xref: /openbmc/linux/drivers/md/dm-thin.c (revision 93df8a1e)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 
239 	struct dm_bio_prison *prison;
240 	struct dm_kcopyd_client *copier;
241 
242 	struct workqueue_struct *wq;
243 	struct throttle throttle;
244 	struct work_struct worker;
245 	struct delayed_work waker;
246 	struct delayed_work no_space_timeout;
247 
248 	unsigned long last_commit_jiffies;
249 	unsigned ref_count;
250 
251 	spinlock_t lock;
252 	struct bio_list deferred_flush_bios;
253 	struct list_head prepared_mappings;
254 	struct list_head prepared_discards;
255 	struct list_head active_thins;
256 
257 	struct dm_deferred_set *shared_read_ds;
258 	struct dm_deferred_set *all_io_ds;
259 
260 	struct dm_thin_new_mapping *next_mapping;
261 	mempool_t *mapping_pool;
262 
263 	process_bio_fn process_bio;
264 	process_bio_fn process_discard;
265 
266 	process_cell_fn process_cell;
267 	process_cell_fn process_discard_cell;
268 
269 	process_mapping_fn process_prepared_mapping;
270 	process_mapping_fn process_prepared_discard;
271 
272 	struct dm_bio_prison_cell **cell_sort_array;
273 };
274 
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277 
278 /*
279  * Target context for a pool.
280  */
281 struct pool_c {
282 	struct dm_target *ti;
283 	struct pool *pool;
284 	struct dm_dev *data_dev;
285 	struct dm_dev *metadata_dev;
286 	struct dm_target_callbacks callbacks;
287 
288 	dm_block_t low_water_blocks;
289 	struct pool_features requested_pf; /* Features requested during table load */
290 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291 };
292 
293 /*
294  * Target context for a thin.
295  */
296 struct thin_c {
297 	struct list_head list;
298 	struct dm_dev *pool_dev;
299 	struct dm_dev *origin_dev;
300 	sector_t origin_size;
301 	dm_thin_id dev_id;
302 
303 	struct pool *pool;
304 	struct dm_thin_device *td;
305 	struct mapped_device *thin_md;
306 
307 	bool requeue_mode:1;
308 	spinlock_t lock;
309 	struct list_head deferred_cells;
310 	struct bio_list deferred_bio_list;
311 	struct bio_list retry_on_resume_list;
312 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
313 
314 	/*
315 	 * Ensures the thin is not destroyed until the worker has finished
316 	 * iterating the active_thins list.
317 	 */
318 	atomic_t refcount;
319 	struct completion can_destroy;
320 };
321 
322 /*----------------------------------------------------------------*/
323 
324 /**
325  * __blkdev_issue_discard_async - queue a discard with async completion
326  * @bdev:	blockdev to issue discard for
327  * @sector:	start sector
328  * @nr_sects:	number of sectors to discard
329  * @gfp_mask:	memory allocation flags (for bio_alloc)
330  * @flags:	BLKDEV_IFL_* flags to control behaviour
331  * @parent_bio: parent discard bio that all sub discards get chained to
332  *
333  * Description:
334  *    Asynchronously issue a discard request for the sectors in question.
335  *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
336  *    that is being kept local to DM thinp until the block changes to allow
337  *    late bio splitting land upstream.
338  */
339 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
340 					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
341 					struct bio *parent_bio)
342 {
343 	struct request_queue *q = bdev_get_queue(bdev);
344 	int type = REQ_WRITE | REQ_DISCARD;
345 	unsigned int max_discard_sectors, granularity;
346 	int alignment;
347 	struct bio *bio;
348 	int ret = 0;
349 	struct blk_plug plug;
350 
351 	if (!q)
352 		return -ENXIO;
353 
354 	if (!blk_queue_discard(q))
355 		return -EOPNOTSUPP;
356 
357 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
358 	granularity = max(q->limits.discard_granularity >> 9, 1U);
359 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
360 
361 	/*
362 	 * Ensure that max_discard_sectors is of the proper
363 	 * granularity, so that requests stay aligned after a split.
