xref: /openbmc/linux/drivers/md/dm-thin.c (revision a17922de)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct work_struct worker;
244 	struct workqueue_struct *wq;
245 	struct throttle throttle;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 
264 	process_bio_fn process_bio;
265 	process_bio_fn process_discard;
266 
267 	process_cell_fn process_cell;
268 	process_cell_fn process_discard_cell;
269 
270 	process_mapping_fn process_prepared_mapping;
271 	process_mapping_fn process_prepared_discard;
272 	process_mapping_fn process_prepared_discard_pt2;
273 
274 	struct dm_bio_prison_cell **cell_sort_array;
275 
276 	mempool_t mapping_pool;
277 };
278 
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
281 
282 /*
283  * Target context for a pool.
284  */
285 struct pool_c {
286 	struct dm_target *ti;
287 	struct pool *pool;
288 	struct dm_dev *data_dev;
289 	struct dm_dev *metadata_dev;
290 	struct dm_target_callbacks callbacks;
291 
292 	dm_block_t low_water_blocks;
293 	struct pool_features requested_pf; /* Features requested during table load */
294 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
295 };
296 
297 /*
298  * Target context for a thin.
299  */
300 struct thin_c {
301 	struct list_head list;
302 	struct dm_dev *pool_dev;
303 	struct dm_dev *origin_dev;
304 	sector_t origin_size;
305 	dm_thin_id dev_id;
306 
307 	struct pool *pool;
308 	struct dm_thin_device *td;
309 	struct mapped_device *thin_md;
310 
311 	bool requeue_mode:1;
312 	spinlock_t lock;
313 	struct list_head deferred_cells;
314 	struct bio_list deferred_bio_list;
315 	struct bio_list retry_on_resume_list;
316 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
317 
318 	/*
319 	 * Ensures the thin is not destroyed until the worker has finished
320 	 * iterating the active_thins list.
321 	 */
322 	atomic_t refcount;
323 	struct completion can_destroy;
324 };
325 
326 /*----------------------------------------------------------------*/
327 
328 static bool block_size_is_power_of_two(struct pool *pool)
329 {
330 	return pool->sectors_per_block_shift >= 0;
331 }
332 
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 {
335 	return block_size_is_power_of_two(pool) ?
336 		(b << pool->sectors_per_block_shift) :
337 		(b * pool->sectors_per_block);
338 }
339 
340 /*----------------------------------------------------------------*/
341 
342 struct discard_op {
343 	struct thin_c *tc;
344 	struct blk_plug plug;
345 	struct bio *parent_bio;
346 	struct bio *bio;
347 };
348 
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 {
351 	BUG_ON(!parent);
352 
353 	op->tc = tc;
354 	blk_start_plug(&op->plug);
355 	op->parent_bio = parent;
356 	op->bio = NULL;
357 }
358 
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 {
361 	struct thin_c *tc = op->tc;
362 	sector_t s = block_to_sectors(tc->pool, data_b);
363 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364 
365 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366 				      GFP_NOWAIT, 0, &op->bio);
367 }
368 
369 static void end_discard(struct discard_op *op, int r)
370 {
371 	if (op->bio) {
372 		/*
373 		 * Even if one of the calls to issue_discard failed, we
374 		 * need to wait for the chain to complete.
375 		 */
376 		bio_chain(op->bio, op->parent_bio);
377 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
378 		submit_bio(op->bio);
379 	}
380 
381 	blk_finish_plug(&op->plug);
382 
383 	/*
384 	 * Even if r is set, there could be sub discards in flight that we
385 	 * need to wait for.
386 	 */
387 	if (r && !op->parent_bio->bi_status)
388 		op->parent_bio->bi_status = errno_to_blk_status(r);
389 	bio_endio(op->parent_bio);
390 }
391 
392 /*----------------------------------------------------------------*/
393 
394 /*
395  * wake_worker() is used when new work is queued and when pool_resume is
396  * ready to continue deferred IO processing.
397  */
398 static void wake_worker(struct pool *pool)
399 {
400 	queue_work(pool->wq, &pool->worker);
401 }
402 
403 /*----------------------------------------------------------------*/
404 
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406 		      struct dm_bio_prison_cell **cell_result)
407 {
408 	int r;
409 	struct dm_bio_prison_cell *cell_prealloc;
410 
411 	/*
412 	 * Allocate a cell from the prison's mempool.
413 	 * This might block but it can't fail.
414 	 */
415 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416 
417 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
418 	if (r)
419 		/*
420 		 * We reused an old cell; we can get rid of
421 		 * the new one.
422 		 */
423 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424 
425 	return r;
426 }
427 
428 static void cell_release(struct pool *pool,
429 			 struct dm_bio_prison_cell *cell,
430 			 struct bio_list *bios)
431 {
432 	dm_cell_release(pool->prison, cell, bios);
433 	dm_bio_prison_free_cell(pool->prison, cell);
434 }
435 
436 static void cell_visit_release(struct pool *pool,
437 			       void (*fn)(void *, struct dm_bio_prison_cell *),
438 			       void *context,
439 			       struct dm_bio_prison_cell *cell)
440 {
441 	dm_cell_visit_release(pool->prison, fn, context, cell);
442 	dm_bio_prison_free_cell(pool->prison, cell);
443 }
444 
445 static void cell_release_no_holder(struct pool *pool,
446 				   struct dm_bio_prison_cell *cell,
447 				   struct bio_list *bios)
448 {
449 	dm_cell_release_no_holder(pool->prison, cell, bios);
450 	dm_bio_prison_free_cell(pool->prison, cell);
451 }
452 
453 static void cell_error_with_code(struct pool *pool,
454 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 {
456 	dm_cell_error(pool->prison, cell, error_code);
457 	dm_bio_prison_free_cell(pool->prison, cell);
458 }
459 
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 {
462 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
463 }
464 
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 {
467 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
468 }
469 
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472 	cell_error_with_code(pool, cell, 0);
473 }
474 
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 {
477 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
478 }
479 
480 /*----------------------------------------------------------------*/
481 
482 /*
483  * A global list of pools that uses a struct mapped_device as a key.
484  */
485 static struct dm_thin_pool_table {
486 	struct mutex mutex;
487 	struct list_head pools;
488 } dm_thin_pool_table;
489 
490 static void pool_table_init(void)
491 {
492 	mutex_init(&dm_thin_pool_table.mutex);
493 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
494 }
495 
496 static void pool_table_exit(void)
497 {
498 	mutex_destroy(&dm_thin_pool_table.mutex);
499 }
500 
501 static void __pool_table_insert(struct pool *pool)
502 {
503 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 	list_add(&pool->list, &dm_thin_pool_table.pools);
505 }
506 
507 static void __pool_table_remove(struct pool *pool)
508 {
509 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510 	list_del(&pool->list);
511 }
512 
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 {
515 	struct pool *pool = NULL, *tmp;
516 
517 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518 
519 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520 		if (tmp->pool_md == md) {
521 			pool = tmp;
522 			break;
523 		}
524 	}
525 
526 	return pool;
527 }
528 
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 {
531 	struct pool *pool = NULL, *tmp;
532 
533 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534 
535 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536 		if (tmp->md_dev == md_dev) {
537 			pool = tmp;
538 			break;
539 		}
540 	}
541 
542 	return pool;
543 }
544 
545 /*----------------------------------------------------------------*/
546 
547 struct dm_thin_endio_hook {
548 	struct thin_c *tc;
549 	struct dm_deferred_entry *shared_read_entry;
550 	struct dm_deferred_entry *all_io_entry;
551 	struct dm_thin_new_mapping *overwrite_mapping;
552 	struct rb_node rb_node;
553 	struct dm_bio_prison_cell *cell;
554 };
555 
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 {
558 	bio_list_merge(bios, master);
559 	bio_list_init(master);
560 }
561 
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 {
564 	struct bio *bio;
565 
566 	while ((bio = bio_list_pop(bios))) {
567 		bio->bi_status = error;
568 		bio_endio(bio);
569 	}
570 }
571 
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
573 		blk_status_t error)
574 {
575 	struct bio_list bios;
576 	unsigned long flags;
577 
578 	bio_list_init(&bios);
579 
580 	spin_lock_irqsave(&tc->lock, flags);
581 	__merge_bio_list(&bios, master);
582 	spin_unlock_irqrestore(&tc->lock, flags);
583 
584 	error_bio_list(&bios, error);
585 }
586 
587 static void requeue_deferred_cells(struct thin_c *tc)
588 {
589 	struct pool *pool = tc->pool;
590 	unsigned long flags;
591 	struct list_head cells;
592 	struct dm_bio_prison_cell *cell, *tmp;
593 
594 	INIT_LIST_HEAD(&cells);
595 
596 	spin_lock_irqsave(&tc->lock, flags);
597 	list_splice_init(&tc->deferred_cells, &cells);
598 	spin_unlock_irqrestore(&tc->lock, flags);
599 
600 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
601 		cell_requeue(pool, cell);
602 }
603 
604 static void requeue_io(struct thin_c *tc)
605 {
606 	struct bio_list bios;
607 	unsigned long flags;
608 
609 	bio_list_init(&bios);
610 
611 	spin_lock_irqsave(&tc->lock, flags);
612 	__merge_bio_list(&bios, &tc->deferred_bio_list);
613 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
614 	spin_unlock_irqrestore(&tc->lock, flags);
615 
616 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617 	requeue_deferred_cells(tc);
618 }
619 
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 {
622 	struct thin_c *tc;
623 
624 	rcu_read_lock();
625 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
626 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627 	rcu_read_unlock();
628 }
629 
630 static void error_retry_list(struct pool *pool)
631 {
632 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633 }
634 
635 /*
636  * This section of code contains the logic for processing a thin device's IO.
637  * Much of the code depends on pool object resources (lists, workqueues, etc)
638  * but most is exclusively called from the thin target rather than the thin-pool
639  * target.
640  */
641 
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 {
644 	struct pool *pool = tc->pool;
645 	sector_t block_nr = bio->bi_iter.bi_sector;
646 
647 	if (block_size_is_power_of_two(pool))
648 		block_nr >>= pool->sectors_per_block_shift;
649 	else
650 		(void) sector_div(block_nr, pool->sectors_per_block);
651 
652 	return block_nr;
653 }
654 
655 /*
656  * Returns the _complete_ blocks that this bio covers.
657  */
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659 				dm_block_t *begin, dm_block_t *end)
660 {
661 	struct pool *pool = tc->pool;
662 	sector_t b = bio->bi_iter.bi_sector;
663 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664 
665 	b += pool->sectors_per_block - 1ull; /* so we round up */
666 
667 	if (block_size_is_power_of_two(pool)) {
668 		b >>= pool->sectors_per_block_shift;
669 		e >>= pool->sectors_per_block_shift;
670 	} else {
671 		(void) sector_div(b, pool->sectors_per_block);
672 		(void) sector_div(e, pool->sectors_per_block);
673 	}
674 
675 	if (e < b)
676 		/* Can happen if the bio is within a single block. */
677 		e = b;
678 
679 	*begin = b;
680 	*end = e;
681 }
682 
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 {
685 	struct pool *pool = tc->pool;
686 	sector_t bi_sector = bio->bi_iter.bi_sector;
687 
688 	bio_set_dev(bio, tc->pool_dev->bdev);
689 	if (block_size_is_power_of_two(pool))
690 		bio->bi_iter.bi_sector =
691 			(block << pool->sectors_per_block_shift) |
692 			(bi_sector & (pool->sectors_per_block - 1));
693 	else
694 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695 				 sector_div(bi_sector, pool->sectors_per_block);
696 }
697 
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 {
700 	bio_set_dev(bio, tc->origin_dev->bdev);
701 }
702 
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 {
705 	return op_is_flush(bio->bi_opf) &&
706 		dm_thin_changed_this_transaction(tc->td);
707 }
708 
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 {
711 	struct dm_thin_endio_hook *h;
712 
713 	if (bio_op(bio) == REQ_OP_DISCARD)
714 		return;
715 
716 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
718 }
719 
720 static void issue(struct thin_c *tc, struct bio *bio)
721 {
722 	struct pool *pool = tc->pool;
723 	unsigned long flags;
724 
725 	if (!bio_triggers_commit(tc, bio)) {
726 		generic_make_request(bio);
727 		return;
728 	}
729 
730 	/*
731 	 * Complete bio with an error if earlier I/O caused changes to
732 	 * the metadata that can't be committed e.g, due to I/O errors
733 	 * on the metadata device.
734 	 */
735 	if (dm_thin_aborted_changes(tc->td)) {
736 		bio_io_error(bio);
737 		return;
738 	}
739 
740 	/*
741 	 * Batch together any bios that trigger commits and then issue a
742 	 * single commit for them in process_deferred_bios().
743 	 */
744 	spin_lock_irqsave(&pool->lock, flags);
745 	bio_list_add(&pool->deferred_flush_bios, bio);
746 	spin_unlock_irqrestore(&pool->lock, flags);
747 }
748 
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 {
751 	remap_to_origin(tc, bio);
752 	issue(tc, bio);
753 }
754 
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
756 			    dm_block_t block)
757 {
758 	remap(tc, bio, block);
759 	issue(tc, bio);
760 }
761 
762 /*----------------------------------------------------------------*/
763 
764 /*
765  * Bio endio functions.
766  */
767 struct dm_thin_new_mapping {
768 	struct list_head list;
769 
770 	bool pass_discard:1;
771 	bool maybe_shared:1;
772 
773 	/*
774 	 * Track quiescing, copying and zeroing preparation actions.  When this
775 	 * counter hits zero the block is prepared and can be inserted into the
776 	 * btree.
777 	 */
778 	atomic_t prepare_actions;
779 
780 	blk_status_t status;
781 	struct thin_c *tc;
782 	dm_block_t virt_begin, virt_end;
783 	dm_block_t data_block;
784 	struct dm_bio_prison_cell *cell;
785 
786 	/*
787 	 * If the bio covers the whole area of a block then we can avoid
788 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
789 	 * still be in the cell, so care has to be taken to avoid issuing
790 	 * the bio twice.
791 	 */
792 	struct bio *bio;
793 	bio_end_io_t *saved_bi_end_io;
794 };
795 
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 {
798 	struct pool *pool = m->tc->pool;
799 
800 	if (atomic_dec_and_test(&m->prepare_actions)) {
801 		list_add_tail(&m->list, &pool->prepared_mappings);
802 		wake_worker(pool);
803 	}
804 }
805 
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 {
808 	unsigned long flags;
809 	struct pool *pool = m->tc->pool;
810 
811 	spin_lock_irqsave(&pool->lock, flags);
812 	__complete_mapping_preparation(m);
813 	spin_unlock_irqrestore(&pool->lock, flags);
814 }
815 
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 {
818 	struct dm_thin_new_mapping *m = context;
819 
820 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821 	complete_mapping_preparation(m);
822 }
823 
824 static void overwrite_endio(struct bio *bio)
825 {
826 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
828 
829 	bio->bi_end_io = m->saved_bi_end_io;
830 
831 	m->status = bio->bi_status;
832 	complete_mapping_preparation(m);
833 }
834 
835 /*----------------------------------------------------------------*/
836 
837 /*
838  * Workqueue.
