1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct work_struct worker; 244 struct workqueue_struct *wq; 245 struct throttle throttle; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head prepared_discards_pt2; 257 struct list_head active_thins; 258 259 struct dm_deferred_set *shared_read_ds; 260 struct dm_deferred_set *all_io_ds; 261 262 struct dm_thin_new_mapping *next_mapping; 263 264 process_bio_fn process_bio; 265 process_bio_fn process_discard; 266 267 process_cell_fn process_cell; 268 process_cell_fn process_discard_cell; 269 270 process_mapping_fn process_prepared_mapping; 271 process_mapping_fn process_prepared_discard; 272 process_mapping_fn process_prepared_discard_pt2; 273 274 struct dm_bio_prison_cell **cell_sort_array; 275 276 mempool_t mapping_pool; 277 }; 278 279 static enum pool_mode get_pool_mode(struct pool *pool); 280 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 281 282 /* 283 * Target context for a pool. 284 */ 285 struct pool_c { 286 struct dm_target *ti; 287 struct pool *pool; 288 struct dm_dev *data_dev; 289 struct dm_dev *metadata_dev; 290 struct dm_target_callbacks callbacks; 291 292 dm_block_t low_water_blocks; 293 struct pool_features requested_pf; /* Features requested during table load */ 294 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 295 }; 296 297 /* 298 * Target context for a thin. 299 */ 300 struct thin_c { 301 struct list_head list; 302 struct dm_dev *pool_dev; 303 struct dm_dev *origin_dev; 304 sector_t origin_size; 305 dm_thin_id dev_id; 306 307 struct pool *pool; 308 struct dm_thin_device *td; 309 struct mapped_device *thin_md; 310 311 bool requeue_mode:1; 312 spinlock_t lock; 313 struct list_head deferred_cells; 314 struct bio_list deferred_bio_list; 315 struct bio_list retry_on_resume_list; 316 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 317 318 /* 319 * Ensures the thin is not destroyed until the worker has finished 320 * iterating the active_thins list. 321 */ 322 atomic_t refcount; 323 struct completion can_destroy; 324 }; 325 326 /*----------------------------------------------------------------*/ 327 328 static bool block_size_is_power_of_two(struct pool *pool) 329 { 330 return pool->sectors_per_block_shift >= 0; 331 } 332 333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 334 { 335 return block_size_is_power_of_two(pool) ? 336 (b << pool->sectors_per_block_shift) : 337 (b * pool->sectors_per_block); 338 } 339 340 /*----------------------------------------------------------------*/ 341 342 struct discard_op { 343 struct thin_c *tc; 344 struct blk_plug plug; 345 struct bio *parent_bio; 346 struct bio *bio; 347 }; 348 349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 350 { 351 BUG_ON(!parent); 352 353 op->tc = tc; 354 blk_start_plug(&op->plug); 355 op->parent_bio = parent; 356 op->bio = NULL; 357 } 358 359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 360 { 361 struct thin_c *tc = op->tc; 362 sector_t s = block_to_sectors(tc->pool, data_b); 363 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 364 365 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 366 GFP_NOWAIT, 0, &op->bio); 367 } 368 369 static void end_discard(struct discard_op *op, int r) 370 { 371 if (op->bio) { 372 /* 373 * Even if one of the calls to issue_discard failed, we 374 * need to wait for the chain to complete. 375 */ 376 bio_chain(op->bio, op->parent_bio); 377 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 378 submit_bio(op->bio); 379 } 380 381 blk_finish_plug(&op->plug); 382 383 /* 384 * Even if r is set, there could be sub discards in flight that we 385 * need to wait for. 386 */ 387 if (r && !op->parent_bio->bi_status) 388 op->parent_bio->bi_status = errno_to_blk_status(r); 389 bio_endio(op->parent_bio); 390 } 391 392 /*----------------------------------------------------------------*/ 393 394 /* 395 * wake_worker() is used when new work is queued and when pool_resume is 396 * ready to continue deferred IO processing. 397 */ 398 static void wake_worker(struct pool *pool) 399 { 400 queue_work(pool->wq, &pool->worker); 401 } 402 403 /*----------------------------------------------------------------*/ 404 405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 406 struct dm_bio_prison_cell **cell_result) 407 { 408 int r; 409 struct dm_bio_prison_cell *cell_prealloc; 410 411 /* 412 * Allocate a cell from the prison's mempool. 413 * This might block but it can't fail. 414 */ 415 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 416 417 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 418 if (r) 419 /* 420 * We reused an old cell; we can get rid of 421 * the new one. 422 */ 423 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 424 425 return r; 426 } 427 428 static void cell_release(struct pool *pool, 429 struct dm_bio_prison_cell *cell, 430 struct bio_list *bios) 431 { 432 dm_cell_release(pool->prison, cell, bios); 433 dm_bio_prison_free_cell(pool->prison, cell); 434 } 435 436 static void cell_visit_release(struct pool *pool, 437 void (*fn)(void *, struct dm_bio_prison_cell *), 438 void *context, 439 struct dm_bio_prison_cell *cell) 440 { 441 dm_cell_visit_release(pool->prison, fn, context, cell); 442 dm_bio_prison_free_cell(pool->prison, cell); 443 } 444 445 static void cell_release_no_holder(struct pool *pool, 446 struct dm_bio_prison_cell *cell, 447 struct bio_list *bios) 448 { 449 dm_cell_release_no_holder(pool->prison, cell, bios); 450 dm_bio_prison_free_cell(pool->prison, cell); 451 } 452 453 static void cell_error_with_code(struct pool *pool, 454 struct dm_bio_prison_cell *cell, blk_status_t error_code) 455 { 456 dm_cell_error(pool->prison, cell, error_code); 457 dm_bio_prison_free_cell(pool->prison, cell); 458 } 459 460 static blk_status_t get_pool_io_error_code(struct pool *pool) 461 { 462 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 463 } 464 465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 466 { 467 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 468 } 469 470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 471 { 472 cell_error_with_code(pool, cell, 0); 473 } 474 475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 476 { 477 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 478 } 479 480 /*----------------------------------------------------------------*/ 481 482 /* 483 * A global list of pools that uses a struct mapped_device as a key. 484 */ 485 static struct dm_thin_pool_table { 486 struct mutex mutex; 487 struct list_head pools; 488 } dm_thin_pool_table; 489 490 static void pool_table_init(void) 491 { 492 mutex_init(&dm_thin_pool_table.mutex); 493 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 494 } 495 496 static void pool_table_exit(void) 497 { 498 mutex_destroy(&dm_thin_pool_table.mutex); 499 } 500 501 static void __pool_table_insert(struct pool *pool) 502 { 503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 504 list_add(&pool->list, &dm_thin_pool_table.pools); 505 } 506 507 static void __pool_table_remove(struct pool *pool) 508 { 509 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 510 list_del(&pool->list); 511 } 512 513 static struct pool *__pool_table_lookup(struct mapped_device *md) 514 { 515 struct pool *pool = NULL, *tmp; 516 517 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 518 519 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 520 if (tmp->pool_md == md) { 521 pool = tmp; 522 break; 523 } 524 } 525 526 return pool; 527 } 528 529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 530 { 531 struct pool *pool = NULL, *tmp; 532 533 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 534 535 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 536 if (tmp->md_dev == md_dev) { 537 pool = tmp; 538 break; 539 } 540 } 541 542 return pool; 543 } 544 545 /*----------------------------------------------------------------*/ 546 547 struct dm_thin_endio_hook { 548 struct thin_c *tc; 549 struct dm_deferred_entry *shared_read_entry; 550 struct dm_deferred_entry *all_io_entry; 551 struct dm_thin_new_mapping *overwrite_mapping; 552 struct rb_node rb_node; 553 struct dm_bio_prison_cell *cell; 554 }; 555 556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 557 { 558 bio_list_merge(bios, master); 559 bio_list_init(master); 560 } 561 562 static void error_bio_list(struct bio_list *bios, blk_status_t error) 563 { 564 struct bio *bio; 565 566 while ((bio = bio_list_pop(bios))) { 567 bio->bi_status = error; 568 bio_endio(bio); 569 } 570 } 571 572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 573 blk_status_t error) 574 { 575 struct bio_list bios; 576 unsigned long flags; 577 578 bio_list_init(&bios); 579 580 spin_lock_irqsave(&tc->lock, flags); 581 __merge_bio_list(&bios, master); 582 spin_unlock_irqrestore(&tc->lock, flags); 583 584 error_bio_list(&bios, error); 585 } 586 587 static void requeue_deferred_cells(struct thin_c *tc) 588 { 589 struct pool *pool = tc->pool; 590 unsigned long flags; 591 struct list_head cells; 592 struct dm_bio_prison_cell *cell, *tmp; 593 594 INIT_LIST_HEAD(&cells); 595 596 spin_lock_irqsave(&tc->lock, flags); 597 list_splice_init(&tc->deferred_cells, &cells); 598 spin_unlock_irqrestore(&tc->lock, flags); 599 600 list_for_each_entry_safe(cell, tmp, &cells, user_list) 601 cell_requeue(pool, cell); 602 } 603 604 static void requeue_io(struct thin_c *tc) 605 { 606 struct bio_list bios; 607 unsigned long flags; 608 609 bio_list_init(&bios); 610 611 spin_lock_irqsave(&tc->lock, flags); 612 __merge_bio_list(&bios, &tc->deferred_bio_list); 613 __merge_bio_list(&bios, &tc->retry_on_resume_list); 614 spin_unlock_irqrestore(&tc->lock, flags); 615 616 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 617 requeue_deferred_cells(tc); 618 } 619 620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 621 { 622 struct thin_c *tc; 623 624 rcu_read_lock(); 625 list_for_each_entry_rcu(tc, &pool->active_thins, list) 626 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 627 rcu_read_unlock(); 628 } 629 630 static void error_retry_list(struct pool *pool) 631 { 632 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 633 } 634 635 /* 636 * This section of code contains the logic for processing a thin device's IO. 637 * Much of the code depends on pool object resources (lists, workqueues, etc) 638 * but most is exclusively called from the thin target rather than the thin-pool 639 * target. 640 */ 641 642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 643 { 644 struct pool *pool = tc->pool; 645 sector_t block_nr = bio->bi_iter.bi_sector; 646 647 if (block_size_is_power_of_two(pool)) 648 block_nr >>= pool->sectors_per_block_shift; 649 else 650 (void) sector_div(block_nr, pool->sectors_per_block); 651 652 return block_nr; 653 } 654 655 /* 656 * Returns the _complete_ blocks that this bio covers. 657 */ 658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 659 dm_block_t *begin, dm_block_t *end) 660 { 661 struct pool *pool = tc->pool; 662 sector_t b = bio->bi_iter.bi_sector; 663 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 664 665 b += pool->sectors_per_block - 1ull; /* so we round up */ 666 667 if (block_size_is_power_of_two(pool)) { 668 b >>= pool->sectors_per_block_shift; 669 e >>= pool->sectors_per_block_shift; 670 } else { 671 (void) sector_div(b, pool->sectors_per_block); 672 (void) sector_div(e, pool->sectors_per_block); 673 } 674 675 if (e < b) 676 /* Can happen if the bio is within a single block. */ 677 e = b; 678 679 *begin = b; 680 *end = e; 681 } 682 683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 684 { 685 struct pool *pool = tc->pool; 686 sector_t bi_sector = bio->bi_iter.bi_sector; 687 688 bio_set_dev(bio, tc->pool_dev->bdev); 689 if (block_size_is_power_of_two(pool)) 690 bio->bi_iter.bi_sector = 691 (block << pool->sectors_per_block_shift) | 692 (bi_sector & (pool->sectors_per_block - 1)); 693 else 694 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 695 sector_div(bi_sector, pool->sectors_per_block); 696 } 697 698 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 699 { 700 bio_set_dev(bio, tc->origin_dev->bdev); 701 } 702 703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 704 { 705 return op_is_flush(bio->bi_opf) && 706 dm_thin_changed_this_transaction(tc->td); 707 } 708 709 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 710 { 711 struct dm_thin_endio_hook *h; 712 713 if (bio_op(bio) == REQ_OP_DISCARD) 714 return; 715 716 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 717 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 718 } 719 720 static void issue(struct thin_c *tc, struct bio *bio) 721 { 722 struct pool *pool = tc->pool; 723 unsigned long flags; 724 725 if (!bio_triggers_commit(tc, bio)) { 726 generic_make_request(bio); 727 return; 728 } 729 730 /* 731 * Complete bio with an error if earlier I/O caused changes to 732 * the metadata that can't be committed e.g, due to I/O errors 733 * on the metadata device. 734 */ 735 if (dm_thin_aborted_changes(tc->td)) { 736 bio_io_error(bio); 737 return; 738 } 739 740 /* 741 * Batch together any bios that trigger commits and then issue a 742 * single commit for them in process_deferred_bios(). 743 */ 744 spin_lock_irqsave(&pool->lock, flags); 745 bio_list_add(&pool->deferred_flush_bios, bio); 746 spin_unlock_irqrestore(&pool->lock, flags); 747 } 748 749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 750 { 751 remap_to_origin(tc, bio); 752 issue(tc, bio); 753 } 754 755 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 756 dm_block_t block) 757 { 758 remap(tc, bio, block); 759 issue(tc, bio); 760 } 761 762 /*----------------------------------------------------------------*/ 763 764 /* 765 * Bio endio functions. 766 */ 767 struct dm_thin_new_mapping { 768 struct list_head list; 769 770 bool pass_discard:1; 771 bool maybe_shared:1; 772 773 /* 774 * Track quiescing, copying and zeroing preparation actions. When this 775 * counter hits zero the block is prepared and can be inserted into the 776 * btree. 777 */ 778 atomic_t prepare_actions; 779 780 blk_status_t status; 781 struct thin_c *tc; 782 dm_block_t virt_begin, virt_end; 783 dm_block_t data_block; 784 struct dm_bio_prison_cell *cell; 785 786 /* 787 * If the bio covers the whole area of a block then we can avoid 788 * zeroing or copying. Instead this bio is hooked. The bio will 789 * still be in the cell, so care has to be taken to avoid issuing 790 * the bio twice. 