364 	 */
365 	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
366 	max_discard_sectors -= max_discard_sectors % granularity;
367 	if (unlikely(!max_discard_sectors)) {
368 		/* Avoid infinite loop below. Being cautious never hurts. */
369 		return -EOPNOTSUPP;
370 	}
371 
372 	if (flags & BLKDEV_DISCARD_SECURE) {
373 		if (!blk_queue_secdiscard(q))
374 			return -EOPNOTSUPP;
375 		type |= REQ_SECURE;
376 	}
377 
378 	blk_start_plug(&plug);
379 	while (nr_sects) {
380 		unsigned int req_sects;
381 		sector_t end_sect, tmp;
382 
383 		/*
384 		 * Required bio_put occurs in bio_endio thanks to bio_chain below
385 		 */
386 		bio = bio_alloc(gfp_mask, 1);
387 		if (!bio) {
388 			ret = -ENOMEM;
389 			break;
390 		}
391 
392 		req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
393 
394 		/*
395 		 * If splitting a request, and the next starting sector would be
396 		 * misaligned, stop the discard at the previous aligned sector.
397 		 */
398 		end_sect = sector + req_sects;
399 		tmp = end_sect;
400 		if (req_sects < nr_sects &&
401 		    sector_div(tmp, granularity) != alignment) {
402 			end_sect = end_sect - alignment;
403 			sector_div(end_sect, granularity);
404 			end_sect = end_sect * granularity + alignment;
405 			req_sects = end_sect - sector;
406 		}
407 
408 		bio_chain(bio, parent_bio);
409 
410 		bio->bi_iter.bi_sector = sector;
411 		bio->bi_bdev = bdev;
412 
413 		bio->bi_iter.bi_size = req_sects << 9;
414 		nr_sects -= req_sects;
415 		sector = end_sect;
416 
417 		submit_bio(type, bio);
418 
419 		/*
420 		 * We can loop for a long time in here, if someone does
421 		 * full device discards (like mkfs). Be nice and allow
422 		 * us to schedule out to avoid softlocking if preempt
423 		 * is disabled.
424 		 */
425 		cond_resched();
426 	}
427 	blk_finish_plug(&plug);
428 
429 	return ret;
430 }
431 
432 static bool block_size_is_power_of_two(struct pool *pool)
433 {
434 	return pool->sectors_per_block_shift >= 0;
435 }
436 
437 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
438 {
439 	return block_size_is_power_of_two(pool) ?
440 		(b << pool->sectors_per_block_shift) :
441 		(b * pool->sectors_per_block);
442 }
443 
444 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
445 			 struct bio *parent_bio)
446 {
447 	sector_t s = block_to_sectors(tc->pool, data_b);
448 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
449 
450 	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
451 					    GFP_NOWAIT, 0, parent_bio);
452 }
453 
454 /*----------------------------------------------------------------*/
455 
456 /*
457  * wake_worker() is used when new work is queued and when pool_resume is
458  * ready to continue deferred IO processing.
459  */
460 static void wake_worker(struct pool *pool)
461 {
462 	queue_work(pool->wq, &pool->worker);
463 }
464 
465 /*----------------------------------------------------------------*/
466 
467 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
468 		      struct dm_bio_prison_cell **cell_result)
469 {
470 	int r;
471 	struct dm_bio_prison_cell *cell_prealloc;
472 
473 	/*
474 	 * Allocate a cell from the prison's mempool.
475 	 * This might block but it can't fail.
476 	 */
477 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
478 
479 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
480 	if (r)
481 		/*
482 		 * We reused an old cell; we can get rid of
483 		 * the new one.
