xref: /openbmc/linux/drivers/md/dm-thin.c (revision 98ddec80)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct work_struct worker;
244 	struct workqueue_struct *wq;
245 	struct throttle throttle;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 
264 	process_bio_fn process_bio;
265 	process_bio_fn process_discard;
266 
267 	process_cell_fn process_cell;
268 	process_cell_fn process_discard_cell;
269 
270 	process_mapping_fn process_prepared_mapping;
271 	process_mapping_fn process_prepared_discard;
272 	process_mapping_fn process_prepared_discard_pt2;
273 
274 	struct dm_bio_prison_cell **cell_sort_array;
275 
276 	mempool_t mapping_pool;
277 };
278 
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
281 
282 /*
283  * Target context for a pool.
284  */
285 struct pool_c {
286 	struct dm_target *ti;
287 	struct pool *pool;
288 	struct dm_dev *data_dev;
289 	struct dm_dev *metadata_dev;
290 	struct dm_target_callbacks callbacks;
291 
292 	dm_block_t low_water_blocks;
293 	struct pool_features requested_pf; /* Features requested during table load */
294 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
295 };
296 
297 /*
298  * Target context for a thin.
299  */
300 struct thin_c {
301 	struct list_head list;
302 	struct dm_dev *pool_dev;
303 	struct dm_dev *origin_dev;
304 	sector_t origin_size;
305 	dm_thin_id dev_id;
306 
307 	struct pool *pool;
308 	struct dm_thin_device *td;
309 	struct mapped_device *thin_md;
310 
311 	bool requeue_mode:1;
312 	spinlock_t lock;
313 	struct list_head deferred_cells;
314 	struct bio_list deferred_bio_list;
315 	struct bio_list retry_on_resume_list;
316 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
317 
318 	/*
319 	 * Ensures the thin is not destroyed until the worker has finished
320 	 * iterating the active_thins list.
321 	 */
322 	atomic_t refcount;
323 	struct completion can_destroy;
324 };
325 
326 /*----------------------------------------------------------------*/
327 
328 static bool block_size_is_power_of_two(struct pool *pool)
329 {
330 	return pool->sectors_per_block_shift >= 0;
331 }
332 
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 {
335 	return block_size_is_power_of_two(pool) ?
336 		(b << pool->sectors_per_block_shift) :
337 		(b * pool->sectors_per_block);
338 }
339 
340 /*----------------------------------------------------------------*/
341 
342 struct discard_op {
343 	struct thin_c *tc;
344 	struct blk_plug plug;
345 	struct bio *parent_bio;
346 	struct bio *bio;
347 };
348 
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 {
351 	BUG_ON(!parent);
352 
353 	op->tc = tc;
354 	blk_start_plug(&op->plug);
355 	op->parent_bio = parent;
356 	op->bio = NULL;
357 }
358 
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 {
361 	struct thin_c *tc = op->tc;
362 	sector_t s = block_to_sectors(tc->pool, data_b);
363 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364 
365 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366 				      GFP_NOWAIT, 0, &op->bio);
367 }
368 
369 static void end_discard(struct discard_op *op, int r)
370 {
371 	if (op->bio) {
372 		/*
373 		 * Even if one of the calls to issue_discard failed, we
374 		 * need to wait for the chain to complete.
375 		 */
376 		bio_chain(op->bio, op->parent_bio);
377 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
378 		submit_bio(op->bio);
379 	}
380 
381 	blk_finish_plug(&op->plug);
382 
383 	/*
384 	 * Even if r is set, there could be sub discards in flight that we
385 	 * need to wait for.
386 	 */
387 	if (r && !op->parent_bio->bi_status)
388 		op->parent_bio->bi_status = errno_to_blk_status(r);
389 	bio_endio(op->parent_bio);
390 }
391 
392 /*----------------------------------------------------------------*/
393 
394 /*
395  * wake_worker() is used when new work is queued and when pool_resume is
396  * ready to continue deferred IO processing.
397  */
398 static void wake_worker(struct pool *pool)
399 {
400 	queue_work(pool->wq, &pool->worker);
401 }
402 
403 /*----------------------------------------------------------------*/
404 
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406 		      struct dm_bio_prison_cell **cell_result)
407 {
408 	int r;
409 	struct dm_bio_prison_cell *cell_prealloc;
410 
411 	/*
412 	 * Allocate a cell from the prison's mempool.
413 	 * This might block but it can't fail.
414 	 */
415 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416 
417 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
418 	if (r)
419 		/*
420 		 * We reused an old cell; we can get rid of
421 		 * the new one.
422 		 */
423 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424 
425 	return r;
426 }
427 
428 static void cell_release(struct pool *pool,
429 			 struct dm_bio_prison_cell *cell,
430 			 struct bio_list *bios)
431 {
432 	dm_cell_release(pool->prison, cell, bios);
433 	dm_bio_prison_free_cell(pool->prison, cell);
434 }
435 
436 static void cell_visit_release(struct pool *pool,
437 			       void (*fn)(void *, struct dm_bio_prison_cell *),
438 			       void *context,
439 			       struct dm_bio_prison_cell *cell)
440 {
441 	dm_cell_visit_release(pool->prison, fn, context, cell);
442 	dm_bio_prison_free_cell(pool->prison, cell);
443 }
444 
445 static void cell_release_no_holder(struct pool *pool,
446 				   struct dm_bio_prison_cell *cell,
447 				   struct bio_list *bios)
448 {
449 	dm_cell_release_no_holder(pool->prison, cell, bios);
450 	dm_bio_prison_free_cell(pool->prison, cell);
451 }
452 
453 static void cell_error_with_code(struct pool *pool,
454 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 {
456 	dm_cell_error(pool->prison, cell, error_code);
457 	dm_bio_prison_free_cell(pool->prison, cell);
458 }
459 
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 {
462 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
463 }
464 
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 {
467 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
468 }
469 
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472 	cell_error_with_code(pool, cell, 0);
473 }
474 
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 {
477 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
478 }
479 
480 /*----------------------------------------------------------------*/
481 
482 /*
483  * A global list of pools that uses a struct mapped_device as a key.
484  */
485 static struct dm_thin_pool_table {
486 	struct mutex mutex;
487 	struct list_head pools;
488 } dm_thin_pool_table;
489 
490 static void pool_table_init(void)
491 {
492 	mutex_init(&dm_thin_pool_table.mutex);
493 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
494 }
495 
496 static void pool_table_exit(void)
497 {
498 	mutex_destroy(&dm_thin_pool_table.mutex);
499 }
500 
501 static void __pool_table_insert(struct pool *pool)
502 {
503 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 	list_add(&pool->list, &dm_thin_pool_table.pools);
505 }
506 
507 static void __pool_table_remove(struct pool *pool)
508 {
509 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510 	list_del(&pool->list);
511 }
512 
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 {
515 	struct pool *pool = NULL, *tmp;
516 
517 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518 
519 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520 		if (tmp->pool_md == md) {
521 			pool = tmp;
522 			break;
523 		}
524 	}
525 
526 	return pool;
527 }
528 
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 {
531 	struct pool *pool = NULL, *tmp;
532 
533 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534 
535 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536 		if (tmp->md_dev == md_dev) {
537 			pool = tmp;
538 			break;
539 		}
540 	}
541 
542 	return pool;
543 }
544 
545 /*----------------------------------------------------------------*/
546 
547 struct dm_thin_endio_hook {
548 	struct thin_c *tc;
549 	struct dm_deferred_entry *shared_read_entry;
550 	struct dm_deferred_entry *all_io_entry;
551 	struct dm_thin_new_mapping *overwrite_mapping;
552 	struct rb_node rb_node;
553 	struct dm_bio_prison_cell *cell;
554 };
555 
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 {
558 	bio_list_merge(bios, master);
559 	bio_list_init(master);
560 }
561 
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 {
564 	struct bio *bio;
565 
566 	while ((bio = bio_list_pop(bios))) {
567 		bio->bi_status = error;
568 		bio_endio(bio);
569 	}
570 }
571 
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
573 		blk_status_t error)
574 {
575 	struct bio_list bios;
576 	unsigned long flags;
577 
578 	bio_list_init(&bios);
579 
580 	spin_lock_irqsave(&tc->lock, flags);
581 	__merge_bio_list(&bios, master);
582 	spin_unlock_irqrestore(&tc->lock, flags);
583 
584 	error_bio_list(&bios, error);
585 }
586 
587 static void requeue_deferred_cells(struct thin_c *tc)
588 {
589 	struct pool *pool = tc->pool;
590 	unsigned long flags;
591 	struct list_head cells;
592 	struct dm_bio_prison_cell *cell, *tmp;
593 
594 	INIT_LIST_HEAD(&cells);
595 
596 	spin_lock_irqsave(&tc->lock, flags);
597 	list_splice_init(&tc->deferred_cells, &cells);
598 	spin_unlock_irqrestore(&tc->lock, flags);
599 
600 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
601 		cell_requeue(pool, cell);
602 }
603 
604 static void requeue_io(struct thin_c *tc)
605 {
606 	struct bio_list bios;
607 	unsigned long flags;
608 
609 	bio_list_init(&bios);
610 
611 	spin_lock_irqsave(&tc->lock, flags);
612 	__merge_bio_list(&bios, &tc->deferred_bio_list);
613 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
614 	spin_unlock_irqrestore(&tc->lock, flags);
615 
616 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617 	requeue_deferred_cells(tc);
618 }
619 
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 {
622 	struct thin_c *tc;
623 
624 	rcu_read_lock();
625 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
626 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627 	rcu_read_unlock();
628 }
629 
630 static void error_retry_list(struct pool *pool)
631 {
632 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633 }
634 
635 /*
636  * This section of code contains the logic for processing a thin device's IO.
637  * Much of the code depends on pool object resources (lists, workqueues, etc)
638  * but most is exclusively called from the thin target rather than the thin-pool
639  * target.
640  */
641 
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 {
644 	struct pool *pool = tc->pool;
645 	sector_t block_nr = bio->bi_iter.bi_sector;
646 
647 	if (block_size_is_power_of_two(pool))
648 		block_nr >>= pool->sectors_per_block_shift;
649 	else
650 		(void) sector_div(block_nr, pool->sectors_per_block);
651 
652 	return block_nr;
653 }
654 
655 /*
656  * Returns the _complete_ blocks that this bio covers.
657  */
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659 				dm_block_t *begin, dm_block_t *end)
660 {
661 	struct pool *pool = tc->pool;
662 	sector_t b = bio->bi_iter.bi_sector;
663 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664 
665 	b += pool->sectors_per_block - 1ull; /* so we round up */
666 
667 	if (block_size_is_power_of_two(pool)) {
668 		b >>= pool->sectors_per_block_shift;
669 		e >>= pool->sectors_per_block_shift;
670 	} else {
671 		(void) sector_div(b, pool->sectors_per_block);
672 		(void) sector_div(e, pool->sectors_per_block);
673 	}
674 
675 	if (e < b)
676 		/* Can happen if the bio is within a single block. */
677 		e = b;
678 
679 	*begin = b;
680 	*end = e;
681 }
682 
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 {
685 	struct pool *pool = tc->pool;
686 	sector_t bi_sector = bio->bi_iter.bi_sector;
687 
688 	bio_set_dev(bio, tc->pool_dev->bdev);
689 	if (block_size_is_power_of_two(pool))
690 		bio->bi_iter.bi_sector =
691 			(block << pool->sectors_per_block_shift) |
692 			(bi_sector & (pool->sectors_per_block - 1));
693 	else
694 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695 				 sector_div(bi_sector, pool->sectors_per_block);
696 }
697 
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 {
700 	bio_set_dev(bio, tc->origin_dev->bdev);
701 }
702 
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 {
705 	return op_is_flush(bio->bi_opf) &&
706 		dm_thin_changed_this_transaction(tc->td);
707 }
708 
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 {
711 	struct dm_thin_endio_hook *h;
712 
713 	if (bio_op(bio) == REQ_OP_DISCARD)
714 		return;
715 
716 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
718 }
719 
720 static void issue(struct thin_c *tc, struct bio *bio)
721 {
722 	struct pool *pool = tc->pool;
723 	unsigned long flags;
724 
725 	if (!bio_triggers_commit(tc, bio)) {
726 		generic_make_request(bio);
727 		return;
728 	}
729 
730 	/*
731 	 * Complete bio with an error if earlier I/O caused changes to
732 	 * the metadata that can't be committed e.g, due to I/O errors
733 	 * on the metadata device.
734 	 */
735 	if (dm_thin_aborted_changes(tc->td)) {
736 		bio_io_error(bio);
737 		return;
738 	}
739 
740 	/*
741 	 * Batch together any bios that trigger commits and then issue a
742 	 * single commit for them in process_deferred_bios().
743 	 */
744 	spin_lock_irqsave(&pool->lock, flags);
745 	bio_list_add(&pool->deferred_flush_bios, bio);
746 	spin_unlock_irqrestore(&pool->lock, flags);
747 }
748 
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 {
751 	remap_to_origin(tc, bio);
752 	issue(tc, bio);
753 }
754 
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
756 			    dm_block_t block)
757 {
758 	remap(tc, bio, block);
759 	issue(tc, bio);
760 }
761 
762 /*----------------------------------------------------------------*/
763 
764 /*
765  * Bio endio functions.
766  */
767 struct dm_thin_new_mapping {
768 	struct list_head list;
769 
770 	bool pass_discard:1;
771 	bool maybe_shared:1;
772 
773 	/*
774 	 * Track quiescing, copying and zeroing preparation actions.  When this
775 	 * counter hits zero the block is prepared and can be inserted into the
776 	 * btree.
777 	 */
778 	atomic_t prepare_actions;
779 
780 	blk_status_t status;
781 	struct thin_c *tc;
782 	dm_block_t virt_begin, virt_end;
783 	dm_block_t data_block;
784 	struct dm_bio_prison_cell *cell;
785 
786 	/*
787 	 * If the bio covers the whole area of a block then we can avoid
788 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
789 	 * still be in the cell, so care has to be taken to avoid issuing
790 	 * the bio twice.
791 	 */
792 	struct bio *bio;
793 	bio_end_io_t *saved_bi_end_io;
794 };
795 
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 {
798 	struct pool *pool = m->tc->pool;
799 
800 	if (atomic_dec_and_test(&m->prepare_actions)) {
801 		list_add_tail(&m->list, &pool->prepared_mappings);
802 		wake_worker(pool);
803 	}
804 }
805 
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 {
808 	unsigned long flags;
809 	struct pool *pool = m->tc->pool;
810 
811 	spin_lock_irqsave(&pool->lock, flags);
812 	__complete_mapping_preparation(m);
813 	spin_unlock_irqrestore(&pool->lock, flags);
814 }
815 
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 {
818 	struct dm_thin_new_mapping *m = context;
819 
820 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821 	complete_mapping_preparation(m);
822 }
823 
824 static void overwrite_endio(struct bio *bio)
825 {
826 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
828 
829 	bio->bi_end_io = m->saved_bi_end_io;
830 
831 	m->status = bio->bi_status;
832 	complete_mapping_preparation(m);
833 }
834 
835 /*----------------------------------------------------------------*/
836 
837 /*
838  * Workqueue.
