1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 19 #define DM_MSG_PREFIX "thin" 20 21 /* 22 * Tunable constants 23 */ 24 #define ENDIO_HOOK_POOL_SIZE 1024 25 #define MAPPING_POOL_SIZE 1024 26 #define PRISON_CELLS 1024 27 #define COMMIT_PERIOD HZ 28 29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 30 "A percentage of time allocated for copy on write"); 31 32 /* 33 * The block size of the device holding pool data must be 34 * between 64KB and 1GB. 35 */ 36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 38 39 /* 40 * Device id is restricted to 24 bits. 41 */ 42 #define MAX_DEV_ID ((1 << 24) - 1) 43 44 /* 45 * How do we handle breaking sharing of data blocks? 46 * ================================================= 47 * 48 * We use a standard copy-on-write btree to store the mappings for the 49 * devices (note I'm talking about copy-on-write of the metadata here, not 50 * the data). When you take an internal snapshot you clone the root node 51 * of the origin btree. After this there is no concept of an origin or a 52 * snapshot. They are just two device trees that happen to point to the 53 * same data blocks. 54 * 55 * When we get a write in we decide if it's to a shared data block using 56 * some timestamp magic. If it is, we have to break sharing. 57 * 58 * Let's say we write to a shared block in what was the origin. The 59 * steps are: 60 * 61 * i) plug io further to this physical block. (see bio_prison code). 62 * 63 * ii) quiesce any read io to that shared data block. Obviously 64 * including all devices that share this block. (see dm_deferred_set code) 65 * 66 * iii) copy the data block to a newly allocate block. This step can be 67 * missed out if the io covers the block. (schedule_copy). 68 * 69 * iv) insert the new mapping into the origin's btree 70 * (process_prepared_mapping). This act of inserting breaks some 71 * sharing of btree nodes between the two devices. Breaking sharing only 72 * effects the btree of that specific device. Btrees for the other 73 * devices that share the block never change. The btree for the origin 74 * device as it was after the last commit is untouched, ie. we're using 75 * persistent data structures in the functional programming sense. 76 * 77 * v) unplug io to this physical block, including the io that triggered 78 * the breaking of sharing. 79 * 80 * Steps (ii) and (iii) occur in parallel. 81 * 82 * The metadata _doesn't_ need to be committed before the io continues. We 83 * get away with this because the io is always written to a _new_ block. 84 * If there's a crash, then: 85 * 86 * - The origin mapping will point to the old origin block (the shared 87 * one). This will contain the data as it was before the io that triggered 88 * the breaking of sharing came in. 89 * 90 * - The snap mapping still points to the old block. As it would after 91 * the commit. 92 * 93 * The downside of this scheme is the timestamp magic isn't perfect, and 94 * will continue to think that data block in the snapshot device is shared 95 * even after the write to the origin has broken sharing. I suspect data 96 * blocks will typically be shared by many different devices, so we're 97 * breaking sharing n + 1 times, rather than n, where n is the number of 98 * devices that reference this data block. At the moment I think the 99 * benefits far, far outweigh the disadvantages. 100 */ 101 102 /*----------------------------------------------------------------*/ 103 104 /* 105 * Key building. 106 */ 107 static void build_data_key(struct dm_thin_device *td, 108 dm_block_t b, struct dm_cell_key *key) 109 { 110 key->virtual = 0; 111 key->dev = dm_thin_dev_id(td); 112 key->block = b; 113 } 114 115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 116 struct dm_cell_key *key) 117 { 118 key->virtual = 1; 119 key->dev = dm_thin_dev_id(td); 120 key->block = b; 121 } 122 123 /*----------------------------------------------------------------*/ 124 125 /* 126 * A pool device ties together a metadata device and a data device. It 127 * also provides the interface for creating and destroying internal 128 * devices. 129 */ 130 struct dm_thin_new_mapping; 131 132 /* 133 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 134 */ 135 enum pool_mode { 136 PM_WRITE, /* metadata may be changed */ 137 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 138 PM_READ_ONLY, /* metadata may not be changed */ 139 PM_FAIL, /* all I/O fails */ 140 }; 141 142 struct pool_features { 143 enum pool_mode mode; 144 145 bool zero_new_blocks:1; 146 bool discard_enabled:1; 147 bool discard_passdown:1; 148 bool error_if_no_space:1; 149 }; 150 151 struct thin_c; 152 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 153 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 154 155 struct pool { 156 struct list_head list; 157 struct dm_target *ti; /* Only set if a pool target is bound */ 158 159 struct mapped_device *pool_md; 160 struct block_device *md_dev; 161 struct dm_pool_metadata *pmd; 162 163 dm_block_t low_water_blocks; 164 uint32_t sectors_per_block; 165 int sectors_per_block_shift; 166 167 struct pool_features pf; 168 bool low_water_triggered:1; /* A dm event has been sent */ 169 170 struct dm_bio_prison *prison; 171 struct dm_kcopyd_client *copier; 172 173 struct workqueue_struct *wq; 174 struct work_struct worker; 175 struct delayed_work waker; 176 177 unsigned long last_commit_jiffies; 178 unsigned ref_count; 179 180 spinlock_t lock; 181 struct bio_list deferred_bios; 182 struct bio_list deferred_flush_bios; 183 struct list_head prepared_mappings; 184 struct list_head prepared_discards; 185 186 struct bio_list retry_on_resume_list; 187 188 struct dm_deferred_set *shared_read_ds; 189 struct dm_deferred_set *all_io_ds; 190 191 struct dm_thin_new_mapping *next_mapping; 192 mempool_t *mapping_pool; 193 194 process_bio_fn process_bio; 195 process_bio_fn process_discard; 196 197 process_mapping_fn process_prepared_mapping; 198 process_mapping_fn process_prepared_discard; 199 }; 200 201 static enum pool_mode get_pool_mode(struct pool *pool); 202 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 203 204 /* 205 * Target context for a pool. 206 */ 207 struct pool_c { 208 struct dm_target *ti; 209 struct pool *pool; 210 struct dm_dev *data_dev; 211 struct dm_dev *metadata_dev; 212 struct dm_target_callbacks callbacks; 213 214 dm_block_t low_water_blocks; 215 struct pool_features requested_pf; /* Features requested during table load */ 216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 217 }; 218 219 /* 220 * Target context for a thin. 221 */ 222 struct thin_c { 223 struct dm_dev *pool_dev; 224 struct dm_dev *origin_dev; 225 dm_thin_id dev_id; 226 227 struct pool *pool; 228 struct dm_thin_device *td; 229 bool requeue_mode:1; 230 }; 231 232 /*----------------------------------------------------------------*/ 233 234 /* 235 * wake_worker() is used when new work is queued and when pool_resume is 236 * ready to continue deferred IO processing. 237 */ 238 static void wake_worker(struct pool *pool) 239 { 240 queue_work(pool->wq, &pool->worker); 241 } 242 243 /*----------------------------------------------------------------*/ 244 245 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 246 struct dm_bio_prison_cell **cell_result) 247 { 248 int r; 249 struct dm_bio_prison_cell *cell_prealloc; 250 251 /* 252 * Allocate a cell from the prison's mempool. 253 * This might block but it can't fail. 254 */ 255 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 256 257 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 258 if (r) 259 /* 260 * We reused an old cell; we can get rid of 261 * the new one. 262 */ 263 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 264 265 return r; 266 } 267 268 static void cell_release(struct pool *pool, 269 struct dm_bio_prison_cell *cell, 270 struct bio_list *bios) 271 { 272 dm_cell_release(pool->prison, cell, bios); 273 dm_bio_prison_free_cell(pool->prison, cell); 274 } 275 276 static void cell_release_no_holder(struct pool *pool, 277 struct dm_bio_prison_cell *cell, 278 struct bio_list *bios) 279 { 280 dm_cell_release_no_holder(pool->prison, cell, bios); 281 dm_bio_prison_free_cell(pool->prison, cell); 282 } 283 284 static void cell_defer_no_holder_no_free(struct thin_c *tc, 285 struct dm_bio_prison_cell *cell) 286 { 287 struct pool *pool = tc->pool; 288 unsigned long flags; 289 290 spin_lock_irqsave(&pool->lock, flags); 291 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios); 292 spin_unlock_irqrestore(&pool->lock, flags); 293 294 wake_worker(pool); 295 } 296 297 static void cell_error(struct pool *pool, 298 struct dm_bio_prison_cell *cell) 299 { 300 dm_cell_error(pool->prison, cell); 301 dm_bio_prison_free_cell(pool->prison, cell); 302 } 303 304 /*----------------------------------------------------------------*/ 305 306 /* 307 * A global list of pools that uses a struct mapped_device as a key. 308 */ 309 static struct dm_thin_pool_table { 310 struct mutex mutex; 311 struct list_head pools; 312 } dm_thin_pool_table; 313 314 static void pool_table_init(void) 315 { 316 mutex_init(&dm_thin_pool_table.mutex); 317 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 318 } 319 320 static void __pool_table_insert(struct pool *pool) 321 { 322 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 323 list_add(&pool->list, &dm_thin_pool_table.pools); 324 } 325 326 static void __pool_table_remove(struct pool *pool) 327 { 328 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 329 list_del(&pool->list); 330 } 331 332 static struct pool *__pool_table_lookup(struct mapped_device *md) 333 { 334 struct pool *pool = NULL, *tmp; 335 336 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 337 338 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 339 if (tmp->pool_md == md) { 340 pool = tmp; 341 break; 342 } 343 } 344 345 return pool; 346 } 347 348 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 349 { 350 struct pool *pool = NULL, *tmp; 351 352 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 353 354 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 355 if (tmp->md_dev == md_dev) { 356 pool = tmp; 357 break; 358 } 359 } 360 361 return pool; 362 } 363 364 /*----------------------------------------------------------------*/ 365 366 struct dm_thin_endio_hook { 367 struct thin_c *tc; 368 struct dm_deferred_entry *shared_read_entry; 369 struct dm_deferred_entry *all_io_entry; 370 struct dm_thin_new_mapping *overwrite_mapping; 371 }; 372 373 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master) 374 { 375 struct bio *bio; 376 struct bio_list bios; 377 unsigned long flags; 378 379 bio_list_init(&bios); 380 381 spin_lock_irqsave(&tc->pool->lock, flags); 382 bio_list_merge(&bios, master); 383 bio_list_init(master); 384 spin_unlock_irqrestore(&tc->pool->lock, flags); 385 386 while ((bio = bio_list_pop(&bios))) { 387 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 388 389 if (h->tc == tc) 390 bio_endio(bio, DM_ENDIO_REQUEUE); 391 else 392 bio_list_add(master, bio); 393 } 394 } 395 396 static void requeue_io(struct thin_c *tc) 397 { 398 struct pool *pool = tc->pool; 399 400 requeue_bio_list(tc, &pool->deferred_bios); 401 requeue_bio_list(tc, &pool->retry_on_resume_list); 402 } 403 404 static void error_retry_list(struct pool *pool) 405 { 406 struct bio *bio; 407 unsigned long flags; 408 struct bio_list bios; 409 410 bio_list_init(&bios); 411 412 spin_lock_irqsave(&pool->lock, flags); 413 bio_list_merge(&bios, &pool->retry_on_resume_list); 414 bio_list_init(&pool->retry_on_resume_list); 415 spin_unlock_irqrestore(&pool->lock, flags); 416 417 while ((bio = bio_list_pop(&bios))) 418 bio_io_error(bio); 419 } 420 421 /* 422 * This section of code contains the logic for processing a thin device's IO. 423 * Much of the code depends on pool object resources (lists, workqueues, etc) 424 * but most is exclusively called from the thin target rather than the thin-pool 425 * target. 