xref: /openbmc/linux/drivers/md/dm-thin.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 
19 #define	DM_MSG_PREFIX	"thin"
20 
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 		"A percentage of time allocated for copy on write");
31 
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38 
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43 
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101 
102 /*----------------------------------------------------------------*/
103 
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108 			   dm_block_t b, struct dm_cell_key *key)
109 {
110 	key->virtual = 0;
111 	key->dev = dm_thin_dev_id(td);
112 	key->block = b;
113 }
114 
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 			      struct dm_cell_key *key)
117 {
118 	key->virtual = 1;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block = b;
121 }
122 
123 /*----------------------------------------------------------------*/
124 
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131 
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136 	PM_WRITE,		/* metadata may be changed */
137 	PM_READ_ONLY,		/* metadata may not be changed */
138 	PM_FAIL,		/* all I/O fails */
139 };
140 
141 struct pool_features {
142 	enum pool_mode mode;
143 
144 	bool zero_new_blocks:1;
145 	bool discard_enabled:1;
146 	bool discard_passdown:1;
147 };
148 
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152 
153 struct pool {
154 	struct list_head list;
155 	struct dm_target *ti;	/* Only set if a pool target is bound */
156 
157 	struct mapped_device *pool_md;
158 	struct block_device *md_dev;
159 	struct dm_pool_metadata *pmd;
160 
161 	dm_block_t low_water_blocks;
162 	uint32_t sectors_per_block;
163 	int sectors_per_block_shift;
164 
165 	struct pool_features pf;
166 	unsigned low_water_triggered:1;	/* A dm event has been sent */
167 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
168 
169 	struct dm_bio_prison *prison;
170 	struct dm_kcopyd_client *copier;
171 
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 	struct delayed_work waker;
175 
176 	unsigned long last_commit_jiffies;
177 	unsigned ref_count;
178 
179 	spinlock_t lock;
180 	struct bio_list deferred_bios;
181 	struct bio_list deferred_flush_bios;
182 	struct list_head prepared_mappings;
183 	struct list_head prepared_discards;
184 
185 	struct bio_list retry_on_resume_list;
186 
187 	struct dm_deferred_set *shared_read_ds;
188 	struct dm_deferred_set *all_io_ds;
189 
190 	struct dm_thin_new_mapping *next_mapping;
191 	mempool_t *mapping_pool;
192 
193 	process_bio_fn process_bio;
194 	process_bio_fn process_discard;
195 
196 	process_mapping_fn process_prepared_mapping;
197 	process_mapping_fn process_prepared_discard;
198 };
199 
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202 
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207 	struct dm_target *ti;
208 	struct pool *pool;
209 	struct dm_dev *data_dev;
210 	struct dm_dev *metadata_dev;
211 	struct dm_target_callbacks callbacks;
212 
213 	dm_block_t low_water_blocks;
214 	struct pool_features requested_pf; /* Features requested during table load */
215 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217 
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222 	struct dm_dev *pool_dev;
223 	struct dm_dev *origin_dev;
224 	dm_thin_id dev_id;
225 
226 	struct pool *pool;
227 	struct dm_thin_device *td;
228 };
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238 	queue_work(pool->wq, &pool->worker);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 		      struct dm_bio_prison_cell **cell_result)
245 {
246 	int r;
247 	struct dm_bio_prison_cell *cell_prealloc;
248 
249 	/*
250 	 * Allocate a cell from the prison's mempool.
251 	 * This might block but it can't fail.
252 	 */
253 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254 
255 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 	if (r)
257 		/*
258 		 * We reused an old cell; we can get rid of
259 		 * the new one.
260 		 */
261 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262 
263 	return r;
264 }
265 
266 static void cell_release(struct pool *pool,
267 			 struct dm_bio_prison_cell *cell,
268 			 struct bio_list *bios)
269 {
270 	dm_cell_release(pool->prison, cell, bios);
271 	dm_bio_prison_free_cell(pool->prison, cell);
272 }
273 
274 static void cell_release_no_holder(struct pool *pool,
275 				   struct dm_bio_prison_cell *cell,
276 				   struct bio_list *bios)
277 {
278 	dm_cell_release_no_holder(pool->prison, cell, bios);
279 	dm_bio_prison_free_cell(pool->prison, cell);
280 }
281 
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 					 struct dm_bio_prison_cell *cell)
284 {
285 	struct pool *pool = tc->pool;
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&pool->lock, flags);
289 	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 	spin_unlock_irqrestore(&pool->lock, flags);
291 
292 	wake_worker(pool);
293 }
294 
295 static void cell_error(struct pool *pool,
296 		       struct dm_bio_prison_cell *cell)
297 {
298 	dm_cell_error(pool->prison, cell);
299 	dm_bio_prison_free_cell(pool->prison, cell);
300 }
301 
302 /*----------------------------------------------------------------*/
303 
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308 	struct mutex mutex;
309 	struct list_head pools;
310 } dm_thin_pool_table;
311 
312 static void pool_table_init(void)
313 {
314 	mutex_init(&dm_thin_pool_table.mutex);
315 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317 
318 static void __pool_table_insert(struct pool *pool)
319 {
320 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 	list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323 
324 static void __pool_table_remove(struct pool *pool)
325 {
326 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 	list_del(&pool->list);
328 }
329 
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 	struct pool *pool = NULL, *tmp;
333 
334 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 
336 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 		if (tmp->pool_md == md) {
338 			pool = tmp;
339 			break;
340 		}
341 	}
342 
343 	return pool;
344 }
345 
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 	struct pool *pool = NULL, *tmp;
349 
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 
352 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 		if (tmp->md_dev == md_dev) {
354 			pool = tmp;
355 			break;
356 		}
357 	}
358 
359 	return pool;
360 }
361 
362 /*----------------------------------------------------------------*/
363 
364 struct dm_thin_endio_hook {
365 	struct thin_c *tc;
366 	struct dm_deferred_entry *shared_read_entry;
367 	struct dm_deferred_entry *all_io_entry;
368 	struct dm_thin_new_mapping *overwrite_mapping;
369 };
370 
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 	struct bio *bio;
374 	struct bio_list bios;
375 
376 	bio_list_init(&bios);
377 	bio_list_merge(&bios, master);
378 	bio_list_init(master);
379 
380 	while ((bio = bio_list_pop(&bios))) {
381 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382 
383 		if (h->tc == tc)
384 			bio_endio(bio, DM_ENDIO_REQUEUE);
385 		else
386 			bio_list_add(master, bio);
387 	}
388 }
389 
390 static void requeue_io(struct thin_c *tc)
391 {
392 	struct pool *pool = tc->pool;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&pool->lock, flags);
396 	__requeue_bio_list(tc, &pool->deferred_bios);
397 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
398 	spin_unlock_irqrestore(&pool->lock, flags);
399 }
400 
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407 
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 	return pool->sectors_per_block_shift >= 0;
411 }
412 
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 	struct pool *pool = tc->pool;
416 	sector_t block_nr = bio->bi_sector;
417 
418 	if (block_size_is_power_of_two(pool))
419 		block_nr >>= pool->sectors_per_block_shift;
420 	else
421 		(void) sector_div(block_nr, pool->sectors_per_block);
422 
423 	return block_nr;
424 }
425 
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 	struct pool *pool = tc->pool;
429 	sector_t bi_sector = bio->bi_sector;
430 
431 	bio->bi_bdev = tc->pool_dev->bdev;
432 	if (block_size_is_power_of_two(pool))
433 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 				(bi_sector & (pool->sectors_per_block - 1));
435 	else
436 		bio->bi_sector = (block * pool->sectors_per_block) +
437 				 sector_div(bi_sector, pool->sectors_per_block);
438 }
439 
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 	bio->bi_bdev = tc->origin_dev->bdev;
443 }
444 
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 		dm_thin_changed_this_transaction(tc->td);
449 }
450 
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 	struct dm_thin_endio_hook *h;
454 
455 	if (bio->bi_rw & REQ_DISCARD)
456 		return;
457 
458 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461 
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 	struct pool *pool = tc->pool;
465 	unsigned long flags;
466 
467 	if (!bio_triggers_commit(tc, bio)) {
468 		generic_make_request(bio);
469 		return;
470 	}
471 
472 	/*
473 	 * Complete bio with an error if earlier I/O caused changes to
474 	 * the metadata that can't be committed e.g, due to I/O errors
475 	 * on the metadata device.
476 	 */
477 	if (dm_thin_aborted_changes(tc->td)) {
478 		bio_io_error(bio);
479 		return;
480 	}
481 
482 	/*
483 	 * Batch together any bios that trigger commits and then issue a
484 	 * single commit for them in process_deferred_bios().
485 	 */
486 	spin_lock_irqsave(&pool->lock, flags);
487 	bio_list_add(&pool->deferred_flush_bios, bio);
488 	spin_unlock_irqrestore(&pool->lock, flags);
489 }
490 
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 	remap_to_origin(tc, bio);
494 	issue(tc, bio);
495 }
496 
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 			    dm_block_t block)
499 {
500 	remap(tc, bio, block);
501 	issue(tc, bio);
502 }
503 
504 /*----------------------------------------------------------------*/
505 
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510 	struct list_head list;
511 
512 	unsigned quiesced:1;
513 	unsigned prepared:1;
514 	unsigned pass_discard:1;
515 
516 	struct thin_c *tc;
517 	dm_block_t virt_block;
518 	dm_block_t data_block;
519 	struct dm_bio_prison_cell *cell, *cell2;
520 	int err;
521 
522 	/*
523 	 * If the bio covers the whole area of a block then we can avoid
524 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
525 	 * still be in the cell, so care has to be taken to avoid issuing
526 	 * the bio twice.