484 		 */
485 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
486 
487 	return r;
488 }
489 
490 static void cell_release(struct pool *pool,
491 			 struct dm_bio_prison_cell *cell,
492 			 struct bio_list *bios)
493 {
494 	dm_cell_release(pool->prison, cell, bios);
495 	dm_bio_prison_free_cell(pool->prison, cell);
496 }
497 
498 static void cell_visit_release(struct pool *pool,
499 			       void (*fn)(void *, struct dm_bio_prison_cell *),
500 			       void *context,
501 			       struct dm_bio_prison_cell *cell)
502 {
503 	dm_cell_visit_release(pool->prison, fn, context, cell);
504 	dm_bio_prison_free_cell(pool->prison, cell);
505 }
506 
507 static void cell_release_no_holder(struct pool *pool,
508 				   struct dm_bio_prison_cell *cell,
509 				   struct bio_list *bios)
510 {
511 	dm_cell_release_no_holder(pool->prison, cell, bios);
512 	dm_bio_prison_free_cell(pool->prison, cell);
513 }
514 
515 static void cell_error_with_code(struct pool *pool,
516 				 struct dm_bio_prison_cell *cell, int error_code)
517 {
518 	dm_cell_error(pool->prison, cell, error_code);
519 	dm_bio_prison_free_cell(pool->prison, cell);
520 }
521 
522 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
523 {
524 	cell_error_with_code(pool, cell, -EIO);
525 }
526 
527 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
528 {
529 	cell_error_with_code(pool, cell, 0);
530 }
531 
532 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
533 {
534 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
535 }
536 
537 /*----------------------------------------------------------------*/
538 
539 /*
540  * A global list of pools that uses a struct mapped_device as a key.
541  */
542 static struct dm_thin_pool_table {
543 	struct mutex mutex;
544 	struct list_head pools;
545 } dm_thin_pool_table;
546 
547 static void pool_table_init(void)
548 {
549 	mutex_init(&dm_thin_pool_table.mutex);
550 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
551 }
552 
553 static void __pool_table_insert(struct pool *pool)
554 {
555 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 	list_add(&pool->list, &dm_thin_pool_table.pools);
557 }
558 
559 static void __pool_table_remove(struct pool *pool)
560 {
561 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
562 	list_del(&pool->list);
563 }
564 
565 static struct pool *__pool_table_lookup(struct mapped_device *md)
566 {
567 	struct pool *pool = NULL, *tmp;
568 
569 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570 
571 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 		if (tmp->pool_md == md) {
573 			pool = tmp;
574 			break;
575 		}
576 	}
577 
578 	return pool;
579 }
580 
581 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
582 {
583 	struct pool *pool = NULL, *tmp;
584 
585 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
586 
587 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
588 		if (tmp->md_dev == md_dev) {
589 			pool = tmp;
590 			break;
591 		}
592 	}
593 
594 	return pool;
595 }
596 
597 /*----------------------------------------------------------------*/
598 
599 struct dm_thin_endio_hook {
600 	struct thin_c *tc;
601 	struct dm_deferred_entry *shared_read_entry;
602 	struct dm_deferred_entry *all_io_entry;
603 	struct dm_thin_new_mapping *overwrite_mapping;
604 	struct rb_node rb_node;
605 	struct dm_bio_prison_cell *cell;
606 };
607 
608 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
609 {
610 	bio_list_merge(bios, master);
611 	bio_list_init(master);
612 }
613 
614 static void error_bio_list(struct bio_list *bios, int error)
615 {
616 	struct bio *bio;
617 
618 	while ((bio = bio_list_pop(bios)))
619 		bio_endio(bio, error);
620 }
621 
622 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
623 {
624 	struct bio_list bios;
625 	unsigned long flags;
626 
627 	bio_list_init(&bios);
628 
629 	spin_lock_irqsave(&tc->lock, flags);
630 	__merge_bio_list(&bios, master);
631 	spin_unlock_irqrestore(&tc->lock, flags);
632 
633 	error_bio_list(&bios, error);
634 }
635 
636 static void requeue_deferred_cells(struct thin_c *tc)
637 {
638 	struct pool *pool = tc->pool;
639 	unsigned long flags;
640 	struct list_head cells;
641 	struct dm_bio_prison_cell *cell, *tmp;
642 
643 	INIT_LIST_HEAD(&cells);
644 
645 	spin_lock_irqsave(&tc->lock, flags);
646 	list_splice_init(&tc->deferred_cells, &cells);
647 	spin_unlock_irqrestore(&tc->lock, flags);
648 
649 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
650 		cell_requeue(pool, cell);
651 }
652 
653 static void requeue_io(struct thin_c *tc)
654 {
655 	struct bio_list bios;
656 	unsigned long flags;
657 
658 	bio_list_init(&bios);
659 
660 	spin_lock_irqsave(&tc->lock, flags);
661 	__merge_bio_list(&bios, &tc->deferred_bio_list);
662 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
663 	spin_unlock_irqrestore(&tc->lock, flags);
664 
665 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
666 	requeue_deferred_cells(tc);
667 }
668 
669 static void error_retry_list(struct pool *pool)
670 {
671 	struct thin_c *tc;
672 
673 	rcu_read_lock();
674 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
675 		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
676 	rcu_read_unlock();
677 }
678 
679 /*
680  * This section of code contains the logic for processing a thin device's IO.