426 */ 427 428 static bool block_size_is_power_of_two(struct pool *pool) 429 { 430 return pool->sectors_per_block_shift >= 0; 431 } 432 433 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 434 { 435 struct pool *pool = tc->pool; 436 sector_t block_nr = bio->bi_iter.bi_sector; 437 438 if (block_size_is_power_of_two(pool)) 439 block_nr >>= pool->sectors_per_block_shift; 440 else 441 (void) sector_div(block_nr, pool->sectors_per_block); 442 443 return block_nr; 444 } 445 446 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 447 { 448 struct pool *pool = tc->pool; 449 sector_t bi_sector = bio->bi_iter.bi_sector; 450 451 bio->bi_bdev = tc->pool_dev->bdev; 452 if (block_size_is_power_of_two(pool)) 453 bio->bi_iter.bi_sector = 454 (block << pool->sectors_per_block_shift) | 455 (bi_sector & (pool->sectors_per_block - 1)); 456 else 457 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 458 sector_div(bi_sector, pool->sectors_per_block); 459 } 460 461 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 462 { 463 bio->bi_bdev = tc->origin_dev->bdev; 464 } 465 466 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 467 { 468 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 469 dm_thin_changed_this_transaction(tc->td); 470 } 471 472 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 473 { 474 struct dm_thin_endio_hook *h; 475 476 if (bio->bi_rw & REQ_DISCARD) 477 return; 478 479 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 480 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 481 } 482 483 static void issue(struct thin_c *tc, struct bio *bio) 484 { 485 struct pool *pool = tc->pool; 486 unsigned long flags; 487 488 if (!bio_triggers_commit(tc, bio)) { 489 generic_make_request(bio); 490 return; 491 } 492 493 /* 494 * Complete bio with an error if earlier I/O caused changes to 495 * the metadata that can't be committed e.g, due to I/O errors 496 * on the metadata device. 497 */ 498 if (dm_thin_aborted_changes(tc->td)) { 499 bio_io_error(bio); 500 return; 501 } 502 503 /* 504 * Batch together any bios that trigger commits and then issue a 505 * single commit for them in process_deferred_bios(). 506 */ 507 spin_lock_irqsave(&pool->lock, flags); 508 bio_list_add(&pool->deferred_flush_bios, bio); 509 spin_unlock_irqrestore(&pool->lock, flags); 510 } 511 512 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 513 { 514 remap_to_origin(tc, bio); 515 issue(tc, bio); 516 } 517 518 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 519 dm_block_t block) 520 { 521 remap(tc, bio, block); 522 issue(tc, bio); 523 } 524 525 /*----------------------------------------------------------------*/ 526 527 /* 528 * Bio endio functions. 529 */ 530 struct dm_thin_new_mapping { 531 struct list_head list; 532 533 bool quiesced:1; 534 bool prepared:1; 535 bool pass_discard:1; 536 bool definitely_not_shared:1; 537 538 int err; 539 struct thin_c *tc; 540 dm_block_t virt_block; 541 dm_block_t data_block; 542 struct dm_bio_prison_cell *cell, *cell2; 543 544 /* 545 * If the bio covers the whole area of a block then we can avoid 546 * zeroing or copying. Instead this bio is hooked. The bio will 547 * still be in the cell, so care has to be taken to avoid issuing 548 * the bio twice. 549 */ 550 struct bio *bio; 551 bio_end_io_t *saved_bi_end_io; 552 }; 553 554 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 555 { 556 struct pool *pool = m->tc->pool; 557 558 if (m->quiesced && m->prepared) { 559 list_add_tail(&m->list, &pool->prepared_mappings); 560 wake_worker(pool); 561 } 562 } 563 564 static void copy_complete(int read_err, unsigned long write_err, void *context) 565 { 566 unsigned long flags; 567 struct dm_thin_new_mapping *m = context; 568 struct pool *pool = m->tc->pool; 569 570 m->err = read_err || write_err ? -EIO : 0; 571 572 spin_lock_irqsave(&pool->lock, flags); 573 m->prepared = true; 574 __maybe_add_mapping(m); 575 spin_unlock_irqrestore(&pool->lock, flags); 576 } 577 578 static void overwrite_endio(struct bio *bio, int err) 579 { 580 unsigned long flags; 581 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 582 struct dm_thin_new_mapping *m = h->overwrite_mapping; 583 struct pool *pool = m->tc->pool; 584 585 m->err = err; 586 587 spin_lock_irqsave(&pool->lock, flags); 588 m->prepared = true; 589 __maybe_add_mapping(m); 590 spin_unlock_irqrestore(&pool->lock, flags); 591 } 592 593 /*----------------------------------------------------------------*/ 594 595 /* 596 * Workqueue. 597 */ 598 599 /* 600 * Prepared mapping jobs. 601 */ 602 603 /* 604 * This sends the bios in the cell back to the deferred_bios list. 605 */ 606 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 607 { 608 struct pool *pool = tc->pool; 609 unsigned long flags; 610 611 spin_lock_irqsave(&pool->lock, flags); 612 cell_release(pool, cell, &pool->deferred_bios); 613 spin_unlock_irqrestore(&tc->pool->lock, flags); 614 615 wake_worker(pool); 616 } 617 618 /* 619 * Same as cell_defer above, except it omits the original holder of the cell. 620 */ 621 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 622 { 623 struct pool *pool = tc->pool; 624 unsigned long flags; 625 626 spin_lock_irqsave(&pool->lock, flags); 627 cell_release_no_holder(pool, cell, &pool->deferred_bios); 628 spin_unlock_irqrestore(&pool->lock, flags); 629 630 wake_worker(pool); 631 } 632 633 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 634 { 635 if (m->bio) { 636 m->bio->bi_end_io = m->saved_bi_end_io; 637 atomic_inc(&m->bio->bi_remaining); 638 } 639 cell_error(m->tc->pool, m->cell); 640 list_del(&m->list); 641 mempool_free(m, m->tc->pool->mapping_pool); 642 } 643 644 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 645 { 646 struct thin_c *tc = m->tc; 647 struct pool *pool = tc->pool; 648 struct bio *bio; 649 int r; 650 651 bio = m->bio; 652 if (bio) { 653 bio->bi_end_io = m->saved_bi_end_io; 654 atomic_inc(&bio->bi_remaining); 655 } 656 657 if (m->err) { 658 cell_error(pool, m->cell); 659 goto out; 660 } 661 662 /* 663 * Commit the prepared block into the mapping btree. 664 * Any I/O for this block arriving after this point will get 665 * remapped to it directly. 666 */ 667 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 668 if (r) { 669 metadata_operation_failed(pool, "dm_thin_insert_block", r); 670 cell_error(pool, m->cell); 671 goto out; 672 } 673 674 /* 675 * Release any bios held while the block was being provisioned. 676 * If we are processing a write bio that completely covers the block, 677 * we already processed it so can ignore it now when processing 678 * the bios in the cell. 679 */ 680 if (bio) { 681 cell_defer_no_holder(tc, m->cell); 682 bio_endio(bio, 0); 683 } else 684 cell_defer(tc, m->cell); 685 686 out: 687 list_del(&m->list); 688 mempool_free(m, pool->mapping_pool); 689 } 690 691 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 692 { 693 struct thin_c *tc = m->tc; 694 695 bio_io_error(m->bio); 696 cell_defer_no_holder(tc, m->cell); 697 cell_defer_no_holder(tc, m->cell2); 698 mempool_free(m, tc->pool->mapping_pool); 699 } 700 701 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 702 { 703 struct thin_c *tc = m->tc; 704 705 inc_all_io_entry(tc->pool, m->bio); 706 cell_defer_no_holder(tc, m->cell); 707 cell_defer_no_holder(tc, m->cell2); 708 709 if (m->pass_discard) 710 if (m->definitely_not_shared) 711 remap_and_issue(tc, m->bio, m->data_block); 712 else { 713 bool used = false; 714 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 715 bio_endio(m->bio, 0); 716 else 717 remap_and_issue(tc, m->bio, m->data_block); 718 } 719 else 720 bio_endio(m->bio, 0); 721 722 mempool_free(m, tc->pool->mapping_pool); 723 } 724 725 static void process_prepared_discard(struct dm_thin_new_mapping *m) 726 { 727 int r; 728 struct thin_c *tc = m->tc; 729 730 r = dm_thin_remove_block(tc->td, m->virt_block); 731 if (r) 732 DMERR_LIMIT("dm_thin_remove_block() failed"); 733 734 process_prepared_discard_passdown(m); 735 } 736 737 static void process_prepared(struct pool *pool, struct list_head *head, 738 process_mapping_fn *fn) 739 { 740 unsigned long flags; 741 struct list_head maps; 742 struct dm_thin_new_mapping *m, *tmp; 743 744 INIT_LIST_HEAD(&maps); 745 spin_lock_irqsave(&pool->lock, flags); 746 list_splice_init(head, &maps); 747 spin_unlock_irqrestore(&pool->lock, flags); 748 749 list_for_each_entry_safe(m, tmp, &maps, list) 750 (*fn)(m); 751 } 752 753 /* 754 * Deferred bio jobs. 755 */ 756 static int io_overlaps_block(struct pool *pool, struct bio *bio) 757 { 758 return bio->bi_iter.bi_size == 759 (pool->sectors_per_block << SECTOR_SHIFT); 760 } 761 762 static int io_overwrites_block(struct pool *pool, struct bio *bio) 763 { 764 return (bio_data_dir(bio) == WRITE) && 765 io_overlaps_block(pool, bio); 766 } 767 768 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 769 bio_end_io_t *fn) 770 { 771 *save = bio->bi_end_io; 772 bio->bi_end_io = fn; 773 } 774 775 static int ensure_next_mapping(struct pool *pool) 776 { 777 if (pool->next_mapping) 778 return 0; 779 780 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 781 782 return pool->next_mapping ? 0 : -ENOMEM; 783 } 784 785 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 786 { 787 struct dm_thin_new_mapping *m = pool->next_mapping; 788 789 BUG_ON(!pool->next_mapping); 790 791 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 792 INIT_LIST_HEAD(&m->list); 793 m->bio = NULL; 794 795 pool->next_mapping = NULL; 796 797 return m; 798 } 799 800 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 801 struct dm_dev *origin, dm_block_t data_origin, 802 dm_block_t data_dest, 803 struct dm_bio_prison_cell *cell, struct bio *bio) 804 { 805 int r; 806 struct pool *pool = tc->pool; 807 struct dm_thin_new_mapping *m = get_next_mapping(pool); 808 809 m->tc = tc; 810 m->virt_block = virt_block; 811 m->data_block = data_dest; 812 m->cell = cell; 813 814 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 815 m->quiesced = true; 816 817 /* 818 * IO to pool_dev remaps to the pool target's data_dev. 819 * 820 * If the whole block of data is being overwritten, we can issue the 821 * bio immediately. Otherwise we use kcopyd to clone the data first. 