1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 19 #define DM_MSG_PREFIX "thin" 20 21 /* 22 * Tunable constants 23 */ 24 #define ENDIO_HOOK_POOL_SIZE 1024 25 #define MAPPING_POOL_SIZE 1024 26 #define PRISON_CELLS 1024 27 #define COMMIT_PERIOD HZ 28 29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 30 "A percentage of time allocated for copy on write"); 31 32 /* 33 * The block size of the device holding pool data must be 34 * between 64KB and 1GB. 35 */ 36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 38 39 /* 40 * Device id is restricted to 24 bits. 41 */ 42 #define MAX_DEV_ID ((1 << 24) - 1) 43 44 /* 45 * How do we handle breaking sharing of data blocks? 46 * ================================================= 47 * 48 * We use a standard copy-on-write btree to store the mappings for the 49 * devices (note I'm talking about copy-on-write of the metadata here, not 50 * the data). When you take an internal snapshot you clone the root node 51 * of the origin btree. After this there is no concept of an origin or a 52 * snapshot. They are just two device trees that happen to point to the 53 * same data blocks. 54 * 55 * When we get a write in we decide if it's to a shared data block using 56 * some timestamp magic. If it is, we have to break sharing. 57 * 58 * Let's say we write to a shared block in what was the origin. The 59 * steps are: 60 * 61 * i) plug io further to this physical block. (see bio_prison code). 62 * 63 * ii) quiesce any read io to that shared data block. Obviously 64 * including all devices that share this block. (see dm_deferred_set code) 65 * 66 * iii) copy the data block to a newly allocate block. This step can be 67 * missed out if the io covers the block. (schedule_copy). 68 * 69 * iv) insert the new mapping into the origin's btree 70 * (process_prepared_mapping). This act of inserting breaks some 71 * sharing of btree nodes between the two devices. Breaking sharing only 72 * effects the btree of that specific device. Btrees for the other 73 * devices that share the block never change. The btree for the origin 74 * device as it was after the last commit is untouched, ie. we're using 75 * persistent data structures in the functional programming sense. 76 * 77 * v) unplug io to this physical block, including the io that triggered 78 * the breaking of sharing. 79 * 80 * Steps (ii) and (iii) occur in parallel. 81 * 82 * The metadata _doesn't_ need to be committed before the io continues. We 83 * get away with this because the io is always written to a _new_ block. 84 * If there's a crash, then: 85 * 86 * - The origin mapping will point to the old origin block (the shared 87 * one). This will contain the data as it was before the io that triggered 88 * the breaking of sharing came in. 89 * 90 * - The snap mapping still points to the old block. As it would after 91 * the commit. 92 * 93 * The downside of this scheme is the timestamp magic isn't perfect, and 94 * will continue to think that data block in the snapshot device is shared 95 * even after the write to the origin has broken sharing. I suspect data 96 * blocks will typically be shared by many different devices, so we're 97 * breaking sharing n + 1 times, rather than n, where n is the number of 98 * devices that reference this data block. At the moment I think the 99 * benefits far, far outweigh the disadvantages. 100 */ 101 102 /*----------------------------------------------------------------*/ 103 104 /* 105 * Key building. 106 */ 107 static void build_data_key(struct dm_thin_device *td, 108 dm_block_t b, struct dm_cell_key *key) 109 { 110 key->virtual = 0; 111 key->dev = dm_thin_dev_id(td); 112 key->block = b; 113 } 114 115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 116 struct dm_cell_key *key) 117 { 118 key->virtual = 1; 119 key->dev = dm_thin_dev_id(td); 120 key->block = b; 121 } 122 123 /*----------------------------------------------------------------*/ 124 125 /* 126 * A pool device ties together a metadata device and a data device. It 127 * also provides the interface for creating and destroying internal 128 * devices. 129 */ 130 struct dm_thin_new_mapping; 131 132 /* 133 * The pool runs in 3 modes. Ordered in degraded order for comparisons. 134 */ 135 enum pool_mode { 136 PM_WRITE, /* metadata may be changed */ 137 PM_READ_ONLY, /* metadata may not be changed */ 138 PM_FAIL, /* all I/O fails */ 139 }; 140 141 struct pool_features { 142 enum pool_mode mode; 143 144 bool zero_new_blocks:1; 145 bool discard_enabled:1; 146 bool discard_passdown:1; 147 }; 148 149 struct thin_c; 150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 152 153 struct pool { 154 struct list_head list; 155 struct dm_target *ti; /* Only set if a pool target is bound */ 156 157 struct mapped_device *pool_md; 158 struct block_device *md_dev; 159 struct dm_pool_metadata *pmd; 160 161 dm_block_t low_water_blocks; 162 uint32_t sectors_per_block; 163 int sectors_per_block_shift; 164 165 struct pool_features pf; 166 unsigned low_water_triggered:1; /* A dm event has been sent */ 167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ 168 169 struct dm_bio_prison *prison; 170 struct dm_kcopyd_client *copier; 171 172 struct workqueue_struct *wq; 173 struct work_struct worker; 174 struct delayed_work waker; 175 176 unsigned long last_commit_jiffies; 177 unsigned ref_count; 178 179 spinlock_t lock; 180 struct bio_list deferred_bios; 181 struct bio_list deferred_flush_bios; 182 struct list_head prepared_mappings; 183 struct list_head prepared_discards; 184 185 struct bio_list retry_on_resume_list; 186 187 struct dm_deferred_set *shared_read_ds; 188 struct dm_deferred_set *all_io_ds; 189 190 struct dm_thin_new_mapping *next_mapping; 191 mempool_t *mapping_pool; 192 193 process_bio_fn process_bio; 194 process_bio_fn process_discard; 195 196 process_mapping_fn process_prepared_mapping; 197 process_mapping_fn process_prepared_discard; 198 }; 199 200 static enum pool_mode get_pool_mode(struct pool *pool); 201 static void set_pool_mode(struct pool *pool, enum pool_mode mode); 202 203 /* 204 * Target context for a pool. 205 */ 206 struct pool_c { 207 struct dm_target *ti; 208 struct pool *pool; 209 struct dm_dev *data_dev; 210 struct dm_dev *metadata_dev; 211 struct dm_target_callbacks callbacks; 212 213 dm_block_t low_water_blocks; 214 struct pool_features requested_pf; /* Features requested during table load */ 215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 216 }; 217 218 /* 219 * Target context for a thin. 220 */ 221 struct thin_c { 222 struct dm_dev *pool_dev; 223 struct dm_dev *origin_dev; 224 dm_thin_id dev_id; 225 226 struct pool *pool; 227 struct dm_thin_device *td; 228 }; 229 230 /*----------------------------------------------------------------*/ 231 232 /* 233 * wake_worker() is used when new work is queued and when pool_resume is 234 * ready to continue deferred IO processing. 235 */ 236 static void wake_worker(struct pool *pool) 237 { 238 queue_work(pool->wq, &pool->worker); 239 } 240 241 /*----------------------------------------------------------------*/ 242 243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 244 struct dm_bio_prison_cell **cell_result) 245 { 246 int r; 247 struct dm_bio_prison_cell *cell_prealloc; 248 249 /* 250 * Allocate a cell from the prison's mempool. 251 * This might block but it can't fail. 252 */ 253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 254 255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 256 if (r) 257 /* 258 * We reused an old cell; we can get rid of 259 * the new one. 260 */ 261 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 262 263 return r; 264 } 265 266 static void cell_release(struct pool *pool, 267 struct dm_bio_prison_cell *cell, 268 struct bio_list *bios) 269 { 270 dm_cell_release(pool->prison, cell, bios); 271 dm_bio_prison_free_cell(pool->prison, cell); 272 } 273 274 static void cell_release_no_holder(struct pool *pool, 275 struct dm_bio_prison_cell *cell, 276 struct bio_list *bios) 277 { 278 dm_cell_release_no_holder(pool->prison, cell, bios); 279 dm_bio_prison_free_cell(pool->prison, cell); 280 } 281 282 static void cell_defer_no_holder_no_free(struct thin_c *tc, 283 struct dm_bio_prison_cell *cell) 284 { 285 struct pool *pool = tc->pool; 286 unsigned long flags; 287 288 spin_lock_irqsave(&pool->lock, flags); 289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios); 290 spin_unlock_irqrestore(&pool->lock, flags); 291 292 wake_worker(pool); 293 } 294 295 static void cell_error(struct pool *pool, 296 struct dm_bio_prison_cell *cell) 297 { 298 dm_cell_error(pool->prison, cell); 299 dm_bio_prison_free_cell(pool->prison, cell); 300 } 301 302 /*----------------------------------------------------------------*/ 303 304 /* 305 * A global list of pools that uses a struct mapped_device as a key. 306 */ 307 static struct dm_thin_pool_table { 308 struct mutex mutex; 309 struct list_head pools; 310 } dm_thin_pool_table; 311 312 static void pool_table_init(void) 313 { 314 mutex_init(&dm_thin_pool_table.mutex); 315 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 316 } 317 318 static void __pool_table_insert(struct pool *pool) 319 { 320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 321 list_add(&pool->list, &dm_thin_pool_table.pools); 322 } 323 324 static void __pool_table_remove(struct pool *pool) 325 { 326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 327 list_del(&pool->list); 328 } 329 330 static struct pool *__pool_table_lookup(struct mapped_device *md) 331 { 332 struct pool *pool = NULL, *tmp; 333 334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 335 336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 337 if (tmp->pool_md == md) { 338 pool = tmp; 