681  * Much of the code depends on pool object resources (lists, workqueues, etc)
682  * but most is exclusively called from the thin target rather than the thin-pool
683  * target.
684  */
685 
686 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
687 {
688 	struct pool *pool = tc->pool;
689 	sector_t block_nr = bio->bi_iter.bi_sector;
690 
691 	if (block_size_is_power_of_two(pool))
692 		block_nr >>= pool->sectors_per_block_shift;
693 	else
694 		(void) sector_div(block_nr, pool->sectors_per_block);
695 
696 	return block_nr;
697 }
698 
699 /*
700  * Returns the _complete_ blocks that this bio covers.
701  */
702 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
703 				dm_block_t *begin, dm_block_t *end)
704 {
705 	struct pool *pool = tc->pool;
706 	sector_t b = bio->bi_iter.bi_sector;
707 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
708 
709 	b += pool->sectors_per_block - 1ull; /* so we round up */
710 
711 	if (block_size_is_power_of_two(pool)) {
712 		b >>= pool->sectors_per_block_shift;
713 		e >>= pool->sectors_per_block_shift;
714 	} else {
715 		(void) sector_div(b, pool->sectors_per_block);
716 		(void) sector_div(e, pool->sectors_per_block);
717 	}
718 
719 	if (e < b)
720 		/* Can happen if the bio is within a single block. */
721 		e = b;
722 
723 	*begin = b;
724 	*end = e;
725 }
726 
727 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
728 {
729 	struct pool *pool = tc->pool;
730 	sector_t bi_sector = bio->bi_iter.bi_sector;
731 
732 	bio->bi_bdev = tc->pool_dev->bdev;
733 	if (block_size_is_power_of_two(pool))
734 		bio->bi_iter.bi_sector =
735 			(block << pool->sectors_per_block_shift) |
736 			(bi_sector & (pool->sectors_per_block - 1));
737 	else
738 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
739 				 sector_div(bi_sector, pool->sectors_per_block);
740 }
741 
742 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
743 {
744 	bio->bi_bdev = tc->origin_dev->bdev;
745 }
746 
747 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
748 {
749 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
750 		dm_thin_changed_this_transaction(tc->td);
751 }
752 
753 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
754 {
755 	struct dm_thin_endio_hook *h;
756 
757 	if (bio->bi_rw & REQ_DISCARD)
758 		return;
759 
760 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
761 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
762 }
763 
764 static void issue(struct thin_c *tc, struct bio *bio)
765 {
766 	struct pool *pool = tc->pool;
767 	unsigned long flags;
768 
769 	if (!bio_triggers_commit(tc, bio)) {
770 		generic_make_request(bio);
771 		return;
772 	}
773 
774 	/*
775 	 * Complete bio with an error if earlier I/O caused changes to
776 	 * the metadata that can't be committed e.g, due to I/O errors
777 	 * on the metadata device.