839  */
840 
841 /*
842  * Prepared mapping jobs.
843  */
844 
845 /*
846  * This sends the bios in the cell, except the original holder, back
847  * to the deferred_bios list.
848  */
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 {
851 	struct pool *pool = tc->pool;
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(&tc->lock, flags);
855 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856 	spin_unlock_irqrestore(&tc->lock, flags);
857 
858 	wake_worker(pool);
859 }
860 
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862 
863 struct remap_info {
864 	struct thin_c *tc;
865 	struct bio_list defer_bios;
866 	struct bio_list issue_bios;
867 };
868 
869 static void __inc_remap_and_issue_cell(void *context,
870 				       struct dm_bio_prison_cell *cell)
871 {
872 	struct remap_info *info = context;
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(&cell->bios))) {
876 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877 			bio_list_add(&info->defer_bios, bio);
878 		else {
879 			inc_all_io_entry(info->tc->pool, bio);
880 
881 			/*
882 			 * We can't issue the bios with the bio prison lock
883 			 * held, so we add them to a list to issue on
884 			 * return from this function.
885 			 */
886 			bio_list_add(&info->issue_bios, bio);
887 		}
888 	}
889 }
890 
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892 				     struct dm_bio_prison_cell *cell,
893 				     dm_block_t block)
894 {
895 	struct bio *bio;
896 	struct remap_info info;
897 
898 	info.tc = tc;
899 	bio_list_init(&info.defer_bios);
900 	bio_list_init(&info.issue_bios);
901 
902 	/*
903 	 * We have to be careful to inc any bios we're about to issue
904 	 * before the cell is released, and avoid a race with new bios
905 	 * being added to the cell.
906 	 */
907 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
908 			   &info, cell);
909 
910 	while ((bio = bio_list_pop(&info.defer_bios)))
911 		thin_defer_bio(tc, bio);
912 
913 	while ((bio = bio_list_pop(&info.issue_bios)))
914 		remap_and_issue(info.tc, bio, block);
915 }
916 
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 {
919 	cell_error(m->tc->pool, m->cell);
920 	list_del(&m->list);
921 	mempool_free(m, &m->tc->pool->mapping_pool);
922 }
923 
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 {
926 	struct thin_c *tc = m->tc;
927 	struct pool *pool = tc->pool;
928 	struct bio *bio = m->bio;
929 	int r;
930 
931 	if (m->status) {
932 		cell_error(pool, m->cell);
933 		goto out;
934 	}
935 
936 	/*
937 	 * Commit the prepared block into the mapping btree.
938 	 * Any I/O for this block arriving after this point will get
939 	 * remapped to it directly.
940 	 */
941 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942 	if (r) {
943 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
944 		cell_error(pool, m->cell);
945 		goto out;
946 	}
947 
948 	/*
949 	 * Release any bios held while the block was being provisioned.
950 	 * If we are processing a write bio that completely covers the block,
951 	 * we already processed it so can ignore it now when processing
952 	 * the bios in the cell.
953 	 */
954 	if (bio) {
955 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956 		bio_endio(bio);
957 	} else {
958 		inc_all_io_entry(tc->pool, m->cell->holder);
959 		remap_and_issue(tc, m->cell->holder, m->data_block);
960 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
961 	}
962 
963 out:
964 	list_del(&m->list);
965 	mempool_free(m, &pool->mapping_pool);
966 }
967 
968 /*----------------------------------------------------------------*/
969 
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 {
972 	struct thin_c *tc = m->tc;
973 	if (m->cell)
974 		cell_defer_no_holder(tc, m->cell);
975 	mempool_free(m, &tc->pool->mapping_pool);
976 }
977 
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 {
980 	bio_io_error(m->bio);
981 	free_discard_mapping(m);
982 }
983 
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 {
986 	bio_endio(m->bio);
987 	free_discard_mapping(m);
988 }
989 
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 {
992 	int r;
993 	struct thin_c *tc = m->tc;
994 
995 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
996 	if (r) {
997 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998 		bio_io_error(m->bio);
999 	} else
1000 		bio_endio(m->bio);
1001 
1002 	cell_defer_no_holder(tc, m->cell);
1003 	mempool_free(m, &tc->pool->mapping_pool);
1004 }
1005 
1006 /*----------------------------------------------------------------*/
1007 
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009 						   struct bio *discard_parent)
1010 {
1011 	/*
1012 	 * We've already unmapped this range of blocks, but before we
1013 	 * passdown we have to check that these blocks are now unused.
1014 	 */
1015 	int r = 0;
1016 	bool used = true;
1017 	struct thin_c *tc = m->tc;
1018 	struct pool *pool = tc->pool;
1019 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020 	struct discard_op op;
1021 
1022 	begin_discard(&op, tc, discard_parent);
1023 	while (b != end) {
1024 		/* find start of unmapped run */
1025 		for (; b < end; b++) {
1026 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1027 			if (r)
1028 				goto out;
1029 
1030 			if (!used)
1031 				break;
1032 		}
1033 
1034 		if (b == end)
1035 			break;
1036 
1037 		/* find end of run */
1038 		for (e = b + 1; e != end; e++) {
1039 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1040 			if (r)
1041 				goto out;
1042 
1043 			if (used)
1044 				break;
1045 		}
1046 
1047 		r = issue_discard(&op, b, e);
1048 		if (r)
1049 			goto out;
1050 
1051 		b = e;
1052 	}
1053 out:
1054 	end_discard(&op, r);
1055 }
1056 
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 {
1059 	unsigned long flags;
1060 	struct pool *pool = m->tc->pool;
1061 
1062 	spin_lock_irqsave(&pool->lock, flags);
1063 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064 	spin_unlock_irqrestore(&pool->lock, flags);
1065 	wake_worker(pool);
1066 }
1067 
1068 static void passdown_endio(struct bio *bio)
1069 {
1070 	/*
1071 	 * It doesn't matter if the passdown discard failed, we still want
1072 	 * to unmap (we ignore err).
1073 	 */
1074 	queue_passdown_pt2(bio->bi_private);
1075 	bio_put(bio);
1076 }
1077 
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 {
1080 	int r;
1081 	struct thin_c *tc = m->tc;
1082 	struct pool *pool = tc->pool;
1083 	struct bio *discard_parent;
1084 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085 
1086 	/*
1087 	 * Only this thread allocates blocks, so we can be sure that the
1088 	 * newly unmapped blocks will not be allocated before the end of
1089 	 * the function.
1090 	 */
1091 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092 	if (r) {
1093 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094 		bio_io_error(m->bio);
1095 		cell_defer_no_holder(tc, m->cell);
1096 		mempool_free(m, &pool->mapping_pool);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * Increment the unmapped blocks.  This prevents a race between the
1102 	 * passdown io and reallocation of freed blocks.
1103 	 */
1104 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1105 	if (r) {
1106 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107 		bio_io_error(m->bio);
1108 		cell_defer_no_holder(tc, m->cell);
1109 		mempool_free(m, &pool->mapping_pool);
1110 		return;
1111 	}
1112 
1113 	discard_parent = bio_alloc(GFP_NOIO, 1);
1114 	if (!discard_parent) {
1115 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116 		       dm_device_name(tc->pool->pool_md));
1117 		queue_passdown_pt2(m);
1118 
1119 	} else {
1120 		discard_parent->bi_end_io = passdown_endio;
1121 		discard_parent->bi_private = m;
1122 
1123 		if (m->maybe_shared)
1124 			passdown_double_checking_shared_status(m, discard_parent);
1125 		else {
1126 			struct discard_op op;
1127 
1128 			begin_discard(&op, tc, discard_parent);
1129 			r = issue_discard(&op, m->data_block, data_end);
1130 			end_discard(&op, r);
1131 		}
1132 	}
1133 }
1134 
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 {
1137 	int r;
1138 	struct thin_c *tc = m->tc;
1139 	struct pool *pool = tc->pool;
1140 
1141 	/*
1142 	 * The passdown has completed, so now we can decrement all those
1143 	 * unmapped blocks.
1144 	 */
1145 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146 				   m->data_block + (m->virt_end - m->virt_begin));
1147 	if (r) {
1148 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149 		bio_io_error(m->bio);
1150 	} else
1151 		bio_endio(m->bio);
1152 
1153 	cell_defer_no_holder(tc, m->cell);
1154 	mempool_free(m, &pool->mapping_pool);
1155 }
1156 
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158 			     process_mapping_fn *fn)
1159 {
1160 	unsigned long flags;
1161 	struct list_head maps;
1162 	struct dm_thin_new_mapping *m, *tmp;
1163 
1164 	INIT_LIST_HEAD(&maps);
1165 	spin_lock_irqsave(&pool->lock, flags);
1166 	list_splice_init(head, &maps);
1167 	spin_unlock_irqrestore(&pool->lock, flags);
1168 
1169 	list_for_each_entry_safe(m, tmp, &maps, list)
1170 		(*fn)(m);
1171 }
1172 
1173 /*
1174  * Deferred bio jobs.
1175  */
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 {
1178 	return bio->bi_iter.bi_size ==
1179 		(pool->sectors_per_block << SECTOR_SHIFT);
1180 }
1181 
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 {
1184 	return (bio_data_dir(bio) == WRITE) &&
1185 		io_overlaps_block(pool, bio);
1186 }
1187 
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1189 			       bio_end_io_t *fn)
1190 {
1191 	*save = bio->bi_end_io;
1192 	bio->bi_end_io = fn;
1193 }
1194 
1195 static int ensure_next_mapping(struct pool *pool)
1196 {
1197 	if (pool->next_mapping)
1198 		return 0;
1199 
1200 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1201 
1202 	return pool->next_mapping ? 0 : -ENOMEM;
1203 }
1204 
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 {
1207 	struct dm_thin_new_mapping *m = pool->next_mapping;
1208 
1209 	BUG_ON(!pool->next_mapping);
1210 
1211 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212 	INIT_LIST_HEAD(&m->list);
1213 	m->bio = NULL;
1214 
1215 	pool->next_mapping = NULL;
1216 
1217 	return m;
1218 }
1219 
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221 		    sector_t begin, sector_t end)
1222 {
1223 	int r;
1224 	struct dm_io_region to;
1225 
1226 	to.bdev = tc->pool_dev->bdev;
1227 	to.sector = begin;
1228 	to.count = end - begin;
1229 
1230 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1231 	if (r < 0) {
1232 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1233 		copy_complete(1, 1, m);
1234 	}
1235 }
1236 
1237 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1238 				      dm_block_t data_begin,
1239 				      struct dm_thin_new_mapping *m)
1240 {
1241 	struct pool *pool = tc->pool;
1242 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1243 
1244 	h->overwrite_mapping = m;
1245 	m->bio = bio;
1246 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1247 	inc_all_io_entry(pool, bio);
1248 	remap_and_issue(tc, bio, data_begin);
1249 }
1250 
1251 /*
1252  * A partial copy also needs to zero the uncopied region.
1253  */
1254 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1255 			  struct dm_dev *origin, dm_block_t data_origin,
1256 			  dm_block_t data_dest,
1257 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1258 			  sector_t len)
1259 {
1260 	int r;
1261 	struct pool *pool = tc->pool;
1262 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263 
1264 	m->tc = tc;
1265 	m->virt_begin = virt_block;
1266 	m->virt_end = virt_block + 1u;
1267 	m->data_block = data_dest;
1268 	m->cell = cell;
1269 
1270 	/*
1271 	 * quiesce action + copy action + an extra reference held for the
1272 	 * duration of this function (we may need to inc later for a
1273 	 * partial zero).
1274 	 */
1275 	atomic_set(&m->prepare_actions, 3);
1276 
1277 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1278 		complete_mapping_preparation(m); /* already quiesced */
1279 
1280 	/*
1281 	 * IO to pool_dev remaps to the pool target's data_dev.
1282 	 *
1283 	 * If the whole block of data is being overwritten, we can issue the
1284 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1285 	 */
1286 	if (io_overwrites_block(pool, bio))
1287 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1288 	else {
1289 		struct dm_io_region from, to;
1290 
1291 		from.bdev = origin->bdev;
1292 		from.sector = data_origin * pool->sectors_per_block;
1293 		from.count = len;
1294 
1295 		to.bdev = tc->pool_dev->bdev;
1296 		to.sector = data_dest * pool->sectors_per_block;
1297 		to.count = len;
1298 
1299 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1300 				   0, copy_complete, m);
1301 		if (r < 0) {
1302 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1303 			copy_complete(1, 1, m);
1304 
1305 			/*
1306 			 * We allow the zero to be issued, to simplify the
1307 			 * error path.  Otherwise we'd need to start
1308 			 * worrying about decrementing the prepare_actions
1309 			 * counter.
1310 			 */
1311 		}
1312 
1313 		/*
1314 		 * Do we need to zero a tail region?
1315 		 */
1316 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1317 			atomic_inc(&m->prepare_actions);
1318 			ll_zero(tc, m,
1319 				data_dest * pool->sectors_per_block + len,
1320 				(data_dest + 1) * pool->sectors_per_block);
1321 		}
1322 	}
1323 
1324 	complete_mapping_preparation(m); /* drop our ref */
1325 }
1326 
1327 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1328 				   dm_block_t data_origin, dm_block_t data_dest,
1329 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1330 {
1331 	schedule_copy(tc, virt_block, tc->pool_dev,
1332 		      data_origin, data_dest, cell, bio,
1333 		      tc->pool->sectors_per_block);
1334 }
1335 
1336 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1337 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1338 			  struct bio *bio)
1339 {
1340 	struct pool *pool = tc->pool;
1341 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1342 
1343 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1344 	m->tc = tc;
1345 	m->virt_begin = virt_block;
1346 	m->virt_end = virt_block + 1u;
1347 	m->data_block = data_block;
1348 	m->cell = cell;
1349 
1350 	/*
1351 	 * If the whole block of data is being overwritten or we are not
1352 	 * zeroing pre-existing data, we can issue the bio immediately.
1353 	 * Otherwise we use kcopyd to zero the data first.
1354 	 */
1355 	if (pool->pf.zero_new_blocks) {
1356 		if (io_overwrites_block(pool, bio))
1357 			remap_and_issue_overwrite(tc, bio, data_block, m);
1358 		else
1359 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1360 				(data_block + 1) * pool->sectors_per_block);
1361 	} else
1362 		process_prepared_mapping(m);
1363 }
1364 
1365 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1366 				   dm_block_t data_dest,
1367 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1368 {
1369 	struct pool *pool = tc->pool;
1370 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1371 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1372 
1373 	if (virt_block_end <= tc->origin_size)
1374 		schedule_copy(tc, virt_block, tc->origin_dev,
1375 			      virt_block, data_dest, cell, bio,
1376 			      pool->sectors_per_block);
1377 
1378 	else if (virt_block_begin < tc->origin_size)
1379 		schedule_copy(tc, virt_block, tc->origin_dev,
1380 			      virt_block, data_dest, cell, bio,
1381 			      tc->origin_size - virt_block_begin);
1382 
1383 	else
1384 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1385 }
1386 
1387 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1388 
1389 static void check_for_space(struct pool *pool)
1390 {
1391 	int r;
1392 	dm_block_t nr_free;
1393 
1394 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1395 		return;
1396 
1397 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1398 	if (r)
1399 		return;
1400 
1401 	if (nr_free)
1402 		set_pool_mode(pool, PM_WRITE);
1403 }
1404 
1405 /*
1406  * A non-zero return indicates read_only or fail_io mode.