839  */
840 
841 /*
842  * Prepared mapping jobs.
843  */
844 
845 /*
846  * This sends the bios in the cell, except the original holder, back
847  * to the deferred_bios list.
848  */
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 {
851 	struct pool *pool = tc->pool;
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(&tc->lock, flags);
855 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856 	spin_unlock_irqrestore(&tc->lock, flags);
857 
858 	wake_worker(pool);
859 }
860 
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862 
863 struct remap_info {
864 	struct thin_c *tc;
865 	struct bio_list defer_bios;
866 	struct bio_list issue_bios;
867 };
868 
869 static void __inc_remap_and_issue_cell(void *context,
870 				       struct dm_bio_prison_cell *cell)
871 {
872 	struct remap_info *info = context;
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(&cell->bios))) {
876 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877 			bio_list_add(&info->defer_bios, bio);
878 		else {
879 			inc_all_io_entry(info->tc->pool, bio);
880 
881 			/*
882 			 * We can't issue the bios with the bio prison lock
883 			 * held, so we add them to a list to issue on
884 			 * return from this function.
885 			 */
886 			bio_list_add(&info->issue_bios, bio);
887 		}
888 	}
889 }
890 
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892 				     struct dm_bio_prison_cell *cell,
893 				     dm_block_t block)
894 {
895 	struct bio *bio;
896 	struct remap_info info;
897 
898 	info.tc = tc;
899 	bio_list_init(&info.defer_bios);
900 	bio_list_init(&info.issue_bios);
901 
902 	/*
903 	 * We have to be careful to inc any bios we're about to issue
904 	 * before the cell is released, and avoid a race with new bios
905 	 * being added to the cell.
906 	 */
907 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
908 			   &info, cell);
909 
910 	while ((bio = bio_list_pop(&info.defer_bios)))
911 		thin_defer_bio(tc, bio);
912 
913 	while ((bio = bio_list_pop(&info.issue_bios)))
914 		remap_and_issue(info.tc, bio, block);
915 }
916 
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 {
919 	cell_error(m->tc->pool, m->cell);
920 	list_del(&m->list);
921 	mempool_free(m, &m->tc->pool->mapping_pool);
922 }
923 
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 {
926 	struct thin_c *tc = m->tc;
927 	struct pool *pool = tc->pool;
928 	struct bio *bio = m->bio;
929 	int r;
930 
931 	if (m->status) {
932 		cell_error(pool, m->cell);
933 		goto out;
934 	}
935 
936 	/*
937 	 * Commit the prepared block into the mapping btree.
938 	 * Any I/O for this block arriving after this point will get
939 	 * remapped to it directly.
940 	 */
941 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942 	if (r) {
943 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
944 		cell_error(pool, m->cell);
945 		goto out;
946 	}
947 
948 	/*
949 	 * Release any bios held while the block was being provisioned.
950 	 * If we are processing a write bio that completely covers the block,
951 	 * we already processed it so can ignore it now when processing
952 	 * the bios in the cell.
953 	 */
954 	if (bio) {
955 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956 		bio_endio(bio);
957 	} else {
958 		inc_all_io_entry(tc->pool, m->cell->holder);
959 		remap_and_issue(tc, m->cell->holder, m->data_block);
960 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
961 	}
962 
963 out:
964 	list_del(&m->list);
965 	mempool_free(m, &pool->mapping_pool);
966 }
967 
968 /*----------------------------------------------------------------*/
969 
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 {
972 	struct thin_c *tc = m->tc;
973 	if (m->cell)
974 		cell_defer_no_holder(tc, m->cell);
975 	mempool_free(m, &tc->pool->mapping_pool);
976 }
977 
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 {
980 	bio_io_error(m->bio);
981 	free_discard_mapping(m);
982 }
983 
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 {
986 	bio_endio(m->bio);
987 	free_discard_mapping(m);
988 }
989 
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 {
992 	int r;
993 	struct thin_c *tc = m->tc;
994 
995 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
996 	if (r) {
997 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998 		bio_io_error(m->bio);
999 	} else
1000 		bio_endio(m->bio);
1001 
1002 	cell_defer_no_holder(tc, m->cell);
1003 	mempool_free(m, &tc->pool->mapping_pool);
1004 }
1005 
1006 /*----------------------------------------------------------------*/
1007 
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009 						   struct bio *discard_parent)
1010 {
1011 	/*
1012 	 * We've already unmapped this range of blocks, but before we
1013 	 * passdown we have to check that these blocks are now unused.
1014 	 */
1015 	int r = 0;
1016 	bool used = true;
1017 	struct thin_c *tc = m->tc;
1018 	struct pool *pool = tc->pool;
1019 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020 	struct discard_op op;
1021 
1022 	begin_discard(&op, tc, discard_parent);
1023 	while (b != end) {
1024 		/* find start of unmapped run */
1025 		for (; b < end; b++) {
1026 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1027 			if (r)
1028 				goto out;
1029 
1030 			if (!used)
1031 				break;
1032 		}
1033 
1034 		if (b == end)
1035 			break;
1036 
1037 		/* find end of run */
1038 		for (e = b + 1; e != end; e++) {
1039 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1040 			if (r)
1041 				goto out;
1042 
1043 			if (used)
1044 				break;
1045 		}
1046 
1047 		r = issue_discard(&op, b, e);
1048 		if (r)
1049 			goto out;
1050 
1051 		b = e;
1052 	}
1053 out:
1054 	end_discard(&op, r);
1055 }
1056 
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 {
1059 	unsigned long flags;
1060 	struct pool *pool = m->tc->pool;
1061 
1062 	spin_lock_irqsave(&pool->lock, flags);
1063 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064 	spin_unlock_irqrestore(&pool->lock, flags);
1065 	wake_worker(pool);
1066 }
1067 
1068 static void passdown_endio(struct bio *bio)
1069 {
1070 	/*
1071 	 * It doesn't matter if the passdown discard failed, we still want
1072 	 * to unmap (we ignore err).
1073 	 */
1074 	queue_passdown_pt2(bio->bi_private);
1075 	bio_put(bio);
1076 }
1077 
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 {
1080 	int r;
1081 	struct thin_c *tc = m->tc;
1082 	struct pool *pool = tc->pool;
1083 	struct bio *discard_parent;
1084 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085 
1086 	/*
1087 	 * Only this thread allocates blocks, so we can be sure that the
1088 	 * newly unmapped blocks will not be allocated before the end of
1089 	 * the function.
1090 	 */
1091 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092 	if (r) {
1093 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094 		bio_io_error(m->bio);
1095 		cell_defer_no_holder(tc, m->cell);
1096 		mempool_free(m, &pool->mapping_pool);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * Increment the unmapped blocks.  This prevents a race between the
1102 	 * passdown io and reallocation of freed blocks.
1103 	 */
1104 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1105 	if (r) {
1106 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107 		bio_io_error(m->bio);
1108 		cell_defer_no_holder(tc, m->cell);
1109 		mempool_free(m, &pool->mapping_pool);
1110 		return;
1111 	}
1112 
1113 	discard_parent = bio_alloc(GFP_NOIO, 1);
1114 	if (!discard_parent) {
1115 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116 		       dm_device_name(tc->pool->pool_md));
1117 		queue_passdown_pt2(m);
1118 
1119 	} else {
1120 		discard_parent->bi_end_io = passdown_endio;
1121 		discard_parent->bi_private = m;
1122 
1123 		if (m->maybe_shared)
1124 			passdown_double_checking_shared_status(m, discard_parent);
1125 		else {
1126 			struct discard_op op;
1127 
1128 			begin_discard(&op, tc, discard_parent);
1129 			r = issue_discard(&op, m->data_block, data_end);
1130 			end_discard(&op, r);
1131 		}
1132 	}
1133 }
1134 
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 {
1137 	int r;
1138 	struct thin_c *tc = m->tc;
1139 	struct pool *pool = tc->pool;
1140 
1141 	/*
1142 	 * The passdown has completed, so now we can decrement all those
1143 	 * unmapped blocks.
1144 	 */
1145 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146 				   m->data_block + (m->virt_end - m->virt_begin));
1147 	if (r) {
1148 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149 		bio_io_error(m->bio);
1150 	} else
1151 		bio_endio(m->bio);
1152 
1153 	cell_defer_no_holder(tc, m->cell);
1154 	mempool_free(m, &pool->mapping_pool);
1155 }
1156 
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158 			     process_mapping_fn *fn)
1159 {
1160 	unsigned long flags;
1161 	struct list_head maps;
1162 	struct dm_thin_new_mapping *m, *tmp;
1163 
1164 	INIT_LIST_HEAD(&maps);
1165 	spin_lock_irqsave(&pool->lock, flags);
1166 	list_splice_init(head, &maps);
1167 	spin_unlock_irqrestore(&pool->lock, flags);
1168 
1169 	list_for_each_entry_safe(m, tmp, &maps, list)
1170 		(*fn)(m);
1171 }
1172 
1173 /*
1174  * Deferred bio jobs.
1175  */
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 {
1178 	return bio->bi_iter.bi_size ==
1179 		(pool->sectors_per_block << SECTOR_SHIFT);
1180 }
1181 
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 {
1184 	return (bio_data_dir(bio) == WRITE) &&
1185 		io_overlaps_block(pool, bio);
1186 }
1187 
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1189 			       bio_end_io_t *fn)
1190 {
1191 	*save = bio->bi_end_io;
1192 	bio->bi_end_io = fn;
1193 }
1194 
1195 static int ensure_next_mapping(struct pool *pool)
1196 {
1197 	if (pool->next_mapping)
1198 		return 0;
1199 
1200 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1201 
1202 	return pool->next_mapping ? 0 : -ENOMEM;
1203 }
1204 
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 {
1207 	struct dm_thin_new_mapping *m = pool->next_mapping;
1208 
1209 	BUG_ON(!pool->next_mapping);
1210 
1211 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212 	INIT_LIST_HEAD(&m->list);
1213 	m->bio = NULL;
1214 
1215 	pool->next_mapping = NULL;
1216 
1217 	return m;
1218 }
1219 
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221 		    sector_t begin, sector_t end)
1222 {
1223 	int r;
1224 	struct dm_io_region to;
1225 
1226 	to.bdev = tc->pool_dev->bdev;
1227 	to.sector = begin;
1228 	to.count = end - begin;
1229 
1230 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1231 	if (r < 0) {
1232 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1233 		copy_complete(1, 1, m);
1234 	}
1235 }
1236 
1237 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1238 				      dm_block_t data_begin,
1239 				      struct dm_thin_new_mapping *m)
1240 {
1241 	struct pool *pool = tc->pool;
1242 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1243 
1244 	h->overwrite_mapping = m;
1245 	m->bio = bio;
1246 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1247 	inc_all_io_entry(pool, bio);
1248 	remap_and_issue(tc, bio, data_begin);
1249 }
1250 
1251 /*
1252  * A partial copy also needs to zero the uncopied region.
1253  */
1254 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1255 			  struct dm_dev *origin, dm_block_t data_origin,
1256 			  dm_block_t data_dest,
1257 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1258 			  sector_t len)
1259 {
1260 	int r;
1261 	struct pool *pool = tc->pool;
1262 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263 
1264 	m->tc = tc;
1265 	m->virt_begin = virt_block;
1266 	m->virt_end = virt_block + 1u;
1267 	m->data_block = data_dest;
1268 	m->cell = cell;
1269 
1270 	/*
1271 	 * quiesce action + copy action + an extra reference held for the
1272 	 * duration of this function (we may need to inc later for a
1273 	 * partial zero).
1274 	 */
1275 	atomic_set(&m->prepare_actions, 3);
1276 
1277 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1278 		complete_mapping_preparation(m); /* already quiesced */
1279 
1280 	/*
1281 	 * IO to pool_dev remaps to the pool target's data_dev.
1282 	 *
1283 	 * If the whole block of data is being overwritten, we can issue the
1284 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1285 	 */
1286 	if (io_overwrites_block(pool, bio))
1287 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1288 	else {
1289 		struct dm_io_region from, to;
1290 
1291 		from.bdev = origin->bdev;
1292 		from.sector = data_origin * pool->sectors_per_block;
1293 		from.count = len;
1294 
1295 		to.bdev = tc->pool_dev->bdev;
1296 		to.sector = data_dest * pool->sectors_per_block;
1297 		to.count = len;
1298 
1299 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1300 				   0, copy_complete, m);
1301 		if (r < 0) {
1302 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1303 			copy_complete(1, 1, m);
1304 
1305 			/*
1306 			 * We allow the zero to be issued, to simplify the
1307 			 * error path.  Otherwise we'd need to start
1308 			 * worrying about decrementing the prepare_actions
1309 			 * counter.
1310 			 */
1311 		}
1312 
1313 		/*
1314 		 * Do we need to zero a tail region?
1315 		 */
1316 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1317 			atomic_inc(&m->prepare_actions);
1318 			ll_zero(tc, m,
1319 				data_dest * pool->sectors_per_block + len,
1320 				(data_dest + 1) * pool->sectors_per_block);
1321 		}
1322 	}
1323 
1324 	complete_mapping_preparation(m); /* drop our ref */
1325 }
1326 
1327 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1328 				   dm_block_t data_origin, dm_block_t data_dest,
1329 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1330 {
1331 	schedule_copy(tc, virt_block, tc->pool_dev,
1332 		      data_origin, data_dest, cell, bio,
1333 		      tc->pool->sectors_per_block);
1334 }
1335 
1336 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1337 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1338 			  struct bio *bio)
1339 {
1340 	struct pool *pool = tc->pool;
1341 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1342 
1343 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1344 	m->tc = tc;
1345 	m->virt_begin = virt_block;
1346 	m->virt_end = virt_block + 1u;
1347 	m->data_block = data_block;
1348 	m->cell = cell;
1349 
1350 	/*
1351 	 * If the whole block of data is being overwritten or we are not
1352 	 * zeroing pre-existing data, we can issue the bio immediately.
1353 	 * Otherwise we use kcopyd to zero the data first.
1354 	 */
1355 	if (pool->pf.zero_new_blocks) {
1356 		if (io_overwrites_block(pool, bio))
1357 			remap_and_issue_overwrite(tc, bio, data_block, m);
1358 		else
1359 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1360 				(data_block + 1) * pool->sectors_per_block);
1361 	} else
1362 		process_prepared_mapping(m);
1363 }
1364 
1365 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1366 				   dm_block_t data_dest,
1367 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1368 {
1369 	struct pool *pool = tc->pool;
1370 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1371 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1372 
1373 	if (virt_block_end <= tc->origin_size)
1374 		schedule_copy(tc, virt_block, tc->origin_dev,
1375 			      virt_block, data_dest, cell, bio,
1376 			      pool->sectors_per_block);
1377 
1378 	else if (virt_block_begin < tc->origin_size)
1379 		schedule_copy(tc, virt_block, tc->origin_dev,
1380 			      virt_block, data_dest, cell, bio,
1381 			      tc->origin_size - virt_block_begin);
1382 
1383 	else
1384 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1385 }
1386 
1387 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1388 
1389 static void requeue_bios(struct pool *pool);
1390 
1391 static void check_for_space(struct pool *pool)
1392 {
1393 	int r;
1394 	dm_block_t nr_free;
1395 
1396 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1397 		return;
1398 
1399 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1400 	if (r)
1401 		return;
1402 
1403 	if (nr_free) {
1404 		set_pool_mode(pool, PM_WRITE);
1405 		requeue_bios(pool);
1406 	}
1407 }
1408 
1409 /*
1410  * A non-zero return indicates read_only or fail_io mode.