822 */ 823 if (io_overwrites_block(pool, bio)) { 824 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 825 826 h->overwrite_mapping = m; 827 m->bio = bio; 828 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 829 inc_all_io_entry(pool, bio); 830 remap_and_issue(tc, bio, data_dest); 831 } else { 832 struct dm_io_region from, to; 833 834 from.bdev = origin->bdev; 835 from.sector = data_origin * pool->sectors_per_block; 836 from.count = pool->sectors_per_block; 837 838 to.bdev = tc->pool_dev->bdev; 839 to.sector = data_dest * pool->sectors_per_block; 840 to.count = pool->sectors_per_block; 841 842 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 843 0, copy_complete, m); 844 if (r < 0) { 845 mempool_free(m, pool->mapping_pool); 846 DMERR_LIMIT("dm_kcopyd_copy() failed"); 847 cell_error(pool, cell); 848 } 849 } 850 } 851 852 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 853 dm_block_t data_origin, dm_block_t data_dest, 854 struct dm_bio_prison_cell *cell, struct bio *bio) 855 { 856 schedule_copy(tc, virt_block, tc->pool_dev, 857 data_origin, data_dest, cell, bio); 858 } 859 860 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 861 dm_block_t data_dest, 862 struct dm_bio_prison_cell *cell, struct bio *bio) 863 { 864 schedule_copy(tc, virt_block, tc->origin_dev, 865 virt_block, data_dest, cell, bio); 866 } 867 868 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 869 dm_block_t data_block, struct dm_bio_prison_cell *cell, 870 struct bio *bio) 871 { 872 struct pool *pool = tc->pool; 873 struct dm_thin_new_mapping *m = get_next_mapping(pool); 874 875 m->quiesced = true; 876 m->prepared = false; 877 m->tc = tc; 878 m->virt_block = virt_block; 879 m->data_block = data_block; 880 m->cell = cell; 881 882 /* 883 * If the whole block of data is being overwritten or we are not 884 * zeroing pre-existing data, we can issue the bio immediately. 885 * Otherwise we use kcopyd to zero the data first. 886 */ 887 if (!pool->pf.zero_new_blocks) 888 process_prepared_mapping(m); 889 890 else if (io_overwrites_block(pool, bio)) { 891 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 892 893 h->overwrite_mapping = m; 894 m->bio = bio; 895 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 896 inc_all_io_entry(pool, bio); 897 remap_and_issue(tc, bio, data_block); 898 } else { 899 int r; 900 struct dm_io_region to; 901 902 to.bdev = tc->pool_dev->bdev; 903 to.sector = data_block * pool->sectors_per_block; 904 to.count = pool->sectors_per_block; 905 906 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 907 if (r < 0) { 908 mempool_free(m, pool->mapping_pool); 909 DMERR_LIMIT("dm_kcopyd_zero() failed"); 910 cell_error(pool, cell); 911 } 912 } 913 } 914 915 /* 916 * A non-zero return indicates read_only or fail_io mode. 917 * Many callers don't care about the return value. 918 */ 919 static int commit(struct pool *pool) 920 { 921 int r; 922 923 if (get_pool_mode(pool) != PM_WRITE) 924 return -EINVAL; 925 926 r = dm_pool_commit_metadata(pool->pmd); 927 if (r) 928 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 929 930 return r; 931 } 932 933 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 934 { 935 unsigned long flags; 936 937 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 938 DMWARN("%s: reached low water mark for data device: sending event.", 939 dm_device_name(pool->pool_md)); 940 spin_lock_irqsave(&pool->lock, flags); 941 pool->low_water_triggered = true; 942 spin_unlock_irqrestore(&pool->lock, flags); 943 dm_table_event(pool->ti->table); 944 } 945 } 946 947 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 948 949 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 950 { 951 int r; 952 dm_block_t free_blocks; 953 struct pool *pool = tc->pool; 954 955 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 956 return -EINVAL; 957 958 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 959 if (r) { 960 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 961 return r; 962 } 963 964 check_low_water_mark(pool, free_blocks); 965 966 if (!free_blocks) { 967 /* 968 * Try to commit to see if that will free up some 969 * more space. 970 */ 971 r = commit(pool); 972 if (r) 973 return r; 974 975 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 976 if (r) { 977 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 978 return r; 979 } 980 981 if (!free_blocks) { 982 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 983 return -ENOSPC; 984 } 985 } 986 987 r = dm_pool_alloc_data_block(pool->pmd, result); 988 if (r) { 989 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 990 return r; 991 } 992 993 return 0; 994 } 995 996 /* 997 * If we have run out of space, queue bios until the device is 998 * resumed, presumably after having been reloaded with more space. 999 */ 1000 static void retry_on_resume(struct bio *bio) 1001 { 1002 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1003 struct thin_c *tc = h->tc; 1004 struct pool *pool = tc->pool; 1005 unsigned long flags; 1006 1007 spin_lock_irqsave(&pool->lock, flags); 1008 bio_list_add(&pool->retry_on_resume_list, bio); 1009 spin_unlock_irqrestore(&pool->lock, flags); 1010 } 1011 1012 static bool should_error_unserviceable_bio(struct pool *pool) 1013 { 1014 enum pool_mode m = get_pool_mode(pool); 1015 1016 switch (m) { 1017 case PM_WRITE: 1018 /* Shouldn't get here */ 1019 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1020 return true; 1021 1022 case PM_OUT_OF_DATA_SPACE: 1023 return pool->pf.error_if_no_space; 1024 1025 case PM_READ_ONLY: 1026 case PM_FAIL: 1027 return true; 1028 default: 1029 /* Shouldn't get here */ 1030 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1031 return true; 1032 } 1033 } 1034 1035 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1036 { 1037 if (should_error_unserviceable_bio(pool)) 1038 bio_io_error(bio); 1039 else 1040 retry_on_resume(bio); 1041 } 1042 1043 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1044 { 1045 struct bio *bio; 1046 struct bio_list bios; 1047 1048 if (should_error_unserviceable_bio(pool)) { 1049 cell_error(pool, cell); 1050 return; 1051 } 1052 1053 bio_list_init(&bios); 1054 cell_release(pool, cell, &bios); 1055 1056 if (should_error_unserviceable_bio(pool)) 1057 while ((bio = bio_list_pop(&bios))) 1058 bio_io_error(bio); 1059 else 1060 while ((bio = bio_list_pop(&bios))) 1061 retry_on_resume(bio); 1062 } 1063 1064 static void process_discard(struct thin_c *tc, struct bio *bio) 1065 { 1066 int r; 1067 unsigned long flags; 1068 struct pool *pool = tc->pool; 1069 struct dm_bio_prison_cell *cell, *cell2; 1070 struct dm_cell_key key, key2; 1071 dm_block_t block = get_bio_block(tc, bio); 1072 struct dm_thin_lookup_result lookup_result; 1073 struct dm_thin_new_mapping *m; 1074 1075 build_virtual_key(tc->td, block, &key); 1076 if (bio_detain(tc->pool, &key, bio, &cell)) 1077 return; 1078 1079 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1080 switch (r) { 1081 case 0: 1082 /* 1083 * Check nobody is fiddling with this pool block. This can 1084 * happen if someone's in the process of breaking sharing 1085 * on this block. 1086 */ 1087 build_data_key(tc->td, lookup_result.block, &key2); 1088 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1089 cell_defer_no_holder(tc, cell); 1090 break; 1091 } 1092 1093 if (io_overlaps_block(pool, bio)) { 1094 /* 1095 * IO may still be going to the destination block. We must 1096 * quiesce before we can do the removal. 1097 */ 1098 m = get_next_mapping(pool); 1099 m->tc = tc; 1100 m->pass_discard = pool->pf.discard_passdown; 1101 m->definitely_not_shared = !lookup_result.shared; 1102 m->virt_block = block; 1103 m->data_block = lookup_result.block; 1104 m->cell = cell; 1105 m->cell2 = cell2; 1106 m->bio = bio; 1107 1108 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1109 spin_lock_irqsave(&pool->lock, flags); 1110 list_add_tail(&m->list, &pool->prepared_discards); 1111 spin_unlock_irqrestore(&pool->lock, flags); 1112 wake_worker(pool); 1113 } 1114 } else { 1115 inc_all_io_entry(pool, bio); 1116 cell_defer_no_holder(tc, cell); 1117 cell_defer_no_holder(tc, cell2); 1118 1119 /* 1120 * The DM core makes sure that the discard doesn't span 1121 * a block boundary. So we submit the discard of a 1122 * partial block appropriately. 1123 */ 1124 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1125 remap_and_issue(tc, bio, lookup_result.block); 1126 else 1127 bio_endio(bio, 0); 1128 } 1129 break; 1130 1131 case -ENODATA: 1132 /* 1133 * It isn't provisioned, just forget it. 1134 */ 1135 cell_defer_no_holder(tc, cell); 1136 bio_endio(bio, 0); 1137 break; 1138 1139 default: 1140 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1141 __func__, r); 1142 cell_defer_no_holder(tc, cell); 1143 bio_io_error(bio); 1144 break; 1145 } 1146 } 1147 1148 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1149 struct dm_cell_key *key, 1150 struct dm_thin_lookup_result *lookup_result, 1151 struct dm_bio_prison_cell *cell) 1152 { 1153 int r; 1154 dm_block_t data_block; 1155 struct pool *pool = tc->pool; 1156 1157 r = alloc_data_block(tc, &data_block); 1158 switch (r) { 1159 case 0: 1160 schedule_internal_copy(tc, block, lookup_result->block, 1161 data_block, cell, bio); 1162 break; 1163 1164 case -ENOSPC: 1165 retry_bios_on_resume(pool, cell); 1166 break; 1167 1168 default: 1169 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1170 __func__, r); 1171 cell_error(pool, cell); 1172 break; 1173 } 1174 } 1175 1176 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1177 dm_block_t block, 1178 struct dm_thin_lookup_result *lookup_result) 1179 { 1180 struct dm_bio_prison_cell *cell; 1181 struct pool *pool = tc->pool; 1182 struct dm_cell_key key; 1183 1184 /* 1185 * If cell is already occupied, then sharing is already in the process 1186 * of being broken so we have nothing further to do here. 1187 */ 1188 build_data_key(tc->td, lookup_result->block, &key); 1189 if (bio_detain(pool, &key, bio, &cell)) 1190 return; 1191 1192 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) 1193 break_sharing(tc, bio, block, &key, lookup_result, cell); 1194 else { 1195 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1196 1197 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1198 inc_all_io_entry(pool, bio); 1199 cell_defer_no_holder(tc, cell); 1200 1201 remap_and_issue(tc, bio, lookup_result->block); 1202 } 1203 } 1204 1205 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1206 struct dm_bio_prison_cell *cell) 1207 { 1208 int r; 1209 dm_block_t data_block; 1210 struct pool *pool = tc->pool; 1211 1212 /* 1213 * Remap empty bios (flushes) immediately, without provisioning. 1214 */ 1215 if (!bio->bi_iter.bi_size) { 1216 inc_all_io_entry(pool, bio); 1217 cell_defer_no_holder(tc, cell); 1218 1219 remap_and_issue(tc, bio, 0); 1220 return; 1221 } 1222 1223 /* 1224 * Fill read bios with zeroes and complete them immediately. 