1407  * Many callers don't care about the return value.
1408  */
1409 static int commit(struct pool *pool)
1410 {
1411 	int r;
1412 
1413 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1414 		return -EINVAL;
1415 
1416 	r = dm_pool_commit_metadata(pool->pmd);
1417 	if (r)
1418 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1419 	else
1420 		check_for_space(pool);
1421 
1422 	return r;
1423 }
1424 
1425 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1426 {
1427 	unsigned long flags;
1428 
1429 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1430 		DMWARN("%s: reached low water mark for data device: sending event.",
1431 		       dm_device_name(pool->pool_md));
1432 		spin_lock_irqsave(&pool->lock, flags);
1433 		pool->low_water_triggered = true;
1434 		spin_unlock_irqrestore(&pool->lock, flags);
1435 		dm_table_event(pool->ti->table);
1436 	}
1437 }
1438 
1439 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1440 {
1441 	int r;
1442 	dm_block_t free_blocks;
1443 	struct pool *pool = tc->pool;
1444 
1445 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1446 		return -EINVAL;
1447 
1448 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1449 	if (r) {
1450 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1451 		return r;
1452 	}
1453 
1454 	check_low_water_mark(pool, free_blocks);
1455 
1456 	if (!free_blocks) {
1457 		/*
1458 		 * Try to commit to see if that will free up some
1459 		 * more space.
1460 		 */
1461 		r = commit(pool);
1462 		if (r)
1463 			return r;
1464 
1465 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1466 		if (r) {
1467 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1468 			return r;
1469 		}
1470 
1471 		if (!free_blocks) {
1472 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1473 			return -ENOSPC;
1474 		}
1475 	}
1476 
1477 	r = dm_pool_alloc_data_block(pool->pmd, result);
1478 	if (r) {
1479 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1480 		return r;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 /*
1487  * If we have run out of space, queue bios until the device is
1488  * resumed, presumably after having been reloaded with more space.
1489  */
1490 static void retry_on_resume(struct bio *bio)
1491 {
1492 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1493 	struct thin_c *tc = h->tc;
1494 	unsigned long flags;
1495 
1496 	spin_lock_irqsave(&tc->lock, flags);
1497 	bio_list_add(&tc->retry_on_resume_list, bio);
1498 	spin_unlock_irqrestore(&tc->lock, flags);
1499 }
1500 
1501 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1502 {
1503 	enum pool_mode m = get_pool_mode(pool);
1504 
1505 	switch (m) {
1506 	case PM_WRITE:
1507 		/* Shouldn't get here */
1508 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1509 		return BLK_STS_IOERR;
1510 
1511 	case PM_OUT_OF_DATA_SPACE:
1512 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1513 
1514 	case PM_READ_ONLY:
1515 	case PM_FAIL:
1516 		return BLK_STS_IOERR;
1517 	default:
1518 		/* Shouldn't get here */
1519 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1520 		return BLK_STS_IOERR;
1521 	}
1522 }
1523 
1524 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1525 {
1526 	blk_status_t error = should_error_unserviceable_bio(pool);
1527 
1528 	if (error) {
1529 		bio->bi_status = error;
1530 		bio_endio(bio);
1531 	} else
1532 		retry_on_resume(bio);
1533 }
1534 
1535 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1536 {
1537 	struct bio *bio;
1538 	struct bio_list bios;
1539 	blk_status_t error;
1540 
1541 	error = should_error_unserviceable_bio(pool);
1542 	if (error) {
1543 		cell_error_with_code(pool, cell, error);
1544 		return;
1545 	}
1546 
1547 	bio_list_init(&bios);
1548 	cell_release(pool, cell, &bios);
1549 
1550 	while ((bio = bio_list_pop(&bios)))
1551 		retry_on_resume(bio);
1552 }
1553 
1554 static void process_discard_cell_no_passdown(struct thin_c *tc,
1555 					     struct dm_bio_prison_cell *virt_cell)
1556 {
1557 	struct pool *pool = tc->pool;
1558 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1559 
1560 	/*
1561 	 * We don't need to lock the data blocks, since there's no
1562 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1563 	 */
1564 	m->tc = tc;
1565 	m->virt_begin = virt_cell->key.block_begin;
1566 	m->virt_end = virt_cell->key.block_end;
1567 	m->cell = virt_cell;
1568 	m->bio = virt_cell->holder;
1569 
1570 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1571 		pool->process_prepared_discard(m);
1572 }
1573 
1574 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1575 				 struct bio *bio)
1576 {
1577 	struct pool *pool = tc->pool;
1578 
1579 	int r;
1580 	bool maybe_shared;
1581 	struct dm_cell_key data_key;
1582 	struct dm_bio_prison_cell *data_cell;
1583 	struct dm_thin_new_mapping *m;
1584 	dm_block_t virt_begin, virt_end, data_begin;
1585 
1586 	while (begin != end) {
1587 		r = ensure_next_mapping(pool);
1588 		if (r)
1589 			/* we did our best */
1590 			return;
1591 
1592 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1593 					      &data_begin, &maybe_shared);
1594 		if (r)
1595 			/*
1596 			 * Silently fail, letting any mappings we've
1597 			 * created complete.
1598 			 */
1599 			break;
1600 
1601 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1602 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1603 			/* contention, we'll give up with this range */
1604 			begin = virt_end;
1605 			continue;
1606 		}
1607 
1608 		/*
1609 		 * IO may still be going to the destination block.  We must
1610 		 * quiesce before we can do the removal.
1611 		 */
1612 		m = get_next_mapping(pool);
1613 		m->tc = tc;
1614 		m->maybe_shared = maybe_shared;
1615 		m->virt_begin = virt_begin;
1616 		m->virt_end = virt_end;
1617 		m->data_block = data_begin;
1618 		m->cell = data_cell;
1619 		m->bio = bio;
1620 
1621 		/*
1622 		 * The parent bio must not complete before sub discard bios are
1623 		 * chained to it (see end_discard's bio_chain)!
1624 		 *
1625 		 * This per-mapping bi_remaining increment is paired with
1626 		 * the implicit decrement that occurs via bio_endio() in
1627 		 * end_discard().
1628 		 */
1629 		bio_inc_remaining(bio);
1630 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1631 			pool->process_prepared_discard(m);
1632 
1633 		begin = virt_end;
1634 	}
1635 }
1636 
1637 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1638 {
1639 	struct bio *bio = virt_cell->holder;
1640 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1641 
1642 	/*
1643 	 * The virt_cell will only get freed once the origin bio completes.
1644 	 * This means it will remain locked while all the individual
1645 	 * passdown bios are in flight.
1646 	 */
1647 	h->cell = virt_cell;
1648 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1649 
1650 	/*
1651 	 * We complete the bio now, knowing that the bi_remaining field
1652 	 * will prevent completion until the sub range discards have
1653 	 * completed.
1654 	 */
1655 	bio_endio(bio);
1656 }
1657 
1658 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1659 {
1660 	dm_block_t begin, end;
1661 	struct dm_cell_key virt_key;
1662 	struct dm_bio_prison_cell *virt_cell;
1663 
1664 	get_bio_block_range(tc, bio, &begin, &end);
1665 	if (begin == end) {
1666 		/*
1667 		 * The discard covers less than a block.
1668 		 */
1669 		bio_endio(bio);
1670 		return;
1671 	}
1672 
1673 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1674 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1675 		/*
1676 		 * Potential starvation issue: We're relying on the
1677 		 * fs/application being well behaved, and not trying to
1678 		 * send IO to a region at the same time as discarding it.
1679 		 * If they do this persistently then it's possible this
1680 		 * cell will never be granted.
1681 		 */
1682 		return;
1683 
1684 	tc->pool->process_discard_cell(tc, virt_cell);
1685 }
1686 
1687 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1688 			  struct dm_cell_key *key,
1689 			  struct dm_thin_lookup_result *lookup_result,
1690 			  struct dm_bio_prison_cell *cell)
1691 {
1692 	int r;
1693 	dm_block_t data_block;
1694 	struct pool *pool = tc->pool;
1695 
1696 	r = alloc_data_block(tc, &data_block);
1697 	switch (r) {
1698 	case 0:
1699 		schedule_internal_copy(tc, block, lookup_result->block,
1700 				       data_block, cell, bio);
1701 		break;
1702 
1703 	case -ENOSPC:
1704 		retry_bios_on_resume(pool, cell);
1705 		break;
1706 
1707 	default:
1708 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1709 			    __func__, r);
1710 		cell_error(pool, cell);
1711 		break;
1712 	}
1713 }
1714 
1715 static void __remap_and_issue_shared_cell(void *context,
1716 					  struct dm_bio_prison_cell *cell)
1717 {
1718 	struct remap_info *info = context;
1719 	struct bio *bio;
1720 
1721 	while ((bio = bio_list_pop(&cell->bios))) {
1722 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1723 		    bio_op(bio) == REQ_OP_DISCARD)
1724 			bio_list_add(&info->defer_bios, bio);
1725 		else {
1726 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1727 
1728 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1729 			inc_all_io_entry(info->tc->pool, bio);
1730 			bio_list_add(&info->issue_bios, bio);
1731 		}
1732 	}
1733 }
1734 
1735 static void remap_and_issue_shared_cell(struct thin_c *tc,
1736 					struct dm_bio_prison_cell *cell,
1737 					dm_block_t block)
1738 {
1739 	struct bio *bio;
1740 	struct remap_info info;
1741 
1742 	info.tc = tc;
1743 	bio_list_init(&info.defer_bios);
1744 	bio_list_init(&info.issue_bios);
1745 
1746 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1747 			   &info, cell);
1748 
1749 	while ((bio = bio_list_pop(&info.defer_bios)))
1750 		thin_defer_bio(tc, bio);
1751 
1752 	while ((bio = bio_list_pop(&info.issue_bios)))
1753 		remap_and_issue(tc, bio, block);
1754 }
1755 
1756 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1757 			       dm_block_t block,
1758 			       struct dm_thin_lookup_result *lookup_result,
1759 			       struct dm_bio_prison_cell *virt_cell)
1760 {
1761 	struct dm_bio_prison_cell *data_cell;
1762 	struct pool *pool = tc->pool;
1763 	struct dm_cell_key key;
1764 
1765 	/*
1766 	 * If cell is already occupied, then sharing is already in the process
1767 	 * of being broken so we have nothing further to do here.
1768 	 */
1769 	build_data_key(tc->td, lookup_result->block, &key);
1770 	if (bio_detain(pool, &key, bio, &data_cell)) {
1771 		cell_defer_no_holder(tc, virt_cell);
1772 		return;
1773 	}
1774 
1775 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1776 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1777 		cell_defer_no_holder(tc, virt_cell);
1778 	} else {
1779 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1780 
1781 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1782 		inc_all_io_entry(pool, bio);
1783 		remap_and_issue(tc, bio, lookup_result->block);
1784 
1785 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1786 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1787 	}
1788 }
1789 
1790 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791 			    struct dm_bio_prison_cell *cell)
1792 {
1793 	int r;
1794 	dm_block_t data_block;
1795 	struct pool *pool = tc->pool;
1796 
1797 	/*
1798 	 * Remap empty bios (flushes) immediately, without provisioning.
1799 	 */
1800 	if (!bio->bi_iter.bi_size) {
1801 		inc_all_io_entry(pool, bio);
1802 		cell_defer_no_holder(tc, cell);
1803 
1804 		remap_and_issue(tc, bio, 0);
1805 		return;
1806 	}
1807 
1808 	/*
1809 	 * Fill read bios with zeroes and complete them immediately.
1810 	 */
1811 	if (bio_data_dir(bio) == READ) {
1812 		zero_fill_bio(bio);
1813 		cell_defer_no_holder(tc, cell);
1814 		bio_endio(bio);
1815 		return;
1816 	}
1817 
1818 	r = alloc_data_block(tc, &data_block);
1819 	switch (r) {
1820 	case 0:
1821 		if (tc->origin_dev)
1822 			schedule_external_copy(tc, block, data_block, cell, bio);
1823 		else
1824 			schedule_zero(tc, block, data_block, cell, bio);
1825 		break;
1826 
1827 	case -ENOSPC:
1828 		retry_bios_on_resume(pool, cell);
1829 		break;
1830 
1831 	default:
1832 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1833 			    __func__, r);
1834 		cell_error(pool, cell);
1835 		break;
1836 	}
1837 }
1838 
1839 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1840 {
1841 	int r;
1842 	struct pool *pool = tc->pool;
1843 	struct bio *bio = cell->holder;
1844 	dm_block_t block = get_bio_block(tc, bio);
1845 	struct dm_thin_lookup_result lookup_result;
1846 
1847 	if (tc->requeue_mode) {
1848 		cell_requeue(pool, cell);
1849 		return;
1850 	}
1851 
1852 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1853 	switch (r) {
1854 	case 0:
1855 		if (lookup_result.shared)
1856 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1857 		else {
1858 			inc_all_io_entry(pool, bio);
1859 			remap_and_issue(tc, bio, lookup_result.block);
1860 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1861 		}
1862 		break;
1863 
1864 	case -ENODATA:
1865 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1866 			inc_all_io_entry(pool, bio);
1867 			cell_defer_no_holder(tc, cell);
1868 
1869 			if (bio_end_sector(bio) <= tc->origin_size)
1870 				remap_to_origin_and_issue(tc, bio);
1871 
1872 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1873 				zero_fill_bio(bio);
1874 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1875 				remap_to_origin_and_issue(tc, bio);
1876 
1877 			} else {
1878 				zero_fill_bio(bio);
1879 				bio_endio(bio);
1880 			}
1881 		} else
1882 			provision_block(tc, bio, block, cell);
1883 		break;
1884 
1885 	default:
1886 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1887 			    __func__, r);
1888 		cell_defer_no_holder(tc, cell);
1889 		bio_io_error(bio);
1890 		break;
1891 	}
1892 }
1893 
1894 static void process_bio(struct thin_c *tc, struct bio *bio)
1895 {
1896 	struct pool *pool = tc->pool;
1897 	dm_block_t block = get_bio_block(tc, bio);
1898 	struct dm_bio_prison_cell *cell;
1899 	struct dm_cell_key key;
1900 
1901 	/*
1902 	 * If cell is already occupied, then the block is already
1903 	 * being provisioned so we have nothing further to do here.