1411  * Many callers don't care about the return value.
1412  */
1413 static int commit(struct pool *pool)
1414 {
1415 	int r;
1416 
1417 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1418 		return -EINVAL;
1419 
1420 	r = dm_pool_commit_metadata(pool->pmd);
1421 	if (r)
1422 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1423 	else
1424 		check_for_space(pool);
1425 
1426 	return r;
1427 }
1428 
1429 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1430 {
1431 	unsigned long flags;
1432 
1433 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1434 		DMWARN("%s: reached low water mark for data device: sending event.",
1435 		       dm_device_name(pool->pool_md));
1436 		spin_lock_irqsave(&pool->lock, flags);
1437 		pool->low_water_triggered = true;
1438 		spin_unlock_irqrestore(&pool->lock, flags);
1439 		dm_table_event(pool->ti->table);
1440 	}
1441 }
1442 
1443 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1444 {
1445 	int r;
1446 	dm_block_t free_blocks;
1447 	struct pool *pool = tc->pool;
1448 
1449 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1450 		return -EINVAL;
1451 
1452 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1453 	if (r) {
1454 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1455 		return r;
1456 	}
1457 
1458 	check_low_water_mark(pool, free_blocks);
1459 
1460 	if (!free_blocks) {
1461 		/*
1462 		 * Try to commit to see if that will free up some
1463 		 * more space.
1464 		 */
1465 		r = commit(pool);
1466 		if (r)
1467 			return r;
1468 
1469 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1470 		if (r) {
1471 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1472 			return r;
1473 		}
1474 
1475 		if (!free_blocks) {
1476 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1477 			return -ENOSPC;
1478 		}
1479 	}
1480 
1481 	r = dm_pool_alloc_data_block(pool->pmd, result);
1482 	if (r) {
1483 		if (r == -ENOSPC)
1484 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1485 		else
1486 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1487 		return r;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * If we have run out of space, queue bios until the device is
1495  * resumed, presumably after having been reloaded with more space.
1496  */
1497 static void retry_on_resume(struct bio *bio)
1498 {
1499 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1500 	struct thin_c *tc = h->tc;
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&tc->lock, flags);
1504 	bio_list_add(&tc->retry_on_resume_list, bio);
1505 	spin_unlock_irqrestore(&tc->lock, flags);
1506 }
1507 
1508 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1509 {
1510 	enum pool_mode m = get_pool_mode(pool);
1511 
1512 	switch (m) {
1513 	case PM_WRITE:
1514 		/* Shouldn't get here */
1515 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1516 		return BLK_STS_IOERR;
1517 
1518 	case PM_OUT_OF_DATA_SPACE:
1519 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1520 
1521 	case PM_READ_ONLY:
1522 	case PM_FAIL:
1523 		return BLK_STS_IOERR;
1524 	default:
1525 		/* Shouldn't get here */
1526 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1527 		return BLK_STS_IOERR;
1528 	}
1529 }
1530 
1531 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1532 {
1533 	blk_status_t error = should_error_unserviceable_bio(pool);
1534 
1535 	if (error) {
1536 		bio->bi_status = error;
1537 		bio_endio(bio);
1538 	} else
1539 		retry_on_resume(bio);
1540 }
1541 
1542 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1543 {
1544 	struct bio *bio;
1545 	struct bio_list bios;
1546 	blk_status_t error;
1547 
1548 	error = should_error_unserviceable_bio(pool);
1549 	if (error) {
1550 		cell_error_with_code(pool, cell, error);
1551 		return;
1552 	}
1553 
1554 	bio_list_init(&bios);
1555 	cell_release(pool, cell, &bios);
1556 
1557 	while ((bio = bio_list_pop(&bios)))
1558 		retry_on_resume(bio);
1559 }
1560 
1561 static void process_discard_cell_no_passdown(struct thin_c *tc,
1562 					     struct dm_bio_prison_cell *virt_cell)
1563 {
1564 	struct pool *pool = tc->pool;
1565 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1566 
1567 	/*
1568 	 * We don't need to lock the data blocks, since there's no
1569 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1570 	 */
1571 	m->tc = tc;
1572 	m->virt_begin = virt_cell->key.block_begin;
1573 	m->virt_end = virt_cell->key.block_end;
1574 	m->cell = virt_cell;
1575 	m->bio = virt_cell->holder;
1576 
1577 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1578 		pool->process_prepared_discard(m);
1579 }
1580 
1581 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1582 				 struct bio *bio)
1583 {
1584 	struct pool *pool = tc->pool;
1585 
1586 	int r;
1587 	bool maybe_shared;
1588 	struct dm_cell_key data_key;
1589 	struct dm_bio_prison_cell *data_cell;
1590 	struct dm_thin_new_mapping *m;
1591 	dm_block_t virt_begin, virt_end, data_begin;
1592 
1593 	while (begin != end) {
1594 		r = ensure_next_mapping(pool);
1595 		if (r)
1596 			/* we did our best */
1597 			return;
1598 
1599 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1600 					      &data_begin, &maybe_shared);
1601 		if (r)
1602 			/*
1603 			 * Silently fail, letting any mappings we've
1604 			 * created complete.
1605 			 */
1606 			break;
1607 
1608 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1609 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1610 			/* contention, we'll give up with this range */
1611 			begin = virt_end;
1612 			continue;
1613 		}
1614 
1615 		/*
1616 		 * IO may still be going to the destination block.  We must
1617 		 * quiesce before we can do the removal.
1618 		 */
1619 		m = get_next_mapping(pool);
1620 		m->tc = tc;
1621 		m->maybe_shared = maybe_shared;
1622 		m->virt_begin = virt_begin;
1623 		m->virt_end = virt_end;
1624 		m->data_block = data_begin;
1625 		m->cell = data_cell;
1626 		m->bio = bio;
1627 
1628 		/*
1629 		 * The parent bio must not complete before sub discard bios are
1630 		 * chained to it (see end_discard's bio_chain)!
1631 		 *
1632 		 * This per-mapping bi_remaining increment is paired with
1633 		 * the implicit decrement that occurs via bio_endio() in
1634 		 * end_discard().
1635 		 */
1636 		bio_inc_remaining(bio);
1637 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1638 			pool->process_prepared_discard(m);
1639 
1640 		begin = virt_end;
1641 	}
1642 }
1643 
1644 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1645 {
1646 	struct bio *bio = virt_cell->holder;
1647 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1648 
1649 	/*
1650 	 * The virt_cell will only get freed once the origin bio completes.
1651 	 * This means it will remain locked while all the individual
1652 	 * passdown bios are in flight.
1653 	 */
1654 	h->cell = virt_cell;
1655 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1656 
1657 	/*
1658 	 * We complete the bio now, knowing that the bi_remaining field
1659 	 * will prevent completion until the sub range discards have
1660 	 * completed.
1661 	 */
1662 	bio_endio(bio);
1663 }
1664 
1665 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1666 {
1667 	dm_block_t begin, end;
1668 	struct dm_cell_key virt_key;
1669 	struct dm_bio_prison_cell *virt_cell;
1670 
1671 	get_bio_block_range(tc, bio, &begin, &end);
1672 	if (begin == end) {
1673 		/*
1674 		 * The discard covers less than a block.
1675 		 */
1676 		bio_endio(bio);
1677 		return;
1678 	}
1679 
1680 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1681 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1682 		/*
1683 		 * Potential starvation issue: We're relying on the
1684 		 * fs/application being well behaved, and not trying to
1685 		 * send IO to a region at the same time as discarding it.
1686 		 * If they do this persistently then it's possible this
1687 		 * cell will never be granted.
1688 		 */
1689 		return;
1690 
1691 	tc->pool->process_discard_cell(tc, virt_cell);
1692 }
1693 
1694 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1695 			  struct dm_cell_key *key,
1696 			  struct dm_thin_lookup_result *lookup_result,
1697 			  struct dm_bio_prison_cell *cell)
1698 {
1699 	int r;
1700 	dm_block_t data_block;
1701 	struct pool *pool = tc->pool;
1702 
1703 	r = alloc_data_block(tc, &data_block);
1704 	switch (r) {
1705 	case 0:
1706 		schedule_internal_copy(tc, block, lookup_result->block,
1707 				       data_block, cell, bio);
1708 		break;
1709 
1710 	case -ENOSPC:
1711 		retry_bios_on_resume(pool, cell);
1712 		break;
1713 
1714 	default:
1715 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1716 			    __func__, r);
1717 		cell_error(pool, cell);
1718 		break;
1719 	}
1720 }
1721 
1722 static void __remap_and_issue_shared_cell(void *context,
1723 					  struct dm_bio_prison_cell *cell)
1724 {
1725 	struct remap_info *info = context;
1726 	struct bio *bio;
1727 
1728 	while ((bio = bio_list_pop(&cell->bios))) {
1729 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1730 		    bio_op(bio) == REQ_OP_DISCARD)
1731 			bio_list_add(&info->defer_bios, bio);
1732 		else {
1733 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1734 
1735 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1736 			inc_all_io_entry(info->tc->pool, bio);
1737 			bio_list_add(&info->issue_bios, bio);
1738 		}
1739 	}
1740 }
1741 
1742 static void remap_and_issue_shared_cell(struct thin_c *tc,
1743 					struct dm_bio_prison_cell *cell,
1744 					dm_block_t block)
1745 {
1746 	struct bio *bio;
1747 	struct remap_info info;
1748 
1749 	info.tc = tc;
1750 	bio_list_init(&info.defer_bios);
1751 	bio_list_init(&info.issue_bios);
1752 
1753 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1754 			   &info, cell);
1755 
1756 	while ((bio = bio_list_pop(&info.defer_bios)))
1757 		thin_defer_bio(tc, bio);
1758 
1759 	while ((bio = bio_list_pop(&info.issue_bios)))
1760 		remap_and_issue(tc, bio, block);
1761 }
1762 
1763 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1764 			       dm_block_t block,
1765 			       struct dm_thin_lookup_result *lookup_result,
1766 			       struct dm_bio_prison_cell *virt_cell)
1767 {
1768 	struct dm_bio_prison_cell *data_cell;
1769 	struct pool *pool = tc->pool;
1770 	struct dm_cell_key key;
1771 
1772 	/*
1773 	 * If cell is already occupied, then sharing is already in the process
1774 	 * of being broken so we have nothing further to do here.
1775 	 */
1776 	build_data_key(tc->td, lookup_result->block, &key);
1777 	if (bio_detain(pool, &key, bio, &data_cell)) {
1778 		cell_defer_no_holder(tc, virt_cell);
1779 		return;
1780 	}
1781 
1782 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1783 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1784 		cell_defer_no_holder(tc, virt_cell);
1785 	} else {
1786 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1787 
1788 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1789 		inc_all_io_entry(pool, bio);
1790 		remap_and_issue(tc, bio, lookup_result->block);
1791 
1792 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1793 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1794 	}
1795 }
1796 
1797 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1798 			    struct dm_bio_prison_cell *cell)
1799 {
1800 	int r;
1801 	dm_block_t data_block;
1802 	struct pool *pool = tc->pool;
1803 
1804 	/*
1805 	 * Remap empty bios (flushes) immediately, without provisioning.
1806 	 */
1807 	if (!bio->bi_iter.bi_size) {
1808 		inc_all_io_entry(pool, bio);
1809 		cell_defer_no_holder(tc, cell);
1810 
1811 		remap_and_issue(tc, bio, 0);
1812 		return;
1813 	}
1814 
1815 	/*
1816 	 * Fill read bios with zeroes and complete them immediately.
1817 	 */
1818 	if (bio_data_dir(bio) == READ) {
1819 		zero_fill_bio(bio);
1820 		cell_defer_no_holder(tc, cell);
1821 		bio_endio(bio);
1822 		return;
1823 	}
1824 
1825 	r = alloc_data_block(tc, &data_block);
1826 	switch (r) {
1827 	case 0:
1828 		if (tc->origin_dev)
1829 			schedule_external_copy(tc, block, data_block, cell, bio);
1830 		else
1831 			schedule_zero(tc, block, data_block, cell, bio);
1832 		break;
1833 
1834 	case -ENOSPC:
1835 		retry_bios_on_resume(pool, cell);
1836 		break;
1837 
1838 	default:
1839 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1840 			    __func__, r);
1841 		cell_error(pool, cell);
1842 		break;
1843 	}
1844 }
1845 
1846 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1847 {
1848 	int r;
1849 	struct pool *pool = tc->pool;
1850 	struct bio *bio = cell->holder;
1851 	dm_block_t block = get_bio_block(tc, bio);
1852 	struct dm_thin_lookup_result lookup_result;
1853 
1854 	if (tc->requeue_mode) {
1855 		cell_requeue(pool, cell);
1856 		return;
1857 	}
1858 
1859 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1860 	switch (r) {
1861 	case 0:
1862 		if (lookup_result.shared)
1863 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1864 		else {
1865 			inc_all_io_entry(pool, bio);
1866 			remap_and_issue(tc, bio, lookup_result.block);
1867 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1868 		}
1869 		break;
1870 
1871 	case -ENODATA:
1872 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1873 			inc_all_io_entry(pool, bio);
1874 			cell_defer_no_holder(tc, cell);
1875 
1876 			if (bio_end_sector(bio) <= tc->origin_size)
1877 				remap_to_origin_and_issue(tc, bio);
1878 
1879 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1880 				zero_fill_bio(bio);
1881 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1882 				remap_to_origin_and_issue(tc, bio);
1883 
1884 			} else {
1885 				zero_fill_bio(bio);
1886 				bio_endio(bio);
1887 			}
1888 		} else
1889 			provision_block(tc, bio, block, cell);
1890 		break;
1891 
1892 	default:
1893 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1894 			    __func__, r);
1895 		cell_defer_no_holder(tc, cell);
1896 		bio_io_error(bio);
1897 		break;
1898 	}
1899 }
1900 
1901 static void process_bio(struct thin_c *tc, struct bio *bio)
1902 {
1903 	struct pool *pool = tc->pool;
1904 	dm_block_t block = get_bio_block(tc, bio);
1905 	struct dm_bio_prison_cell *cell;
1906 	struct dm_cell_key key;
1907 
1908 	/*
1909 	 * If cell is already occupied, then the block is already
1910 	 * being provisioned so we have nothing further to do here.