1225 */ 1226 if (bio_data_dir(bio) == READ) { 1227 zero_fill_bio(bio); 1228 cell_defer_no_holder(tc, cell); 1229 bio_endio(bio, 0); 1230 return; 1231 } 1232 1233 r = alloc_data_block(tc, &data_block); 1234 switch (r) { 1235 case 0: 1236 if (tc->origin_dev) 1237 schedule_external_copy(tc, block, data_block, cell, bio); 1238 else 1239 schedule_zero(tc, block, data_block, cell, bio); 1240 break; 1241 1242 case -ENOSPC: 1243 retry_bios_on_resume(pool, cell); 1244 break; 1245 1246 default: 1247 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1248 __func__, r); 1249 cell_error(pool, cell); 1250 break; 1251 } 1252 } 1253 1254 static void process_bio(struct thin_c *tc, struct bio *bio) 1255 { 1256 int r; 1257 struct pool *pool = tc->pool; 1258 dm_block_t block = get_bio_block(tc, bio); 1259 struct dm_bio_prison_cell *cell; 1260 struct dm_cell_key key; 1261 struct dm_thin_lookup_result lookup_result; 1262 1263 /* 1264 * If cell is already occupied, then the block is already 1265 * being provisioned so we have nothing further to do here. 1266 */ 1267 build_virtual_key(tc->td, block, &key); 1268 if (bio_detain(pool, &key, bio, &cell)) 1269 return; 1270 1271 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1272 switch (r) { 1273 case 0: 1274 if (lookup_result.shared) { 1275 process_shared_bio(tc, bio, block, &lookup_result); 1276 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1277 } else { 1278 inc_all_io_entry(pool, bio); 1279 cell_defer_no_holder(tc, cell); 1280 1281 remap_and_issue(tc, bio, lookup_result.block); 1282 } 1283 break; 1284 1285 case -ENODATA: 1286 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1287 inc_all_io_entry(pool, bio); 1288 cell_defer_no_holder(tc, cell); 1289 1290 remap_to_origin_and_issue(tc, bio); 1291 } else 1292 provision_block(tc, bio, block, cell); 1293 break; 1294 1295 default: 1296 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1297 __func__, r); 1298 cell_defer_no_holder(tc, cell); 1299 bio_io_error(bio); 1300 break; 1301 } 1302 } 1303 1304 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1305 { 1306 int r; 1307 int rw = bio_data_dir(bio); 1308 dm_block_t block = get_bio_block(tc, bio); 1309 struct dm_thin_lookup_result lookup_result; 1310 1311 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1312 switch (r) { 1313 case 0: 1314 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) 1315 handle_unserviceable_bio(tc->pool, bio); 1316 else { 1317 inc_all_io_entry(tc->pool, bio); 1318 remap_and_issue(tc, bio, lookup_result.block); 1319 } 1320 break; 1321 1322 case -ENODATA: 1323 if (rw != READ) { 1324 handle_unserviceable_bio(tc->pool, bio); 1325 break; 1326 } 1327 1328 if (tc->origin_dev) { 1329 inc_all_io_entry(tc->pool, bio); 1330 remap_to_origin_and_issue(tc, bio); 1331 break; 1332 } 1333 1334 zero_fill_bio(bio); 1335 bio_endio(bio, 0); 1336 break; 1337 1338 default: 1339 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1340 __func__, r); 1341 bio_io_error(bio); 1342 break; 1343 } 1344 } 1345 1346 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1347 { 1348 bio_endio(bio, 0); 1349 } 1350 1351 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1352 { 1353 bio_io_error(bio); 1354 } 1355 1356 /* 1357 * FIXME: should we also commit due to size of transaction, measured in 1358 * metadata blocks? 1359 */ 1360 static int need_commit_due_to_time(struct pool *pool) 1361 { 1362 return jiffies < pool->last_commit_jiffies || 1363 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1364 } 1365 1366 static void process_deferred_bios(struct pool *pool) 1367 { 1368 unsigned long flags; 1369 struct bio *bio; 1370 struct bio_list bios; 1371 1372 bio_list_init(&bios); 1373 1374 spin_lock_irqsave(&pool->lock, flags); 1375 bio_list_merge(&bios, &pool->deferred_bios); 1376 bio_list_init(&pool->deferred_bios); 1377 spin_unlock_irqrestore(&pool->lock, flags); 1378 1379 while ((bio = bio_list_pop(&bios))) { 1380 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1381 struct thin_c *tc = h->tc; 1382 1383 if (tc->requeue_mode) { 1384 bio_endio(bio, DM_ENDIO_REQUEUE); 1385 continue; 1386 } 1387 1388 /* 1389 * If we've got no free new_mapping structs, and processing 1390 * this bio might require one, we pause until there are some 1391 * prepared mappings to process. 1392 */ 1393 if (ensure_next_mapping(pool)) { 1394 spin_lock_irqsave(&pool->lock, flags); 1395 bio_list_merge(&pool->deferred_bios, &bios); 1396 spin_unlock_irqrestore(&pool->lock, flags); 1397 1398 break; 1399 } 1400 1401 if (bio->bi_rw & REQ_DISCARD) 1402 pool->process_discard(tc, bio); 1403 else 1404 pool->process_bio(tc, bio); 1405 } 1406 1407 /* 1408 * If there are any deferred flush bios, we must commit 1409 * the metadata before issuing them. 1410 */ 1411 bio_list_init(&bios); 1412 spin_lock_irqsave(&pool->lock, flags); 1413 bio_list_merge(&bios, &pool->deferred_flush_bios); 1414 bio_list_init(&pool->deferred_flush_bios); 1415 spin_unlock_irqrestore(&pool->lock, flags); 1416 1417 if (bio_list_empty(&bios) && 1418 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1419 return; 1420 1421 if (commit(pool)) { 1422 while ((bio = bio_list_pop(&bios))) 1423 bio_io_error(bio); 1424 return; 1425 } 1426 pool->last_commit_jiffies = jiffies; 1427 1428 while ((bio = bio_list_pop(&bios))) 1429 generic_make_request(bio); 1430 } 1431 1432 static void do_worker(struct work_struct *ws) 1433 { 1434 struct pool *pool = container_of(ws, struct pool, worker); 1435 1436 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1437 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1438 process_deferred_bios(pool); 1439 } 1440 1441 /* 1442 * We want to commit periodically so that not too much 1443 * unwritten data builds up. 1444 */ 1445 static void do_waker(struct work_struct *ws) 1446 { 1447 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1448 wake_worker(pool); 1449 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1450 } 1451 1452 /*----------------------------------------------------------------*/ 1453 1454 struct noflush_work { 1455 struct work_struct worker; 1456 struct thin_c *tc; 1457 1458 atomic_t complete; 1459 wait_queue_head_t wait; 1460 }; 1461 1462 static void complete_noflush_work(struct noflush_work *w) 1463 { 1464 atomic_set(&w->complete, 1); 1465 wake_up(&w->wait); 1466 } 1467 1468 static void do_noflush_start(struct work_struct *ws) 1469 { 1470 struct noflush_work *w = container_of(ws, struct noflush_work, worker); 1471 w->tc->requeue_mode = true; 1472 requeue_io(w->tc); 1473 complete_noflush_work(w); 1474 } 1475 1476 static void do_noflush_stop(struct work_struct *ws) 1477 { 1478 struct noflush_work *w = container_of(ws, struct noflush_work, worker); 1479 w->tc->requeue_mode = false; 1480 complete_noflush_work(w); 1481 } 1482 1483 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 1484 { 1485 struct noflush_work w; 1486 1487 INIT_WORK(&w.worker, fn); 1488 w.tc = tc; 1489 atomic_set(&w.complete, 0); 1490 init_waitqueue_head(&w.wait); 1491 1492 queue_work(tc->pool->wq, &w.worker); 1493 1494 wait_event(w.wait, atomic_read(&w.complete)); 1495 } 1496 1497 /*----------------------------------------------------------------*/ 1498 1499 static enum pool_mode get_pool_mode(struct pool *pool) 1500 { 1501 return pool->pf.mode; 1502 } 1503 1504 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 1505 { 1506 dm_table_event(pool->ti->table); 1507 DMINFO("%s: switching pool to %s mode", 1508 dm_device_name(pool->pool_md), new_mode); 1509 } 1510 1511 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 1512 { 1513 struct pool_c *pt = pool->ti->private; 1514 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 1515 enum pool_mode old_mode = get_pool_mode(pool); 1516 1517 /* 1518 * Never allow the pool to transition to PM_WRITE mode if user 1519 * intervention is required to verify metadata and data consistency. 1520 */ 1521 if (new_mode == PM_WRITE && needs_check) { 1522 DMERR("%s: unable to switch pool to write mode until repaired.", 1523 dm_device_name(pool->pool_md)); 1524 if (old_mode != new_mode) 1525 new_mode = old_mode; 1526 else 1527 new_mode = PM_READ_ONLY; 1528 } 1529 /* 1530 * If we were in PM_FAIL mode, rollback of metadata failed. We're 1531 * not going to recover without a thin_repair. So we never let the 1532 * pool move out of the old mode. 1533 */ 1534 if (old_mode == PM_FAIL) 1535 new_mode = old_mode; 1536 1537 switch (new_mode) { 1538 case PM_FAIL: 1539 if (old_mode != new_mode) 1540 notify_of_pool_mode_change(pool, "failure"); 1541 dm_pool_metadata_read_only(pool->pmd); 1542 pool->process_bio = process_bio_fail; 1543 pool->process_discard = process_bio_fail; 1544 pool->process_prepared_mapping = process_prepared_mapping_fail; 1545 pool->process_prepared_discard = process_prepared_discard_fail; 1546 1547 error_retry_list(pool); 1548 break; 1549 1550 case PM_READ_ONLY: 1551 if (old_mode != new_mode) 1552 notify_of_pool_mode_change(pool, "read-only"); 1553 dm_pool_metadata_read_only(pool->pmd); 1554 pool->process_bio = process_bio_read_only; 1555 pool->process_discard = process_bio_success; 1556 pool->process_prepared_mapping = process_prepared_mapping_fail; 1557 pool->process_prepared_discard = process_prepared_discard_passdown; 1558 1559 error_retry_list(pool); 1560 break; 1561 1562 case PM_OUT_OF_DATA_SPACE: 1563 /* 1564 * Ideally we'd never hit this state; the low water mark 1565 * would trigger userland to extend the pool before we 1566 * completely run out of data space. However, many small 1567 * IOs to unprovisioned space can consume data space at an 1568 * alarming rate. Adjust your low water mark if you're 1569 * frequently seeing this mode. 1570 */ 1571 if (old_mode != new_mode) 1572 notify_of_pool_mode_change(pool, "out-of-data-space"); 1573 pool->process_bio = process_bio_read_only; 1574 pool->process_discard = process_discard; 1575 pool->process_prepared_mapping = process_prepared_mapping; 1576 pool->process_prepared_discard = process_prepared_discard_passdown; 1577 break; 1578 1579 case PM_WRITE: 1580 if (old_mode != new_mode) 1581 notify_of_pool_mode_change(pool, "write"); 1582 dm_pool_metadata_read_write(pool->pmd); 1583 pool->process_bio = process_bio; 1584 pool->process_discard = process_discard; 1585 pool->process_prepared_mapping = process_prepared_mapping; 1586 pool->process_prepared_discard = process_prepared_discard; 1587 break; 1588 } 1589 1590 pool->pf.mode = new_mode; 1591 /* 1592 * The pool mode may have changed, sync it so bind_control_target() 1593 * doesn't cause an unexpected mode transition on resume. 1594 */ 1595 pt->adjusted_pf.mode = new_mode; 1596 } 1597 1598 static void abort_transaction(struct pool *pool) 1599 { 1600 const char *dev_name = dm_device_name(pool->pool_md); 1601 1602 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 1603 if (dm_pool_abort_metadata(pool->pmd)) { 1604 DMERR("%s: failed to abort metadata transaction", dev_name); 1605 set_pool_mode(pool, PM_FAIL); 1606 } 1607 1608 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 1609 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 1610 set_pool_mode(pool, PM_FAIL); 1611 } 1612 } 1613 1614 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 1615 { 1616 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1617 dm_device_name(pool->pool_md), op, r); 1618 1619 abort_transaction(pool); 1620 set_pool_mode(pool, PM_READ_ONLY); 1621 } 1622 1623 /*----------------------------------------------------------------*/ 1624 1625 /* 1626 * Mapping functions. 1627 */ 1628 1629 /* 1630 * Called only while mapping a thin bio to hand it over to the workqueue. 1631 */ 1632 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1633 { 1634 unsigned long flags; 1635 struct pool *pool = tc->pool; 1636 1637 spin_lock_irqsave(&pool->lock, flags); 1638 bio_list_add(&pool->deferred_bios, bio); 1639 spin_unlock_irqrestore(&pool->lock, flags); 1640 1641 wake_worker(pool); 1642 } 1643 1644 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1645 { 1646 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1647 1648 h->tc = tc; 1649 h->shared_read_entry = NULL; 1650 h->all_io_entry = NULL; 1651 h->overwrite_mapping = NULL; 1652 } 1653 1654 /* 1655 * Non-blocking function called from the thin target's map function. 