527 	 */
528 	struct bio *bio;
529 	bio_end_io_t *saved_bi_end_io;
530 };
531 
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 	struct pool *pool = m->tc->pool;
535 
536 	if (m->quiesced && m->prepared) {
537 		list_add(&m->list, &pool->prepared_mappings);
538 		wake_worker(pool);
539 	}
540 }
541 
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 	unsigned long flags;
545 	struct dm_thin_new_mapping *m = context;
546 	struct pool *pool = m->tc->pool;
547 
548 	m->err = read_err || write_err ? -EIO : 0;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	m->prepared = 1;
552 	__maybe_add_mapping(m);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 }
555 
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 	unsigned long flags;
559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 	struct pool *pool = m->tc->pool;
562 
563 	m->err = err;
564 
565 	spin_lock_irqsave(&pool->lock, flags);
566 	m->prepared = 1;
567 	__maybe_add_mapping(m);
568 	spin_unlock_irqrestore(&pool->lock, flags);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * Workqueue.
575  */
576 
577 /*
578  * Prepared mapping jobs.
579  */
580 
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 	struct pool *pool = tc->pool;
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&pool->lock, flags);
590 	cell_release(pool, cell, &pool->deferred_bios);
591 	spin_unlock_irqrestore(&tc->pool->lock, flags);
592 
593 	wake_worker(pool);
594 }
595 
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 	struct pool *pool = tc->pool;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&pool->lock, flags);
605 	cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 	spin_unlock_irqrestore(&pool->lock, flags);
607 
608 	wake_worker(pool);
609 }
610 
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 	if (m->bio)
614 		m->bio->bi_end_io = m->saved_bi_end_io;
615 	cell_error(m->tc->pool, m->cell);
616 	list_del(&m->list);
617 	mempool_free(m, m->tc->pool->mapping_pool);
618 }
619 
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 	struct thin_c *tc = m->tc;
623 	struct pool *pool = tc->pool;
624 	struct bio *bio;
625 	int r;
626 
627 	bio = m->bio;
628 	if (bio)
629 		bio->bi_end_io = m->saved_bi_end_io;
630 
631 	if (m->err) {
632 		cell_error(pool, m->cell);
633 		goto out;
634 	}
635 
636 	/*
637 	 * Commit the prepared block into the mapping btree.
638 	 * Any I/O for this block arriving after this point will get
639 	 * remapped to it directly.
640 	 */
641 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 	if (r) {
643 		DMERR_LIMIT("dm_thin_insert_block() failed");
644 		cell_error(pool, m->cell);
645 		goto out;
646 	}
647 
648 	/*
649 	 * Release any bios held while the block was being provisioned.
650 	 * If we are processing a write bio that completely covers the block,
651 	 * we already processed it so can ignore it now when processing
652 	 * the bios in the cell.
653 	 */
654 	if (bio) {
655 		cell_defer_no_holder(tc, m->cell);
656 		bio_endio(bio, 0);
657 	} else
658 		cell_defer(tc, m->cell);
659 
660 out:
661 	list_del(&m->list);
662 	mempool_free(m, pool->mapping_pool);
663 }
664 
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 	struct thin_c *tc = m->tc;
668 
669 	bio_io_error(m->bio);
670 	cell_defer_no_holder(tc, m->cell);
671 	cell_defer_no_holder(tc, m->cell2);
672 	mempool_free(m, tc->pool->mapping_pool);
673 }
674 
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 	struct thin_c *tc = m->tc;
678 
679 	inc_all_io_entry(tc->pool, m->bio);
680 	cell_defer_no_holder(tc, m->cell);
681 	cell_defer_no_holder(tc, m->cell2);
682 
683 	if (m->pass_discard)
684 		remap_and_issue(tc, m->bio, m->data_block);
685 	else
686 		bio_endio(m->bio, 0);
687 
688 	mempool_free(m, tc->pool->mapping_pool);
689 }
690 
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 	int r;
694 	struct thin_c *tc = m->tc;
695 
696 	r = dm_thin_remove_block(tc->td, m->virt_block);
697 	if (r)
698 		DMERR_LIMIT("dm_thin_remove_block() failed");
699 
700 	process_prepared_discard_passdown(m);
701 }
702 
703 static void process_prepared(struct pool *pool, struct list_head *head,
704 			     process_mapping_fn *fn)
705 {
706 	unsigned long flags;
707 	struct list_head maps;
708 	struct dm_thin_new_mapping *m, *tmp;
709 
710 	INIT_LIST_HEAD(&maps);
711 	spin_lock_irqsave(&pool->lock, flags);
712 	list_splice_init(head, &maps);
713 	spin_unlock_irqrestore(&pool->lock, flags);
714 
715 	list_for_each_entry_safe(m, tmp, &maps, list)
716 		(*fn)(m);
717 }
718 
719 /*
720  * Deferred bio jobs.
721  */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726 
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 	return (bio_data_dir(bio) == WRITE) &&
730 		io_overlaps_block(pool, bio);
731 }
732 
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 			       bio_end_io_t *fn)
735 {
736 	*save = bio->bi_end_io;
737 	bio->bi_end_io = fn;
738 }
739 
740 static int ensure_next_mapping(struct pool *pool)
741 {
742 	if (pool->next_mapping)
743 		return 0;
744 
745 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746 
747 	return pool->next_mapping ? 0 : -ENOMEM;
748 }
749 
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 	struct dm_thin_new_mapping *r = pool->next_mapping;
753 
754 	BUG_ON(!pool->next_mapping);
755 
756 	pool->next_mapping = NULL;
757 
758 	return r;
759 }
760 
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 			  struct dm_dev *origin, dm_block_t data_origin,
763 			  dm_block_t data_dest,
764 			  struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 	int r;
767 	struct pool *pool = tc->pool;
768 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
769 
770 	INIT_LIST_HEAD(&m->list);
771 	m->quiesced = 0;
772 	m->prepared = 0;
773 	m->tc = tc;
774 	m->virt_block = virt_block;
775 	m->data_block = data_dest;
776 	m->cell = cell;
777 	m->err = 0;
778 	m->bio = NULL;
779 
780 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 		m->quiesced = 1;
782 
783 	/*
784 	 * IO to pool_dev remaps to the pool target's data_dev.
785 	 *
786 	 * If the whole block of data is being overwritten, we can issue the
787 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 	 */
789 	if (io_overwrites_block(pool, bio)) {
790 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791 
792 		h->overwrite_mapping = m;
793 		m->bio = bio;
794 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 		inc_all_io_entry(pool, bio);
796 		remap_and_issue(tc, bio, data_dest);
797 	} else {
798 		struct dm_io_region from, to;
799 
800 		from.bdev = origin->bdev;
801 		from.sector = data_origin * pool->sectors_per_block;
802 		from.count = pool->sectors_per_block;
803 
804 		to.bdev = tc->pool_dev->bdev;
805 		to.sector = data_dest * pool->sectors_per_block;
806 		to.count = pool->sectors_per_block;
807 
808 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 				   0, copy_complete, m);
810 		if (r < 0) {
811 			mempool_free(m, pool->mapping_pool);
812 			DMERR_LIMIT("dm_kcopyd_copy() failed");
813 			cell_error(pool, cell);
814 		}
815 	}
816 }
817 
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 				   dm_block_t data_origin, dm_block_t data_dest,
820 				   struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 	schedule_copy(tc, virt_block, tc->pool_dev,
823 		      data_origin, data_dest, cell, bio);
824 }
825 
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 				   dm_block_t data_dest,
828 				   struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 	schedule_copy(tc, virt_block, tc->origin_dev,
831 		      virt_block, data_dest, cell, bio);
832 }
833 
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 			  struct bio *bio)
837 {
838 	struct pool *pool = tc->pool;
839 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
840 
841 	INIT_LIST_HEAD(&m->list);
842 	m->quiesced = 1;
843 	m->prepared = 0;
844 	m->tc = tc;
845 	m->virt_block = virt_block;
846 	m->data_block = data_block;
847 	m->cell = cell;
848 	m->err = 0;
849 	m->bio = NULL;
850 
851 	/*
852 	 * If the whole block of data is being overwritten or we are not
853 	 * zeroing pre-existing data, we can issue the bio immediately.
854 	 * Otherwise we use kcopyd to zero the data first.
855 	 */
856 	if (!pool->pf.zero_new_blocks)
857 		process_prepared_mapping(m);
858 
859 	else if (io_overwrites_block(pool, bio)) {
860 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 
862 		h->overwrite_mapping = m;
863 		m->bio = bio;
864 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 		inc_all_io_entry(pool, bio);
866 		remap_and_issue(tc, bio, data_block);
867 	} else {
868 		int r;
869 		struct dm_io_region to;
870 
871 		to.bdev = tc->pool_dev->bdev;
872 		to.sector = data_block * pool->sectors_per_block;
873 		to.count = pool->sectors_per_block;
874 
875 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 		if (r < 0) {
877 			mempool_free(m, pool->mapping_pool);
878 			DMERR_LIMIT("dm_kcopyd_zero() failed");
879 			cell_error(pool, cell);
880 		}
881 	}
882 }
883 
884 static int commit(struct pool *pool)
885 {
886 	int r;
887 
888 	r = dm_pool_commit_metadata(pool->pmd);
889 	if (r)
890 		DMERR_LIMIT("commit failed: error = %d", r);
891 
892 	return r;
893 }
894 
895 /*
896  * A non-zero return indicates read_only or fail_io mode.
897  * Many callers don't care about the return value.