1911 	 */
1912 	build_virtual_key(tc->td, block, &key);
1913 	if (bio_detain(pool, &key, bio, &cell))
1914 		return;
1915 
1916 	process_cell(tc, cell);
1917 }
1918 
1919 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1920 				    struct dm_bio_prison_cell *cell)
1921 {
1922 	int r;
1923 	int rw = bio_data_dir(bio);
1924 	dm_block_t block = get_bio_block(tc, bio);
1925 	struct dm_thin_lookup_result lookup_result;
1926 
1927 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1928 	switch (r) {
1929 	case 0:
1930 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1931 			handle_unserviceable_bio(tc->pool, bio);
1932 			if (cell)
1933 				cell_defer_no_holder(tc, cell);
1934 		} else {
1935 			inc_all_io_entry(tc->pool, bio);
1936 			remap_and_issue(tc, bio, lookup_result.block);
1937 			if (cell)
1938 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1939 		}
1940 		break;
1941 
1942 	case -ENODATA:
1943 		if (cell)
1944 			cell_defer_no_holder(tc, cell);
1945 		if (rw != READ) {
1946 			handle_unserviceable_bio(tc->pool, bio);
1947 			break;
1948 		}
1949 
1950 		if (tc->origin_dev) {
1951 			inc_all_io_entry(tc->pool, bio);
1952 			remap_to_origin_and_issue(tc, bio);
1953 			break;
1954 		}
1955 
1956 		zero_fill_bio(bio);
1957 		bio_endio(bio);
1958 		break;
1959 
1960 	default:
1961 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1962 			    __func__, r);
1963 		if (cell)
1964 			cell_defer_no_holder(tc, cell);
1965 		bio_io_error(bio);
1966 		break;
1967 	}
1968 }
1969 
1970 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1971 {
1972 	__process_bio_read_only(tc, bio, NULL);
1973 }
1974 
1975 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1976 {
1977 	__process_bio_read_only(tc, cell->holder, cell);
1978 }
1979 
1980 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1981 {
1982 	bio_endio(bio);
1983 }
1984 
1985 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1986 {
1987 	bio_io_error(bio);
1988 }
1989 
1990 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1991 {
1992 	cell_success(tc->pool, cell);
1993 }
1994 
1995 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1996 {
1997 	cell_error(tc->pool, cell);
1998 }
1999 
2000 /*
2001  * FIXME: should we also commit due to size of transaction, measured in
2002  * metadata blocks?
2003  */
2004 static int need_commit_due_to_time(struct pool *pool)
2005 {
2006 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2007 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2008 }
2009 
2010 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2011 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2012 
2013 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2014 {
2015 	struct rb_node **rbp, *parent;
2016 	struct dm_thin_endio_hook *pbd;
2017 	sector_t bi_sector = bio->bi_iter.bi_sector;
2018 
2019 	rbp = &tc->sort_bio_list.rb_node;
2020 	parent = NULL;
2021 	while (*rbp) {
2022 		parent = *rbp;
2023 		pbd = thin_pbd(parent);
2024 
2025 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2026 			rbp = &(*rbp)->rb_left;
2027 		else
2028 			rbp = &(*rbp)->rb_right;
2029 	}
2030 
2031 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2032 	rb_link_node(&pbd->rb_node, parent, rbp);
2033 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2034 }
2035 
2036 static void __extract_sorted_bios(struct thin_c *tc)
2037 {
2038 	struct rb_node *node;
2039 	struct dm_thin_endio_hook *pbd;
2040 	struct bio *bio;
2041 
2042 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2043 		pbd = thin_pbd(node);
2044 		bio = thin_bio(pbd);
2045 
2046 		bio_list_add(&tc->deferred_bio_list, bio);
2047 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2048 	}
2049 
2050 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2051 }
2052 
2053 static void __sort_thin_deferred_bios(struct thin_c *tc)
2054 {
2055 	struct bio *bio;
2056 	struct bio_list bios;
2057 
2058 	bio_list_init(&bios);
2059 	bio_list_merge(&bios, &tc->deferred_bio_list);
2060 	bio_list_init(&tc->deferred_bio_list);
2061 
2062 	/* Sort deferred_bio_list using rb-tree */
2063 	while ((bio = bio_list_pop(&bios)))
2064 		__thin_bio_rb_add(tc, bio);
2065 
2066 	/*
2067 	 * Transfer the sorted bios in sort_bio_list back to
2068 	 * deferred_bio_list to allow lockless submission of
2069 	 * all bios.
2070 	 */
2071 	__extract_sorted_bios(tc);
2072 }
2073 
2074 static void process_thin_deferred_bios(struct thin_c *tc)
2075 {
2076 	struct pool *pool = tc->pool;
2077 	unsigned long flags;
2078 	struct bio *bio;
2079 	struct bio_list bios;
2080 	struct blk_plug plug;
2081 	unsigned count = 0;
2082 
2083 	if (tc->requeue_mode) {
2084 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2085 				BLK_STS_DM_REQUEUE);
2086 		return;
2087 	}
2088 
2089 	bio_list_init(&bios);
2090 
2091 	spin_lock_irqsave(&tc->lock, flags);
2092 
2093 	if (bio_list_empty(&tc->deferred_bio_list)) {
2094 		spin_unlock_irqrestore(&tc->lock, flags);
2095 		return;
2096 	}
2097 
2098 	__sort_thin_deferred_bios(tc);
2099 
2100 	bio_list_merge(&bios, &tc->deferred_bio_list);
2101 	bio_list_init(&tc->deferred_bio_list);
2102 
2103 	spin_unlock_irqrestore(&tc->lock, flags);
2104 
2105 	blk_start_plug(&plug);
2106 	while ((bio = bio_list_pop(&bios))) {
2107 		/*
2108 		 * If we've got no free new_mapping structs, and processing
2109 		 * this bio might require one, we pause until there are some
2110 		 * prepared mappings to process.
2111 		 */
2112 		if (ensure_next_mapping(pool)) {
2113 			spin_lock_irqsave(&tc->lock, flags);
2114 			bio_list_add(&tc->deferred_bio_list, bio);
2115 			bio_list_merge(&tc->deferred_bio_list, &bios);
2116 			spin_unlock_irqrestore(&tc->lock, flags);
2117 			break;
2118 		}
2119 
2120 		if (bio_op(bio) == REQ_OP_DISCARD)
2121 			pool->process_discard(tc, bio);
2122 		else
2123 			pool->process_bio(tc, bio);
2124 
2125 		if ((count++ & 127) == 0) {
2126 			throttle_work_update(&pool->throttle);
2127 			dm_pool_issue_prefetches(pool->pmd);
2128 		}
2129 	}
2130 	blk_finish_plug(&plug);
2131 }
2132 
2133 static int cmp_cells(const void *lhs, const void *rhs)
2134 {
2135 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2136 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2137 
2138 	BUG_ON(!lhs_cell->holder);
2139 	BUG_ON(!rhs_cell->holder);
2140 
2141 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2142 		return -1;
2143 
2144 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2145 		return 1;
2146 
2147 	return 0;
2148 }
2149 
2150 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2151 {
2152 	unsigned count = 0;
2153 	struct dm_bio_prison_cell *cell, *tmp;
2154 
2155 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2156 		if (count >= CELL_SORT_ARRAY_SIZE)
2157 			break;
2158 
2159 		pool->cell_sort_array[count++] = cell;
2160 		list_del(&cell->user_list);
2161 	}
2162 
2163 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2164 
2165 	return count;
2166 }
2167 
2168 static void process_thin_deferred_cells(struct thin_c *tc)
2169 {
2170 	struct pool *pool = tc->pool;
2171 	unsigned long flags;
2172 	struct list_head cells;
2173 	struct dm_bio_prison_cell *cell;
2174 	unsigned i, j, count;
2175 
2176 	INIT_LIST_HEAD(&cells);
2177 
2178 	spin_lock_irqsave(&tc->lock, flags);
2179 	list_splice_init(&tc->deferred_cells, &cells);
2180 	spin_unlock_irqrestore(&tc->lock, flags);
2181 
2182 	if (list_empty(&cells))
2183 		return;
2184 
2185 	do {
2186 		count = sort_cells(tc->pool, &cells);
2187 
2188 		for (i = 0; i < count; i++) {
2189 			cell = pool->cell_sort_array[i];
2190 			BUG_ON(!cell->holder);
2191 
2192 			/*
2193 			 * If we've got no free new_mapping structs, and processing
2194 			 * this bio might require one, we pause until there are some
2195 			 * prepared mappings to process.
2196 			 */
2197 			if (ensure_next_mapping(pool)) {
2198 				for (j = i; j < count; j++)
2199 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2200 
2201 				spin_lock_irqsave(&tc->lock, flags);
2202 				list_splice(&cells, &tc->deferred_cells);
2203 				spin_unlock_irqrestore(&tc->lock, flags);
2204 				return;
2205 			}
2206 
2207 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2208 				pool->process_discard_cell(tc, cell);
2209 			else
2210 				pool->process_cell(tc, cell);
2211 		}
2212 	} while (!list_empty(&cells));
2213 }
2214 
2215 static void thin_get(struct thin_c *tc);
2216 static void thin_put(struct thin_c *tc);
2217 
2218 /*
2219  * We can't hold rcu_read_lock() around code that can block.  So we
2220  * find a thin with the rcu lock held; bump a refcount; then drop
2221  * the lock.
2222  */
2223 static struct thin_c *get_first_thin(struct pool *pool)
2224 {
2225 	struct thin_c *tc = NULL;
2226 
2227 	rcu_read_lock();
2228 	if (!list_empty(&pool->active_thins)) {
2229 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2230 		thin_get(tc);
2231 	}
2232 	rcu_read_unlock();
2233 
2234 	return tc;
2235 }
2236 
2237 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2238 {
2239 	struct thin_c *old_tc = tc;
2240 
2241 	rcu_read_lock();
2242 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2243 		thin_get(tc);
2244 		thin_put(old_tc);
2245 		rcu_read_unlock();
2246 		return tc;
2247 	}
2248 	thin_put(old_tc);
2249 	rcu_read_unlock();
2250 
2251 	return NULL;
2252 }
2253 
2254 static void process_deferred_bios(struct pool *pool)
2255 {
2256 	unsigned long flags;
2257 	struct bio *bio;
2258 	struct bio_list bios;
2259 	struct thin_c *tc;
2260 
2261 	tc = get_first_thin(pool);
2262 	while (tc) {
2263 		process_thin_deferred_cells(tc);
2264 		process_thin_deferred_bios(tc);
2265 		tc = get_next_thin(pool, tc);
2266 	}
2267 
2268 	/*
2269 	 * If there are any deferred flush bios, we must commit
2270 	 * the metadata before issuing them.
2271 	 */
2272 	bio_list_init(&bios);
2273 	spin_lock_irqsave(&pool->lock, flags);
2274 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2275 	bio_list_init(&pool->deferred_flush_bios);
2276 	spin_unlock_irqrestore(&pool->lock, flags);
2277 
2278 	if (bio_list_empty(&bios) &&
2279 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2280 		return;
2281 
2282 	if (commit(pool)) {
2283 		while ((bio = bio_list_pop(&bios)))
2284 			bio_io_error(bio);
2285 		return;
2286 	}
2287 	pool->last_commit_jiffies = jiffies;
2288 
2289 	while ((bio = bio_list_pop(&bios)))
2290 		generic_make_request(bio);
2291 }
2292 
2293 static void do_worker(struct work_struct *ws)
2294 {
2295 	struct pool *pool = container_of(ws, struct pool, worker);
2296 
2297 	throttle_work_start(&pool->throttle);
2298 	dm_pool_issue_prefetches(pool->pmd);
2299 	throttle_work_update(&pool->throttle);
2300 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2301 	throttle_work_update(&pool->throttle);
2302 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2303 	throttle_work_update(&pool->throttle);
2304 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2305 	throttle_work_update(&pool->throttle);
2306 	process_deferred_bios(pool);
2307 	throttle_work_complete(&pool->throttle);
2308 }
2309 
2310 /*
2311  * We want to commit periodically so that not too much
2312  * unwritten data builds up.
2313  */
2314 static void do_waker(struct work_struct *ws)
2315 {
2316 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2317 	wake_worker(pool);
2318 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2319 }
2320 
2321 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2322 
2323 /*
2324  * We're holding onto IO to allow userland time to react.  After the
2325  * timeout either the pool will have been resized (and thus back in
2326  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2327  */
2328 static void do_no_space_timeout(struct work_struct *ws)
2329 {
2330 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2331 					 no_space_timeout);
2332 
2333 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2334 		pool->pf.error_if_no_space = true;
2335 		notify_of_pool_mode_change_to_oods(pool);
2336 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2337 	}
2338 }
2339 
2340 /*----------------------------------------------------------------*/
2341 
2342 struct pool_work {
2343 	struct work_struct worker;
2344 	struct completion complete;
2345 };
2346 
2347 static struct pool_work *to_pool_work(struct work_struct *ws)
2348 {
2349 	return container_of(ws, struct pool_work, worker);
2350 }
2351 
2352 static void pool_work_complete(struct pool_work *pw)
2353 {
2354 	complete(&pw->complete);
2355 }
2356 
2357 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2358 			   void (*fn)(struct work_struct *))
2359 {
2360 	INIT_WORK_ONSTACK(&pw->worker, fn);
2361 	init_completion(&pw->complete);
2362 	queue_work(pool->wq, &pw->worker);
2363 	wait_for_completion(&pw->complete);
2364 }
2365 
2366 /*----------------------------------------------------------------*/
2367 
2368 struct noflush_work {
2369 	struct pool_work pw;
2370 	struct thin_c *tc;
2371 };
2372 
2373 static struct noflush_work *to_noflush(struct work_struct *ws)
2374 {
2375 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2376 }
2377 
2378 static void do_noflush_start(struct work_struct *ws)
2379 {
2380 	struct noflush_work *w = to_noflush(ws);
2381 	w->tc->requeue_mode = true;
2382 	requeue_io(w->tc);
2383 	pool_work_complete(&w->pw);
2384 }
2385 
2386 static void do_noflush_stop(struct work_struct *ws)
2387 {
2388 	struct noflush_work *w = to_noflush(ws);
2389 	w->tc->requeue_mode = false;
2390 	pool_work_complete(&w->pw);
2391 }
2392 
2393 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2394 {
2395 	struct noflush_work w;
2396 
2397 	w.tc = tc;
2398 	pool_work_wait(&w.pw, tc->pool, fn);
2399 }
2400 
2401 /*----------------------------------------------------------------*/
2402 
2403 static enum pool_mode get_pool_mode(struct pool *pool)
2404 {
2405 	return pool->pf.mode;
2406 }
2407 
2408 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2409 {
2410 	dm_table_event(pool->ti->table);
2411 	DMINFO("%s: switching pool to %s mode",
2412 	       dm_device_name(pool->pool_md), new_mode);
2413 }
2414 
2415 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2416 {
2417 	if (!pool->pf.error_if_no_space)
2418 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2419 	else
2420 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2421 }
2422 
2423 static bool passdown_enabled(struct pool_c *pt)
2424 {
2425 	return pt->adjusted_pf.discard_passdown;
2426 }
2427 
2428 static void set_discard_callbacks(struct pool *pool)
2429 {
2430 	struct pool_c *pt = pool->ti->private;
2431 
2432 	if (passdown_enabled(pt)) {
2433 		pool->process_discard_cell = process_discard_cell_passdown;
2434 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2435 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2436 	} else {
2437 		pool->process_discard_cell = process_discard_cell_no_passdown;
2438 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2439 	}
2440 }
2441 
2442 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2443 {
2444 	struct pool_c *pt = pool->ti->private;
2445 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2446 	enum pool_mode old_mode = get_pool_mode(pool);
2447 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2448 
2449 	/*
2450 	 * Never allow the pool to transition to PM_WRITE mode if user
2451 	 * intervention is required to verify metadata and data consistency.