1656 */ 1657 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1658 { 1659 int r; 1660 struct thin_c *tc = ti->private; 1661 dm_block_t block = get_bio_block(tc, bio); 1662 struct dm_thin_device *td = tc->td; 1663 struct dm_thin_lookup_result result; 1664 struct dm_bio_prison_cell cell1, cell2; 1665 struct dm_bio_prison_cell *cell_result; 1666 struct dm_cell_key key; 1667 1668 thin_hook_bio(tc, bio); 1669 1670 if (tc->requeue_mode) { 1671 bio_endio(bio, DM_ENDIO_REQUEUE); 1672 return DM_MAPIO_SUBMITTED; 1673 } 1674 1675 if (get_pool_mode(tc->pool) == PM_FAIL) { 1676 bio_io_error(bio); 1677 return DM_MAPIO_SUBMITTED; 1678 } 1679 1680 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1681 thin_defer_bio(tc, bio); 1682 return DM_MAPIO_SUBMITTED; 1683 } 1684 1685 r = dm_thin_find_block(td, block, 0, &result); 1686 1687 /* 1688 * Note that we defer readahead too. 1689 */ 1690 switch (r) { 1691 case 0: 1692 if (unlikely(result.shared)) { 1693 /* 1694 * We have a race condition here between the 1695 * result.shared value returned by the lookup and 1696 * snapshot creation, which may cause new 1697 * sharing. 1698 * 1699 * To avoid this always quiesce the origin before 1700 * taking the snap. You want to do this anyway to 1701 * ensure a consistent application view 1702 * (i.e. lockfs). 1703 * 1704 * More distant ancestors are irrelevant. The 1705 * shared flag will be set in their case. 1706 */ 1707 thin_defer_bio(tc, bio); 1708 return DM_MAPIO_SUBMITTED; 1709 } 1710 1711 build_virtual_key(tc->td, block, &key); 1712 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1713 return DM_MAPIO_SUBMITTED; 1714 1715 build_data_key(tc->td, result.block, &key); 1716 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1717 cell_defer_no_holder_no_free(tc, &cell1); 1718 return DM_MAPIO_SUBMITTED; 1719 } 1720 1721 inc_all_io_entry(tc->pool, bio); 1722 cell_defer_no_holder_no_free(tc, &cell2); 1723 cell_defer_no_holder_no_free(tc, &cell1); 1724 1725 remap(tc, bio, result.block); 1726 return DM_MAPIO_REMAPPED; 1727 1728 case -ENODATA: 1729 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1730 /* 1731 * This block isn't provisioned, and we have no way 1732 * of doing so. 1733 */ 1734 handle_unserviceable_bio(tc->pool, bio); 1735 return DM_MAPIO_SUBMITTED; 1736 } 1737 /* fall through */ 1738 1739 case -EWOULDBLOCK: 1740 /* 1741 * In future, the failed dm_thin_find_block above could 1742 * provide the hint to load the metadata into cache. 1743 */ 1744 thin_defer_bio(tc, bio); 1745 return DM_MAPIO_SUBMITTED; 1746 1747 default: 1748 /* 1749 * Must always call bio_io_error on failure. 1750 * dm_thin_find_block can fail with -EINVAL if the 1751 * pool is switched to fail-io mode. 1752 */ 1753 bio_io_error(bio); 1754 return DM_MAPIO_SUBMITTED; 1755 } 1756 } 1757 1758 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1759 { 1760 int r; 1761 unsigned long flags; 1762 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1763 1764 spin_lock_irqsave(&pt->pool->lock, flags); 1765 r = !bio_list_empty(&pt->pool->retry_on_resume_list); 1766 spin_unlock_irqrestore(&pt->pool->lock, flags); 1767 1768 if (!r) { 1769 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1770 r = bdi_congested(&q->backing_dev_info, bdi_bits); 1771 } 1772 1773 return r; 1774 } 1775 1776 static void __requeue_bios(struct pool *pool) 1777 { 1778 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); 1779 bio_list_init(&pool->retry_on_resume_list); 1780 } 1781 1782 /*---------------------------------------------------------------- 1783 * Binding of control targets to a pool object 1784 *--------------------------------------------------------------*/ 1785 static bool data_dev_supports_discard(struct pool_c *pt) 1786 { 1787 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1788 1789 return q && blk_queue_discard(q); 1790 } 1791 1792 static bool is_factor(sector_t block_size, uint32_t n) 1793 { 1794 return !sector_div(block_size, n); 1795 } 1796 1797 /* 1798 * If discard_passdown was enabled verify that the data device 1799 * supports discards. Disable discard_passdown if not. 1800 */ 1801 static void disable_passdown_if_not_supported(struct pool_c *pt) 1802 { 1803 struct pool *pool = pt->pool; 1804 struct block_device *data_bdev = pt->data_dev->bdev; 1805 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1806 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1807 const char *reason = NULL; 1808 char buf[BDEVNAME_SIZE]; 1809 1810 if (!pt->adjusted_pf.discard_passdown) 1811 return; 1812 1813 if (!data_dev_supports_discard(pt)) 1814 reason = "discard unsupported"; 1815 1816 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1817 reason = "max discard sectors smaller than a block"; 1818 1819 else if (data_limits->discard_granularity > block_size) 1820 reason = "discard granularity larger than a block"; 1821 1822 else if (!is_factor(block_size, data_limits->discard_granularity)) 1823 reason = "discard granularity not a factor of block size"; 1824 1825 if (reason) { 1826 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1827 pt->adjusted_pf.discard_passdown = false; 1828 } 1829 } 1830 1831 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1832 { 1833 struct pool_c *pt = ti->private; 1834 1835 /* 1836 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 1837 */ 1838 enum pool_mode old_mode = get_pool_mode(pool); 1839 enum pool_mode new_mode = pt->adjusted_pf.mode; 1840 1841 /* 1842 * Don't change the pool's mode until set_pool_mode() below. 1843 * Otherwise the pool's process_* function pointers may 1844 * not match the desired pool mode. 1845 */ 1846 pt->adjusted_pf.mode = old_mode; 1847 1848 pool->ti = ti; 1849 pool->pf = pt->adjusted_pf; 1850 pool->low_water_blocks = pt->low_water_blocks; 1851 1852 set_pool_mode(pool, new_mode); 1853 1854 return 0; 1855 } 1856 1857 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1858 { 1859 if (pool->ti == ti) 1860 pool->ti = NULL; 1861 } 1862 1863 /*---------------------------------------------------------------- 1864 * Pool creation 1865 *--------------------------------------------------------------*/ 1866 /* Initialize pool features. */ 1867 static void pool_features_init(struct pool_features *pf) 1868 { 1869 pf->mode = PM_WRITE; 1870 pf->zero_new_blocks = true; 1871 pf->discard_enabled = true; 1872 pf->discard_passdown = true; 1873 pf->error_if_no_space = false; 1874 } 1875 1876 static void __pool_destroy(struct pool *pool) 1877 { 1878 __pool_table_remove(pool); 1879 1880 if (dm_pool_metadata_close(pool->pmd) < 0) 1881 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1882 1883 dm_bio_prison_destroy(pool->prison); 1884 dm_kcopyd_client_destroy(pool->copier); 1885 1886 if (pool->wq) 1887 destroy_workqueue(pool->wq); 1888 1889 if (pool->next_mapping) 1890 mempool_free(pool->next_mapping, pool->mapping_pool); 1891 mempool_destroy(pool->mapping_pool); 1892 dm_deferred_set_destroy(pool->shared_read_ds); 1893 dm_deferred_set_destroy(pool->all_io_ds); 1894 kfree(pool); 1895 } 1896 1897 static struct kmem_cache *_new_mapping_cache; 1898 1899 static struct pool *pool_create(struct mapped_device *pool_md, 1900 struct block_device *metadata_dev, 1901 unsigned long block_size, 1902 int read_only, char **error) 1903 { 1904 int r; 1905 void *err_p; 1906 struct pool *pool; 1907 struct dm_pool_metadata *pmd; 1908 bool format_device = read_only ? false : true; 1909 1910 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 1911 if (IS_ERR(pmd)) { 1912 *error = "Error creating metadata object"; 1913 return (struct pool *)pmd; 1914 } 1915 1916 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 1917 if (!pool) { 1918 *error = "Error allocating memory for pool"; 1919 err_p = ERR_PTR(-ENOMEM); 1920 goto bad_pool; 1921 } 1922 1923 pool->pmd = pmd; 1924 pool->sectors_per_block = block_size; 1925 if (block_size & (block_size - 1)) 1926 pool->sectors_per_block_shift = -1; 1927 else 1928 pool->sectors_per_block_shift = __ffs(block_size); 1929 pool->low_water_blocks = 0; 1930 pool_features_init(&pool->pf); 1931 pool->prison = dm_bio_prison_create(PRISON_CELLS); 1932 if (!pool->prison) { 1933 *error = "Error creating pool's bio prison"; 1934 err_p = ERR_PTR(-ENOMEM); 1935 goto bad_prison; 1936 } 1937 1938 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 1939 if (IS_ERR(pool->copier)) { 1940 r = PTR_ERR(pool->copier); 1941 *error = "Error creating pool's kcopyd client"; 1942 err_p = ERR_PTR(r); 1943 goto bad_kcopyd_client; 1944 } 1945 1946 /* 1947 * Create singlethreaded workqueue that will service all devices 1948 * that use this metadata. 1949 */ 1950 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 1951 if (!pool->wq) { 1952 *error = "Error creating pool's workqueue"; 1953 err_p = ERR_PTR(-ENOMEM); 1954 goto bad_wq; 1955 } 1956 1957 INIT_WORK(&pool->worker, do_worker); 1958 INIT_DELAYED_WORK(&pool->waker, do_waker); 1959 spin_lock_init(&pool->lock); 1960 bio_list_init(&pool->deferred_bios); 1961 bio_list_init(&pool->deferred_flush_bios); 1962 INIT_LIST_HEAD(&pool->prepared_mappings); 1963 INIT_LIST_HEAD(&pool->prepared_discards); 1964 pool->low_water_triggered = false; 1965 bio_list_init(&pool->retry_on_resume_list); 1966 1967 pool->shared_read_ds = dm_deferred_set_create(); 1968 if (!pool->shared_read_ds) { 1969 *error = "Error creating pool's shared read deferred set"; 1970 err_p = ERR_PTR(-ENOMEM); 1971 goto bad_shared_read_ds; 1972 } 1973 1974 pool->all_io_ds = dm_deferred_set_create(); 1975 if (!pool->all_io_ds) { 1976 *error = "Error creating pool's all io deferred set"; 1977 err_p = ERR_PTR(-ENOMEM); 1978 goto bad_all_io_ds; 1979 } 1980 1981 pool->next_mapping = NULL; 1982 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 1983 _new_mapping_cache); 1984 if (!pool->mapping_pool) { 1985 *error = "Error creating pool's mapping mempool"; 1986 err_p = ERR_PTR(-ENOMEM); 1987 goto bad_mapping_pool; 1988 } 1989 1990 pool->ref_count = 1; 1991 pool->last_commit_jiffies = jiffies; 1992 pool->pool_md = pool_md; 1993 pool->md_dev = metadata_dev; 1994 __pool_table_insert(pool); 1995 1996 return pool; 1997 1998 bad_mapping_pool: 1999 dm_deferred_set_destroy(pool->all_io_ds); 2000 bad_all_io_ds: 2001 dm_deferred_set_destroy(pool->shared_read_ds); 2002 bad_shared_read_ds: 2003 destroy_workqueue(pool->wq); 2004 bad_wq: 2005 dm_kcopyd_client_destroy(pool->copier); 2006 bad_kcopyd_client: 2007 dm_bio_prison_destroy(pool->prison); 2008 bad_prison: 2009 kfree(pool); 2010 bad_pool: 2011 if (dm_pool_metadata_close(pmd)) 2012 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2013 2014 return err_p; 2015 } 2016 2017 static void __pool_inc(struct pool *pool) 2018 { 2019 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2020 pool->ref_count++; 2021 } 2022 2023 static void __pool_dec(struct pool *pool) 2024 { 2025 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2026 BUG_ON(!pool->ref_count); 2027 if (!