791 */ 792 struct bio *bio; 793 bio_end_io_t *saved_bi_end_io; 794 }; 795 796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 797 { 798 struct pool *pool = m->tc->pool; 799 800 if (atomic_dec_and_test(&m->prepare_actions)) { 801 list_add_tail(&m->list, &pool->prepared_mappings); 802 wake_worker(pool); 803 } 804 } 805 806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 807 { 808 unsigned long flags; 809 struct pool *pool = m->tc->pool; 810 811 spin_lock_irqsave(&pool->lock, flags); 812 __complete_mapping_preparation(m); 813 spin_unlock_irqrestore(&pool->lock, flags); 814 } 815 816 static void copy_complete(int read_err, unsigned long write_err, void *context) 817 { 818 struct dm_thin_new_mapping *m = context; 819 820 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 821 complete_mapping_preparation(m); 822 } 823 824 static void overwrite_endio(struct bio *bio) 825 { 826 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 827 struct dm_thin_new_mapping *m = h->overwrite_mapping; 828 829 bio->bi_end_io = m->saved_bi_end_io; 830 831 m->status = bio->bi_status; 832 complete_mapping_preparation(m); 833 } 834 835 /*----------------------------------------------------------------*/ 836 837 /* 838 * Workqueue. 839 */ 840 841 /* 842 * Prepared mapping jobs. 843 */ 844 845 /* 846 * This sends the bios in the cell, except the original holder, back 847 * to the deferred_bios list. 848 */ 849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 850 { 851 struct pool *pool = tc->pool; 852 unsigned long flags; 853 854 spin_lock_irqsave(&tc->lock, flags); 855 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 856 spin_unlock_irqrestore(&tc->lock, flags); 857 858 wake_worker(pool); 859 } 860 861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 862 863 struct remap_info { 864 struct thin_c *tc; 865 struct bio_list defer_bios; 866 struct bio_list issue_bios; 867 }; 868 869 static void __inc_remap_and_issue_cell(void *context, 870 struct dm_bio_prison_cell *cell) 871 { 872 struct remap_info *info = context; 873 struct bio *bio; 874 875 while ((bio = bio_list_pop(&cell->bios))) { 876 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 877 bio_list_add(&info->defer_bios, bio); 878 else { 879 inc_all_io_entry(info->tc->pool, bio); 880 881 /* 882 * We can't issue the bios with the bio prison lock 883 * held, so we add them to a list to issue on 884 * return from this function. 885 */ 886 bio_list_add(&info->issue_bios, bio); 887 } 888 } 889 } 890 891 static void inc_remap_and_issue_cell(struct thin_c *tc, 892 struct dm_bio_prison_cell *cell, 893 dm_block_t block) 894 { 895 struct bio *bio; 896 struct remap_info info; 897 898 info.tc = tc; 899 bio_list_init(&info.defer_bios); 900 bio_list_init(&info.issue_bios); 901 902 /* 903 * We have to be careful to inc any bios we're about to issue 904 * before the cell is released, and avoid a race with new bios 905 * being added to the cell. 906 */ 907 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 908 &info, cell); 909 910 while ((bio = bio_list_pop(&info.defer_bios))) 911 thin_defer_bio(tc, bio); 912 913 while ((bio = bio_list_pop(&info.issue_bios))) 914 remap_and_issue(info.tc, bio, block); 915 } 916 917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 918 { 919 cell_error(m->tc->pool, m->cell); 920 list_del(&m->list); 921 mempool_free(m, &m->tc->pool->mapping_pool); 922 } 923 924 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 925 { 926 struct thin_c *tc = m->tc; 927 struct pool *pool = tc->pool; 928 struct bio *bio = m->bio; 929 int r; 930 931 if (m->status) { 932 cell_error(pool, m->cell); 933 goto out; 934 } 935 936 /* 937 * Commit the prepared block into the mapping btree. 938 * Any I/O for this block arriving after this point will get 939 * remapped to it directly. 940 */ 941 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 942 if (r) { 943 metadata_operation_failed(pool, "dm_thin_insert_block", r); 944 cell_error(pool, m->cell); 945 goto out; 946 } 947 948 /* 949 * Release any bios held while the block was being provisioned. 950 * If we are processing a write bio that completely covers the block, 951 * we already processed it so can ignore it now when processing 952 * the bios in the cell. 953 */ 954 if (bio) { 955 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 956 bio_endio(bio); 957 } else { 958 inc_all_io_entry(tc->pool, m->cell->holder); 959 remap_and_issue(tc, m->cell->holder, m->data_block); 960 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 961 } 962 963 out: 964 list_del(&m->list); 965 mempool_free(m, &pool->mapping_pool); 966 } 967 968 /*----------------------------------------------------------------*/ 969 970 static void free_discard_mapping(struct dm_thin_new_mapping *m) 971 { 972 struct thin_c *tc = m->tc; 973 if (m->cell) 974 cell_defer_no_holder(tc, m->cell); 975 mempool_free(m, &tc->pool->mapping_pool); 976 } 977 978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 979 { 980 bio_io_error(m->bio); 981 free_discard_mapping(m); 982 } 983 984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 985 { 986 bio_endio(m->bio); 987 free_discard_mapping(m); 988 } 989 990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 991 { 992 int r; 993 struct thin_c *tc = m->tc; 994 995 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 996 if (r) { 997 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 998 bio_io_error(m->bio); 999 } else 1000 bio_endio(m->bio); 1001 1002 cell_defer_no_holder(tc, m->cell); 1003 mempool_free(m, &tc->pool->mapping_pool); 1004 } 1005 1006 /*----------------------------------------------------------------*/ 1007 1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1009 struct bio *discard_parent) 1010 { 1011 /* 1012 * We've already unmapped this range of blocks, but before we 1013 * passdown we have to check that these blocks are now unused. 1014 */ 1015 int r = 0; 1016 bool used = true; 1017 struct thin_c *tc = m->tc; 1018 struct pool *pool = tc->pool; 1019 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1020 struct discard_op op; 1021 1022 begin_discard(&op, tc, discard_parent); 1023 while (b != end) { 1024 /* find start of unmapped run */ 1025 for (; b < end; b++) { 1026 r = dm_pool_block_is_used(pool->pmd, b, &used); 1027 if (r) 1028 goto out; 1029 1030 if (!used) 1031 break; 1032 } 1033 1034 if (b == end) 1035 break; 1036 1037 /* find end of run */ 1038 for (e = b + 1; e != end; e++) { 1039 r = dm_pool_block_is_used(pool->pmd, e, &used); 1040 if (r) 1041 goto out; 1042 1043 if (used) 1044 break; 1045 } 1046 1047 r = issue_discard(&op, b, e); 1048 if (r) 1049 goto out; 1050 1051 b = e; 1052 } 1053 out: 1054 end_discard(&op, r); 1055 } 1056 1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1058 { 1059 unsigned long flags; 1060 struct pool *pool = m->tc->pool; 1061 1062 spin_lock_irqsave(&pool->lock, flags); 1063 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1064 spin_unlock_irqrestore(&pool->lock, flags); 1065 wake_worker(pool); 1066 } 1067 1068 static void passdown_endio(struct bio *bio) 1069 { 1070 /* 1071 * It doesn't matter if the passdown discard failed, we still want 1072 * to unmap (we ignore err). 1073 */ 1074 queue_passdown_pt2(bio->bi_private); 1075 bio_put(bio); 1076 } 1077 1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1079 { 1080 int r; 1081 struct thin_c *tc = m->tc; 1082 struct pool *pool = tc->pool; 1083 struct bio *discard_parent; 1084 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1085 1086 /* 1087 * Only this thread allocates blocks, so we can be sure that the 1088 * newly unmapped blocks will not be allocated before the end of 1089 * the function. 1090 */ 1091 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1092 if (r) { 1093 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1094 bio_io_error(m->bio); 1095 cell_defer_no_holder(tc, m->cell); 1096 mempool_free(m, &pool->mapping_pool); 1097 return; 1098 } 1099 1100 /* 1101 * Increment the unmapped blocks. This prevents a race between the 1102 * passdown io and reallocation of freed blocks. 1103 */ 1104 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1105 if (r) { 1106 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1107 bio_io_error(m->bio); 1108 cell_defer_no_holder(tc, m->cell); 1109 mempool_free(m, &pool->mapping_pool); 1110 return; 1111 } 1112 1113 discard_parent = bio_alloc(GFP_NOIO, 1); 1114 if (!discard_parent) { 1115 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1116 dm_device_name(tc->pool->pool_md)); 1117 queue_passdown_pt2(m); 1118 1119 } else { 1120 discard_parent->bi_end_io = passdown_endio; 1121 discard_parent->bi_private = m; 1122 1123 if (m->maybe_shared) 1124 passdown_double_checking_shared_status(m, discard_parent); 1125 else { 1126 struct discard_op op; 1127 1128 begin_discard(&op, tc, discard_parent); 1129 r = issue_discard(&op, m->data_block, data_end); 1130 end_discard(&op, r); 1131 } 1132 } 1133 } 1134 1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1136 { 1137 int r; 1138 struct thin_c *tc = m->tc; 1139 struct pool *pool = tc->pool; 1140 1141 /* 1142 * The passdown has completed, so now we can decrement all those 1143 * unmapped blocks. 1144 */ 1145 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1146 m->data_block + (m->virt_end - m->virt_begin)); 1147 if (r) { 1148 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1149 bio_io_error(m->bio); 1150 } else 1151 bio_endio(m->bio); 1152 1153 cell_defer_no_holder(tc, m->cell); 1154 mempool_free(m, &pool->mapping_pool); 1155 } 1156 1157 static void process_prepared(struct pool *pool, struct list_head *head, 1158 process_mapping_fn *fn) 1159 { 1160 unsigned long flags; 1161 struct list_head maps; 1162 struct dm_thin_new_mapping *m, *tmp; 1163 1164 INIT_LIST_HEAD(&maps); 1165 spin_lock_irqsave(&pool->lock, flags); 1166 list_splice_init(head, &maps); 1167 spin_unlock_irqrestore(&pool->lock, flags); 1168 1169 list_for_each_entry_safe(m, tmp, &maps, list) 1170 (*fn)(m); 1171 } 1172 1173 /* 1174 * Deferred bio jobs. 1175 */ 1176 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1177 { 1178 return bio->bi_iter.bi_size == 1179 (pool->sectors_per_block << SECTOR_SHIFT); 1180 } 1181 1182 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1183 { 1184 return (bio_data_dir(bio) == WRITE) && 1185 io_overlaps_block(pool, bio); 1186 } 1187 1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1189 bio_end_io_t *fn) 1190 { 1191 *save = bio->bi_end_io; 1192 bio->bi_end_io = fn; 1193 } 1194 1195 static int ensure_next_mapping(struct pool *pool) 1196 { 1197 if (pool->next_mapping) 1198 return 0; 1199 1200 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1201 1202 return pool->next_mapping ? 0 : -ENOMEM; 1203 } 1204 1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1206 { 1207 struct dm_thin_new_mapping *m = pool->next_mapping; 1208 1209 BUG_ON(!pool->next_mapping); 1210 1211 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1212 INIT_LIST_HEAD(&m->list); 1213 m->bio = NULL; 1214 1215 pool->next_mapping = NULL; 1216 1217 return m; 1218 } 1219 1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1221 sector_t begin, sector_t end) 1222 { 1223 int r; 1224 struct dm_io_region to; 1225 1226 to.bdev = tc->pool_dev->bdev; 1227 to.sector = begin; 1228 to.count = end - begin; 1229 1230 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1231 if (r < 0) { 1232 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1233 copy_complete(1, 1, m); 1234 } 1235 } 1236 1237 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1238 dm_block_t data_begin, 1239 struct dm_thin_new_mapping *m) 1240 { 1241 struct pool *pool = tc->pool; 1242 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1243 1244 h->overwrite_mapping = m; 1245 m->bio = bio; 1246 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1247 inc_all_io_entry(pool, bio); 1248 remap_and_issue(tc, bio, data_begin); 1249 } 1250 1251 /* 1252 * A partial copy also needs to zero the uncopied region. 1253 */ 1254 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1255 struct dm_dev *origin, dm_block_t data_origin, 1256 dm_block_t data_dest, 1257 struct dm_bio_prison_cell *cell, struct bio *bio, 1258 sector_t len) 1259 { 1260 int r; 1261 struct pool *pool = tc->pool; 1262 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1263 1264 m->tc = tc; 1265 m->virt_begin = virt_block; 1266 m->virt_end = virt_block + 1u; 1267 m->data_block = data_dest; 1268 m->cell = cell; 1269 1270 /* 1271 * quiesce action + copy action + an extra reference held for the 1272 * duration of this function (we may need to inc later for a 1273 * partial zero). 1274 */ 1275 atomic_set(&m->prepare_actions, 3); 1276 1277 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1278 complete_mapping_preparation(m); /* already quiesced */ 1279 1280 /* 1281 * IO to pool_dev remaps to the pool target's data_dev. 1282 * 1283 * If the whole block of data is being overwritten, we can issue the 1284 * bio immediately. Otherwise we use kcopyd to clone the data first. 1285 */ 1286 if (io_overwrites_block(pool, bio)) 1287 remap_and_issue_overwrite(tc, bio, data_dest, m); 1288 else { 1289 struct dm_io_region from, to; 1290 1291 from.bdev = origin->bdev; 1292 from.sector = data_origin * pool->sectors_per_block; 1293 from.count = len; 1294 1295 to.bdev = tc->pool_dev->bdev; 1296 to.sector = data_dest * pool->sectors_per_block; 1297 to.count = len; 1298 1299 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1300 0, copy_complete, m); 1301 if (r < 0) { 1302 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1303 copy_complete(1, 1, m); 1304 1305 /* 1306 * We allow the zero to be issued, to simplify the 1307 * error path. Otherwise we'd need to start 1308 * worrying about decrementing the prepare_actions 1309 * counter. 1310 */ 1311 } 1312 1313 /* 1314 * Do we need to zero a tail region? 