2452 	 */
2453 	if (new_mode == PM_WRITE && needs_check) {
2454 		DMERR("%s: unable to switch pool to write mode until repaired.",
2455 		      dm_device_name(pool->pool_md));
2456 		if (old_mode != new_mode)
2457 			new_mode = old_mode;
2458 		else
2459 			new_mode = PM_READ_ONLY;
2460 	}
2461 	/*
2462 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2463 	 * not going to recover without a thin_repair.	So we never let the
2464 	 * pool move out of the old mode.
2465 	 */
2466 	if (old_mode == PM_FAIL)
2467 		new_mode = old_mode;
2468 
2469 	switch (new_mode) {
2470 	case PM_FAIL:
2471 		if (old_mode != new_mode)
2472 			notify_of_pool_mode_change(pool, "failure");
2473 		dm_pool_metadata_read_only(pool->pmd);
2474 		pool->process_bio = process_bio_fail;
2475 		pool->process_discard = process_bio_fail;
2476 		pool->process_cell = process_cell_fail;
2477 		pool->process_discard_cell = process_cell_fail;
2478 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2479 		pool->process_prepared_discard = process_prepared_discard_fail;
2480 
2481 		error_retry_list(pool);
2482 		break;
2483 
2484 	case PM_READ_ONLY:
2485 		if (old_mode != new_mode)
2486 			notify_of_pool_mode_change(pool, "read-only");
2487 		dm_pool_metadata_read_only(pool->pmd);
2488 		pool->process_bio = process_bio_read_only;
2489 		pool->process_discard = process_bio_success;
2490 		pool->process_cell = process_cell_read_only;
2491 		pool->process_discard_cell = process_cell_success;
2492 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2493 		pool->process_prepared_discard = process_prepared_discard_success;
2494 
2495 		error_retry_list(pool);
2496 		break;
2497 
2498 	case PM_OUT_OF_DATA_SPACE:
2499 		/*
2500 		 * Ideally we'd never hit this state; the low water mark
2501 		 * would trigger userland to extend the pool before we
2502 		 * completely run out of data space.  However, many small
2503 		 * IOs to unprovisioned space can consume data space at an
2504 		 * alarming rate.  Adjust your low water mark if you're
2505 		 * frequently seeing this mode.
2506 		 */
2507 		if (old_mode != new_mode)
2508 			notify_of_pool_mode_change_to_oods(pool);
2509 		pool->out_of_data_space = true;
2510 		pool->process_bio = process_bio_read_only;
2511 		pool->process_discard = process_discard_bio;
2512 		pool->process_cell = process_cell_read_only;
2513 		pool->process_prepared_mapping = process_prepared_mapping;
2514 		set_discard_callbacks(pool);
2515 
2516 		if (!pool->pf.error_if_no_space && no_space_timeout)
2517 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2518 		break;
2519 
2520 	case PM_WRITE:
2521 		if (old_mode != new_mode)
2522 			notify_of_pool_mode_change(pool, "write");
2523 		pool->out_of_data_space = false;
2524 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2525 		dm_pool_metadata_read_write(pool->pmd);
2526 		pool->process_bio = process_bio;
2527 		pool->process_discard = process_discard_bio;
2528 		pool->process_cell = process_cell;
2529 		pool->process_prepared_mapping = process_prepared_mapping;
2530 		set_discard_callbacks(pool);
2531 		break;
2532 	}
2533 
2534 	pool->pf.mode = new_mode;
2535 	/*
2536 	 * The pool mode may have changed, sync it so bind_control_target()
2537 	 * doesn't cause an unexpected mode transition on resume.
2538 	 */
2539 	pt->adjusted_pf.mode = new_mode;
2540 }
2541 
2542 static void abort_transaction(struct pool *pool)
2543 {
2544 	const char *dev_name = dm_device_name(pool->pool_md);
2545 
2546 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2547 	if (dm_pool_abort_metadata(pool->pmd)) {
2548 		DMERR("%s: failed to abort metadata transaction", dev_name);
2549 		set_pool_mode(pool, PM_FAIL);
2550 	}
2551 
2552 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2553 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2554 		set_pool_mode(pool, PM_FAIL);
2555 	}
2556 }
2557 
2558 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2559 {
2560 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2561 		    dm_device_name(pool->pool_md), op, r);
2562 
2563 	abort_transaction(pool);
2564 	set_pool_mode(pool, PM_READ_ONLY);
2565 }
2566 
2567 /*----------------------------------------------------------------*/
2568 
2569 /*
2570  * Mapping functions.
2571  */
2572 
2573 /*
2574  * Called only while mapping a thin bio to hand it over to the workqueue.
2575  */
2576 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2577 {
2578 	unsigned long flags;
2579 	struct pool *pool = tc->pool;
2580 
2581 	spin_lock_irqsave(&tc->lock, flags);
2582 	bio_list_add(&tc->deferred_bio_list, bio);
2583 	spin_unlock_irqrestore(&tc->lock, flags);
2584 
2585 	wake_worker(pool);
2586 }
2587 
2588 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2589 {
2590 	struct pool *pool = tc->pool;
2591 
2592 	throttle_lock(&pool->throttle);
2593 	thin_defer_bio(tc, bio);
2594 	throttle_unlock(&pool->throttle);
2595 }
2596 
2597 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2598 {
2599 	unsigned long flags;
2600 	struct pool *pool = tc->pool;
2601 
2602 	throttle_lock(&pool->throttle);
2603 	spin_lock_irqsave(&tc->lock, flags);
2604 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2605 	spin_unlock_irqrestore(&tc->lock, flags);
2606 	throttle_unlock(&pool->throttle);
2607 
2608 	wake_worker(pool);
2609 }
2610 
2611 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2612 {
2613 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2614 
2615 	h->tc = tc;
2616 	h->shared_read_entry = NULL;
2617 	h->all_io_entry = NULL;
2618 	h->overwrite_mapping = NULL;
2619 	h->cell = NULL;
2620 }
2621 
2622 /*
2623  * Non-blocking function called from the thin target's map function.
2624  */
2625 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2626 {
2627 	int r;
2628 	struct thin_c *tc = ti->private;
2629 	dm_block_t block = get_bio_block(tc, bio);
2630 	struct dm_thin_device *td = tc->td;
2631 	struct dm_thin_lookup_result result;
2632 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2633 	struct dm_cell_key key;
2634 
2635 	thin_hook_bio(tc, bio);
2636 
2637 	if (tc->requeue_mode) {
2638 		bio->bi_status = BLK_STS_DM_REQUEUE;
2639 		bio_endio(bio);
2640 		return DM_MAPIO_SUBMITTED;
2641 	}
2642 
2643 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2644 		bio_io_error(bio);
2645 		return DM_MAPIO_SUBMITTED;
2646 	}
2647 
2648 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2649 		thin_defer_bio_with_throttle(tc, bio);
2650 		return DM_MAPIO_SUBMITTED;
2651 	}
2652 
2653 	/*
2654 	 * We must hold the virtual cell before doing the lookup, otherwise
2655 	 * there's a race with discard.
2656 	 */
2657 	build_virtual_key(tc->td, block, &key);
2658 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2659 		return DM_MAPIO_SUBMITTED;
2660 
2661 	r = dm_thin_find_block(td, block, 0, &result);
2662 
2663 	/*
2664 	 * Note that we defer readahead too.
2665 	 */
2666 	switch (r) {
2667 	case 0:
2668 		if (unlikely(result.shared)) {
2669 			/*
2670 			 * We have a race condition here between the
2671 			 * result.shared value returned by the lookup and
2672 			 * snapshot creation, which may cause new
2673 			 * sharing.
2674 			 *
2675 			 * To avoid this always quiesce the origin before
2676 			 * taking the snap.  You want to do this anyway to
2677 			 * ensure a consistent application view
2678 			 * (i.e. lockfs).
2679 			 *
2680 			 * More distant ancestors are irrelevant. The
2681 			 * shared flag will be set in their case.
2682 			 */
2683 			thin_defer_cell(tc, virt_cell);
2684 			return DM_MAPIO_SUBMITTED;
2685 		}
2686 
2687 		build_data_key(tc->td, result.block, &key);
2688 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2689 			cell_defer_no_holder(tc, virt_cell);
2690 			return DM_MAPIO_SUBMITTED;
2691 		}
2692 
2693 		inc_all_io_entry(tc->pool, bio);
2694 		cell_defer_no_holder(tc, data_cell);
2695 		cell_defer_no_holder(tc, virt_cell);
2696 
2697 		remap(tc, bio, result.block);
2698 		return DM_MAPIO_REMAPPED;
2699 
2700 	case -ENODATA:
2701 	case -EWOULDBLOCK:
2702 		thin_defer_cell(tc, virt_cell);
2703 		return DM_MAPIO_SUBMITTED;
2704 
2705 	default:
2706 		/*
2707 		 * Must always call bio_io_error on failure.
2708 		 * dm_thin_find_block can fail with -EINVAL if the
2709 		 * pool is switched to fail-io mode.
2710 		 */
2711 		bio_io_error(bio);
2712 		cell_defer_no_holder(tc, virt_cell);
2713 		return DM_MAPIO_SUBMITTED;
2714 	}
2715 }
2716 
2717 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2718 {
2719 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2720 	struct request_queue *q;
2721 
2722 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2723 		return 1;
2724 
2725 	q = bdev_get_queue(pt->data_dev->bdev);
2726 	return bdi_congested(q->backing_dev_info, bdi_bits);
2727 }
2728 
2729 static void requeue_bios(struct pool *pool)
2730 {
2731 	unsigned long flags;
2732 	struct thin_c *tc;
2733 
2734 	rcu_read_lock();
2735 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2736 		spin_lock_irqsave(&tc->lock, flags);
2737 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2738 		bio_list_init(&tc->retry_on_resume_list);
2739 		spin_unlock_irqrestore(&tc->lock, flags);
2740 	}
2741 	rcu_read_unlock();
2742 }
2743 
2744 /*----------------------------------------------------------------
2745  * Binding of control targets to a pool object
2746  *--------------------------------------------------------------*/
2747 static bool data_dev_supports_discard(struct pool_c *pt)
2748 {
2749 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2750 
2751 	return q && blk_queue_discard(q);
2752 }
2753 
2754 static bool is_factor(sector_t block_size, uint32_t n)
2755 {
2756 	return !sector_div(block_size, n);
2757 }
2758 
2759 /*
2760  * If discard_passdown was enabled verify that the data device
2761  * supports discards.  Disable discard_passdown if not.
2762  */
2763 static void disable_passdown_if_not_supported(struct pool_c *pt)
2764 {
2765 	struct pool *pool = pt->pool;
2766 	struct block_device *data_bdev = pt->data_dev->bdev;
2767 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2768 	const char *reason = NULL;
2769 	char buf[BDEVNAME_SIZE];
2770 
2771 	if (!pt->adjusted_pf.discard_passdown)
2772 		return;
2773 
2774 	if (!data_dev_supports_discard(pt))
2775 		reason = "discard unsupported";
2776 
2777 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2778 		reason = "max discard sectors smaller than a block";
2779 
2780 	if (reason) {
2781 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2782 		pt->adjusted_pf.discard_passdown = false;
2783 	}
2784 }
2785 
2786 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2787 {
2788 	struct pool_c *pt = ti->private;
2789 
2790 	/*
2791 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2792 	 */
2793 	enum pool_mode old_mode = get_pool_mode(pool);
2794 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2795 
2796 	/*
2797 	 * Don't change the pool's mode until set_pool_mode() below.
2798 	 * Otherwise the pool's process_* function pointers may
2799 	 * not match the desired pool mode.
2800 	 */
2801 	pt->adjusted_pf.mode = old_mode;
2802 
2803 	pool->ti = ti;
2804 	pool->pf = pt->adjusted_pf;
2805 	pool->low_water_blocks = pt->low_water_blocks;
2806 
2807 	set_pool_mode(pool, new_mode);
2808 
2809 	return 0;
2810 }
2811 
2812 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2813 {
2814 	if (pool->ti == ti)
2815 		pool->ti = NULL;
2816 }
2817 
2818 /*----------------------------------------------------------------
2819  * Pool creation
2820  *--------------------------------------------------------------*/
2821 /* Initialize pool features. */
2822 static void pool_features_init(struct pool_features *pf)
2823 {
2824 	pf->mode = PM_WRITE;
2825 	pf->zero_new_blocks = true;
2826 	pf->discard_enabled = true;
2827 	pf->discard_passdown = true;
2828 	pf->error_if_no_space = false;
2829 }
2830 
2831 static void __pool_destroy(struct pool *pool)
2832 {
2833 	__pool_table_remove(pool);
2834 
2835 	vfree(pool->cell_sort_array);
2836 	if (dm_pool_metadata_close(pool->pmd) < 0)
2837 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2838 
2839 	dm_bio_prison_destroy(pool->prison);
2840 	dm_kcopyd_client_destroy(pool->copier);
2841 
2842 	if (pool->wq)
2843 		destroy_workqueue(pool->wq);
2844 
2845 	if (pool->next_mapping)
2846 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2847 	mempool_exit(&pool->mapping_pool);
2848 	dm_deferred_set_destroy(pool->shared_read_ds);
2849 	dm_deferred_set_destroy(pool->all_io_ds);
2850 	kfree(pool);
2851 }
2852 
2853 static struct kmem_cache *_new_mapping_cache;
2854 
2855 static struct pool *pool_create(struct mapped_device *pool_md,
2856 				struct block_device *metadata_dev,
2857 				unsigned long block_size,
2858 				int read_only, char **error)
2859 {
2860 	int r;
2861 	void *err_p;
2862 	struct pool *pool;
2863 	struct dm_pool_metadata *pmd;
2864 	bool format_device = read_only ? false : true;
2865 
2866 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2867 	if (IS_ERR(pmd)) {
2868 		*error = "Error creating metadata object";
2869 		return (struct pool *)pmd;
2870 	}
2871 
2872 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2873 	if (!pool) {
2874 		*error = "Error allocating memory for pool";
2875 		err_p = ERR_PTR(-ENOMEM);
2876 		goto bad_pool;
2877 	}
2878 
2879 	pool->pmd = pmd;
2880 	pool->sectors_per_block = block_size;
2881 	if (block_size & (block_size - 1))
2882 		pool->sectors_per_block_shift = -1;
2883 	else
2884 		pool->sectors_per_block_shift = __ffs(block_size);
2885 	pool->low_water_blocks = 0;
2886 	pool_features_init(&pool->pf);
2887 	pool->prison = dm_bio_prison_create();
2888 	if (!pool->prison) {
2889 		*error = "Error creating pool's bio prison";
2890 		err_p = ERR_PTR(-ENOMEM);
2891 		goto bad_prison;
2892 	}
2893 
2894 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2895 	if (IS_ERR(pool->copier)) {
2896 		r = PTR_ERR(pool->copier);
2897 		*error = "Error creating pool's kcopyd client";
2898 		err_p = ERR_PTR(r);
2899 		goto bad_kcopyd_client;
2900 	}
2901 
2902 	/*
2903 	 * Create singlethreaded workqueue that will service all devices
2904 	 * that use this metadata.
