pool,
433 			 struct dm_bio_prison_cell *cell,
434 			 struct bio_list *bios)
435 {
436 	dm_cell_release(pool->prison, cell, bios);
437 	dm_bio_prison_free_cell(pool->prison, cell);
438 }
439 
440 static void cell_visit_release(struct pool *pool,
441 			       void (*fn)(void *, struct dm_bio_prison_cell *),
442 			       void *context,
443 			       struct dm_bio_prison_cell *cell)
444 {
445 	dm_cell_visit_release(pool->prison, fn, context, cell);
446 	dm_bio_prison_free_cell(pool->prison, cell);
447 }
448 
449 static void cell_release_no_holder(struct pool *pool,
450 				   struct dm_bio_prison_cell *cell,
451 				   struct bio_list *bios)
452 {
453 	dm_cell_release_no_holder(pool->prison, cell, bios);
454 	dm_bio_prison_free_cell(pool->prison, cell);
455 }
456 
457 static void cell_error_with_code(struct pool *pool,
458 				 struct dm_bio_prison_cell *cell, int error_code)
459 {
460 	dm_cell_error(pool->prison, cell, error_code);
461 	dm_bio_prison_free_cell(pool->prison, cell);
462 }
463 
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 	cell_error_with_code(pool, cell, -EIO);
467 }
468 
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471 	cell_error_with_code(pool, cell, 0);
472 }
473 
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
477 }
478 
479 /*----------------------------------------------------------------*/
480 
481 /*
482  * A global list of pools that uses a struct mapped_device as a key.
483  */
484 static struct dm_thin_pool_table {
485 	struct mutex mutex;
486 	struct list_head pools;
487 } dm_thin_pool_table;
488 
489 static void pool_table_init(void)
490 {
491 	mutex_init(&dm_thin_pool_table.mutex);
492 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494 
495 static void __pool_table_insert(struct pool *pool)
496 {
497 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498 	list_add(&pool->list, &dm_thin_pool_table.pools);
499 }
500 
501 static void __pool_table_remove(struct pool *pool)
502 {
503 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 	list_del(&pool->list);
505 }
506 
507 static struct pool *__pool_table_lookup(struct mapped_device *md)
508 {
509 	struct pool *pool = NULL, *tmp;
510 
511 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512 
513 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514 		if (tmp->pool_md == md) {
515 			pool = tmp;
516 			break;
517 		}
518 	}
519 
520 	return pool;
521 }
522 
523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524 {
525 	struct pool *pool = NULL, *tmp;
526 
527 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528 
529 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530 		if (tmp->md_dev == md_dev) {
531 			pool = tmp;
532 			break;
533 		}
534 	}
535 
536 	return pool;
537 }
538 
539 /*----------------------------------------------------------------*/
540 
541 struct dm_thin_endio_hook {
542 	struct thin_c *tc;
543 	struct dm_deferred_entry *shared_read_entry;
544 	struct dm_deferred_entry *all_io_entry;
545 	struct dm_thin_new_mapping *overwrite_mapping;
546 	struct rb_node rb_node;
547 	struct dm_bio_prison_cell *cell;
548 };
549 
550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551 {
552 	bio_list_merge(bios, master);
553 	bio_list_init(master);
554 }
555 
556 static void error_bio_list(struct bio_list *bios, int error)
557 {
558 	struct bio *bio;
559 
560 	while ((bio = bio_list_pop(bios))) {
561 		bio->bi_error = error;
562 		bio_endio(bio);
563 	}
564 }
565 
566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
567 {
568 	struct bio_list bios;
569 	unsigned long flags;
570 
571 	bio_list_init(&bios);
572 
573 	spin_lock_irqsave(&tc->lock, flags);
574 	__merge_bio_list(&bios, master);
575 	spin_unlock_irqrestore(&tc->lock, flags);
576 
577 	error_bio_list(&bios, error);
578 }
579 
580 static void requeue_deferred_cells(struct thin_c *tc)
581 {
582 	struct pool *pool = tc->pool;
583 	unsigned long flags;
584 	struct list_head cells;
585 	struct dm_bio_prison_cell *cell, *tmp;
586 
587 	INIT_LIST_HEAD(&cells);
588 
589 	spin_lock_irqsave(&tc->lock, flags);
590 	list_splice_init(&tc->deferred_cells, &cells);
591 	spin_unlock_irqrestore(&tc->lock, flags);
592 
593 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
594 		cell_requeue(pool, cell);
595 }
596 
597 static void requeue_io(struct thin_c *tc)
598 {
599 	struct bio_list bios;
600 	unsigned long flags;
601 
602 	bio_list_init(&bios);
603 
604 	spin_lock_irqsave(&tc->lock, flags);
605 	__merge_bio_list(&bios, &tc->deferred_bio_list);
606 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
607 	spin_unlock_irqrestore(&tc->lock, flags);
608 
609 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
610 	requeue_deferred_cells(tc);
611 }
612 
613 static void error_retry_list_with_code(struct pool *pool, int error)
614 {
615 	struct thin_c *tc;
616 
617 	rcu_read_lock();
618 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
619 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
620 	rcu_read_unlock();
621 }
622 
623 static void error_retry_list(struct pool *pool)
624 {
625 	return error_retry_list_with_code(pool, -EIO);
626 }
627 
628 /*
629  * This section of code contains the logic for processing a thin device's IO.
630  * Much of the code depends on pool object resources (lists, workqueues, etc)
631  * but most is exclusively called from the thin target rather than the thin-pool
632  * target.
633  */
634 
635 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
636 {
637 	struct pool *pool = tc->pool;
638 	sector_t block_nr = bio->bi_iter.bi_sector;
639 
640 	if (block_size_is_power_of_two(pool))
641 		block_nr >>= pool->sectors_per_block_shift;
642 	else
643 		(void) sector_div(block_nr, pool->sectors_per_block);
644 
645 	return block_nr;
646 }
647 
648 /*
649  * Returns the _complete_ blocks that this bio covers.
650  */
651 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
652 				dm_block_t *begin, dm_block_t *end)
653 {
654 	struct pool *pool = tc->pool;
655 	sector_t b = bio->bi_iter.bi_sector;
656 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
657 
658 	b += pool->sectors_per_block - 1ull; /* so we round up */
659 
660 	if (block_size_is_power_of_two(pool)) {
661 		b >>= pool->sectors_per_block_shift;
662 		e >>= pool->sectors_per_block_shift;
663 	} else {
664 		(void) sector_div(b, pool->sectors_per_block);
665 		(void) sector_div(e, pool->sectors_per_block);
666 	}
667 
668 	if (e < b)
669 		/* Can happen if the bio is within a single block. */
670 		e = b;
671 
672 	*begin = b;
673 	*end = e;
674 }
675 
676 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
677 {
678 	struct pool *pool = tc->pool;
679 	sector_t bi_sector = bio->bi_iter.bi_sector;
680 
681 	bio->bi_bdev = tc->pool_dev->bdev;
682 	if (block_size_is_power_of_two(pool))
683 		bio->bi_iter.bi_sector =
684 			(block << pool->sectors_per_block_shift) |
685 			(bi_sector & (pool->sectors_per_block - 1));
686 	else
687 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
688 				 sector_div(bi_sector, pool->sectors_per_block);
689 }
690 
691 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
692 {
693 	bio->bi_bdev = tc->origin_dev->bdev;
694 }
695 
696 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
697 {
698 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
699 		dm_thin_changed_this_transaction(tc->td);
700 }
701 
702 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
703 {
704 	struct dm_thin_endio_hook *h;
705 
706 	if (bio->bi_rw & REQ_DISCARD)
707 		return;
708 
709 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
710 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
711 }
712 
713 static void issue(struct thin_c *tc, struct bio *bio)
714 {
715 	struct pool *pool = tc->pool;
716 	unsigned long flags;
717 
718 	if (!bio_triggers_commit(tc, bio)) {
719 		generic_make_request(bio);
720 		return;
721 	}
722 
723 	/*
724 	 * Complete bio with an error if earlier I/O caused changes to
725 	 * the metadata that can't be committed e.g, due to I/O errors
726 	 * on the metadata device.
727 	 */
728 	if (dm_thin_aborted_changes(tc->td)) {
729 		bio_io_error(bio);
730 		return;
731 	}
732 
733 	/*
734 	 * Batch together any bios that trigger commits and then issue a
735 	 * single commit for them in process_deferred_bios().
736 	 */
737 	spin_lock_irqsave(&pool->lock, flags);
738 	bio_list_add(&pool->deferred_flush_bios, bio);
739 	spin_unlock_irqrestore(&pool->lock, flags);
740 }
741 
742 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
743 {
744 	remap_to_origin(tc, bio);
745 	issue(tc, bio);
746 }
747 
748 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
749 			    dm_block_t block)
750 {
751 	remap(tc, bio, block);
752 	issue(tc, bio);
753 }
754 
755 /*----------------------------------------------------------------*/
756 
757 /*
758  * Bio endio functions.
759  */
760 struct dm_thin_new_mapping {
761 	struct list_head list;
762 
763 	bool pass_discard:1;
764 	bool maybe_shared:1;
765 
766 	/*
767 	 * Track quiescing, copying and zeroing preparation actions.  When this
768 	 * counter hits zero the block is prepared and can be inserted into the
769 	 * btree.
770 	 */
771 	atomic_t prepare_actions;
772 
773 	int err;
774 	struct thin_c *tc;
775 	dm_block_t virt_begin, virt_end;
776 	dm_block_t data_block;
777 	struct dm_bio_prison_cell *cell;
778 
779 	/*
780 	 * If the bio covers the whole area of a block then we can avoid
781 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
782 	 * still be in the cell, so care has to be taken to avoid issuing
783 	 * the bio twice.
784 	 */
785 	struct bio *bio;
786 	bio_end_io_t *saved_bi_end_io;
787 };
788 
789 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
790 {
791 	struct pool *pool = m->tc->pool;
792 
793 	if (atomic_dec_and_test(&m->prepare_actions)) {
794 		list_add_tail(&m->list, &pool->prepared_mappings);
795 		wake_worker(pool);
796 	}
797 }
798 
799 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
800 {
801 	unsigned long flags;
802 	struct pool *pool = m->tc->pool;
803 
804 	spin_lock_irqsave(&pool->lock, flags);
805 	__complete_mapping_preparation(m);
806 	spin_unlock_irqrestore(&pool->lock, flags);
807 }
808 
809 static void copy_complete(int read_err, unsigned long write_err, void *context)
810 {
811 	struct dm_thin_new_mapping *m = context;
812 
813 	m->err = read_err || write_err ? -EIO : 0;
814 	complete_mapping_preparation(m);
815 }
816 
817 static void overwrite_endio(struct bio *bio)
818 {
819 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
820 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
821 
822 	bio->bi_end_io = m->saved_bi_end_io;
823 
824 	m->err = bio->bi_error;
825 	complete_mapping_preparation(m);
826 }
827 
828 /*----------------------------------------------------------------*/
829 
830 /*
831  * Workqueue.
832  */
833 
834 /*
835  * Prepared mapping jobs.
836  */
837 
838 /*
839  * This sends the bios in the cell, except the original holder, back
840  * to the deferred_bios list.
841  */
842 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
843 {
844 	struct pool *pool = tc->pool;
845 	unsigned long flags;
846 
847 	spin_lock_irqsave(&tc->lock, flags);
848 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
849 	spin_unlock_irqrestore(&tc->lock, flags);
850 
851 	wake_worker(pool);
852 }
853 
854 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
855 
856 struct remap_info {
857 	struct thin_c *tc;
858 	struct bio_list defer_bios;
859 	struct bio_list issue_bios;
860 };
861 
862 static void __inc_remap_and_issue_cell(void *context,
863 				       struct dm_bio_prison_cell *cell)
864 {
865 	struct remap_info *info = context;
866 	struct bio *bio;
867 
868 	while ((bio = bio_list_pop(&cell->bios))) {
869 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
870 			bio_list_add(&info->defer_bios, bio);
871 		else {
872 			inc_all_io_entry(info->tc->pool, bio);
873 
874 			/*
875 			 * We can't issue the bios with the bio prison lock
876 			 * held, so we add them to a list to issue on
877 			 * return from this function.
878 			 */
879 			bio_list_add(&info->issue_bios, bio);
880 		}
881 	}
882 }
883 
884 static void inc_remap_and_issue_cell(struct thin_c *tc,
885 				     struct dm_bio_prison_cell *cell,
886 				     dm_block_t block)
887 {
888 	struct bio *bio;
889 	struct remap_info info;
890 
891 	info.tc = tc;
892 	bio_list_init(&info.defer_bios);
893 	bio_list_init(&info.issue_bios);
894 
895 	/*
896 	 * We have to be careful to inc any bios we're about to issue
897 	 * before the cell is released, and avoid a race with new bios
898 	 * being added to the cell.
899 	 */
900 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
901 			   &info, cell);
902 
903 	while ((bio = bio_list_pop(&info.defer_bios)))
904 		thin_defer_bio(tc, bio);
905 
906 	while ((bio = bio_list_pop(&info.issue_bios)))
907 		remap_and_issue(info.tc, bio, block);
908 }
909 
910 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
911 {
912 	cell_error(m->tc->pool, m->cell);
913 	list_del(&m->list);
914 	mempool_free(m, m->tc->pool->mapping_pool);
915 }
916 
917 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
918 {
919 	struct thin_c *tc = m->tc;
920 	struct pool *pool = tc->pool;
921 	struct bio *bio = m->bio;
922 	int r;
923 
924 	if (m->err) {
925 		cell_error(pool, m->cell);
926 		goto out;
927 	}
928 
929 	/*
930 	 * Commit the prepared block into the mapping btree.
931 	 * Any I/O for this block arriving after this point will get
932 	 * remapped to it directly.
933 	 */
934 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
935 	if (r) {
936 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
937 		cell_error(pool, m->cell);
938 		goto out;
939 	}
940 
941 	/*
942 	 * Release any bios held while the block was being provisioned.
943 	 * If we are processing a write bio that completely covers the block,
944 	 * we already processed it so can ignore it now when processing
945 	 * the bios in the cell.