898  */
899 static int commit_or_fallback(struct pool *pool)
900 {
901 	int r;
902 
903 	if (get_pool_mode(pool) != PM_WRITE)
904 		return -EINVAL;
905 
906 	r = commit(pool);
907 	if (r)
908 		set_pool_mode(pool, PM_READ_ONLY);
909 
910 	return r;
911 }
912 
913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915 	int r;
916 	dm_block_t free_blocks;
917 	unsigned long flags;
918 	struct pool *pool = tc->pool;
919 
920 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
921 	if (r)
922 		return r;
923 
924 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
925 		DMWARN("%s: reached low water mark, sending event.",
926 		       dm_device_name(pool->pool_md));
927 		spin_lock_irqsave(&pool->lock, flags);
928 		pool->low_water_triggered = 1;
929 		spin_unlock_irqrestore(&pool->lock, flags);
930 		dm_table_event(pool->ti->table);
931 	}
932 
933 	if (!free_blocks) {
934 		if (pool->no_free_space)
935 			return -ENOSPC;
936 		else {
937 			/*
938 			 * Try to commit to see if that will free up some
939 			 * more space.
940 			 */
941 			(void) commit_or_fallback(pool);
942 
943 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 			if (r)
945 				return r;
946 
947 			/*
948 			 * If we still have no space we set a flag to avoid
949 			 * doing all this checking and return -ENOSPC.
950 			 */
951 			if (!free_blocks) {
952 				DMWARN("%s: no free space available.",
953 				       dm_device_name(pool->pool_md));
954 				spin_lock_irqsave(&pool->lock, flags);
955 				pool->no_free_space = 1;
956 				spin_unlock_irqrestore(&pool->lock, flags);
957 				return -ENOSPC;
958 			}
959 		}
960 	}
961 
962 	r = dm_pool_alloc_data_block(pool->pmd, result);
963 	if (r)
964 		return r;
965 
966 	return 0;
967 }
968 
969 /*
970  * If we have run out of space, queue bios until the device is
971  * resumed, presumably after having been reloaded with more space.
972  */
973 static void retry_on_resume(struct bio *bio)
974 {
975 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 	struct thin_c *tc = h->tc;
977 	struct pool *pool = tc->pool;
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&pool->lock, flags);
981 	bio_list_add(&pool->retry_on_resume_list, bio);
982 	spin_unlock_irqrestore(&pool->lock, flags);
983 }
984 
985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987 	struct bio *bio;
988 	struct bio_list bios;
989 
990 	bio_list_init(&bios);
991 	cell_release(pool, cell, &bios);
992 
993 	while ((bio = bio_list_pop(&bios)))
994 		retry_on_resume(bio);
995 }
996 
997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999 	int r;
1000 	unsigned long flags;
1001 	struct pool *pool = tc->pool;
1002 	struct dm_bio_prison_cell *cell, *cell2;
1003 	struct dm_cell_key key, key2;
1004 	dm_block_t block = get_bio_block(tc, bio);
1005 	struct dm_thin_lookup_result lookup_result;
1006 	struct dm_thin_new_mapping *m;
1007 
1008 	build_virtual_key(tc->td, block, &key);
1009 	if (bio_detain(tc->pool, &key, bio, &cell))
1010 		return;
1011 
1012 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013 	switch (r) {
1014 	case 0:
1015 		/*
1016 		 * Check nobody is fiddling with this pool block.  This can
1017 		 * happen if someone's in the process of breaking sharing
1018 		 * on this block.
1019 		 */
1020 		build_data_key(tc->td, lookup_result.block, &key2);
1021 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022 			cell_defer_no_holder(tc, cell);
1023 			break;
1024 		}
1025 
1026 		if (io_overlaps_block(pool, bio)) {
1027 			/*
1028 			 * IO may still be going to the destination block.  We must
1029 			 * quiesce before we can do the removal.
1030 			 */
1031 			m = get_next_mapping(pool);
1032 			m->tc = tc;
1033 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1034 			m->virt_block = block;
1035 			m->data_block = lookup_result.block;
1036 			m->cell = cell;
1037 			m->cell2 = cell2;
1038 			m->err = 0;
1039 			m->bio = bio;
1040 
1041 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042 				spin_lock_irqsave(&pool->lock, flags);
1043 				list_add(&m->list, &pool->prepared_discards);
1044 				spin_unlock_irqrestore(&pool->lock, flags);
1045 				wake_worker(pool);
1046 			}
1047 		} else {
1048 			inc_all_io_entry(pool, bio);
1049 			cell_defer_no_holder(tc, cell);
1050 			cell_defer_no_holder(tc, cell2);
1051 
1052 			/*
1053 			 * The DM core makes sure that the discard doesn't span
1054 			 * a block boundary.  So we submit the discard of a
1055 			 * partial block appropriately.
1056 			 */
1057 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058 				remap_and_issue(tc, bio, lookup_result.block);
1059 			else
1060 				bio_endio(bio, 0);
1061 		}
1062 		break;
1063 
1064 	case -ENODATA:
1065 		/*
1066 		 * It isn't provisioned, just forget it.
1067 		 */
1068 		cell_defer_no_holder(tc, cell);
1069 		bio_endio(bio, 0);
1070 		break;
1071 
1072 	default:
1073 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074 			    __func__, r);
1075 		cell_defer_no_holder(tc, cell);
1076 		bio_io_error(bio);
1077 		break;
1078 	}
1079 }
1080 
1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082 			  struct dm_cell_key *key,
1083 			  struct dm_thin_lookup_result *lookup_result,
1084 			  struct dm_bio_prison_cell *cell)
1085 {
1086 	int r;
1087 	dm_block_t data_block;
1088 
1089 	r = alloc_data_block(tc, &data_block);
1090 	switch (r) {
1091 	case 0:
1092 		schedule_internal_copy(tc, block, lookup_result->block,
1093 				       data_block, cell, bio);
1094 		break;
1095 
1096 	case -ENOSPC:
1097 		no_space(tc->pool, cell);
1098 		break;
1099 
1100 	default:
1101 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1102 			    __func__, r);
1103 		cell_error(tc->pool, cell);
1104 		break;
1105 	}
1106 }
1107 
1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1109 			       dm_block_t block,
1110 			       struct dm_thin_lookup_result *lookup_result)
1111 {
1112 	struct dm_bio_prison_cell *cell;
1113 	struct pool *pool = tc->pool;
1114 	struct dm_cell_key key;
1115 
1116 	/*
1117 	 * If cell is already occupied, then sharing is already in the process
1118 	 * of being broken so we have nothing further to do here.
1119 	 */
1120 	build_data_key(tc->td, lookup_result->block, &key);
1121 	if (bio_detain(pool, &key, bio, &cell))
1122 		return;
1123 
1124 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1125 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1126 	else {
1127 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1128 
1129 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1130 		inc_all_io_entry(pool, bio);
1131 		cell_defer_no_holder(tc, cell);
1132 
1133 		remap_and_issue(tc, bio, lookup_result->block);
1134 	}
1135 }
1136 
1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 			    struct dm_bio_prison_cell *cell)
1139 {
1140 	int r;
1141 	dm_block_t data_block;
1142 	struct pool *pool = tc->pool;
1143 
1144 	/*
1145 	 * Remap empty bios (flushes) immediately, without provisioning.
1146 	 */
1147 	if (!bio->bi_size) {
1148 		inc_all_io_entry(pool, bio);
1149 		cell_defer_no_holder(tc, cell);
1150 
1151 		remap_and_issue(tc, bio, 0);
1152 		return;
1153 	}
1154 
1155 	/*
1156 	 * Fill read bios with zeroes and complete them immediately.
1157 	 */
1158 	if (bio_data_dir(bio) == READ) {
1159 		zero_fill_bio(bio);
1160 		cell_defer_no_holder(tc, cell);
1161 		bio_endio(bio, 0);
1162 		return;
1163 	}
1164 
1165 	r = alloc_data_block(tc, &data_block);
1166 	switch (r) {
1167 	case 0:
1168 		if (tc->origin_dev)
1169 			schedule_external_copy(tc, block, data_block, cell, bio);
1170 		else
1171 			schedule_zero(tc, block, data_block, cell, bio);
1172 		break;
1173 
1174 	case -ENOSPC:
1175 		no_space(pool, cell);
1176 		break;
1177 
1178 	default:
1179 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1180 			    __func__, r);
1181 		set_pool_mode(pool, PM_READ_ONLY);
1182 		cell_error(pool, cell);
1183 		break;
1184 	}
1185 }
1186 
1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189 	int r;
1190 	struct pool *pool = tc->pool;
1191 	dm_block_t block = get_bio_block(tc, bio);
1192 	struct dm_bio_prison_cell *cell;
1193 	struct dm_cell_key key;
1194 	struct dm_thin_lookup_result lookup_result;
1195 
1196 	/*
1197 	 * If cell is already occupied, then the block is already
1198 	 * being provisioned so we have nothing further to do here.