1904 	 */
1905 	build_virtual_key(tc->td, block, &key);
1906 	if (bio_detain(pool, &key, bio, &cell))
1907 		return;
1908 
1909 	process_cell(tc, cell);
1910 }
1911 
1912 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1913 				    struct dm_bio_prison_cell *cell)
1914 {
1915 	int r;
1916 	int rw = bio_data_dir(bio);
1917 	dm_block_t block = get_bio_block(tc, bio);
1918 	struct dm_thin_lookup_result lookup_result;
1919 
1920 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1921 	switch (r) {
1922 	case 0:
1923 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1924 			handle_unserviceable_bio(tc->pool, bio);
1925 			if (cell)
1926 				cell_defer_no_holder(tc, cell);
1927 		} else {
1928 			inc_all_io_entry(tc->pool, bio);
1929 			remap_and_issue(tc, bio, lookup_result.block);
1930 			if (cell)
1931 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1932 		}
1933 		break;
1934 
1935 	case -ENODATA:
1936 		if (cell)
1937 			cell_defer_no_holder(tc, cell);
1938 		if (rw != READ) {
1939 			handle_unserviceable_bio(tc->pool, bio);
1940 			break;
1941 		}
1942 
1943 		if (tc->origin_dev) {
1944 			inc_all_io_entry(tc->pool, bio);
1945 			remap_to_origin_and_issue(tc, bio);
1946 			break;
1947 		}
1948 
1949 		zero_fill_bio(bio);
1950 		bio_endio(bio);
1951 		break;
1952 
1953 	default:
1954 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1955 			    __func__, r);
1956 		if (cell)
1957 			cell_defer_no_holder(tc, cell);
1958 		bio_io_error(bio);
1959 		break;
1960 	}
1961 }
1962 
1963 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1964 {
1965 	__process_bio_read_only(tc, bio, NULL);
1966 }
1967 
1968 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1969 {
1970 	__process_bio_read_only(tc, cell->holder, cell);
1971 }
1972 
1973 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1974 {
1975 	bio_endio(bio);
1976 }
1977 
1978 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1979 {
1980 	bio_io_error(bio);
1981 }
1982 
1983 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1984 {
1985 	cell_success(tc->pool, cell);
1986 }
1987 
1988 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1989 {
1990 	cell_error(tc->pool, cell);
1991 }
1992 
1993 /*
1994  * FIXME: should we also commit due to size of transaction, measured in
1995  * metadata blocks?
1996  */
1997 static int need_commit_due_to_time(struct pool *pool)
1998 {
1999 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2000 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2001 }
2002 
2003 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2004 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2005 
2006 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2007 {
2008 	struct rb_node **rbp, *parent;
2009 	struct dm_thin_endio_hook *pbd;
2010 	sector_t bi_sector = bio->bi_iter.bi_sector;
2011 
2012 	rbp = &tc->sort_bio_list.rb_node;
2013 	parent = NULL;
2014 	while (*rbp) {
2015 		parent = *rbp;
2016 		pbd = thin_pbd(parent);
2017 
2018 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2019 			rbp = &(*rbp)->rb_left;
2020 		else
2021 			rbp = &(*rbp)->rb_right;
2022 	}
2023 
2024 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2025 	rb_link_node(&pbd->rb_node, parent, rbp);
2026 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2027 }
2028 
2029 static void __extract_sorted_bios(struct thin_c *tc)
2030 {
2031 	struct rb_node *node;
2032 	struct dm_thin_endio_hook *pbd;
2033 	struct bio *bio;
2034 
2035 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2036 		pbd = thin_pbd(node);
2037 		bio = thin_bio(pbd);
2038 
2039 		bio_list_add(&tc->deferred_bio_list, bio);
2040 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2041 	}
2042 
2043 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2044 }
2045 
2046 static void __sort_thin_deferred_bios(struct thin_c *tc)
2047 {
2048 	struct bio *bio;
2049 	struct bio_list bios;
2050 
2051 	bio_list_init(&bios);
2052 	bio_list_merge(&bios, &tc->deferred_bio_list);
2053 	bio_list_init(&tc->deferred_bio_list);
2054 
2055 	/* Sort deferred_bio_list using rb-tree */
2056 	while ((bio = bio_list_pop(&bios)))
2057 		__thin_bio_rb_add(tc, bio);
2058 
2059 	/*
2060 	 * Transfer the sorted bios in sort_bio_list back to
2061 	 * deferred_bio_list to allow lockless submission of
2062 	 * all bios.
2063 	 */
2064 	__extract_sorted_bios(tc);
2065 }
2066 
2067 static void process_thin_deferred_bios(struct thin_c *tc)
2068 {
2069 	struct pool *pool = tc->pool;
2070 	unsigned long flags;
2071 	struct bio *bio;
2072 	struct bio_list bios;
2073 	struct blk_plug plug;
2074 	unsigned count = 0;
2075 
2076 	if (tc->requeue_mode) {
2077 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2078 				BLK_STS_DM_REQUEUE);
2079 		return;
2080 	}
2081 
2082 	bio_list_init(&bios);
2083 
2084 	spin_lock_irqsave(&tc->lock, flags);
2085 
2086 	if (bio_list_empty(&tc->deferred_bio_list)) {
2087 		spin_unlock_irqrestore(&tc->lock, flags);
2088 		return;
2089 	}
2090 
2091 	__sort_thin_deferred_bios(tc);
2092 
2093 	bio_list_merge(&bios, &tc->deferred_bio_list);
2094 	bio_list_init(&tc->deferred_bio_list);
2095 
2096 	spin_unlock_irqrestore(&tc->lock, flags);
2097 
2098 	blk_start_plug(&plug);
2099 	while ((bio = bio_list_pop(&bios))) {
2100 		/*
2101 		 * If we've got no free new_mapping structs, and processing
2102 		 * this bio might require one, we pause until there are some
2103 		 * prepared mappings to process.
2104 		 */
2105 		if (ensure_next_mapping(pool)) {
2106 			spin_lock_irqsave(&tc->lock, flags);
2107 			bio_list_add(&tc->deferred_bio_list, bio);
2108 			bio_list_merge(&tc->deferred_bio_list, &bios);
2109 			spin_unlock_irqrestore(&tc->lock, flags);
2110 			break;
2111 		}
2112 
2113 		if (bio_op(bio) == REQ_OP_DISCARD)
2114 			pool->process_discard(tc, bio);
2115 		else
2116 			pool->process_bio(tc, bio);
2117 
2118 		if ((count++ & 127) == 0) {
2119 			throttle_work_update(&pool->throttle);
2120 			dm_pool_issue_prefetches(pool->pmd);
2121 		}
2122 	}
2123 	blk_finish_plug(&plug);
2124 }
2125 
2126 static int cmp_cells(const void *lhs, const void *rhs)
2127 {
2128 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2129 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2130 
2131 	BUG_ON(!lhs_cell->holder);
2132 	BUG_ON(!rhs_cell->holder);
2133 
2134 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2135 		return -1;
2136 
2137 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2138 		return 1;
2139 
2140 	return 0;
2141 }
2142 
2143 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2144 {
2145 	unsigned count = 0;
2146 	struct dm_bio_prison_cell *cell, *tmp;
2147 
2148 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2149 		if (count >= CELL_SORT_ARRAY_SIZE)
2150 			break;
2151 
2152 		pool->cell_sort_array[count++] = cell;
2153 		list_del(&cell->user_list);
2154 	}
2155 
2156 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2157 
2158 	return count;
2159 }
2160 
2161 static void process_thin_deferred_cells(struct thin_c *tc)
2162 {
2163 	struct pool *pool = tc->pool;
2164 	unsigned long flags;
2165 	struct list_head cells;
2166 	struct dm_bio_prison_cell *cell;
2167 	unsigned i, j, count;
2168 
2169 	INIT_LIST_HEAD(&cells);
2170 
2171 	spin_lock_irqsave(&tc->lock, flags);
2172 	list_splice_init(&tc->deferred_cells, &cells);
2173 	spin_unlock_irqrestore(&tc->lock, flags);
2174 
2175 	if (list_empty(&cells))
2176 		return;
2177 
2178 	do {
2179 		count = sort_cells(tc->pool, &cells);
2180 
2181 		for (i = 0; i < count; i++) {
2182 			cell = pool->cell_sort_array[i];
2183 			BUG_ON(!cell->holder);
2184 
2185 			/*
2186 			 * If we've got no free new_mapping structs, and processing
2187 			 * this bio might require one, we pause until there are some
2188 			 * prepared mappings to process.
2189 			 */
2190 			if (ensure_next_mapping(pool)) {
2191 				for (j = i; j < count; j++)
2192 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2193 
2194 				spin_lock_irqsave(&tc->lock, flags);
2195 				list_splice(&cells, &tc->deferred_cells);
2196 				spin_unlock_irqrestore(&tc->lock, flags);
2197 				return;
2198 			}
2199 
2200 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2201 				pool->process_discard_cell(tc, cell);
2202 			else
2203 				pool->process_cell(tc, cell);
2204 		}
2205 	} while (!list_empty(&cells));
2206 }
2207 
2208 static void thin_get(struct thin_c *tc);
2209 static void thin_put(struct thin_c *tc);
2210 
2211 /*
2212  * We can't hold rcu_read_lock() around code that can block.  So we
2213  * find a thin with the rcu lock held; bump a refcount; then drop
2214  * the lock.
2215  */
2216 static struct thin_c *get_first_thin(struct pool *pool)
2217 {
2218 	struct thin_c *tc = NULL;
2219 
2220 	rcu_read_lock();
2221 	if (!list_empty(&pool->active_thins)) {
2222 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2223 		thin_get(tc);
2224 	}
2225 	rcu_read_unlock();
2226 
2227 	return tc;
2228 }
2229 
2230 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2231 {
2232 	struct thin_c *old_tc = tc;
2233 
2234 	rcu_read_lock();
2235 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2236 		thin_get(tc);
2237 		thin_put(old_tc);
2238 		rcu_read_unlock();
2239 		return tc;
2240 	}
2241 	thin_put(old_tc);
2242 	rcu_read_unlock();
2243 
2244 	return NULL;
2245 }
2246 
2247 static void process_deferred_bios(struct pool *pool)
2248 {
2249 	unsigned long flags;
2250 	struct bio *bio;
2251 	struct bio_list bios;
2252 	struct thin_c *tc;
2253 
2254 	tc = get_first_thin(pool);
2255 	while (tc) {
2256 		process_thin_deferred_cells(tc);
2257 		process_thin_deferred_bios(tc);
2258 		tc = get_next_thin(pool, tc);
2259 	}
2260 
2261 	/*
2262 	 * If there are any deferred flush bios, we must commit
2263 	 * the metadata before issuing them.
2264 	 */
2265 	bio_list_init(&bios);
2266 	spin_lock_irqsave(&pool->lock, flags);
2267 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2268 	bio_list_init(&pool->deferred_flush_bios);
2269 	spin_unlock_irqrestore(&pool->lock, flags);
2270 
2271 	if (bio_list_empty(&bios) &&
2272 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2273 		return;
2274 
2275 	if (commit(pool)) {
2276 		while ((bio = bio_list_pop(&bios)))
2277 			bio_io_error(bio);
2278 		return;
2279 	}
2280 	pool->last_commit_jiffies = jiffies;
2281 
2282 	while ((bio = bio_list_pop(&bios)))
2283 		generic_make_request(bio);
2284 }
2285 
2286 static void do_worker(struct work_struct *ws)
2287 {
2288 	struct pool *pool = container_of(ws, struct pool, worker);
2289 
2290 	throttle_work_start(&pool->throttle);
2291 	dm_pool_issue_prefetches(pool->pmd);
2292 	throttle_work_update(&pool->throttle);
2293 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2294 	throttle_work_update(&pool->throttle);
2295 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2296 	throttle_work_update(&pool->throttle);
2297 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2298 	throttle_work_update(&pool->throttle);
2299 	process_deferred_bios(pool);
2300 	throttle_work_complete(&pool->throttle);
2301 }
2302 
2303 /*
2304  * We want to commit periodically so that not too much
2305  * unwritten data builds up.
2306  */
2307 static void do_waker(struct work_struct *ws)
2308 {
2309 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2310 	wake_worker(pool);
2311 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2312 }
2313 
2314 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2315 
2316 /*
2317  * We're holding onto IO to allow userland time to react.  After the
2318  * timeout either the pool will have been resized (and thus back in
2319  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2320  */
2321 static void do_no_space_timeout(struct work_struct *ws)
2322 {
2323 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2324 					 no_space_timeout);
2325 
2326 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2327 		pool->pf.error_if_no_space = true;
2328 		notify_of_pool_mode_change_to_oods(pool);
2329 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2330 	}
2331 }
2332 
2333 /*----------------------------------------------------------------*/
2334 
2335 struct pool_work {
2336 	struct work_struct worker;
2337 	struct completion complete;
2338 };
2339 
2340 static struct pool_work *to_pool_work(struct work_struct *ws)
2341 {
2342 	return container_of(ws, struct pool_work, worker);
2343 }
2344 
2345 static void pool_work_complete(struct pool_work *pw)
2346 {
2347 	complete(&pw->complete);
2348 }
2349 
2350 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2351 			   void (*fn)(struct work_struct *))
2352 {
2353 	INIT_WORK_ONSTACK(&pw->worker, fn);
2354 	init_completion(&pw->complete);
2355 	queue_work(pool->wq, &pw->worker);
2356 	wait_for_completion(&pw->complete);
2357 }
2358 
2359 /*----------------------------------------------------------------*/
2360 
2361 struct noflush_work {
2362 	struct pool_work pw;
2363 	struct thin_c *tc;
2364 };
2365 
2366 static struct noflush_work *to_noflush(struct work_struct *ws)
2367 {
2368 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2369 }
2370 
2371 static void do_noflush_start(struct work_struct *ws)
2372 {
2373 	struct noflush_work *w = to_noflush(ws);
2374 	w->tc->requeue_mode = true;
2375 	requeue_io(w->tc);
2376 	pool_work_complete(&w->pw);
2377 }
2378 
2379 static void do_noflush_stop(struct work_struct *ws)
2380 {
2381 	struct noflush_work *w = to_noflush(ws);
2382 	w->tc->requeue_mode = false;
2383 	pool_work_complete(&w->pw);
2384 }
2385 
2386 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2387 {
2388 	struct noflush_work w;
2389 
2390 	w.tc = tc;
2391 	pool_work_wait(&w.pw, tc->pool, fn);
2392 }
2393 
2394 /*----------------------------------------------------------------*/
2395 
2396 static enum pool_mode get_pool_mode(struct pool *pool)
2397 {
2398 	return pool->pf.mode;
2399 }
2400 
2401 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2402 {
2403 	dm_table_event(pool->ti->table);
2404 	DMINFO("%s: switching pool to %s mode",
2405 	       dm_device_name(pool->pool_md), new_mode);
2406 }
2407 
2408 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2409 {
2410 	if (!pool->pf.error_if_no_space)
2411 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2412 	else
2413 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2414 }
2415 
2416 static bool passdown_enabled(struct pool_c *pt)
2417 {
2418 	return pt->adjusted_pf.discard_passdown;
2419 }
2420 
2421 static void set_discard_callbacks(struct pool *pool)
2422 {
2423 	struct pool_c *pt = pool->ti->private;
2424 
2425 	if (passdown_enabled(pt)) {
2426 		pool->process_discard_cell = process_discard_cell_passdown;
2427 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2428 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2429 	} else {
2430 		pool->process_discard_cell = process_discard_cell_no_passdown;
2431 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2432 	}
2433 }
2434 
2435 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2436 {
2437 	struct pool_c *pt = pool->ti->private;
2438 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2439 	enum pool_mode old_mode = get_pool_mode(pool);
2440 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2441 
2442 	/*
2443 	 * Never allow the pool to transition to PM_WRITE mode if user
2444 	 * intervention is required to verify metadata and data consistency.