339 break; 340 } 341 } 342 343 return pool; 344 } 345 346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 347 { 348 struct pool *pool = NULL, *tmp; 349 350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 351 352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 353 if (tmp->md_dev == md_dev) { 354 pool = tmp; 355 break; 356 } 357 } 358 359 return pool; 360 } 361 362 /*----------------------------------------------------------------*/ 363 364 struct dm_thin_endio_hook { 365 struct thin_c *tc; 366 struct dm_deferred_entry *shared_read_entry; 367 struct dm_deferred_entry *all_io_entry; 368 struct dm_thin_new_mapping *overwrite_mapping; 369 }; 370 371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) 372 { 373 struct bio *bio; 374 struct bio_list bios; 375 376 bio_list_init(&bios); 377 bio_list_merge(&bios, master); 378 bio_list_init(master); 379 380 while ((bio = bio_list_pop(&bios))) { 381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 382 383 if (h->tc == tc) 384 bio_endio(bio, DM_ENDIO_REQUEUE); 385 else 386 bio_list_add(master, bio); 387 } 388 } 389 390 static void requeue_io(struct thin_c *tc) 391 { 392 struct pool *pool = tc->pool; 393 unsigned long flags; 394 395 spin_lock_irqsave(&pool->lock, flags); 396 __requeue_bio_list(tc, &pool->deferred_bios); 397 __requeue_bio_list(tc, &pool->retry_on_resume_list); 398 spin_unlock_irqrestore(&pool->lock, flags); 399 } 400 401 /* 402 * This section of code contains the logic for processing a thin device's IO. 403 * Much of the code depends on pool object resources (lists, workqueues, etc) 404 * but most is exclusively called from the thin target rather than the thin-pool 405 * target. 406 */ 407 408 static bool block_size_is_power_of_two(struct pool *pool) 409 { 410 return pool->sectors_per_block_shift >= 0; 411 } 412 413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 414 { 415 struct pool *pool = tc->pool; 416 sector_t block_nr = bio->bi_sector; 417 418 if (block_size_is_power_of_two(pool)) 419 block_nr >>= pool->sectors_per_block_shift; 420 else 421 (void) sector_div(block_nr, pool->sectors_per_block); 422 423 return block_nr; 424 } 425 426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 427 { 428 struct pool *pool = tc->pool; 429 sector_t bi_sector = bio->bi_sector; 430 431 bio->bi_bdev = tc->pool_dev->bdev; 432 if (block_size_is_power_of_two(pool)) 433 bio->bi_sector = (block << pool->sectors_per_block_shift) | 434 (bi_sector & (pool->sectors_per_block - 1)); 435 else 436 bio->bi_sector = (block * pool->sectors_per_block) + 437 sector_div(bi_sector, pool->sectors_per_block); 438 } 439 440 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 441 { 442 bio->bi_bdev = tc->origin_dev->bdev; 443 } 444 445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 446 { 447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 448 dm_thin_changed_this_transaction(tc->td); 449 } 450 451 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 452 { 453 struct dm_thin_endio_hook *h; 454 455 if (bio->bi_rw & REQ_DISCARD) 456 return; 457 458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 460 } 461 462 static void issue(struct thin_c *tc, struct bio *bio) 463 { 464 struct pool *pool = tc->pool; 465 unsigned long flags; 466 467 if (!bio_triggers_commit(tc, bio)) { 468 generic_make_request(bio); 469 return; 470 } 471 472 /* 473 * Complete bio with an error if earlier I/O caused changes to 474 * the metadata that can't be committed e.g, due to I/O errors 475 * on the metadata device. 476 */ 477 if (dm_thin_aborted_changes(tc->td)) { 478 bio_io_error(bio); 479 return; 480 } 481 482 /* 483 * Batch together any bios that trigger commits and then issue a 484 * single commit for them in process_deferred_bios(). 485 */ 486 spin_lock_irqsave(&pool->lock, flags); 487 bio_list_add(&pool->deferred_flush_bios, bio); 488 spin_unlock_irqrestore(&pool->lock, flags); 489 } 490 491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 492 { 493 remap_to_origin(tc, bio); 494 issue(tc, bio); 495 } 496 497 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 498 dm_block_t block) 499 { 500 remap(tc, bio, block); 501 issue(tc, bio); 502 } 503 504 /*----------------------------------------------------------------*/ 505 506 /* 507 * Bio endio functions. 508 */ 509 struct dm_thin_new_mapping { 510 struct list_head list; 511 512 unsigned quiesced:1; 513 unsigned prepared:1; 514 unsigned pass_discard:1; 515 516 struct thin_c *tc; 517 dm_block_t virt_block; 518 dm_block_t data_block; 519 struct dm_bio_prison_cell *cell, *cell2; 520 int err; 521 522 /* 523 * If the bio covers the whole area of a block then we can avoid 524 * zeroing or copying. Instead this bio is hooked. The bio will 525 * still be in the cell, so care has to be taken to avoid issuing 526 * the bio twice. 527 */ 528 struct bio *bio; 529 bio_end_io_t *saved_bi_end_io; 530 }; 531 532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 533 { 534 struct pool *pool = m->tc->pool; 535 536 if (m->quiesced && m->prepared) { 537 list_add(&m->list, &pool->prepared_mappings); 538 wake_worker(pool); 539 } 540 } 541 542 static void copy_complete(int read_err, unsigned long write_err, void *context) 543 { 544 unsigned long flags; 545 struct dm_thin_new_mapping *m = context; 546 struct pool *pool = m->tc->pool; 547 548 m->err = read_err || write_err ? -EIO : 0; 549 550 spin_lock_irqsave(&pool->lock, flags); 551 m->prepared = 1; 552 __maybe_add_mapping(m); 553 spin_unlock_irqrestore(&pool->lock, flags); 554 } 555 556 static void overwrite_endio(struct bio *bio, int err) 557 { 558 unsigned long flags; 559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 560 struct dm_thin_new_mapping *m = h->overwrite_mapping; 561 struct pool *pool = m->tc->pool; 562 563 m->err = err; 564 565 spin_lock_irqsave(&pool->lock, flags); 566 m->prepared = 1; 567 __maybe_add_mapping(m); 568 spin_unlock_irqrestore(&pool->lock, flags); 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 /* 574 * Workqueue. 575 */ 576 577 /* 578 * Prepared mapping jobs. 579 */ 580 581 /* 582 * This sends the bios in the cell back to the deferred_bios list. 583 */ 584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 585 { 586 struct pool *pool = tc->pool; 587 unsigned long flags; 588 589 spin_lock_irqsave(&pool->lock, flags); 590 cell_release(pool, cell, &pool->deferred_bios); 591 spin_unlock_irqrestore(&tc->pool->lock, flags); 592 593 wake_worker(pool); 594 } 595 596 /* 597 * Same as cell_defer above, except it omits the original holder of the cell. 598 */ 599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 600 { 601 struct pool *pool = tc->pool; 602 unsigned long flags; 603 604 spin_lock_irqsave(&pool->lock, flags); 605 cell_release_no_holder(pool, cell, &pool->deferred_bios); 606 spin_unlock_irqrestore(&pool->lock, flags); 607 608 wake_worker(pool); 609 } 610 611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 612 { 613 if (m->bio) 614 m->bio->bi_end_io = m->saved_bi_end_io; 615 cell_error(m->tc->pool, m->cell); 616 list_del(&m->list); 617 mempool_free(m, m->tc->pool->mapping_pool); 618 } 619 620 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 621 { 622 struct thin_c *tc = m->tc; 623 struct pool *pool = tc->pool; 624 struct bio *bio; 625 int r; 626 627 bio = m->bio; 628 if (bio) 629 bio->bi_end_io = m->saved_bi_end_io; 630 631 if (m->err) { 632 cell_error(pool, m->cell); 633 goto out; 634 } 635 636 /* 637 * Commit the prepared block into the mapping btree. 638 * Any I/O for this block arriving after this point will get 639 * remapped to it directly. 640 */ 641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 642 if (r) { 643 DMERR_LIMIT("dm_thin_insert_block() failed"); 644 cell_error(pool, m->cell); 645 goto out; 646 } 647 648 /* 649 * Release any bios held while the block was being provisioned. 650 * If we are processing a write bio that completely covers the block, 651 * we already processed it so can ignore it now when processing 652 * the bios in the cell. 653 */ 654 if (bio) { 655 cell_defer_no_holder(tc, m->cell); 656 bio_endio(bio, 0); 657 } else 658 cell_defer(tc, m->cell); 659 660 out: 661 list_del(&m->list); 662 mempool_free(m, pool->mapping_pool); 663 } 664 665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 666 { 667 struct thin_c *tc = m->tc; 668 669 bio_io_error(m->bio); 670 cell_defer_no_holder(tc, m->cell); 671 cell_defer_no_holder(tc, m->cell2); 672 mempool_free(m, tc->pool->mapping_pool); 673 } 674 675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 676 { 677 struct thin_c *tc = m->tc; 678 679 inc_all_io_entry(tc->pool, m->bio); 680 cell_defer_no_holder(tc, m->cell); 681 cell_defer_no_holder(tc, m->cell2); 682 683 if (m->pass_discard) 684 remap_and_issue(tc, m->bio, m->data_block); 685 else 686 bio_endio(m->bio, 0); 687 688 mempool_free(m, tc->pool->mapping_pool); 689 } 690 691 static void process_prepared_discard(struct dm_thin_new_mapping *m) 692 { 693 int r; 694 struct thin_c *tc = m->tc; 695 696 r = dm_thin_remove_block(tc->td, m->virt_block); 697 if (r) 698 DMERR_LIMIT("dm_thin_remove_block() failed"); 699 700 process_prepared_discard_passdown(m); 701 } 702 703 static void process_prepared(struct pool *pool, struct list_head *head, 704 process_mapping_fn *fn) 705 { 706 unsigned long flags; 707 struct list_head maps; 708 struct dm_thin_new_mapping *m, *tmp; 709 710 INIT_LIST_HEAD(&maps); 711 spin_lock_irqsave(&pool->lock, flags); 712 list_splice_init(head, &maps); 713 spin_unlock_irqrestore(&pool->lock, flags); 714 715 list_for_each_entry_safe(m, tmp, &maps, list) 716 (*fn)(m); 717 } 718 719 /* 720 * Deferred bio jobs. 721 */ 722 static int io_overlaps_block(struct pool *pool, struct bio *bio) 723 { 724 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); 725 } 726 727 static int io_overwrites_block(struct pool *pool, struct bio *bio) 728 { 729 return (bio_data_dir(bio) == WRITE) && 730 io_overlaps_block(pool, bio); 731 } 732 733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 734 bio_end_io_t *fn) 735 { 736 *save = bio->bi_end_io; 737 bio->bi_end_io = fn; 738 } 739 740 static int ensure_next_mapping(struct pool *pool) 741 { 742 if (pool->next_mapping) 743 return 0; 744 745 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 746 747 return pool->next_mapping ? 