1315 */ 1316 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1317 atomic_inc(&m->prepare_actions); 1318 ll_zero(tc, m, 1319 data_dest * pool->sectors_per_block + len, 1320 (data_dest + 1) * pool->sectors_per_block); 1321 } 1322 } 1323 1324 complete_mapping_preparation(m); /* drop our ref */ 1325 } 1326 1327 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1328 dm_block_t data_origin, dm_block_t data_dest, 1329 struct dm_bio_prison_cell *cell, struct bio *bio) 1330 { 1331 schedule_copy(tc, virt_block, tc->pool_dev, 1332 data_origin, data_dest, cell, bio, 1333 tc->pool->sectors_per_block); 1334 } 1335 1336 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1337 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1338 struct bio *bio) 1339 { 1340 struct pool *pool = tc->pool; 1341 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1342 1343 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1344 m->tc = tc; 1345 m->virt_begin = virt_block; 1346 m->virt_end = virt_block + 1u; 1347 m->data_block = data_block; 1348 m->cell = cell; 1349 1350 /* 1351 * If the whole block of data is being overwritten or we are not 1352 * zeroing pre-existing data, we can issue the bio immediately. 1353 * Otherwise we use kcopyd to zero the data first. 1354 */ 1355 if (pool->pf.zero_new_blocks) { 1356 if (io_overwrites_block(pool, bio)) 1357 remap_and_issue_overwrite(tc, bio, data_block, m); 1358 else 1359 ll_zero(tc, m, data_block * pool->sectors_per_block, 1360 (data_block + 1) * pool->sectors_per_block); 1361 } else 1362 process_prepared_mapping(m); 1363 } 1364 1365 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1366 dm_block_t data_dest, 1367 struct dm_bio_prison_cell *cell, struct bio *bio) 1368 { 1369 struct pool *pool = tc->pool; 1370 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1371 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1372 1373 if (virt_block_end <= tc->origin_size) 1374 schedule_copy(tc, virt_block, tc->origin_dev, 1375 virt_block, data_dest, cell, bio, 1376 pool->sectors_per_block); 1377 1378 else if (virt_block_begin < tc->origin_size) 1379 schedule_copy(tc, virt_block, tc->origin_dev, 1380 virt_block, data_dest, cell, bio, 1381 tc->origin_size - virt_block_begin); 1382 1383 else 1384 schedule_zero(tc, virt_block, data_dest, cell, bio); 1385 } 1386 1387 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1388 1389 static void check_for_space(struct pool *pool) 1390 { 1391 int r; 1392 dm_block_t nr_free; 1393 1394 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1395 return; 1396 1397 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1398 if (r) 1399 return; 1400 1401 if (nr_free) 1402 set_pool_mode(pool, PM_WRITE); 1403 } 1404 1405 /* 1406 * A non-zero return indicates read_only or fail_io mode. 1407 * Many callers don't care about the return value. 1408 */ 1409 static int commit(struct pool *pool) 1410 { 1411 int r; 1412 1413 if (get_pool_mode(pool) >= PM_READ_ONLY) 1414 return -EINVAL; 1415 1416 r = dm_pool_commit_metadata(pool->pmd); 1417 if (r) 1418 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1419 else 1420 check_for_space(pool); 1421 1422 return r; 1423 } 1424 1425 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1426 { 1427 unsigned long flags; 1428 1429 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1430 DMWARN("%s: reached low water mark for data device: sending event.", 1431 dm_device_name(pool->pool_md)); 1432 spin_lock_irqsave(&pool->lock, flags); 1433 pool->low_water_triggered = true; 1434 spin_unlock_irqrestore(&pool->lock, flags); 1435 dm_table_event(pool->ti->table); 1436 } 1437 } 1438 1439 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1440 { 1441 int r; 1442 dm_block_t free_blocks; 1443 struct pool *pool = tc->pool; 1444 1445 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1446 return -EINVAL; 1447 1448 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1449 if (r) { 1450 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1451 return r; 1452 } 1453 1454 check_low_water_mark(pool, free_blocks); 1455 1456 if (!free_blocks) { 1457 /* 1458 * Try to commit to see if that will free up some 1459 * more space. 1460 */ 1461 r = commit(pool); 1462 if (r) 1463 return r; 1464 1465 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1466 if (r) { 1467 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1468 return r; 1469 } 1470 1471 if (!free_blocks) { 1472 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1473 return -ENOSPC; 1474 } 1475 } 1476 1477 r = dm_pool_alloc_data_block(pool->pmd, result); 1478 if (r) { 1479 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1480 return r; 1481 } 1482 1483 return 0; 1484 } 1485 1486 /* 1487 * If we have run out of space, queue bios until the device is 1488 * resumed, presumably after having been reloaded with more space. 1489 */ 1490 static void retry_on_resume(struct bio *bio) 1491 { 1492 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1493 struct thin_c *tc = h->tc; 1494 unsigned long flags; 1495 1496 spin_lock_irqsave(&tc->lock, flags); 1497 bio_list_add(&tc->retry_on_resume_list, bio); 1498 spin_unlock_irqrestore(&tc->lock, flags); 1499 } 1500 1501 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1502 { 1503 enum pool_mode m = get_pool_mode(pool); 1504 1505 switch (m) { 1506 case PM_WRITE: 1507 /* Shouldn't get here */ 1508 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1509 return BLK_STS_IOERR; 1510 1511 case PM_OUT_OF_DATA_SPACE: 1512 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1513 1514 case PM_READ_ONLY: 1515 case PM_FAIL: 1516 return BLK_STS_IOERR; 1517 default: 1518 /* Shouldn't get here */ 1519 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1520 return BLK_STS_IOERR; 1521 } 1522 } 1523 1524 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1525 { 1526 blk_status_t error = should_error_unserviceable_bio(pool); 1527 1528 if (error) { 1529 bio->bi_status = error; 1530 bio_endio(bio); 1531 } else 1532 retry_on_resume(bio); 1533 } 1534 1535 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1536 { 1537 struct bio *bio; 1538 struct bio_list bios; 1539 blk_status_t error; 1540 1541 error = should_error_unserviceable_bio(pool); 1542 if (error) { 1543 cell_error_with_code(pool, cell, error); 1544 return; 1545 } 1546 1547 bio_list_init(&bios); 1548 cell_release(pool, cell, &bios); 1549 1550 while ((bio = bio_list_pop(&bios))) 1551 retry_on_resume(bio); 1552 } 1553 1554 static void process_discard_cell_no_passdown(struct thin_c *tc, 1555 struct dm_bio_prison_cell *virt_cell) 1556 { 1557 struct pool *pool = tc->pool; 1558 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1559 1560 /* 1561 * We don't need to lock the data blocks, since there's no 1562 * passdown. We only lock data blocks for allocation and breaking sharing. 1563 */ 1564 m->tc = tc; 1565 m->virt_begin = virt_cell->key.block_begin; 1566 m->virt_end = virt_cell->key.block_end; 1567 m->cell = virt_cell; 1568 m->bio = virt_cell->holder; 1569 1570 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1571 pool->process_prepared_discard(m); 1572 } 1573 1574 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1575 struct bio *bio) 1576 { 1577 struct pool *pool = tc->pool; 1578 1579 int r; 1580 bool maybe_shared; 1581 struct dm_cell_key data_key; 1582 struct dm_bio_prison_cell *data_cell; 1583 struct dm_thin_new_mapping *m; 1584 dm_block_t virt_begin, virt_end, data_begin; 1585 1586 while (begin != end) { 1587 r = ensure_next_mapping(pool); 1588 if (r) 1589 /* we did our best */ 1590 return; 1591 1592 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1593 &data_begin, &maybe_shared); 1594 if (r) 1595 /* 1596 * Silently fail, letting any mappings we've 1597 * created complete. 1598 */ 1599 break; 1600 1601 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1602 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1603 /* contention, we'll give up with this range */ 1604 begin = virt_end; 1605 continue; 1606 } 1607 1608 /* 1609 * IO may still be going to the destination block. We must 1610 * quiesce before we can do the removal. 1611 */ 1612 m = get_next_mapping(pool); 1613 m->tc = tc; 1614 m->maybe_shared = maybe_shared; 1615 m->virt_begin = virt_begin; 1616 m->virt_end = virt_end; 1617 m->data_block = data_begin; 1618 m->cell = data_cell; 1619 m->bio = bio; 1620 1621 /* 1622 * The parent bio must not complete before sub discard bios are 1623 * chained to it (see end_discard's bio_chain)! 1624 * 1625 * This per-mapping bi_remaining increment is paired with 1626 * the implicit decrement that occurs via bio_endio() in 1627 * end_discard(). 1628 */ 1629 bio_inc_remaining(bio); 1630 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1631 pool->process_prepared_discard(m); 1632 1633 begin = virt_end; 1634 } 1635 } 1636 1637 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1638 { 1639 struct bio *bio = virt_cell->holder; 1640 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1641 1642 /* 1643 * The virt_cell will only get freed once the origin bio completes. 1644 * This means it will remain locked while all the individual 1645 * passdown bios are in flight. 1646 */ 1647 h->cell = virt_cell; 1648 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1649 1650 /* 1651 * We complete the bio now, knowing that the bi_remaining field 1652 * will prevent completion until the sub range discards have 1653 * completed. 1654 */ 1655 bio_endio(bio); 1656 } 1657 1658 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1659 { 1660 dm_block_t begin, end; 1661 struct dm_cell_key virt_key; 1662 struct dm_bio_prison_cell *virt_cell; 1663 1664 get_bio_block_range(tc, bio, &begin, &end); 1665 if (begin == end) { 1666 /* 1667 * The discard covers less than a block. 1668 */ 1669 bio_endio(bio); 1670 return; 1671 } 1672 1673 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1674 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1675 /* 1676 * Potential starvation issue: We're relying on the 1677 * fs/application being well behaved, and not trying to 1678 * send IO to a region at the same time as discarding it. 1679 * If they do this persistently then it's possible this 1680 * cell will never be granted. 1681 */ 1682 return; 1683 1684 tc->pool->process_discard_cell(tc, virt_cell); 1685 } 1686 1687 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1688 struct dm_cell_key *key, 1689 struct dm_thin_lookup_result *lookup_result, 1690 struct dm_bio_prison_cell *cell) 1691 { 1692 int r; 1693 dm_block_t data_block; 1694 struct pool *pool = tc->pool; 1695 1696 r = alloc_data_block(tc, &data_block); 1697 switch (r) { 1698 case 0: 1699 schedule_internal_copy(tc, block, lookup_result->block, 1700 data_block, cell, bio); 1701 break; 1702 1703 case -ENOSPC: 1704 retry_bios_on_resume(pool, cell); 1705 break; 1706 1707 default: 1708 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1709 __func__, r); 1710 cell_error(pool, cell); 1711 break; 1712 } 1713 } 1714 1715 static void __remap_and_issue_shared_cell(void *context, 1716 struct dm_bio_prison_cell *cell) 1717 { 1718 struct remap_info *info = context; 1719 struct bio *bio; 1720 1721 while ((bio = bio_list_pop(&cell->bios))) { 1722 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1723 bio_op(bio) == REQ_OP_DISCARD) 1724 bio_list_add(&info->defer_bios, bio); 1725 else { 1726 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1727 1728 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1729 inc_all_io_entry(info->tc->pool, bio); 1730 bio_list_add(&info->issue_bios, bio); 1731 } 1732 } 1733 } 1734 1735 static void remap_and_issue_shared_cell(struct thin_c *tc, 1736 struct dm_bio_prison_cell *cell, 1737 dm_block_t block) 1738 { 1739 struct bio *bio; 1740 struct remap_info info; 1741 1742 info.tc = tc; 1743 bio_list_init(&info.defer_bios); 1744 bio_list_init(&info.issue_bios); 1745 1746 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1747 &info, cell); 1748 1749 while ((bio = bio_list_pop(&info.defer_bios))) 1750 thin_defer_bio(tc, bio); 1751 1752 while ((bio = bio_list_pop(&info.issue_bios))) 1753 remap_and_issue(tc, bio, block); 1754 } 1755 1756 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1757 dm_block_t block, 1758 struct dm_thin_lookup_result *lookup_result, 1759 struct dm_bio_prison_cell *virt_cell) 1760 { 1761 struct dm_bio_prison_cell *data_cell; 1762 struct pool *pool = tc->pool; 1763 struct dm_cell_key key; 1764 1765 /* 1766 * If cell is already occupied, then sharing is already in the process 1767 * of being broken so we have nothing further to do here. 1768 */ 1769 build_data_key(tc->td, lookup_result->block, &key); 1770 if (bio_detain(pool, &key, bio, &data_cell)) { 1771 cell_defer_no_holder(tc, virt_cell); 1772 return; 1773 } 1774 1775 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1776 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1777 cell_defer_no_holder(tc, virt_cell); 1778 } else { 1779 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1780 1781 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1782 inc_all_io_entry(pool, bio); 1783 remap_and_issue(tc, bio, lookup_result->block); 1784 1785 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1786 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1787 } 1788 } 1789 1790 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1791 struct dm_bio_prison_cell *cell) 1792 { 1793 int r; 1794 dm_block_t data_block; 1795 struct pool *pool = tc->pool; 1796 1797 /* 1798 * Remap empty bios (flushes) immediately, without provisioning. 1799 */ 1800 if (!bio->bi_iter.bi_size) { 1801 inc_all_io_entry(pool, bio); 1802 cell_defer_no_holder(tc, cell); 1803 1804 remap_and_issue(tc, bio, 0); 1805 return; 1806 } 1807 1808 /* 1809 * Fill read bios with zeroes and complete them immediately. 