2445 	 */
2446 	if (new_mode == PM_WRITE && needs_check) {
2447 		DMERR("%s: unable to switch pool to write mode until repaired.",
2448 		      dm_device_name(pool->pool_md));
2449 		if (old_mode != new_mode)
2450 			new_mode = old_mode;
2451 		else
2452 			new_mode = PM_READ_ONLY;
2453 	}
2454 	/*
2455 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2456 	 * not going to recover without a thin_repair.	So we never let the
2457 	 * pool move out of the old mode.
2458 	 */
2459 	if (old_mode == PM_FAIL)
2460 		new_mode = old_mode;
2461 
2462 	switch (new_mode) {
2463 	case PM_FAIL:
2464 		if (old_mode != new_mode)
2465 			notify_of_pool_mode_change(pool, "failure");
2466 		dm_pool_metadata_read_only(pool->pmd);
2467 		pool->process_bio = process_bio_fail;
2468 		pool->process_discard = process_bio_fail;
2469 		pool->process_cell = process_cell_fail;
2470 		pool->process_discard_cell = process_cell_fail;
2471 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2472 		pool->process_prepared_discard = process_prepared_discard_fail;
2473 
2474 		error_retry_list(pool);
2475 		break;
2476 
2477 	case PM_READ_ONLY:
2478 		if (old_mode != new_mode)
2479 			notify_of_pool_mode_change(pool, "read-only");
2480 		dm_pool_metadata_read_only(pool->pmd);
2481 		pool->process_bio = process_bio_read_only;
2482 		pool->process_discard = process_bio_success;
2483 		pool->process_cell = process_cell_read_only;
2484 		pool->process_discard_cell = process_cell_success;
2485 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2486 		pool->process_prepared_discard = process_prepared_discard_success;
2487 
2488 		error_retry_list(pool);
2489 		break;
2490 
2491 	case PM_OUT_OF_DATA_SPACE:
2492 		/*
2493 		 * Ideally we'd never hit this state; the low water mark
2494 		 * would trigger userland to extend the pool before we
2495 		 * completely run out of data space.  However, many small
2496 		 * IOs to unprovisioned space can consume data space at an
2497 		 * alarming rate.  Adjust your low water mark if you're
2498 		 * frequently seeing this mode.
2499 		 */
2500 		if (old_mode != new_mode)
2501 			notify_of_pool_mode_change_to_oods(pool);
2502 		pool->out_of_data_space = true;
2503 		pool->process_bio = process_bio_read_only;
2504 		pool->process_discard = process_discard_bio;
2505 		pool->process_cell = process_cell_read_only;
2506 		pool->process_prepared_mapping = process_prepared_mapping;
2507 		set_discard_callbacks(pool);
2508 
2509 		if (!pool->pf.error_if_no_space && no_space_timeout)
2510 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2511 		break;
2512 
2513 	case PM_WRITE:
2514 		if (old_mode != new_mode)
2515 			notify_of_pool_mode_change(pool, "write");
2516 		pool->out_of_data_space = false;
2517 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2518 		dm_pool_metadata_read_write(pool->pmd);
2519 		pool->process_bio = process_bio;
2520 		pool->process_discard = process_discard_bio;
2521 		pool->process_cell = process_cell;
2522 		pool->process_prepared_mapping = process_prepared_mapping;
2523 		set_discard_callbacks(pool);
2524 		break;
2525 	}
2526 
2527 	pool->pf.mode = new_mode;
2528 	/*
2529 	 * The pool mode may have changed, sync it so bind_control_target()
2530 	 * doesn't cause an unexpected mode transition on resume.
2531 	 */
2532 	pt->adjusted_pf.mode = new_mode;
2533 }
2534 
2535 static void abort_transaction(struct pool *pool)
2536 {
2537 	const char *dev_name = dm_device_name(pool->pool_md);
2538 
2539 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2540 	if (dm_pool_abort_metadata(pool->pmd)) {
2541 		DMERR("%s: failed to abort metadata transaction", dev_name);
2542 		set_pool_mode(pool, PM_FAIL);
2543 	}
2544 
2545 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2546 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2547 		set_pool_mode(pool, PM_FAIL);
2548 	}
2549 }
2550 
2551 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2552 {
2553 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2554 		    dm_device_name(pool->pool_md), op, r);
2555 
2556 	abort_transaction(pool);
2557 	set_pool_mode(pool, PM_READ_ONLY);
2558 }
2559 
2560 /*----------------------------------------------------------------*/
2561 
2562 /*
2563  * Mapping functions.
2564  */
2565 
2566 /*
2567  * Called only while mapping a thin bio to hand it over to the workqueue.
2568  */
2569 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2570 {
2571 	unsigned long flags;
2572 	struct pool *pool = tc->pool;
2573 
2574 	spin_lock_irqsave(&tc->lock, flags);
2575 	bio_list_add(&tc->deferred_bio_list, bio);
2576 	spin_unlock_irqrestore(&tc->lock, flags);
2577 
2578 	wake_worker(pool);
2579 }
2580 
2581 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2582 {
2583 	struct pool *pool = tc->pool;
2584 
2585 	throttle_lock(&pool->throttle);
2586 	thin_defer_bio(tc, bio);
2587 	throttle_unlock(&pool->throttle);
2588 }
2589 
2590 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2591 {
2592 	unsigned long flags;
2593 	struct pool *pool = tc->pool;
2594 
2595 	throttle_lock(&pool->throttle);
2596 	spin_lock_irqsave(&tc->lock, flags);
2597 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2598 	spin_unlock_irqrestore(&tc->lock, flags);
2599 	throttle_unlock(&pool->throttle);
2600 
2601 	wake_worker(pool);
2602 }
2603 
2604 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2605 {
2606 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2607 
2608 	h->tc = tc;
2609 	h->shared_read_entry = NULL;
2610 	h->all_io_entry = NULL;
2611 	h->overwrite_mapping = NULL;
2612 	h->cell = NULL;
2613 }
2614 
2615 /*
2616  * Non-blocking function called from the thin target's map function.
2617  */
2618 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2619 {
2620 	int r;
2621 	struct thin_c *tc = ti->private;
2622 	dm_block_t block = get_bio_block(tc, bio);
2623 	struct dm_thin_device *td = tc->td;
2624 	struct dm_thin_lookup_result result;
2625 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2626 	struct dm_cell_key key;
2627 
2628 	thin_hook_bio(tc, bio);
2629 
2630 	if (tc->requeue_mode) {
2631 		bio->bi_status = BLK_STS_DM_REQUEUE;
2632 		bio_endio(bio);
2633 		return DM_MAPIO_SUBMITTED;
2634 	}
2635 
2636 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2637 		bio_io_error(bio);
2638 		return DM_MAPIO_SUBMITTED;
2639 	}
2640 
2641 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2642 		thin_defer_bio_with_throttle(tc, bio);
2643 		return DM_MAPIO_SUBMITTED;
2644 	}
2645 
2646 	/*
2647 	 * We must hold the virtual cell before doing the lookup, otherwise
2648 	 * there's a race with discard.
2649 	 */
2650 	build_virtual_key(tc->td, block, &key);
2651 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2652 		return DM_MAPIO_SUBMITTED;
2653 
2654 	r = dm_thin_find_block(td, block, 0, &result);
2655 
2656 	/*
2657 	 * Note that we defer readahead too.
2658 	 */
2659 	switch (r) {
2660 	case 0:
2661 		if (unlikely(result.shared)) {
2662 			/*
2663 			 * We have a race condition here between the
2664 			 * result.shared value returned by the lookup and
2665 			 * snapshot creation, which may cause new
2666 			 * sharing.
2667 			 *
2668 			 * To avoid this always quiesce the origin before
2669 			 * taking the snap.  You want to do this anyway to
2670 			 * ensure a consistent application view
2671 			 * (i.e. lockfs).
2672 			 *
2673 			 * More distant ancestors are irrelevant. The
2674 			 * shared flag will be set in their case.
2675 			 */
2676 			thin_defer_cell(tc, virt_cell);
2677 			return DM_MAPIO_SUBMITTED;
2678 		}
2679 
2680 		build_data_key(tc->td, result.block, &key);
2681 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2682 			cell_defer_no_holder(tc, virt_cell);
2683 			return DM_MAPIO_SUBMITTED;
2684 		}
2685 
2686 		inc_all_io_entry(tc->pool, bio);
2687 		cell_defer_no_holder(tc, data_cell);
2688 		cell_defer_no_holder(tc, virt_cell);
2689 
2690 		remap(tc, bio, result.block);
2691 		return DM_MAPIO_REMAPPED;
2692 
2693 	case -ENODATA:
2694 	case -EWOULDBLOCK:
2695 		thin_defer_cell(tc, virt_cell);
2696 		return DM_MAPIO_SUBMITTED;
2697 
2698 	default:
2699 		/*
2700 		 * Must always call bio_io_error on failure.
2701 		 * dm_thin_find_block can fail with -EINVAL if the
2702 		 * pool is switched to fail-io mode.
2703 		 */
2704 		bio_io_error(bio);
2705 		cell_defer_no_holder(tc, virt_cell);
2706 		return DM_MAPIO_SUBMITTED;
2707 	}
2708 }
2709 
2710 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2711 {
2712 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2713 	struct request_queue *q;
2714 
2715 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2716 		return 1;
2717 
2718 	q = bdev_get_queue(pt->data_dev->bdev);
2719 	return bdi_congested(q->backing_dev_info, bdi_bits);
2720 }
2721 
2722 static void requeue_bios(struct pool *pool)
2723 {
2724 	unsigned long flags;
2725 	struct thin_c *tc;
2726 
2727 	rcu_read_lock();
2728 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2729 		spin_lock_irqsave(&tc->lock, flags);
2730 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2731 		bio_list_init(&tc->retry_on_resume_list);
2732 		spin_unlock_irqrestore(&tc->lock, flags);
2733 	}
2734 	rcu_read_unlock();
2735 }
2736 
2737 /*----------------------------------------------------------------
2738  * Binding of control targets to a pool object
2739  *--------------------------------------------------------------*/
2740 static bool data_dev_supports_discard(struct pool_c *pt)
2741 {
2742 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2743 
2744 	return q && blk_queue_discard(q);
2745 }
2746 
2747 static bool is_factor(sector_t block_size, uint32_t n)
2748 {
2749 	return !sector_div(block_size, n);
2750 }
2751 
2752 /*
2753  * If discard_passdown was enabled verify that the data device
2754  * supports discards.  Disable discard_passdown if not.
2755  */
2756 static void disable_passdown_if_not_supported(struct pool_c *pt)
2757 {
2758 	struct pool *pool = pt->pool;
2759 	struct block_device *data_bdev = pt->data_dev->bdev;
2760 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2761 	const char *reason = NULL;
2762 	char buf[BDEVNAME_SIZE];
2763 
2764 	if (!pt->adjusted_pf.discard_passdown)
2765 		return;
2766 
2767 	if (!data_dev_supports_discard(pt))
2768 		reason = "discard unsupported";
2769 
2770 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2771 		reason = "max discard sectors smaller than a block";
2772 
2773 	if (reason) {
2774 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2775 		pt->adjusted_pf.discard_passdown = false;
2776 	}
2777 }
2778 
2779 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2780 {
2781 	struct pool_c *pt = ti->private;
2782 
2783 	/*
2784 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2785 	 */
2786 	enum pool_mode old_mode = get_pool_mode(pool);
2787 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2788 
2789 	/*
2790 	 * Don't change the pool's mode until set_pool_mode() below.
2791 	 * Otherwise the pool's process_* function pointers may
2792 	 * not match the desired pool mode.
2793 	 */
2794 	pt->adjusted_pf.mode = old_mode;
2795 
2796 	pool->ti = ti;
2797 	pool->pf = pt->adjusted_pf;
2798 	pool->low_water_blocks = pt->low_water_blocks;
2799 
2800 	set_pool_mode(pool, new_mode);
2801 
2802 	return 0;
2803 }
2804 
2805 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2806 {
2807 	if (pool->ti == ti)
2808 		pool->ti = NULL;
2809 }
2810 
2811 /*----------------------------------------------------------------
2812  * Pool creation
2813  *--------------------------------------------------------------*/
2814 /* Initialize pool features. */
2815 static void pool_features_init(struct pool_features *pf)
2816 {
2817 	pf->mode = PM_WRITE;
2818 	pf->zero_new_blocks = true;
2819 	pf->discard_enabled = true;
2820 	pf->discard_passdown = true;
2821 	pf->error_if_no_space = false;
2822 }
2823 
2824 static void __pool_destroy(struct pool *pool)
2825 {
2826 	__pool_table_remove(pool);
2827 
2828 	vfree(pool->cell_sort_array);
2829 	if (dm_pool_metadata_close(pool->pmd) < 0)
2830 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2831 
2832 	dm_bio_prison_destroy(pool->prison);
2833 	dm_kcopyd_client_destroy(pool->copier);
2834 
2835 	if (pool->wq)
2836 		destroy_workqueue(pool->wq);
2837 
2838 	if (pool->next_mapping)
2839 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2840 	mempool_exit(&pool->mapping_pool);
2841 	dm_deferred_set_destroy(pool->shared_read_ds);
2842 	dm_deferred_set_destroy(pool->all_io_ds);
2843 	kfree(pool);
2844 }
2845 
2846 static struct kmem_cache *_new_mapping_cache;
2847 
2848 static struct pool *pool_create(struct mapped_device *pool_md,
2849 				struct block_device *metadata_dev,
2850 				unsigned long block_size,
2851 				int read_only, char **error)
2852 {
2853 	int r;
2854 	void *err_p;
2855 	struct pool *pool;
2856 	struct dm_pool_metadata *pmd;
2857 	bool format_device = read_only ? false : true;
2858 
2859 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2860 	if (IS_ERR(pmd)) {
2861 		*error = "Error creating metadata object";
2862 		return (struct pool *)pmd;
2863 	}
2864 
2865 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2866 	if (!pool) {
2867 		*error = "Error allocating memory for pool";
2868 		err_p = ERR_PTR(-ENOMEM);
2869 		goto bad_pool;
2870 	}
2871 
2872 	pool->pmd = pmd;
2873 	pool->sectors_per_block = block_size;
2874 	if (block_size & (block_size - 1))
2875 		pool->sectors_per_block_shift = -1;
2876 	else
2877 		pool->sectors_per_block_shift = __ffs(block_size);
2878 	pool->low_water_blocks = 0;
2879 	pool_features_init(&pool->pf);
2880 	pool->prison = dm_bio_prison_create();
2881 	if (!pool->prison) {
2882 		*error = "Error creating pool's bio prison";
2883 		err_p = ERR_PTR(-ENOMEM);
2884 		goto bad_prison;
2885 	}
2886 
2887 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2888 	if (IS_ERR(pool->copier)) {
2889 		r = PTR_ERR(pool->copier);
2890 		*error = "Error creating pool's kcopyd client";
2891 		err_p = ERR_PTR(r);
2892 		goto bad_kcopyd_client;
2893 	}
2894 
2895 	/*
2896 	 * Create singlethreaded workqueue that will service all devices
2897 	 * that use this metadata.