946 	 */
947 	if (bio) {
948 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
949 		bio_endio(bio);
950 	} else {
951 		inc_all_io_entry(tc->pool, m->cell->holder);
952 		remap_and_issue(tc, m->cell->holder, m->data_block);
953 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
954 	}
955 
956 out:
957 	list_del(&m->list);
958 	mempool_free(m, pool->mapping_pool);
959 }
960 
961 /*----------------------------------------------------------------*/
962 
963 static void free_discard_mapping(struct dm_thin_new_mapping *m)
964 {
965 	struct thin_c *tc = m->tc;
966 	if (m->cell)
967 		cell_defer_no_holder(tc, m->cell);
968 	mempool_free(m, tc->pool->mapping_pool);
969 }
970 
971 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
972 {
973 	bio_io_error(m->bio);
974 	free_discard_mapping(m);
975 }
976 
977 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
978 {
979 	bio_endio(m->bio);
980 	free_discard_mapping(m);
981 }
982 
983 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
984 {
985 	int r;
986 	struct thin_c *tc = m->tc;
987 
988 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
989 	if (r) {
990 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
991 		bio_io_error(m->bio);
992 	} else
993 		bio_endio(m->bio);
994 
995 	cell_defer_no_holder(tc, m->cell);
996 	mempool_free(m, tc->pool->mapping_pool);
997 }
998 
999 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1000 {
1001 	/*
1002 	 * We've already unmapped this range of blocks, but before we
1003 	 * passdown we have to check that these blocks are now unused.
1004 	 */
1005 	int r;
1006 	bool used = true;
1007 	struct thin_c *tc = m->tc;
1008 	struct pool *pool = tc->pool;
1009 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1010 
1011 	while (b != end) {
1012 		/* find start of unmapped run */
1013 		for (; b < end; b++) {
1014 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1015 			if (r)
1016 				return r;
1017 
1018 			if (!used)
1019 				break;
1020 		}
1021 
1022 		if (b == end)
1023 			break;
1024 
1025 		/* find end of run */
1026 		for (e = b + 1; e != end; e++) {
1027 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1028 			if (r)
1029 				return r;
1030 
1031 			if (used)
1032 				break;
1033 		}
1034 
1035 		r = issue_discard(tc, b, e, m->bio);
1036 		if (r)
1037 			return r;
1038 
1039 		b = e;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1046 {
1047 	int r;
1048 	struct thin_c *tc = m->tc;
1049 	struct pool *pool = tc->pool;
1050 
1051 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1052 	if (r)
1053 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1054 
1055 	else if (m->maybe_shared)
1056 		r = passdown_double_checking_shared_status(m);
1057 	else
1058 		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1059 
1060 	/*
1061 	 * Even if r is set, there could be sub discards in flight that we
1062 	 * need to wait for.
1063 	 */
1064 	m->bio->bi_error = r;
1065 	bio_endio(m->bio);
1066 	cell_defer_no_holder(tc, m->cell);
1067 	mempool_free(m, pool->mapping_pool);
1068 }
1069 
1070 static void process_prepared(struct pool *pool, struct list_head *head,
1071 			     process_mapping_fn *fn)
1072 {
1073 	unsigned long flags;
1074 	struct list_head maps;
1075 	struct dm_thin_new_mapping *m, *tmp;
1076 
1077 	INIT_LIST_HEAD(&maps);
1078 	spin_lock_irqsave(&pool->lock, flags);
1079 	list_splice_init(head, &maps);
1080 	spin_unlock_irqrestore(&pool->lock, flags);
1081 
1082 	list_for_each_entry_safe(m, tmp, &maps, list)
1083 		(*fn)(m);
1084 }
1085 
1086 /*
1087  * Deferred bio jobs.
1088  */
1089 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1090 {
1091 	return bio->bi_iter.bi_size ==
1092 		(pool->sectors_per_block << SECTOR_SHIFT);
1093 }
1094 
1095 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1096 {
1097 	return (bio_data_dir(bio) == WRITE) &&
1098 		io_overlaps_block(pool, bio);
1099 }
1100 
1101 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1102 			       bio_end_io_t *fn)
1103 {
1104 	*save = bio->bi_end_io;
1105 	bio->bi_end_io = fn;
1106 }
1107 
1108 static int ensure_next_mapping(struct pool *pool)
1109 {
1110 	if (pool->next_mapping)
1111 		return 0;
1112 
1113 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1114 
1115 	return pool->next_mapping ? 0 : -ENOMEM;
1116 }
1117 
1118 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1119 {
1120 	struct dm_thin_new_mapping *m = pool->next_mapping;
1121 
1122 	BUG_ON(!pool->next_mapping);
1123 
1124 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1125 	INIT_LIST_HEAD(&m->list);
1126 	m->bio = NULL;
1127 
1128 	pool->next_mapping = NULL;
1129 
1130 	return m;
1131 }
1132 
1133 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1134 		    sector_t begin, sector_t end)
1135 {
1136 	int r;
1137 	struct dm_io_region to;
1138 
1139 	to.bdev = tc->pool_dev->bdev;
1140 	to.sector = begin;
1141 	to.count = end - begin;
1142 
1143 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1144 	if (r < 0) {
1145 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1146 		copy_complete(1, 1, m);
1147 	}
1148 }
1149 
1150 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1151 				      dm_block_t data_begin,
1152 				      struct dm_thin_new_mapping *m)
1153 {
1154 	struct pool *pool = tc->pool;
1155 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1156 
1157 	h->overwrite_mapping = m;
1158 	m->bio = bio;
1159 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1160 	inc_all_io_entry(pool, bio);
1161 	remap_and_issue(tc, bio, data_begin);
1162 }
1163 
1164 /*
1165  * A partial copy also needs to zero the uncopied region.
1166  */
1167 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1168 			  struct dm_dev *origin, dm_block_t data_origin,
1169 			  dm_block_t data_dest,
1170 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1171 			  sector_t len)
1172 {
1173 	int r;
1174 	struct pool *pool = tc->pool;
1175 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1176 
1177 	m->tc = tc;
1178 	m->virt_begin = virt_block;
1179 	m->virt_end = virt_block + 1u;
1180 	m->data_block = data_dest;
1181 	m->cell = cell;
1182 
1183 	/*
1184 	 * quiesce action + copy action + an extra reference held for the
1185 	 * duration of this function (we may need to inc later for a
1186 	 * partial zero).
1187 	 */
1188 	atomic_set(&m->prepare_actions, 3);
1189 
1190 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1191 		complete_mapping_preparation(m); /* already quiesced */
1192 
1193 	/*
1194 	 * IO to pool_dev remaps to the pool target's data_dev.
1195 	 *
1196 	 * If the whole block of data is being overwritten, we can issue the
1197 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1198 	 */
1199 	if (io_overwrites_block(pool, bio))
1200 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1201 	else {
1202 		struct dm_io_region from, to;
1203 
1204 		from.bdev = origin->bdev;
1205 		from.sector = data_origin * pool->sectors_per_block;
1206 		from.count = len;
1207 
1208 		to.bdev = tc->pool_dev->bdev;
1209 		to.sector = data_dest * pool->sectors_per_block;
1210 		to.count = len;
1211 
1212 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1213 				   0, copy_complete, m);
1214 		if (r < 0) {
1215 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1216 			copy_complete(1, 1, m);
1217 
1218 			/*
1219 			 * We allow the zero to be issued, to simplify the
1220 			 * error path.  Otherwise we'd need to start
1221 			 * worrying about decrementing the prepare_actions
1222 			 * counter.
1223 			 */
1224 		}
1225 
1226 		/*
1227 		 * Do we need to zero a tail region?
1228 		 */
1229 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1230 			atomic_inc(&m->prepare_actions);
1231 			ll_zero(tc, m,
1232 				data_dest * pool->sectors_per_block + len,
1233 				(data_dest + 1) * pool->sectors_per_block);
1234 		}
1235 	}
1236 
1237 	complete_mapping_preparation(m); /* drop our ref */
1238 }
1239 
1240 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1241 				   dm_block_t data_origin, dm_block_t data_dest,
1242 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1243 {
1244 	schedule_copy(tc, virt_block, tc->pool_dev,
1245 		      data_origin, data_dest, cell, bio,
1246 		      tc->pool->sectors_per_block);
1247 }
1248 
1249 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1250 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1251 			  struct bio *bio)
1252 {
1253 	struct pool *pool = tc->pool;
1254 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1255 
1256 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1257 	m->tc = tc;
1258 	m->virt_begin = virt_block;
1259 	m->virt_end = virt_block + 1u;
1260 	m->data_block = data_block;
1261 	m->cell = cell;
1262 
1263 	/*
1264 	 * If the whole block of data is being overwritten or we are not
1265 	 * zeroing pre-existing data, we can issue the bio immediately.
1266 	 * Otherwise we use kcopyd to zero the data first.
1267 	 */
1268 	if (pool->pf.zero_new_blocks) {
1269 		if (io_overwrites_block(pool, bio))
1270 			remap_and_issue_overwrite(tc, bio, data_block, m);
1271 		else
1272 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1273 				(data_block + 1) * pool->sectors_per_block);
1274 	} else
1275 		process_prepared_mapping(m);
1276 }
1277 
1278 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1279 				   dm_block_t data_dest,
1280 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1281 {
1282 	struct pool *pool = tc->pool;
1283 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1284 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1285 
1286 	if (virt_block_end <= tc->origin_size)
1287 		schedule_copy(tc, virt_block, tc->origin_dev,
1288 			      virt_block, data_dest, cell, bio,
1289 			      pool->sectors_per_block);
1290 
1291 	else if (virt_block_begin < tc->origin_size)
1292 		schedule_copy(tc, virt_block, tc->origin_dev,
1293 			      virt_block, data_dest, cell, bio,
1294 			      tc->origin_size - virt_block_begin);
1295 
1296 	else
1297 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1298 }
1299 
1300 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1301 
1302 static void check_for_space(struct pool *pool)
1303 {
1304 	int r;
1305 	dm_block_t nr_free;
1306 
1307 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1308 		return;
1309 
1310 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1311 	if (r)
1312 		return;
1313 
1314 	if (nr_free)
1315 		set_pool_mode(pool, PM_WRITE);
1316 }
1317 
1318 /*
1319  * A non-zero return indicates read_only or fail_io mode.
1320  * Many callers don't care about the return value.
1321  */
1322 static int commit(struct pool *pool)
1323 {
1324 	int r;
1325 
1326 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1327 		return -EINVAL;
1328 
1329 	r = dm_pool_commit_metadata(pool->pmd);
1330 	if (r)
1331 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1332 	else
1333 		check_for_space(pool);
1334 
1335 	return r;
1336 }
1337 
1338 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1339 {
1340 	unsigned long flags;
1341 
1342 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1343 		DMWARN("%s: reached low water mark for data device: sending event.",
1344 		       dm_device_name(pool->pool_md));
1345 		spin_lock_irqsave(&pool->lock, flags);
1346 		pool->low_water_triggered = true;
1347 		spin_unlock_irqrestore(&pool->lock, flags);
1348 		dm_table_event(pool->ti->table);
1349 	}
1350 }
1351 
1352 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1353 {
1354 	int r;
1355 	dm_block_t free_blocks;
1356 	struct pool *pool = tc->pool;
1357 
1358 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1359 		return -EINVAL;
1360 
1361 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1362 	if (r) {
1363 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1364 		return r;
1365 	}
1366 
1367 	check_low_water_mark(pool, free_blocks);
1368 
1369 	if (!free_blocks) {
1370 		/*
1371 		 * Try to commit to see if that will free up some
1372 		 * more space.
1373 		 */
1374 		r = commit(pool);
1375 		if (r)
1376 			return r;
1377 
1378 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1379 		if (r) {
1380 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1381 			return r;
1382 		}
1383 
1384 		if (!free_blocks) {
1385 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1386 			return -ENOSPC;
1387 		}
1388 	}
1389 
1390 	r = dm_pool_alloc_data_block(pool->pmd, result);
1391 	if (r) {
1392 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1393 		return r;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /*
1400  * If we have run out of space, queue bios until the device is
1401  * resumed, presumably after having been reloaded with more space.
1402  */
1403 static void retry_on_resume(struct bio *bio)
1404 {
1405 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406 	struct thin_c *tc = h->tc;
1407 	unsigned long flags;
1408 
1409 	spin_lock_irqsave(&tc->lock, flags);
1410 	bio_list_add(&tc->retry_on_resume_list, bio);
1411 	spin_unlock_irqrestore(&tc->lock, flags);
1412 }
1413 
1414 static int should_error_unserviceable_bio(struct pool *pool)
1415 {
1416 	enum pool_mode m = get_pool_mode(pool);
1417 
1418 	switch (m) {
1419 	case PM_WRITE:
1420 		/* Shouldn't get here */
1421 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1422 		return -EIO;
1423 
1424 	case PM_OUT_OF_DATA_SPACE:
1425 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1426 
1427 	case PM_READ_ONLY:
1428 	case PM_FAIL:
1429 		return -EIO;
1430 	default:
1431 		/* Shouldn't get here */
1432 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1433 		return -EIO;
1434 	}
1435 }
1436 
1437 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1438 {
1439 	int error = should_error_unserviceable_bio(pool);
1440 
1441 	if (error) {
1442 		bio->bi_error = error;
1443 		bio_endio(bio);
1444 	} else
1445 		retry_on_resume(bio);
1446 }
1447 
1448 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1449 {
1450 	struct bio *bio;
1451 	struct bio_list bios;
1452 	int error;
1453 
1454 	error = should_error_unserviceable_bio(pool);
1455 	if (error) {
1456 		cell_error_with_code(pool, cell, error);
1457 		return;
1458 	}
1459 
1460 	bio_list_init(&bios);
1461 	cell_release(pool, cell, &bios);
1462 
1463 	while ((bio = bio_list_pop(&bios)))
1464 		retry_on_resume(bio);
1465 }
1466 
1467 static void process_discard_cell_no_passdown(struct thin_c *tc,
1468 					     struct dm_bio_prison_cell *virt_cell)
1469 {
1470 	struct pool *pool = tc->pool;
1471 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1472 
1473 	/*
1474 	 * We don't need to lock the data blocks, since there's no
1475 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1476 	 */
1477 	m->tc = tc;
1478 	m->virt_begin = virt_cell->key.block_begin;
1479 	m->virt_end = virt_cell->key.block_end;
1480 	m->cell = virt_cell;
1481 	m->bio = virt_cell->holder;
1482 
1483 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1484 		pool->process_prepared_discard(m);
1485 }
1486 
1487 /*
1488  * __bio_inc_remaining() is used to defer parent bios's end_io until
1489  * we _know_ all chained sub range discard bios have completed.