1199 	 */
1200 	build_virtual_key(tc->td, block, &key);
1201 	if (bio_detain(pool, &key, bio, &cell))
1202 		return;
1203 
1204 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 	switch (r) {
1206 	case 0:
1207 		if (lookup_result.shared) {
1208 			process_shared_bio(tc, bio, block, &lookup_result);
1209 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210 		} else {
1211 			inc_all_io_entry(pool, bio);
1212 			cell_defer_no_holder(tc, cell);
1213 
1214 			remap_and_issue(tc, bio, lookup_result.block);
1215 		}
1216 		break;
1217 
1218 	case -ENODATA:
1219 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220 			inc_all_io_entry(pool, bio);
1221 			cell_defer_no_holder(tc, cell);
1222 
1223 			remap_to_origin_and_issue(tc, bio);
1224 		} else
1225 			provision_block(tc, bio, block, cell);
1226 		break;
1227 
1228 	default:
1229 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230 			    __func__, r);
1231 		cell_defer_no_holder(tc, cell);
1232 		bio_io_error(bio);
1233 		break;
1234 	}
1235 }
1236 
1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239 	int r;
1240 	int rw = bio_data_dir(bio);
1241 	dm_block_t block = get_bio_block(tc, bio);
1242 	struct dm_thin_lookup_result lookup_result;
1243 
1244 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245 	switch (r) {
1246 	case 0:
1247 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248 			bio_io_error(bio);
1249 		else {
1250 			inc_all_io_entry(tc->pool, bio);
1251 			remap_and_issue(tc, bio, lookup_result.block);
1252 		}
1253 		break;
1254 
1255 	case -ENODATA:
1256 		if (rw != READ) {
1257 			bio_io_error(bio);
1258 			break;
1259 		}
1260 
1261 		if (tc->origin_dev) {
1262 			inc_all_io_entry(tc->pool, bio);
1263 			remap_to_origin_and_issue(tc, bio);
1264 			break;
1265 		}
1266 
1267 		zero_fill_bio(bio);
1268 		bio_endio(bio, 0);
1269 		break;
1270 
1271 	default:
1272 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273 			    __func__, r);
1274 		bio_io_error(bio);
1275 		break;
1276 	}
1277 }
1278 
1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281 	bio_io_error(bio);
1282 }
1283 
1284 static int need_commit_due_to_time(struct pool *pool)
1285 {
1286 	return jiffies < pool->last_commit_jiffies ||
1287 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1288 }
1289 
1290 static void process_deferred_bios(struct pool *pool)
1291 {
1292 	unsigned long flags;
1293 	struct bio *bio;
1294 	struct bio_list bios;
1295 
1296 	bio_list_init(&bios);
1297 
1298 	spin_lock_irqsave(&pool->lock, flags);
1299 	bio_list_merge(&bios, &pool->deferred_bios);
1300 	bio_list_init(&pool->deferred_bios);
1301 	spin_unlock_irqrestore(&pool->lock, flags);
1302 
1303 	while ((bio = bio_list_pop(&bios))) {
1304 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1305 		struct thin_c *tc = h->tc;
1306 
1307 		/*
1308 		 * If we've got no free new_mapping structs, and processing
1309 		 * this bio might require one, we pause until there are some
1310 		 * prepared mappings to process.
1311 		 */
1312 		if (ensure_next_mapping(pool)) {
1313 			spin_lock_irqsave(&pool->lock, flags);
1314 			bio_list_merge(&pool->deferred_bios, &bios);
1315 			spin_unlock_irqrestore(&pool->lock, flags);
1316 
1317 			break;
1318 		}
1319 
1320 		if (bio->bi_rw & REQ_DISCARD)
1321 			pool->process_discard(tc, bio);
1322 		else
1323 			pool->process_bio(tc, bio);
1324 	}
1325 
1326 	/*
1327 	 * If there are any deferred flush bios, we must commit
1328 	 * the metadata before issuing them.
1329 	 */
1330 	bio_list_init(&bios);
1331 	spin_lock_irqsave(&pool->lock, flags);
1332 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1333 	bio_list_init(&pool->deferred_flush_bios);
1334 	spin_unlock_irqrestore(&pool->lock, flags);
1335 
1336 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1337 		return;
1338 
1339 	if (commit_or_fallback(pool)) {
1340 		while ((bio = bio_list_pop(&bios)))
1341 			bio_io_error(bio);
1342 		return;
1343 	}
1344 	pool->last_commit_jiffies = jiffies;
1345 
1346 	while ((bio = bio_list_pop(&bios)))
1347 		generic_make_request(bio);
1348 }
1349 
1350 static void do_worker(struct work_struct *ws)
1351 {
1352 	struct pool *pool = container_of(ws, struct pool, worker);
1353 
1354 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1355 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1356 	process_deferred_bios(pool);
1357 }
1358 
1359 /*
1360  * We want to commit periodically so that not too much
1361  * unwritten data builds up.
1362  */
1363 static void do_waker(struct work_struct *ws)
1364 {
1365 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1366 	wake_worker(pool);
1367 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1368 }
1369 
1370 /*----------------------------------------------------------------*/
1371 
1372 static enum pool_mode get_pool_mode(struct pool *pool)
1373 {
1374 	return pool->pf.mode;
1375 }
1376 
1377 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1378 {
1379 	int r;
1380 
1381 	pool->pf.mode = mode;
1382 
1383 	switch (mode) {
1384 	case PM_FAIL:
1385 		DMERR("switching pool to failure mode");
1386 		pool->process_bio = process_bio_fail;
1387 		pool->process_discard = process_bio_fail;
1388 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1389 		pool->process_prepared_discard = process_prepared_discard_fail;
1390 		break;
1391 
1392 	case PM_READ_ONLY:
1393 		DMERR("switching pool to read-only mode");
1394 		r = dm_pool_abort_metadata(pool->pmd);
1395 		if (r) {
1396 			DMERR("aborting transaction failed");
1397 			set_pool_mode(pool, PM_FAIL);
1398 		} else {
1399 			dm_pool_metadata_read_only(pool->pmd);
1400 			pool->process_bio = process_bio_read_only;
1401 			pool->process_discard = process_discard;
1402 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1403 			pool->process_prepared_discard = process_prepared_discard_passdown;
1404 		}
1405 		break;
1406 
1407 	case PM_WRITE:
1408 		pool->process_bio = process_bio;
1409 		pool->process_discard = process_discard;
1410 		pool->process_prepared_mapping = process_prepared_mapping;
1411 		pool->process_prepared_discard = process_prepared_discard;
1412 		break;
1413 	}
1414 }
1415 
1416 /*----------------------------------------------------------------*/
1417 
1418 /*
1419  * Mapping functions.
1420  */
1421 
1422 /*
1423  * Called only while mapping a thin bio to hand it over to the workqueue.
1424  */
1425 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1426 {
1427 	unsigned long flags;
1428 	struct pool *pool = tc->pool;
1429 
1430 	spin_lock_irqsave(&pool->lock, flags);
1431 	bio_list_add(&pool->deferred_bios, bio);
1432 	spin_unlock_irqrestore(&pool->lock, flags);
1433 
1434 	wake_worker(pool);
1435 }
1436 
1437 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1438 {
1439 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1440 
1441 	h->tc = tc;
1442 	h->shared_read_entry = NULL;
1443 	h->all_io_entry = NULL;
1444 	h->overwrite_mapping = NULL;
1445 }
1446 
1447 /*
1448  * Non-blocking function called from the thin target's map function.
1449  */
1450 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1451 {
1452 	int r;
1453 	struct thin_c *tc = ti->private;
1454 	dm_block_t block = get_bio_block(tc, bio);
1455 	struct dm_thin_device *td = tc->td;
1456 	struct dm_thin_lookup_result result;
1457 	struct dm_bio_prison_cell cell1, cell2;
1458 	struct dm_bio_prison_cell *cell_result;
1459 	struct dm_cell_key key;
1460 
1461 	thin_hook_bio(tc, bio);
1462 
1463 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1464 		bio_io_error(bio);
1465 		return DM_MAPIO_SUBMITTED;
1466 	}
1467 
1468 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1469 		thin_defer_bio(tc, bio);
1470 		return DM_MAPIO_SUBMITTED;
1471 	}
1472 
1473 	r = dm_thin_find_block(td, block, 0, &result);
1474 
1475 	/*
1476 	 * Note that we defer readahead too.
1477 	 */
1478 	switch (r) {
1479 	case 0:
1480 		if (unlikely(result.shared)) {
1481 			/*
1482 			 * We have a race condition here between the
1483 			 * result.shared value returned by the lookup and
1484 			 * snapshot creation, which may cause new
1485 			 * sharing.
1486 			 *
1487 			 * To avoid this always quiesce the origin before
1488 			 * taking the snap.  You want to do this anyway to
1489 			 * ensure a consistent application view
1490 			 * (i.e. lockfs).
1491 			 *
1492 			 * More distant ancestors are irrelevant. The
1493 			 * shared flag will be set in their case.
1494 			 */
1495 			thin_defer_bio(tc, bio);
1496 			return DM_MAPIO_SUBMITTED;
1497 		}
1498 
1499 		build_virtual_key(tc->td, block, &key);
1500 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1501 			return DM_MAPIO_SUBMITTED;
1502 
1503 		build_data_key(tc->td, result.block, &key);
1504 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1505 			cell_defer_no_holder_no_free(tc, &cell1);
1506 			return DM_MAPIO_SUBMITTED;
1507 		}
1508 
1509 		inc_all_io_entry(tc->pool, bio);
1510 		cell_defer_no_holder_no_free(tc, &cell2);
1511 		cell_defer_no_holder_no_free(tc, &cell1);
1512 
1513 		remap(tc, bio, result.block);
1514 		return DM_MAPIO_REMAPPED;
1515 
1516 	case -ENODATA:
1517 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1518 			/*
1519 			 * This block isn't provisioned, and we have no way
1520 			 * of doing so.  Just error it.
1521 			 */
1522 			bio_io_error(bio);
1523 			return DM_MAPIO_SUBMITTED;
1524 		}
1525 		/* fall through */
1526 
1527 	case -EWOULDBLOCK:
1528 		/*
1529 		 * In future, the failed dm_thin_find_block above could
1530 		 * provide the hint to load the metadata into cache.
1531 		 */
1532 		thin_defer_bio(tc, bio);
1533 		return DM_MAPIO_SUBMITTED;
1534 
1535 	default:
1536 		/*
1537 		 * Must always call bio_io_error on failure.
1538 		 * dm_thin_find_block can fail with -EINVAL if the
1539 		 * pool is switched to fail-io mode.
1540 		 */
1541 		bio_io_error(bio);
1542 		return DM_MAPIO_SUBMITTED;
1543 	}
1544 }
1545 
1546 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1547 {
1548 	int r;
1549 	unsigned long flags;
1550 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1551 
1552 	spin_lock_irqsave(&pt->pool->lock, flags);
1553 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1554 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1555 
1556 	if (!r) {
1557 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1558 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1559 	}
1560 
1561 	return r;
1562 }
1563 
1564 static void __requeue_bios(struct pool *pool)
1565 {
1566 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1567 	bio_list_init(&pool->retry_on_resume_list);
1568 }
1569 
1570 /*----------------------------------------------------------------
1571  * Binding of control targets to a pool object
1572  *--------------------------------------------------------------*/
1573 static bool data_dev_supports_discard(struct pool_c *pt)
1574 {
1575 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1576 
1577 	return q && blk_queue_discard(q);
1578 }
1579 
1580 /*
1581  * If discard_passdown was enabled verify that the data device
1582  * supports discards.  Disable discard_passdown if not.