0 : -ENOMEM; 748 } 749 750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 751 { 752 struct dm_thin_new_mapping *r = pool->next_mapping; 753 754 BUG_ON(!pool->next_mapping); 755 756 pool->next_mapping = NULL; 757 758 return r; 759 } 760 761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 762 struct dm_dev *origin, dm_block_t data_origin, 763 dm_block_t data_dest, 764 struct dm_bio_prison_cell *cell, struct bio *bio) 765 { 766 int r; 767 struct pool *pool = tc->pool; 768 struct dm_thin_new_mapping *m = get_next_mapping(pool); 769 770 INIT_LIST_HEAD(&m->list); 771 m->quiesced = 0; 772 m->prepared = 0; 773 m->tc = tc; 774 m->virt_block = virt_block; 775 m->data_block = data_dest; 776 m->cell = cell; 777 m->err = 0; 778 m->bio = NULL; 779 780 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 781 m->quiesced = 1; 782 783 /* 784 * IO to pool_dev remaps to the pool target's data_dev. 785 * 786 * If the whole block of data is being overwritten, we can issue the 787 * bio immediately. Otherwise we use kcopyd to clone the data first. 788 */ 789 if (io_overwrites_block(pool, bio)) { 790 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 791 792 h->overwrite_mapping = m; 793 m->bio = bio; 794 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 795 inc_all_io_entry(pool, bio); 796 remap_and_issue(tc, bio, data_dest); 797 } else { 798 struct dm_io_region from, to; 799 800 from.bdev = origin->bdev; 801 from.sector = data_origin * pool->sectors_per_block; 802 from.count = pool->sectors_per_block; 803 804 to.bdev = tc->pool_dev->bdev; 805 to.sector = data_dest * pool->sectors_per_block; 806 to.count = pool->sectors_per_block; 807 808 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 809 0, copy_complete, m); 810 if (r < 0) { 811 mempool_free(m, pool->mapping_pool); 812 DMERR_LIMIT("dm_kcopyd_copy() failed"); 813 cell_error(pool, cell); 814 } 815 } 816 } 817 818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 819 dm_block_t data_origin, dm_block_t data_dest, 820 struct dm_bio_prison_cell *cell, struct bio *bio) 821 { 822 schedule_copy(tc, virt_block, tc->pool_dev, 823 data_origin, data_dest, cell, bio); 824 } 825 826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 827 dm_block_t data_dest, 828 struct dm_bio_prison_cell *cell, struct bio *bio) 829 { 830 schedule_copy(tc, virt_block, tc->origin_dev, 831 virt_block, data_dest, cell, bio); 832 } 833 834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 835 dm_block_t data_block, struct dm_bio_prison_cell *cell, 836 struct bio *bio) 837 { 838 struct pool *pool = tc->pool; 839 struct dm_thin_new_mapping *m = get_next_mapping(pool); 840 841 INIT_LIST_HEAD(&m->list); 842 m->quiesced = 1; 843 m->prepared = 0; 844 m->tc = tc; 845 m->virt_block = virt_block; 846 m->data_block = data_block; 847 m->cell = cell; 848 m->err = 0; 849 m->bio = NULL; 850 851 /* 852 * If the whole block of data is being overwritten or we are not 853 * zeroing pre-existing data, we can issue the bio immediately. 854 * Otherwise we use kcopyd to zero the data first. 855 */ 856 if (!pool->pf.zero_new_blocks) 857 process_prepared_mapping(m); 858 859 else if (io_overwrites_block(pool, bio)) { 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 862 h->overwrite_mapping = m; 863 m->bio = bio; 864 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 865 inc_all_io_entry(pool, bio); 866 remap_and_issue(tc, bio, data_block); 867 } else { 868 int r; 869 struct dm_io_region to; 870 871 to.bdev = tc->pool_dev->bdev; 872 to.sector = data_block * pool->sectors_per_block; 873 to.count = pool->sectors_per_block; 874 875 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 876 if (r < 0) { 877 mempool_free(m, pool->mapping_pool); 878 DMERR_LIMIT("dm_kcopyd_zero() failed"); 879 cell_error(pool, cell); 880 } 881 } 882 } 883 884 static int commit(struct pool *pool) 885 { 886 int r; 887 888 r = dm_pool_commit_metadata(pool->pmd); 889 if (r) 890 DMERR_LIMIT("commit failed: error = %d", r); 891 892 return r; 893 } 894 895 /* 896 * A non-zero return indicates read_only or fail_io mode. 897 * Many callers don't care about the return value. 898 */ 899 static int commit_or_fallback(struct pool *pool) 900 { 901 int r; 902 903 if (get_pool_mode(pool) != PM_WRITE) 904 return -EINVAL; 905 906 r = commit(pool); 907 if (r) 908 set_pool_mode(pool, PM_READ_ONLY); 909 910 return r; 911 } 912 913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 914 { 915 int r; 916 dm_block_t free_blocks; 917 unsigned long flags; 918 struct pool *pool = tc->pool; 919 920 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 921 if (r) 922 return r; 923 924 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 925 DMWARN("%s: reached low water mark, sending event.", 926 dm_device_name(pool->pool_md)); 927 spin_lock_irqsave(&pool->lock, flags); 928 pool->low_water_triggered = 1; 929 spin_unlock_irqrestore(&pool->lock, flags); 930 dm_table_event(pool->ti->table); 931 } 932 933 if (!free_blocks) { 934 if (pool->no_free_space) 935 return -ENOSPC; 936 else { 937 /* 938 * Try to commit to see if that will free up some 939 * more space. 940 */ 941 (void) commit_or_fallback(pool); 942 943 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 944 if (r) 945 return r; 946 947 /* 948 * If we still have no space we set a flag to avoid 949 * doing all this checking and return -ENOSPC. 950 */ 951 if (!free_blocks) { 952 DMWARN("%s: no free space available.", 953 dm_device_name(pool->pool_md)); 954 spin_lock_irqsave(&pool->lock, flags); 955 pool->no_free_space = 1; 956 spin_unlock_irqrestore(&pool->lock, flags); 957 return -ENOSPC; 958 } 959 } 960 } 961 962 r = dm_pool_alloc_data_block(pool->pmd, result); 963 if (r) 964 return r; 965 966 return 0; 967 } 968 969 /* 970 * If we have run out of space, queue bios until the device is 971 * resumed, presumably after having been reloaded with more space. 972 */ 973 static void retry_on_resume(struct bio *bio) 974 { 975 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 976 struct thin_c *tc = h->tc; 977 struct pool *pool = tc->pool; 978 unsigned long flags; 979 980 spin_lock_irqsave(&pool->lock, flags); 981 bio_list_add(&pool->retry_on_resume_list, bio); 982 spin_unlock_irqrestore(&pool->lock, flags); 983 } 984 985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell) 986 { 987 struct bio *bio; 988 struct bio_list bios; 989 990 bio_list_init(&bios); 991 cell_release(pool, cell, &bios); 992 993 while ((bio = bio_list_pop(&bios))) 994 retry_on_resume(bio); 995 } 996 997 static void process_discard(struct thin_c *tc, struct bio *bio) 998 { 999 int r; 1000 unsigned long flags; 1001 struct pool *pool = tc->pool; 1002 struct dm_bio_prison_cell *cell, *cell2; 1003 struct dm_cell_key key, key2; 1004 dm_block_t block = get_bio_block(tc, bio); 1005 struct dm_thin_lookup_result lookup_result; 1006 struct dm_thin_new_mapping *m; 1007 1008 build_virtual_key(tc->td, block, &key); 1009 if (bio_detain(tc->pool, &key, bio, &cell)) 1010 return; 1011 1012 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1013 switch (r) { 1014 case 0: 1015 /* 1016 * Check nobody is fiddling with this pool block. This can 1017 * happen if someone's in the process of breaking sharing 1018 * on this block. 1019 */ 1020 build_data_key(tc->td, lookup_result.block, &key2); 1021 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1022 cell_defer_no_holder(tc, cell); 1023 break; 1024 } 1025 1026 if (io_overlaps_block(pool, bio)) { 1027 /* 1028 * IO may still be going to the destination block. We must 1029 * quiesce before we can do the removal. 1030 */ 1031 m = get_next_mapping(pool); 1032 m->tc = tc; 1033 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; 1034 m->virt_block = block; 1035 m->data_block = lookup_result.block; 1036 m->cell = cell; 1037 m->cell2 = cell2; 1038 m->err = 0; 1039 m->bio = bio; 1040 1041 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1042 spin_lock_irqsave(&pool->lock, flags); 1043 list_add(&m->list, &pool->prepared_discards); 1044 spin_unlock_irqrestore(&pool->lock, flags); 1045 wake_worker(pool); 1046 } 1047 } else { 1048 inc_all_io_entry(pool, bio); 1049 cell_defer_no_holder(tc, cell); 1050 cell_defer_no_holder(tc, cell2); 1051 1052 /* 1053 * The DM core makes sure that the discard doesn't span 1054 * a block boundary. So we submit the discard of a 1055 * partial block appropriately. 