1810 */ 1811 if (bio_data_dir(bio) == READ) { 1812 zero_fill_bio(bio); 1813 cell_defer_no_holder(tc, cell); 1814 bio_endio(bio); 1815 return; 1816 } 1817 1818 r = alloc_data_block(tc, &data_block); 1819 switch (r) { 1820 case 0: 1821 if (tc->origin_dev) 1822 schedule_external_copy(tc, block, data_block, cell, bio); 1823 else 1824 schedule_zero(tc, block, data_block, cell, bio); 1825 break; 1826 1827 case -ENOSPC: 1828 retry_bios_on_resume(pool, cell); 1829 break; 1830 1831 default: 1832 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1833 __func__, r); 1834 cell_error(pool, cell); 1835 break; 1836 } 1837 } 1838 1839 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1840 { 1841 int r; 1842 struct pool *pool = tc->pool; 1843 struct bio *bio = cell->holder; 1844 dm_block_t block = get_bio_block(tc, bio); 1845 struct dm_thin_lookup_result lookup_result; 1846 1847 if (tc->requeue_mode) { 1848 cell_requeue(pool, cell); 1849 return; 1850 } 1851 1852 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1853 switch (r) { 1854 case 0: 1855 if (lookup_result.shared) 1856 process_shared_bio(tc, bio, block, &lookup_result, cell); 1857 else { 1858 inc_all_io_entry(pool, bio); 1859 remap_and_issue(tc, bio, lookup_result.block); 1860 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1861 } 1862 break; 1863 1864 case -ENODATA: 1865 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1866 inc_all_io_entry(pool, bio); 1867 cell_defer_no_holder(tc, cell); 1868 1869 if (bio_end_sector(bio) <= tc->origin_size) 1870 remap_to_origin_and_issue(tc, bio); 1871 1872 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1873 zero_fill_bio(bio); 1874 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1875 remap_to_origin_and_issue(tc, bio); 1876 1877 } else { 1878 zero_fill_bio(bio); 1879 bio_endio(bio); 1880 } 1881 } else 1882 provision_block(tc, bio, block, cell); 1883 break; 1884 1885 default: 1886 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1887 __func__, r); 1888 cell_defer_no_holder(tc, cell); 1889 bio_io_error(bio); 1890 break; 1891 } 1892 } 1893 1894 static void process_bio(struct thin_c *tc, struct bio *bio) 1895 { 1896 struct pool *pool = tc->pool; 1897 dm_block_t block = get_bio_block(tc, bio); 1898 struct dm_bio_prison_cell *cell; 1899 struct dm_cell_key key; 1900 1901 /* 1902 * If cell is already occupied, then the block is already 1903 * being provisioned so we have nothing further to do here. 1904 */ 1905 build_virtual_key(tc->td, block, &key); 1906 if (bio_detain(pool, &key, bio, &cell)) 1907 return; 1908 1909 process_cell(tc, cell); 1910 } 1911 1912 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1913 struct dm_bio_prison_cell *cell) 1914 { 1915 int r; 1916 int rw = bio_data_dir(bio); 1917 dm_block_t block = get_bio_block(tc, bio); 1918 struct dm_thin_lookup_result lookup_result; 1919 1920 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1921 switch (r) { 1922 case 0: 1923 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1924 handle_unserviceable_bio(tc->pool, bio); 1925 if (cell) 1926 cell_defer_no_holder(tc, cell); 1927 } else { 1928 inc_all_io_entry(tc->pool, bio); 1929 remap_and_issue(tc, bio, lookup_result.block); 1930 if (cell) 1931 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1932 } 1933 break; 1934 1935 case -ENODATA: 1936 if (cell) 1937 cell_defer_no_holder(tc, cell); 1938 if (rw != READ) { 1939 handle_unserviceable_bio(tc->pool, bio); 1940 break; 1941 } 1942 1943 if (tc->origin_dev) { 1944 inc_all_io_entry(tc->pool, bio); 1945 remap_to_origin_and_issue(tc, bio); 1946 break; 1947 } 1948 1949 zero_fill_bio(bio); 1950 bio_endio(bio); 1951 break; 1952 1953 default: 1954 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1955 __func__, r); 1956 if (cell) 1957 cell_defer_no_holder(tc, cell); 1958 bio_io_error(bio); 1959 break; 1960 } 1961 } 1962 1963 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1964 { 1965 __process_bio_read_only(tc, bio, NULL); 1966 } 1967 1968 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1969 { 1970 __process_bio_read_only(tc, cell->holder, cell); 1971 } 1972 1973 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1974 { 1975 bio_endio(bio); 1976 } 1977 1978 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1979 { 1980 bio_io_error(bio); 1981 } 1982 1983 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1984 { 1985 cell_success(tc->pool, cell); 1986 } 1987 1988 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1989 { 1990 cell_error(tc->pool, cell); 1991 } 1992 1993 /* 1994 * FIXME: should we also commit due to size of transaction, measured in 1995 * metadata blocks? 1996 */ 1997 static int need_commit_due_to_time(struct pool *pool) 1998 { 1999 return !time_in_range(jiffies, pool->last_commit_jiffies, 2000 pool->last_commit_jiffies + COMMIT_PERIOD); 2001 } 2002 2003 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2004 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2005 2006 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2007 { 2008 struct rb_node **rbp, *parent; 2009 struct dm_thin_endio_hook *pbd; 2010 sector_t bi_sector = bio->bi_iter.bi_sector; 2011 2012 rbp = &tc->sort_bio_list.rb_node; 2013 parent = NULL; 2014 while (*rbp) { 2015 parent = *rbp; 2016 pbd = thin_pbd(parent); 2017 2018 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2019 rbp = &(*rbp)->rb_left; 2020 else 2021 rbp = &(*rbp)->rb_right; 2022 } 2023 2024 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2025 rb_link_node(&pbd->rb_node, parent, rbp); 2026 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2027 } 2028 2029 static void __extract_sorted_bios(struct thin_c *tc) 2030 { 2031 struct rb_node *node; 2032 struct dm_thin_endio_hook *pbd; 2033 struct bio *bio; 2034 2035 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2036 pbd = thin_pbd(node); 2037 bio = thin_bio(pbd); 2038 2039 bio_list_add(&tc->deferred_bio_list, bio); 2040 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2041 } 2042 2043 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2044 } 2045 2046 static void __sort_thin_deferred_bios(struct thin_c *tc) 2047 { 2048 struct bio *bio; 2049 struct bio_list bios; 2050 2051 bio_list_init(&bios); 2052 bio_list_merge(&bios, &tc->deferred_bio_list); 2053 bio_list_init(&tc->deferred_bio_list); 2054 2055 /* Sort deferred_bio_list using rb-tree */ 2056 while ((bio = bio_list_pop(&bios))) 2057 __thin_bio_rb_add(tc, bio); 2058 2059 /* 2060 * Transfer the sorted bios in sort_bio_list back to 2061 * deferred_bio_list to allow lockless submission of 2062 * all bios. 2063 */ 2064 __extract_sorted_bios(tc); 2065 } 2066 2067 static void process_thin_deferred_bios(struct thin_c *tc) 2068 { 2069 struct pool *pool = tc->pool; 2070 unsigned long flags; 2071 struct bio *bio; 2072 struct bio_list bios; 2073 struct blk_plug plug; 2074 unsigned count = 0; 2075 2076 if (tc->requeue_mode) { 2077 error_thin_bio_list(tc, &tc->deferred_bio_list, 2078 BLK_STS_DM_REQUEUE); 2079 return; 2080 } 2081 2082 bio_list_init(&bios); 2083 2084 spin_lock_irqsave(&tc->lock, flags); 2085 2086 if (bio_list_empty(&tc->deferred_bio_list)) { 2087 spin_unlock_irqrestore(&tc->lock, flags); 2088 return; 2089 } 2090 2091 __sort_thin_deferred_bios(tc); 2092 2093 bio_list_merge(&bios, &tc->deferred_bio_list); 2094 bio_list_init(&tc->deferred_bio_list); 2095 2096 spin_unlock_irqrestore(&tc->lock, flags); 2097 2098 blk_start_plug(&plug); 2099 while ((bio = bio_list_pop(&bios))) { 2100 /* 2101 * If we've got no free new_mapping structs, and processing 2102 * this bio might require one, we pause until there are some 2103 * prepared mappings to process. 2104 */ 2105 if (ensure_next_mapping(pool)) { 2106 spin_lock_irqsave(&tc->lock, flags); 2107 bio_list_add(&tc->deferred_bio_list, bio); 2108 bio_list_merge(&tc->deferred_bio_list, &bios); 2109 spin_unlock_irqrestore(&tc->lock, flags); 2110 break; 2111 } 2112 2113 if (bio_op(bio) == REQ_OP_DISCARD) 2114 pool->process_discard(tc, bio); 2115 else 2116 pool->process_bio(tc, bio); 2117 2118 if ((count++ & 127) == 0) { 2119 throttle_work_update(&pool->throttle); 2120 dm_pool_issue_prefetches(pool->pmd); 2121 } 2122 } 2123 blk_finish_plug(&plug); 2124 } 2125 2126 static int cmp_cells(const void *lhs, const void *rhs) 2127 { 2128 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2129 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2130 2131 BUG_ON(!lhs_cell->holder); 2132 BUG_ON(!rhs_cell->holder); 2133 2134 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2135 return -1; 2136 2137 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2138 return 1; 2139 2140 return 0; 2141 } 2142 2143 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2144 { 2145 unsigned count = 0; 2146 struct dm_bio_prison_cell *cell, *tmp; 2147 2148 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2149 if (count >= CELL_SORT_ARRAY_SIZE) 2150 break; 2151 2152 pool->cell_sort_array[count++] = cell; 2153 list_del(&cell->user_list); 2154 } 2155 2156 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2157 2158 return count; 2159 } 2160 2161 static void process_thin_deferred_cells(struct thin_c *tc) 2162 { 2163 struct pool *pool = tc->pool; 2164 unsigned long flags; 2165 struct list_head cells; 2166 struct dm_bio_prison_cell *cell; 2167 unsigned i, j, count; 2168 2169 INIT_LIST_HEAD(&cells); 2170 2171 spin_lock_irqsave(&tc->lock, flags); 2172 list_splice_init(&tc->deferred_cells, &cells); 2173 spin_unlock_irqrestore(&tc->lock, flags); 2174 2175 if (list_empty(&cells)) 2176 return; 2177 2178 do { 2179 count = sort_cells(tc->pool, &cells); 2180 2181 for (i = 0; i < count; i++) { 2182 cell = pool->cell_sort_array[i]; 2183 BUG_ON(!cell->holder); 2184 2185 /* 2186 * If we've got no free new_mapping structs, and processing 2187 * this bio might require one, we pause until there are some 2188 * prepared mappings to process. 2189 */ 2190 if (ensure_next_mapping(pool)) { 2191 for (j = i; j < count; j++) 2192 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2193 2194 spin_lock_irqsave(&tc->lock, flags); 2195 list_splice(&cells, &tc->deferred_cells); 2196 spin_unlock_irqrestore(&tc->lock, flags); 2197 return; 2198 } 2199 2200 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2201 pool->process_discard_cell(tc, cell); 2202 else 2203 pool->process_cell(tc, cell); 2204 } 2205 } while (!list_empty(&cells)); 2206 } 2207 2208 static void thin_get(struct thin_c *tc); 2209 static void thin_put(struct thin_c *tc); 2210 2211 /* 2212 * We can't hold rcu_read_lock() around code that can block. So we 2213 * find a thin with the rcu lock held; bump a refcount; then drop 2214 * the lock. 2215 */ 2216 static struct thin_c *get_first_thin(struct pool *pool) 2217 { 2218 struct thin_c *tc = NULL; 2219 2220 rcu_read_lock(); 2221 if (!list_empty(&pool->active_thins)) { 2222 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2223 thin_get(tc); 2224 } 2225 rcu_read_unlock(); 2226 2227 return tc; 2228 } 2229 2230 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2231 { 2232 struct thin_c *old_tc = tc; 2233 2234 rcu_read_lock(); 2235 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2236 thin_get(tc); 2237 thin_put(old_tc); 2238 rcu_read_unlock(); 2239 return tc; 2240 } 2241 thin_put(old_tc); 2242 rcu_read_unlock(); 2243 2244 return NULL; 2245 } 2246 2247 static void process_deferred_bios(struct pool *pool) 2248 { 2249 unsigned long flags; 2250 struct bio *bio; 2251 struct bio_list bios; 2252 struct thin_c *tc; 2253 2254 tc = get_first_thin(pool); 2255 while (tc) { 2256 process_thin_deferred_cells(tc); 2257 process_thin_deferred_bios(tc); 2258 tc = get_next_thin(pool, tc); 2259 } 2260 2261 /* 2262 * If there are any deferred flush bios, we must commit 2263 * the metadata before issuing them. 2264 */ 2265 bio_list_init(&bios); 2266 spin_lock_irqsave(&pool->lock, flags); 2267 bio_list_merge(&bios, &pool->deferred_flush_bios); 2268 bio_list_init(&pool->deferred_flush_bios); 2269 spin_unlock_irqrestore(&pool->lock, flags); 2270 2271 if (bio_list_empty(&bios) && 2272 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2273 return; 2274 2275 if (commit(pool)) { 2276 while ((bio = bio_list_pop(&bios))) 2277 bio_io_error(bio); 2278 return; 2279 } 2280 pool->last_commit_jiffies = jiffies; 2281 2282 while ((bio = bio_list_pop(&bios))) 2283 generic_make_request(bio); 2284 } 2285 2286 static void do_worker(struct work_struct *ws) 2287 { 2288 struct pool *pool = container_of(ws, struct pool, worker); 2289 2290 throttle_work_start(&pool->throttle); 2291 dm_pool_issue_prefetches(pool->pmd); 2292 throttle_work_update(&pool->throttle); 2293 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2294 throttle_work_update(&pool->throttle); 2295 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2296 throttle_work_update(&pool->throttle); 2297 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2298 throttle_work_update(&pool->throttle); 2299 process_deferred_bios(pool); 2300 throttle_work_complete(&pool->throttle); 2301 } 2302 2303 /* 2304 * We want to commit periodically so that not too much 2305 * unwritten data builds up. 2306 */ 2307 static void do_waker(struct work_struct *ws) 2308 { 2309 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2310 wake_worker(pool); 2311 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2312 } 2313 2314 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2315 2316 /* 2317 * We're holding onto IO to allow userland time to react. After the 2318 * timeout either the pool will have been resized (and thus back in 2319 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2320 */ 2321 static void do_no_space_timeout(struct work_struct *ws) 2322 { 2323 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2324 no_space_timeout); 2325 2326 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2327 pool->pf.error_if_no_space = true; 2328 notify_of_pool_mode_change_to_oods(pool); 2329 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2330 } 2331 } 2332 2333 /*----------------------------------------------------------------*/ 2334 2335 struct pool_work { 2336 struct work_struct worker; 2337 struct completion complete; 2338 }; 2339 2340 static struct pool_work *to_pool_work(struct work_struct *ws) 2341 { 2342 return container_of(ws, struct pool_work, worker); 2343 } 2344 2345 static void pool_work_complete(struct pool_work *pw) 2346 { 2347 complete(&pw->complete); 2348 } 2349 2350 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2351 void (*fn)(struct work_struct *)) 2352 { 2353 INIT_WORK_ONSTACK(&pw->worker, fn); 2354 init_completion(&pw->complete); 2355 queue_work(pool->wq, &pw->worker); 2356 wait_for_completion(&pw->complete); 2357 } 2358 2359 /*----------------------------------------------------------------*/ 2360 2361 struct noflush_work { 2362 struct pool_work pw; 2363 struct thin_c *tc; 2364 }; 2365 2366 static struct noflush_work *to_noflush(struct work_struct *ws) 2367 { 2368 return container_of(to_pool_work(ws), struct noflush_work, pw); 2369 } 2370 2371 static void do_noflush_start(struct work_struct *ws) 2372 { 2373 struct noflush_work *w = to_noflush(ws); 2374 w->tc->requeue_mode = true; 2375 requeue_io(w->tc); 2376 pool_work_complete(&w->pw); 2377 } 2378 2379 static void do_noflush_stop(struct work_struct *ws) 2380 { 2381 struct noflush_work *w = to_noflush(ws); 2382 w->tc->requeue_mode = false; 2383 pool_work_complete(&w->pw); 2384 } 2385 2386 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2387 { 2388 struct noflush_work w; 2389 2390 w.tc = tc; 2391 pool_work_wait(&w.pw, tc->pool, fn); 2392 } 2393 2394 /*----------------------------------------------------------------*/ 2395 2396 static enum pool_mode get_pool_mode(struct pool *pool) 2397 { 2398 return pool->pf.mode; 2399 } 2400 2401 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2402 { 2403 dm_table_event(pool->ti->table); 2404 DMINFO("%s: switching pool to %s mode", 2405 dm_device_name(pool->pool_md), new_mode); 2406 } 2407 2408 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2409 { 2410 if (!pool->pf.error_if_no_space) 2411 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2412 else 2413 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2414 } 2415 2416 static bool passdown_enabled(struct pool_c *pt) 2417 { 2418 return pt->adjusted_pf.discard_passdown; 2419 } 2420 2421 static void set_discard_callbacks(struct pool *pool) 2422 { 2423 struct pool_c *pt = pool->ti->private; 2424 2425 if (passdown_enabled(pt)) { 2426 pool->process_discard_cell = process_discard_cell_passdown; 2427 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2428 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2429 } else { 2430 pool->process_discard_cell = process_discard_cell_no_passdown; 2431 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2432 } 2433 } 2434 2435 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2436 { 2437 struct pool_c *pt = pool->ti->private; 2438 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2439 enum pool_mode old_mode = get_pool_mode(pool); 2440 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2441 2442 /* 2443 * Never allow the pool to transition to PM_WRITE mode if user 2444 * intervention is required to verify metadata and data consistency. 