1490  */
1491 static inline void __bio_inc_remaining(struct bio *bio)
1492 {
1493 	bio->bi_flags |= (1 << BIO_CHAIN);
1494 	smp_mb__before_atomic();
1495 	atomic_inc(&bio->__bi_remaining);
1496 }
1497 
1498 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1499 				 struct bio *bio)
1500 {
1501 	struct pool *pool = tc->pool;
1502 
1503 	int r;
1504 	bool maybe_shared;
1505 	struct dm_cell_key data_key;
1506 	struct dm_bio_prison_cell *data_cell;
1507 	struct dm_thin_new_mapping *m;
1508 	dm_block_t virt_begin, virt_end, data_begin;
1509 
1510 	while (begin != end) {
1511 		r = ensure_next_mapping(pool);
1512 		if (r)
1513 			/* we did our best */
1514 			return;
1515 
1516 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1517 					      &data_begin, &maybe_shared);
1518 		if (r)
1519 			/*
1520 			 * Silently fail, letting any mappings we've
1521 			 * created complete.
1522 			 */
1523 			break;
1524 
1525 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1526 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1527 			/* contention, we'll give up with this range */
1528 			begin = virt_end;
1529 			continue;
1530 		}
1531 
1532 		/*
1533 		 * IO may still be going to the destination block.  We must
1534 		 * quiesce before we can do the removal.
1535 		 */
1536 		m = get_next_mapping(pool);
1537 		m->tc = tc;
1538 		m->maybe_shared = maybe_shared;
1539 		m->virt_begin = virt_begin;
1540 		m->virt_end = virt_end;
1541 		m->data_block = data_begin;
1542 		m->cell = data_cell;
1543 		m->bio = bio;
1544 
1545 		/*
1546 		 * The parent bio must not complete before sub discard bios are
1547 		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1548 		 *
1549 		 * This per-mapping bi_remaining increment is paired with
1550 		 * the implicit decrement that occurs via bio_endio() in
1551 		 * process_prepared_discard_{passdown,no_passdown}.
1552 		 */
1553 		__bio_inc_remaining(bio);
1554 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1555 			pool->process_prepared_discard(m);
1556 
1557 		begin = virt_end;
1558 	}
1559 }
1560 
1561 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1562 {
1563 	struct bio *bio = virt_cell->holder;
1564 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1565 
1566 	/*
1567 	 * The virt_cell will only get freed once the origin bio completes.
1568 	 * This means it will remain locked while all the individual
1569 	 * passdown bios are in flight.
1570 	 */
1571 	h->cell = virt_cell;
1572 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1573 
1574 	/*
1575 	 * We complete the bio now, knowing that the bi_remaining field
1576 	 * will prevent completion until the sub range discards have
1577 	 * completed.
1578 	 */
1579 	bio_endio(bio);
1580 }
1581 
1582 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1583 {
1584 	dm_block_t begin, end;
1585 	struct dm_cell_key virt_key;
1586 	struct dm_bio_prison_cell *virt_cell;
1587 
1588 	get_bio_block_range(tc, bio, &begin, &end);
1589 	if (begin == end) {
1590 		/*
1591 		 * The discard covers less than a block.
1592 		 */
1593 		bio_endio(bio);
1594 		return;
1595 	}
1596 
1597 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1598 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1599 		/*
1600 		 * Potential starvation issue: We're relying on the
1601 		 * fs/application being well behaved, and not trying to
1602 		 * send IO to a region at the same time as discarding it.
1603 		 * If they do this persistently then it's possible this
1604 		 * cell will never be granted.
1605 		 */
1606 		return;
1607 
1608 	tc->pool->process_discard_cell(tc, virt_cell);
1609 }
1610 
1611 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1612 			  struct dm_cell_key *key,
1613 			  struct dm_thin_lookup_result *lookup_result,
1614 			  struct dm_bio_prison_cell *cell)
1615 {
1616 	int r;
1617 	dm_block_t data_block;
1618 	struct pool *pool = tc->pool;
1619 
1620 	r = alloc_data_block(tc, &data_block);
1621 	switch (r) {
1622 	case 0:
1623 		schedule_internal_copy(tc, block, lookup_result->block,
1624 				       data_block, cell, bio);
1625 		break;
1626 
1627 	case -ENOSPC:
1628 		retry_bios_on_resume(pool, cell);
1629 		break;
1630 
1631 	default:
1632 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1633 			    __func__, r);
1634 		cell_error(pool, cell);
1635 		break;
1636 	}
1637 }
1638 
1639 static void __remap_and_issue_shared_cell(void *context,
1640 					  struct dm_bio_prison_cell *cell)
1641 {
1642 	struct remap_info *info = context;
1643 	struct bio *bio;
1644 
1645 	while ((bio = bio_list_pop(&cell->bios))) {
1646 		if ((bio_data_dir(bio) == WRITE) ||
1647 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1648 			bio_list_add(&info->defer_bios, bio);
1649 		else {
1650 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1651 
1652 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1653 			inc_all_io_entry(info->tc->pool, bio);
1654 			bio_list_add(&info->issue_bios, bio);
1655 		}
1656 	}
1657 }
1658 
1659 static void remap_and_issue_shared_cell(struct thin_c *tc,
1660 					struct dm_bio_prison_cell *cell,
1661 					dm_block_t block)
1662 {
1663 	struct bio *bio;
1664 	struct remap_info info;
1665 
1666 	info.tc = tc;
1667 	bio_list_init(&info.defer_bios);
1668 	bio_list_init(&info.issue_bios);
1669 
1670 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1671 			   &info, cell);
1672 
1673 	while ((bio = bio_list_pop(&info.defer_bios)))
1674 		thin_defer_bio(tc, bio);
1675 
1676 	while ((bio = bio_list_pop(&info.issue_bios)))
1677 		remap_and_issue(tc, bio, block);
1678 }
1679 
1680 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1681 			       dm_block_t block,
1682 			       struct dm_thin_lookup_result *lookup_result,
1683 			       struct dm_bio_prison_cell *virt_cell)
1684 {
1685 	struct dm_bio_prison_cell *data_cell;
1686 	struct pool *pool = tc->pool;
1687 	struct dm_cell_key key;
1688 
1689 	/*
1690 	 * If cell is already occupied, then sharing is already in the process
1691 	 * of being broken so we have nothing further to do here.
1692 	 */
1693 	build_data_key(tc->td, lookup_result->block, &key);
1694 	if (bio_detain(pool, &key, bio, &data_cell)) {
1695 		cell_defer_no_holder(tc, virt_cell);
1696 		return;
1697 	}
1698 
1699 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1700 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1701 		cell_defer_no_holder(tc, virt_cell);
1702 	} else {
1703 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1704 
1705 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1706 		inc_all_io_entry(pool, bio);
1707 		remap_and_issue(tc, bio, lookup_result->block);
1708 
1709 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1710 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1711 	}
1712 }
1713 
1714 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1715 			    struct dm_bio_prison_cell *cell)
1716 {
1717 	int r;
1718 	dm_block_t data_block;
1719 	struct pool *pool = tc->pool;
1720 
1721 	/*
1722 	 * Remap empty bios (flushes) immediately, without provisioning.
1723 	 */
1724 	if (!bio->bi_iter.bi_size) {
1725 		inc_all_io_entry(pool, bio);
1726 		cell_defer_no_holder(tc, cell);
1727 
1728 		remap_and_issue(tc, bio, 0);
1729 		return;
1730 	}
1731 
1732 	/*
1733 	 * Fill read bios with zeroes and complete them immediately.
1734 	 */
1735 	if (bio_data_dir(bio) == READ) {
1736 		zero_fill_bio(bio);
1737 		cell_defer_no_holder(tc, cell);
1738 		bio_endio(bio);
1739 		return;
1740 	}
1741 
1742 	r = alloc_data_block(tc, &data_block);
1743 	switch (r) {
1744 	case 0:
1745 		if (tc->origin_dev)
1746 			schedule_external_copy(tc, block, data_block, cell, bio);
1747 		else
1748 			schedule_zero(tc, block, data_block, cell, bio);
1749 		break;
1750 
1751 	case -ENOSPC:
1752 		retry_bios_on_resume(pool, cell);
1753 		break;
1754 
1755 	default:
1756 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1757 			    __func__, r);
1758 		cell_error(pool, cell);
1759 		break;
1760 	}
1761 }
1762 
1763 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1764 {
1765 	int r;
1766 	struct pool *pool = tc->pool;
1767 	struct bio *bio = cell->holder;
1768 	dm_block_t block = get_bio_block(tc, bio);
1769 	struct dm_thin_lookup_result lookup_result;
1770 
1771 	if (tc->requeue_mode) {
1772 		cell_requeue(pool, cell);
1773 		return;
1774 	}
1775 
1776 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1777 	switch (r) {
1778 	case 0:
1779 		if (lookup_result.shared)
1780 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1781 		else {
1782 			inc_all_io_entry(pool, bio);
1783 			remap_and_issue(tc, bio, lookup_result.block);
1784 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1785 		}
1786 		break;
1787 
1788 	case -ENODATA:
1789 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1790 			inc_all_io_entry(pool, bio);
1791 			cell_defer_no_holder(tc, cell);
1792 
1793 			if (bio_end_sector(bio) <= tc->origin_size)
1794 				remap_to_origin_and_issue(tc, bio);
1795 
1796 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1797 				zero_fill_bio(bio);
1798 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1799 				remap_to_origin_and_issue(tc, bio);
1800 
1801 			} else {
1802 				zero_fill_bio(bio);
1803 				bio_endio(bio);
1804 			}
1805 		} else
1806 			provision_block(tc, bio, block, cell);
1807 		break;
1808 
1809 	default:
1810 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1811 			    __func__, r);
1812 		cell_defer_no_holder(tc, cell);
1813 		bio_io_error(bio);
1814 		break;
1815 	}
1816 }
1817 
1818 static void process_bio(struct thin_c *tc, struct bio *bio)
1819 {
1820 	struct pool *pool = tc->pool;
1821 	dm_block_t block = get_bio_block(tc, bio);
1822 	struct dm_bio_prison_cell *cell;
1823 	struct dm_cell_key key;
1824 
1825 	/*
1826 	 * If cell is already occupied, then the block is already
1827 	 * being provisioned so we have nothing further to do here.
1828 	 */
1829 	build_virtual_key(tc->td, block, &key);
1830 	if (bio_detain(pool, &key, bio, &cell))
1831 		return;
1832 
1833 	process_cell(tc, cell);
1834 }
1835 
1836 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1837 				    struct dm_bio_prison_cell *cell)
1838 {
1839 	int r;
1840 	int rw = bio_data_dir(bio);
1841 	dm_block_t block = get_bio_block(tc, bio);
1842 	struct dm_thin_lookup_result lookup_result;
1843 
1844 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1845 	switch (r) {
1846 	case 0:
1847 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1848 			handle_unserviceable_bio(tc->pool, bio);
1849 			if (cell)
1850 				cell_defer_no_holder(tc, cell);
1851 		} else {
1852 			inc_all_io_entry(tc->pool, bio);
1853 			remap_and_issue(tc, bio, lookup_result.block);
1854 			if (cell)
1855 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1856 		}
1857 		break;
1858 
1859 	case -ENODATA:
1860 		if (cell)
1861 			cell_defer_no_holder(tc, cell);
1862 		if (rw != READ) {
1863 			handle_unserviceable_bio(tc->pool, bio);
1864 			break;
1865 		}
1866 
1867 		if (tc->origin_dev) {
1868 			inc_all_io_entry(tc->pool, bio);
1869 			remap_to_origin_and_issue(tc, bio);
1870 			break;
1871 		}
1872 
1873 		zero_fill_bio(bio);
1874 		bio_endio(bio);
1875 		break;
1876 
1877 	default:
1878 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1879 			    __func__, r);
1880 		if (cell)
1881 			cell_defer_no_holder(tc, cell);
1882 		bio_io_error(bio);
1883 		break;
1884 	}
1885 }
1886 
1887 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1888 {
1889 	__process_bio_read_only(tc, bio, NULL);
1890 }
1891 
1892 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1893 {
1894 	__process_bio_read_only(tc, cell->holder, cell);
1895 }
1896 
1897 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1898 {
1899 	bio_endio(bio);
1900 }
1901 
1902 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1903 {
1904 	bio_io_error(bio);
1905 }
1906 
1907 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1908 {
1909 	cell_success(tc->pool, cell);
1910 }
1911 
1912 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1913 {
1914 	cell_error(tc->pool, cell);
1915 }
1916 
1917 /*
1918  * FIXME: should we also commit due to size of transaction, measured in
1919  * metadata blocks?
1920  */
1921 static int need_commit_due_to_time(struct pool *pool)
1922 {
1923 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1924 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1925 }
1926 
1927 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1928 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1929 
1930 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1931 {
1932 	struct rb_node **rbp, *parent;
1933 	struct dm_thin_endio_hook *pbd;
1934 	sector_t bi_sector = bio->bi_iter.bi_sector;
1935 
1936 	rbp = &tc->sort_bio_list.rb_node;
1937 	parent = NULL;
1938 	while (*rbp) {
1939 		parent = *rbp;
1940 		pbd = thin_pbd(parent);
1941 
1942 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1943 			rbp = &(*rbp)->rb_left;
1944 		else
1945 			rbp = &(*rbp)->rb_right;
1946 	}
1947 
1948 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1949 	rb_link_node(&pbd->rb_node, parent, rbp);
1950 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1951 }
1952 
1953 static void __extract_sorted_bios(struct thin_c *tc)
1954 {
1955 	struct rb_node *node;
1956 	struct dm_thin_endio_hook *pbd;
1957 	struct bio *bio;
1958 
1959 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1960 		pbd = thin_pbd(node);
1961 		bio = thin_bio(pbd);
1962 
1963 		bio_list_add(&tc->deferred_bio_list, bio);
1964 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1965 	}
1966 
1967 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1968 }
1969 
1970 static void __sort_thin_deferred_bios(struct thin_c *tc)
1971 {
1972 	struct bio *bio;
1973 	struct bio_list bios;
1974 
1975 	bio_list_init(&bios);
1976 	bio_list_merge(&bios, &tc->deferred_bio_list);
1977 	bio_list_init(&tc->deferred_bio_list);
1978 
1979 	/* Sort deferred_bio_list using rb-tree */
1980 	while ((bio = bio_list_pop(&bios)))
1981 		__thin_bio_rb_add(tc, bio);
1982 
1983 	/*
1984 	 * Transfer the sorted bios in sort_bio_list back to
1985 	 * deferred_bio_list to allow lockless submission of
1986 	 * all bios.