1056 */ 1057 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1058 remap_and_issue(tc, bio, lookup_result.block); 1059 else 1060 bio_endio(bio, 0); 1061 } 1062 break; 1063 1064 case -ENODATA: 1065 /* 1066 * It isn't provisioned, just forget it. 1067 */ 1068 cell_defer_no_holder(tc, cell); 1069 bio_endio(bio, 0); 1070 break; 1071 1072 default: 1073 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1074 __func__, r); 1075 cell_defer_no_holder(tc, cell); 1076 bio_io_error(bio); 1077 break; 1078 } 1079 } 1080 1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1082 struct dm_cell_key *key, 1083 struct dm_thin_lookup_result *lookup_result, 1084 struct dm_bio_prison_cell *cell) 1085 { 1086 int r; 1087 dm_block_t data_block; 1088 1089 r = alloc_data_block(tc, &data_block); 1090 switch (r) { 1091 case 0: 1092 schedule_internal_copy(tc, block, lookup_result->block, 1093 data_block, cell, bio); 1094 break; 1095 1096 case -ENOSPC: 1097 no_space(tc->pool, cell); 1098 break; 1099 1100 default: 1101 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1102 __func__, r); 1103 cell_error(tc->pool, cell); 1104 break; 1105 } 1106 } 1107 1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1109 dm_block_t block, 1110 struct dm_thin_lookup_result *lookup_result) 1111 { 1112 struct dm_bio_prison_cell *cell; 1113 struct pool *pool = tc->pool; 1114 struct dm_cell_key key; 1115 1116 /* 1117 * If cell is already occupied, then sharing is already in the process 1118 * of being broken so we have nothing further to do here. 1119 */ 1120 build_data_key(tc->td, lookup_result->block, &key); 1121 if (bio_detain(pool, &key, bio, &cell)) 1122 return; 1123 1124 if (bio_data_dir(bio) == WRITE && bio->bi_size) 1125 break_sharing(tc, bio, block, &key, lookup_result, cell); 1126 else { 1127 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1128 1129 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1130 inc_all_io_entry(pool, bio); 1131 cell_defer_no_holder(tc, cell); 1132 1133 remap_and_issue(tc, bio, lookup_result->block); 1134 } 1135 } 1136 1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1138 struct dm_bio_prison_cell *cell) 1139 { 1140 int r; 1141 dm_block_t data_block; 1142 struct pool *pool = tc->pool; 1143 1144 /* 1145 * Remap empty bios (flushes) immediately, without provisioning. 1146 */ 1147 if (!bio->bi_size) { 1148 inc_all_io_entry(pool, bio); 1149 cell_defer_no_holder(tc, cell); 1150 1151 remap_and_issue(tc, bio, 0); 1152 return; 1153 } 1154 1155 /* 1156 * Fill read bios with zeroes and complete them immediately. 1157 */ 1158 if (bio_data_dir(bio) == READ) { 1159 zero_fill_bio(bio); 1160 cell_defer_no_holder(tc, cell); 1161 bio_endio(bio, 0); 1162 return; 1163 } 1164 1165 r = alloc_data_block(tc, &data_block); 1166 switch (r) { 1167 case 0: 1168 if (tc->origin_dev) 1169 schedule_external_copy(tc, block, data_block, cell, bio); 1170 else 1171 schedule_zero(tc, block, data_block, cell, bio); 1172 break; 1173 1174 case -ENOSPC: 1175 no_space(pool, cell); 1176 break; 1177 1178 default: 1179 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1180 __func__, r); 1181 set_pool_mode(pool, PM_READ_ONLY); 1182 cell_error(pool, cell); 1183 break; 1184 } 1185 } 1186 1187 static void process_bio(struct thin_c *tc, struct bio *bio) 1188 { 1189 int r; 1190 struct pool *pool = tc->pool; 1191 dm_block_t block = get_bio_block(tc, bio); 1192 struct dm_bio_prison_cell *cell; 1193 struct dm_cell_key key; 1194 struct dm_thin_lookup_result lookup_result; 1195 1196 /* 1197 * If cell is already occupied, then the block is already 1198 * being provisioned so we have nothing further to do here. 1199 */ 1200 build_virtual_key(tc->td, block, &key); 1201 if (bio_detain(pool, &key, bio, &cell)) 1202 return; 1203 1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1205 switch (r) { 1206 case 0: 1207 if (lookup_result.shared) { 1208 process_shared_bio(tc, bio, block, &lookup_result); 1209 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1210 } else { 1211 inc_all_io_entry(pool, bio); 1212 cell_defer_no_holder(tc, cell); 1213 1214 remap_and_issue(tc, bio, lookup_result.block); 1215 } 1216 break; 1217 1218 case -ENODATA: 1219 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1220 inc_all_io_entry(pool, bio); 1221 cell_defer_no_holder(tc, cell); 1222 1223 remap_to_origin_and_issue(tc, bio); 1224 } else 1225 provision_block(tc, bio, block, cell); 1226 break; 1227 1228 default: 1229 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1230 __func__, r); 1231 cell_defer_no_holder(tc, cell); 1232 bio_io_error(bio); 1233 break; 1234 } 1235 } 1236 1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1238 { 1239 int r; 1240 int rw = bio_data_dir(bio); 1241 dm_block_t block = get_bio_block(tc, bio); 1242 struct dm_thin_lookup_result lookup_result; 1243 1244 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1245 switch (r) { 1246 case 0: 1247 if (lookup_result.shared && (rw == WRITE) && bio->bi_size) 1248 bio_io_error(bio); 1249 else { 1250 inc_all_io_entry(tc->pool, bio); 1251 remap_and_issue(tc, bio, lookup_result.block); 1252 } 1253 break; 1254 1255 case -ENODATA: 1256 if (rw != READ) { 1257 bio_io_error(bio); 1258 break; 1259 } 1260 1261 if (tc->origin_dev) { 1262 inc_all_io_entry(tc->pool, bio); 1263 remap_to_origin_and_issue(tc, bio); 1264 break; 1265 } 1266 1267 zero_fill_bio(bio); 1268 bio_endio(bio, 0); 1269 break; 1270 1271 default: 1272 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1273 __func__, r); 1274 bio_io_error(bio); 1275 break; 1276 } 1277 } 1278 1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1280 { 1281 bio_io_error(bio); 1282 } 1283 1284 static int need_commit_due_to_time(struct pool *pool) 1285 { 1286 return jiffies < pool->last_commit_jiffies || 1287 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1288 } 1289 1290 static void process_deferred_bios(struct pool *pool) 1291 { 1292 unsigned long flags; 1293 struct bio *bio; 1294 struct bio_list bios; 1295 1296 bio_list_init(&bios); 1297 1298 spin_lock_irqsave(&pool->lock, flags); 1299 bio_list_merge(&bios, &pool->deferred_bios); 1300 bio_list_init(&pool->deferred_bios); 1301 spin_unlock_irqrestore(&pool->lock, flags); 1302 1303 while ((bio = bio_list_pop(&bios))) { 1304 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1305 struct thin_c *tc = h->tc; 1306 1307 /* 1308 * If we've got no free new_mapping structs, and processing 1309 * this bio might require one, we pause until there are some 1310 * prepared mappings to process. 1311 */ 1312 if (ensure_next_mapping(pool)) { 1313 spin_lock_irqsave(&pool->lock, flags); 1314 bio_list_merge(&pool->deferred_bios, &bios); 1315 spin_unlock_irqrestore(&pool->lock, flags); 1316 1317 break; 1318 } 1319 1320 if (bio->bi_rw & REQ_DISCARD) 1321 pool->process_discard(tc, bio); 1322 else 1323 pool->process_bio(tc, bio); 1324 } 1325 1326 /* 1327 * If there are any deferred flush bios, we must commit 1328 * the metadata before issuing them. 1329 */ 1330 bio_list_init(&bios); 1331 spin_lock_irqsave(&pool->lock, flags); 1332 bio_list_merge(&bios, &pool->deferred_flush_bios); 1333 bio_list_init(&pool->deferred_flush_bios); 1334 spin_unlock_irqrestore(&pool->lock, flags); 1335 1336 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) 1337 return; 1338 1339 if (commit_or_fallback(pool)) { 1340 while ((bio = bio_list_pop(&bios))) 1341 bio_io_error(bio); 1342 return; 1343 } 1344 pool->last_commit_jiffies = jiffies; 1345 1346 while ((bio = bio_list_pop(&bios))) 1347 generic_make_request(bio); 1348 } 1349 1350 static void do_worker(struct work_struct *ws) 1351 { 1352 struct pool *pool = container_of(ws, struct pool, worker); 1353 1354 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1355 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1356 process_deferred_bios(pool); 1357 } 1358 1359 /* 1360 * We want to commit periodically so that not too much 1361 * unwritten data builds up. 1362 */ 1363 static void do_waker(struct work_struct *ws) 1364 { 1365 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1366 wake_worker(pool); 1367 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1368 } 1369 1370 /*----------------------------------------------------------------*/ 1371 1372 static enum pool_mode get_pool_mode(struct pool *pool) 1373 { 1374 return pool->pf.mode; 1375 } 1376 1377 static void set_pool_mode(struct pool *pool, enum pool_mode mode) 1378 { 1379 int r; 1380 1381 pool->pf.mode = mode; 1382 1383 switch (mode) { 1384 case PM_FAIL: 1385 DMERR("switching pool to failure mode"); 1386 pool->process_bio = process_bio_fail; 1387 pool->process_discard = process_bio_fail; 1388 pool->process_prepared_mapping = process_prepared_mapping_fail; 1389 pool->process_prepared_discard = process_prepared_discard_fail; 1390 break; 1391 1392 case PM_READ_ONLY: 1393 DMERR("switching pool to read-only mode"); 1394 r = dm_pool_abort_metadata(pool->pmd); 1395 if (r) { 1396 DMERR("aborting transaction failed"); 1397 set_pool_mode(pool, PM_FAIL); 1398 } else { 1399 dm_pool_metadata_read_only(pool->pmd); 1400 pool->process_bio = process_bio_read_only; 1401 pool->process_discard = process_discard; 1402 pool->process_prepared_mapping = process_prepared_mapping_fail; 1403 pool->process_prepared_discard = process_prepared_discard_passdown; 1404 } 1405 break; 1406 1407 case PM_WRITE: 1408 pool->process_bio = process_bio; 1409 pool->process_discard = process_discard; 1410 pool->process_prepared_mapping = process_prepared_mapping; 1411 pool->process_prepared_discard = process_prepared_discard; 1412 break; 1413 } 1414 } 1415 1416 /*----------------------------------------------------------------*/ 1417 1418 /* 1419 * Mapping functions. 1420 */ 1421 1422 /* 1423 * Called only while mapping a thin bio to hand it over to the workqueue. 1424 */ 1425 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1426 { 1427 unsigned long flags; 1428 struct pool *pool = tc->pool; 1429 1430 spin_lock_irqsave(&pool->lock, flags); 1431 bio_list_add(&pool->deferred_bios, bio); 1432 spin_unlock_irqrestore(&pool->lock, flags); 1433 1434 wake_worker(pool); 1435 } 1436 1437 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1438 { 1439 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1440 1441 h->tc = tc; 1442 h->shared_read_entry = NULL; 1443 h->all_io_entry = NULL; 1444 h->overwrite_mapping = NULL; 1445 } 1446 1447 /* 1448 * Non-blocking function called from the thin target's map function. 