2445 */ 2446 if (new_mode == PM_WRITE && needs_check) { 2447 DMERR("%s: unable to switch pool to write mode until repaired.", 2448 dm_device_name(pool->pool_md)); 2449 if (old_mode != new_mode) 2450 new_mode = old_mode; 2451 else 2452 new_mode = PM_READ_ONLY; 2453 } 2454 /* 2455 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2456 * not going to recover without a thin_repair. So we never let the 2457 * pool move out of the old mode. 2458 */ 2459 if (old_mode == PM_FAIL) 2460 new_mode = old_mode; 2461 2462 switch (new_mode) { 2463 case PM_FAIL: 2464 if (old_mode != new_mode) 2465 notify_of_pool_mode_change(pool, "failure"); 2466 dm_pool_metadata_read_only(pool->pmd); 2467 pool->process_bio = process_bio_fail; 2468 pool->process_discard = process_bio_fail; 2469 pool->process_cell = process_cell_fail; 2470 pool->process_discard_cell = process_cell_fail; 2471 pool->process_prepared_mapping = process_prepared_mapping_fail; 2472 pool->process_prepared_discard = process_prepared_discard_fail; 2473 2474 error_retry_list(pool); 2475 break; 2476 2477 case PM_READ_ONLY: 2478 if (old_mode != new_mode) 2479 notify_of_pool_mode_change(pool, "read-only"); 2480 dm_pool_metadata_read_only(pool->pmd); 2481 pool->process_bio = process_bio_read_only; 2482 pool->process_discard = process_bio_success; 2483 pool->process_cell = process_cell_read_only; 2484 pool->process_discard_cell = process_cell_success; 2485 pool->process_prepared_mapping = process_prepared_mapping_fail; 2486 pool->process_prepared_discard = process_prepared_discard_success; 2487 2488 error_retry_list(pool); 2489 break; 2490 2491 case PM_OUT_OF_DATA_SPACE: 2492 /* 2493 * Ideally we'd never hit this state; the low water mark 2494 * would trigger userland to extend the pool before we 2495 * completely run out of data space. However, many small 2496 * IOs to unprovisioned space can consume data space at an 2497 * alarming rate. Adjust your low water mark if you're 2498 * frequently seeing this mode. 2499 */ 2500 if (old_mode != new_mode) 2501 notify_of_pool_mode_change_to_oods(pool); 2502 pool->out_of_data_space = true; 2503 pool->process_bio = process_bio_read_only; 2504 pool->process_discard = process_discard_bio; 2505 pool->process_cell = process_cell_read_only; 2506 pool->process_prepared_mapping = process_prepared_mapping; 2507 set_discard_callbacks(pool); 2508 2509 if (!pool->pf.error_if_no_space && no_space_timeout) 2510 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2511 break; 2512 2513 case PM_WRITE: 2514 if (old_mode != new_mode) 2515 notify_of_pool_mode_change(pool, "write"); 2516 pool->out_of_data_space = false; 2517 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2518 dm_pool_metadata_read_write(pool->pmd); 2519 pool->process_bio = process_bio; 2520 pool->process_discard = process_discard_bio; 2521 pool->process_cell = process_cell; 2522 pool->process_prepared_mapping = process_prepared_mapping; 2523 set_discard_callbacks(pool); 2524 break; 2525 } 2526 2527 pool->pf.mode = new_mode; 2528 /* 2529 * The pool mode may have changed, sync it so bind_control_target() 2530 * doesn't cause an unexpected mode transition on resume. 2531 */ 2532 pt->adjusted_pf.mode = new_mode; 2533 } 2534 2535 static void abort_transaction(struct pool *pool) 2536 { 2537 const char *dev_name = dm_device_name(pool->pool_md); 2538 2539 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2540 if (dm_pool_abort_metadata(pool->pmd)) { 2541 DMERR("%s: failed to abort metadata transaction", dev_name); 2542 set_pool_mode(pool, PM_FAIL); 2543 } 2544 2545 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2546 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2547 set_pool_mode(pool, PM_FAIL); 2548 } 2549 } 2550 2551 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2552 { 2553 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2554 dm_device_name(pool->pool_md), op, r); 2555 2556 abort_transaction(pool); 2557 set_pool_mode(pool, PM_READ_ONLY); 2558 } 2559 2560 /*----------------------------------------------------------------*/ 2561 2562 /* 2563 * Mapping functions. 2564 */ 2565 2566 /* 2567 * Called only while mapping a thin bio to hand it over to the workqueue. 2568 */ 2569 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2570 { 2571 unsigned long flags; 2572 struct pool *pool = tc->pool; 2573 2574 spin_lock_irqsave(&tc->lock, flags); 2575 bio_list_add(&tc->deferred_bio_list, bio); 2576 spin_unlock_irqrestore(&tc->lock, flags); 2577 2578 wake_worker(pool); 2579 } 2580 2581 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2582 { 2583 struct pool *pool = tc->pool; 2584 2585 throttle_lock(&pool->throttle); 2586 thin_defer_bio(tc, bio); 2587 throttle_unlock(&pool->throttle); 2588 } 2589 2590 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2591 { 2592 unsigned long flags; 2593 struct pool *pool = tc->pool; 2594 2595 throttle_lock(&pool->throttle); 2596 spin_lock_irqsave(&tc->lock, flags); 2597 list_add_tail(&cell->user_list, &tc->deferred_cells); 2598 spin_unlock_irqrestore(&tc->lock, flags); 2599 throttle_unlock(&pool->throttle); 2600 2601 wake_worker(pool); 2602 } 2603 2604 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2605 { 2606 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2607 2608 h->tc = tc; 2609 h->shared_read_entry = NULL; 2610 h->all_io_entry = NULL; 2611 h->overwrite_mapping = NULL; 2612 h->cell = NULL; 2613 } 2614 2615 /* 2616 * Non-blocking function called from the thin target's map function. 2617 */ 2618 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2619 { 2620 int r; 2621 struct thin_c *tc = ti->private; 2622 dm_block_t block = get_bio_block(tc, bio); 2623 struct dm_thin_device *td = tc->td; 2624 struct dm_thin_lookup_result result; 2625 struct dm_bio_prison_cell *virt_cell, *data_cell; 2626 struct dm_cell_key key; 2627 2628 thin_hook_bio(tc, bio); 2629 2630 if (tc->requeue_mode) { 2631 bio->bi_status = BLK_STS_DM_REQUEUE; 2632 bio_endio(bio); 2633 return DM_MAPIO_SUBMITTED; 2634 } 2635 2636 if (get_pool_mode(tc->pool) == PM_FAIL) { 2637 bio_io_error(bio); 2638 return DM_MAPIO_SUBMITTED; 2639 } 2640 2641 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2642 thin_defer_bio_with_throttle(tc, bio); 2643 return DM_MAPIO_SUBMITTED; 2644 } 2645 2646 /* 2647 * We must hold the virtual cell before doing the lookup, otherwise 2648 * there's a race with discard. 2649 */ 2650 build_virtual_key(tc->td, block, &key); 2651 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2652 return DM_MAPIO_SUBMITTED; 2653 2654 r = dm_thin_find_block(td, block, 0, &result); 2655 2656 /* 2657 * Note that we defer readahead too. 2658 */ 2659 switch (r) { 2660 case 0: 2661 if (unlikely(result.shared)) { 2662 /* 2663 * We have a race condition here between the 2664 * result.shared value returned by the lookup and 2665 * snapshot creation, which may cause new 2666 * sharing. 2667 * 2668 * To avoid this always quiesce the origin before 2669 * taking the snap. You want to do this anyway to 2670 * ensure a consistent application view 2671 * (i.e. lockfs). 2672 * 2673 * More distant ancestors are irrelevant. The 2674 * shared flag will be set in their case. 2675 */ 2676 thin_defer_cell(tc, virt_cell); 2677 return DM_MAPIO_SUBMITTED; 2678 } 2679 2680 build_data_key(tc->td, result.block, &key); 2681 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2682 cell_defer_no_holder(tc, virt_cell); 2683 return DM_MAPIO_SUBMITTED; 2684 } 2685 2686 inc_all_io_entry(tc->pool, bio); 2687 cell_defer_no_holder(tc, data_cell); 2688 cell_defer_no_holder(tc, virt_cell); 2689 2690 remap(tc, bio, result.block); 2691 return DM_MAPIO_REMAPPED; 2692 2693 case -ENODATA: 2694 case -EWOULDBLOCK: 2695 thin_defer_cell(tc, virt_cell); 2696 return DM_MAPIO_SUBMITTED; 2697 2698 default: 2699 /* 2700 * Must always call bio_io_error on failure. 2701 * dm_thin_find_block can fail with -EINVAL if the 2702 * pool is switched to fail-io mode. 2703 */ 2704 bio_io_error(bio); 2705 cell_defer_no_holder(tc, virt_cell); 2706 return DM_MAPIO_SUBMITTED; 2707 } 2708 } 2709 2710 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2711 { 2712 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2713 struct request_queue *q; 2714 2715 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2716 return 1; 2717 2718 q = bdev_get_queue(pt->data_dev->bdev); 2719 return bdi_congested(q->backing_dev_info, bdi_bits); 2720 } 2721 2722 static void requeue_bios(struct pool *pool) 2723 { 2724 unsigned long flags; 2725 struct thin_c *tc; 2726 2727 rcu_read_lock(); 2728 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2729 spin_lock_irqsave(&tc->lock, flags); 2730 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2731 bio_list_init(&tc->retry_on_resume_list); 2732 spin_unlock_irqrestore(&tc->lock, flags); 2733 } 2734 rcu_read_unlock(); 2735 } 2736 2737 /*---------------------------------------------------------------- 2738 * Binding of control targets to a pool object 2739 *--------------------------------------------------------------*/ 2740 static bool data_dev_supports_discard(struct pool_c *pt) 2741 { 2742 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2743 2744 return q && blk_queue_discard(q); 2745 } 2746 2747 static bool is_factor(sector_t block_size, uint32_t n) 2748 { 2749 return !sector_div(block_size, n); 2750 } 2751 2752 /* 2753 * If discard_passdown was enabled verify that the data device 2754 * supports discards. Disable discard_passdown if not. 2755 */ 2756 static void disable_passdown_if_not_supported(struct pool_c *pt) 2757 { 2758 struct pool *pool = pt->pool; 2759 struct block_device *data_bdev = pt->data_dev->bdev; 2760 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2761 const char *reason = NULL; 2762 char buf[BDEVNAME_SIZE]; 2763 2764 if (!pt->adjusted_pf.discard_passdown) 2765 return; 2766 2767 if (!data_dev_supports_discard(pt)) 2768 reason = "discard unsupported"; 2769 2770 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2771 reason = "max discard sectors smaller than a block"; 2772 2773 if (reason) { 2774 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2775 pt->adjusted_pf.discard_passdown = false; 2776 } 2777 } 2778 2779 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2780 { 2781 struct pool_c *pt = ti->private; 2782 2783 /* 2784 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2785 */ 2786 enum pool_mode old_mode = get_pool_mode(pool); 2787 enum pool_mode new_mode = pt->adjusted_pf.mode; 2788 2789 /* 2790 * Don't change the pool's mode until set_pool_mode() below. 2791 * Otherwise the pool's process_* function pointers may 2792 * not match the desired pool mode. 2793 */ 2794 pt->adjusted_pf.mode = old_mode; 2795 2796 pool->ti = ti; 2797 pool->pf = pt->adjusted_pf; 2798 pool->low_water_blocks = pt->low_water_blocks; 2799 2800 set_pool_mode(pool, new_mode); 2801 2802 return 0; 2803 } 2804 2805 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2806 { 2807 if (pool->ti == ti) 2808 pool->ti = NULL; 2809 } 2810 2811 /*---------------------------------------------------------------- 2812 * Pool creation 2813 *--------------------------------------------------------------*/ 2814 /* Initialize pool features. */ 2815 static void pool_features_init(struct pool_features *pf) 2816 { 2817 pf->mode = PM_WRITE; 2818 pf->zero_new_blocks = true; 2819 pf->discard_enabled = true; 2820 pf->discard_passdown = true; 2821 pf->error_if_no_space = false; 2822 } 2823 2824 static void __pool_destroy(struct pool *pool) 2825 { 2826 __pool_table_remove(pool); 2827 2828 vfree(pool->cell_sort_array); 2829 if (dm_pool_metadata_close(pool->pmd) < 0) 2830 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2831 2832 dm_bio_prison_destroy(pool->prison); 2833 dm_kcopyd_client_destroy(pool->copier); 2834 2835 if (pool->wq) 2836 destroy_workqueue(pool->wq); 2837 2838 if (pool->next_mapping) 2839 mempool_free(pool->next_mapping, &pool->mapping_pool); 2840 mempool_exit(&pool->mapping_pool); 2841 dm_deferred_set_destroy(pool->shared_read_ds); 2842 dm_deferred_set_destroy(pool->all_io_ds); 2843 kfree(pool); 2844 } 2845 2846 static struct kmem_cache *_new_mapping_cache; 2847 2848 static struct pool *pool_create(struct mapped_device *pool_md, 2849 struct block_device *metadata_dev, 2850 unsigned long block_size, 2851 int read_only, char **error) 2852 { 2853 int r; 2854 void *err_p; 2855 struct pool *pool; 2856 struct dm_pool_metadata *pmd; 2857 bool format_device = read_only ? false : true; 2858 2859 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2860 if (IS_ERR(pmd)) { 2861 *error = "Error creating metadata object"; 2862 return (struct pool *)pmd; 2863 } 2864 2865 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2866 if (!pool) { 2867 *error = "Error allocating memory for pool"; 2868 err_p = ERR_PTR(-ENOMEM); 2869 goto bad_pool; 2870 } 2871 2872 pool->pmd = pmd; 2873 pool->sectors_per_block = block_size; 2874 if (block_size & (block_size - 1)) 2875 pool->sectors_per_block_shift = -1; 2876 else 2877 pool->sectors_per_block_shift = __ffs(block_size); 2878 pool->low_water_blocks = 0; 2879 pool_features_init(&pool->pf); 2880 pool->prison = dm_bio_prison_create(); 2881 if (!pool->prison) { 2882 *error = "Error creating pool's bio prison"; 2883 err_p = ERR_PTR(-ENOMEM); 2884 goto bad_prison; 2885 } 2886 2887 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2888 if (IS_ERR(pool->copier)) { 2889 r = PTR_ERR(pool->copier); 2890 *error = "Error creating pool's kcopyd client"; 2891 err_p = ERR_PTR(r); 2892 goto bad_kcopyd_client; 2893 } 2894 2895 /* 2896 * Create singlethreaded workqueue that will service all devices 2897 * that use this metadata. 