1987 	 */
1988 	__extract_sorted_bios(tc);
1989 }
1990 
1991 static void process_thin_deferred_bios(struct thin_c *tc)
1992 {
1993 	struct pool *pool = tc->pool;
1994 	unsigned long flags;
1995 	struct bio *bio;
1996 	struct bio_list bios;
1997 	struct blk_plug plug;
1998 	unsigned count = 0;
1999 
2000 	if (tc->requeue_mode) {
2001 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2002 		return;
2003 	}
2004 
2005 	bio_list_init(&bios);
2006 
2007 	spin_lock_irqsave(&tc->lock, flags);
2008 
2009 	if (bio_list_empty(&tc->deferred_bio_list)) {
2010 		spin_unlock_irqrestore(&tc->lock, flags);
2011 		return;
2012 	}
2013 
2014 	__sort_thin_deferred_bios(tc);
2015 
2016 	bio_list_merge(&bios, &tc->deferred_bio_list);
2017 	bio_list_init(&tc->deferred_bio_list);
2018 
2019 	spin_unlock_irqrestore(&tc->lock, flags);
2020 
2021 	blk_start_plug(&plug);
2022 	while ((bio = bio_list_pop(&bios))) {
2023 		/*
2024 		 * If we've got no free new_mapping structs, and processing
2025 		 * this bio might require one, we pause until there are some
2026 		 * prepared mappings to process.
2027 		 */
2028 		if (ensure_next_mapping(pool)) {
2029 			spin_lock_irqsave(&tc->lock, flags);
2030 			bio_list_add(&tc->deferred_bio_list, bio);
2031 			bio_list_merge(&tc->deferred_bio_list, &bios);
2032 			spin_unlock_irqrestore(&tc->lock, flags);
2033 			break;
2034 		}
2035 
2036 		if (bio->bi_rw & REQ_DISCARD)
2037 			pool->process_discard(tc, bio);
2038 		else
2039 			pool->process_bio(tc, bio);
2040 
2041 		if ((count++ & 127) == 0) {
2042 			throttle_work_update(&pool->throttle);
2043 			dm_pool_issue_prefetches(pool->pmd);
2044 		}
2045 	}
2046 	blk_finish_plug(&plug);
2047 }
2048 
2049 static int cmp_cells(const void *lhs, const void *rhs)
2050 {
2051 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2052 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2053 
2054 	BUG_ON(!lhs_cell->holder);
2055 	BUG_ON(!rhs_cell->holder);
2056 
2057 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2058 		return -1;
2059 
2060 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2061 		return 1;
2062 
2063 	return 0;
2064 }
2065 
2066 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2067 {
2068 	unsigned count = 0;
2069 	struct dm_bio_prison_cell *cell, *tmp;
2070 
2071 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2072 		if (count >= CELL_SORT_ARRAY_SIZE)
2073 			break;
2074 
2075 		pool->cell_sort_array[count++] = cell;
2076 		list_del(&cell->user_list);
2077 	}
2078 
2079 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2080 
2081 	return count;
2082 }
2083 
2084 static void process_thin_deferred_cells(struct thin_c *tc)
2085 {
2086 	struct pool *pool = tc->pool;
2087 	unsigned long flags;
2088 	struct list_head cells;
2089 	struct dm_bio_prison_cell *cell;
2090 	unsigned i, j, count;
2091 
2092 	INIT_LIST_HEAD(&cells);
2093 
2094 	spin_lock_irqsave(&tc->lock, flags);
2095 	list_splice_init(&tc->deferred_cells, &cells);
2096 	spin_unlock_irqrestore(&tc->lock, flags);
2097 
2098 	if (list_empty(&cells))
2099 		return;
2100 
2101 	do {
2102 		count = sort_cells(tc->pool, &cells);
2103 
2104 		for (i = 0; i < count; i++) {
2105 			cell = pool->cell_sort_array[i];
2106 			BUG_ON(!cell->holder);
2107 
2108 			/*
2109 			 * If we've got no free new_mapping structs, and processing
2110 			 * this bio might require one, we pause until there are some
2111 			 * prepared mappings to process.
2112 			 */
2113 			if (ensure_next_mapping(pool)) {
2114 				for (j = i; j < count; j++)
2115 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2116 
2117 				spin_lock_irqsave(&tc->lock, flags);
2118 				list_splice(&cells, &tc->deferred_cells);
2119 				spin_unlock_irqrestore(&tc->lock, flags);
2120 				return;
2121 			}
2122 
2123 			if (cell->holder->bi_rw & REQ_DISCARD)
2124 				pool->process_discard_cell(tc, cell);
2125 			else
2126 				pool->process_cell(tc, cell);
2127 		}
2128 	} while (!list_empty(&cells));
2129 }
2130 
2131 static void thin_get(struct thin_c *tc);
2132 static void thin_put(struct thin_c *tc);
2133 
2134 /*
2135  * We can't hold rcu_read_lock() around code that can block.  So we
2136  * find a thin with the rcu lock held; bump a refcount; then drop
2137  * the lock.
2138  */
2139 static struct thin_c *get_first_thin(struct pool *pool)
2140 {
2141 	struct thin_c *tc = NULL;
2142 
2143 	rcu_read_lock();
2144 	if (!list_empty(&pool->active_thins)) {
2145 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2146 		thin_get(tc);
2147 	}
2148 	rcu_read_unlock();
2149 
2150 	return tc;
2151 }
2152 
2153 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2154 {
2155 	struct thin_c *old_tc = tc;
2156 
2157 	rcu_read_lock();
2158 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2159 		thin_get(tc);
2160 		thin_put(old_tc);
2161 		rcu_read_unlock();
2162 		return tc;
2163 	}
2164 	thin_put(old_tc);
2165 	rcu_read_unlock();
2166 
2167 	return NULL;
2168 }
2169 
2170 static void process_deferred_bios(struct pool *pool)
2171 {
2172 	unsigned long flags;
2173 	struct bio *bio;
2174 	struct bio_list bios;
2175 	struct thin_c *tc;
2176 
2177 	tc = get_first_thin(pool);
2178 	while (tc) {
2179 		process_thin_deferred_cells(tc);
2180 		process_thin_deferred_bios(tc);
2181 		tc = get_next_thin(pool, tc);
2182 	}
2183 
2184 	/*
2185 	 * If there are any deferred flush bios, we must commit
2186 	 * the metadata before issuing them.
2187 	 */
2188 	bio_list_init(&bios);
2189 	spin_lock_irqsave(&pool->lock, flags);
2190 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2191 	bio_list_init(&pool->deferred_flush_bios);
2192 	spin_unlock_irqrestore(&pool->lock, flags);
2193 
2194 	if (bio_list_empty(&bios) &&
2195 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2196 		return;
2197 
2198 	if (commit(pool)) {
2199 		while ((bio = bio_list_pop(&bios)))
2200 			bio_io_error(bio);
2201 		return;
2202 	}
2203 	pool->last_commit_jiffies = jiffies;
2204 
2205 	while ((bio = bio_list_pop(&bios)))
2206 		generic_make_request(bio);
2207 }
2208 
2209 static void do_worker(struct work_struct *ws)
2210 {
2211 	struct pool *pool = container_of(ws, struct pool, worker);
2212 
2213 	throttle_work_start(&pool->throttle);
2214 	dm_pool_issue_prefetches(pool->pmd);
2215 	throttle_work_update(&pool->throttle);
2216 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2217 	throttle_work_update(&pool->throttle);
2218 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2219 	throttle_work_update(&pool->throttle);
2220 	process_deferred_bios(pool);
2221 	throttle_work_complete(&pool->throttle);
2222 }
2223 
2224 /*
2225  * We want to commit periodically so that not too much
2226  * unwritten data builds up.
2227  */
2228 static void do_waker(struct work_struct *ws)
2229 {
2230 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2231 	wake_worker(pool);
2232 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2233 }
2234 
2235 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2236 
2237 /*
2238  * We're holding onto IO to allow userland time to react.  After the
2239  * timeout either the pool will have been resized (and thus back in
2240  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2241  */
2242 static void do_no_space_timeout(struct work_struct *ws)
2243 {
2244 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2245 					 no_space_timeout);
2246 
2247 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2248 		pool->pf.error_if_no_space = true;
2249 		notify_of_pool_mode_change_to_oods(pool);
2250 		error_retry_list_with_code(pool, -ENOSPC);
2251 	}
2252 }
2253 
2254 /*----------------------------------------------------------------*/
2255 
2256 struct pool_work {
2257 	struct work_struct worker;
2258 	struct completion complete;
2259 };
2260 
2261 static struct pool_work *to_pool_work(struct work_struct *ws)
2262 {
2263 	return container_of(ws, struct pool_work, worker);
2264 }
2265 
2266 static void pool_work_complete(struct pool_work *pw)
2267 {
2268 	complete(&pw->complete);
2269 }
2270 
2271 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2272 			   void (*fn)(struct work_struct *))
2273 {
2274 	INIT_WORK_ONSTACK(&pw->worker, fn);
2275 	init_completion(&pw->complete);
2276 	queue_work(pool->wq, &pw->worker);
2277 	wait_for_completion(&pw->complete);
2278 }
2279 
2280 /*----------------------------------------------------------------*/
2281 
2282 struct noflush_work {
2283 	struct pool_work pw;
2284 	struct thin_c *tc;
2285 };
2286 
2287 static struct noflush_work *to_noflush(struct work_struct *ws)
2288 {
2289 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2290 }
2291 
2292 static void do_noflush_start(struct work_struct *ws)
2293 {
2294 	struct noflush_work *w = to_noflush(ws);
2295 	w->tc->requeue_mode = true;
2296 	requeue_io(w->tc);
2297 	pool_work_complete(&w->pw);
2298 }
2299 
2300 static void do_noflush_stop(struct work_struct *ws)
2301 {
2302 	struct noflush_work *w = to_noflush(ws);
2303 	w->tc->requeue_mode = false;
2304 	pool_work_complete(&w->pw);
2305 }
2306 
2307 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2308 {
2309 	struct noflush_work w;
2310 
2311 	w.tc = tc;
2312 	pool_work_wait(&w.pw, tc->pool, fn);
2313 }
2314 
2315 /*----------------------------------------------------------------*/
2316 
2317 static enum pool_mode get_pool_mode(struct pool *pool)
2318 {
2319 	return pool->pf.mode;
2320 }
2321 
2322 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2323 {
2324 	dm_table_event(pool->ti->table);
2325 	DMINFO("%s: switching pool to %s mode",
2326 	       dm_device_name(pool->pool_md), new_mode);
2327 }
2328 
2329 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2330 {
2331 	if (!pool->pf.error_if_no_space)
2332 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2333 	else
2334 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2335 }
2336 
2337 static bool passdown_enabled(struct pool_c *pt)
2338 {
2339 	return pt->adjusted_pf.discard_passdown;
2340 }
2341 
2342 static void set_discard_callbacks(struct pool *pool)
2343 {
2344 	struct pool_c *pt = pool->ti->private;
2345 
2346 	if (passdown_enabled(pt)) {
2347 		pool->process_discard_cell = process_discard_cell_passdown;
2348 		pool->process_prepared_discard = process_prepared_discard_passdown;
2349 	} else {
2350 		pool->process_discard_cell = process_discard_cell_no_passdown;
2351 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2352 	}
2353 }
2354 
2355 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2356 {
2357 	struct pool_c *pt = pool->ti->private;
2358 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2359 	enum pool_mode old_mode = get_pool_mode(pool);
2360 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2361 
2362 	/*
2363 	 * Never allow the pool to transition to PM_WRITE mode if user
2364 	 * intervention is required to verify metadata and data consistency.
2365 	 */
2366 	if (new_mode == PM_WRITE && needs_check) {
2367 		DMERR("%s: unable to switch pool to write mode until repaired.",
2368 		      dm_device_name(pool->pool_md));
2369 		if (old_mode != new_mode)
2370 			new_mode = old_mode;
2371 		else
2372 			new_mode = PM_READ_ONLY;
2373 	}
2374 	/*
2375 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2376 	 * not going to recover without a thin_repair.	So we never let the
2377 	 * pool move out of the old mode.
2378 	 */
2379 	if (old_mode == PM_FAIL)
2380 		new_mode = old_mode;
2381 
2382 	switch (new_mode) {
2383 	case PM_FAIL:
2384 		if (old_mode != new_mode)
2385 			notify_of_pool_mode_change(pool, "failure");
2386 		dm_pool_metadata_read_only(pool->pmd);
2387 		pool->process_bio = process_bio_fail;
2388 		pool->process_discard = process_bio_fail;
2389 		pool->process_cell = process_cell_fail;
2390 		pool->process_discard_cell = process_cell_fail;
2391 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2392 		pool->process_prepared_discard = process_prepared_discard_fail;
2393 
2394 		error_retry_list(pool);
2395 		break;
2396 
2397 	case PM_READ_ONLY:
2398 		if (old_mode != new_mode)
2399 			notify_of_pool_mode_change(pool, "read-only");
2400 		dm_pool_metadata_read_only(pool->pmd);
2401 		pool->process_bio = process_bio_read_only;
2402 		pool->process_discard = process_bio_success;
2403 		pool->process_cell = process_cell_read_only;
2404 		pool->process_discard_cell = process_cell_success;
2405 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2406 		pool->process_prepared_discard = process_prepared_discard_success;
2407 
2408 		error_retry_list(pool);
2409 		break;
2410 
2411 	case PM_OUT_OF_DATA_SPACE:
2412 		/*
2413 		 * Ideally we'd never hit this state; the low water mark
2414 		 * would trigger userland to extend the pool before we
2415 		 * completely run out of data space.  However, many small
2416 		 * IOs to unprovisioned space can consume data space at an
2417 		 * alarming rate.  Adjust your low water mark if you're
2418 		 * frequently seeing this mode.