778 	 */
779 	if (dm_thin_aborted_changes(tc->td)) {
780 		bio_io_error(bio);
781 		return;
782 	}
783 
784 	/*
785 	 * Batch together any bios that trigger commits and then issue a
786 	 * single commit for them in process_deferred_bios().
787 	 */
788 	spin_lock_irqsave(&pool->lock, flags);
789 	bio_list_add(&pool->deferred_flush_bios, bio);
790 	spin_unlock_irqrestore(&pool->lock, flags);
791 }
792 
793 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
794 {
795 	remap_to_origin(tc, bio);
796 	issue(tc, bio);
797 }
798 
799 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
800 			    dm_block_t block)
801 {
802 	remap(tc, bio, block);
803 	issue(tc, bio);
804 }
805 
806 /*----------------------------------------------------------------*/
807 
808 /*
809  * Bio endio functions.
810  */
811 struct dm_thin_new_mapping {
812 	struct list_head list;
813 
814 	bool pass_discard:1;
815 	bool maybe_shared:1;
816 
817 	/*
818 	 * Track quiescing, copying and zeroing preparation actions.  When this
819 	 * counter hits zero the block is prepared and can be inserted into the
820 	 * btree.
821 	 */
822 	atomic_t prepare_actions;
823 
824 	int err;
825 	struct thin_c *tc;
826 	dm_block_t virt_begin, virt_end;
827 	dm_block_t data_block;
828 	struct dm_bio_prison_cell *cell;
829 
830 	/*
831 	 * If the bio covers the whole area of a block then we can avoid
832 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
833 	 * still be in the cell, so care has to be taken to avoid issuing
834 	 * the bio twice.
835 	 */
836 	struct bio *bio;
837 	bio_end_io_t *saved_bi_end_io;
838 };
839 
840 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 	struct pool *pool = m->tc->pool;
843 
844 	if (atomic_dec_and_test(&m->prepare_actions)) {
845 		list_add_tail(&m->list, &pool->prepared_mappings);
846 		wake_worker(pool);
847 	}
848 }
849 
850 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
851 {
852 	unsigned long flags;
853 	struct pool *pool = m->tc->pool;
854 
855 	spin_lock_irqsave(&pool->lock, flags);
856 	__complete_mapping_preparation(m);
857 	spin_unlock_irqrestore(&pool->lock, flags);
858 }
859 
860 static void copy_complete(int read_err, unsigned long write_err, void *context)
861 {
862 	struct dm_thin_new_mapping *m = context;
863 
864 	m->err = read_err || write_err ? -EIO : 0;
865 	complete_mapping_preparation(m);
866 }
867 
868 static void overwrite_endio(struct bio *bio, int err)
869 {
870 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
871 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
872 
873 	bio->bi_end_io = m->saved_bi_end_io;
874 
875 	m->err = err;
876 	complete_mapping_preparation(m);
877 }
878 
879 /*----------------------------------------------------------------*/
880 
881 /*
882  * Workqueue.
883  */
884 
885 /*
886  * Prepared mapping jobs.
887  */
888 
889 /*
890  * This sends the bios in the cell, except the original holder, back
891  * to the deferred_bios list.
892  */
893 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
894 {
895 	struct pool *pool = tc->pool;
896 	unsigned long flags;
897 
898 	spin_lock_irqsave(&tc->lock, flags);
899 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
900 	spin_unlock_irqrestore(&tc->lock, flags);
901 
902 	wake_worker(pool);
903 }
904 
905 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
906 
907 struct remap_info {
908 	struct thin_c *tc;
909 	struct bio_list defer_bios;
910 	struct bio_list issue_bios;
911 };
912 
913 static void __inc_remap_and_issue_cell(void *context,
914 				       struct dm_bio_prison_cell *cell)
915 {
916 	struct remap_info *info = context;
917 	struct bio *bio;
918 
919 	while ((bio = bio_list_pop(&cell->bios))) {
920 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
921 			bio_list_add(&info->defer_bios, bio);
922 		else {
923 			inc_all_io_entry(info->tc->pool, bio);
924 
925 			/*
926 			 * We can't issue the bios with the bio prison lock
927 			 * held, so we add them to a list to issue on
928 			 * return from this function.