2898 */ 2899 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2900 if (!pool->wq) { 2901 *error = "Error creating pool's workqueue"; 2902 err_p = ERR_PTR(-ENOMEM); 2903 goto bad_wq; 2904 } 2905 2906 throttle_init(&pool->throttle); 2907 INIT_WORK(&pool->worker, do_worker); 2908 INIT_DELAYED_WORK(&pool->waker, do_waker); 2909 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2910 spin_lock_init(&pool->lock); 2911 bio_list_init(&pool->deferred_flush_bios); 2912 INIT_LIST_HEAD(&pool->prepared_mappings); 2913 INIT_LIST_HEAD(&pool->prepared_discards); 2914 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2915 INIT_LIST_HEAD(&pool->active_thins); 2916 pool->low_water_triggered = false; 2917 pool->suspended = true; 2918 pool->out_of_data_space = false; 2919 2920 pool->shared_read_ds = dm_deferred_set_create(); 2921 if (!pool->shared_read_ds) { 2922 *error = "Error creating pool's shared read deferred set"; 2923 err_p = ERR_PTR(-ENOMEM); 2924 goto bad_shared_read_ds; 2925 } 2926 2927 pool->all_io_ds = dm_deferred_set_create(); 2928 if (!pool->all_io_ds) { 2929 *error = "Error creating pool's all io deferred set"; 2930 err_p = ERR_PTR(-ENOMEM); 2931 goto bad_all_io_ds; 2932 } 2933 2934 pool->next_mapping = NULL; 2935 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 2936 _new_mapping_cache); 2937 if (r) { 2938 *error = "Error creating pool's mapping mempool"; 2939 err_p = ERR_PTR(r); 2940 goto bad_mapping_pool; 2941 } 2942 2943 pool->cell_sort_array = 2944 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 2945 sizeof(*pool->cell_sort_array))); 2946 if (!pool->cell_sort_array) { 2947 *error = "Error allocating cell sort array"; 2948 err_p = ERR_PTR(-ENOMEM); 2949 goto bad_sort_array; 2950 } 2951 2952 pool->ref_count = 1; 2953 pool->last_commit_jiffies = jiffies; 2954 pool->pool_md = pool_md; 2955 pool->md_dev = metadata_dev; 2956 __pool_table_insert(pool); 2957 2958 return pool; 2959 2960 bad_sort_array: 2961 mempool_exit(&pool->mapping_pool); 2962 bad_mapping_pool: 2963 dm_deferred_set_destroy(pool->all_io_ds); 2964 bad_all_io_ds: 2965 dm_deferred_set_destroy(pool->shared_read_ds); 2966 bad_shared_read_ds: 2967 destroy_workqueue(pool->wq); 2968 bad_wq: 2969 dm_kcopyd_client_destroy(pool->copier); 2970 bad_kcopyd_client: 2971 dm_bio_prison_destroy(pool->prison); 2972 bad_prison: 2973 kfree(pool); 2974 bad_pool: 2975 if (dm_pool_metadata_close(pmd)) 2976 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2977 2978 return err_p; 2979 } 2980 2981 static void __pool_inc(struct pool *pool) 2982 { 2983 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2984 pool->ref_count++; 2985 } 2986 2987 static void __pool_dec(struct pool *pool) 2988 { 2989 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2990 BUG_ON(!pool->ref_count); 2991 if (!--pool->ref_count) 2992 __pool_destroy(pool); 2993 } 2994 2995 static struct pool *__pool_find(struct mapped_device *pool_md, 2996 struct block_device *metadata_dev, 2997 unsigned long block_size, int read_only, 2998 char **error, int *created) 2999 { 3000 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3001 3002 if (pool) { 3003 if (pool->pool_md != pool_md) { 3004 *error = "metadata device already in use by a pool"; 3005 return ERR_PTR(-EBUSY); 3006 } 3007 __pool_inc(pool); 3008 3009 } else { 3010 pool = __pool_table_lookup(pool_md); 3011 if (pool) { 3012 if (pool->md_dev != metadata_dev) { 3013 *error = "different pool cannot replace a pool"; 3014 return ERR_PTR(-EINVAL); 3015 } 3016 __pool_inc(pool); 3017 3018 } else { 3019 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3020 *created = 1; 3021 } 3022 } 3023 3024 return pool; 3025 } 3026 3027 /*---------------------------------------------------------------- 3028 * Pool target methods 3029 *--------------------------------------------------------------*/ 3030 static void pool_dtr(struct dm_target *ti) 3031 { 3032 struct pool_c *pt = ti->private; 3033 3034 mutex_lock(&dm_thin_pool_table.mutex); 3035 3036 unbind_control_target(pt->pool, ti); 3037 __pool_dec(pt->pool); 3038 dm_put_device(ti, pt->metadata_dev); 3039 dm_put_device(ti, pt->data_dev); 3040 kfree(pt); 3041 3042 mutex_unlock(&dm_thin_pool_table.mutex); 3043 } 3044 3045 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3046 struct dm_target *ti) 3047 { 3048 int r; 3049 unsigned argc; 3050 const char *arg_name; 3051 3052 static const struct dm_arg _args[] = { 3053 {0, 4, "Invalid number of pool feature arguments"}, 3054 }; 3055 3056 /* 3057 * No feature arguments supplied. 3058 */ 3059 if (!as->argc) 3060 return 0; 3061 3062 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3063 if (r) 3064 return -EINVAL; 3065 3066 while (argc && !r) { 3067 arg_name = dm_shift_arg(as); 3068 argc--; 3069 3070 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3071 pf->zero_new_blocks = false; 3072 3073 else if (!strcasecmp(arg_name, "ignore_discard")) 3074 pf->discard_enabled = false; 3075 3076 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3077 pf->discard_passdown = false; 3078 3079 else if (!strcasecmp(arg_name, "read_only")) 3080 pf->mode = PM_READ_ONLY; 3081 3082 else if (!strcasecmp(arg_name, "error_if_no_space")) 3083 pf->error_if_no_space = true; 3084 3085 else { 3086 ti->error = "Unrecognised pool feature requested"; 3087 r = -EINVAL; 3088 break; 3089 } 3090 } 3091 3092 return r; 3093 } 3094 3095 static void metadata_low_callback(void *context) 3096 { 3097 struct pool *pool = context; 3098 3099 DMWARN("%s: reached low water mark for metadata device: sending event.", 3100 dm_device_name(pool->pool_md)); 3101 3102 dm_table_event(pool->ti->table); 3103 } 3104 3105 static sector_t get_dev_size(struct block_device *bdev) 3106 { 3107 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3108 } 3109 3110 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3111 { 3112 sector_t metadata_dev_size = get_dev_size(bdev); 3113 char buffer[BDEVNAME_SIZE]; 3114 3115 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3116 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3117 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3118 } 3119 3120 static sector_t get_metadata_dev_size(struct block_device *bdev) 3121 { 3122 sector_t metadata_dev_size = get_dev_size(bdev); 3123 3124 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3125 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3126 3127 return metadata_dev_size; 3128 } 3129 3130 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3131 { 3132 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3133 3134 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3135 3136 return metadata_dev_size; 3137 } 3138 3139 /* 3140 * When a metadata threshold is crossed a dm event is triggered, and 3141 * userland should respond by growing the metadata device. We could let 3142 * userland set the threshold, like we do with the data threshold, but I'm 3143 * not sure they know enough to do this well. 3144 */ 3145 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3146 { 3147 /* 3148 * 4M is ample for all ops with the possible exception of thin 3149 * device deletion which is harmless if it fails (just retry the 3150 * delete after you've grown the device). 3151 */ 3152 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3153 return min((dm_block_t)1024ULL /* 4M */, quarter); 3154 } 3155 3156 /* 3157 * thin-pool <metadata dev> <data dev> 3158 * <data block size (sectors)> 3159 * <low water mark (blocks)> 3160 * [<#feature args> [<arg>]*] 3161 * 3162 * Optional feature arguments are: 3163 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3164 * ignore_discard: disable discard 3165 * no_discard_passdown: don't pass discards down to the data device 3166 * read_only: Don't allow any changes to be made to the pool metadata. 3167 * error_if_no_space: error IOs, instead of queueing, if no space. 3168 */ 3169 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3170 { 3171 int r, pool_created = 0; 3172 struct pool_c *pt; 3173 struct pool *pool; 3174 struct pool_features pf; 3175 struct dm_arg_set as; 3176 struct dm_dev *data_dev; 3177 unsigned long block_size; 3178 dm_block_t low_water_blocks; 3179 struct dm_dev *metadata_dev; 3180 fmode_t metadata_mode; 3181 3182 /* 3183 * FIXME Remove validation from scope of lock. 3184 */ 3185 mutex_lock(&dm_thin_pool_table.mutex); 3186 3187 if (argc < 4) { 3188 ti->error = "Invalid argument count"; 3189 r = -EINVAL; 3190 goto out_unlock; 3191 } 3192 3193 as.argc = argc; 3194 as.argv = argv; 3195 3196 /* 3197 * Set default pool features. 3198 */ 3199 pool_features_init(&pf); 3200 3201 dm_consume_args(&as, 4); 3202 r = parse_pool_features(&as, &pf, ti); 3203 if (r) 3204 goto out_unlock; 3205 3206 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3207 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3208 if (r) { 3209 ti->error = "Error opening metadata block device"; 3210 goto out_unlock; 3211 } 3212 warn_if_metadata_device_too_big(metadata_dev->bdev); 3213 3214 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3215 if (r) { 3216 ti->error = "Error getting data device"; 3217 goto out_metadata; 3218 } 3219 3220 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3221 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3222 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3223 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3224 ti->error = "Invalid block size"; 3225 r = -EINVAL; 3226 goto out; 3227 } 3228 3229 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3230 ti->error = "Invalid low water mark"; 3231 r = -EINVAL; 3232 goto out; 3233 } 3234 3235 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3236 if (!pt) { 3237 r = -ENOMEM; 3238 goto out; 3239 } 3240 3241 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3242 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3243 if (IS_ERR(pool)) { 3244 r = PTR_ERR(pool); 3245 goto out_free_pt; 3246 } 3247 3248 /* 3249 * 'pool_created' reflects whether this is the first table load. 3250 * Top level discard support is not allowed to be changed after 3251 * initial load. This would require a pool reload to trigger thin 3252 * device changes. 3253 */ 3254 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3255 ti->error = "Discard support cannot be disabled once enabled"; 3256 r = -EINVAL; 3257 goto out_flags_changed; 3258 } 3259 3260 pt->pool = pool; 3261 pt->ti = ti; 3262 pt->metadata_dev = metadata_dev; 3263 pt->data_dev = data_dev; 3264 pt->low_water_blocks = low_water_blocks; 3265 pt->adjusted_pf = pt->requested_pf = pf; 3266 ti->num_flush_bios = 1; 3267 3268 /* 3269 * Only need to enable discards if the pool should pass 3270 * them down to the data device. The thin device's discard 3271 * processing will cause mappings to be removed from the btree. 3272 */ 3273 if (pf.discard_enabled && pf.discard_passdown) { 3274 ti->num_discard_bios = 1; 3275 3276 /* 3277 * Setting 'discards_supported' circumvents the normal 3278 * stacking of discard limits (this keeps the pool and 3279 * thin devices' discard limits consistent). 