2419 		 */
2420 		if (old_mode != new_mode)
2421 			notify_of_pool_mode_change_to_oods(pool);
2422 		pool->process_bio = process_bio_read_only;
2423 		pool->process_discard = process_discard_bio;
2424 		pool->process_cell = process_cell_read_only;
2425 		pool->process_prepared_mapping = process_prepared_mapping;
2426 		set_discard_callbacks(pool);
2427 
2428 		if (!pool->pf.error_if_no_space && no_space_timeout)
2429 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2430 		break;
2431 
2432 	case PM_WRITE:
2433 		if (old_mode != new_mode)
2434 			notify_of_pool_mode_change(pool, "write");
2435 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2436 		dm_pool_metadata_read_write(pool->pmd);
2437 		pool->process_bio = process_bio;
2438 		pool->process_discard = process_discard_bio;
2439 		pool->process_cell = process_cell;
2440 		pool->process_prepared_mapping = process_prepared_mapping;
2441 		set_discard_callbacks(pool);
2442 		break;
2443 	}
2444 
2445 	pool->pf.mode = new_mode;
2446 	/*
2447 	 * The pool mode may have changed, sync it so bind_control_target()
2448 	 * doesn't cause an unexpected mode transition on resume.
2449 	 */
2450 	pt->adjusted_pf.mode = new_mode;
2451 }
2452 
2453 static void abort_transaction(struct pool *pool)
2454 {
2455 	const char *dev_name = dm_device_name(pool->pool_md);
2456 
2457 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2458 	if (dm_pool_abort_metadata(pool->pmd)) {
2459 		DMERR("%s: failed to abort metadata transaction", dev_name);
2460 		set_pool_mode(pool, PM_FAIL);
2461 	}
2462 
2463 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2464 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2465 		set_pool_mode(pool, PM_FAIL);
2466 	}
2467 }
2468 
2469 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2470 {
2471 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2472 		    dm_device_name(pool->pool_md), op, r);
2473 
2474 	abort_transaction(pool);
2475 	set_pool_mode(pool, PM_READ_ONLY);
2476 }
2477 
2478 /*----------------------------------------------------------------*/
2479 
2480 /*
2481  * Mapping functions.
2482  */
2483 
2484 /*
2485  * Called only while mapping a thin bio to hand it over to the workqueue.
2486  */
2487 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2488 {
2489 	unsigned long flags;
2490 	struct pool *pool = tc->pool;
2491 
2492 	spin_lock_irqsave(&tc->lock, flags);
2493 	bio_list_add(&tc->deferred_bio_list, bio);
2494 	spin_unlock_irqrestore(&tc->lock, flags);
2495 
2496 	wake_worker(pool);
2497 }
2498 
2499 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2500 {
2501 	struct pool *pool = tc->pool;
2502 
2503 	throttle_lock(&pool->throttle);
2504 	thin_defer_bio(tc, bio);
2505 	throttle_unlock(&pool->throttle);
2506 }
2507 
2508 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2509 {
2510 	unsigned long flags;
2511 	struct pool *pool = tc->pool;
2512 
2513 	throttle_lock(&pool->throttle);
2514 	spin_lock_irqsave(&tc->lock, flags);
2515 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2516 	spin_unlock_irqrestore(&tc->lock, flags);
2517 	throttle_unlock(&pool->throttle);
2518 
2519 	wake_worker(pool);
2520 }
2521 
2522 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2523 {
2524 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2525 
2526 	h->tc = tc;
2527 	h->shared_read_entry = NULL;
2528 	h->all_io_entry = NULL;
2529 	h->overwrite_mapping = NULL;
2530 	h->cell = NULL;
2531 }
2532 
2533 /*
2534  * Non-blocking function called from the thin target's map function.
2535  */
2536 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2537 {
2538 	int r;
2539 	struct thin_c *tc = ti->private;
2540 	dm_block_t block = get_bio_block(tc, bio);
2541 	struct dm_thin_device *td = tc->td;
2542 	struct dm_thin_lookup_result result;
2543 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2544 	struct dm_cell_key key;
2545 
2546 	thin_hook_bio(tc, bio);
2547 
2548 	if (tc->requeue_mode) {
2549 		bio->bi_error = DM_ENDIO_REQUEUE;
2550 		bio_endio(bio);
2551 		return DM_MAPIO_SUBMITTED;
2552 	}
2553 
2554 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2555 		bio_io_error(bio);
2556 		return DM_MAPIO_SUBMITTED;
2557 	}
2558 
2559 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2560 		thin_defer_bio_with_throttle(tc, bio);
2561 		return DM_MAPIO_SUBMITTED;
2562 	}
2563 
2564 	/*
2565 	 * We must hold the virtual cell before doing the lookup, otherwise
2566 	 * there's a race with discard.
2567 	 */
2568 	build_virtual_key(tc->td, block, &key);
2569 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2570 		return DM_MAPIO_SUBMITTED;
2571 
2572 	r = dm_thin_find_block(td, block, 0, &result);
2573 
2574 	/*
2575 	 * Note that we defer readahead too.
2576 	 */
2577 	switch (r) {
2578 	case 0:
2579 		if (unlikely(result.shared)) {
2580 			/*
2581 			 * We have a race condition here between the
2582 			 * result.shared value returned by the lookup and
2583 			 * snapshot creation, which may cause new
2584 			 * sharing.
2585 			 *
2586 			 * To avoid this always quiesce the origin before
2587 			 * taking the snap.  You want to do this anyway to
2588 			 * ensure a consistent application view
2589 			 * (i.e. lockfs).
2590 			 *
2591 			 * More distant ancestors are irrelevant. The
2592 			 * shared flag will be set in their case.
2593 			 */
2594 			thin_defer_cell(tc, virt_cell);
2595 			return DM_MAPIO_SUBMITTED;
2596 		}
2597 
2598 		build_data_key(tc->td, result.block, &key);
2599 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2600 			cell_defer_no_holder(tc, virt_cell);
2601 			return DM_MAPIO_SUBMITTED;
2602 		}
2603 
2604 		inc_all_io_entry(tc->pool, bio);
2605 		cell_defer_no_holder(tc, data_cell);
2606 		cell_defer_no_holder(tc, virt_cell);
2607 
2608 		remap(tc, bio, result.block);
2609 		return DM_MAPIO_REMAPPED;
2610 
2611 	case -ENODATA:
2612 	case -EWOULDBLOCK:
2613 		thin_defer_cell(tc, virt_cell);
2614 		return DM_MAPIO_SUBMITTED;
2615 
2616 	default:
2617 		/*
2618 		 * Must always call bio_io_error on failure.
2619 		 * dm_thin_find_block can fail with -EINVAL if the
2620 		 * pool is switched to fail-io mode.
2621 		 */
2622 		bio_io_error(bio);
2623 		cell_defer_no_holder(tc, virt_cell);
2624 		return DM_MAPIO_SUBMITTED;
2625 	}
2626 }
2627 
2628 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2629 {
2630 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2631 	struct request_queue *q;
2632 
2633 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2634 		return 1;
2635 
2636 	q = bdev_get_queue(pt->data_dev->bdev);
2637 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2638 }
2639 
2640 static void requeue_bios(struct pool *pool)
2641 {
2642 	unsigned long flags;
2643 	struct thin_c *tc;
2644 
2645 	rcu_read_lock();
2646 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2647 		spin_lock_irqsave(&tc->lock, flags);
2648 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2649 		bio_list_init(&tc->retry_on_resume_list);
2650 		spin_unlock_irqrestore(&tc->lock, flags);
2651 	}
2652 	rcu_read_unlock();
2653 }
2654 
2655 /*----------------------------------------------------------------
2656  * Binding of control targets to a pool object
2657  *--------------------------------------------------------------*/
2658 static bool data_dev_supports_discard(struct pool_c *pt)
2659 {
2660 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2661 
2662 	return q && blk_queue_discard(q);
2663 }
2664 
2665 static bool is_factor(sector_t block_size, uint32_t n)
2666 {
2667 	return !sector_div(block_size, n);
2668 }
2669 
2670 /*
2671  * If discard_passdown was enabled verify that the data device
2672  * supports discards.  Disable discard_passdown if not.
2673  */
2674 static void disable_passdown_if_not_supported(struct pool_c *pt)
2675 {
2676 	struct pool *pool = pt->pool;
2677 	struct block_device *data_bdev = pt->data_dev->bdev;
2678 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2679 	const char *reason = NULL;
2680 	char buf[BDEVNAME_SIZE];
2681 
2682 	if (!pt->adjusted_pf.discard_passdown)
2683 		return;
2684 
2685 	if (!data_dev_supports_discard(pt))
2686 		reason = "discard unsupported";
2687 
2688 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2689 		reason = "max discard sectors smaller than a block";
2690 
2691 	if (reason) {
2692 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2693 		pt->adjusted_pf.discard_passdown = false;
2694 	}
2695 }
2696 
2697 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2698 {
2699 	struct pool_c *pt = ti->private;
2700 
2701 	/*
2702 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2703 	 */
2704 	enum pool_mode old_mode = get_pool_mode(pool);
2705 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2706 
2707 	/*
2708 	 * Don't change the pool's mode until set_pool_mode() below.
2709 	 * Otherwise the pool's process_* function pointers may
2710 	 * not match the desired pool mode.
2711 	 */
2712 	pt->adjusted_pf.mode = old_mode;
2713 
2714 	pool->ti = ti;
2715 	pool->pf = pt->adjusted_pf;
2716 	pool->low_water_blocks = pt->low_water_blocks;
2717 
2718 	set_pool_mode(pool, new_mode);
2719 
2720 	return 0;
2721 }
2722 
2723 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2724 {
2725 	if (pool->ti == ti)
2726 		pool->ti = NULL;
2727 }
2728 
2729 /*----------------------------------------------------------------
2730  * Pool creation
2731  *--------------------------------------------------------------*/
2732 /* Initialize pool features. */
2733 static void pool_features_init(struct pool_features *pf)
2734 {
2735 	pf->mode = PM_WRITE;
2736 	pf->zero_new_blocks = true;
2737 	pf->discard_enabled = true;
2738 	pf->discard_passdown = true;
2739 	pf->error_if_no_space = false;
2740 }
2741 
2742 static void __pool_destroy(struct pool *pool)
2743 {
2744 	__pool_table_remove(pool);
2745 
2746 	vfree(pool->cell_sort_array);
2747 	if (dm_pool_metadata_close(pool->pmd) < 0)
2748 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2749 
2750 	dm_bio_prison_destroy(pool->prison);
2751 	dm_kcopyd_client_destroy(pool->copier);
2752 
2753 	if (pool->wq)
2754 		destroy_workqueue(pool->wq);
2755 
2756 	if (pool->next_mapping)
2757 		mempool_free(pool->next_mapping, pool->mapping_pool);
2758 	mempool_destroy(pool->mapping_pool);
2759 	dm_deferred_set_destroy(pool->shared_read_ds);
2760 	dm_deferred_set_destroy(pool->all_io_ds);
2761 	kfree(pool);
2762 }
2763 
2764 static struct kmem_cache *_new_mapping_cache;
2765 
2766 static struct pool *pool_create(struct mapped_device *pool_md,
2767 				struct block_device *metadata_dev,
2768 				unsigned long block_size,
2769 				int read_only, char **error)
2770 {
2771 	int r;
2772 	void *err_p;
2773 	struct pool *pool;
2774 	struct dm_pool_metadata *pmd;
2775 	bool format_device = read_only ? false : true;
2776 
2777 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2778 	if (IS_ERR(pmd)) {
2779 		*error = "Error creating metadata object";
2780 		return (struct pool *)pmd;
2781 	}
2782 
2783 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2784 	if (!pool) {
2785 		*error = "Error allocating memory for pool";
2786 		err_p = ERR_PTR(-ENOMEM);
2787 		goto bad_pool;
2788 	}
2789 
2790 	pool->pmd = pmd;
2791 	pool->sectors_per_block = block_size;
2792 	if (block_size & (block_size - 1))
2793 		pool->sectors_per_block_shift = -1;
2794 	else
2795 		pool->sectors_per_block_shift = __ffs(block_size);
2796 	pool->low_water_blocks = 0;
2797 	pool_features_init(&pool->pf);
2798 	pool->prison = dm_bio_prison_create();
2799 	if (!pool->prison) {
2800 		*error = "Error creating pool's bio prison";
2801 		err_p = ERR_PTR(-ENOMEM);
2802 		goto bad_prison;
2803 	}
2804 
2805 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2806 	if (IS_ERR(pool->copier)) {
2807 		r = PTR_ERR(pool->copier);
2808 		*error = "Error creating pool's kcopyd client";
2809 		err_p = ERR_PTR(r);
2810 		goto bad_kcopyd_client;
2811 	}
2812 
2813 	/*
2814 	 * Create singlethreaded workqueue that will service all devices
2815 	 * that use this metadata.