2898 	 */
2899 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2900 	if (!pool->wq) {
2901 		*error = "Error creating pool's workqueue";
2902 		err_p = ERR_PTR(-ENOMEM);
2903 		goto bad_wq;
2904 	}
2905 
2906 	throttle_init(&pool->throttle);
2907 	INIT_WORK(&pool->worker, do_worker);
2908 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2909 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2910 	spin_lock_init(&pool->lock);
2911 	bio_list_init(&pool->deferred_flush_bios);
2912 	INIT_LIST_HEAD(&pool->prepared_mappings);
2913 	INIT_LIST_HEAD(&pool->prepared_discards);
2914 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2915 	INIT_LIST_HEAD(&pool->active_thins);
2916 	pool->low_water_triggered = false;
2917 	pool->suspended = true;
2918 	pool->out_of_data_space = false;
2919 
2920 	pool->shared_read_ds = dm_deferred_set_create();
2921 	if (!pool->shared_read_ds) {
2922 		*error = "Error creating pool's shared read deferred set";
2923 		err_p = ERR_PTR(-ENOMEM);
2924 		goto bad_shared_read_ds;
2925 	}
2926 
2927 	pool->all_io_ds = dm_deferred_set_create();
2928 	if (!pool->all_io_ds) {
2929 		*error = "Error creating pool's all io deferred set";
2930 		err_p = ERR_PTR(-ENOMEM);
2931 		goto bad_all_io_ds;
2932 	}
2933 
2934 	pool->next_mapping = NULL;
2935 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2936 				   _new_mapping_cache);
2937 	if (r) {
2938 		*error = "Error creating pool's mapping mempool";
2939 		err_p = ERR_PTR(r);
2940 		goto bad_mapping_pool;
2941 	}
2942 
2943 	pool->cell_sort_array =
2944 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2945 				   sizeof(*pool->cell_sort_array)));
2946 	if (!pool->cell_sort_array) {
2947 		*error = "Error allocating cell sort array";
2948 		err_p = ERR_PTR(-ENOMEM);
2949 		goto bad_sort_array;
2950 	}
2951 
2952 	pool->ref_count = 1;
2953 	pool->last_commit_jiffies = jiffies;
2954 	pool->pool_md = pool_md;
2955 	pool->md_dev = metadata_dev;
2956 	__pool_table_insert(pool);
2957 
2958 	return pool;
2959 
2960 bad_sort_array:
2961 	mempool_exit(&pool->mapping_pool);
2962 bad_mapping_pool:
2963 	dm_deferred_set_destroy(pool->all_io_ds);
2964 bad_all_io_ds:
2965 	dm_deferred_set_destroy(pool->shared_read_ds);
2966 bad_shared_read_ds:
2967 	destroy_workqueue(pool->wq);
2968 bad_wq:
2969 	dm_kcopyd_client_destroy(pool->copier);
2970 bad_kcopyd_client:
2971 	dm_bio_prison_destroy(pool->prison);
2972 bad_prison:
2973 	kfree(pool);
2974 bad_pool:
2975 	if (dm_pool_metadata_close(pmd))
2976 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2977 
2978 	return err_p;
2979 }
2980 
2981 static void __pool_inc(struct pool *pool)
2982 {
2983 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2984 	pool->ref_count++;
2985 }
2986 
2987 static void __pool_dec(struct pool *pool)
2988 {
2989 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2990 	BUG_ON(!pool->ref_count);
2991 	if (!--pool->ref_count)
2992 		__pool_destroy(pool);
2993 }
2994 
2995 static struct pool *__pool_find(struct mapped_device *pool_md,
2996 				struct block_device *metadata_dev,
2997 				unsigned long block_size, int read_only,
2998 				char **error, int *created)
2999 {
3000 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3001 
3002 	if (pool) {
3003 		if (pool->pool_md != pool_md) {
3004 			*error = "metadata device already in use by a pool";
3005 			return ERR_PTR(-EBUSY);
3006 		}
3007 		__pool_inc(pool);
3008 
3009 	} else {
3010 		pool = __pool_table_lookup(pool_md);
3011 		if (pool) {
3012 			if (pool->md_dev != metadata_dev) {
3013 				*error = "different pool cannot replace a pool";
3014 				return ERR_PTR(-EINVAL);
3015 			}
3016 			__pool_inc(pool);
3017 
3018 		} else {
3019 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3020 			*created = 1;
3021 		}
3022 	}
3023 
3024 	return pool;
3025 }
3026 
3027 /*----------------------------------------------------------------
3028  * Pool target methods
3029  *--------------------------------------------------------------*/
3030 static void pool_dtr(struct dm_target *ti)
3031 {
3032 	struct pool_c *pt = ti->private;
3033 
3034 	mutex_lock(&dm_thin_pool_table.mutex);
3035 
3036 	unbind_control_target(pt->pool, ti);
3037 	__pool_dec(pt->pool);
3038 	dm_put_device(ti, pt->metadata_dev);
3039 	dm_put_device(ti, pt->data_dev);
3040 	kfree(pt);
3041 
3042 	mutex_unlock(&dm_thin_pool_table.mutex);
3043 }
3044 
3045 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3046 			       struct dm_target *ti)
3047 {
3048 	int r;
3049 	unsigned argc;
3050 	const char *arg_name;
3051 
3052 	static const struct dm_arg _args[] = {
3053 		{0, 4, "Invalid number of pool feature arguments"},
3054 	};
3055 
3056 	/*
3057 	 * No feature arguments supplied.
3058 	 */
3059 	if (!as->argc)
3060 		return 0;
3061 
3062 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3063 	if (r)
3064 		return -EINVAL;
3065 
3066 	while (argc && !r) {
3067 		arg_name = dm_shift_arg(as);
3068 		argc--;
3069 
3070 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3071 			pf->zero_new_blocks = false;
3072 
3073 		else if (!strcasecmp(arg_name, "ignore_discard"))
3074 			pf->discard_enabled = false;
3075 
3076 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3077 			pf->discard_passdown = false;
3078 
3079 		else if (!strcasecmp(arg_name, "read_only"))
3080 			pf->mode = PM_READ_ONLY;
3081 
3082 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3083 			pf->error_if_no_space = true;
3084 
3085 		else {
3086 			ti->error = "Unrecognised pool feature requested";
3087 			r = -EINVAL;
3088 			break;
3089 		}
3090 	}
3091 
3092 	return r;
3093 }
3094 
3095 static void metadata_low_callback(void *context)
3096 {
3097 	struct pool *pool = context;
3098 
3099 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3100 	       dm_device_name(pool->pool_md));
3101 
3102 	dm_table_event(pool->ti->table);
3103 }
3104 
3105 static sector_t get_dev_size(struct block_device *bdev)
3106 {
3107 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3108 }
3109 
3110 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3111 {
3112 	sector_t metadata_dev_size = get_dev_size(bdev);
3113 	char buffer[BDEVNAME_SIZE];
3114 
3115 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3116 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3117 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3118 }
3119 
3120 static sector_t get_metadata_dev_size(struct block_device *bdev)
3121 {
3122 	sector_t metadata_dev_size = get_dev_size(bdev);
3123 
3124 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3125 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3126 
3127 	return metadata_dev_size;
3128 }
3129 
3130 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3131 {
3132 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3133 
3134 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3135 
3136 	return metadata_dev_size;
3137 }
3138 
3139 /*
3140  * When a metadata threshold is crossed a dm event is triggered, and
3141  * userland should respond by growing the metadata device.  We could let
3142  * userland set the threshold, like we do with the data threshold, but I'm
3143  * not sure they know enough to do this well.
3144  */
3145 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3146 {
3147 	/*
3148 	 * 4M is ample for all ops with the possible exception of thin
3149 	 * device deletion which is harmless if it fails (just retry the
3150 	 * delete after you've grown the device).
3151 	 */
3152 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3153 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3154 }
3155 
3156 /*
3157  * thin-pool <metadata dev> <data dev>
3158  *	     <data block size (sectors)>
3159  *	     <low water mark (blocks)>
3160  *	     [<#feature args> [<arg>]*]
3161  *
3162  * Optional feature arguments are:
3163  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3164  *	     ignore_discard: disable discard
3165  *	     no_discard_passdown: don't pass discards down to the data device
3166  *	     read_only: Don't allow any changes to be made to the pool metadata.
3167  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3168  */
3169 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3170 {
3171 	int r, pool_created = 0;
3172 	struct pool_c *pt;
3173 	struct pool *pool;
3174 	struct pool_features pf;
3175 	struct dm_arg_set as;
3176 	struct dm_dev *data_dev;
3177 	unsigned long block_size;
3178 	dm_block_t low_water_blocks;
3179 	struct dm_dev *metadata_dev;
3180 	fmode_t metadata_mode;
3181 
3182 	/*
3183 	 * FIXME Remove validation from scope of lock.
3184 	 */
3185 	mutex_lock(&dm_thin_pool_table.mutex);
3186 
3187 	if (argc < 4) {
3188 		ti->error = "Invalid argument count";
3189 		r = -EINVAL;
3190 		goto out_unlock;
3191 	}
3192 
3193 	as.argc = argc;
3194 	as.argv = argv;
3195 
3196 	/*
3197 	 * Set default pool features.
3198 	 */
3199 	pool_features_init(&pf);
3200 
3201 	dm_consume_args(&as, 4);
3202 	r = parse_pool_features(&as, &pf, ti);
3203 	if (r)
3204 		goto out_unlock;
3205 
3206 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3207 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3208 	if (r) {
3209 		ti->error = "Error opening metadata block device";
3210 		goto out_unlock;
3211 	}
3212 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3213 
3214 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3215 	if (r) {
3216 		ti->error = "Error getting data device";
3217 		goto out_metadata;
3218 	}
3219 
3220 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3221 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3222 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3223 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3224 		ti->error = "Invalid block size";
3225 		r = -EINVAL;
3226 		goto out;
3227 	}
3228 
3229 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3230 		ti->error = "Invalid low water mark";
3231 		r = -EINVAL;
3232 		goto out;
3233 	}
3234 
3235 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3236 	if (!pt) {
3237 		r = -ENOMEM;
3238 		goto out;
3239 	}
3240 
3241 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3242 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3243 	if (IS_ERR(pool)) {
3244 		r = PTR_ERR(pool);
3245 		goto out_free_pt;
3246 	}
3247 
3248 	/*
3249 	 * 'pool_created' reflects whether this is the first table load.
3250 	 * Top level discard support is not allowed to be changed after
3251 	 * initial load.  This would require a pool reload to trigger thin
3252 	 * device changes.
3253 	 */
3254 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3255 		ti->error = "Discard support cannot be disabled once enabled";
3256 		r = -EINVAL;
3257 		goto out_flags_changed;
3258 	}
3259 
3260 	pt->pool = pool;
3261 	pt->ti = ti;
3262 	pt->metadata_dev = metadata_dev;
3263 	pt->data_dev = data_dev;
3264 	pt->low_water_blocks = low_water_blocks;
3265 	pt->adjusted_pf = pt->requested_pf = pf;
3266 	ti->num_flush_bios = 1;
3267 
3268 	/*
3269 	 * Only need to enable discards if the pool should pass
3270 	 * them down to the data device.  The thin device's discard
3271 	 * processing will cause mappings to be removed from the btree.
3272 	 */
3273 	if (pf.discard_enabled && pf.discard_passdown) {
3274 		ti->num_discard_bios = 1;
3275 
3276 		/*
3277 		 * Setting 'discards_supported' circumvents the normal
3278 		 * stacking of discard limits (this keeps the pool and
3279 		 * thin devices' discard limits consistent).
3280 		 */
3281 		ti->discards_supported = true;
3282 	}
3283 	ti->private = pt;
3284 
3285 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3286 						calc_metadata_threshold(pt),
3287 						metadata_low_callback,
3288 						pool);
3289 	if (r)
3290 		goto out_flags_changed;
3291 
3292 	pt->callbacks.congested_fn = pool_is_congested;
3293 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3294 
3295 	mutex_unlock(&dm_thin_pool_table.mutex);
3296 
3297 	return 0;
3298 
3299 out_flags_changed:
3300 	__pool_dec(pool);
3301 out_free_pt:
3302 	kfree(pt);
3303 out:
3304 	dm_put_device(ti, data_dev);
3305 out_metadata:
3306 	dm_put_device(ti, metadata_dev);
3307 out_unlock:
3308 	mutex_unlock(&dm_thin_pool_table.mutex);
3309 
3310 	return r;
3311 }
3312 
3313 static int pool_map(struct dm_target *ti, struct bio *bio)
3314 {
3315 	int r;
3316 	struct pool_c *pt = ti->private;
3317 	struct pool *pool = pt->pool;
3318 	unsigned long flags;
3319 
3320 	/*
3321 	 * As this is a singleton target, ti->begin is always zero.
3322 	 */
3323 	spin_lock_irqsave(&pool->lock, flags);
3324 	bio_set_dev(bio, pt->data_dev->bdev);
3325 	r = DM_MAPIO_REMAPPED;
3326 	spin_unlock_irqrestore(&pool->lock, flags);
3327 
3328 	return r;
3329 }
3330 
3331 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3332 {
3333 	int r;
3334 	struct pool_c *pt = ti->private;
3335 	struct pool *pool = pt->pool;
3336 	sector_t data_size = ti->len;
3337 	dm_block_t sb_data_size;
3338 
3339 	*need_commit = false;
3340 
3341 	(void) sector_div(data_size, pool->sectors_per_block);
3342 
3343 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3344 	if (r) {
3345 		DMERR("%s: failed to retrieve data device size",
3346 		      dm_device_name(pool->pool_md));
3347 		return r;
3348 	}
3349 
3350 	if (data_size < sb_data_size) {
3351 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3352 		      dm_device_name(pool->pool_md),
3353 		      (unsigned long long)data_size, sb_data_size);
3354 		return -EINVAL;
3355 
3356 	} else if (data_size > sb_data_size) {
3357 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3358 			DMERR("%s: unable to grow the data device until repaired.",
3359 			      dm_device_name(pool->pool_md));
3360 			return 0;
3361 		}
3362 
3363 		if (sb_data_size)
3364 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3365 			       dm_device_name(pool->pool_md),
3366 			       sb_data_size, (unsigned long long)data_size);
3367 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3368 		if (r) {
3369 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3370 			return r;
3371 		}
3372 
3373 		*need_commit = true;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3380 {
3381 	int r;
3382 	struct pool_c *pt = ti->private;
3383 	struct pool *pool = pt->pool;
3384 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3385 
3386 	*need_commit = false;
3387 
3388 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3389 
3390 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3391 	if (r) {
3392 		DMERR("%s: failed to retrieve metadata device size",
3393 		      dm_device_name(pool->pool_md));
3394 		return r;
3395 	}
3396 
3397 	if (metadata_dev_size < sb_metadata_dev_size) {
3398 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3399 		      dm_device_name(pool->pool_md),
3400 		      metadata_dev_size, sb_metadata_dev_size);
3401 		return -EINVAL;
3402 
3403 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3404 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3405 			DMERR("%s: unable to grow the metadata device until repaired.",
3406 			      dm_device_name(pool->pool_md));
3407 			return 0;
3408 		}
3409 
3410 		warn_if_metadata_device_too_big(pool->md_dev);
3411 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3412 		       dm_device_name(pool->pool_md),
3413 		       sb_metadata_dev_size, metadata_dev_size);
3414 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3415 		if (r) {
3416 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3417 			return r;
3418 		}
3419 
3420 		*need_commit = true;
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 /*
3427  * Retrieves the number of blocks of the data device from
3428  * the superblock and compares it to the actual device size,
3429  * thus resizing the data device in case it has grown.