3280 */ 3281 ti->discards_supported = true; 3282 } 3283 ti->private = pt; 3284 3285 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3286 calc_metadata_threshold(pt), 3287 metadata_low_callback, 3288 pool); 3289 if (r) 3290 goto out_flags_changed; 3291 3292 pt->callbacks.congested_fn = pool_is_congested; 3293 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3294 3295 mutex_unlock(&dm_thin_pool_table.mutex); 3296 3297 return 0; 3298 3299 out_flags_changed: 3300 __pool_dec(pool); 3301 out_free_pt: 3302 kfree(pt); 3303 out: 3304 dm_put_device(ti, data_dev); 3305 out_metadata: 3306 dm_put_device(ti, metadata_dev); 3307 out_unlock: 3308 mutex_unlock(&dm_thin_pool_table.mutex); 3309 3310 return r; 3311 } 3312 3313 static int pool_map(struct dm_target *ti, struct bio *bio) 3314 { 3315 int r; 3316 struct pool_c *pt = ti->private; 3317 struct pool *pool = pt->pool; 3318 unsigned long flags; 3319 3320 /* 3321 * As this is a singleton target, ti->begin is always zero. 3322 */ 3323 spin_lock_irqsave(&pool->lock, flags); 3324 bio_set_dev(bio, pt->data_dev->bdev); 3325 r = DM_MAPIO_REMAPPED; 3326 spin_unlock_irqrestore(&pool->lock, flags); 3327 3328 return r; 3329 } 3330 3331 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3332 { 3333 int r; 3334 struct pool_c *pt = ti->private; 3335 struct pool *pool = pt->pool; 3336 sector_t data_size = ti->len; 3337 dm_block_t sb_data_size; 3338 3339 *need_commit = false; 3340 3341 (void) sector_div(data_size, pool->sectors_per_block); 3342 3343 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3344 if (r) { 3345 DMERR("%s: failed to retrieve data device size", 3346 dm_device_name(pool->pool_md)); 3347 return r; 3348 } 3349 3350 if (data_size < sb_data_size) { 3351 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3352 dm_device_name(pool->pool_md), 3353 (unsigned long long)data_size, sb_data_size); 3354 return -EINVAL; 3355 3356 } else if (data_size > sb_data_size) { 3357 if (dm_pool_metadata_needs_check(pool->pmd)) { 3358 DMERR("%s: unable to grow the data device until repaired.", 3359 dm_device_name(pool->pool_md)); 3360 return 0; 3361 } 3362 3363 if (sb_data_size) 3364 DMINFO("%s: growing the data device from %llu to %llu blocks", 3365 dm_device_name(pool->pool_md), 3366 sb_data_size, (unsigned long long)data_size); 3367 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3368 if (r) { 3369 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3370 return r; 3371 } 3372 3373 *need_commit = true; 3374 } 3375 3376 return 0; 3377 } 3378 3379 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3380 { 3381 int r; 3382 struct pool_c *pt = ti->private; 3383 struct pool *pool = pt->pool; 3384 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3385 3386 *need_commit = false; 3387 3388 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3389 3390 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3391 if (r) { 3392 DMERR("%s: failed to retrieve metadata device size", 3393 dm_device_name(pool->pool_md)); 3394 return r; 3395 } 3396 3397 if (metadata_dev_size < sb_metadata_dev_size) { 3398 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3399 dm_device_name(pool->pool_md), 3400 metadata_dev_size, sb_metadata_dev_size); 3401 return -EINVAL; 3402 3403 } else if (metadata_dev_size > sb_metadata_dev_size) { 3404 if (dm_pool_metadata_needs_check(pool->pmd)) { 3405 DMERR("%s: unable to grow the metadata device until repaired.", 3406 dm_device_name(pool->pool_md)); 3407 return 0; 3408 } 3409 3410 warn_if_metadata_device_too_big(pool->md_dev); 3411 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3412 dm_device_name(pool->pool_md), 3413 sb_metadata_dev_size, metadata_dev_size); 3414 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3415 if (r) { 3416 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3417 return r; 3418 } 3419 3420 *need_commit = true; 3421 } 3422 3423 return 0; 3424 } 3425 3426 /* 3427 * Retrieves the number of blocks of the data device from 3428 * the superblock and compares it to the actual device size, 3429 * thus resizing the data device in case it has grown. 3430 * 3431 * This both copes with opening preallocated data devices in the ctr 3432 * being followed by a resume 3433 * -and- 3434 * calling the resume method individually after userspace has 3435 * grown the data device in reaction to a table event. 3436 */ 3437 static int pool_preresume(struct dm_target *ti) 3438 { 3439 int r; 3440 bool need_commit1, need_commit2; 3441 struct pool_c *pt = ti->private; 3442 struct pool *pool = pt->pool; 3443 3444 /* 3445 * Take control of the pool object. 3446 */ 3447 r = bind_control_target(pool, ti); 3448 if (r) 3449 return r; 3450 3451 r = maybe_resize_data_dev(ti, &need_commit1); 3452 if (r) 3453 return r; 3454 3455 r = maybe_resize_metadata_dev(ti, &need_commit2); 3456 if (r) 3457 return r; 3458 3459 if (need_commit1 || need_commit2) 3460 (void) commit(pool); 3461 3462 return 0; 3463 } 3464 3465 static void pool_suspend_active_thins(struct pool *pool) 3466 { 3467 struct thin_c *tc; 3468 3469 /* Suspend all active thin devices */ 3470 tc = get_first_thin(pool); 3471 while (tc) { 3472 dm_internal_suspend_noflush(tc->thin_md); 3473 tc = get_next_thin(pool, tc); 3474 } 3475 } 3476 3477 static void pool_resume_active_thins(struct pool *pool) 3478 { 3479 struct thin_c *tc; 3480 3481 /* Resume all active thin devices */ 3482 tc = get_first_thin(pool); 3483 while (tc) { 3484 dm_internal_resume(tc->thin_md); 3485 tc = get_next_thin(pool, tc); 3486 } 3487 } 3488 3489 static void pool_resume(struct dm_target *ti) 3490 { 3491 struct pool_c *pt = ti->private; 3492 struct pool *pool = pt->pool; 3493 unsigned long flags; 3494 3495 /* 3496 * Must requeue active_thins' bios and then resume 3497 * active_thins _before_ clearing 'suspend' flag. 3498 */ 3499 requeue_bios(pool); 3500 pool_resume_active_thins(pool); 3501 3502 spin_lock_irqsave(&pool->lock, flags); 3503 pool->low_water_triggered = false; 3504 pool->suspended = false; 3505 spin_unlock_irqrestore(&pool->lock, flags); 3506 3507 do_waker(&pool->waker.work); 3508 } 3509 3510 static void pool_presuspend(struct dm_target *ti) 3511 { 3512 struct pool_c *pt = ti->private; 3513 struct pool *pool = pt->pool; 3514 unsigned long flags; 3515 3516 spin_lock_irqsave(&pool->lock, flags); 3517 pool->suspended = true; 3518 spin_unlock_irqrestore(&pool->lock, flags); 3519 3520 pool_suspend_active_thins(pool); 3521 } 3522 3523 static void pool_presuspend_undo(struct dm_target *ti) 3524 { 3525 struct pool_c *pt = ti->private; 3526 struct pool *pool = pt->pool; 3527 unsigned long flags; 3528 3529 pool_resume_active_thins(pool); 3530 3531 spin_lock_irqsave(&pool->lock, flags); 3532 pool->suspended = false; 3533 spin_unlock_irqrestore(&pool->lock, flags); 3534 } 3535 3536 static void pool_postsuspend(struct dm_target *ti) 3537 { 3538 struct pool_c *pt = ti->private; 3539 struct pool *pool = pt->pool; 3540 3541 cancel_delayed_work_sync(&pool->waker); 3542 cancel_delayed_work_sync(&pool->no_space_timeout); 3543 flush_workqueue(pool->wq); 3544 (void) commit(pool); 3545 } 3546 3547 static int check_arg_count(unsigned argc, unsigned args_required) 3548 { 3549 if (argc != args_required) { 3550 DMWARN("Message received with %u arguments instead of %u.", 3551 argc, args_required); 3552 return -EINVAL; 3553 } 3554 3555 return 0; 3556 } 3557 3558 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3559 { 3560 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3561 *dev_id <= MAX_DEV_ID) 3562 return 0; 3563 3564 if (warning) 3565 DMWARN("Message received with invalid device id: %s", arg); 3566 3567 return -EINVAL; 3568 } 3569 3570 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3571 { 3572 dm_thin_id dev_id; 3573 int r; 3574 3575 r = check_arg_count(argc, 2); 3576 if (r) 3577 return r; 3578 3579 r = read_dev_id(argv[1], &dev_id, 1); 3580 if (r) 3581 return r; 3582 3583 r = dm_pool_create_thin(pool->pmd, dev_id); 3584 if (r) { 3585 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3586 argv[1]); 3587 return r; 3588 } 3589 3590 return 0; 3591 } 3592 3593 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3594 { 3595 dm_thin_id dev_id; 3596 dm_thin_id origin_dev_id; 3597 int r; 3598 3599 r = check_arg_count(argc, 3); 3600 if (r) 3601 return r; 3602 3603 r = read_dev_id(argv[1], &dev_id, 1); 3604 if (r) 3605 return r; 3606 3607 r = read_dev_id(argv[2], &origin_dev_id, 1); 3608 if (r) 3609 return r; 3610 3611 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3612 if (r) { 3613 DMWARN("Creation of new snapshot %s of device %s failed.", 3614 argv[1], argv[2]); 3615 return r; 3616 } 3617 3618 return 0; 3619 } 3620 3621 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3622 { 3623 dm_thin_id dev_id; 3624 int r; 3625 3626 r = check_arg_count(argc, 2); 3627 if (r) 3628 return r; 3629 3630 r = read_dev_id(argv[1], &dev_id, 1); 3631 if (r) 3632 return r; 3633 3634 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3635 if (r) 3636 DMWARN("Deletion of thin device %s failed.", argv[1]); 3637 3638 return r; 3639 } 3640 3641 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3642 { 3643 dm_thin_id old_id, new_id; 3644 int r; 3645 3646 r = check_arg_count(argc, 3); 3647 if (r) 3648 return r; 3649 3650 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3651 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3652 return -EINVAL; 3653 } 3654 3655 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3656 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3657 return -EINVAL; 3658 } 3659 3660 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3661 if (r) { 3662 DMWARN("Failed to change transaction id from %s to %s.", 3663 argv[1], argv[2]); 3664 return r; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3671 { 3672 int r; 3673 3674 r = check_arg_count(argc, 1); 3675 if (r) 3676 return r; 3677 3678 (void) commit(pool); 3679 3680 r = dm_pool_reserve_metadata_snap(pool->pmd); 3681 if (r) 3682 DMWARN("reserve_metadata_snap message failed."); 3683 3684 return r; 3685 } 3686 3687 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3688 { 3689 int r; 3690 3691 r = check_arg_count(argc, 1); 3692 if (r) 3693 return r; 3694 3695 r = dm_pool_release_metadata_snap(pool->pmd); 3696 if (r) 3697 DMWARN("release_metadata_snap message failed."); 3698 3699 return r; 3700 } 3701 3702 /* 3703 * Messages supported: 3704 * create_thin <dev_id> 3705 * create_snap <dev_id> <origin_id> 3706 * delete <dev_id> 3707 * set_transaction_id <current_trans_id> <new_trans_id> 3708 * reserve_metadata_snap 3709 * release_metadata_snap 3710 */ 3711 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3712 char *result, unsigned maxlen) 3713 { 3714 int r = -EINVAL; 3715 struct pool_c *pt = ti->private; 3716 struct pool *pool = pt->pool; 3717 3718 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3719 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3720 dm_device_name(pool->pool_md)); 3721 return -EOPNOTSUPP; 3722 } 3723 3724 if (!strcasecmp(argv[0], "create_thin")) 3725 r = process_create_thin_mesg(argc, argv, pool); 3726 3727 else if (!strcasecmp(argv[0], "create_snap")) 3728 r = process_create_snap_mesg(argc, argv, pool); 3729 3730 else if (!strcasecmp(argv[0], "delete")) 3731 r = process_delete_mesg(argc, argv, pool); 3732 3733 else if (!strcasecmp(argv[0], "set_transaction_id")) 3734 r = process_set_transaction_id_mesg(argc, argv, pool); 3735 3736 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3737 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3738 3739 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3740 r = process_release_metadata_snap_mesg(argc, argv, pool); 3741 3742 else 3743 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3744 3745 if (!r) 3746 (void) commit(pool); 3747 3748 return r; 3749 } 3750 3751 static void emit_flags(struct pool_features *pf, char *result, 3752 unsigned sz, unsigned maxlen) 3753 { 3754 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3755 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3756 pf->error_if_no_space; 3757 DMEMIT("%u ", count); 3758 3759 if (!pf->zero_new_blocks) 3760 DMEMIT("skip_block_zeroing "); 3761 3762 if (!pf->discard_enabled) 3763 DMEMIT("ignore_discard "); 3764 3765 if (!pf->discard_passdown) 3766 DMEMIT("no_discard_passdown "); 3767 3768 if (pf->mode == PM_READ_ONLY) 3769 DMEMIT("read_only "); 3770 3771 if (pf->error_if_no_space) 3772 DMEMIT("error_if_no_space "); 3773 } 3774 3775 /* 3776 * Status line is: 3777 * <transaction id> <used metadata sectors>/<total metadata sectors> 3778 * <used data sectors>/<total data sectors> <held metadata root> 3779 * <pool mode> <discard config> <no space config> <needs_check> 3780 */ 3781 static void pool_status(struct dm_target *ti, status_type_t type, 3782 unsigned status_flags, char *result, unsigned maxlen) 3783 { 3784 int r; 3785 unsigned sz = 0; 3786 uint64_t transaction_id; 3787 dm_block_t nr_free_blocks_data; 3788 dm_block_t nr_free_blocks_metadata; 3789 dm_block_t nr_blocks_data; 3790 dm_block_t nr_blocks_metadata; 3791 dm_block_t held_root; 3792 char buf[BDEVNAME_SIZE]; 3793 char buf2[BDEVNAME_SIZE]; 3794 struct pool_c *pt = ti->private; 3795 struct pool *pool = pt->pool; 3796 3797 switch (type) { 3798 case STATUSTYPE_INFO: 3799 if (get_pool_mode(pool) == PM_FAIL) { 3800 DMEMIT("Fail"); 3801 break; 3802 } 3803 3804 /* Commit to ensure statistics aren't out-of-date */ 3805 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3806 (void) commit(pool); 3807 3808 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3809 if (r) { 3810 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3811 dm_device_name(pool->pool_md), r); 3812 goto err; 3813 } 3814 3815 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3816 if (r) { 3817 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3818 dm_device_name(pool->pool_md), r); 3819 goto err; 3820 } 3821 3822 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3823 if (r) { 3824 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3825 dm_device_name(pool->pool_md), r); 3826 goto err; 3827 } 3828 3829 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3830 if (r) { 3831 DMERR("%s: dm_pool_get_free_block_count returned %d", 3832 dm_device_name(pool->pool_md), r); 3833 goto err; 3834 } 3835 3836 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3837 if (r) { 3838 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3839 dm_device_name(pool->pool_md), r); 3840 goto err; 3841 } 3842 3843 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3844 if (r) { 3845 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3846 dm_device_name(pool->pool_md), r); 3847 goto err; 3848 } 3849 3850 DMEMIT("%llu %llu/%llu %llu/%llu ", 3851 (unsigned long long)transaction_id, 3852 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3853 (unsigned long long)nr_blocks_metadata, 3854 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3855 (unsigned long long)nr_blocks_data); 3856 3857 if (held_root) 3858 DMEMIT("%llu ", held_root); 3859 else 3860 DMEMIT("- "); 3861 3862 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3863 DMEMIT("out_of_data_space "); 3864 else if (pool->pf.mode == PM_READ_ONLY) 3865 DMEMIT("ro "); 3866 else 3867 DMEMIT("rw "); 3868 3869 if (!pool->pf.discard_enabled) 3870 DMEMIT("ignore_discard "); 3871 else if (pool->pf.discard_passdown) 3872 DMEMIT("discard_passdown "); 3873 else 3874 DMEMIT("no_discard_passdown "); 3875 3876 if (pool->pf.error_if_no_space) 3877 DMEMIT("error_if_no_space "); 3878 else 3879 DMEMIT("queue_if_no_space "); 3880 3881 if (dm_pool_metadata_needs_check(pool->pmd)) 3882 DMEMIT("needs_check "); 3883 else 3884 DMEMIT("- "); 3885 3886 break; 3887 3888 case STATUSTYPE_TABLE: 3889 DMEMIT("%s %s %lu %llu ", 3890 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3891 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3892 (unsigned long)pool->sectors_per_block, 3893 (unsigned long long)pt->low_water_blocks); 3894 emit_flags(&pt->requested_pf, result, sz, maxlen); 3895 break; 3896 } 3897 return; 3898 3899 err: 3900 DMEMIT("Error"); 3901 } 3902 3903 static int pool_iterate_devices(struct dm_target *ti, 3904 iterate_devices_callout_fn fn, void *data) 3905 { 3906 struct pool_c *pt = ti->private; 3907 3908 return fn(ti, pt->data_dev, 0, ti->len, data); 3909 } 3910 3911 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3912 { 3913 struct pool_c *pt = ti->private; 3914 struct pool *pool = pt->pool; 3915 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3916 3917 /* 3918 * If max_sectors is smaller than pool->sectors_per_block adjust it 3919 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3920 * This is especially beneficial when the pool's data device is a RAID 3921 * device that has a full stripe width that matches pool->sectors_per_block 3922 * -- because even though partial RAID stripe-sized IOs will be issued to a 3923 * single RAID stripe; when aggregated they will end on a full RAID stripe 3924 * boundary.. which avoids additional partial RAID stripe writes cascading 3925 */ 3926 if (limits->max_sectors < pool->sectors_per_block) { 3927 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3928 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3929 limits->max_sectors--; 3930 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3931 } 3932 } 3933 3934 /* 3935 * If the system-determined stacked limits are compatible with the 3936 * pool's blocksize (io_opt is a factor) do not override them. 3937 */ 3938 if (io_opt_sectors < pool->sectors_per_block || 3939 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3940 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3941 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3942 else 3943 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3944 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3945 } 3946 3947 /* 3948 * pt->adjusted_pf is a staging area for the actual features to use. 3949 * They get transferred to the live pool in bind_control_target() 3950 * called from pool_preresume(). 