2816 	 */
2817 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2818 	if (!pool->wq) {
2819 		*error = "Error creating pool's workqueue";
2820 		err_p = ERR_PTR(-ENOMEM);
2821 		goto bad_wq;
2822 	}
2823 
2824 	throttle_init(&pool->throttle);
2825 	INIT_WORK(&pool->worker, do_worker);
2826 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2827 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2828 	spin_lock_init(&pool->lock);
2829 	bio_list_init(&pool->deferred_flush_bios);
2830 	INIT_LIST_HEAD(&pool->prepared_mappings);
2831 	INIT_LIST_HEAD(&pool->prepared_discards);
2832 	INIT_LIST_HEAD(&pool->active_thins);
2833 	pool->low_water_triggered = false;
2834 	pool->suspended = true;
2835 
2836 	pool->shared_read_ds = dm_deferred_set_create();
2837 	if (!pool->shared_read_ds) {
2838 		*error = "Error creating pool's shared read deferred set";
2839 		err_p = ERR_PTR(-ENOMEM);
2840 		goto bad_shared_read_ds;
2841 	}
2842 
2843 	pool->all_io_ds = dm_deferred_set_create();
2844 	if (!pool->all_io_ds) {
2845 		*error = "Error creating pool's all io deferred set";
2846 		err_p = ERR_PTR(-ENOMEM);
2847 		goto bad_all_io_ds;
2848 	}
2849 
2850 	pool->next_mapping = NULL;
2851 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2852 						      _new_mapping_cache);
2853 	if (!pool->mapping_pool) {
2854 		*error = "Error creating pool's mapping mempool";
2855 		err_p = ERR_PTR(-ENOMEM);
2856 		goto bad_mapping_pool;
2857 	}
2858 
2859 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2860 	if (!pool->cell_sort_array) {
2861 		*error = "Error allocating cell sort array";
2862 		err_p = ERR_PTR(-ENOMEM);
2863 		goto bad_sort_array;
2864 	}
2865 
2866 	pool->ref_count = 1;
2867 	pool->last_commit_jiffies = jiffies;
2868 	pool->pool_md = pool_md;
2869 	pool->md_dev = metadata_dev;
2870 	__pool_table_insert(pool);
2871 
2872 	return pool;
2873 
2874 bad_sort_array:
2875 	mempool_destroy(pool->mapping_pool);
2876 bad_mapping_pool:
2877 	dm_deferred_set_destroy(pool->all_io_ds);
2878 bad_all_io_ds:
2879 	dm_deferred_set_destroy(pool->shared_read_ds);
2880 bad_shared_read_ds:
2881 	destroy_workqueue(pool->wq);
2882 bad_wq:
2883 	dm_kcopyd_client_destroy(pool->copier);
2884 bad_kcopyd_client:
2885 	dm_bio_prison_destroy(pool->prison);
2886 bad_prison:
2887 	kfree(pool);
2888 bad_pool:
2889 	if (dm_pool_metadata_close(pmd))
2890 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2891 
2892 	return err_p;
2893 }
2894 
2895 static void __pool_inc(struct pool *pool)
2896 {
2897 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2898 	pool->ref_count++;
2899 }
2900 
2901 static void __pool_dec(struct pool *pool)
2902 {
2903 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2904 	BUG_ON(!pool->ref_count);
2905 	if (!--pool->ref_count)
2906 		__pool_destroy(pool);
2907 }
2908 
2909 static struct pool *__pool_find(struct mapped_device *pool_md,
2910 				struct block_device *metadata_dev,
2911 				unsigned long block_size, int read_only,
2912 				char **error, int *created)
2913 {
2914 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2915 
2916 	if (pool) {
2917 		if (pool->pool_md != pool_md) {
2918 			*error = "metadata device already in use by a pool";
2919 			return ERR_PTR(-EBUSY);
2920 		}
2921 		__pool_inc(pool);
2922 
2923 	} else {
2924 		pool = __pool_table_lookup(pool_md);
2925 		if (pool) {
2926 			if (pool->md_dev != metadata_dev) {
2927 				*error = "different pool cannot replace a pool";
2928 				return ERR_PTR(-EINVAL);
2929 			}
2930 			__pool_inc(pool);
2931 
2932 		} else {
2933 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2934 			*created = 1;
2935 		}
2936 	}
2937 
2938 	return pool;
2939 }
2940 
2941 /*----------------------------------------------------------------
2942  * Pool target methods
2943  *--------------------------------------------------------------*/
2944 static void pool_dtr(struct dm_target *ti)
2945 {
2946 	struct pool_c *pt = ti->private;
2947 
2948 	mutex_lock(&dm_thin_pool_table.mutex);
2949 
2950 	unbind_control_target(pt->pool, ti);
2951 	__pool_dec(pt->pool);
2952 	dm_put_device(ti, pt->metadata_dev);
2953 	dm_put_device(ti, pt->data_dev);
2954 	kfree(pt);
2955 
2956 	mutex_unlock(&dm_thin_pool_table.mutex);
2957 }
2958 
2959 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2960 			       struct dm_target *ti)
2961 {
2962 	int r;
2963 	unsigned argc;
2964 	const char *arg_name;
2965 
2966 	static struct dm_arg _args[] = {
2967 		{0, 4, "Invalid number of pool feature arguments"},
2968 	};
2969 
2970 	/*
2971 	 * No feature arguments supplied.
2972 	 */
2973 	if (!as->argc)
2974 		return 0;
2975 
2976 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2977 	if (r)
2978 		return -EINVAL;
2979 
2980 	while (argc && !r) {
2981 		arg_name = dm_shift_arg(as);
2982 		argc--;
2983 
2984 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2985 			pf->zero_new_blocks = false;
2986 
2987 		else if (!strcasecmp(arg_name, "ignore_discard"))
2988 			pf->discard_enabled = false;
2989 
2990 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2991 			pf->discard_passdown = false;
2992 
2993 		else if (!strcasecmp(arg_name, "read_only"))
2994 			pf->mode = PM_READ_ONLY;
2995 
2996 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2997 			pf->error_if_no_space = true;
2998 
2999 		else {
3000 			ti->error = "Unrecognised pool feature requested";
3001 			r = -EINVAL;
3002 			break;
3003 		}
3004 	}
3005 
3006 	return r;
3007 }
3008 
3009 static void metadata_low_callback(void *context)
3010 {
3011 	struct pool *pool = context;
3012 
3013 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3014 	       dm_device_name(pool->pool_md));
3015 
3016 	dm_table_event(pool->ti->table);
3017 }
3018 
3019 static sector_t get_dev_size(struct block_device *bdev)
3020 {
3021 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3022 }
3023 
3024 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3025 {
3026 	sector_t metadata_dev_size = get_dev_size(bdev);
3027 	char buffer[BDEVNAME_SIZE];
3028 
3029 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3030 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3031 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3032 }
3033 
3034 static sector_t get_metadata_dev_size(struct block_device *bdev)
3035 {
3036 	sector_t metadata_dev_size = get_dev_size(bdev);
3037 
3038 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3039 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3040 
3041 	return metadata_dev_size;
3042 }
3043 
3044 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3045 {
3046 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3047 
3048 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3049 
3050 	return metadata_dev_size;
3051 }
3052 
3053 /*
3054  * When a metadata threshold is crossed a dm event is triggered, and
3055  * userland should respond by growing the metadata device.  We could let
3056  * userland set the threshold, like we do with the data threshold, but I'm
3057  * not sure they know enough to do this well.
3058  */
3059 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3060 {
3061 	/*
3062 	 * 4M is ample for all ops with the possible exception of thin
3063 	 * device deletion which is harmless if it fails (just retry the
3064 	 * delete after you've grown the device).
3065 	 */
3066 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3067 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3068 }
3069 
3070 /*
3071  * thin-pool <metadata dev> <data dev>
3072  *	     <data block size (sectors)>
3073  *	     <low water mark (blocks)>
3074  *	     [<#feature args> [<arg>]*]
3075  *
3076  * Optional feature arguments are:
3077  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3078  *	     ignore_discard: disable discard
3079  *	     no_discard_passdown: don't pass discards down to the data device
3080  *	     read_only: Don't allow any changes to be made to the pool metadata.
3081  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3082  */
3083 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3084 {
3085 	int r, pool_created = 0;
3086 	struct pool_c *pt;
3087 	struct pool *pool;
3088 	struct pool_features pf;
3089 	struct dm_arg_set as;
3090 	struct dm_dev *data_dev;
3091 	unsigned long block_size;
3092 	dm_block_t low_water_blocks;
3093 	struct dm_dev *metadata_dev;
3094 	fmode_t metadata_mode;
3095 
3096 	/*
3097 	 * FIXME Remove validation from scope of lock.
3098 	 */
3099 	mutex_lock(&dm_thin_pool_table.mutex);
3100 
3101 	if (argc < 4) {
3102 		ti->error = "Invalid argument count";
3103 		r = -EINVAL;
3104 		goto out_unlock;
3105 	}
3106 
3107 	as.argc = argc;
3108 	as.argv = argv;
3109 
3110 	/*
3111 	 * Set default pool features.
3112 	 */
3113 	pool_features_init(&pf);
3114 
3115 	dm_consume_args(&as, 4);
3116 	r = parse_pool_features(&as, &pf, ti);
3117 	if (r)
3118 		goto out_unlock;
3119 
3120 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3121 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3122 	if (r) {
3123 		ti->error = "Error opening metadata block device";
3124 		goto out_unlock;
3125 	}
3126 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3127 
3128 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3129 	if (r) {
3130 		ti->error = "Error getting data device";
3131 		goto out_metadata;
3132 	}
3133 
3134 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3135 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3136 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3137 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3138 		ti->error = "Invalid block size";
3139 		r = -EINVAL;
3140 		goto out;
3141 	}
3142 
3143 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3144 		ti->error = "Invalid low water mark";
3145 		r = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3150 	if (!pt) {
3151 		r = -ENOMEM;
3152 		goto out;
3153 	}
3154 
3155 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3156 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3157 	if (IS_ERR(pool)) {
3158 		r = PTR_ERR(pool);
3159 		goto out_free_pt;
3160 	}
3161 
3162 	/*
3163 	 * 'pool_created' reflects whether this is the first table load.
3164 	 * Top level discard support is not allowed to be changed after
3165 	 * initial load.  This would require a pool reload to trigger thin
3166 	 * device changes.
3167 	 */
3168 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3169 		ti->error = "Discard support cannot be disabled once enabled";
3170 		r = -EINVAL;
3171 		goto out_flags_changed;
3172 	}
3173 
3174 	pt->pool = pool;
3175 	pt->ti = ti;
3176 	pt->metadata_dev = metadata_dev;
3177 	pt->data_dev = data_dev;
3178 	pt->low_water_blocks = low_water_blocks;
3179 	pt->adjusted_pf = pt->requested_pf = pf;
3180 	ti->num_flush_bios = 1;
3181 
3182 	/*
3183 	 * Only need to enable discards if the pool should pass
3184 	 * them down to the data device.  The thin device's discard
3185 	 * processing will cause mappings to be removed from the btree.
3186 	 */
3187 	ti->discard_zeroes_data_unsupported = true;
3188 	if (pf.discard_enabled && pf.discard_passdown) {
3189 		ti->num_discard_bios = 1;
3190 
3191 		/*
3192 		 * Setting 'discards_supported' circumvents the normal
3193 		 * stacking of discard limits (this keeps the pool and
3194 		 * thin devices' discard limits consistent).
3195 		 */
3196 		ti->discards_supported = true;
3197 	}
3198 	ti->private = pt;
3199 
3200 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3201 						calc_metadata_threshold(pt),
3202 						metadata_low_callback,
3203 						pool);
3204 	if (r)
3205 		goto out_flags_changed;
3206 
3207 	pt->callbacks.congested_fn = pool_is_congested;
3208 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3209 
3210 	mutex_unlock(&dm_thin_pool_table.mutex);
3211 
3212 	return 0;
3213 
3214 out_flags_changed:
3215 	__pool_dec(pool);
3216 out_free_pt:
3217 	kfree(pt);
3218 out:
3219 	dm_put_device(ti, data_dev);
3220 out_metadata:
3221 	dm_put_device(ti, metadata_dev);
3222 out_unlock:
3223 	mutex_unlock(&dm_thin_pool_table.mutex);
3224 
3225 	return r;
3226 }
3227 
3228 static int pool_map(struct dm_target *ti, struct bio *bio)
3229 {
3230 	int r;
3231 	struct pool_c *pt = ti->private;
3232 	struct pool *pool = pt->pool;
3233 	unsigned long flags;
3234 
3235 	/*
3236 	 * As this is a singleton target, ti->begin is always zero.
3237 	 */
3238 	spin_lock_irqsave(&pool->lock, flags);
3239 	bio->bi_bdev = pt->data_dev->bdev;
3240 	r = DM_MAPIO_REMAPPED;
3241 	spin_unlock_irqrestore(&pool->lock, flags);
3242 
3243 	return r;
3244 }
3245 
3246 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3247 {
3248 	int r;
3249 	struct pool_c *pt = ti->private;
3250 	struct pool *pool = pt->pool;
3251 	sector_t data_size = ti->len;
3252 	dm_block_t sb_data_size;
3253 
3254 	*need_commit = false;
3255 
3256 	(void) sector_div(data_size, pool->sectors_per_block);
3257 
3258 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3259 	if (r) {
3260 		DMERR("%s: failed to retrieve data device size",
3261 		      dm_device_name(pool->pool_md));
3262 		return r;
3263 	}
3264 
3265 	if (data_size < sb_data_size) {
3266 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3267 		      dm_device_name(pool->pool_md),
3268 		      (unsigned long long)data_size, sb_data_size);
3269 		return -EINVAL;
3270 
3271 	} else if (data_size > sb_data_size) {
3272 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3273 			DMERR("%s: unable to grow the data device until repaired.",
3274 			      dm_device_name(pool->pool_md));
3275 			return 0;
3276 		}
3277 
3278 		if (sb_data_size)
3279 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3280 			       dm_device_name(pool->pool_md),
3281 			       sb_data_size, (unsigned long long)data_size);
3282 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3283 		if (r) {
3284 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3285 			return r;
3286 		}
3287 
3288 		*need_commit = true;
3289 	}
3290 
3291 	return 0;
3292 }
3293 
3294 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3295 {
3296 	int r;
3297 	struct pool_c *pt = ti->private;
3298 	struct pool *pool = pt->pool;
3299 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3300 
3301 	*need_commit = false;
3302 
3303 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3304 
3305 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3306 	if (r) {
3307 		DMERR("%s: failed to retrieve metadata device size",
3308 		      dm_device_name(pool->pool_md));
3309 		return r;
3310 	}
3311 
3312 	if (metadata_dev_size < sb_metadata_dev_size) {
3313 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3314 		      dm_device_name(pool->pool_md),
3315 		      metadata_dev_size, sb_metadata_dev_size);
3316 		return -EINVAL;
3317 
3318 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3319 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3320 			DMERR("%s: unable to grow the metadata device until repaired.",
3321 			      dm_device_name(pool->pool_md));
3322 			return 0;
3323 		}
3324 
3325 		warn_if_metadata_device_too_big(pool->md_dev);
3326 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3327 		       dm_device_name(pool->pool_md),
3328 		       sb_metadata_dev_size, metadata_dev_size);
3329 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3330 		if (r) {
3331 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3332 			return r;
3333 		}
3334 
3335 		*need_commit = true;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 /*
3342  * Retrieves the number of blocks of the data device from
3343  * the superblock and compares it to the actual device size,
3344  * thus resizing the data device in case it has grown.