3430  *
3431  * This both copes with opening preallocated data devices in the ctr
3432  * being followed by a resume
3433  * -and-
3434  * calling the resume method individually after userspace has
3435  * grown the data device in reaction to a table event.
3436  */
3437 static int pool_preresume(struct dm_target *ti)
3438 {
3439 	int r;
3440 	bool need_commit1, need_commit2;
3441 	struct pool_c *pt = ti->private;
3442 	struct pool *pool = pt->pool;
3443 
3444 	/*
3445 	 * Take control of the pool object.
3446 	 */
3447 	r = bind_control_target(pool, ti);
3448 	if (r)
3449 		return r;
3450 
3451 	r = maybe_resize_data_dev(ti, &need_commit1);
3452 	if (r)
3453 		return r;
3454 
3455 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3456 	if (r)
3457 		return r;
3458 
3459 	if (need_commit1 || need_commit2)
3460 		(void) commit(pool);
3461 
3462 	return 0;
3463 }
3464 
3465 static void pool_suspend_active_thins(struct pool *pool)
3466 {
3467 	struct thin_c *tc;
3468 
3469 	/* Suspend all active thin devices */
3470 	tc = get_first_thin(pool);
3471 	while (tc) {
3472 		dm_internal_suspend_noflush(tc->thin_md);
3473 		tc = get_next_thin(pool, tc);
3474 	}
3475 }
3476 
3477 static void pool_resume_active_thins(struct pool *pool)
3478 {
3479 	struct thin_c *tc;
3480 
3481 	/* Resume all active thin devices */
3482 	tc = get_first_thin(pool);
3483 	while (tc) {
3484 		dm_internal_resume(tc->thin_md);
3485 		tc = get_next_thin(pool, tc);
3486 	}
3487 }
3488 
3489 static void pool_resume(struct dm_target *ti)
3490 {
3491 	struct pool_c *pt = ti->private;
3492 	struct pool *pool = pt->pool;
3493 	unsigned long flags;
3494 
3495 	/*
3496 	 * Must requeue active_thins' bios and then resume
3497 	 * active_thins _before_ clearing 'suspend' flag.
3498 	 */
3499 	requeue_bios(pool);
3500 	pool_resume_active_thins(pool);
3501 
3502 	spin_lock_irqsave(&pool->lock, flags);
3503 	pool->low_water_triggered = false;
3504 	pool->suspended = false;
3505 	spin_unlock_irqrestore(&pool->lock, flags);
3506 
3507 	do_waker(&pool->waker.work);
3508 }
3509 
3510 static void pool_presuspend(struct dm_target *ti)
3511 {
3512 	struct pool_c *pt = ti->private;
3513 	struct pool *pool = pt->pool;
3514 	unsigned long flags;
3515 
3516 	spin_lock_irqsave(&pool->lock, flags);
3517 	pool->suspended = true;
3518 	spin_unlock_irqrestore(&pool->lock, flags);
3519 
3520 	pool_suspend_active_thins(pool);
3521 }
3522 
3523 static void pool_presuspend_undo(struct dm_target *ti)
3524 {
3525 	struct pool_c *pt = ti->private;
3526 	struct pool *pool = pt->pool;
3527 	unsigned long flags;
3528 
3529 	pool_resume_active_thins(pool);
3530 
3531 	spin_lock_irqsave(&pool->lock, flags);
3532 	pool->suspended = false;
3533 	spin_unlock_irqrestore(&pool->lock, flags);
3534 }
3535 
3536 static void pool_postsuspend(struct dm_target *ti)
3537 {
3538 	struct pool_c *pt = ti->private;
3539 	struct pool *pool = pt->pool;
3540 
3541 	cancel_delayed_work_sync(&pool->waker);
3542 	cancel_delayed_work_sync(&pool->no_space_timeout);
3543 	flush_workqueue(pool->wq);
3544 	(void) commit(pool);
3545 }
3546 
3547 static int check_arg_count(unsigned argc, unsigned args_required)
3548 {
3549 	if (argc != args_required) {
3550 		DMWARN("Message received with %u arguments instead of %u.",
3551 		       argc, args_required);
3552 		return -EINVAL;
3553 	}
3554 
3555 	return 0;
3556 }
3557 
3558 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3559 {
3560 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3561 	    *dev_id <= MAX_DEV_ID)
3562 		return 0;
3563 
3564 	if (warning)
3565 		DMWARN("Message received with invalid device id: %s", arg);
3566 
3567 	return -EINVAL;
3568 }
3569 
3570 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3571 {
3572 	dm_thin_id dev_id;
3573 	int r;
3574 
3575 	r = check_arg_count(argc, 2);
3576 	if (r)
3577 		return r;
3578 
3579 	r = read_dev_id(argv[1], &dev_id, 1);
3580 	if (r)
3581 		return r;
3582 
3583 	r = dm_pool_create_thin(pool->pmd, dev_id);
3584 	if (r) {
3585 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3586 		       argv[1]);
3587 		return r;
3588 	}
3589 
3590 	return 0;
3591 }
3592 
3593 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3594 {
3595 	dm_thin_id dev_id;
3596 	dm_thin_id origin_dev_id;
3597 	int r;
3598 
3599 	r = check_arg_count(argc, 3);
3600 	if (r)
3601 		return r;
3602 
3603 	r = read_dev_id(argv[1], &dev_id, 1);
3604 	if (r)
3605 		return r;
3606 
3607 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3608 	if (r)
3609 		return r;
3610 
3611 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3612 	if (r) {
3613 		DMWARN("Creation of new snapshot %s of device %s failed.",
3614 		       argv[1], argv[2]);
3615 		return r;
3616 	}
3617 
3618 	return 0;
3619 }
3620 
3621 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3622 {
3623 	dm_thin_id dev_id;
3624 	int r;
3625 
3626 	r = check_arg_count(argc, 2);
3627 	if (r)
3628 		return r;
3629 
3630 	r = read_dev_id(argv[1], &dev_id, 1);
3631 	if (r)
3632 		return r;
3633 
3634 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3635 	if (r)
3636 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3637 
3638 	return r;
3639 }
3640 
3641 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3642 {
3643 	dm_thin_id old_id, new_id;
3644 	int r;
3645 
3646 	r = check_arg_count(argc, 3);
3647 	if (r)
3648 		return r;
3649 
3650 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3651 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3652 		return -EINVAL;
3653 	}
3654 
3655 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3656 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3657 		return -EINVAL;
3658 	}
3659 
3660 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3661 	if (r) {
3662 		DMWARN("Failed to change transaction id from %s to %s.",
3663 		       argv[1], argv[2]);
3664 		return r;
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3671 {
3672 	int r;
3673 
3674 	r = check_arg_count(argc, 1);
3675 	if (r)
3676 		return r;
3677 
3678 	(void) commit(pool);
3679 
3680 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3681 	if (r)
3682 		DMWARN("reserve_metadata_snap message failed.");
3683 
3684 	return r;
3685 }
3686 
3687 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3688 {
3689 	int r;
3690 
3691 	r = check_arg_count(argc, 1);
3692 	if (r)
3693 		return r;
3694 
3695 	r = dm_pool_release_metadata_snap(pool->pmd);
3696 	if (r)
3697 		DMWARN("release_metadata_snap message failed.");
3698 
3699 	return r;
3700 }
3701 
3702 /*
3703  * Messages supported:
3704  *   create_thin	<dev_id>
3705  *   create_snap	<dev_id> <origin_id>
3706  *   delete		<dev_id>
3707  *   set_transaction_id <current_trans_id> <new_trans_id>
3708  *   reserve_metadata_snap
3709  *   release_metadata_snap
3710  */
3711 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3712 			char *result, unsigned maxlen)
3713 {
3714 	int r = -EINVAL;
3715 	struct pool_c *pt = ti->private;
3716 	struct pool *pool = pt->pool;
3717 
3718 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3719 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3720 		      dm_device_name(pool->pool_md));
3721 		return -EOPNOTSUPP;
3722 	}
3723 
3724 	if (!strcasecmp(argv[0], "create_thin"))
3725 		r = process_create_thin_mesg(argc, argv, pool);
3726 
3727 	else if (!strcasecmp(argv[0], "create_snap"))
3728 		r = process_create_snap_mesg(argc, argv, pool);
3729 
3730 	else if (!strcasecmp(argv[0], "delete"))
3731 		r = process_delete_mesg(argc, argv, pool);
3732 
3733 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3734 		r = process_set_transaction_id_mesg(argc, argv, pool);
3735 
3736 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3737 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3738 
3739 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3740 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3741 
3742 	else
3743 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3744 
3745 	if (!r)
3746 		(void) commit(pool);
3747 
3748 	return r;
3749 }
3750 
3751 static void emit_flags(struct pool_features *pf, char *result,
3752 		       unsigned sz, unsigned maxlen)
3753 {
3754 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3755 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3756 		pf->error_if_no_space;
3757 	DMEMIT("%u ", count);
3758 
3759 	if (!pf->zero_new_blocks)
3760 		DMEMIT("skip_block_zeroing ");
3761 
3762 	if (!pf->discard_enabled)
3763 		DMEMIT("ignore_discard ");
3764 
3765 	if (!pf->discard_passdown)
3766 		DMEMIT("no_discard_passdown ");
3767 
3768 	if (pf->mode == PM_READ_ONLY)
3769 		DMEMIT("read_only ");
3770 
3771 	if (pf->error_if_no_space)
3772 		DMEMIT("error_if_no_space ");
3773 }
3774 
3775 /*
3776  * Status line is:
3777  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3778  *    <used data sectors>/<total data sectors> <held metadata root>
3779  *    <pool mode> <discard config> <no space config> <needs_check>
3780  */
3781 static void pool_status(struct dm_target *ti, status_type_t type,
3782 			unsigned status_flags, char *result, unsigned maxlen)
3783 {
3784 	int r;
3785 	unsigned sz = 0;
3786 	uint64_t transaction_id;
3787 	dm_block_t nr_free_blocks_data;
3788 	dm_block_t nr_free_blocks_metadata;
3789 	dm_block_t nr_blocks_data;
3790 	dm_block_t nr_blocks_metadata;
3791 	dm_block_t held_root;
3792 	char buf[BDEVNAME_SIZE];
3793 	char buf2[BDEVNAME_SIZE];
3794 	struct pool_c *pt = ti->private;
3795 	struct pool *pool = pt->pool;
3796 
3797 	switch (type) {
3798 	case STATUSTYPE_INFO:
3799 		if (get_pool_mode(pool) == PM_FAIL) {
3800 			DMEMIT("Fail");
3801 			break;
3802 		}
3803 
3804 		/* Commit to ensure statistics aren't out-of-date */
3805 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3806 			(void) commit(pool);
3807 
3808 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3809 		if (r) {
3810 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3811 			      dm_device_name(pool->pool_md), r);
3812 			goto err;
3813 		}
3814 
3815 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3816 		if (r) {
3817 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3818 			      dm_device_name(pool->pool_md), r);
3819 			goto err;
3820 		}
3821 
3822 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3823 		if (r) {
3824 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3825 			      dm_device_name(pool->pool_md), r);
3826 			goto err;
3827 		}
3828 
3829 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3830 		if (r) {
3831 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3832 			      dm_device_name(pool->pool_md), r);
3833 			goto err;
3834 		}
3835 
3836 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3837 		if (r) {
3838 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3839 			      dm_device_name(pool->pool_md), r);
3840 			goto err;
3841 		}
3842 
3843 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3844 		if (r) {
3845 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3846 			      dm_device_name(pool->pool_md), r);
3847 			goto err;
3848 		}
3849 
3850 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3851 		       (unsigned long long)transaction_id,
3852 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3853 		       (unsigned long long)nr_blocks_metadata,
3854 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3855 		       (unsigned long long)nr_blocks_data);
3856 
3857 		if (held_root)
3858 			DMEMIT("%llu ", held_root);
3859 		else
3860 			DMEMIT("- ");
3861 
3862 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3863 			DMEMIT("out_of_data_space ");
3864 		else if (pool->pf.mode == PM_READ_ONLY)
3865 			DMEMIT("ro ");
3866 		else
3867 			DMEMIT("rw ");
3868 
3869 		if (!pool->pf.discard_enabled)
3870 			DMEMIT("ignore_discard ");
3871 		else if (pool->pf.discard_passdown)
3872 			DMEMIT("discard_passdown ");
3873 		else
3874 			DMEMIT("no_discard_passdown ");
3875 
3876 		if (pool->pf.error_if_no_space)
3877 			DMEMIT("error_if_no_space ");
3878 		else
3879 			DMEMIT("queue_if_no_space ");
3880 
3881 		if (dm_pool_metadata_needs_check(pool->pmd))
3882 			DMEMIT("needs_check ");
3883 		else
3884 			DMEMIT("- ");
3885 
3886 		break;
3887 
3888 	case STATUSTYPE_TABLE:
3889 		DMEMIT("%s %s %lu %llu ",
3890 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3891 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3892 		       (unsigned long)pool->sectors_per_block,
3893 		       (unsigned long long)pt->low_water_blocks);
3894 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3895 		break;
3896 	}
3897 	return;
3898 
3899 err:
3900 	DMEMIT("Error");
3901 }
3902 
3903 static int pool_iterate_devices(struct dm_target *ti,
3904 				iterate_devices_callout_fn fn, void *data)
3905 {
3906 	struct pool_c *pt = ti->private;
3907 
3908 	return fn(ti, pt->data_dev, 0, ti->len, data);
3909 }
3910 
3911 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3912 {
3913 	struct pool_c *pt = ti->private;
3914 	struct pool *pool = pt->pool;
3915 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3916 
3917 	/*
3918 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3919 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3920 	 * This is especially beneficial when the pool's data device is a RAID
3921 	 * device that has a full stripe width that matches pool->sectors_per_block
3922 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3923 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3924 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3925 	 */
3926 	if (limits->max_sectors < pool->sectors_per_block) {
3927 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3928 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3929 				limits->max_sectors--;
3930 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3931 		}
3932 	}
3933 
3934 	/*
3935 	 * If the system-determined stacked limits are compatible with the
3936 	 * pool's blocksize (io_opt is a factor) do not override them.