3951 */ 3952 if (!pt->adjusted_pf.discard_enabled) { 3953 /* 3954 * Must explicitly disallow stacking discard limits otherwise the 3955 * block layer will stack them if pool's data device has support. 3956 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3957 * user to see that, so make sure to set all discard limits to 0. 3958 */ 3959 limits->discard_granularity = 0; 3960 return; 3961 } 3962 3963 disable_passdown_if_not_supported(pt); 3964 3965 /* 3966 * The pool uses the same discard limits as the underlying data 3967 * device. DM core has already set this up. 3968 */ 3969 } 3970 3971 static struct target_type pool_target = { 3972 .name = "thin-pool", 3973 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3974 DM_TARGET_IMMUTABLE, 3975 .version = {1, 19, 0}, 3976 .module = THIS_MODULE, 3977 .ctr = pool_ctr, 3978 .dtr = pool_dtr, 3979 .map = pool_map, 3980 .presuspend = pool_presuspend, 3981 .presuspend_undo = pool_presuspend_undo, 3982 .postsuspend = pool_postsuspend, 3983 .preresume = pool_preresume, 3984 .resume = pool_resume, 3985 .message = pool_message, 3986 .status = pool_status, 3987 .iterate_devices = pool_iterate_devices, 3988 .io_hints = pool_io_hints, 3989 }; 3990 3991 /*---------------------------------------------------------------- 3992 * Thin target methods 3993 *--------------------------------------------------------------*/ 3994 static void thin_get(struct thin_c *tc) 3995 { 3996 atomic_inc(&tc->refcount); 3997 } 3998 3999 static void thin_put(struct thin_c *tc) 4000 { 4001 if (atomic_dec_and_test(&tc->refcount)) 4002 complete(&tc->can_destroy); 4003 } 4004 4005 static void thin_dtr(struct dm_target *ti) 4006 { 4007 struct thin_c *tc = ti->private; 4008 unsigned long flags; 4009 4010 spin_lock_irqsave(&tc->pool->lock, flags); 4011 list_del_rcu(&tc->list); 4012 spin_unlock_irqrestore(&tc->pool->lock, flags); 4013 synchronize_rcu(); 4014 4015 thin_put(tc); 4016 wait_for_completion(&tc->can_destroy); 4017 4018 mutex_lock(&dm_thin_pool_table.mutex); 4019 4020 __pool_dec(tc->pool); 4021 dm_pool_close_thin_device(tc->td); 4022 dm_put_device(ti, tc->pool_dev); 4023 if (tc->origin_dev) 4024 dm_put_device(ti, tc->origin_dev); 4025 kfree(tc); 4026 4027 mutex_unlock(&dm_thin_pool_table.mutex); 4028 } 4029 4030 /* 4031 * Thin target parameters: 4032 * 4033 * <pool_dev> <dev_id> [origin_dev] 4034 * 4035 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4036 * dev_id: the internal device identifier 4037 * origin_dev: a device external to the pool that should act as the origin 4038 * 4039 * If the pool device has discards disabled, they get disabled for the thin 4040 * device as well. 4041 */ 4042 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4043 { 4044 int r; 4045 struct thin_c *tc; 4046 struct dm_dev *pool_dev, *origin_dev; 4047 struct mapped_device *pool_md; 4048 unsigned long flags; 4049 4050 mutex_lock(&dm_thin_pool_table.mutex); 4051 4052 if (argc != 2 && argc != 3) { 4053 ti->error = "Invalid argument count"; 4054 r = -EINVAL; 4055 goto out_unlock; 4056 } 4057 4058 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4059 if (!tc) { 4060 ti->error = "Out of memory"; 4061 r = -ENOMEM; 4062 goto out_unlock; 4063 } 4064 tc->thin_md = dm_table_get_md(ti->table); 4065 spin_lock_init(&tc->lock); 4066 INIT_LIST_HEAD(&tc->deferred_cells); 4067 bio_list_init(&tc->deferred_bio_list); 4068 bio_list_init(&tc->retry_on_resume_list); 4069 tc->sort_bio_list = RB_ROOT; 4070 4071 if (argc == 3) { 4072 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4073 if (r) { 4074 ti->error = "Error opening origin device"; 4075 goto bad_origin_dev; 4076 } 4077 tc->origin_dev = origin_dev; 4078 } 4079 4080 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4081 if (r) { 4082 ti->error = "Error opening pool device"; 4083 goto bad_pool_dev; 4084 } 4085 tc->pool_dev = pool_dev; 4086 4087 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4088 ti->error = "Invalid device id"; 4089 r = -EINVAL; 4090 goto bad_common; 4091 } 4092 4093 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4094 if (!pool_md) { 4095 ti->error = "Couldn't get pool mapped device"; 4096 r = -EINVAL; 4097 goto bad_common; 4098 } 4099 4100 tc->pool = __pool_table_lookup(pool_md); 4101 if (!tc->pool) { 4102 ti->error = "Couldn't find pool object"; 4103 r = -EINVAL; 4104 goto bad_pool_lookup; 4105 } 4106 __pool_inc(tc->pool); 4107 4108 if (get_pool_mode(tc->pool) == PM_FAIL) { 4109 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4110 r = -EINVAL; 4111 goto bad_pool; 4112 } 4113 4114 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4115 if (r) { 4116 ti->error = "Couldn't open thin internal device"; 4117 goto bad_pool; 4118 } 4119 4120 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4121 if (r) 4122 goto bad; 4123 4124 ti->num_flush_bios = 1; 4125 ti->flush_supported = true; 4126 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4127 4128 /* In case the pool supports discards, pass them on. */ 4129 if (tc->pool->pf.discard_enabled) { 4130 ti->discards_supported = true; 4131 ti->num_discard_bios = 1; 4132 ti->split_discard_bios = false; 4133 } 4134 4135 mutex_unlock(&dm_thin_pool_table.mutex); 4136 4137 spin_lock_irqsave(&tc->pool->lock, flags); 4138 if (tc->pool->suspended) { 4139 spin_unlock_irqrestore(&tc->pool->lock, flags); 4140 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4141 ti->error = "Unable to activate thin device while pool is suspended"; 4142 r = -EINVAL; 4143 goto bad; 4144 } 4145 atomic_set(&tc->refcount, 1); 4146 init_completion(&tc->can_destroy); 4147 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4148 spin_unlock_irqrestore(&tc->pool->lock, flags); 4149 /* 4150 * This synchronize_rcu() call is needed here otherwise we risk a 4151 * wake_worker() call finding no bios to process (because the newly 4152 * added tc isn't yet visible). So this reduces latency since we 4153 * aren't then dependent on the periodic commit to wake_worker(). 4154 */ 4155 synchronize_rcu(); 4156 4157 dm_put(pool_md); 4158 4159 return 0; 4160 4161 bad: 4162 dm_pool_close_thin_device(tc->td); 4163 bad_pool: 4164 __pool_dec(tc->pool); 4165 bad_pool_lookup: 4166 dm_put(pool_md); 4167 bad_common: 4168 dm_put_device(ti, tc->pool_dev); 4169 bad_pool_dev: 4170 if (tc->origin_dev) 4171 dm_put_device(ti, tc->origin_dev); 4172 bad_origin_dev: 4173 kfree(tc); 4174 out_unlock: 4175 mutex_unlock(&dm_thin_pool_table.mutex); 4176 4177 return r; 4178 } 4179 4180 static int thin_map(struct dm_target *ti, struct bio *bio) 4181 { 4182 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4183 4184 return thin_bio_map(ti, bio); 4185 } 4186 4187 static int thin_endio(struct dm_target *ti, struct bio *bio, 4188 blk_status_t *err) 4189 { 4190 unsigned long flags; 4191 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4192 struct list_head work; 4193 struct dm_thin_new_mapping *m, *tmp; 4194 struct pool *pool = h->tc->pool; 4195 4196 if (h->shared_read_entry) { 4197 INIT_LIST_HEAD(&work); 4198 dm_deferred_entry_dec(h->shared_read_entry, &work); 4199 4200 spin_lock_irqsave(&pool->lock, flags); 4201 list_for_each_entry_safe(m, tmp, &work, list) { 4202 list_del(&m->list); 4203 __complete_mapping_preparation(m); 4204 } 4205 spin_unlock_irqrestore(&pool->lock, flags); 4206 } 4207 4208 if (h->all_io_entry) { 4209 INIT_LIST_HEAD(&work); 4210 dm_deferred_entry_dec(h->all_io_entry, &work); 4211 if (!list_empty(&work)) { 4212 spin_lock_irqsave(&pool->lock, flags); 4213 list_for_each_entry_safe(m, tmp, &work, list) 4214 list_add_tail(&m->list, &pool->prepared_discards); 4215 spin_unlock_irqrestore(&pool->lock, flags); 4216 wake_worker(pool); 4217 } 4218 } 4219 4220 if (h->cell) 4221 cell_defer_no_holder(h->tc, h->cell); 4222 4223 return DM_ENDIO_DONE; 4224 } 4225 4226 static void thin_presuspend(struct dm_target *ti) 4227 { 4228 struct thin_c *tc = ti->private; 4229 4230 if (dm_noflush_suspending(ti)) 4231 noflush_work(tc, do_noflush_start); 4232 } 4233 4234 static void thin_postsuspend(struct dm_target *ti) 4235 { 4236 struct thin_c *tc = ti->private; 4237 4238 /* 4239 * The dm_noflush_suspending flag has been cleared by now, so 4240 * unfortunately we must always run this. 4241 */ 4242 noflush_work(tc, do_noflush_stop); 4243 } 4244 4245 static int thin_preresume(struct dm_target *ti) 4246 { 4247 struct thin_c *tc = ti->private; 4248 4249 if (tc->origin_dev) 4250 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4251 4252 return 0; 4253 } 4254 4255 /* 4256 * <nr mapped sectors> <highest mapped sector> 4257 */ 4258 static void thin_status(struct dm_target *ti, status_type_t type, 4259 unsigned status_flags, char *result, unsigned maxlen) 4260 { 4261 int r; 4262 ssize_t sz = 0; 4263 dm_block_t mapped, highest; 4264 char buf[BDEVNAME_SIZE]; 4265 struct thin_c *tc = ti->private; 4266 4267 if (get_pool_mode(tc->pool) == PM_FAIL) { 4268 DMEMIT("Fail"); 4269 return; 4270 } 4271 4272 if (!tc->td) 4273 DMEMIT("-"); 4274 else { 4275 switch (type) { 4276 case STATUSTYPE_INFO: 4277 r = dm_thin_get_mapped_count(tc->td, &mapped); 4278 if (r) { 4279 DMERR("dm_thin_get_mapped_count returned %d", r); 4280 goto err; 4281 } 4282 4283 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4284 if (r < 0) { 4285 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4286 goto err; 4287 } 4288 4289 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4290 if (r) 4291 DMEMIT("%llu", ((highest + 1) * 4292 tc->pool->sectors_per_block) - 1); 4293 else 4294 DMEMIT("-"); 4295 break; 4296 4297 case STATUSTYPE_TABLE: 4298 DMEMIT("%s %lu", 4299 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4300 (unsigned long) tc->dev_id); 4301 if (tc->origin_dev) 4302 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4303 break; 4304 } 4305 } 4306 4307 return; 4308 4309 err: 4310 DMEMIT("Error"); 4311 } 4312 4313 static int thin_iterate_devices(struct dm_target *ti, 4314 iterate_devices_callout_fn fn, void *data) 4315 { 4316 sector_t blocks; 4317 struct thin_c *tc = ti->private; 4318 struct pool *pool = tc->pool; 4319 4320 /* 4321 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4322 * we follow a more convoluted path through to the pool's target. 4323 */ 4324 if (!pool->ti) 4325 return 0; /* nothing is bound */ 4326 4327 blocks = pool->ti->len; 4328 (void) sector_div(blocks, pool->sectors_per_block); 4329 if (blocks) 4330 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4331 4332 return 0; 4333 } 4334 4335 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4336 { 4337 struct thin_c *tc = ti->private; 4338 struct pool *pool = tc->pool; 4339 4340 if (!pool->pf.discard_enabled) 4341 return; 4342 4343 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4344 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4345 } 4346 4347 static struct target_type thin_target = { 4348 .name = "thin", 4349 .version = {1, 19, 0}, 4350 .module = THIS_MODULE, 4351 .ctr = thin_ctr, 4352 .dtr = thin_dtr, 4353 .map = thin_map, 4354 .end_io = thin_endio, 4355 .preresume = thin_preresume, 4356 .presuspend = thin_presuspend, 4357 .postsuspend = thin_postsuspend, 4358 .status = thin_status, 4359 .iterate_devices = thin_iterate_devices, 4360 .io_hints = thin_io_hints, 4361 }; 4362 4363 /*----------------------------------------------------------------*/ 4364 4365 static int __init dm_thin_init(void) 4366 { 4367 int r = -ENOMEM; 4368 4369 pool_table_init(); 4370 4371 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4372 if (!_new_mapping_cache) 4373 return r; 4374 4375 r = dm_register_target(&thin_target); 4376 if (r) 4377 goto bad_new_mapping_cache; 4378 4379 r = dm_register_target(&pool_target); 4380 if (r) 4381 goto bad_thin_target; 4382 4383 return 0; 4384 4385 bad_thin_target: 4386 dm_unregister_target(&thin_target); 4387 bad_new_mapping_cache: 4388 kmem_cache_destroy(_new_mapping_cache); 4389 4390 return r; 4391 } 4392 4393 static void dm_thin_exit(void) 4394 { 4395 dm_unregister_target(&thin_target); 4396 dm_unregister_target(&pool_target); 4397 4398 kmem_cache_destroy(_new_mapping_cache); 4399 4400 pool_table_exit(); 4401 } 4402 4403 module_init(dm_thin_init); 4404 module_exit(dm_thin_exit); 4405 4406 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4407 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4408 4409 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4410 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4411 MODULE_LICENSE("GPL"); 4412