2905 	 */
2906 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2907 	if (!pool->wq) {
2908 		*error = "Error creating pool's workqueue";
2909 		err_p = ERR_PTR(-ENOMEM);
2910 		goto bad_wq;
2911 	}
2912 
2913 	throttle_init(&pool->throttle);
2914 	INIT_WORK(&pool->worker, do_worker);
2915 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2916 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2917 	spin_lock_init(&pool->lock);
2918 	bio_list_init(&pool->deferred_flush_bios);
2919 	INIT_LIST_HEAD(&pool->prepared_mappings);
2920 	INIT_LIST_HEAD(&pool->prepared_discards);
2921 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2922 	INIT_LIST_HEAD(&pool->active_thins);
2923 	pool->low_water_triggered = false;
2924 	pool->suspended = true;
2925 	pool->out_of_data_space = false;
2926 
2927 	pool->shared_read_ds = dm_deferred_set_create();
2928 	if (!pool->shared_read_ds) {
2929 		*error = "Error creating pool's shared read deferred set";
2930 		err_p = ERR_PTR(-ENOMEM);
2931 		goto bad_shared_read_ds;
2932 	}
2933 
2934 	pool->all_io_ds = dm_deferred_set_create();
2935 	if (!pool->all_io_ds) {
2936 		*error = "Error creating pool's all io deferred set";
2937 		err_p = ERR_PTR(-ENOMEM);
2938 		goto bad_all_io_ds;
2939 	}
2940 
2941 	pool->next_mapping = NULL;
2942 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2943 				   _new_mapping_cache);
2944 	if (r) {
2945 		*error = "Error creating pool's mapping mempool";
2946 		err_p = ERR_PTR(r);
2947 		goto bad_mapping_pool;
2948 	}
2949 
2950 	pool->cell_sort_array =
2951 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2952 				   sizeof(*pool->cell_sort_array)));
2953 	if (!pool->cell_sort_array) {
2954 		*error = "Error allocating cell sort array";
2955 		err_p = ERR_PTR(-ENOMEM);
2956 		goto bad_sort_array;
2957 	}
2958 
2959 	pool->ref_count = 1;
2960 	pool->last_commit_jiffies = jiffies;
2961 	pool->pool_md = pool_md;
2962 	pool->md_dev = metadata_dev;
2963 	__pool_table_insert(pool);
2964 
2965 	return pool;
2966 
2967 bad_sort_array:
2968 	mempool_exit(&pool->mapping_pool);
2969 bad_mapping_pool:
2970 	dm_deferred_set_destroy(pool->all_io_ds);
2971 bad_all_io_ds:
2972 	dm_deferred_set_destroy(pool->shared_read_ds);
2973 bad_shared_read_ds:
2974 	destroy_workqueue(pool->wq);
2975 bad_wq:
2976 	dm_kcopyd_client_destroy(pool->copier);
2977 bad_kcopyd_client:
2978 	dm_bio_prison_destroy(pool->prison);
2979 bad_prison:
2980 	kfree(pool);
2981 bad_pool:
2982 	if (dm_pool_metadata_close(pmd))
2983 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2984 
2985 	return err_p;
2986 }
2987 
2988 static void __pool_inc(struct pool *pool)
2989 {
2990 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2991 	pool->ref_count++;
2992 }
2993 
2994 static void __pool_dec(struct pool *pool)
2995 {
2996 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2997 	BUG_ON(!pool->ref_count);
2998 	if (!--pool->ref_count)
2999 		__pool_destroy(pool);
3000 }
3001 
3002 static struct pool *__pool_find(struct mapped_device *pool_md,
3003 				struct block_device *metadata_dev,
3004 				unsigned long block_size, int read_only,
3005 				char **error, int *created)
3006 {
3007 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3008 
3009 	if (pool) {
3010 		if (pool->pool_md != pool_md) {
3011 			*error = "metadata device already in use by a pool";
3012 			return ERR_PTR(-EBUSY);
3013 		}
3014 		__pool_inc(pool);
3015 
3016 	} else {
3017 		pool = __pool_table_lookup(pool_md);
3018 		if (pool) {
3019 			if (pool->md_dev != metadata_dev) {
3020 				*error = "different pool cannot replace a pool";
3021 				return ERR_PTR(-EINVAL);
3022 			}
3023 			__pool_inc(pool);
3024 
3025 		} else {
3026 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3027 			*created = 1;
3028 		}
3029 	}
3030 
3031 	return pool;
3032 }
3033 
3034 /*----------------------------------------------------------------
3035  * Pool target methods
3036  *--------------------------------------------------------------*/
3037 static void pool_dtr(struct dm_target *ti)
3038 {
3039 	struct pool_c *pt = ti->private;
3040 
3041 	mutex_lock(&dm_thin_pool_table.mutex);
3042 
3043 	unbind_control_target(pt->pool, ti);
3044 	__pool_dec(pt->pool);
3045 	dm_put_device(ti, pt->metadata_dev);
3046 	dm_put_device(ti, pt->data_dev);
3047 	kfree(pt);
3048 
3049 	mutex_unlock(&dm_thin_pool_table.mutex);
3050 }
3051 
3052 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3053 			       struct dm_target *ti)
3054 {
3055 	int r;
3056 	unsigned argc;
3057 	const char *arg_name;
3058 
3059 	static const struct dm_arg _args[] = {
3060 		{0, 4, "Invalid number of pool feature arguments"},
3061 	};
3062 
3063 	/*
3064 	 * No feature arguments supplied.
3065 	 */
3066 	if (!as->argc)
3067 		return 0;
3068 
3069 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3070 	if (r)
3071 		return -EINVAL;
3072 
3073 	while (argc && !r) {
3074 		arg_name = dm_shift_arg(as);
3075 		argc--;
3076 
3077 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3078 			pf->zero_new_blocks = false;
3079 
3080 		else if (!strcasecmp(arg_name, "ignore_discard"))
3081 			pf->discard_enabled = false;
3082 
3083 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3084 			pf->discard_passdown = false;
3085 
3086 		else if (!strcasecmp(arg_name, "read_only"))
3087 			pf->mode = PM_READ_ONLY;
3088 
3089 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3090 			pf->error_if_no_space = true;
3091 
3092 		else {
3093 			ti->error = "Unrecognised pool feature requested";
3094 			r = -EINVAL;
3095 			break;
3096 		}
3097 	}
3098 
3099 	return r;
3100 }
3101 
3102 static void metadata_low_callback(void *context)
3103 {
3104 	struct pool *pool = context;
3105 
3106 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3107 	       dm_device_name(pool->pool_md));
3108 
3109 	dm_table_event(pool->ti->table);
3110 }
3111 
3112 static sector_t get_dev_size(struct block_device *bdev)
3113 {
3114 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3115 }
3116 
3117 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3118 {
3119 	sector_t metadata_dev_size = get_dev_size(bdev);
3120 	char buffer[BDEVNAME_SIZE];
3121 
3122 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3123 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3124 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3125 }
3126 
3127 static sector_t get_metadata_dev_size(struct block_device *bdev)
3128 {
3129 	sector_t metadata_dev_size = get_dev_size(bdev);
3130 
3131 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3132 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3133 
3134 	return metadata_dev_size;
3135 }
3136 
3137 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3138 {
3139 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3140 
3141 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3142 
3143 	return metadata_dev_size;
3144 }
3145 
3146 /*
3147  * When a metadata threshold is crossed a dm event is triggered, and
3148  * userland should respond by growing the metadata device.  We could let
3149  * userland set the threshold, like we do with the data threshold, but I'm
3150  * not sure they know enough to do this well.
3151  */
3152 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3153 {
3154 	/*
3155 	 * 4M is ample for all ops with the possible exception of thin
3156 	 * device deletion which is harmless if it fails (just retry the
3157 	 * delete after you've grown the device).
3158 	 */
3159 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3160 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3161 }
3162 
3163 /*
3164  * thin-pool <metadata dev> <data dev>
3165  *	     <data block size (sectors)>
3166  *	     <low water mark (blocks)>
3167  *	     [<#feature args> [<arg>]*]
3168  *
3169  * Optional feature arguments are:
3170  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3171  *	     ignore_discard: disable discard
3172  *	     no_discard_passdown: don't pass discards down to the data device
3173  *	     read_only: Don't allow any changes to be made to the pool metadata.
3174  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3175  */
3176 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3177 {
3178 	int r, pool_created = 0;
3179 	struct pool_c *pt;
3180 	struct pool *pool;
3181 	struct pool_features pf;
3182 	struct dm_arg_set as;
3183 	struct dm_dev *data_dev;
3184 	unsigned long block_size;
3185 	dm_block_t low_water_blocks;
3186 	struct dm_dev *metadata_dev;
3187 	fmode_t metadata_mode;
3188 
3189 	/*
3190 	 * FIXME Remove validation from scope of lock.
3191 	 */
3192 	mutex_lock(&dm_thin_pool_table.mutex);
3193 
3194 	if (argc < 4) {
3195 		ti->error = "Invalid argument count";
3196 		r = -EINVAL;
3197 		goto out_unlock;
3198 	}
3199 
3200 	as.argc = argc;
3201 	as.argv = argv;
3202 
3203 	/*
3204 	 * Set default pool features.
3205 	 */
3206 	pool_features_init(&pf);
3207 
3208 	dm_consume_args(&as, 4);
3209 	r = parse_pool_features(&as, &pf, ti);
3210 	if (r)
3211 		goto out_unlock;
3212 
3213 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3214 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3215 	if (r) {
3216 		ti->error = "Error opening metadata block device";
3217 		goto out_unlock;
3218 	}
3219 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3220 
3221 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3222 	if (r) {
3223 		ti->error = "Error getting data device";
3224 		goto out_metadata;
3225 	}
3226 
3227 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3228 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3229 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3230 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3231 		ti->error = "Invalid block size";
3232 		r = -EINVAL;
3233 		goto out;
3234 	}
3235 
3236 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3237 		ti->error = "Invalid low water mark";
3238 		r = -EINVAL;
3239 		goto out;
3240 	}
3241 
3242 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3243 	if (!pt) {
3244 		r = -ENOMEM;
3245 		goto out;
3246 	}
3247 
3248 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3249 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3250 	if (IS_ERR(pool)) {
3251 		r = PTR_ERR(pool);
3252 		goto out_free_pt;
3253 	}
3254 
3255 	/*
3256 	 * 'pool_created' reflects whether this is the first table load.
3257 	 * Top level discard support is not allowed to be changed after
3258 	 * initial load.  This would require a pool reload to trigger thin
3259 	 * device changes.
3260 	 */
3261 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3262 		ti->error = "Discard support cannot be disabled once enabled";
3263 		r = -EINVAL;
3264 		goto out_flags_changed;
3265 	}
3266 
3267 	pt->pool = pool;
3268 	pt->ti = ti;
3269 	pt->metadata_dev = metadata_dev;
3270 	pt->data_dev = data_dev;
3271 	pt->low_water_blocks = low_water_blocks;
3272 	pt->adjusted_pf = pt->requested_pf = pf;
3273 	ti->num_flush_bios = 1;
3274 
3275 	/*
3276 	 * Only need to enable discards if the pool should pass
3277 	 * them down to the data device.  The thin device's discard
3278 	 * processing will cause mappings to be removed from the btree.
3279 	 */
3280 	if (pf.discard_enabled && pf.discard_passdown) {
3281 		ti->num_discard_bios = 1;
3282 
3283 		/*
3284 		 * Setting 'discards_supported' circumvents the normal
3285 		 * stacking of discard limits (this keeps the pool and
3286 		 * thin devices' discard limits consistent).
3287 		 */
3288 		ti->discards_supported = true;
3289 	}
3290 	ti->private = pt;
3291 
3292 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3293 						calc_metadata_threshold(pt),
3294 						metadata_low_callback,
3295 						pool);
3296 	if (r)
3297 		goto out_flags_changed;
3298 
3299 	pt->callbacks.congested_fn = pool_is_congested;
3300 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3301 
3302 	mutex_unlock(&dm_thin_pool_table.mutex);
3303 
3304 	return 0;
3305 
3306 out_flags_changed:
3307 	__pool_dec(pool);
3308 out_free_pt:
3309 	kfree(pt);
3310 out:
3311 	dm_put_device(ti, data_dev);
3312 out_metadata:
3313 	dm_put_device(ti, metadata_dev);
3314 out_unlock:
3315 	mutex_unlock(&dm_thin_pool_table.mutex);
3316 
3317 	return r;
3318 }
3319 
3320 static int pool_map(struct dm_target *ti, struct bio *bio)
3321 {
3322 	int r;
3323 	struct pool_c *pt = ti->private;
3324 	struct pool *pool = pt->pool;
3325 	unsigned long flags;
3326 
3327 	/*
3328 	 * As this is a singleton target, ti->begin is always zero.
3329 	 */
3330 	spin_lock_irqsave(&pool->lock, flags);
3331 	bio_set_dev(bio, pt->data_dev->bdev);
3332 	r = DM_MAPIO_REMAPPED;
3333 	spin_unlock_irqrestore(&pool->lock, flags);
3334 
3335 	return r;
3336 }
3337 
3338 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3339 {
3340 	int r;
3341 	struct pool_c *pt = ti->private;
3342 	struct pool *pool = pt->pool;
3343 	sector_t data_size = ti->len;
3344 	dm_block_t sb_data_size;
3345 
3346 	*need_commit = false;
3347 
3348 	(void) sector_div(data_size, pool->sectors_per_block);
3349 
3350 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3351 	if (r) {
3352 		DMERR("%s: failed to retrieve data device size",
3353 		      dm_device_name(pool->pool_md));
3354 		return r;
3355 	}
3356 
3357 	if (data_size < sb_data_size) {
3358 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3359 		      dm_device_name(pool->pool_md),
3360 		      (unsigned long long)data_size, sb_data_size);
3361 		return -EINVAL;
3362 
3363 	} else if (data_size > sb_data_size) {
3364 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3365 			DMERR("%s: unable to grow the data device until repaired.",
3366 			      dm_device_name(pool->pool_md));
3367 			return 0;
3368 		}
3369 
3370 		if (sb_data_size)
3371 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3372 			       dm_device_name(pool->pool_md),
3373 			       sb_data_size, (unsigned long long)data_size);
3374 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3375 		if (r) {
3376 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3377 			return r;
3378 		}
3379 
3380 		*need_commit = true;
3381 	}
3382 
3383 	return 0;
3384 }
3385 
3386 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3387 {
3388 	int r;
3389 	struct pool_c *pt = ti->private;
3390 	struct pool *pool = pt->pool;
3391 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3392 
3393 	*need_commit = false;
3394 
3395 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3396 
3397 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3398 	if (r) {
3399 		DMERR("%s: failed to retrieve metadata device size",
3400 		      dm_device_name(pool->pool_md));
3401 		return r;
3402 	}
3403 
3404 	if (metadata_dev_size < sb_metadata_dev_size) {
3405 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3406 		      dm_device_name(pool->pool_md),
3407 		      metadata_dev_size, sb_metadata_dev_size);
3408 		return -EINVAL;
3409 
3410 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3411 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3412 			DMERR("%s: unable to grow the metadata device until repaired.",
3413 			      dm_device_name(pool->pool_md));
3414 			return 0;
3415 		}
3416 
3417 		warn_if_metadata_device_too_big(pool->md_dev);
3418 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3419 		       dm_device_name(pool->pool_md),
3420 		       sb_metadata_dev_size, metadata_dev_size);
3421 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3422 		if (r) {
3423 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3424 			return r;
3425 		}
3426 
3427 		*need_commit = true;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 /*
3434  * Retrieves the number of blocks of the data device from
3435  * the superblock and compares it to the actual device size,
3436  * thus resizing the data device in case it has grown.