3937 	 */
3938 	if (io_opt_sectors < pool->sectors_per_block ||
3939 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3940 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3941 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3942 		else
3943 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3944 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3945 	}
3946 
3947 	/*
3948 	 * pt->adjusted_pf is a staging area for the actual features to use.
3949 	 * They get transferred to the live pool in bind_control_target()
3950 	 * called from pool_preresume().
3951 	 */
3952 	if (!pt->adjusted_pf.discard_enabled) {
3953 		/*
3954 		 * Must explicitly disallow stacking discard limits otherwise the
3955 		 * block layer will stack them if pool's data device has support.
3956 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3957 		 * user to see that, so make sure to set all discard limits to 0.
3958 		 */
3959 		limits->discard_granularity = 0;
3960 		return;
3961 	}
3962 
3963 	disable_passdown_if_not_supported(pt);
3964 
3965 	/*
3966 	 * The pool uses the same discard limits as the underlying data
3967 	 * device.  DM core has already set this up.
3968 	 */
3969 }
3970 
3971 static struct target_type pool_target = {
3972 	.name = "thin-pool",
3973 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3974 		    DM_TARGET_IMMUTABLE,
3975 	.version = {1, 19, 0},
3976 	.module = THIS_MODULE,
3977 	.ctr = pool_ctr,
3978 	.dtr = pool_dtr,
3979 	.map = pool_map,
3980 	.presuspend = pool_presuspend,
3981 	.presuspend_undo = pool_presuspend_undo,
3982 	.postsuspend = pool_postsuspend,
3983 	.preresume = pool_preresume,
3984 	.resume = pool_resume,
3985 	.message = pool_message,
3986 	.status = pool_status,
3987 	.iterate_devices = pool_iterate_devices,
3988 	.io_hints = pool_io_hints,
3989 };
3990 
3991 /*----------------------------------------------------------------
3992  * Thin target methods
3993  *--------------------------------------------------------------*/
3994 static void thin_get(struct thin_c *tc)
3995 {
3996 	atomic_inc(&tc->refcount);
3997 }
3998 
3999 static void thin_put(struct thin_c *tc)
4000 {
4001 	if (atomic_dec_and_test(&tc->refcount))
4002 		complete(&tc->can_destroy);
4003 }
4004 
4005 static void thin_dtr(struct dm_target *ti)
4006 {
4007 	struct thin_c *tc = ti->private;
4008 	unsigned long flags;
4009 
4010 	spin_lock_irqsave(&tc->pool->lock, flags);
4011 	list_del_rcu(&tc->list);
4012 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4013 	synchronize_rcu();
4014 
4015 	thin_put(tc);
4016 	wait_for_completion(&tc->can_destroy);
4017 
4018 	mutex_lock(&dm_thin_pool_table.mutex);
4019 
4020 	__pool_dec(tc->pool);
4021 	dm_pool_close_thin_device(tc->td);
4022 	dm_put_device(ti, tc->pool_dev);
4023 	if (tc->origin_dev)
4024 		dm_put_device(ti, tc->origin_dev);
4025 	kfree(tc);
4026 
4027 	mutex_unlock(&dm_thin_pool_table.mutex);
4028 }
4029 
4030 /*
4031  * Thin target parameters:
4032  *
4033  * <pool_dev> <dev_id> [origin_dev]
4034  *
4035  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4036  * dev_id: the internal device identifier
4037  * origin_dev: a device external to the pool that should act as the origin
4038  *
4039  * If the pool device has discards disabled, they get disabled for the thin
4040  * device as well.
4041  */
4042 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4043 {
4044 	int r;
4045 	struct thin_c *tc;
4046 	struct dm_dev *pool_dev, *origin_dev;
4047 	struct mapped_device *pool_md;
4048 	unsigned long flags;
4049 
4050 	mutex_lock(&dm_thin_pool_table.mutex);
4051 
4052 	if (argc != 2 && argc != 3) {
4053 		ti->error = "Invalid argument count";
4054 		r = -EINVAL;
4055 		goto out_unlock;
4056 	}
4057 
4058 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4059 	if (!tc) {
4060 		ti->error = "Out of memory";
4061 		r = -ENOMEM;
4062 		goto out_unlock;
4063 	}
4064 	tc->thin_md = dm_table_get_md(ti->table);
4065 	spin_lock_init(&tc->lock);
4066 	INIT_LIST_HEAD(&tc->deferred_cells);
4067 	bio_list_init(&tc->deferred_bio_list);
4068 	bio_list_init(&tc->retry_on_resume_list);
4069 	tc->sort_bio_list = RB_ROOT;
4070 
4071 	if (argc == 3) {
4072 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4073 		if (r) {
4074 			ti->error = "Error opening origin device";
4075 			goto bad_origin_dev;
4076 		}
4077 		tc->origin_dev = origin_dev;
4078 	}
4079 
4080 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4081 	if (r) {
4082 		ti->error = "Error opening pool device";
4083 		goto bad_pool_dev;
4084 	}
4085 	tc->pool_dev = pool_dev;
4086 
4087 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4088 		ti->error = "Invalid device id";
4089 		r = -EINVAL;
4090 		goto bad_common;
4091 	}
4092 
4093 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4094 	if (!pool_md) {
4095 		ti->error = "Couldn't get pool mapped device";
4096 		r = -EINVAL;
4097 		goto bad_common;
4098 	}
4099 
4100 	tc->pool = __pool_table_lookup(pool_md);
4101 	if (!tc->pool) {
4102 		ti->error = "Couldn't find pool object";
4103 		r = -EINVAL;
4104 		goto bad_pool_lookup;
4105 	}
4106 	__pool_inc(tc->pool);
4107 
4108 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4109 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4110 		r = -EINVAL;
4111 		goto bad_pool;
4112 	}
4113 
4114 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4115 	if (r) {
4116 		ti->error = "Couldn't open thin internal device";
4117 		goto bad_pool;
4118 	}
4119 
4120 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4121 	if (r)
4122 		goto bad;
4123 
4124 	ti->num_flush_bios = 1;
4125 	ti->flush_supported = true;
4126 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4127 
4128 	/* In case the pool supports discards, pass them on. */
4129 	if (tc->pool->pf.discard_enabled) {
4130 		ti->discards_supported = true;
4131 		ti->num_discard_bios = 1;
4132 		ti->split_discard_bios = false;
4133 	}
4134 
4135 	mutex_unlock(&dm_thin_pool_table.mutex);
4136 
4137 	spin_lock_irqsave(&tc->pool->lock, flags);
4138 	if (tc->pool->suspended) {
4139 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4140 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4141 		ti->error = "Unable to activate thin device while pool is suspended";
4142 		r = -EINVAL;
4143 		goto bad;
4144 	}
4145 	atomic_set(&tc->refcount, 1);
4146 	init_completion(&tc->can_destroy);
4147 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4148 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4149 	/*
4150 	 * This synchronize_rcu() call is needed here otherwise we risk a
4151 	 * wake_worker() call finding no bios to process (because the newly
4152 	 * added tc isn't yet visible).  So this reduces latency since we
4153 	 * aren't then dependent on the periodic commit to wake_worker().
4154 	 */
4155 	synchronize_rcu();
4156 
4157 	dm_put(pool_md);
4158 
4159 	return 0;
4160 
4161 bad:
4162 	dm_pool_close_thin_device(tc->td);
4163 bad_pool:
4164 	__pool_dec(tc->pool);
4165 bad_pool_lookup:
4166 	dm_put(pool_md);
4167 bad_common:
4168 	dm_put_device(ti, tc->pool_dev);
4169 bad_pool_dev:
4170 	if (tc->origin_dev)
4171 		dm_put_device(ti, tc->origin_dev);
4172 bad_origin_dev:
4173 	kfree(tc);
4174 out_unlock:
4175 	mutex_unlock(&dm_thin_pool_table.mutex);
4176 
4177 	return r;
4178 }
4179 
4180 static int thin_map(struct dm_target *ti, struct bio *bio)
4181 {
4182 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4183 
4184 	return thin_bio_map(ti, bio);
4185 }
4186 
4187 static int thin_endio(struct dm_target *ti, struct bio *bio,
4188 		blk_status_t *err)
4189 {
4190 	unsigned long flags;
4191 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4192 	struct list_head work;
4193 	struct dm_thin_new_mapping *m, *tmp;
4194 	struct pool *pool = h->tc->pool;
4195 
4196 	if (h->shared_read_entry) {
4197 		INIT_LIST_HEAD(&work);
4198 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4199 
4200 		spin_lock_irqsave(&pool->lock, flags);
4201 		list_for_each_entry_safe(m, tmp, &work, list) {
4202 			list_del(&m->list);
4203 			__complete_mapping_preparation(m);
4204 		}
4205 		spin_unlock_irqrestore(&pool->lock, flags);
4206 	}
4207 
4208 	if (h->all_io_entry) {
4209 		INIT_LIST_HEAD(&work);
4210 		dm_deferred_entry_dec(h->all_io_entry, &work);
4211 		if (!list_empty(&work)) {
4212 			spin_lock_irqsave(&pool->lock, flags);
4213 			list_for_each_entry_safe(m, tmp, &work, list)
4214 				list_add_tail(&m->list, &pool->prepared_discards);
4215 			spin_unlock_irqrestore(&pool->lock, flags);
4216 			wake_worker(pool);
4217 		}
4218 	}
4219 
4220 	if (h->cell)
4221 		cell_defer_no_holder(h->tc, h->cell);
4222 
4223 	return DM_ENDIO_DONE;
4224 }
4225 
4226 static void thin_presuspend(struct dm_target *ti)
4227 {
4228 	struct thin_c *tc = ti->private;
4229 
4230 	if (dm_noflush_suspending(ti))
4231 		noflush_work(tc, do_noflush_start);
4232 }
4233 
4234 static void thin_postsuspend(struct dm_target *ti)
4235 {
4236 	struct thin_c *tc = ti->private;
4237 
4238 	/*
4239 	 * The dm_noflush_suspending flag has been cleared by now, so
4240 	 * unfortunately we must always run this.
4241 	 */
4242 	noflush_work(tc, do_noflush_stop);
4243 }
4244 
4245 static int thin_preresume(struct dm_target *ti)
4246 {
4247 	struct thin_c *tc = ti->private;
4248 
4249 	if (tc->origin_dev)
4250 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4251 
4252 	return 0;
4253 }
4254 
4255 /*
4256  * <nr mapped sectors> <highest mapped sector>
4257  */
4258 static void thin_status(struct dm_target *ti, status_type_t type,
4259 			unsigned status_flags, char *result, unsigned maxlen)
4260 {
4261 	int r;
4262 	ssize_t sz = 0;
4263 	dm_block_t mapped, highest;
4264 	char buf[BDEVNAME_SIZE];
4265 	struct thin_c *tc = ti->private;
4266 
4267 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4268 		DMEMIT("Fail");
4269 		return;
4270 	}
4271 
4272 	if (!tc->td)
4273 		DMEMIT("-");
4274 	else {
4275 		switch (type) {
4276 		case STATUSTYPE_INFO:
4277 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4278 			if (r) {
4279 				DMERR("dm_thin_get_mapped_count returned %d", r);
4280 				goto err;
4281 			}
4282 
4283 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4284 			if (r < 0) {
4285 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4286 				goto err;
4287 			}
4288 
4289 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4290 			if (r)
4291 				DMEMIT("%llu", ((highest + 1) *
4292 						tc->pool->sectors_per_block) - 1);
4293 			else
4294 				DMEMIT("-");
4295 			break;
4296 
4297 		case STATUSTYPE_TABLE:
4298 			DMEMIT("%s %lu",
4299 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4300 			       (unsigned long) tc->dev_id);
4301 			if (tc->origin_dev)
4302 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4303 			break;
4304 		}
4305 	}
4306 
4307 	return;
4308 
4309 err:
4310 	DMEMIT("Error");
4311 }
4312 
4313 static int thin_iterate_devices(struct dm_target *ti,
4314 				iterate_devices_callout_fn fn, void *data)
4315 {
4316 	sector_t blocks;
4317 	struct thin_c *tc = ti->private;
4318 	struct pool *pool = tc->pool;
4319 
4320 	/*
4321 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4322 	 * we follow a more convoluted path through to the pool's target.
4323 	 */
4324 	if (!pool->ti)
4325 		return 0;	/* nothing is bound */
4326 
4327 	blocks = pool->ti->len;
4328 	(void) sector_div(blocks, pool->sectors_per_block);
4329 	if (blocks)
4330 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4331 
4332 	return 0;
4333 }
4334 
4335 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4336 {
4337 	struct thin_c *tc = ti->private;
4338 	struct pool *pool = tc->pool;
4339 
4340 	if (!pool->pf.discard_enabled)
4341 		return;
4342 
4343 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4344 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4345 }
4346 
4347 static struct target_type thin_target = {
4348 	.name = "thin",
4349 	.version = {1, 19, 0},
4350 	.module	= THIS_MODULE,
4351 	.ctr = thin_ctr,
4352 	.dtr = thin_dtr,
4353 	.map = thin_map,
4354 	.end_io = thin_endio,
4355 	.preresume = thin_preresume,
4356 	.presuspend = thin_presuspend,
4357 	.postsuspend = thin_postsuspend,
4358 	.status = thin_status,
4359 	.iterate_devices = thin_iterate_devices,
4360 	.io_hints = thin_io_hints,
4361 };
4362 
4363 /*----------------------------------------------------------------*/
4364 
4365 static int __init dm_thin_init(void)
4366 {
4367 	int r = -ENOMEM;
4368 
4369 	pool_table_init();
4370 
4371 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4372 	if (!_new_mapping_cache)
4373 		return r;
4374 
4375 	r = dm_register_target(&thin_target);
4376 	if (r)
4377 		goto bad_new_mapping_cache;
4378 
4379 	r = dm_register_target(&pool_target);
4380 	if (r)
4381 		goto bad_thin_target;
4382 
4383 	return 0;
4384 
4385 bad_thin_target:
4386 	dm_unregister_target(&thin_target);
4387 bad_new_mapping_cache:
4388 	kmem_cache_destroy(_new_mapping_cache);
4389 
4390 	return r;
4391 }
4392 
4393 static void dm_thin_exit(void)
4394 {
4395 	dm_unregister_target(&thin_target);
4396 	dm_unregister_target(&pool_target);
4397 
4398 	kmem_cache_destroy(_new_mapping_cache);
4399 
4400 	pool_table_exit();
4401 }
4402 
4403 module_init(dm_thin_init);
4404 module_exit(dm_thin_exit);
4405 
4406 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4407 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4408 
4409 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4410 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4411 MODULE_LICENSE("GPL");
4412