1583  */
1584 static void disable_passdown_if_not_supported(struct pool_c *pt)
1585 {
1586 	struct pool *pool = pt->pool;
1587 	struct block_device *data_bdev = pt->data_dev->bdev;
1588 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1589 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1590 	const char *reason = NULL;
1591 	char buf[BDEVNAME_SIZE];
1592 
1593 	if (!pt->adjusted_pf.discard_passdown)
1594 		return;
1595 
1596 	if (!data_dev_supports_discard(pt))
1597 		reason = "discard unsupported";
1598 
1599 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1600 		reason = "max discard sectors smaller than a block";
1601 
1602 	else if (data_limits->discard_granularity > block_size)
1603 		reason = "discard granularity larger than a block";
1604 
1605 	else if (block_size & (data_limits->discard_granularity - 1))
1606 		reason = "discard granularity not a factor of block size";
1607 
1608 	if (reason) {
1609 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1610 		pt->adjusted_pf.discard_passdown = false;
1611 	}
1612 }
1613 
1614 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1615 {
1616 	struct pool_c *pt = ti->private;
1617 
1618 	/*
1619 	 * We want to make sure that degraded pools are never upgraded.
1620 	 */
1621 	enum pool_mode old_mode = pool->pf.mode;
1622 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1623 
1624 	if (old_mode > new_mode)
1625 		new_mode = old_mode;
1626 
1627 	pool->ti = ti;
1628 	pool->low_water_blocks = pt->low_water_blocks;
1629 	pool->pf = pt->adjusted_pf;
1630 
1631 	set_pool_mode(pool, new_mode);
1632 
1633 	return 0;
1634 }
1635 
1636 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1637 {
1638 	if (pool->ti == ti)
1639 		pool->ti = NULL;
1640 }
1641 
1642 /*----------------------------------------------------------------
1643  * Pool creation
1644  *--------------------------------------------------------------*/
1645 /* Initialize pool features. */
1646 static void pool_features_init(struct pool_features *pf)
1647 {
1648 	pf->mode = PM_WRITE;
1649 	pf->zero_new_blocks = true;
1650 	pf->discard_enabled = true;
1651 	pf->discard_passdown = true;
1652 }
1653 
1654 static void __pool_destroy(struct pool *pool)
1655 {
1656 	__pool_table_remove(pool);
1657 
1658 	if (dm_pool_metadata_close(pool->pmd) < 0)
1659 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1660 
1661 	dm_bio_prison_destroy(pool->prison);
1662 	dm_kcopyd_client_destroy(pool->copier);
1663 
1664 	if (pool->wq)
1665 		destroy_workqueue(pool->wq);
1666 
1667 	if (pool->next_mapping)
1668 		mempool_free(pool->next_mapping, pool->mapping_pool);
1669 	mempool_destroy(pool->mapping_pool);
1670 	dm_deferred_set_destroy(pool->shared_read_ds);
1671 	dm_deferred_set_destroy(pool->all_io_ds);
1672 	kfree(pool);
1673 }
1674 
1675 static struct kmem_cache *_new_mapping_cache;
1676 
1677 static struct pool *pool_create(struct mapped_device *pool_md,
1678 				struct block_device *metadata_dev,
1679 				unsigned long block_size,
1680 				int read_only, char **error)
1681 {
1682 	int r;
1683 	void *err_p;
1684 	struct pool *pool;
1685 	struct dm_pool_metadata *pmd;
1686 	bool format_device = read_only ? false : true;
1687 
1688 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1689 	if (IS_ERR(pmd)) {
1690 		*error = "Error creating metadata object";
1691 		return (struct pool *)pmd;
1692 	}
1693 
1694 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1695 	if (!pool) {
1696 		*error = "Error allocating memory for pool";
1697 		err_p = ERR_PTR(-ENOMEM);
1698 		goto bad_pool;
1699 	}
1700 
1701 	pool->pmd = pmd;
1702 	pool->sectors_per_block = block_size;
1703 	if (block_size & (block_size - 1))
1704 		pool->sectors_per_block_shift = -1;
1705 	else
1706 		pool->sectors_per_block_shift = __ffs(block_size);
1707 	pool->low_water_blocks = 0;
1708 	pool_features_init(&pool->pf);
1709 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
1710 	if (!pool->prison) {
1711 		*error = "Error creating pool's bio prison";
1712 		err_p = ERR_PTR(-ENOMEM);
1713 		goto bad_prison;
1714 	}
1715 
1716 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1717 	if (IS_ERR(pool->copier)) {
1718 		r = PTR_ERR(pool->copier);
1719 		*error = "Error creating pool's kcopyd client";
1720 		err_p = ERR_PTR(r);
1721 		goto bad_kcopyd_client;
1722 	}
1723 
1724 	/*
1725 	 * Create singlethreaded workqueue that will service all devices
1726 	 * that use this metadata.
1727 	 */
1728 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1729 	if (!pool->wq) {
1730 		*error = "Error creating pool's workqueue";
1731 		err_p = ERR_PTR(-ENOMEM);
1732 		goto bad_wq;
1733 	}
1734 
1735 	INIT_WORK(&pool->worker, do_worker);
1736 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1737 	spin_lock_init(&pool->lock);
1738 	bio_list_init(&pool->deferred_bios);
1739 	bio_list_init(&pool->deferred_flush_bios);
1740 	INIT_LIST_HEAD(&pool->prepared_mappings);
1741 	INIT_LIST_HEAD(&pool->prepared_discards);
1742 	pool->low_water_triggered = 0;
1743 	pool->no_free_space = 0;
1744 	bio_list_init(&pool->retry_on_resume_list);
1745 
1746 	pool->shared_read_ds = dm_deferred_set_create();
1747 	if (!pool->shared_read_ds) {
1748 		*error = "Error creating pool's shared read deferred set";
1749 		err_p = ERR_PTR(-ENOMEM);
1750 		goto bad_shared_read_ds;
1751 	}
1752 
1753 	pool->all_io_ds = dm_deferred_set_create();
1754 	if (!pool->all_io_ds) {
1755 		*error = "Error creating pool's all io deferred set";
1756 		err_p = ERR_PTR(-ENOMEM);
1757 		goto bad_all_io_ds;
1758 	}
1759 
1760 	pool->next_mapping = NULL;
1761 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1762 						      _new_mapping_cache);
1763 	if (!pool->mapping_pool) {
1764 		*error = "Error creating pool's mapping mempool";
1765 		err_p = ERR_PTR(-ENOMEM);
1766 		goto bad_mapping_pool;
1767 	}
1768 
1769 	pool->ref_count = 1;
1770 	pool->last_commit_jiffies = jiffies;
1771 	pool->pool_md = pool_md;
1772 	pool->md_dev = metadata_dev;
1773 	__pool_table_insert(pool);
1774 
1775 	return pool;
1776 
1777 bad_mapping_pool:
1778 	dm_deferred_set_destroy(pool->all_io_ds);
1779 bad_all_io_ds:
1780 	dm_deferred_set_destroy(pool->shared_read_ds);
1781 bad_shared_read_ds:
1782 	destroy_workqueue(pool->wq);
1783 bad_wq:
1784 	dm_kcopyd_client_destroy(pool->copier);
1785 bad_kcopyd_client:
1786 	dm_bio_prison_destroy(pool->prison);
1787 bad_prison:
1788 	kfree(pool);
1789 bad_pool:
1790 	if (dm_pool_metadata_close(pmd))
1791 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1792 
1793 	return err_p;
1794 }
1795 
1796 static void __pool_inc(struct pool *pool)
1797 {
1798 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1799 	pool->ref_count++;
1800 }
1801 
1802 static void __pool_dec(struct pool *pool)
1803 {
1804 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1805 	BUG_ON(!pool->ref_count);
1806 	if (!--pool->ref_count)
1807 		__pool_destroy(pool);
1808 }
1809 
1810 static struct pool *__pool_find(struct mapped_device *pool_md,
1811 				struct block_device *metadata_dev,
1812 				unsigned long block_size, int read_only,
1813 				char **error, int *created)
1814 {
1815 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1816 
1817 	if (pool) {
1818 		if (pool->pool_md != pool_md) {
1819 			*error = "metadata device already in use by a pool";
1820 			return ERR_PTR(-EBUSY);
1821 		}
1822 		__pool_inc(pool);
1823 
1824 	} else {
1825 		pool = __pool_table_lookup(pool_md);
1826 		if (pool) {
1827 			if (pool->md_dev != metadata_dev) {
1828 				*error = "different pool cannot replace a pool";
1829 				return ERR_PTR(-EINVAL);
1830 			}
1831 			__pool_inc(pool);
1832 
1833 		} else {
1834 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1835 			*created = 1;
1836 		}
1837 	}
1838 
1839 	return pool;
1840 }
1841 
1842 /*----------------------------------------------------------------
1843  * Pool target methods
1844  *--------------------------------------------------------------*/
1845 static void pool_dtr(struct dm_target *ti)
1846 {
1847 	struct pool_c *pt = ti->private;
1848 
1849 	mutex_lock(&dm_thin_pool_table.mutex);
1850 
1851 	unbind_control_target(pt->pool, ti);
1852 	__pool_dec(pt->pool);
1853 	dm_put_device(ti, pt->metadata_dev);
1854 	dm_put_device(ti, pt->data_dev);
1855 	kfree(pt);
1856 
1857 	mutex_unlock(&dm_thin_pool_table.mutex);
1858 }
1859 
1860 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1861 			       struct dm_target *ti)
1862 {
1863 	int r;
1864 	unsigned argc;
1865 	const char *arg_name;
1866 
1867 	static struct dm_arg _args[] = {
1868 		{0, 3, "Invalid number of pool feature arguments"},
1869 	};
1870 
1871 	/*
1872 	 * No feature arguments supplied.