--pool->ref_count) 2028 __pool_destroy(pool); 2029 } 2030 2031 static struct pool *__pool_find(struct mapped_device *pool_md, 2032 struct block_device *metadata_dev, 2033 unsigned long block_size, int read_only, 2034 char **error, int *created) 2035 { 2036 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2037 2038 if (pool) { 2039 if (pool->pool_md != pool_md) { 2040 *error = "metadata device already in use by a pool"; 2041 return ERR_PTR(-EBUSY); 2042 } 2043 __pool_inc(pool); 2044 2045 } else { 2046 pool = __pool_table_lookup(pool_md); 2047 if (pool) { 2048 if (pool->md_dev != metadata_dev) { 2049 *error = "different pool cannot replace a pool"; 2050 return ERR_PTR(-EINVAL); 2051 } 2052 __pool_inc(pool); 2053 2054 } else { 2055 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2056 *created = 1; 2057 } 2058 } 2059 2060 return pool; 2061 } 2062 2063 /*---------------------------------------------------------------- 2064 * Pool target methods 2065 *--------------------------------------------------------------*/ 2066 static void pool_dtr(struct dm_target *ti) 2067 { 2068 struct pool_c *pt = ti->private; 2069 2070 mutex_lock(&dm_thin_pool_table.mutex); 2071 2072 unbind_control_target(pt->pool, ti); 2073 __pool_dec(pt->pool); 2074 dm_put_device(ti, pt->metadata_dev); 2075 dm_put_device(ti, pt->data_dev); 2076 kfree(pt); 2077 2078 mutex_unlock(&dm_thin_pool_table.mutex); 2079 } 2080 2081 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2082 struct dm_target *ti) 2083 { 2084 int r; 2085 unsigned argc; 2086 const char *arg_name; 2087 2088 static struct dm_arg _args[] = { 2089 {0, 4, "Invalid number of pool feature arguments"}, 2090 }; 2091 2092 /* 2093 * No feature arguments supplied. 2094 */ 2095 if (!as->argc) 2096 return 0; 2097 2098 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2099 if (r) 2100 return -EINVAL; 2101 2102 while (argc && !r) { 2103 arg_name = dm_shift_arg(as); 2104 argc--; 2105 2106 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2107 pf->zero_new_blocks = false; 2108 2109 else if (!strcasecmp(arg_name, "ignore_discard")) 2110 pf->discard_enabled = false; 2111 2112 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2113 pf->discard_passdown = false; 2114 2115 else if (!strcasecmp(arg_name, "read_only")) 2116 pf->mode = PM_READ_ONLY; 2117 2118 else if (!strcasecmp(arg_name, "error_if_no_space")) 2119 pf->error_if_no_space = true; 2120 2121 else { 2122 ti->error = "Unrecognised pool feature requested"; 2123 r = -EINVAL; 2124 break; 2125 } 2126 } 2127 2128 return r; 2129 } 2130 2131 static void metadata_low_callback(void *context) 2132 { 2133 struct pool *pool = context; 2134 2135 DMWARN("%s: reached low water mark for metadata device: sending event.", 2136 dm_device_name(pool->pool_md)); 2137 2138 dm_table_event(pool->ti->table); 2139 } 2140 2141 static sector_t get_dev_size(struct block_device *bdev) 2142 { 2143 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2144 } 2145 2146 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2147 { 2148 sector_t metadata_dev_size = get_dev_size(bdev); 2149 char buffer[BDEVNAME_SIZE]; 2150 2151 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2152 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2153 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2154 } 2155 2156 static sector_t get_metadata_dev_size(struct block_device *bdev) 2157 { 2158 sector_t metadata_dev_size = get_dev_size(bdev); 2159 2160 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2161 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2162 2163 return metadata_dev_size; 2164 } 2165 2166 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2167 { 2168 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2169 2170 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2171 2172 return metadata_dev_size; 2173 } 2174 2175 /* 2176 * When a metadata threshold is crossed a dm event is triggered, and 2177 * userland should respond by growing the metadata device. We could let 2178 * userland set the threshold, like we do with the data threshold, but I'm 2179 * not sure they know enough to do this well. 2180 */ 2181 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2182 { 2183 /* 2184 * 4M is ample for all ops with the possible exception of thin 2185 * device deletion which is harmless if it fails (just retry the 2186 * delete after you've grown the device). 2187 */ 2188 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2189 return min((dm_block_t)1024ULL /* 4M */, quarter); 2190 } 2191 2192 /* 2193 * thin-pool <metadata dev> <data dev> 2194 * <data block size (sectors)> 2195 * <low water mark (blocks)> 2196 * [<#feature args> [<arg>]*] 2197 * 2198 * Optional feature arguments are: 2199 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2200 * ignore_discard: disable discard 2201 * no_discard_passdown: don't pass discards down to the data device 2202 * read_only: Don't allow any changes to be made to the pool metadata. 2203 * error_if_no_space: error IOs, instead of queueing, if no space. 2204 */ 2205 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2206 { 2207 int r, pool_created = 0; 2208 struct pool_c *pt; 2209 struct pool *pool; 2210 struct pool_features pf; 2211 struct dm_arg_set as; 2212 struct dm_dev *data_dev; 2213 unsigned long block_size; 2214 dm_block_t low_water_blocks; 2215 struct dm_dev *metadata_dev; 2216 fmode_t metadata_mode; 2217 2218 /* 2219 * FIXME Remove validation from scope of lock. 2220 */ 2221 mutex_lock(&dm_thin_pool_table.mutex); 2222 2223 if (argc < 4) { 2224 ti->error = "Invalid argument count"; 2225 r = -EINVAL; 2226 goto out_unlock; 2227 } 2228 2229 as.argc = argc; 2230 as.argv = argv; 2231 2232 /* 2233 * Set default pool features. 2234 */ 2235 pool_features_init(&pf); 2236 2237 dm_consume_args(&as, 4); 2238 r = parse_pool_features(&as, &pf, ti); 2239 if (r) 2240 goto out_unlock; 2241 2242 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2243 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2244 if (r) { 2245 ti->error = "Error opening metadata block device"; 2246 goto out_unlock; 2247 } 2248 warn_if_metadata_device_too_big(metadata_dev->bdev); 2249 2250 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2251 if (r) { 2252 ti->error = "Error getting data device"; 2253 goto out_metadata; 2254 } 2255 2256 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2257 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2258 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2259 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2260 ti->error = "Invalid block size"; 2261 r = -EINVAL; 2262 goto out; 2263 } 2264 2265 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2266 ti->error = "Invalid low water mark"; 2267 r = -EINVAL; 2268 goto out; 2269 } 2270 2271 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2272 if (!pt) { 2273 r = -ENOMEM; 2274 goto out; 2275 } 2276 2277 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2278 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2279 if (IS_ERR(pool)) { 2280 r = PTR_ERR(pool); 2281 goto out_free_pt; 2282 } 2283 2284 /* 2285 * 'pool_created' reflects whether this is the first table load. 2286 * Top level discard support is not allowed to be changed after 2287 * initial load. This would require a pool reload to trigger thin 2288 * device changes. 2289 */ 2290 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2291 ti->error = "Discard support cannot be disabled once enabled"; 2292 r = -EINVAL; 2293 goto out_flags_changed; 2294 } 2295 2296 pt->pool = pool; 2297 pt->ti = ti; 2298 pt->metadata_dev = metadata_dev; 2299 pt->data_dev = data_dev; 2300 pt->low_water_blocks = low_water_blocks; 2301 pt->adjusted_pf = pt->requested_pf = pf; 2302 ti->num_flush_bios = 1; 2303 2304 /* 2305 * Only need to enable discards if the pool should pass 2306 * them down to the data device. The thin device's discard 2307 * processing will cause mappings to be removed from the btree. 2308 */ 2309 ti->discard_zeroes_data_unsupported = true; 2310 if (pf.discard_enabled && pf.discard_passdown) { 2311 ti->num_discard_bios = 1; 2312 2313 /* 2314 * Setting 'discards_supported' circumvents the normal 2315 * stacking of discard limits (this keeps the pool and 2316 * thin devices' discard limits consistent). 2317 */ 2318 ti->discards_supported = true; 2319 } 2320 ti->private = pt; 2321 2322 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2323 calc_metadata_threshold(pt), 2324 metadata_low_callback, 2325 pool); 2326 if (r) 2327 goto out_free_pt; 2328 2329 pt->callbacks.congested_fn = pool_is_congested; 2330 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2331 2332 mutex_unlock(&dm_thin_pool_table.mutex); 2333 2334 return 0; 2335 2336 out_flags_changed: 2337 __pool_dec(pool); 2338 out_free_pt: 2339 kfree(pt); 2340 out: 2341 dm_put_device(ti, data_dev); 2342 out_metadata: 2343 dm_put_device(ti, metadata_dev); 2344 out_unlock: 2345 mutex_unlock(&dm_thin_pool_table.mutex); 2346 2347 return r; 2348 } 2349 2350 static int pool_map(struct dm_target *ti, struct bio *bio) 2351 { 2352 int r; 2353 struct pool_c *pt = ti->private; 2354 struct pool *pool = pt->pool; 2355 unsigned long flags; 2356 2357 /* 2358 * As this is a singleton target, ti->begin is always zero. 2359 */ 2360 spin_lock_irqsave(&pool->lock, flags); 2361 bio->bi_bdev = pt->data_dev->bdev; 2362 r = DM_MAPIO_REMAPPED; 2363 spin_unlock_irqrestore(&pool->lock, flags); 2364 2365 return r; 2366 } 2367 2368 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2369 { 2370 int r; 2371 struct pool_c *pt = ti->private; 2372 struct pool *pool = pt->pool; 2373 sector_t data_size = ti->len; 2374 dm_block_t sb_data_size; 2375 2376 *need_commit = false; 2377 2378 (void) sector_div(data_size, pool->sectors_per_block); 2379 2380 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2381 if (r) { 2382 DMERR("%s: failed to retrieve data device size", 2383 dm_device_name(pool->pool_md)); 2384 return r; 2385 } 2386 2387 if (data_size < sb_data_size) { 2388 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2389 dm_device_name(pool->pool_md), 2390 (unsigned long long)data_size, sb_data_size); 2391 return -EINVAL; 2392 2393 } else if (data_size > sb_data_size) { 2394 if (dm_pool_metadata_needs_check(pool->pmd)) { 2395 DMERR("%s: unable to grow the data device until repaired.", 2396 dm_device_name(pool->pool_md)); 2397 return 0; 2398 } 2399 2400 if (sb_data_size) 2401 DMINFO("%s: growing the data device from %llu to %llu blocks", 2402 dm_device_name(pool->pool_md), 2403 sb_data_size, (unsigned long long)data_size); 2404 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2405 if (r) { 2406 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 2407 return r; 2408 } 2409 2410 *need_commit = true; 2411 } 2412 2413 return 0; 2414 } 2415 2416 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2417 { 2418 int r; 2419 struct pool_c *pt = ti->private; 2420 struct pool *pool = pt->pool; 2421 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2422 2423 *need_commit = false; 2424 2425 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2426 2427 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2428 if (r) { 2429 DMERR("%s: failed to retrieve metadata device size", 2430 dm_device_name(pool->pool_md)); 2431 return r; 2432 } 2433 2434 if (metadata_dev_size < sb_metadata_dev_size) { 2435 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2436 dm_device_name(pool->pool_md), 2437 metadata_dev_size, sb_metadata_dev_size); 2438 return -EINVAL; 2439 2440 } else if (metadata_dev_size > sb_metadata_dev_size) { 2441 if (dm_pool_metadata_needs_check(pool->pmd)) { 2442 DMERR("%s: unable to grow the metadata device until repaired.", 2443 dm_device_name(pool->pool_md)); 2444 return 0; 2445 } 2446 2447 warn_if_metadata_device_too_big(pool->md_dev); 2448 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 2449 dm_device_name(pool->pool_md), 2450 sb_metadata_dev_size, metadata_dev_size); 2451 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2452 if (r) { 2453 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 2454 return r; 2455 } 2456 2457 *need_commit = true; 2458 } 2459 2460 return 0; 2461 } 2462 2463 /* 2464 * Retrieves the number of blocks of the data device from 2465 * the superblock and compares it to the actual device size, 2466 * thus resizing the data device in case it has grown. 