1449 */ 1450 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1451 { 1452 int r; 1453 struct thin_c *tc = ti->private; 1454 dm_block_t block = get_bio_block(tc, bio); 1455 struct dm_thin_device *td = tc->td; 1456 struct dm_thin_lookup_result result; 1457 struct dm_bio_prison_cell cell1, cell2; 1458 struct dm_bio_prison_cell *cell_result; 1459 struct dm_cell_key key; 1460 1461 thin_hook_bio(tc, bio); 1462 1463 if (get_pool_mode(tc->pool) == PM_FAIL) { 1464 bio_io_error(bio); 1465 return DM_MAPIO_SUBMITTED; 1466 } 1467 1468 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1469 thin_defer_bio(tc, bio); 1470 return DM_MAPIO_SUBMITTED; 1471 } 1472 1473 r = dm_thin_find_block(td, block, 0, &result); 1474 1475 /* 1476 * Note that we defer readahead too. 1477 */ 1478 switch (r) { 1479 case 0: 1480 if (unlikely(result.shared)) { 1481 /* 1482 * We have a race condition here between the 1483 * result.shared value returned by the lookup and 1484 * snapshot creation, which may cause new 1485 * sharing. 1486 * 1487 * To avoid this always quiesce the origin before 1488 * taking the snap. You want to do this anyway to 1489 * ensure a consistent application view 1490 * (i.e. lockfs). 1491 * 1492 * More distant ancestors are irrelevant. The 1493 * shared flag will be set in their case. 1494 */ 1495 thin_defer_bio(tc, bio); 1496 return DM_MAPIO_SUBMITTED; 1497 } 1498 1499 build_virtual_key(tc->td, block, &key); 1500 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1501 return DM_MAPIO_SUBMITTED; 1502 1503 build_data_key(tc->td, result.block, &key); 1504 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1505 cell_defer_no_holder_no_free(tc, &cell1); 1506 return DM_MAPIO_SUBMITTED; 1507 } 1508 1509 inc_all_io_entry(tc->pool, bio); 1510 cell_defer_no_holder_no_free(tc, &cell2); 1511 cell_defer_no_holder_no_free(tc, &cell1); 1512 1513 remap(tc, bio, result.block); 1514 return DM_MAPIO_REMAPPED; 1515 1516 case -ENODATA: 1517 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1518 /* 1519 * This block isn't provisioned, and we have no way 1520 * of doing so. Just error it. 1521 */ 1522 bio_io_error(bio); 1523 return DM_MAPIO_SUBMITTED; 1524 } 1525 /* fall through */ 1526 1527 case -EWOULDBLOCK: 1528 /* 1529 * In future, the failed dm_thin_find_block above could 1530 * provide the hint to load the metadata into cache. 1531 */ 1532 thin_defer_bio(tc, bio); 1533 return DM_MAPIO_SUBMITTED; 1534 1535 default: 1536 /* 1537 * Must always call bio_io_error on failure. 1538 * dm_thin_find_block can fail with -EINVAL if the 1539 * pool is switched to fail-io mode. 1540 */ 1541 bio_io_error(bio); 1542 return DM_MAPIO_SUBMITTED; 1543 } 1544 } 1545 1546 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1547 { 1548 int r; 1549 unsigned long flags; 1550 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1551 1552 spin_lock_irqsave(&pt->pool->lock, flags); 1553 r = !bio_list_empty(&pt->pool->retry_on_resume_list); 1554 spin_unlock_irqrestore(&pt->pool->lock, flags); 1555 1556 if (!r) { 1557 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1558 r = bdi_congested(&q->backing_dev_info, bdi_bits); 1559 } 1560 1561 return r; 1562 } 1563 1564 static void __requeue_bios(struct pool *pool) 1565 { 1566 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); 1567 bio_list_init(&pool->retry_on_resume_list); 1568 } 1569 1570 /*---------------------------------------------------------------- 1571 * Binding of control targets to a pool object 1572 *--------------------------------------------------------------*/ 1573 static bool data_dev_supports_discard(struct pool_c *pt) 1574 { 1575 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1576 1577 return q && blk_queue_discard(q); 1578 } 1579 1580 /* 1581 * If discard_passdown was enabled verify that the data device 1582 * supports discards. Disable discard_passdown if not. 1583 */ 1584 static void disable_passdown_if_not_supported(struct pool_c *pt) 1585 { 1586 struct pool *pool = pt->pool; 1587 struct block_device *data_bdev = pt->data_dev->bdev; 1588 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1589 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1590 const char *reason = NULL; 1591 char buf[BDEVNAME_SIZE]; 1592 1593 if (!pt->adjusted_pf.discard_passdown) 1594 return; 1595 1596 if (!data_dev_supports_discard(pt)) 1597 reason = "discard unsupported"; 1598 1599 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1600 reason = "max discard sectors smaller than a block"; 1601 1602 else if (data_limits->discard_granularity > block_size) 1603 reason = "discard granularity larger than a block"; 1604 1605 else if (block_size & (data_limits->discard_granularity - 1)) 1606 reason = "discard granularity not a factor of block size"; 1607 1608 if (reason) { 1609 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1610 pt->adjusted_pf.discard_passdown = false; 1611 } 1612 } 1613 1614 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1615 { 1616 struct pool_c *pt = ti->private; 1617 1618 /* 1619 * We want to make sure that degraded pools are never upgraded. 1620 */ 1621 enum pool_mode old_mode = pool->pf.mode; 1622 enum pool_mode new_mode = pt->adjusted_pf.mode; 1623 1624 if (old_mode > new_mode) 1625 new_mode = old_mode; 1626 1627 pool->ti = ti; 1628 pool->low_water_blocks = pt->low_water_blocks; 1629 pool->pf = pt->adjusted_pf; 1630 1631 set_pool_mode(pool, new_mode); 1632 1633 return 0; 1634 } 1635 1636 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1637 { 1638 if (pool->ti == ti) 1639 pool->ti = NULL; 1640 } 1641 1642 /*---------------------------------------------------------------- 1643 * Pool creation 1644 *--------------------------------------------------------------*/ 1645 /* Initialize pool features. */ 1646 static void pool_features_init(struct pool_features *pf) 1647 { 1648 pf->mode = PM_WRITE; 1649 pf->zero_new_blocks = true; 1650 pf->discard_enabled = true; 1651 pf->discard_passdown = true; 1652 } 1653 1654 static void __pool_destroy(struct pool *pool) 1655 { 1656 __pool_table_remove(pool); 1657 1658 if (dm_pool_metadata_close(pool->pmd) < 0) 1659 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1660 1661 dm_bio_prison_destroy(pool->prison); 1662 dm_kcopyd_client_destroy(pool->copier); 1663 1664 if (pool->wq) 1665 destroy_workqueue(pool->wq); 1666 1667 if (pool->next_mapping) 1668 mempool_free(pool->next_mapping, pool->mapping_pool); 1669 mempool_destroy(pool->mapping_pool); 1670 dm_deferred_set_destroy(pool->shared_read_ds); 1671 dm_deferred_set_destroy(pool->all_io_ds); 1672 kfree(pool); 1673 } 1674 1675 static struct kmem_cache *_new_mapping_cache; 1676 1677 static struct pool *pool_create(struct mapped_device *pool_md, 1678 struct block_device *metadata_dev, 1679 unsigned long block_size, 1680 int read_only, char **error) 1681 { 1682 int r; 1683 void *err_p; 1684 struct pool *pool; 1685 struct dm_pool_metadata *pmd; 1686 bool format_device = read_only ? false : true; 1687 1688 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 1689 if (IS_ERR(pmd)) { 1690 *error = "Error creating metadata object"; 1691 return (struct pool *)pmd; 1692 } 1693 1694 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 1695 if (!pool) { 1696 *error = "Error allocating memory for pool"; 1697 err_p = ERR_PTR(-ENOMEM); 1698 goto bad_pool; 1699 } 1700 1701 pool->pmd = pmd; 1702 pool->sectors_per_block = block_size; 1703 if (block_size & (block_size - 1)) 1704 pool->sectors_per_block_shift = -1; 1705 else 1706 pool->sectors_per_block_shift = __ffs(block_size); 1707 pool->low_water_blocks = 0; 1708 pool_features_init(&pool->pf); 1709 pool->prison = dm_bio_prison_create(PRISON_CELLS); 1710 if (!pool->prison) { 1711 *error = "Error creating pool's bio prison"; 1712 err_p = ERR_PTR(-ENOMEM); 1713 goto bad_prison; 1714 } 1715 1716 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 1717 if (IS_ERR(pool->copier)) { 1718 r = PTR_ERR(pool->copier); 1719 *error = "Error creating pool's kcopyd client"; 1720 err_p = ERR_PTR(r); 1721 goto bad_kcopyd_client; 1722 } 1723 1724 /* 1725 * Create singlethreaded workqueue that will service all devices 1726 * that use this metadata. 1727 */ 1728 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 1729 if (!pool->wq) { 1730 *error = "Error creating pool's workqueue"; 1731 err_p = ERR_PTR(-ENOMEM); 1732 goto bad_wq; 1733 } 1734 1735 INIT_WORK(&pool->worker, do_worker); 1736 INIT_DELAYED_WORK(&pool->waker, do_waker); 1737 spin_lock_init(&pool->lock); 1738 bio_list_init(&pool->deferred_bios); 1739 bio_list_init(&pool->deferred_flush_bios); 1740 INIT_LIST_HEAD(&pool->prepared_mappings); 1741 INIT_LIST_HEAD(&pool->prepared_discards); 1742 pool->low_water_triggered = 0; 1743 pool->no_free_space = 0; 1744 bio_list_init(&pool->retry_on_resume_list); 1745 1746 pool->shared_read_ds = dm_deferred_set_create(); 1747 if (!pool->shared_read_ds) { 1748 *error = "Error creating pool's shared read deferred set"; 1749 err_p = ERR_PTR(-ENOMEM); 1750 goto bad_shared_read_ds; 1751 } 1752 1753 pool->all_io_ds = dm_deferred_set_create(); 1754 if (!pool->all_io_ds) { 1755 *error = "Error creating pool's all io deferred set"; 1756 err_p = ERR_PTR(-ENOMEM); 1757 goto bad_all_io_ds; 1758 } 1759 1760 pool->next_mapping = NULL; 1761 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 1762 _new_mapping_cache); 1763 if (!pool->mapping_pool) { 1764 *error = "Error creating pool's mapping mempool"; 1765 err_p = ERR_PTR(-ENOMEM); 1766 goto bad_mapping_pool; 1767 } 1768 1769 pool->ref_count = 1; 1770 pool->last_commit_jiffies = jiffies; 1771 pool->pool_md = pool_md; 1772 pool->md_dev = metadata_dev; 1773 __pool_table_insert(pool); 1774 1775 return pool; 1776 1777 bad_mapping_pool: 1778 dm_deferred_set_destroy(pool->all_io_ds); 1779 bad_all_io_ds: 1780 dm_deferred_set_destroy(pool->shared_read_ds); 1781 bad_shared_read_ds: 1782 destroy_workqueue(pool->wq); 1783 bad_wq: 1784 dm_kcopyd_client_destroy(pool->copier); 1785 bad_kcopyd_client: 1786 dm_bio_prison_destroy(pool->prison); 1787 bad_prison: 1788 kfree(pool); 1789 bad_pool: 1790 if (dm_pool_metadata_close(pmd)) 1791 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1792 1793 return err_p; 1794 } 1795 1796 static void __pool_inc(struct pool *pool) 1797 { 1798 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1799 pool->ref_count++; 1800 } 1801 1802 static void __pool_dec(struct pool *pool) 1803 { 1804 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1805 BUG_ON(!pool->ref_count); 1806 if (!