3437  *
3438  * This both copes with opening preallocated data devices in the ctr
3439  * being followed by a resume
3440  * -and-
3441  * calling the resume method individually after userspace has
3442  * grown the data device in reaction to a table event.
3443  */
3444 static int pool_preresume(struct dm_target *ti)
3445 {
3446 	int r;
3447 	bool need_commit1, need_commit2;
3448 	struct pool_c *pt = ti->private;
3449 	struct pool *pool = pt->pool;
3450 
3451 	/*
3452 	 * Take control of the pool object.
3453 	 */
3454 	r = bind_control_target(pool, ti);
3455 	if (r)
3456 		return r;
3457 
3458 	r = maybe_resize_data_dev(ti, &need_commit1);
3459 	if (r)
3460 		return r;
3461 
3462 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3463 	if (r)
3464 		return r;
3465 
3466 	if (need_commit1 || need_commit2)
3467 		(void) commit(pool);
3468 
3469 	return 0;
3470 }
3471 
3472 static void pool_suspend_active_thins(struct pool *pool)
3473 {
3474 	struct thin_c *tc;
3475 
3476 	/* Suspend all active thin devices */
3477 	tc = get_first_thin(pool);
3478 	while (tc) {
3479 		dm_internal_suspend_noflush(tc->thin_md);
3480 		tc = get_next_thin(pool, tc);
3481 	}
3482 }
3483 
3484 static void pool_resume_active_thins(struct pool *pool)
3485 {
3486 	struct thin_c *tc;
3487 
3488 	/* Resume all active thin devices */
3489 	tc = get_first_thin(pool);
3490 	while (tc) {
3491 		dm_internal_resume(tc->thin_md);
3492 		tc = get_next_thin(pool, tc);
3493 	}
3494 }
3495 
3496 static void pool_resume(struct dm_target *ti)
3497 {
3498 	struct pool_c *pt = ti->private;
3499 	struct pool *pool = pt->pool;
3500 	unsigned long flags;
3501 
3502 	/*
3503 	 * Must requeue active_thins' bios and then resume
3504 	 * active_thins _before_ clearing 'suspend' flag.
3505 	 */
3506 	requeue_bios(pool);
3507 	pool_resume_active_thins(pool);
3508 
3509 	spin_lock_irqsave(&pool->lock, flags);
3510 	pool->low_water_triggered = false;
3511 	pool->suspended = false;
3512 	spin_unlock_irqrestore(&pool->lock, flags);
3513 
3514 	do_waker(&pool->waker.work);
3515 }
3516 
3517 static void pool_presuspend(struct dm_target *ti)
3518 {
3519 	struct pool_c *pt = ti->private;
3520 	struct pool *pool = pt->pool;
3521 	unsigned long flags;
3522 
3523 	spin_lock_irqsave(&pool->lock, flags);
3524 	pool->suspended = true;
3525 	spin_unlock_irqrestore(&pool->lock, flags);
3526 
3527 	pool_suspend_active_thins(pool);
3528 }
3529 
3530 static void pool_presuspend_undo(struct dm_target *ti)
3531 {
3532 	struct pool_c *pt = ti->private;
3533 	struct pool *pool = pt->pool;
3534 	unsigned long flags;
3535 
3536 	pool_resume_active_thins(pool);
3537 
3538 	spin_lock_irqsave(&pool->lock, flags);
3539 	pool->suspended = false;
3540 	spin_unlock_irqrestore(&pool->lock, flags);
3541 }
3542 
3543 static void pool_postsuspend(struct dm_target *ti)
3544 {
3545 	struct pool_c *pt = ti->private;
3546 	struct pool *pool = pt->pool;
3547 
3548 	cancel_delayed_work_sync(&pool->waker);
3549 	cancel_delayed_work_sync(&pool->no_space_timeout);
3550 	flush_workqueue(pool->wq);
3551 	(void) commit(pool);
3552 }
3553 
3554 static int check_arg_count(unsigned argc, unsigned args_required)
3555 {
3556 	if (argc != args_required) {
3557 		DMWARN("Message received with %u arguments instead of %u.",
3558 		       argc, args_required);
3559 		return -EINVAL;
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3566 {
3567 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3568 	    *dev_id <= MAX_DEV_ID)
3569 		return 0;
3570 
3571 	if (warning)
3572 		DMWARN("Message received with invalid device id: %s", arg);
3573 
3574 	return -EINVAL;
3575 }
3576 
3577 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3578 {
3579 	dm_thin_id dev_id;
3580 	int r;
3581 
3582 	r = check_arg_count(argc, 2);
3583 	if (r)
3584 		return r;
3585 
3586 	r = read_dev_id(argv[1], &dev_id, 1);
3587 	if (r)
3588 		return r;
3589 
3590 	r = dm_pool_create_thin(pool->pmd, dev_id);
3591 	if (r) {
3592 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3593 		       argv[1]);
3594 		return r;
3595 	}
3596 
3597 	return 0;
3598 }
3599 
3600 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3601 {
3602 	dm_thin_id dev_id;
3603 	dm_thin_id origin_dev_id;
3604 	int r;
3605 
3606 	r = check_arg_count(argc, 3);
3607 	if (r)
3608 		return r;
3609 
3610 	r = read_dev_id(argv[1], &dev_id, 1);
3611 	if (r)
3612 		return r;
3613 
3614 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3615 	if (r)
3616 		return r;
3617 
3618 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3619 	if (r) {
3620 		DMWARN("Creation of new snapshot %s of device %s failed.",
3621 		       argv[1], argv[2]);
3622 		return r;
3623 	}
3624 
3625 	return 0;
3626 }
3627 
3628 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3629 {
3630 	dm_thin_id dev_id;
3631 	int r;
3632 
3633 	r = check_arg_count(argc, 2);
3634 	if (r)
3635 		return r;
3636 
3637 	r = read_dev_id(argv[1], &dev_id, 1);
3638 	if (r)
3639 		return r;
3640 
3641 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3642 	if (r)
3643 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3644 
3645 	return r;
3646 }
3647 
3648 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3649 {
3650 	dm_thin_id old_id, new_id;
3651 	int r;
3652 
3653 	r = check_arg_count(argc, 3);
3654 	if (r)
3655 		return r;
3656 
3657 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3658 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3659 		return -EINVAL;
3660 	}
3661 
3662 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3663 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3664 		return -EINVAL;
3665 	}
3666 
3667 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3668 	if (r) {
3669 		DMWARN("Failed to change transaction id from %s to %s.",
3670 		       argv[1], argv[2]);
3671 		return r;
3672 	}
3673 
3674 	return 0;
3675 }
3676 
3677 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3678 {
3679 	int r;
3680 
3681 	r = check_arg_count(argc, 1);
3682 	if (r)
3683 		return r;
3684 
3685 	(void) commit(pool);
3686 
3687 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3688 	if (r)
3689 		DMWARN("reserve_metadata_snap message failed.");
3690 
3691 	return r;
3692 }
3693 
3694 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695 {
3696 	int r;
3697 
3698 	r = check_arg_count(argc, 1);
3699 	if (r)
3700 		return r;
3701 
3702 	r = dm_pool_release_metadata_snap(pool->pmd);
3703 	if (r)
3704 		DMWARN("release_metadata_snap message failed.");
3705 
3706 	return r;
3707 }
3708 
3709 /*
3710  * Messages supported:
3711  *   create_thin	<dev_id>
3712  *   create_snap	<dev_id> <origin_id>
3713  *   delete		<dev_id>
3714  *   set_transaction_id <current_trans_id> <new_trans_id>
3715  *   reserve_metadata_snap
3716  *   release_metadata_snap
3717  */
3718 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3719 			char *result, unsigned maxlen)
3720 {
3721 	int r = -EINVAL;
3722 	struct pool_c *pt = ti->private;
3723 	struct pool *pool = pt->pool;
3724 
3725 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3726 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3727 		      dm_device_name(pool->pool_md));
3728 		return -EOPNOTSUPP;
3729 	}
3730 
3731 	if (!strcasecmp(argv[0], "create_thin"))
3732 		r = process_create_thin_mesg(argc, argv, pool);
3733 
3734 	else if (!strcasecmp(argv[0], "create_snap"))
3735 		r = process_create_snap_mesg(argc, argv, pool);
3736 
3737 	else if (!strcasecmp(argv[0], "delete"))
3738 		r = process_delete_mesg(argc, argv, pool);
3739 
3740 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3741 		r = process_set_transaction_id_mesg(argc, argv, pool);
3742 
3743 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3744 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3745 
3746 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3747 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3748 
3749 	else
3750 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3751 
3752 	if (!r)
3753 		(void) commit(pool);
3754 
3755 	return r;
3756 }
3757 
3758 static void emit_flags(struct pool_features *pf, char *result,
3759 		       unsigned sz, unsigned maxlen)
3760 {
3761 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3762 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3763 		pf->error_if_no_space;
3764 	DMEMIT("%u ", count);
3765 
3766 	if (!pf->zero_new_blocks)
3767 		DMEMIT("skip_block_zeroing ");
3768 
3769 	if (!pf->discard_enabled)
3770 		DMEMIT("ignore_discard ");
3771 
3772 	if (!pf->discard_passdown)
3773 		DMEMIT("no_discard_passdown ");
3774 
3775 	if (pf->mode == PM_READ_ONLY)
3776 		DMEMIT("read_only ");
3777 
3778 	if (pf->error_if_no_space)
3779 		DMEMIT("error_if_no_space ");
3780 }
3781 
3782 /*
3783  * Status line is:
3784  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3785  *    <used data sectors>/<total data sectors> <held metadata root>
3786  *    <pool mode> <discard config> <no space config> <needs_check>
3787  */
3788 static void pool_status(struct dm_target *ti, status_type_t type,
3789 			unsigned status_flags, char *result, unsigned maxlen)
3790 {
3791 	int r;
3792 	unsigned sz = 0;
3793 	uint64_t transaction_id;
3794 	dm_block_t nr_free_blocks_data;
3795 	dm_block_t nr_free_blocks_metadata;
3796 	dm_block_t nr_blocks_data;
3797 	dm_block_t nr_blocks_metadata;
3798 	dm_block_t held_root;
3799 	char buf[BDEVNAME_SIZE];
3800 	char buf2[BDEVNAME_SIZE];
3801 	struct pool_c *pt = ti->private;
3802 	struct pool *pool = pt->pool;
3803 
3804 	switch (type) {
3805 	case STATUSTYPE_INFO:
3806 		if (get_pool_mode(pool) == PM_FAIL) {
3807 			DMEMIT("Fail");
3808 			break;
3809 		}
3810 
3811 		/* Commit to ensure statistics aren't out-of-date */
3812 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3813 			(void) commit(pool);
3814 
3815 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3816 		if (r) {
3817 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3818 			      dm_device_name(pool->pool_md), r);
3819 			goto err;
3820 		}
3821 
3822 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3823 		if (r) {
3824 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3825 			      dm_device_name(pool->pool_md), r);
3826 			goto err;
3827 		}
3828 
3829 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3830 		if (r) {
3831 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3832 			      dm_device_name(pool->pool_md), r);
3833 			goto err;
3834 		}
3835 
3836 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3837 		if (r) {
3838 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3839 			      dm_device_name(pool->pool_md), r);
3840 			goto err;
3841 		}
3842 
3843 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3844 		if (r) {
3845 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3846 			      dm_device_name(pool->pool_md), r);
3847 			goto err;
3848 		}
3849 
3850 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3851 		if (r) {
3852 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3853 			      dm_device_name(pool->pool_md), r);
3854 			goto err;
3855 		}
3856 
3857 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3858 		       (unsigned long long)transaction_id,
3859 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3860 		       (unsigned long long)nr_blocks_metadata,
3861 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3862 		       (unsigned long long)nr_blocks_data);
3863 
3864 		if (held_root)
3865 			DMEMIT("%llu ", held_root);
3866 		else
3867 			DMEMIT("- ");
3868 
3869 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3870 			DMEMIT("out_of_data_space ");
3871 		else if (pool->pf.mode == PM_READ_ONLY)
3872 			DMEMIT("ro ");
3873 		else
3874 			DMEMIT("rw ");
3875 
3876 		if (!pool->pf.discard_enabled)
3877 			DMEMIT("ignore_discard ");
3878 		else if (pool->pf.discard_passdown)
3879 			DMEMIT("discard_passdown ");
3880 		else
3881 			DMEMIT("no_discard_passdown ");
3882 
3883 		if (pool->pf.error_if_no_space)
3884 			DMEMIT("error_if_no_space ");
3885 		else
3886 			DMEMIT("queue_if_no_space ");
3887 
3888 		if (dm_pool_metadata_needs_check(pool->pmd))
3889 			DMEMIT("needs_check ");
3890 		else
3891 			DMEMIT("- ");
3892 
3893 		break;
3894 
3895 	case STATUSTYPE_TABLE:
3896 		DMEMIT("%s %s %lu %llu ",
3897 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3898 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3899 		       (unsigned long)pool->sectors_per_block,
3900 		       (unsigned long long)pt->low_water_blocks);
3901 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3902 		break;
3903 	}
3904 	return;
3905 
3906 err:
3907 	DMEMIT("Error");
3908 }
3909 
3910 static int pool_iterate_devices(struct dm_target *ti,
3911 				iterate_devices_callout_fn fn, void *data)
3912 {
3913 	struct pool_c *pt = ti->private;
3914 
3915 	return fn(ti, pt->data_dev, 0, ti->len, data);
3916 }
3917 
3918 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3919 {
3920 	struct pool_c *pt = ti->private;
3921 	struct pool *pool = pt->pool;
3922 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3923 
3924 	/*
3925 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3926 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3927 	 * This is especially beneficial when the pool's data device is a RAID
3928 	 * device that has a full stripe width that matches pool->sectors_per_block
3929 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3930 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3931 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3932 	 */
3933 	if (limits->max_sectors < pool->sectors_per_block) {
3934 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3935 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3936 				limits->max_sectors--;
3937 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3938 		}
3939 	}
3940 
3941 	/*
3942 	 * If the system-determined stacked limits are compatible with the
3943 	 * pool's blocksize (io_opt is a factor) do not override them.