929 			 */
930 			bio_list_add(&info->issue_bios, bio);
931 		}
932 	}
933 }
934 
935 static void inc_remap_and_issue_cell(struct thin_c *tc,
936 				     struct dm_bio_prison_cell *cell,
937 				     dm_block_t block)
938 {
939 	struct bio *bio;
940 	struct remap_info info;
941 
942 	info.tc = tc;
943 	bio_list_init(&info.defer_bios);
944 	bio_list_init(&info.issue_bios);
945 
946 	/*
947 	 * We have to be careful to inc any bios we're about to issue
948 	 * before the cell is released, and avoid a race with new bios
949 	 * being added to the cell.
950 	 */
951 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
952 			   &info, cell);
953 
954 	while ((bio = bio_list_pop(&info.defer_bios)))
955 		thin_defer_bio(tc, bio);
956 
957 	while ((bio = bio_list_pop(&info.issue_bios)))
958 		remap_and_issue(info.tc, bio, block);
959 }
960 
961 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
962 {
963 	cell_error(m->tc->pool, m->cell);
964 	list_del(&m->list);
965 	mempool_free(m, m->tc->pool->mapping_pool);
966 }
967 
968 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
969 {
970 	struct thin_c *tc = m->tc;
971 	struct pool *pool = tc->pool;
972 	struct bio *bio = m->bio;
973 	int r;
974 
975 	if (m->err) {
976 		cell_error(pool, m->cell);
977 		goto out;
978 	}
979 
980 	/*
981 	 * Commit the prepared block into the mapping btree.
982 	 * Any I/O for this block arriving after this point will get
983 	 * remapped to it directly.
984 	 */
985 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
986 	if (r) {
987 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
988 		cell_error(pool, m->cell);
989 		goto out;
990 	}
991 
992 	/*
993 	 * Release any bios held while the block was being provisioned.
994 	 * If we are processing a write bio that completely covers the block,
995 	 * we already processed it so can ignore it now when processing
996 	 * the bios in the cell.
997 	 */
998 	if (bio) {
999 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1000 		bio_endio(bio, 0);
1001 	} else {
1002 		inc_all_io_entry(tc->pool, m->cell->holder);
1003 		remap_and_issue(tc, m->cell->holder, m->data_block);
1004 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1005 	}
1006 
1007 out:
1008 	list_del(&m->list);
1009 	mempool_free(m, pool->mapping_pool);
1010 }
1011 
1012 /*----------------------------------------------------------------*/
1013 
1014 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1015 {
1016 	struct thin_c *tc = m->tc;
1017 	if (m->cell)
1018 		cell_defer_no_holder(tc, m->cell);
1019 	mempool_free(m, tc->pool->mapping_pool);
1020 }
1021 
1022 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1023 {
1024 	bio_io_error(m->bio);
1025 	free_discard_mapping(m);
1026 }
1027 
1028 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1029 {
1030 	bio_endio(m->bio, 0);
1031 	free_discard_mapping(m);
1032 }
1033 
1034 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1035 {
1036 	int r;
1037 	struct thin_c *tc = m->tc;
1038 
1039 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1040 	if (r) {
1041 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1042 		bio_io_error(m->bio);
1043 	} else
1044 		bio_endio(m->bio, 0);
1045 
1046 	cell_defer_no_holder(tc, m->cell);
1047 	mempool_free(m, tc->pool->mapping_pool);
1048 }
1049 
1050 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1051 {
1052 	/*
1053 	 * We've already unmapped this range of blocks, but before we
1054 	 * passdown we have to check that these blocks are now unused.