2467 * 2468 * This both copes with opening preallocated data devices in the ctr 2469 * being followed by a resume 2470 * -and- 2471 * calling the resume method individually after userspace has 2472 * grown the data device in reaction to a table event. 2473 */ 2474 static int pool_preresume(struct dm_target *ti) 2475 { 2476 int r; 2477 bool need_commit1, need_commit2; 2478 struct pool_c *pt = ti->private; 2479 struct pool *pool = pt->pool; 2480 2481 /* 2482 * Take control of the pool object. 2483 */ 2484 r = bind_control_target(pool, ti); 2485 if (r) 2486 return r; 2487 2488 r = maybe_resize_data_dev(ti, &need_commit1); 2489 if (r) 2490 return r; 2491 2492 r = maybe_resize_metadata_dev(ti, &need_commit2); 2493 if (r) 2494 return r; 2495 2496 if (need_commit1 || need_commit2) 2497 (void) commit(pool); 2498 2499 return 0; 2500 } 2501 2502 static void pool_resume(struct dm_target *ti) 2503 { 2504 struct pool_c *pt = ti->private; 2505 struct pool *pool = pt->pool; 2506 unsigned long flags; 2507 2508 spin_lock_irqsave(&pool->lock, flags); 2509 pool->low_water_triggered = false; 2510 __requeue_bios(pool); 2511 spin_unlock_irqrestore(&pool->lock, flags); 2512 2513 do_waker(&pool->waker.work); 2514 } 2515 2516 static void pool_postsuspend(struct dm_target *ti) 2517 { 2518 struct pool_c *pt = ti->private; 2519 struct pool *pool = pt->pool; 2520 2521 cancel_delayed_work(&pool->waker); 2522 flush_workqueue(pool->wq); 2523 (void) commit(pool); 2524 } 2525 2526 static int check_arg_count(unsigned argc, unsigned args_required) 2527 { 2528 if (argc != args_required) { 2529 DMWARN("Message received with %u arguments instead of %u.", 2530 argc, args_required); 2531 return -EINVAL; 2532 } 2533 2534 return 0; 2535 } 2536 2537 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2538 { 2539 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2540 *dev_id <= MAX_DEV_ID) 2541 return 0; 2542 2543 if (warning) 2544 DMWARN("Message received with invalid device id: %s", arg); 2545 2546 return -EINVAL; 2547 } 2548 2549 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2550 { 2551 dm_thin_id dev_id; 2552 int r; 2553 2554 r = check_arg_count(argc, 2); 2555 if (r) 2556 return r; 2557 2558 r = read_dev_id(argv[1], &dev_id, 1); 2559 if (r) 2560 return r; 2561 2562 r = dm_pool_create_thin(pool->pmd, dev_id); 2563 if (r) { 2564 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2565 argv[1]); 2566 return r; 2567 } 2568 2569 return 0; 2570 } 2571 2572 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2573 { 2574 dm_thin_id dev_id; 2575 dm_thin_id origin_dev_id; 2576 int r; 2577 2578 r = check_arg_count(argc, 3); 2579 if (r) 2580 return r; 2581 2582 r = read_dev_id(argv[1], &dev_id, 1); 2583 if (r) 2584 return r; 2585 2586 r = read_dev_id(argv[2], &origin_dev_id, 1); 2587 if (r) 2588 return r; 2589 2590 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2591 if (r) { 2592 DMWARN("Creation of new snapshot %s of device %s failed.", 2593 argv[1], argv[2]); 2594 return r; 2595 } 2596 2597 return 0; 2598 } 2599 2600 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2601 { 2602 dm_thin_id dev_id; 2603 int r; 2604 2605 r = check_arg_count(argc, 2); 2606 if (r) 2607 return r; 2608 2609 r = read_dev_id(argv[1], &dev_id, 1); 2610 if (r) 2611 return r; 2612 2613 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2614 if (r) 2615 DMWARN("Deletion of thin device %s failed.", argv[1]); 2616 2617 return r; 2618 } 2619 2620 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2621 { 2622 dm_thin_id old_id, new_id; 2623 int r; 2624 2625 r = check_arg_count(argc, 3); 2626 if (r) 2627 return r; 2628 2629 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2630 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2631 return -EINVAL; 2632 } 2633 2634 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2635 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2636 return -EINVAL; 2637 } 2638 2639 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2640 if (r) { 2641 DMWARN("Failed to change transaction id from %s to %s.", 2642 argv[1], argv[2]); 2643 return r; 2644 } 2645 2646 return 0; 2647 } 2648 2649 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2650 { 2651 int r; 2652 2653 r = check_arg_count(argc, 1); 2654 if (r) 2655 return r; 2656 2657 (void) commit(pool); 2658 2659 r = dm_pool_reserve_metadata_snap(pool->pmd); 2660 if (r) 2661 DMWARN("reserve_metadata_snap message failed."); 2662 2663 return r; 2664 } 2665 2666 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2667 { 2668 int r; 2669 2670 r = check_arg_count(argc, 1); 2671 if (r) 2672 return r; 2673 2674 r = dm_pool_release_metadata_snap(pool->pmd); 2675 if (r) 2676 DMWARN("release_metadata_snap message failed."); 2677 2678 return r; 2679 } 2680 2681 /* 2682 * Messages supported: 2683 * create_thin <dev_id> 2684 * create_snap <dev_id> <origin_id> 2685 * delete <dev_id> 2686 * trim <dev_id> <new_size_in_sectors> 2687 * set_transaction_id <current_trans_id> <new_trans_id> 2688 * reserve_metadata_snap 2689 * release_metadata_snap 2690 */ 2691 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2692 { 2693 int r = -EINVAL; 2694 struct pool_c *pt = ti->private; 2695 struct pool *pool = pt->pool; 2696 2697 if (!strcasecmp(argv[0], "create_thin")) 2698 r = process_create_thin_mesg(argc, argv, pool); 2699 2700 else if (!strcasecmp(argv[0], "create_snap")) 2701 r = process_create_snap_mesg(argc, argv, pool); 2702 2703 else if (!strcasecmp(argv[0], "delete")) 2704 r = process_delete_mesg(argc, argv, pool); 2705 2706 else if (!strcasecmp(argv[0], "set_transaction_id")) 2707 r = process_set_transaction_id_mesg(argc, argv, pool); 2708 2709 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2710 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2711 2712 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2713 r = process_release_metadata_snap_mesg(argc, argv, pool); 2714 2715 else 2716 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2717 2718 if (!r) 2719 (void) commit(pool); 2720 2721 return r; 2722 } 2723 2724 static void emit_flags(struct pool_features *pf, char *result, 2725 unsigned sz, unsigned maxlen) 2726 { 2727 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2728 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 2729 pf->error_if_no_space; 2730 DMEMIT("%u ", count); 2731 2732 if (!pf->zero_new_blocks) 2733 DMEMIT("skip_block_zeroing "); 2734 2735 if (!pf->discard_enabled) 2736 DMEMIT("ignore_discard "); 2737 2738 if (!pf->discard_passdown) 2739 DMEMIT("no_discard_passdown "); 2740 2741 if (pf->mode == PM_READ_ONLY) 2742 DMEMIT("read_only "); 2743 2744 if (pf->error_if_no_space) 2745 DMEMIT("error_if_no_space "); 2746 } 2747 2748 /* 2749 * Status line is: 2750 * <transaction id> <used metadata sectors>/<total metadata sectors> 2751 * <used data sectors>/<total data sectors> <held metadata root> 2752 */ 2753 static void pool_status(struct dm_target *ti, status_type_t type, 2754 unsigned status_flags, char *result, unsigned maxlen) 2755 { 2756 int r; 2757 unsigned sz = 0; 2758 uint64_t transaction_id; 2759 dm_block_t nr_free_blocks_data; 2760 dm_block_t nr_free_blocks_metadata; 2761 dm_block_t nr_blocks_data; 2762 dm_block_t nr_blocks_metadata; 2763 dm_block_t held_root; 2764 char buf[BDEVNAME_SIZE]; 2765 char buf2[BDEVNAME_SIZE]; 2766 struct pool_c *pt = ti->private; 2767 struct pool *pool = pt->pool; 2768 2769 switch (type) { 2770 case STATUSTYPE_INFO: 2771 if (get_pool_mode(pool) == PM_FAIL) { 2772 DMEMIT("Fail"); 2773 break; 2774 } 2775 2776 /* Commit to ensure statistics aren't out-of-date */ 2777 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2778 (void) commit(pool); 2779 2780 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2781 if (r) { 2782 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 2783 dm_device_name(pool->pool_md), r); 2784 goto err; 2785 } 2786 2787 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2788 if (r) { 2789 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 2790 dm_device_name(pool->pool_md), r); 2791 goto err; 2792 } 2793 2794 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2795 if (r) { 2796 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 2797 dm_device_name(pool->pool_md), r); 2798 goto err; 2799 } 2800 2801 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2802 if (r) { 2803 DMERR("%s: dm_pool_get_free_block_count returned %d", 2804 dm_device_name(pool->pool_md), r); 2805 goto err; 2806 } 2807 2808 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2809 if (r) { 2810 DMERR("%s: dm_pool_get_data_dev_size returned %d", 2811 dm_device_name(pool->pool_md), r); 2812 goto err; 2813 } 2814 2815 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2816 if (r) { 2817 DMERR("%s: dm_pool_get_metadata_snap returned %d", 2818 dm_device_name(pool->pool_md), r); 2819 goto err; 2820 } 2821 2822 DMEMIT("%llu %llu/%llu %llu/%llu ", 2823 (unsigned long long)transaction_id, 2824 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2825 (unsigned long long)nr_blocks_metadata, 2826 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2827 (unsigned long long)nr_blocks_data); 2828 2829 if (held_root) 2830 DMEMIT("%llu ", held_root); 2831 else 2832 DMEMIT("- "); 2833 2834 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 2835 DMEMIT("out_of_data_space "); 2836 else if (pool->pf.mode == PM_READ_ONLY) 2837 DMEMIT("ro "); 2838 else 2839 DMEMIT("rw "); 2840 2841 if (!pool->pf.discard_enabled) 2842 DMEMIT("ignore_discard "); 2843 else if (pool->pf.discard_passdown) 2844 DMEMIT("discard_passdown "); 2845 else 2846 DMEMIT("no_discard_passdown "); 2847 2848 if (pool->pf.error_if_no_space) 2849 DMEMIT("error_if_no_space "); 2850 else 2851 DMEMIT("queue_if_no_space "); 2852 2853 break; 2854 2855 case STATUSTYPE_TABLE: 2856 DMEMIT("%s %s %lu %llu ", 2857 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2858 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2859 (unsigned long)pool->sectors_per_block, 2860 (unsigned long long)pt->low_water_blocks); 2861 emit_flags(&pt->requested_pf, result, sz, maxlen); 2862 break; 2863 } 2864 return; 2865 2866 err: 2867 DMEMIT("Error"); 2868 } 2869 2870 static int pool_iterate_devices(struct dm_target *ti, 2871 iterate_devices_callout_fn fn, void *data) 2872 { 2873 struct pool_c *pt = ti->private; 2874 2875 return fn(ti, pt->data_dev, 0, ti->len, data); 2876 } 2877 2878 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2879 struct bio_vec *biovec, int max_size) 2880 { 2881 struct pool_c *pt = ti->private; 2882 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2883 2884 if (!q->merge_bvec_fn) 2885 return max_size; 2886 2887 bvm->bi_bdev = pt->data_dev->bdev; 2888 2889 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2890 } 2891 2892 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2893 { 2894 struct pool *pool = pt->pool; 2895 struct queue_limits *data_limits; 2896 2897 limits->max_discard_sectors = pool->sectors_per_block; 2898 2899 /* 2900 * discard_granularity is just a hint, and not enforced. 