1873 	 */
1874 	if (!as->argc)
1875 		return 0;
1876 
1877 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1878 	if (r)
1879 		return -EINVAL;
1880 
1881 	while (argc && !r) {
1882 		arg_name = dm_shift_arg(as);
1883 		argc--;
1884 
1885 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
1886 			pf->zero_new_blocks = false;
1887 
1888 		else if (!strcasecmp(arg_name, "ignore_discard"))
1889 			pf->discard_enabled = false;
1890 
1891 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
1892 			pf->discard_passdown = false;
1893 
1894 		else if (!strcasecmp(arg_name, "read_only"))
1895 			pf->mode = PM_READ_ONLY;
1896 
1897 		else {
1898 			ti->error = "Unrecognised pool feature requested";
1899 			r = -EINVAL;
1900 			break;
1901 		}
1902 	}
1903 
1904 	return r;
1905 }
1906 
1907 /*
1908  * thin-pool <metadata dev> <data dev>
1909  *	     <data block size (sectors)>
1910  *	     <low water mark (blocks)>
1911  *	     [<#feature args> [<arg>]*]
1912  *
1913  * Optional feature arguments are:
1914  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1915  *	     ignore_discard: disable discard
1916  *	     no_discard_passdown: don't pass discards down to the data device
1917  */
1918 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1919 {
1920 	int r, pool_created = 0;
1921 	struct pool_c *pt;
1922 	struct pool *pool;
1923 	struct pool_features pf;
1924 	struct dm_arg_set as;
1925 	struct dm_dev *data_dev;
1926 	unsigned long block_size;
1927 	dm_block_t low_water_blocks;
1928 	struct dm_dev *metadata_dev;
1929 	sector_t metadata_dev_size;
1930 	char b[BDEVNAME_SIZE];
1931 
1932 	/*
1933 	 * FIXME Remove validation from scope of lock.
1934 	 */
1935 	mutex_lock(&dm_thin_pool_table.mutex);
1936 
1937 	if (argc < 4) {
1938 		ti->error = "Invalid argument count";
1939 		r = -EINVAL;
1940 		goto out_unlock;
1941 	}
1942 	as.argc = argc;
1943 	as.argv = argv;
1944 
1945 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1946 	if (r) {
1947 		ti->error = "Error opening metadata block device";
1948 		goto out_unlock;
1949 	}
1950 
1951 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1952 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1953 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1954 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1955 
1956 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1957 	if (r) {
1958 		ti->error = "Error getting data device";
1959 		goto out_metadata;
1960 	}
1961 
1962 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1963 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1964 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1965 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1966 		ti->error = "Invalid block size";
1967 		r = -EINVAL;
1968 		goto out;
1969 	}
1970 
1971 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1972 		ti->error = "Invalid low water mark";
1973 		r = -EINVAL;
1974 		goto out;
1975 	}
1976 
1977 	/*
1978 	 * Set default pool features.
1979 	 */
1980 	pool_features_init(&pf);
1981 
1982 	dm_consume_args(&as, 4);
1983 	r = parse_pool_features(&as, &pf, ti);
1984 	if (r)
1985 		goto out;
1986 
1987 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1988 	if (!pt) {
1989 		r = -ENOMEM;
1990 		goto out;
1991 	}
1992 
1993 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1994 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
1995 	if (IS_ERR(pool)) {
1996 		r = PTR_ERR(pool);
1997 		goto out_free_pt;
1998 	}
1999 
2000 	/*
2001 	 * 'pool_created' reflects whether this is the first table load.
2002 	 * Top level discard support is not allowed to be changed after
2003 	 * initial load.  This would require a pool reload to trigger thin
2004 	 * device changes.
2005 	 */
2006 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2007 		ti->error = "Discard support cannot be disabled once enabled";
2008 		r = -EINVAL;
2009 		goto out_flags_changed;
2010 	}
2011 
2012 	pt->pool = pool;
2013 	pt->ti = ti;
2014 	pt->metadata_dev = metadata_dev;
2015 	pt->data_dev = data_dev;
2016 	pt->low_water_blocks = low_water_blocks;
2017 	pt->adjusted_pf = pt->requested_pf = pf;
2018 	ti->num_flush_bios = 1;
2019 
2020 	/*
2021 	 * Only need to enable discards if the pool should pass
2022 	 * them down to the data device.  The thin device's discard
2023 	 * processing will cause mappings to be removed from the btree.
2024 	 */
2025 	if (pf.discard_enabled && pf.discard_passdown) {
2026 		ti->num_discard_bios = 1;
2027 
2028 		/*
2029 		 * Setting 'discards_supported' circumvents the normal
2030 		 * stacking of discard limits (this keeps the pool and
2031 		 * thin devices' discard limits consistent).
2032 		 */
2033 		ti->discards_supported = true;
2034 		ti->discard_zeroes_data_unsupported = true;
2035 	}
2036 	ti->private = pt;
2037 
2038 	pt->callbacks.congested_fn = pool_is_congested;
2039 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2040 
2041 	mutex_unlock(&dm_thin_pool_table.mutex);
2042 
2043 	return 0;
2044 
2045 out_flags_changed:
2046 	__pool_dec(pool);
2047 out_free_pt:
2048 	kfree(pt);
2049 out:
2050 	dm_put_device(ti, data_dev);
2051 out_metadata:
2052 	dm_put_device(ti, metadata_dev);
2053 out_unlock:
2054 	mutex_unlock(&dm_thin_pool_table.mutex);
2055 
2056 	return r;
2057 }
2058 
2059 static int pool_map(struct dm_target *ti, struct bio *bio)
2060 {
2061 	int r;
2062 	struct pool_c *pt = ti->private;
2063 	struct pool *pool = pt->pool;
2064 	unsigned long flags;
2065 
2066 	/*
2067 	 * As this is a singleton target, ti->begin is always zero.
2068 	 */
2069 	spin_lock_irqsave(&pool->lock, flags);
2070 	bio->bi_bdev = pt->data_dev->bdev;
2071 	r = DM_MAPIO_REMAPPED;
2072 	spin_unlock_irqrestore(&pool->lock, flags);
2073 
2074 	return r;
2075 }
2076 
2077 /*
2078  * Retrieves the number of blocks of the data device from
2079  * the superblock and compares it to the actual device size,
2080  * thus resizing the data device in case it has grown.
2081  *
2082  * This both copes with opening preallocated data devices in the ctr
2083  * being followed by a resume
2084  * -and-
2085  * calling the resume method individually after userspace has
2086  * grown the data device in reaction to a table event.
2087  */
2088 static int pool_preresume(struct dm_target *ti)
2089 {
2090 	int r;
2091 	struct pool_c *pt = ti->private;
2092 	struct pool *pool = pt->pool;
2093 	sector_t data_size = ti->len;
2094 	dm_block_t sb_data_size;
2095 
2096 	/*
2097 	 * Take control of the pool object.