--pool->ref_count) 1807 __pool_destroy(pool); 1808 } 1809 1810 static struct pool *__pool_find(struct mapped_device *pool_md, 1811 struct block_device *metadata_dev, 1812 unsigned long block_size, int read_only, 1813 char **error, int *created) 1814 { 1815 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 1816 1817 if (pool) { 1818 if (pool->pool_md != pool_md) { 1819 *error = "metadata device already in use by a pool"; 1820 return ERR_PTR(-EBUSY); 1821 } 1822 __pool_inc(pool); 1823 1824 } else { 1825 pool = __pool_table_lookup(pool_md); 1826 if (pool) { 1827 if (pool->md_dev != metadata_dev) { 1828 *error = "different pool cannot replace a pool"; 1829 return ERR_PTR(-EINVAL); 1830 } 1831 __pool_inc(pool); 1832 1833 } else { 1834 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 1835 *created = 1; 1836 } 1837 } 1838 1839 return pool; 1840 } 1841 1842 /*---------------------------------------------------------------- 1843 * Pool target methods 1844 *--------------------------------------------------------------*/ 1845 static void pool_dtr(struct dm_target *ti) 1846 { 1847 struct pool_c *pt = ti->private; 1848 1849 mutex_lock(&dm_thin_pool_table.mutex); 1850 1851 unbind_control_target(pt->pool, ti); 1852 __pool_dec(pt->pool); 1853 dm_put_device(ti, pt->metadata_dev); 1854 dm_put_device(ti, pt->data_dev); 1855 kfree(pt); 1856 1857 mutex_unlock(&dm_thin_pool_table.mutex); 1858 } 1859 1860 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 1861 struct dm_target *ti) 1862 { 1863 int r; 1864 unsigned argc; 1865 const char *arg_name; 1866 1867 static struct dm_arg _args[] = { 1868 {0, 3, "Invalid number of pool feature arguments"}, 1869 }; 1870 1871 /* 1872 * No feature arguments supplied. 1873 */ 1874 if (!as->argc) 1875 return 0; 1876 1877 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1878 if (r) 1879 return -EINVAL; 1880 1881 while (argc && !r) { 1882 arg_name = dm_shift_arg(as); 1883 argc--; 1884 1885 if (!strcasecmp(arg_name, "skip_block_zeroing")) 1886 pf->zero_new_blocks = false; 1887 1888 else if (!strcasecmp(arg_name, "ignore_discard")) 1889 pf->discard_enabled = false; 1890 1891 else if (!strcasecmp(arg_name, "no_discard_passdown")) 1892 pf->discard_passdown = false; 1893 1894 else if (!strcasecmp(arg_name, "read_only")) 1895 pf->mode = PM_READ_ONLY; 1896 1897 else { 1898 ti->error = "Unrecognised pool feature requested"; 1899 r = -EINVAL; 1900 break; 1901 } 1902 } 1903 1904 return r; 1905 } 1906 1907 /* 1908 * thin-pool <metadata dev> <data dev> 1909 * <data block size (sectors)> 1910 * <low water mark (blocks)> 1911 * [<#feature args> [<arg>]*] 1912 * 1913 * Optional feature arguments are: 1914 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 1915 * ignore_discard: disable discard 1916 * no_discard_passdown: don't pass discards down to the data device 1917 */ 1918 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 1919 { 1920 int r, pool_created = 0; 1921 struct pool_c *pt; 1922 struct pool *pool; 1923 struct pool_features pf; 1924 struct dm_arg_set as; 1925 struct dm_dev *data_dev; 1926 unsigned long block_size; 1927 dm_block_t low_water_blocks; 1928 struct dm_dev *metadata_dev; 1929 sector_t metadata_dev_size; 1930 char b[BDEVNAME_SIZE]; 1931 1932 /* 1933 * FIXME Remove validation from scope of lock. 1934 */ 1935 mutex_lock(&dm_thin_pool_table.mutex); 1936 1937 if (argc < 4) { 1938 ti->error = "Invalid argument count"; 1939 r = -EINVAL; 1940 goto out_unlock; 1941 } 1942 as.argc = argc; 1943 as.argv = argv; 1944 1945 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); 1946 if (r) { 1947 ti->error = "Error opening metadata block device"; 1948 goto out_unlock; 1949 } 1950 1951 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; 1952 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 1953 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 1954 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 1955 1956 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 1957 if (r) { 1958 ti->error = "Error getting data device"; 1959 goto out_metadata; 1960 } 1961 1962 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 1963 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 1964 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 1965 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 1966 ti->error = "Invalid block size"; 1967 r = -EINVAL; 1968 goto out; 1969 } 1970 1971 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 1972 ti->error = "Invalid low water mark"; 1973 r = -EINVAL; 1974 goto out; 1975 } 1976 1977 /* 1978 * Set default pool features. 1979 */ 1980 pool_features_init(&pf); 1981 1982 dm_consume_args(&as, 4); 1983 r = parse_pool_features(&as, &pf, ti); 1984 if (r) 1985 goto out; 1986 1987 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 1988 if (!pt) { 1989 r = -ENOMEM; 1990 goto out; 1991 } 1992 1993 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 1994 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 1995 if (IS_ERR(pool)) { 1996 r = PTR_ERR(pool); 1997 goto out_free_pt; 1998 } 1999 2000 /* 2001 * 'pool_created' reflects whether this is the first table load. 2002 * Top level discard support is not allowed to be changed after 2003 * initial load. This would require a pool reload to trigger thin 2004 * device changes. 2005 */ 2006 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2007 ti->error = "Discard support cannot be disabled once enabled"; 2008 r = -EINVAL; 2009 goto out_flags_changed; 2010 } 2011 2012 pt->pool = pool; 2013 pt->ti = ti; 2014 pt->metadata_dev = metadata_dev; 2015 pt->data_dev = data_dev; 2016 pt->low_water_blocks = low_water_blocks; 2017 pt->adjusted_pf = pt->requested_pf = pf; 2018 ti->num_flush_bios = 1; 2019 2020 /* 2021 * Only need to enable discards if the pool should pass 2022 * them down to the data device. The thin device's discard 2023 * processing will cause mappings to be removed from the btree. 2024 */ 2025 if (pf.discard_enabled && pf.discard_passdown) { 2026 ti->num_discard_bios = 1; 2027 2028 /* 2029 * Setting 'discards_supported' circumvents the normal 2030 * stacking of discard limits (this keeps the pool and 2031 * thin devices' discard limits consistent). 2032 */ 2033 ti->discards_supported = true; 2034 ti->discard_zeroes_data_unsupported = true; 2035 } 2036 ti->private = pt; 2037 2038 pt->callbacks.congested_fn = pool_is_congested; 2039 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2040 2041 mutex_unlock(&dm_thin_pool_table.mutex); 2042 2043 return 0; 2044 2045 out_flags_changed: 2046 __pool_dec(pool); 2047 out_free_pt: 2048 kfree(pt); 2049 out: 2050 dm_put_device(ti, data_dev); 2051 out_metadata: 2052 dm_put_device(ti, metadata_dev); 2053 out_unlock: 2054 mutex_unlock(&dm_thin_pool_table.mutex); 2055 2056 return r; 2057 } 2058 2059 static int pool_map(struct dm_target *ti, struct bio *bio) 2060 { 2061 int r; 2062 struct pool_c *pt = ti->private; 2063 struct pool *pool = pt->pool; 2064 unsigned long flags; 2065 2066 /* 2067 * As this is a singleton target, ti->begin is always zero. 2068 */ 2069 spin_lock_irqsave(&pool->lock, flags); 2070 bio->bi_bdev = pt->data_dev->bdev; 2071 r = DM_MAPIO_REMAPPED; 2072 spin_unlock_irqrestore(&pool->lock, flags); 2073 2074 return r; 2075 } 2076 2077 /* 2078 * Retrieves the number of blocks of the data device from 2079 * the superblock and compares it to the actual device size, 2080 * thus resizing the data device in case it has grown. 2081 * 2082 * This both copes with opening preallocated data devices in the ctr 2083 * being followed by a resume 2084 * -and- 2085 * calling the resume method individually after userspace has 2086 * grown the data device in reaction to a table event. 2087 */ 2088 static int pool_preresume(struct dm_target *ti) 2089 { 2090 int r; 2091 struct pool_c *pt = ti->private; 2092 struct pool *pool = pt->pool; 2093 sector_t data_size = ti->len; 2094 dm_block_t sb_data_size; 2095 2096 /* 2097 * Take control of the pool object. 