2901 */ 2902 if (pt->adjusted_pf.discard_passdown) { 2903 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 2904 limits->discard_granularity = data_limits->discard_granularity; 2905 } else 2906 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 2907 } 2908 2909 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 2910 { 2911 struct pool_c *pt = ti->private; 2912 struct pool *pool = pt->pool; 2913 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 2914 2915 /* 2916 * If the system-determined stacked limits are compatible with the 2917 * pool's blocksize (io_opt is a factor) do not override them. 2918 */ 2919 if (io_opt_sectors < pool->sectors_per_block || 2920 do_div(io_opt_sectors, pool->sectors_per_block)) { 2921 blk_limits_io_min(limits, 0); 2922 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 2923 } 2924 2925 /* 2926 * pt->adjusted_pf is a staging area for the actual features to use. 2927 * They get transferred to the live pool in bind_control_target() 2928 * called from pool_preresume(). 2929 */ 2930 if (!pt->adjusted_pf.discard_enabled) { 2931 /* 2932 * Must explicitly disallow stacking discard limits otherwise the 2933 * block layer will stack them if pool's data device has support. 2934 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 2935 * user to see that, so make sure to set all discard limits to 0. 2936 */ 2937 limits->discard_granularity = 0; 2938 return; 2939 } 2940 2941 disable_passdown_if_not_supported(pt); 2942 2943 set_discard_limits(pt, limits); 2944 } 2945 2946 static struct target_type pool_target = { 2947 .name = "thin-pool", 2948 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 2949 DM_TARGET_IMMUTABLE, 2950 .version = {1, 11, 0}, 2951 .module = THIS_MODULE, 2952 .ctr = pool_ctr, 2953 .dtr = pool_dtr, 2954 .map = pool_map, 2955 .postsuspend = pool_postsuspend, 2956 .preresume = pool_preresume, 2957 .resume = pool_resume, 2958 .message = pool_message, 2959 .status = pool_status, 2960 .merge = pool_merge, 2961 .iterate_devices = pool_iterate_devices, 2962 .io_hints = pool_io_hints, 2963 }; 2964 2965 /*---------------------------------------------------------------- 2966 * Thin target methods 2967 *--------------------------------------------------------------*/ 2968 static void thin_dtr(struct dm_target *ti) 2969 { 2970 struct thin_c *tc = ti->private; 2971 2972 mutex_lock(&dm_thin_pool_table.mutex); 2973 2974 __pool_dec(tc->pool); 2975 dm_pool_close_thin_device(tc->td); 2976 dm_put_device(ti, tc->pool_dev); 2977 if (tc->origin_dev) 2978 dm_put_device(ti, tc->origin_dev); 2979 kfree(tc); 2980 2981 mutex_unlock(&dm_thin_pool_table.mutex); 2982 } 2983 2984 /* 2985 * Thin target parameters: 2986 * 2987 * <pool_dev> <dev_id> [origin_dev] 2988 * 2989 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 2990 * dev_id: the internal device identifier 2991 * origin_dev: a device external to the pool that should act as the origin 2992 * 2993 * If the pool device has discards disabled, they get disabled for the thin 2994 * device as well. 2995 */ 2996 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 2997 { 2998 int r; 2999 struct thin_c *tc; 3000 struct dm_dev *pool_dev, *origin_dev; 3001 struct mapped_device *pool_md; 3002 3003 mutex_lock(&dm_thin_pool_table.mutex); 3004 3005 if (argc != 2 && argc != 3) { 3006 ti->error = "Invalid argument count"; 3007 r = -EINVAL; 3008 goto out_unlock; 3009 } 3010 3011 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3012 if (!tc) { 3013 ti->error = "Out of memory"; 3014 r = -ENOMEM; 3015 goto out_unlock; 3016 } 3017 3018 if (argc == 3) { 3019 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3020 if (r) { 3021 ti->error = "Error opening origin device"; 3022 goto bad_origin_dev; 3023 } 3024 tc->origin_dev = origin_dev; 3025 } 3026 3027 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3028 if (r) { 3029 ti->error = "Error opening pool device"; 3030 goto bad_pool_dev; 3031 } 3032 tc->pool_dev = pool_dev; 3033 3034 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3035 ti->error = "Invalid device id"; 3036 r = -EINVAL; 3037 goto bad_common; 3038 } 3039 3040 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3041 if (!pool_md) { 3042 ti->error = "Couldn't get pool mapped device"; 3043 r = -EINVAL; 3044 goto bad_common; 3045 } 3046 3047 tc->pool = __pool_table_lookup(pool_md); 3048 if (!tc->pool) { 3049 ti->error = "Couldn't find pool object"; 3050 r = -EINVAL; 3051 goto bad_pool_lookup; 3052 } 3053 __pool_inc(tc->pool); 3054 3055 if (get_pool_mode(tc->pool) == PM_FAIL) { 3056 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3057 r = -EINVAL; 3058 goto bad_thin_open; 3059 } 3060 3061 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3062 if (r) { 3063 ti->error = "Couldn't open thin internal device"; 3064 goto bad_thin_open; 3065 } 3066 3067 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3068 if (r) 3069 goto bad_target_max_io_len; 3070 3071 ti->num_flush_bios = 1; 3072 ti->flush_supported = true; 3073 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3074 3075 /* In case the pool supports discards, pass them on. */ 3076 ti->discard_zeroes_data_unsupported = true; 3077 if (tc->pool->pf.discard_enabled) { 3078 ti->discards_supported = true; 3079 ti->num_discard_bios = 1; 3080 /* Discard bios must be split on a block boundary */ 3081 ti->split_discard_bios = true; 3082 } 3083 3084 dm_put(pool_md); 3085 3086 mutex_unlock(&dm_thin_pool_table.mutex); 3087 3088 return 0; 3089 3090 bad_target_max_io_len: 3091 dm_pool_close_thin_device(tc->td); 3092 bad_thin_open: 3093 __pool_dec(tc->pool); 3094 bad_pool_lookup: 3095 dm_put(pool_md); 3096 bad_common: 3097 dm_put_device(ti, tc->pool_dev); 3098 bad_pool_dev: 3099 if (tc->origin_dev) 3100 dm_put_device(ti, tc->origin_dev); 3101 bad_origin_dev: 3102 kfree(tc); 3103 out_unlock: 3104 mutex_unlock(&dm_thin_pool_table.mutex); 3105 3106 return r; 3107 } 3108 3109 static int thin_map(struct dm_target *ti, struct bio *bio) 3110 { 3111 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3112 3113 return thin_bio_map(ti, bio); 3114 } 3115 3116 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3117 { 3118 unsigned long flags; 3119 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3120 struct list_head work; 3121 struct dm_thin_new_mapping *m, *tmp; 3122 struct pool *pool = h->tc->pool; 3123 3124 if (h->shared_read_entry) { 3125 INIT_LIST_HEAD(&work); 3126 dm_deferred_entry_dec(h->shared_read_entry, &work); 3127 3128 spin_lock_irqsave(&pool->lock, flags); 3129 list_for_each_entry_safe(m, tmp, &work, list) { 3130 list_del(&m->list); 3131 m->quiesced = true; 3132 __maybe_add_mapping(m); 3133 } 3134 spin_unlock_irqrestore(&pool->lock, flags); 3135 } 3136 3137 if (h->all_io_entry) { 3138 INIT_LIST_HEAD(&work); 3139 dm_deferred_entry_dec(h->all_io_entry, &work); 3140 if (!list_empty(&work)) { 3141 spin_lock_irqsave(&pool->lock, flags); 3142 list_for_each_entry_safe(m, tmp, &work, list) 3143 list_add_tail(&m->list, &pool->prepared_discards); 3144 spin_unlock_irqrestore(&pool->lock, flags); 3145 wake_worker(pool); 3146 } 3147 } 3148 3149 return 0; 3150 } 3151 3152 static void thin_presuspend(struct dm_target *ti) 3153 { 3154 struct thin_c *tc = ti->private; 3155 3156 if (dm_noflush_suspending(ti)) 3157 noflush_work(tc, do_noflush_start); 3158 } 3159 3160 static void thin_postsuspend(struct dm_target *ti) 3161 { 3162 struct thin_c *tc = ti->private; 3163 3164 /* 3165 * The dm_noflush_suspending flag has been cleared by now, so 3166 * unfortunately we must always run this. 3167 */ 3168 noflush_work(tc, do_noflush_stop); 3169 } 3170 3171 /* 3172 * <nr mapped sectors> <highest mapped sector> 3173 */ 3174 static void thin_status(struct dm_target *ti, status_type_t type, 3175 unsigned status_flags, char *result, unsigned maxlen) 3176 { 3177 int r; 3178 ssize_t sz = 0; 3179 dm_block_t mapped, highest; 3180 char buf[BDEVNAME_SIZE]; 3181 struct thin_c *tc = ti->private; 3182 3183 if (get_pool_mode(tc->pool) == PM_FAIL) { 3184 DMEMIT("Fail"); 3185 return; 3186 } 3187 3188 if (!tc->td) 3189 DMEMIT("-"); 3190 else { 3191 switch (type) { 3192 case STATUSTYPE_INFO: 3193 r = dm_thin_get_mapped_count(tc->td, &mapped); 3194 if (r) { 3195 DMERR("dm_thin_get_mapped_count returned %d", r); 3196 goto err; 3197 } 3198 3199 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3200 if (r < 0) { 3201 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3202 goto err; 3203 } 3204 3205 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3206 if (r) 3207 DMEMIT("%llu", ((highest + 1) * 3208 tc->pool->sectors_per_block) - 1); 3209 else 3210 DMEMIT("-"); 3211 break; 3212 3213 case STATUSTYPE_TABLE: 3214 DMEMIT("%s %lu", 3215 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3216 (unsigned long) tc->dev_id); 3217 if (tc->origin_dev) 3218 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3219 break; 3220 } 3221 } 3222 3223 return; 3224 3225 err: 3226 DMEMIT("Error"); 3227 } 3228 3229 static int thin_iterate_devices(struct dm_target *ti, 3230 iterate_devices_callout_fn fn, void *data) 3231 { 3232 sector_t blocks; 3233 struct thin_c *tc = ti->private; 3234 struct pool *pool = tc->pool; 3235 3236 /* 3237 * We can't call dm_pool_get_data_dev_size() since that blocks. So 3238 * we follow a more convoluted path through to the pool's target. 3239 */ 3240 if (!pool->ti) 3241 return 0; /* nothing is bound */ 3242 3243 blocks = pool->ti->len; 3244 (void) sector_div(blocks, pool->sectors_per_block); 3245 if (blocks) 3246 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 3247 3248 return 0; 3249 } 3250 3251 static struct target_type thin_target = { 3252 .name = "thin", 3253 .version = {1, 11, 0}, 3254 .module = THIS_MODULE, 3255 .ctr = thin_ctr, 3256 .dtr = thin_dtr, 3257 .map = thin_map, 3258 .end_io = thin_endio, 3259 .presuspend = thin_presuspend, 3260 .postsuspend = thin_postsuspend, 3261 .status = thin_status, 3262 .iterate_devices = thin_iterate_devices, 3263 }; 3264 3265 /*----------------------------------------------------------------*/ 3266 3267 static int __init dm_thin_init(void) 3268 { 3269 int r; 3270 3271 pool_table_init(); 3272 3273 r = dm_register_target(&thin_target); 3274 if (r) 3275 return r; 3276 3277 r = dm_register_target(&pool_target); 3278 if (r) 3279 goto bad_pool_target; 3280 3281 r = -ENOMEM; 3282 3283 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3284 if (!_new_mapping_cache) 3285 goto bad_new_mapping_cache; 3286 3287 return 0; 3288 3289 bad_new_mapping_cache: 3290 dm_unregister_target(&pool_target); 3291 bad_pool_target: 3292 dm_unregister_target(&thin_target); 3293 3294 return r; 3295 } 3296 3297 static void dm_thin_exit(void) 3298 { 3299 dm_unregister_target(&thin_target); 3300 dm_unregister_target(&pool_target); 3301 3302 kmem_cache_destroy(_new_mapping_cache); 3303 } 3304 3305 module_init(dm_thin_init); 3306 module_exit(dm_thin_exit); 3307 3308 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3309 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3310 MODULE_LICENSE("GPL"); 3311