3345  *
3346  * This both copes with opening preallocated data devices in the ctr
3347  * being followed by a resume
3348  * -and-
3349  * calling the resume method individually after userspace has
3350  * grown the data device in reaction to a table event.
3351  */
3352 static int pool_preresume(struct dm_target *ti)
3353 {
3354 	int r;
3355 	bool need_commit1, need_commit2;
3356 	struct pool_c *pt = ti->private;
3357 	struct pool *pool = pt->pool;
3358 
3359 	/*
3360 	 * Take control of the pool object.
3361 	 */
3362 	r = bind_control_target(pool, ti);
3363 	if (r)
3364 		return r;
3365 
3366 	r = maybe_resize_data_dev(ti, &need_commit1);
3367 	if (r)
3368 		return r;
3369 
3370 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3371 	if (r)
3372 		return r;
3373 
3374 	if (need_commit1 || need_commit2)
3375 		(void) commit(pool);
3376 
3377 	return 0;
3378 }
3379 
3380 static void pool_suspend_active_thins(struct pool *pool)
3381 {
3382 	struct thin_c *tc;
3383 
3384 	/* Suspend all active thin devices */
3385 	tc = get_first_thin(pool);
3386 	while (tc) {
3387 		dm_internal_suspend_noflush(tc->thin_md);
3388 		tc = get_next_thin(pool, tc);
3389 	}
3390 }
3391 
3392 static void pool_resume_active_thins(struct pool *pool)
3393 {
3394 	struct thin_c *tc;
3395 
3396 	/* Resume all active thin devices */
3397 	tc = get_first_thin(pool);
3398 	while (tc) {
3399 		dm_internal_resume(tc->thin_md);
3400 		tc = get_next_thin(pool, tc);
3401 	}
3402 }
3403 
3404 static void pool_resume(struct dm_target *ti)
3405 {
3406 	struct pool_c *pt = ti->private;
3407 	struct pool *pool = pt->pool;
3408 	unsigned long flags;
3409 
3410 	/*
3411 	 * Must requeue active_thins' bios and then resume
3412 	 * active_thins _before_ clearing 'suspend' flag.
3413 	 */
3414 	requeue_bios(pool);
3415 	pool_resume_active_thins(pool);
3416 
3417 	spin_lock_irqsave(&pool->lock, flags);
3418 	pool->low_water_triggered = false;
3419 	pool->suspended = false;
3420 	spin_unlock_irqrestore(&pool->lock, flags);
3421 
3422 	do_waker(&pool->waker.work);
3423 }
3424 
3425 static void pool_presuspend(struct dm_target *ti)
3426 {
3427 	struct pool_c *pt = ti->private;
3428 	struct pool *pool = pt->pool;
3429 	unsigned long flags;
3430 
3431 	spin_lock_irqsave(&pool->lock, flags);
3432 	pool->suspended = true;
3433 	spin_unlock_irqrestore(&pool->lock, flags);
3434 
3435 	pool_suspend_active_thins(pool);
3436 }
3437 
3438 static void pool_presuspend_undo(struct dm_target *ti)
3439 {
3440 	struct pool_c *pt = ti->private;
3441 	struct pool *pool = pt->pool;
3442 	unsigned long flags;
3443 
3444 	pool_resume_active_thins(pool);
3445 
3446 	spin_lock_irqsave(&pool->lock, flags);
3447 	pool->suspended = false;
3448 	spin_unlock_irqrestore(&pool->lock, flags);
3449 }
3450 
3451 static void pool_postsuspend(struct dm_target *ti)
3452 {
3453 	struct pool_c *pt = ti->private;
3454 	struct pool *pool = pt->pool;
3455 
3456 	cancel_delayed_work_sync(&pool->waker);
3457 	cancel_delayed_work_sync(&pool->no_space_timeout);
3458 	flush_workqueue(pool->wq);
3459 	(void) commit(pool);
3460 }
3461 
3462 static int check_arg_count(unsigned argc, unsigned args_required)
3463 {
3464 	if (argc != args_required) {
3465 		DMWARN("Message received with %u arguments instead of %u.",
3466 		       argc, args_required);
3467 		return -EINVAL;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3474 {
3475 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3476 	    *dev_id <= MAX_DEV_ID)
3477 		return 0;
3478 
3479 	if (warning)
3480 		DMWARN("Message received with invalid device id: %s", arg);
3481 
3482 	return -EINVAL;
3483 }
3484 
3485 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3486 {
3487 	dm_thin_id dev_id;
3488 	int r;
3489 
3490 	r = check_arg_count(argc, 2);
3491 	if (r)
3492 		return r;
3493 
3494 	r = read_dev_id(argv[1], &dev_id, 1);
3495 	if (r)
3496 		return r;
3497 
3498 	r = dm_pool_create_thin(pool->pmd, dev_id);
3499 	if (r) {
3500 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3501 		       argv[1]);
3502 		return r;
3503 	}
3504 
3505 	return 0;
3506 }
3507 
3508 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3509 {
3510 	dm_thin_id dev_id;
3511 	dm_thin_id origin_dev_id;
3512 	int r;
3513 
3514 	r = check_arg_count(argc, 3);
3515 	if (r)
3516 		return r;
3517 
3518 	r = read_dev_id(argv[1], &dev_id, 1);
3519 	if (r)
3520 		return r;
3521 
3522 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3523 	if (r)
3524 		return r;
3525 
3526 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3527 	if (r) {
3528 		DMWARN("Creation of new snapshot %s of device %s failed.",
3529 		       argv[1], argv[2]);
3530 		return r;
3531 	}
3532 
3533 	return 0;
3534 }
3535 
3536 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3537 {
3538 	dm_thin_id dev_id;
3539 	int r;
3540 
3541 	r = check_arg_count(argc, 2);
3542 	if (r)
3543 		return r;
3544 
3545 	r = read_dev_id(argv[1], &dev_id, 1);
3546 	if (r)
3547 		return r;
3548 
3549 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3550 	if (r)
3551 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3552 
3553 	return r;
3554 }
3555 
3556 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3557 {
3558 	dm_thin_id old_id, new_id;
3559 	int r;
3560 
3561 	r = check_arg_count(argc, 3);
3562 	if (r)
3563 		return r;
3564 
3565 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3566 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3567 		return -EINVAL;
3568 	}
3569 
3570 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3571 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3572 		return -EINVAL;
3573 	}
3574 
3575 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3576 	if (r) {
3577 		DMWARN("Failed to change transaction id from %s to %s.",
3578 		       argv[1], argv[2]);
3579 		return r;
3580 	}
3581 
3582 	return 0;
3583 }
3584 
3585 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3586 {
3587 	int r;
3588 
3589 	r = check_arg_count(argc, 1);
3590 	if (r)
3591 		return r;
3592 
3593 	(void) commit(pool);
3594 
3595 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3596 	if (r)
3597 		DMWARN("reserve_metadata_snap message failed.");
3598 
3599 	return r;
3600 }
3601 
3602 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3603 {
3604 	int r;
3605 
3606 	r = check_arg_count(argc, 1);
3607 	if (r)
3608 		return r;
3609 
3610 	r = dm_pool_release_metadata_snap(pool->pmd);
3611 	if (r)
3612 		DMWARN("release_metadata_snap message failed.");
3613 
3614 	return r;
3615 }
3616 
3617 /*
3618  * Messages supported:
3619  *   create_thin	<dev_id>
3620  *   create_snap	<dev_id> <origin_id>
3621  *   delete		<dev_id>
3622  *   set_transaction_id <current_trans_id> <new_trans_id>
3623  *   reserve_metadata_snap
3624  *   release_metadata_snap
3625  */
3626 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3627 {
3628 	int r = -EINVAL;
3629 	struct pool_c *pt = ti->private;
3630 	struct pool *pool = pt->pool;
3631 
3632 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3633 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3634 		      dm_device_name(pool->pool_md));
3635 		return -EOPNOTSUPP;
3636 	}
3637 
3638 	if (!strcasecmp(argv[0], "create_thin"))
3639 		r = process_create_thin_mesg(argc, argv, pool);
3640 
3641 	else if (!strcasecmp(argv[0], "create_snap"))
3642 		r = process_create_snap_mesg(argc, argv, pool);
3643 
3644 	else if (!strcasecmp(argv[0], "delete"))
3645 		r = process_delete_mesg(argc, argv, pool);
3646 
3647 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3648 		r = process_set_transaction_id_mesg(argc, argv, pool);
3649 
3650 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3651 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3652 
3653 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3654 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3655 
3656 	else
3657 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3658 
3659 	if (!r)
3660 		(void) commit(pool);
3661 
3662 	return r;
3663 }
3664 
3665 static void emit_flags(struct pool_features *pf, char *result,
3666 		       unsigned sz, unsigned maxlen)
3667 {
3668 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3669 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3670 		pf->error_if_no_space;
3671 	DMEMIT("%u ", count);
3672 
3673 	if (!pf->zero_new_blocks)
3674 		DMEMIT("skip_block_zeroing ");
3675 
3676 	if (!pf->discard_enabled)
3677 		DMEMIT("ignore_discard ");
3678 
3679 	if (!pf->discard_passdown)
3680 		DMEMIT("no_discard_passdown ");
3681 
3682 	if (pf->mode == PM_READ_ONLY)
3683 		DMEMIT("read_only ");
3684 
3685 	if (pf->error_if_no_space)
3686 		DMEMIT("error_if_no_space ");
3687 }
3688 
3689 /*
3690  * Status line is:
3691  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3692  *    <used data sectors>/<total data sectors> <held metadata root>
3693  *    <pool mode> <discard config> <no space config> <needs_check>
3694  */
3695 static void pool_status(struct dm_target *ti, status_type_t type,
3696 			unsigned status_flags, char *result, unsigned maxlen)
3697 {
3698 	int r;
3699 	unsigned sz = 0;
3700 	uint64_t transaction_id;
3701 	dm_block_t nr_free_blocks_data;
3702 	dm_block_t nr_free_blocks_metadata;
3703 	dm_block_t nr_blocks_data;
3704 	dm_block_t nr_blocks_metadata;
3705 	dm_block_t held_root;
3706 	char buf[BDEVNAME_SIZE];
3707 	char buf2[BDEVNAME_SIZE];
3708 	struct pool_c *pt = ti->private;
3709 	struct pool *pool = pt->pool;
3710 
3711 	switch (type) {
3712 	case STATUSTYPE_INFO:
3713 		if (get_pool_mode(pool) == PM_FAIL) {
3714 			DMEMIT("Fail");
3715 			break;
3716 		}
3717 
3718 		/* Commit to ensure statistics aren't out-of-date */
3719 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3720 			(void) commit(pool);
3721 
3722 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3723 		if (r) {
3724 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3725 			      dm_device_name(pool->pool_md), r);
3726 			goto err;
3727 		}
3728 
3729 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3730 		if (r) {
3731 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3732 			      dm_device_name(pool->pool_md), r);
3733 			goto err;
3734 		}
3735 
3736 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3737 		if (r) {
3738 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3739 			      dm_device_name(pool->pool_md), r);
3740 			goto err;
3741 		}
3742 
3743 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3744 		if (r) {
3745 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3746 			      dm_device_name(pool->pool_md), r);
3747 			goto err;
3748 		}
3749 
3750 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3751 		if (r) {
3752 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3753 			      dm_device_name(pool->pool_md), r);
3754 			goto err;
3755 		}
3756 
3757 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3758 		if (r) {
3759 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3760 			      dm_device_name(pool->pool_md), r);
3761 			goto err;
3762 		}
3763 
3764 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3765 		       (unsigned long long)transaction_id,
3766 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3767 		       (unsigned long long)nr_blocks_metadata,
3768 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3769 		       (unsigned long long)nr_blocks_data);
3770 
3771 		if (held_root)
3772 			DMEMIT("%llu ", held_root);
3773 		else
3774 			DMEMIT("- ");
3775 
3776 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3777 			DMEMIT("out_of_data_space ");
3778 		else if (pool->pf.mode == PM_READ_ONLY)
3779 			DMEMIT("ro ");
3780 		else
3781 			DMEMIT("rw ");
3782 
3783 		if (!pool->pf.discard_enabled)
3784 			DMEMIT("ignore_discard ");
3785 		else if (pool->pf.discard_passdown)
3786 			DMEMIT("discard_passdown ");
3787 		else
3788 			DMEMIT("no_discard_passdown ");
3789 
3790 		if (pool->pf.error_if_no_space)
3791 			DMEMIT("error_if_no_space ");
3792 		else
3793 			DMEMIT("queue_if_no_space ");
3794 
3795 		if (dm_pool_metadata_needs_check(pool->pmd))
3796 			DMEMIT("needs_check ");
3797 		else
3798 			DMEMIT("- ");
3799 
3800 		break;
3801 
3802 	case STATUSTYPE_TABLE:
3803 		DMEMIT("%s %s %lu %llu ",
3804 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3805 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3806 		       (unsigned long)pool->sectors_per_block,
3807 		       (unsigned long long)pt->low_water_blocks);
3808 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3809 		break;
3810 	}
3811 	return;
3812 
3813 err:
3814 	DMEMIT("Error");
3815 }
3816 
3817 static int pool_iterate_devices(struct dm_target *ti,
3818 				iterate_devices_callout_fn fn, void *data)
3819 {
3820 	struct pool_c *pt = ti->private;
3821 
3822 	return fn(ti, pt->data_dev, 0, ti->len, data);
3823 }
3824 
3825 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3826 {
3827 	struct pool_c *pt = ti->private;
3828 	struct pool *pool = pt->pool;
3829 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3830 
3831 	/*
3832 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3833 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3834 	 * This is especially beneficial when the pool's data device is a RAID
3835 	 * device that has a full stripe width that matches pool->sectors_per_block
3836 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3837 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3838 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3839 	 */
3840 	if (limits->max_sectors < pool->sectors_per_block) {
3841 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3842 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3843 				limits->max_sectors--;
3844 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3845 		}
3846 	}
3847 
3848 	/*
3849 	 * If the system-determined stacked limits are compatible with the
3850 	 * pool's blocksize (io_opt is a factor) do not override them.
3851 	 */
3852 	if (io_opt_sectors < pool->sectors_per_block ||
3853 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3854 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3855 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3856 		else
3857 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3858 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3859 	}
3860 
3861 	/*
3862 	 * pt->adjusted_pf is a staging area for the actual features to use.