2098 	 */
2099 	r = bind_control_target(pool, ti);
2100 	if (r)
2101 		return r;
2102 
2103 	(void) sector_div(data_size, pool->sectors_per_block);
2104 
2105 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2106 	if (r) {
2107 		DMERR("failed to retrieve data device size");
2108 		return r;
2109 	}
2110 
2111 	if (data_size < sb_data_size) {
2112 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2113 		      (unsigned long long)data_size, sb_data_size);
2114 		return -EINVAL;
2115 
2116 	} else if (data_size > sb_data_size) {
2117 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2118 		if (r) {
2119 			DMERR("failed to resize data device");
2120 			/* FIXME Stricter than necessary: Rollback transaction instead here */
2121 			set_pool_mode(pool, PM_READ_ONLY);
2122 			return r;
2123 		}
2124 
2125 		(void) commit_or_fallback(pool);
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static void pool_resume(struct dm_target *ti)
2132 {
2133 	struct pool_c *pt = ti->private;
2134 	struct pool *pool = pt->pool;
2135 	unsigned long flags;
2136 
2137 	spin_lock_irqsave(&pool->lock, flags);
2138 	pool->low_water_triggered = 0;
2139 	pool->no_free_space = 0;
2140 	__requeue_bios(pool);
2141 	spin_unlock_irqrestore(&pool->lock, flags);
2142 
2143 	do_waker(&pool->waker.work);
2144 }
2145 
2146 static void pool_postsuspend(struct dm_target *ti)
2147 {
2148 	struct pool_c *pt = ti->private;
2149 	struct pool *pool = pt->pool;
2150 
2151 	cancel_delayed_work(&pool->waker);
2152 	flush_workqueue(pool->wq);
2153 	(void) commit_or_fallback(pool);
2154 }
2155 
2156 static int check_arg_count(unsigned argc, unsigned args_required)
2157 {
2158 	if (argc != args_required) {
2159 		DMWARN("Message received with %u arguments instead of %u.",
2160 		       argc, args_required);
2161 		return -EINVAL;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2168 {
2169 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2170 	    *dev_id <= MAX_DEV_ID)
2171 		return 0;
2172 
2173 	if (warning)
2174 		DMWARN("Message received with invalid device id: %s", arg);
2175 
2176 	return -EINVAL;
2177 }
2178 
2179 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2180 {
2181 	dm_thin_id dev_id;
2182 	int r;
2183 
2184 	r = check_arg_count(argc, 2);
2185 	if (r)
2186 		return r;
2187 
2188 	r = read_dev_id(argv[1], &dev_id, 1);
2189 	if (r)
2190 		return r;
2191 
2192 	r = dm_pool_create_thin(pool->pmd, dev_id);
2193 	if (r) {
2194 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2195 		       argv[1]);
2196 		return r;
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2203 {
2204 	dm_thin_id dev_id;
2205 	dm_thin_id origin_dev_id;
2206 	int r;
2207 
2208 	r = check_arg_count(argc, 3);
2209 	if (r)
2210 		return r;
2211 
2212 	r = read_dev_id(argv[1], &dev_id, 1);
2213 	if (r)
2214 		return r;
2215 
2216 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2217 	if (r)
2218 		return r;
2219 
2220 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2221 	if (r) {
2222 		DMWARN("Creation of new snapshot %s of device %s failed.",
2223 		       argv[1], argv[2]);
2224 		return r;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2231 {
2232 	dm_thin_id dev_id;
2233 	int r;
2234 
2235 	r = check_arg_count(argc, 2);
2236 	if (r)
2237 		return r;
2238 
2239 	r = read_dev_id(argv[1], &dev_id, 1);
2240 	if (r)
2241 		return r;
2242 
2243 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2244 	if (r)
2245 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2246 
2247 	return r;
2248 }
2249 
2250 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2251 {
2252 	dm_thin_id old_id, new_id;
2253 	int r;
2254 
2255 	r = check_arg_count(argc, 3);
2256 	if (r)
2257 		return r;
2258 
2259 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2260 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2261 		return -EINVAL;
2262 	}
2263 
2264 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2265 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2266 		return -EINVAL;
2267 	}
2268 
2269 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2270 	if (r) {
2271 		DMWARN("Failed to change transaction id from %s to %s.",
2272 		       argv[1], argv[2]);
2273 		return r;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2280 {
2281 	int r;
2282 
2283 	r = check_arg_count(argc, 1);
2284 	if (r)
2285 		return r;
2286 
2287 	(void) commit_or_fallback(pool);
2288 
2289 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2290 	if (r)
2291 		DMWARN("reserve_metadata_snap message failed.");
2292 
2293 	return r;
2294 }
2295 
2296 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2297 {
2298 	int r;
2299 
2300 	r = check_arg_count(argc, 1);
2301 	if (r)
2302 		return r;
2303 
2304 	r = dm_pool_release_metadata_snap(pool->pmd);
2305 	if (r)
2306 		DMWARN("release_metadata_snap message failed.");
2307 
2308 	return r;
2309 }
2310 
2311 /*
2312  * Messages supported:
2313  *   create_thin	<dev_id>
2314  *   create_snap	<dev_id> <origin_id>
2315  *   delete		<dev_id>
2316  *   trim		<dev_id> <new_size_in_sectors>
2317  *   set_transaction_id <current_trans_id> <new_trans_id>
2318  *   reserve_metadata_snap
2319  *   release_metadata_snap
2320  */
2321 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2322 {
2323 	int r = -EINVAL;
2324 	struct pool_c *pt = ti->private;
2325 	struct pool *pool = pt->pool;
2326 
2327 	if (!strcasecmp(argv[0], "create_thin"))
2328 		r = process_create_thin_mesg(argc, argv, pool);
2329 
2330 	else if (!strcasecmp(argv[0], "create_snap"))
2331 		r = process_create_snap_mesg(argc, argv, pool);
2332 
2333 	else if (!strcasecmp(argv[0], "delete"))
2334 		r = process_delete_mesg(argc, argv, pool);
2335 
2336 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2337 		r = process_set_transaction_id_mesg(argc, argv, pool);
2338 
2339 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2340 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2341 
2342 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2343 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2344 
2345 	else
2346 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2347 
2348 	if (!r)
2349 		(void) commit_or_fallback(pool);
2350 
2351 	return r;
2352 }
2353 
2354 static void emit_flags(struct pool_features *pf, char *result,
2355 		       unsigned sz, unsigned maxlen)
2356 {
2357 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2358 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2359 	DMEMIT("%u ", count);
2360 
2361 	if (!pf->zero_new_blocks)
2362 		DMEMIT("skip_block_zeroing ");
2363 
2364 	if (!pf->discard_enabled)
2365 		DMEMIT("ignore_discard ");
2366 
2367 	if (!pf->discard_passdown)
2368 		DMEMIT("no_discard_passdown ");
2369 
2370 	if (pf->mode == PM_READ_ONLY)
2371 		DMEMIT("read_only ");
2372 }
2373 
2374 /*
2375  * Status line is:
2376  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2377  *    <used data sectors>/<total data sectors> <held metadata root>
2378  */
2379 static void pool_status(struct dm_target *ti, status_type_t type,
2380 			unsigned status_flags, char *result, unsigned maxlen)
2381 {
2382 	int r;
2383 	unsigned sz = 0;
2384 	uint64_t transaction_id;
2385 	dm_block_t nr_free_blocks_data;
2386 	dm_block_t nr_free_blocks_metadata;
2387 	dm_block_t nr_blocks_data;
2388 	dm_block_t nr_blocks_metadata;
2389 	dm_block_t held_root;
2390 	char buf[BDEVNAME_SIZE];
2391 	char buf2[BDEVNAME_SIZE];
2392 	struct pool_c *pt = ti->private;
2393 	struct pool *pool = pt->pool;
2394 
2395 	switch (type) {
2396 	case STATUSTYPE_INFO:
2397 		if (get_pool_mode(pool) == PM_FAIL) {
2398 			DMEMIT("Fail");
2399 			break;
2400 		}
2401 
2402 		/* Commit to ensure statistics aren't out-of-date */
2403 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2404 			(void) commit_or_fallback(pool);
2405 
2406 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2407 		if (r) {
2408 			DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2409 			goto err;
2410 		}
2411 
2412 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2413 		if (r) {
2414 			DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2415 			goto err;
2416 		}
2417 
2418 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2419 		if (r) {
2420 			DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2421 			goto err;
2422 		}
2423 
2424 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2425 		if (r) {
2426 			DMERR("dm_pool_get_free_block_count returned %d", r);
2427 			goto err;
2428 		}
2429 
2430 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2431 		if (r) {
2432 			DMERR("dm_pool_get_data_dev_size returned %d", r);
2433 			goto err;
2434 		}
2435 
2436 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2437 		if (r) {
2438 			DMERR("dm_pool_get_metadata_snap returned %d", r);
2439 			goto err;
2440 		}
2441 
2442 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2443 		       (unsigned long long)transaction_id,
2444 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2445 		       (unsigned long long)nr_blocks_metadata,
2446 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2447 		       (unsigned long long)nr_blocks_data);
2448 
2449 		if (held_root)
2450 			DMEMIT("%llu ", held_root);
2451 		else
2452 			DMEMIT("- ");
2453 
2454 		if (pool->pf.mode == PM_READ_ONLY)
2455 			DMEMIT("ro ");
2456 		else
2457 			DMEMIT("rw ");
2458 
2459 		if (!pool->pf.discard_enabled)
2460 			DMEMIT("ignore_discard");
2461 		else if (pool->pf.discard_passdown)
2462 			DMEMIT("discard_passdown");
2463 		else
2464 			DMEMIT("no_discard_passdown");
2465 
2466 		break;
2467 
2468 	case STATUSTYPE_TABLE:
2469 		DMEMIT("%s %s %lu %llu ",
2470 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2471 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2472 		       (unsigned long)pool->sectors_per_block,
2473 		       (unsigned long long)pt->low_water_blocks);
2474 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2475 		break;
2476 	}
2477 	return;
2478 
2479 err:
2480 	DMEMIT("Error");
2481 }
2482 
2483 static int pool_iterate_devices(struct dm_target *ti,
2484 				iterate_devices_callout_fn fn, void *data)
2485 {
2486 	struct pool_c *pt = ti->private;
2487 
2488 	return fn(ti, pt->data_dev, 0, ti->len, data);
2489 }
2490 
2491 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2492 		      struct bio_vec *biovec, int max_size)
2493 {
2494 	struct pool_c *pt = ti->private;
2495 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2496 
2497 	if (!q->merge_bvec_fn)
2498 		return max_size;
2499 
2500 	bvm->bi_bdev = pt->data_dev->bdev;
2501 
2502 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2503 }
2504 
2505 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2506 {
2507 	struct pool *pool = pt->pool;
2508 	struct queue_limits *data_limits;
2509 
2510 	limits->max_discard_sectors = pool->sectors_per_block;
2511 
2512 	/*
2513 	 * discard_granularity is just a hint, and not enforced.
2514 	 */
2515 	if (pt->adjusted_pf.discard_passdown) {
2516 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2517 		limits->discard_granularity = data_limits->discard_granularity;
2518 	} else
2519 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2520 }
2521 
2522 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2523 {
2524 	struct pool_c *pt = ti->private;
2525 	struct pool *pool = pt->pool;
2526 
2527 	blk_limits_io_min(limits, 0);
2528 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2529 
2530 	/*
2531 	 * pt->adjusted_pf is a staging area for the actual features to use.
2532 	 * They get transferred to the live pool in bind_control_target()
2533 	 * called from pool_preresume().
2534 	 */
2535 	if (!pt->adjusted_pf.discard_enabled)
2536 		return;
2537 
2538 	disable_passdown_if_not_supported(pt);
2539 
2540 	set_discard_limits(pt, limits);
2541 }
2542 
2543 static struct target_type pool_target = {
2544 	.name = "thin-pool",
2545 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2546 		    DM_TARGET_IMMUTABLE,
2547 	.version = {1, 6, 1},
2548 	.module = THIS_MODULE,
2549 	.ctr = pool_ctr,
2550 	.dtr = pool_dtr,
2551 	.map = pool_map,
2552 	.postsuspend = pool_postsuspend,
2553 	.preresume = pool_preresume,
2554 	.resume = pool_resume,
2555 	.message = pool_message,
2556 	.status = pool_status,
2557 	.merge = pool_merge,
2558 	.iterate_devices = pool_iterate_devices,
2559 	.io_hints = pool_io_hints,
2560 };
2561 
2562 /*----------------------------------------------------------------
2563  * Thin target methods
2564  *--------------------------------------------------------------*/
2565 static void thin_dtr(struct dm_target *ti)
2566 {
2567 	struct thin_c *tc = ti->private;
2568 
2569 	mutex_lock(&dm_thin_pool_table.mutex);
2570 
2571 	__pool_dec(tc->pool);
2572 	dm_pool_close_thin_device(tc->td);
2573 	dm_put_device(ti, tc->pool_dev);
2574 	if (tc->origin_dev)
2575 		dm_put_device(ti, tc->origin_dev);
2576 	kfree(tc);
2577 
2578 	mutex_unlock(&dm_thin_pool_table.mutex);
2579 }
2580 
2581 /*
2582  * Thin target parameters:
2583  *
2584  * <pool_dev> <dev_id> [origin_dev]
2585  *
2586  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2587  * dev_id: the internal device identifier
2588  * origin_dev: a device external to the pool that should act as the origin
2589  *
2590  * If the pool device has discards disabled, they get disabled for the thin
2591  * device as well.