2098 */ 2099 r = bind_control_target(pool, ti); 2100 if (r) 2101 return r; 2102 2103 (void) sector_div(data_size, pool->sectors_per_block); 2104 2105 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2106 if (r) { 2107 DMERR("failed to retrieve data device size"); 2108 return r; 2109 } 2110 2111 if (data_size < sb_data_size) { 2112 DMERR("pool target too small, is %llu blocks (expected %llu)", 2113 (unsigned long long)data_size, sb_data_size); 2114 return -EINVAL; 2115 2116 } else if (data_size > sb_data_size) { 2117 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2118 if (r) { 2119 DMERR("failed to resize data device"); 2120 /* FIXME Stricter than necessary: Rollback transaction instead here */ 2121 set_pool_mode(pool, PM_READ_ONLY); 2122 return r; 2123 } 2124 2125 (void) commit_or_fallback(pool); 2126 } 2127 2128 return 0; 2129 } 2130 2131 static void pool_resume(struct dm_target *ti) 2132 { 2133 struct pool_c *pt = ti->private; 2134 struct pool *pool = pt->pool; 2135 unsigned long flags; 2136 2137 spin_lock_irqsave(&pool->lock, flags); 2138 pool->low_water_triggered = 0; 2139 pool->no_free_space = 0; 2140 __requeue_bios(pool); 2141 spin_unlock_irqrestore(&pool->lock, flags); 2142 2143 do_waker(&pool->waker.work); 2144 } 2145 2146 static void pool_postsuspend(struct dm_target *ti) 2147 { 2148 struct pool_c *pt = ti->private; 2149 struct pool *pool = pt->pool; 2150 2151 cancel_delayed_work(&pool->waker); 2152 flush_workqueue(pool->wq); 2153 (void) commit_or_fallback(pool); 2154 } 2155 2156 static int check_arg_count(unsigned argc, unsigned args_required) 2157 { 2158 if (argc != args_required) { 2159 DMWARN("Message received with %u arguments instead of %u.", 2160 argc, args_required); 2161 return -EINVAL; 2162 } 2163 2164 return 0; 2165 } 2166 2167 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2168 { 2169 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2170 *dev_id <= MAX_DEV_ID) 2171 return 0; 2172 2173 if (warning) 2174 DMWARN("Message received with invalid device id: %s", arg); 2175 2176 return -EINVAL; 2177 } 2178 2179 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2180 { 2181 dm_thin_id dev_id; 2182 int r; 2183 2184 r = check_arg_count(argc, 2); 2185 if (r) 2186 return r; 2187 2188 r = read_dev_id(argv[1], &dev_id, 1); 2189 if (r) 2190 return r; 2191 2192 r = dm_pool_create_thin(pool->pmd, dev_id); 2193 if (r) { 2194 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2195 argv[1]); 2196 return r; 2197 } 2198 2199 return 0; 2200 } 2201 2202 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2203 { 2204 dm_thin_id dev_id; 2205 dm_thin_id origin_dev_id; 2206 int r; 2207 2208 r = check_arg_count(argc, 3); 2209 if (r) 2210 return r; 2211 2212 r = read_dev_id(argv[1], &dev_id, 1); 2213 if (r) 2214 return r; 2215 2216 r = read_dev_id(argv[2], &origin_dev_id, 1); 2217 if (r) 2218 return r; 2219 2220 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2221 if (r) { 2222 DMWARN("Creation of new snapshot %s of device %s failed.", 2223 argv[1], argv[2]); 2224 return r; 2225 } 2226 2227 return 0; 2228 } 2229 2230 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2231 { 2232 dm_thin_id dev_id; 2233 int r; 2234 2235 r = check_arg_count(argc, 2); 2236 if (r) 2237 return r; 2238 2239 r = read_dev_id(argv[1], &dev_id, 1); 2240 if (r) 2241 return r; 2242 2243 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2244 if (r) 2245 DMWARN("Deletion of thin device %s failed.", argv[1]); 2246 2247 return r; 2248 } 2249 2250 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2251 { 2252 dm_thin_id old_id, new_id; 2253 int r; 2254 2255 r = check_arg_count(argc, 3); 2256 if (r) 2257 return r; 2258 2259 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2260 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2261 return -EINVAL; 2262 } 2263 2264 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2265 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2266 return -EINVAL; 2267 } 2268 2269 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2270 if (r) { 2271 DMWARN("Failed to change transaction id from %s to %s.", 2272 argv[1], argv[2]); 2273 return r; 2274 } 2275 2276 return 0; 2277 } 2278 2279 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2280 { 2281 int r; 2282 2283 r = check_arg_count(argc, 1); 2284 if (r) 2285 return r; 2286 2287 (void) commit_or_fallback(pool); 2288 2289 r = dm_pool_reserve_metadata_snap(pool->pmd); 2290 if (r) 2291 DMWARN("reserve_metadata_snap message failed."); 2292 2293 return r; 2294 } 2295 2296 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2297 { 2298 int r; 2299 2300 r = check_arg_count(argc, 1); 2301 if (r) 2302 return r; 2303 2304 r = dm_pool_release_metadata_snap(pool->pmd); 2305 if (r) 2306 DMWARN("release_metadata_snap message failed."); 2307 2308 return r; 2309 } 2310 2311 /* 2312 * Messages supported: 2313 * create_thin <dev_id> 2314 * create_snap <dev_id> <origin_id> 2315 * delete <dev_id> 2316 * trim <dev_id> <new_size_in_sectors> 2317 * set_transaction_id <current_trans_id> <new_trans_id> 2318 * reserve_metadata_snap 2319 * release_metadata_snap 2320 */ 2321 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2322 { 2323 int r = -EINVAL; 2324 struct pool_c *pt = ti->private; 2325 struct pool *pool = pt->pool; 2326 2327 if (!strcasecmp(argv[0], "create_thin")) 2328 r = process_create_thin_mesg(argc, argv, pool); 2329 2330 else if (!strcasecmp(argv[0], "create_snap")) 2331 r = process_create_snap_mesg(argc, argv, pool); 2332 2333 else if (!strcasecmp(argv[0], "delete")) 2334 r = process_delete_mesg(argc, argv, pool); 2335 2336 else if (!strcasecmp(argv[0], "set_transaction_id")) 2337 r = process_set_transaction_id_mesg(argc, argv, pool); 2338 2339 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2340 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2341 2342 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2343 r = process_release_metadata_snap_mesg(argc, argv, pool); 2344 2345 else 2346 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2347 2348 if (!r) 2349 (void) commit_or_fallback(pool); 2350 2351 return r; 2352 } 2353 2354 static void emit_flags(struct pool_features *pf, char *result, 2355 unsigned sz, unsigned maxlen) 2356 { 2357 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2358 !pf->discard_passdown + (pf->mode == PM_READ_ONLY); 2359 DMEMIT("%u ", count); 2360 2361 if (!pf->zero_new_blocks) 2362 DMEMIT("skip_block_zeroing "); 2363 2364 if (!pf->discard_enabled) 2365 DMEMIT("ignore_discard "); 2366 2367 if (!pf->discard_passdown) 2368 DMEMIT("no_discard_passdown "); 2369 2370 if (pf->mode == PM_READ_ONLY) 2371 DMEMIT("read_only "); 2372 } 2373 2374 /* 2375 * Status line is: 2376 * <transaction id> <used metadata sectors>/<total metadata sectors> 2377 * <used data sectors>/<total data sectors> <held metadata root> 2378 */ 2379 static void pool_status(struct dm_target *ti, status_type_t type, 2380 unsigned status_flags, char *result, unsigned maxlen) 2381 { 2382 int r; 2383 unsigned sz = 0; 2384 uint64_t transaction_id; 2385 dm_block_t nr_free_blocks_data; 2386 dm_block_t nr_free_blocks_metadata; 2387 dm_block_t nr_blocks_data; 2388 dm_block_t nr_blocks_metadata; 2389 dm_block_t held_root; 2390 char buf[BDEVNAME_SIZE]; 2391 char buf2[BDEVNAME_SIZE]; 2392 struct pool_c *pt = ti->private; 2393 struct pool *pool = pt->pool; 2394 2395 switch (type) { 2396 case STATUSTYPE_INFO: 2397 if (get_pool_mode(pool) == PM_FAIL) { 2398 DMEMIT("Fail"); 2399 break; 2400 } 2401 2402 /* Commit to ensure statistics aren't out-of-date */ 2403 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2404 (void) commit_or_fallback(pool); 2405 2406 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2407 if (r) { 2408 DMERR("dm_pool_get_metadata_transaction_id returned %d", r); 2409 goto err; 2410 } 2411 2412 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2413 if (r) { 2414 DMERR("dm_pool_get_free_metadata_block_count returned %d", r); 2415 goto err; 2416 } 2417 2418 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2419 if (r) { 2420 DMERR("dm_pool_get_metadata_dev_size returned %d", r); 2421 goto err; 2422 } 2423 2424 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2425 if (r) { 2426 DMERR("dm_pool_get_free_block_count returned %d", r); 2427 goto err; 2428 } 2429 2430 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2431 if (r) { 2432 DMERR("dm_pool_get_data_dev_size returned %d", r); 2433 goto err; 2434 } 2435 2436 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2437 if (r) { 2438 DMERR("dm_pool_get_metadata_snap returned %d", r); 2439 goto err; 2440 } 2441 2442 DMEMIT("%llu %llu/%llu %llu/%llu ", 2443 (unsigned long long)transaction_id, 2444 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2445 (unsigned long long)nr_blocks_metadata, 2446 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2447 (unsigned long long)nr_blocks_data); 2448 2449 if (held_root) 2450 DMEMIT("%llu ", held_root); 2451 else 2452 DMEMIT("- "); 2453 2454 if (pool->pf.mode == PM_READ_ONLY) 2455 DMEMIT("ro "); 2456 else 2457 DMEMIT("rw "); 2458 2459 if (!pool->pf.discard_enabled) 2460 DMEMIT("ignore_discard"); 2461 else if (pool->pf.discard_passdown) 2462 DMEMIT("discard_passdown"); 2463 else 2464 DMEMIT("no_discard_passdown"); 2465 2466 break; 2467 2468 case STATUSTYPE_TABLE: 2469 DMEMIT("%s %s %lu %llu ", 2470 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2471 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2472 (unsigned long)pool->sectors_per_block, 2473 (unsigned long long)pt->low_water_blocks); 2474 emit_flags(&pt->requested_pf, result, sz, maxlen); 2475 break; 2476 } 2477 return; 2478 2479 err: 2480 DMEMIT("Error"); 2481 } 2482 2483 static int pool_iterate_devices(struct dm_target *ti, 2484 iterate_devices_callout_fn fn, void *data) 2485 { 2486 struct pool_c *pt = ti->private; 2487 2488 return fn(ti, pt->data_dev, 0, ti->len, data); 2489 } 2490 2491 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2492 struct bio_vec *biovec, int max_size) 2493 { 2494 struct pool_c *pt = ti->private; 2495 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2496 2497 if (!q->merge_bvec_fn) 2498 return max_size; 2499 2500 bvm->bi_bdev = pt->data_dev->bdev; 2501 2502 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2503 } 2504 2505 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2506 { 2507 struct pool *pool = pt->pool; 2508 struct queue_limits *data_limits; 2509 2510 limits->max_discard_sectors = pool->sectors_per_block; 2511 2512 /* 2513 * discard_granularity is just a hint, and not enforced. 