3863 	 * They get transferred to the live pool in bind_control_target()
3864 	 * called from pool_preresume().
3865 	 */
3866 	if (!pt->adjusted_pf.discard_enabled) {
3867 		/*
3868 		 * Must explicitly disallow stacking discard limits otherwise the
3869 		 * block layer will stack them if pool's data device has support.
3870 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3871 		 * user to see that, so make sure to set all discard limits to 0.
3872 		 */
3873 		limits->discard_granularity = 0;
3874 		return;
3875 	}
3876 
3877 	disable_passdown_if_not_supported(pt);
3878 
3879 	/*
3880 	 * The pool uses the same discard limits as the underlying data
3881 	 * device.  DM core has already set this up.
3882 	 */
3883 }
3884 
3885 static struct target_type pool_target = {
3886 	.name = "thin-pool",
3887 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3888 		    DM_TARGET_IMMUTABLE,
3889 	.version = {1, 17, 0},
3890 	.module = THIS_MODULE,
3891 	.ctr = pool_ctr,
3892 	.dtr = pool_dtr,
3893 	.map = pool_map,
3894 	.presuspend = pool_presuspend,
3895 	.presuspend_undo = pool_presuspend_undo,
3896 	.postsuspend = pool_postsuspend,
3897 	.preresume = pool_preresume,
3898 	.resume = pool_resume,
3899 	.message = pool_message,
3900 	.status = pool_status,
3901 	.iterate_devices = pool_iterate_devices,
3902 	.io_hints = pool_io_hints,
3903 };
3904 
3905 /*----------------------------------------------------------------
3906  * Thin target methods
3907  *--------------------------------------------------------------*/
3908 static void thin_get(struct thin_c *tc)
3909 {
3910 	atomic_inc(&tc->refcount);
3911 }
3912 
3913 static void thin_put(struct thin_c *tc)
3914 {
3915 	if (atomic_dec_and_test(&tc->refcount))
3916 		complete(&tc->can_destroy);
3917 }
3918 
3919 static void thin_dtr(struct dm_target *ti)
3920 {
3921 	struct thin_c *tc = ti->private;
3922 	unsigned long flags;
3923 
3924 	spin_lock_irqsave(&tc->pool->lock, flags);
3925 	list_del_rcu(&tc->list);
3926 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3927 	synchronize_rcu();
3928 
3929 	thin_put(tc);
3930 	wait_for_completion(&tc->can_destroy);
3931 
3932 	mutex_lock(&dm_thin_pool_table.mutex);
3933 
3934 	__pool_dec(tc->pool);
3935 	dm_pool_close_thin_device(tc->td);
3936 	dm_put_device(ti, tc->pool_dev);
3937 	if (tc->origin_dev)
3938 		dm_put_device(ti, tc->origin_dev);
3939 	kfree(tc);
3940 
3941 	mutex_unlock(&dm_thin_pool_table.mutex);
3942 }
3943 
3944 /*
3945  * Thin target parameters:
3946  *
3947  * <pool_dev> <dev_id> [origin_dev]
3948  *
3949  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3950  * dev_id: the internal device identifier
3951  * origin_dev: a device external to the pool that should act as the origin
3952  *
3953  * If the pool device has discards disabled, they get disabled for the thin
3954  * device as well.
3955  */
3956 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3957 {
3958 	int r;
3959 	struct thin_c *tc;
3960 	struct dm_dev *pool_dev, *origin_dev;
3961 	struct mapped_device *pool_md;
3962 	unsigned long flags;
3963 
3964 	mutex_lock(&dm_thin_pool_table.mutex);
3965 
3966 	if (argc != 2 && argc != 3) {
3967 		ti->error = "Invalid argument count";
3968 		r = -EINVAL;
3969 		goto out_unlock;
3970 	}
3971 
3972 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3973 	if (!tc) {
3974 		ti->error = "Out of memory";
3975 		r = -ENOMEM;
3976 		goto out_unlock;
3977 	}
3978 	tc->thin_md = dm_table_get_md(ti->table);
3979 	spin_lock_init(&tc->lock);
3980 	INIT_LIST_HEAD(&tc->deferred_cells);
3981 	bio_list_init(&tc->deferred_bio_list);
3982 	bio_list_init(&tc->retry_on_resume_list);
3983 	tc->sort_bio_list = RB_ROOT;
3984 
3985 	if (argc == 3) {
3986 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3987 		if (r) {
3988 			ti->error = "Error opening origin device";
3989 			goto bad_origin_dev;
3990 		}
3991 		tc->origin_dev = origin_dev;
3992 	}
3993 
3994 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3995 	if (r) {
3996 		ti->error = "Error opening pool device";
3997 		goto bad_pool_dev;
3998 	}
3999 	tc->pool_dev = pool_dev;
4000 
4001 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4002 		ti->error = "Invalid device id";
4003 		r = -EINVAL;
4004 		goto bad_common;
4005 	}
4006 
4007 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4008 	if (!pool_md) {
4009 		ti->error = "Couldn't get pool mapped device";
4010 		r = -EINVAL;
4011 		goto bad_common;
4012 	}
4013 
4014 	tc->pool = __pool_table_lookup(pool_md);
4015 	if (!tc->pool) {
4016 		ti->error = "Couldn't find pool object";
4017 		r = -EINVAL;
4018 		goto bad_pool_lookup;
4019 	}
4020 	__pool_inc(tc->pool);
4021 
4022 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4023 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4024 		r = -EINVAL;
4025 		goto bad_pool;
4026 	}
4027 
4028 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4029 	if (r) {
4030 		ti->error = "Couldn't open thin internal device";
4031 		goto bad_pool;
4032 	}
4033 
4034 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4035 	if (r)
4036 		goto bad;
4037 
4038 	ti->num_flush_bios = 1;
4039 	ti->flush_supported = true;
4040 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4041 
4042 	/* In case the pool supports discards, pass them on. */
4043 	ti->discard_zeroes_data_unsupported = true;
4044 	if (tc->pool->pf.discard_enabled) {
4045 		ti->discards_supported = true;
4046 		ti->num_discard_bios = 1;
4047 		ti->split_discard_bios = false;
4048 	}
4049 
4050 	mutex_unlock(&dm_thin_pool_table.mutex);
4051 
4052 	spin_lock_irqsave(&tc->pool->lock, flags);
4053 	if (tc->pool->suspended) {
4054 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4055 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4056 		ti->error = "Unable to activate thin device while pool is suspended";
4057 		r = -EINVAL;
4058 		goto bad;
4059 	}
4060 	atomic_set(&tc->refcount, 1);
4061 	init_completion(&tc->can_destroy);
4062 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4063 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4064 	/*
4065 	 * This synchronize_rcu() call is needed here otherwise we risk a
4066 	 * wake_worker() call finding no bios to process (because the newly
4067 	 * added tc isn't yet visible).  So this reduces latency since we
4068 	 * aren't then dependent on the periodic commit to wake_worker().
4069 	 */
4070 	synchronize_rcu();
4071 
4072 	dm_put(pool_md);
4073 
4074 	return 0;
4075 
4076 bad:
4077 	dm_pool_close_thin_device(tc->td);
4078 bad_pool:
4079 	__pool_dec(tc->pool);
4080 bad_pool_lookup:
4081 	dm_put(pool_md);
4082 bad_common:
4083 	dm_put_device(ti, tc->pool_dev);
4084 bad_pool_dev:
4085 	if (tc->origin_dev)
4086 		dm_put_device(ti, tc->origin_dev);
4087 bad_origin_dev:
4088 	kfree(tc);
4089 out_unlock:
4090 	mutex_unlock(&dm_thin_pool_table.mutex);
4091 
4092 	return r;
4093 }
4094 
4095 static int thin_map(struct dm_target *ti, struct bio *bio)
4096 {
4097 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4098 
4099 	return thin_bio_map(ti, bio);
4100 }
4101 
4102 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4103 {
4104 	unsigned long flags;
4105 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4106 	struct list_head work;
4107 	struct dm_thin_new_mapping *m, *tmp;
4108 	struct pool *pool = h->tc->pool;
4109 
4110 	if (h->shared_read_entry) {
4111 		INIT_LIST_HEAD(&work);
4112 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4113 
4114 		spin_lock_irqsave(&pool->lock, flags);
4115 		list_for_each_entry_safe(m, tmp, &work, list) {
4116 			list_del(&m->list);
4117 			__complete_mapping_preparation(m);
4118 		}
4119 		spin_unlock_irqrestore(&pool->lock, flags);
4120 	}
4121 
4122 	if (h->all_io_entry) {
4123 		INIT_LIST_HEAD(&work);
4124 		dm_deferred_entry_dec(h->all_io_entry, &work);
4125 		if (!list_empty(&work)) {
4126 			spin_lock_irqsave(&pool->lock, flags);
4127 			list_for_each_entry_safe(m, tmp, &work, list)
4128 				list_add_tail(&m->list, &pool->prepared_discards);
4129 			spin_unlock_irqrestore(&pool->lock, flags);
4130 			wake_worker(pool);
4131 		}
4132 	}
4133 
4134 	if (h->cell)
4135 		cell_defer_no_holder(h->tc, h->cell);
4136 
4137 	return 0;
4138 }
4139 
4140 static void thin_presuspend(struct dm_target *ti)
4141 {
4142 	struct thin_c *tc = ti->private;
4143 
4144 	if (dm_noflush_suspending(ti))
4145 		noflush_work(tc, do_noflush_start);
4146 }
4147 
4148 static void thin_postsuspend(struct dm_target *ti)
4149 {
4150 	struct thin_c *tc = ti->private;
4151 
4152 	/*
4153 	 * The dm_noflush_suspending flag has been cleared by now, so
4154 	 * unfortunately we must always run this.
4155 	 */
4156 	noflush_work(tc, do_noflush_stop);
4157 }
4158 
4159 static int thin_preresume(struct dm_target *ti)
4160 {
4161 	struct thin_c *tc = ti->private;
4162 
4163 	if (tc->origin_dev)
4164 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4165 
4166 	return 0;
4167 }
4168 
4169 /*
4170  * <nr mapped sectors> <highest mapped sector>
4171  */
4172 static void thin_status(struct dm_target *ti, status_type_t type,
4173 			unsigned status_flags, char *result, unsigned maxlen)
4174 {
4175 	int r;
4176 	ssize_t sz = 0;
4177 	dm_block_t mapped, highest;
4178 	char buf[BDEVNAME_SIZE];
4179 	struct thin_c *tc = ti->private;
4180 
4181 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4182 		DMEMIT("Fail");
4183 		return;
4184 	}
4185 
4186 	if (!tc->td)
4187 		DMEMIT("-");
4188 	else {
4189 		switch (type) {
4190 		case STATUSTYPE_INFO:
4191 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4192 			if (r) {
4193 				DMERR("dm_thin_get_mapped_count returned %d", r);
4194 				goto err;
4195 			}
4196 
4197 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4198 			if (r < 0) {
4199 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4200 				goto err;
4201 			}
4202 
4203 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4204 			if (r)
4205 				DMEMIT("%llu", ((highest + 1) *
4206 						tc->pool->sectors_per_block) - 1);
4207 			else
4208 				DMEMIT("-");
4209 			break;
4210 
4211 		case STATUSTYPE_TABLE:
4212 			DMEMIT("%s %lu",
4213 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4214 			       (unsigned long) tc->dev_id);
4215 			if (tc->origin_dev)
4216 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4217 			break;
4218 		}
4219 	}
4220 
4221 	return;
4222 
4223 err:
4224 	DMEMIT("Error");
4225 }
4226 
4227 static int thin_iterate_devices(struct dm_target *ti,
4228 				iterate_devices_callout_fn fn, void *data)
4229 {
4230 	sector_t blocks;
4231 	struct thin_c *tc = ti->private;
4232 	struct pool *pool = tc->pool;
4233 
4234 	/*
4235 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4236 	 * we follow a more convoluted path through to the pool's target.
4237 	 */
4238 	if (!pool->ti)
4239 		return 0;	/* nothing is bound */
4240 
4241 	blocks = pool->ti->len;
4242 	(void) sector_div(blocks, pool->sectors_per_block);
4243 	if (blocks)
4244 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4245 
4246 	return 0;
4247 }
4248 
4249 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4250 {
4251 	struct thin_c *tc = ti->private;
4252 	struct pool *pool = tc->pool;
4253 
4254 	if (!pool->pf.discard_enabled)
4255 		return;
4256 
4257 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4258 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4259 }
4260 
4261 static struct target_type thin_target = {
4262 	.name = "thin",
4263 	.version = {1, 17, 0},
4264 	.module	= THIS_MODULE,
4265 	.ctr = thin_ctr,
4266 	.dtr = thin_dtr,
4267 	.map = thin_map,
4268 	.end_io = thin_endio,
4269 	.preresume = thin_preresume,
4270 	.presuspend = thin_presuspend,
4271 	.postsuspend = thin_postsuspend,
4272 	.status = thin_status,
4273 	.iterate_devices = thin_iterate_devices,
4274 	.io_hints = thin_io_hints,
4275 };
4276 
4277 /*----------------------------------------------------------------*/
4278 
4279 static int __init dm_thin_init(void)
4280 {
4281 	int r;
4282 
4283 	pool_table_init();
4284 
4285 	r = dm_register_target(&thin_target);
4286 	if (r)
4287 		return r;
4288 
4289 	r = dm_register_target(&pool_target);
4290 	if (r)
4291 		goto bad_pool_target;
4292 
4293 	r = -ENOMEM;
4294 
4295 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4296 	if (!_new_mapping_cache)
4297 		goto bad_new_mapping_cache;
4298 
4299 	return 0;
4300 
4301 bad_new_mapping_cache:
4302 	dm_unregister_target(&pool_target);
4303 bad_pool_target:
4304 	dm_unregister_target(&thin_target);
4305 
4306 	return r;
4307 }
4308 
4309 static void dm_thin_exit(void)
4310 {
4311 	dm_unregister_target(&thin_target);
4312 	dm_unregister_target(&pool_target);
4313 
4314 	kmem_cache_destroy(_new_mapping_cache);
4315 }
4316 
4317 module_init(dm_thin_init);
4318 module_exit(dm_thin_exit);
4319 
4320 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4321 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4322 
4323 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4324 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4325 MODULE_LICENSE("GPL");
4326