2592  */
2593 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2594 {
2595 	int r;
2596 	struct thin_c *tc;
2597 	struct dm_dev *pool_dev, *origin_dev;
2598 	struct mapped_device *pool_md;
2599 
2600 	mutex_lock(&dm_thin_pool_table.mutex);
2601 
2602 	if (argc != 2 && argc != 3) {
2603 		ti->error = "Invalid argument count";
2604 		r = -EINVAL;
2605 		goto out_unlock;
2606 	}
2607 
2608 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2609 	if (!tc) {
2610 		ti->error = "Out of memory";
2611 		r = -ENOMEM;
2612 		goto out_unlock;
2613 	}
2614 
2615 	if (argc == 3) {
2616 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2617 		if (r) {
2618 			ti->error = "Error opening origin device";
2619 			goto bad_origin_dev;
2620 		}
2621 		tc->origin_dev = origin_dev;
2622 	}
2623 
2624 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2625 	if (r) {
2626 		ti->error = "Error opening pool device";
2627 		goto bad_pool_dev;
2628 	}
2629 	tc->pool_dev = pool_dev;
2630 
2631 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2632 		ti->error = "Invalid device id";
2633 		r = -EINVAL;
2634 		goto bad_common;
2635 	}
2636 
2637 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2638 	if (!pool_md) {
2639 		ti->error = "Couldn't get pool mapped device";
2640 		r = -EINVAL;
2641 		goto bad_common;
2642 	}
2643 
2644 	tc->pool = __pool_table_lookup(pool_md);
2645 	if (!tc->pool) {
2646 		ti->error = "Couldn't find pool object";
2647 		r = -EINVAL;
2648 		goto bad_pool_lookup;
2649 	}
2650 	__pool_inc(tc->pool);
2651 
2652 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2653 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2654 		goto bad_thin_open;
2655 	}
2656 
2657 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2658 	if (r) {
2659 		ti->error = "Couldn't open thin internal device";
2660 		goto bad_thin_open;
2661 	}
2662 
2663 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2664 	if (r)
2665 		goto bad_thin_open;
2666 
2667 	ti->num_flush_bios = 1;
2668 	ti->flush_supported = true;
2669 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2670 
2671 	/* In case the pool supports discards, pass them on. */
2672 	if (tc->pool->pf.discard_enabled) {
2673 		ti->discards_supported = true;
2674 		ti->num_discard_bios = 1;
2675 		ti->discard_zeroes_data_unsupported = true;
2676 		/* Discard bios must be split on a block boundary */
2677 		ti->split_discard_bios = true;
2678 	}
2679 
2680 	dm_put(pool_md);
2681 
2682 	mutex_unlock(&dm_thin_pool_table.mutex);
2683 
2684 	return 0;
2685 
2686 bad_thin_open:
2687 	__pool_dec(tc->pool);
2688 bad_pool_lookup:
2689 	dm_put(pool_md);
2690 bad_common:
2691 	dm_put_device(ti, tc->pool_dev);
2692 bad_pool_dev:
2693 	if (tc->origin_dev)
2694 		dm_put_device(ti, tc->origin_dev);
2695 bad_origin_dev:
2696 	kfree(tc);
2697 out_unlock:
2698 	mutex_unlock(&dm_thin_pool_table.mutex);
2699 
2700 	return r;
2701 }
2702 
2703 static int thin_map(struct dm_target *ti, struct bio *bio)
2704 {
2705 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2706 
2707 	return thin_bio_map(ti, bio);
2708 }
2709 
2710 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2711 {
2712 	unsigned long flags;
2713 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2714 	struct list_head work;
2715 	struct dm_thin_new_mapping *m, *tmp;
2716 	struct pool *pool = h->tc->pool;
2717 
2718 	if (h->shared_read_entry) {
2719 		INIT_LIST_HEAD(&work);
2720 		dm_deferred_entry_dec(h->shared_read_entry, &work);
2721 
2722 		spin_lock_irqsave(&pool->lock, flags);
2723 		list_for_each_entry_safe(m, tmp, &work, list) {
2724 			list_del(&m->list);
2725 			m->quiesced = 1;
2726 			__maybe_add_mapping(m);
2727 		}
2728 		spin_unlock_irqrestore(&pool->lock, flags);
2729 	}
2730 
2731 	if (h->all_io_entry) {
2732 		INIT_LIST_HEAD(&work);
2733 		dm_deferred_entry_dec(h->all_io_entry, &work);
2734 		if (!list_empty(&work)) {
2735 			spin_lock_irqsave(&pool->lock, flags);
2736 			list_for_each_entry_safe(m, tmp, &work, list)
2737 				list_add(&m->list, &pool->prepared_discards);
2738 			spin_unlock_irqrestore(&pool->lock, flags);
2739 			wake_worker(pool);
2740 		}
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 static void thin_postsuspend(struct dm_target *ti)
2747 {
2748 	if (dm_noflush_suspending(ti))
2749 		requeue_io((struct thin_c *)ti->private);
2750 }
2751 
2752 /*
2753  * <nr mapped sectors> <highest mapped sector>
2754  */
2755 static void thin_status(struct dm_target *ti, status_type_t type,
2756 			unsigned status_flags, char *result, unsigned maxlen)
2757 {
2758 	int r;
2759 	ssize_t sz = 0;
2760 	dm_block_t mapped, highest;
2761 	char buf[BDEVNAME_SIZE];
2762 	struct thin_c *tc = ti->private;
2763 
2764 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2765 		DMEMIT("Fail");
2766 		return;
2767 	}
2768 
2769 	if (!tc->td)
2770 		DMEMIT("-");
2771 	else {
2772 		switch (type) {
2773 		case STATUSTYPE_INFO:
2774 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2775 			if (r) {
2776 				DMERR("dm_thin_get_mapped_count returned %d", r);
2777 				goto err;
2778 			}
2779 
2780 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2781 			if (r < 0) {
2782 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2783 				goto err;
2784 			}
2785 
2786 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2787 			if (r)
2788 				DMEMIT("%llu", ((highest + 1) *
2789 						tc->pool->sectors_per_block) - 1);
2790 			else
2791 				DMEMIT("-");
2792 			break;
2793 
2794 		case STATUSTYPE_TABLE:
2795 			DMEMIT("%s %lu",
2796 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2797 			       (unsigned long) tc->dev_id);
2798 			if (tc->origin_dev)
2799 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2800 			break;
2801 		}
2802 	}
2803 
2804 	return;
2805 
2806 err:
2807 	DMEMIT("Error");
2808 }
2809 
2810 static int thin_iterate_devices(struct dm_target *ti,
2811 				iterate_devices_callout_fn fn, void *data)
2812 {
2813 	sector_t blocks;
2814 	struct thin_c *tc = ti->private;
2815 	struct pool *pool = tc->pool;
2816 
2817 	/*
2818 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2819 	 * we follow a more convoluted path through to the pool's target.
2820 	 */
2821 	if (!pool->ti)
2822 		return 0;	/* nothing is bound */
2823 
2824 	blocks = pool->ti->len;
2825 	(void) sector_div(blocks, pool->sectors_per_block);
2826 	if (blocks)
2827 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2828 
2829 	return 0;
2830 }
2831 
2832 static struct target_type thin_target = {
2833 	.name = "thin",
2834 	.version = {1, 7, 1},
2835 	.module	= THIS_MODULE,
2836 	.ctr = thin_ctr,
2837 	.dtr = thin_dtr,
2838 	.map = thin_map,
2839 	.end_io = thin_endio,
2840 	.postsuspend = thin_postsuspend,
2841 	.status = thin_status,
2842 	.iterate_devices = thin_iterate_devices,
2843 };
2844 
2845 /*----------------------------------------------------------------*/
2846 
2847 static int __init dm_thin_init(void)
2848 {
2849 	int r;
2850 
2851 	pool_table_init();
2852 
2853 	r = dm_register_target(&thin_target);
2854 	if (r)
2855 		return r;
2856 
2857 	r = dm_register_target(&pool_target);
2858 	if (r)
2859 		goto bad_pool_target;
2860 
2861 	r = -ENOMEM;
2862 
2863 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2864 	if (!_new_mapping_cache)
2865 		goto bad_new_mapping_cache;
2866 
2867 	return 0;
2868 
2869 bad_new_mapping_cache:
2870 	dm_unregister_target(&pool_target);
2871 bad_pool_target:
2872 	dm_unregister_target(&thin_target);
2873 
2874 	return r;
2875 }
2876 
2877 static void dm_thin_exit(void)
2878 {
2879 	dm_unregister_target(&thin_target);
2880 	dm_unregister_target(&pool_target);
2881 
2882 	kmem_cache_destroy(_new_mapping_cache);
2883 }
2884 
2885 module_init(dm_thin_init);
2886 module_exit(dm_thin_exit);
2887 
2888 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2889 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2890 MODULE_LICENSE("GPL");
2891