3944 	 */
3945 	if (io_opt_sectors < pool->sectors_per_block ||
3946 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3947 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3948 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3949 		else
3950 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3951 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3952 	}
3953 
3954 	/*
3955 	 * pt->adjusted_pf is a staging area for the actual features to use.
3956 	 * They get transferred to the live pool in bind_control_target()
3957 	 * called from pool_preresume().
3958 	 */
3959 	if (!pt->adjusted_pf.discard_enabled) {
3960 		/*
3961 		 * Must explicitly disallow stacking discard limits otherwise the
3962 		 * block layer will stack them if pool's data device has support.
3963 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3964 		 * user to see that, so make sure to set all discard limits to 0.
3965 		 */
3966 		limits->discard_granularity = 0;
3967 		return;
3968 	}
3969 
3970 	disable_passdown_if_not_supported(pt);
3971 
3972 	/*
3973 	 * The pool uses the same discard limits as the underlying data
3974 	 * device.  DM core has already set this up.
3975 	 */
3976 }
3977 
3978 static struct target_type pool_target = {
3979 	.name = "thin-pool",
3980 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3981 		    DM_TARGET_IMMUTABLE,
3982 	.version = {1, 19, 0},
3983 	.module = THIS_MODULE,
3984 	.ctr = pool_ctr,
3985 	.dtr = pool_dtr,
3986 	.map = pool_map,
3987 	.presuspend = pool_presuspend,
3988 	.presuspend_undo = pool_presuspend_undo,
3989 	.postsuspend = pool_postsuspend,
3990 	.preresume = pool_preresume,
3991 	.resume = pool_resume,
3992 	.message = pool_message,
3993 	.status = pool_status,
3994 	.iterate_devices = pool_iterate_devices,
3995 	.io_hints = pool_io_hints,
3996 };
3997 
3998 /*----------------------------------------------------------------
3999  * Thin target methods
4000  *--------------------------------------------------------------*/
4001 static void thin_get(struct thin_c *tc)
4002 {
4003 	atomic_inc(&tc->refcount);
4004 }
4005 
4006 static void thin_put(struct thin_c *tc)
4007 {
4008 	if (atomic_dec_and_test(&tc->refcount))
4009 		complete(&tc->can_destroy);
4010 }
4011 
4012 static void thin_dtr(struct dm_target *ti)
4013 {
4014 	struct thin_c *tc = ti->private;
4015 	unsigned long flags;
4016 
4017 	spin_lock_irqsave(&tc->pool->lock, flags);
4018 	list_del_rcu(&tc->list);
4019 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4020 	synchronize_rcu();
4021 
4022 	thin_put(tc);
4023 	wait_for_completion(&tc->can_destroy);
4024 
4025 	mutex_lock(&dm_thin_pool_table.mutex);
4026 
4027 	__pool_dec(tc->pool);
4028 	dm_pool_close_thin_device(tc->td);
4029 	dm_put_device(ti, tc->pool_dev);
4030 	if (tc->origin_dev)
4031 		dm_put_device(ti, tc->origin_dev);
4032 	kfree(tc);
4033 
4034 	mutex_unlock(&dm_thin_pool_table.mutex);
4035 }
4036 
4037 /*
4038  * Thin target parameters:
4039  *
4040  * <pool_dev> <dev_id> [origin_dev]
4041  *
4042  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4043  * dev_id: the internal device identifier
4044  * origin_dev: a device external to the pool that should act as the origin
4045  *
4046  * If the pool device has discards disabled, they get disabled for the thin
4047  * device as well.
4048  */
4049 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4050 {
4051 	int r;
4052 	struct thin_c *tc;
4053 	struct dm_dev *pool_dev, *origin_dev;
4054 	struct mapped_device *pool_md;
4055 	unsigned long flags;
4056 
4057 	mutex_lock(&dm_thin_pool_table.mutex);
4058 
4059 	if (argc != 2 && argc != 3) {
4060 		ti->error = "Invalid argument count";
4061 		r = -EINVAL;
4062 		goto out_unlock;
4063 	}
4064 
4065 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4066 	if (!tc) {
4067 		ti->error = "Out of memory";
4068 		r = -ENOMEM;
4069 		goto out_unlock;
4070 	}
4071 	tc->thin_md = dm_table_get_md(ti->table);
4072 	spin_lock_init(&tc->lock);
4073 	INIT_LIST_HEAD(&tc->deferred_cells);
4074 	bio_list_init(&tc->deferred_bio_list);
4075 	bio_list_init(&tc->retry_on_resume_list);
4076 	tc->sort_bio_list = RB_ROOT;
4077 
4078 	if (argc == 3) {
4079 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4080 		if (r) {
4081 			ti->error = "Error opening origin device";
4082 			goto bad_origin_dev;
4083 		}
4084 		tc->origin_dev = origin_dev;
4085 	}
4086 
4087 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4088 	if (r) {
4089 		ti->error = "Error opening pool device";
4090 		goto bad_pool_dev;
4091 	}
4092 	tc->pool_dev = pool_dev;
4093 
4094 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4095 		ti->error = "Invalid device id";
4096 		r = -EINVAL;
4097 		goto bad_common;
4098 	}
4099 
4100 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4101 	if (!pool_md) {
4102 		ti->error = "Couldn't get pool mapped device";
4103 		r = -EINVAL;
4104 		goto bad_common;
4105 	}
4106 
4107 	tc->pool = __pool_table_lookup(pool_md);
4108 	if (!tc->pool) {
4109 		ti->error = "Couldn't find pool object";
4110 		r = -EINVAL;
4111 		goto bad_pool_lookup;
4112 	}
4113 	__pool_inc(tc->pool);
4114 
4115 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4116 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4117 		r = -EINVAL;
4118 		goto bad_pool;
4119 	}
4120 
4121 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4122 	if (r) {
4123 		ti->error = "Couldn't open thin internal device";
4124 		goto bad_pool;
4125 	}
4126 
4127 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4128 	if (r)
4129 		goto bad;
4130 
4131 	ti->num_flush_bios = 1;
4132 	ti->flush_supported = true;
4133 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4134 
4135 	/* In case the pool supports discards, pass them on. */
4136 	if (tc->pool->pf.discard_enabled) {
4137 		ti->discards_supported = true;
4138 		ti->num_discard_bios = 1;
4139 		ti->split_discard_bios = false;
4140 	}
4141 
4142 	mutex_unlock(&dm_thin_pool_table.mutex);
4143 
4144 	spin_lock_irqsave(&tc->pool->lock, flags);
4145 	if (tc->pool->suspended) {
4146 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4147 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4148 		ti->error = "Unable to activate thin device while pool is suspended";
4149 		r = -EINVAL;
4150 		goto bad;
4151 	}
4152 	atomic_set(&tc->refcount, 1);
4153 	init_completion(&tc->can_destroy);
4154 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4155 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4156 	/*
4157 	 * This synchronize_rcu() call is needed here otherwise we risk a
4158 	 * wake_worker() call finding no bios to process (because the newly
4159 	 * added tc isn't yet visible).  So this reduces latency since we
4160 	 * aren't then dependent on the periodic commit to wake_worker().
4161 	 */
4162 	synchronize_rcu();
4163 
4164 	dm_put(pool_md);
4165 
4166 	return 0;
4167 
4168 bad:
4169 	dm_pool_close_thin_device(tc->td);
4170 bad_pool:
4171 	__pool_dec(tc->pool);
4172 bad_pool_lookup:
4173 	dm_put(pool_md);
4174 bad_common:
4175 	dm_put_device(ti, tc->pool_dev);
4176 bad_pool_dev:
4177 	if (tc->origin_dev)
4178 		dm_put_device(ti, tc->origin_dev);
4179 bad_origin_dev:
4180 	kfree(tc);
4181 out_unlock:
4182 	mutex_unlock(&dm_thin_pool_table.mutex);
4183 
4184 	return r;
4185 }
4186 
4187 static int thin_map(struct dm_target *ti, struct bio *bio)
4188 {
4189 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4190 
4191 	return thin_bio_map(ti, bio);
4192 }
4193 
4194 static int thin_endio(struct dm_target *ti, struct bio *bio,
4195 		blk_status_t *err)
4196 {
4197 	unsigned long flags;
4198 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4199 	struct list_head work;
4200 	struct dm_thin_new_mapping *m, *tmp;
4201 	struct pool *pool = h->tc->pool;
4202 
4203 	if (h->shared_read_entry) {
4204 		INIT_LIST_HEAD(&work);
4205 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4206 
4207 		spin_lock_irqsave(&pool->lock, flags);
4208 		list_for_each_entry_safe(m, tmp, &work, list) {
4209 			list_del(&m->list);
4210 			__complete_mapping_preparation(m);
4211 		}
4212 		spin_unlock_irqrestore(&pool->lock, flags);
4213 	}
4214 
4215 	if (h->all_io_entry) {
4216 		INIT_LIST_HEAD(&work);
4217 		dm_deferred_entry_dec(h->all_io_entry, &work);
4218 		if (!list_empty(&work)) {
4219 			spin_lock_irqsave(&pool->lock, flags);
4220 			list_for_each_entry_safe(m, tmp, &work, list)
4221 				list_add_tail(&m->list, &pool->prepared_discards);
4222 			spin_unlock_irqrestore(&pool->lock, flags);
4223 			wake_worker(pool);
4224 		}
4225 	}
4226 
4227 	if (h->cell)
4228 		cell_defer_no_holder(h->tc, h->cell);
4229 
4230 	return DM_ENDIO_DONE;
4231 }
4232 
4233 static void thin_presuspend(struct dm_target *ti)
4234 {
4235 	struct thin_c *tc = ti->private;
4236 
4237 	if (dm_noflush_suspending(ti))
4238 		noflush_work(tc, do_noflush_start);
4239 }
4240 
4241 static void thin_postsuspend(struct dm_target *ti)
4242 {
4243 	struct thin_c *tc = ti->private;
4244 
4245 	/*
4246 	 * The dm_noflush_suspending flag has been cleared by now, so
4247 	 * unfortunately we must always run this.
4248 	 */
4249 	noflush_work(tc, do_noflush_stop);
4250 }
4251 
4252 static int thin_preresume(struct dm_target *ti)
4253 {
4254 	struct thin_c *tc = ti->private;
4255 
4256 	if (tc->origin_dev)
4257 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4258 
4259 	return 0;
4260 }
4261 
4262 /*
4263  * <nr mapped sectors> <highest mapped sector>
4264  */
4265 static void thin_status(struct dm_target *ti, status_type_t type,
4266 			unsigned status_flags, char *result, unsigned maxlen)
4267 {
4268 	int r;
4269 	ssize_t sz = 0;
4270 	dm_block_t mapped, highest;
4271 	char buf[BDEVNAME_SIZE];
4272 	struct thin_c *tc = ti->private;
4273 
4274 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4275 		DMEMIT("Fail");
4276 		return;
4277 	}
4278 
4279 	if (!tc->td)
4280 		DMEMIT("-");
4281 	else {
4282 		switch (type) {
4283 		case STATUSTYPE_INFO:
4284 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4285 			if (r) {
4286 				DMERR("dm_thin_get_mapped_count returned %d", r);
4287 				goto err;
4288 			}
4289 
4290 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4291 			if (r < 0) {
4292 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4293 				goto err;
4294 			}
4295 
4296 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4297 			if (r)
4298 				DMEMIT("%llu", ((highest + 1) *
4299 						tc->pool->sectors_per_block) - 1);
4300 			else
4301 				DMEMIT("-");
4302 			break;
4303 
4304 		case STATUSTYPE_TABLE:
4305 			DMEMIT("%s %lu",
4306 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4307 			       (unsigned long) tc->dev_id);
4308 			if (tc->origin_dev)
4309 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4310 			break;
4311 		}
4312 	}
4313 
4314 	return;
4315 
4316 err:
4317 	DMEMIT("Error");
4318 }
4319 
4320 static int thin_iterate_devices(struct dm_target *ti,
4321 				iterate_devices_callout_fn fn, void *data)
4322 {
4323 	sector_t blocks;
4324 	struct thin_c *tc = ti->private;
4325 	struct pool *pool = tc->pool;
4326 
4327 	/*
4328 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4329 	 * we follow a more convoluted path through to the pool's target.
4330 	 */
4331 	if (!pool->ti)
4332 		return 0;	/* nothing is bound */
4333 
4334 	blocks = pool->ti->len;
4335 	(void) sector_div(blocks, pool->sectors_per_block);
4336 	if (blocks)
4337 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4338 
4339 	return 0;
4340 }
4341 
4342 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4343 {
4344 	struct thin_c *tc = ti->private;
4345 	struct pool *pool = tc->pool;
4346 
4347 	if (!pool->pf.discard_enabled)
4348 		return;
4349 
4350 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4351 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4352 }
4353 
4354 static struct target_type thin_target = {
4355 	.name = "thin",
4356 	.version = {1, 19, 0},
4357 	.module	= THIS_MODULE,
4358 	.ctr = thin_ctr,
4359 	.dtr = thin_dtr,
4360 	.map = thin_map,
4361 	.end_io = thin_endio,
4362 	.preresume = thin_preresume,
4363 	.presuspend = thin_presuspend,
4364 	.postsuspend = thin_postsuspend,
4365 	.status = thin_status,
4366 	.iterate_devices = thin_iterate_devices,
4367 	.io_hints = thin_io_hints,
4368 };
4369 
4370 /*----------------------------------------------------------------*/
4371 
4372 static int __init dm_thin_init(void)
4373 {
4374 	int r = -ENOMEM;
4375 
4376 	pool_table_init();
4377 
4378 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4379 	if (!_new_mapping_cache)
4380 		return r;
4381 
4382 	r = dm_register_target(&thin_target);
4383 	if (r)
4384 		goto bad_new_mapping_cache;
4385 
4386 	r = dm_register_target(&pool_target);
4387 	if (r)
4388 		goto bad_thin_target;
4389 
4390 	return 0;
4391 
4392 bad_thin_target:
4393 	dm_unregister_target(&thin_target);
4394 bad_new_mapping_cache:
4395 	kmem_cache_destroy(_new_mapping_cache);
4396 
4397 	return r;
4398 }
4399 
4400 static void dm_thin_exit(void)
4401 {
4402 	dm_unregister_target(&thin_target);
4403 	dm_unregister_target(&pool_target);
4404 
4405 	kmem_cache_destroy(_new_mapping_cache);
4406 
4407 	pool_table_exit();
4408 }
4409 
4410 module_init(dm_thin_init);
4411 module_exit(dm_thin_exit);
4412 
4413 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4414 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4415 
4416 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4417 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4418 MODULE_LICENSE("GPL");
4419