2514 */ 2515 if (pt->adjusted_pf.discard_passdown) { 2516 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 2517 limits->discard_granularity = data_limits->discard_granularity; 2518 } else 2519 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 2520 } 2521 2522 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 2523 { 2524 struct pool_c *pt = ti->private; 2525 struct pool *pool = pt->pool; 2526 2527 blk_limits_io_min(limits, 0); 2528 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 2529 2530 /* 2531 * pt->adjusted_pf is a staging area for the actual features to use. 2532 * They get transferred to the live pool in bind_control_target() 2533 * called from pool_preresume(). 2534 */ 2535 if (!pt->adjusted_pf.discard_enabled) 2536 return; 2537 2538 disable_passdown_if_not_supported(pt); 2539 2540 set_discard_limits(pt, limits); 2541 } 2542 2543 static struct target_type pool_target = { 2544 .name = "thin-pool", 2545 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 2546 DM_TARGET_IMMUTABLE, 2547 .version = {1, 6, 1}, 2548 .module = THIS_MODULE, 2549 .ctr = pool_ctr, 2550 .dtr = pool_dtr, 2551 .map = pool_map, 2552 .postsuspend = pool_postsuspend, 2553 .preresume = pool_preresume, 2554 .resume = pool_resume, 2555 .message = pool_message, 2556 .status = pool_status, 2557 .merge = pool_merge, 2558 .iterate_devices = pool_iterate_devices, 2559 .io_hints = pool_io_hints, 2560 }; 2561 2562 /*---------------------------------------------------------------- 2563 * Thin target methods 2564 *--------------------------------------------------------------*/ 2565 static void thin_dtr(struct dm_target *ti) 2566 { 2567 struct thin_c *tc = ti->private; 2568 2569 mutex_lock(&dm_thin_pool_table.mutex); 2570 2571 __pool_dec(tc->pool); 2572 dm_pool_close_thin_device(tc->td); 2573 dm_put_device(ti, tc->pool_dev); 2574 if (tc->origin_dev) 2575 dm_put_device(ti, tc->origin_dev); 2576 kfree(tc); 2577 2578 mutex_unlock(&dm_thin_pool_table.mutex); 2579 } 2580 2581 /* 2582 * Thin target parameters: 2583 * 2584 * <pool_dev> <dev_id> [origin_dev] 2585 * 2586 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 2587 * dev_id: the internal device identifier 2588 * origin_dev: a device external to the pool that should act as the origin 2589 * 2590 * If the pool device has discards disabled, they get disabled for the thin 2591 * device as well. 2592 */ 2593 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 2594 { 2595 int r; 2596 struct thin_c *tc; 2597 struct dm_dev *pool_dev, *origin_dev; 2598 struct mapped_device *pool_md; 2599 2600 mutex_lock(&dm_thin_pool_table.mutex); 2601 2602 if (argc != 2 && argc != 3) { 2603 ti->error = "Invalid argument count"; 2604 r = -EINVAL; 2605 goto out_unlock; 2606 } 2607 2608 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 2609 if (!tc) { 2610 ti->error = "Out of memory"; 2611 r = -ENOMEM; 2612 goto out_unlock; 2613 } 2614 2615 if (argc == 3) { 2616 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 2617 if (r) { 2618 ti->error = "Error opening origin device"; 2619 goto bad_origin_dev; 2620 } 2621 tc->origin_dev = origin_dev; 2622 } 2623 2624 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 2625 if (r) { 2626 ti->error = "Error opening pool device"; 2627 goto bad_pool_dev; 2628 } 2629 tc->pool_dev = pool_dev; 2630 2631 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 2632 ti->error = "Invalid device id"; 2633 r = -EINVAL; 2634 goto bad_common; 2635 } 2636 2637 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 2638 if (!pool_md) { 2639 ti->error = "Couldn't get pool mapped device"; 2640 r = -EINVAL; 2641 goto bad_common; 2642 } 2643 2644 tc->pool = __pool_table_lookup(pool_md); 2645 if (!tc->pool) { 2646 ti->error = "Couldn't find pool object"; 2647 r = -EINVAL; 2648 goto bad_pool_lookup; 2649 } 2650 __pool_inc(tc->pool); 2651 2652 if (get_pool_mode(tc->pool) == PM_FAIL) { 2653 ti->error = "Couldn't open thin device, Pool is in fail mode"; 2654 goto bad_thin_open; 2655 } 2656 2657 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 2658 if (r) { 2659 ti->error = "Couldn't open thin internal device"; 2660 goto bad_thin_open; 2661 } 2662 2663 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 2664 if (r) 2665 goto bad_thin_open; 2666 2667 ti->num_flush_bios = 1; 2668 ti->flush_supported = true; 2669 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 2670 2671 /* In case the pool supports discards, pass them on. */ 2672 if (tc->pool->pf.discard_enabled) { 2673 ti->discards_supported = true; 2674 ti->num_discard_bios = 1; 2675 ti->discard_zeroes_data_unsupported = true; 2676 /* Discard bios must be split on a block boundary */ 2677 ti->split_discard_bios = true; 2678 } 2679 2680 dm_put(pool_md); 2681 2682 mutex_unlock(&dm_thin_pool_table.mutex); 2683 2684 return 0; 2685 2686 bad_thin_open: 2687 __pool_dec(tc->pool); 2688 bad_pool_lookup: 2689 dm_put(pool_md); 2690 bad_common: 2691 dm_put_device(ti, tc->pool_dev); 2692 bad_pool_dev: 2693 if (tc->origin_dev) 2694 dm_put_device(ti, tc->origin_dev); 2695 bad_origin_dev: 2696 kfree(tc); 2697 out_unlock: 2698 mutex_unlock(&dm_thin_pool_table.mutex); 2699 2700 return r; 2701 } 2702 2703 static int thin_map(struct dm_target *ti, struct bio *bio) 2704 { 2705 bio->bi_sector = dm_target_offset(ti, bio->bi_sector); 2706 2707 return thin_bio_map(ti, bio); 2708 } 2709 2710 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 2711 { 2712 unsigned long flags; 2713 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2714 struct list_head work; 2715 struct dm_thin_new_mapping *m, *tmp; 2716 struct pool *pool = h->tc->pool; 2717 2718 if (h->shared_read_entry) { 2719 INIT_LIST_HEAD(&work); 2720 dm_deferred_entry_dec(h->shared_read_entry, &work); 2721 2722 spin_lock_irqsave(&pool->lock, flags); 2723 list_for_each_entry_safe(m, tmp, &work, list) { 2724 list_del(&m->list); 2725 m->quiesced = 1; 2726 __maybe_add_mapping(m); 2727 } 2728 spin_unlock_irqrestore(&pool->lock, flags); 2729 } 2730 2731 if (h->all_io_entry) { 2732 INIT_LIST_HEAD(&work); 2733 dm_deferred_entry_dec(h->all_io_entry, &work); 2734 if (!list_empty(&work)) { 2735 spin_lock_irqsave(&pool->lock, flags); 2736 list_for_each_entry_safe(m, tmp, &work, list) 2737 list_add(&m->list, &pool->prepared_discards); 2738 spin_unlock_irqrestore(&pool->lock, flags); 2739 wake_worker(pool); 2740 } 2741 } 2742 2743 return 0; 2744 } 2745 2746 static void thin_postsuspend(struct dm_target *ti) 2747 { 2748 if (dm_noflush_suspending(ti)) 2749 requeue_io((struct thin_c *)ti->private); 2750 } 2751 2752 /* 2753 * <nr mapped sectors> <highest mapped sector> 2754 */ 2755 static void thin_status(struct dm_target *ti, status_type_t type, 2756 unsigned status_flags, char *result, unsigned maxlen) 2757 { 2758 int r; 2759 ssize_t sz = 0; 2760 dm_block_t mapped, highest; 2761 char buf[BDEVNAME_SIZE]; 2762 struct thin_c *tc = ti->private; 2763 2764 if (get_pool_mode(tc->pool) == PM_FAIL) { 2765 DMEMIT("Fail"); 2766 return; 2767 } 2768 2769 if (!tc->td) 2770 DMEMIT("-"); 2771 else { 2772 switch (type) { 2773 case STATUSTYPE_INFO: 2774 r = dm_thin_get_mapped_count(tc->td, &mapped); 2775 if (r) { 2776 DMERR("dm_thin_get_mapped_count returned %d", r); 2777 goto err; 2778 } 2779 2780 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 2781 if (r < 0) { 2782 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 2783 goto err; 2784 } 2785 2786 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 2787 if (r) 2788 DMEMIT("%llu", ((highest + 1) * 2789 tc->pool->sectors_per_block) - 1); 2790 else 2791 DMEMIT("-"); 2792 break; 2793 2794 case STATUSTYPE_TABLE: 2795 DMEMIT("%s %lu", 2796 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 2797 (unsigned long) tc->dev_id); 2798 if (tc->origin_dev) 2799 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 2800 break; 2801 } 2802 } 2803 2804 return; 2805 2806 err: 2807 DMEMIT("Error"); 2808 } 2809 2810 static int thin_iterate_devices(struct dm_target *ti, 2811 iterate_devices_callout_fn fn, void *data) 2812 { 2813 sector_t blocks; 2814 struct thin_c *tc = ti->private; 2815 struct pool *pool = tc->pool; 2816 2817 /* 2818 * We can't call dm_pool_get_data_dev_size() since that blocks. So 2819 * we follow a more convoluted path through to the pool's target. 2820 */ 2821 if (!pool->ti) 2822 return 0; /* nothing is bound */ 2823 2824 blocks = pool->ti->len; 2825 (void) sector_div(blocks, pool->sectors_per_block); 2826 if (blocks) 2827 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 2828 2829 return 0; 2830 } 2831 2832 static struct target_type thin_target = { 2833 .name = "thin", 2834 .version = {1, 7, 1}, 2835 .module = THIS_MODULE, 2836 .ctr = thin_ctr, 2837 .dtr = thin_dtr, 2838 .map = thin_map, 2839 .end_io = thin_endio, 2840 .postsuspend = thin_postsuspend, 2841 .status = thin_status, 2842 .iterate_devices = thin_iterate_devices, 2843 }; 2844 2845 /*----------------------------------------------------------------*/ 2846 2847 static int __init dm_thin_init(void) 2848 { 2849 int r; 2850 2851 pool_table_init(); 2852 2853 r = dm_register_target(&thin_target); 2854 if (r) 2855 return r; 2856 2857 r = dm_register_target(&pool_target); 2858 if (r) 2859 goto bad_pool_target; 2860 2861 r = -ENOMEM; 2862 2863 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 2864 if (!_new_mapping_cache) 2865 goto bad_new_mapping_cache; 2866 2867 return 0; 2868 2869 bad_new_mapping_cache: 2870 dm_unregister_target(&pool_target); 2871 bad_pool_target: 2872 dm_unregister_target(&thin_target); 2873 2874 return r; 2875 } 2876 2877 static void dm_thin_exit(void) 2878 { 2879 dm_unregister_target(&thin_target); 2880 dm_unregister_target(&pool_target); 2881 2882 kmem_cache_destroy(_new_mapping_cache); 2883 } 2884 2885 module_init(dm_thin_init); 2886 module_exit(dm_thin_exit); 2887 2888 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 2889 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2890 MODULE_LICENSE("GPL"); 2891