1055 	 */
1056 	int r;
1057 	bool used = true;
1058 	struct thin_c *tc = m->tc;
1059 	struct pool *pool = tc->pool;
1060 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1061 
1062 	while (b != end) {
1063 		/* find start of unmapped run */
1064 		for (; b < end; b++) {
1065 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1066 			if (r)
1067 				return r;
1068 
1069 			if (!used)
1070 				break;
1071 		}
1072 
1073 		if (b == end)
1074 			break;
1075 
1076 		/* find end of run */
1077 		for (e = b + 1; e != end; e++) {
1078 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1079 			if (r)
1080 				return r;
1081 
1082 			if (used)
1083 				break;
1084 		}
1085 
1086 		r = issue_discard(tc, b, e, m->bio);
1087 		if (r)
1088 			return r;
1089 
1090 		b = e;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1097 {
1098 	int r;
1099 	struct thin_c *tc = m->tc;
1100 	struct pool *pool = tc->pool;
1101 
1102 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1103 	if (r)
1104 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1105 
1106 	else if (m->maybe_shared)
1107 		r = passdown_double_checking_shared_status(m);
1108 	else
1109 		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1110 
1111 	/*
1112 	 * Even if r is set, there could be sub discards in flight that we
1113 	 * need to wait for.
1114 	 */
1115 	bio_endio(m->bio, r);
1116 	cell_defer_no_holder(tc, m->cell);
1117 	mempool_free(m, pool->mapping_pool);
1118 }
1119 
1120 static void process_prepared(struct pool *pool, struct list_head *head,
1121 			     process_mapping_fn *fn)
1122 {
1123 	unsigned long flags;
1124 	struct list_head maps;
1125 	struct dm_thin_new_mapping *m, *tmp;
1126 
1127 	INIT_LIST_HEAD(&maps);
1128 	spin_lock_irqsave(&pool->lock, flags);
1129 	list_splice_init(head, &maps);
1130 	spin_unlock_irqrestore(&pool->lock, flags);
1131 
1132 	list_for_each_entry_safe(m, tmp, &maps, list)
1133 		(*fn)(m);
1134 }
1135 
1136 /*
1137  * Deferred bio jobs.
1138  */
1139 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1140 {
1141 	return bio->bi_iter.bi_size ==
1142 		(pool->sectors_per_block << SECTOR_SHIFT);
1143 }
1144 
1145 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1146 {
1147 	return (bio_data_dir(bio) == WRITE) &&
1148 		io_overlaps_block(pool, bio);
1149 }
1150 
1151 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1152 			       bio_end_io_t *fn)
1153 {
1154 	*save = bio->bi_end_io;
1155 	bio->bi_end_io = fn;
1156 }
1157 
1158 static int ensure_next_mapping(struct pool *pool)
1159 {
1160 	if (pool->next_mapping)
1161 		return 0;
1162 
1163 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1164 
1165 	return pool->next_mapping ? 0 : -ENOMEM;
1166 }
1167 
1168 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1169 {
1170 	struct dm_thin_new_mapping *m = pool->next_mapping;
1171 
1172 	BUG_ON(!pool->next_mapping);
1173 
1174 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1175 	INIT_LIST_HEAD(&m->list);
1176 	m->bio = NULL;
1177 
1178 	pool->next_mapping = NULL;
1179 
1180 	return m;
1181 }
1182 
1183 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1184 		    sector_t begin, sector_t end)
1185 {
1186 	int r;
1187 	struct dm_io_region to;
1188 
1189 	to.bdev = tc->pool_dev->bdev;
1190 	to.sector = begin;
1191 	to.count = end - begin;
1192 
1193 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1194 	if (r < 0) {
1195 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1196 		copy_complete(1, 1, m);
1197 	}
1198 }
1199 
1200 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1201 				      dm_block_t data_begin,
1202 				      struct dm_thin_new_mapping *m)
1203 {
1204 	struct pool *pool = tc->pool;
1205 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1206 
1207 	h->overwrite_mapping = m;
1208 	m->bio = bio;
1209 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1210 	inc_all_io_entry(pool, bio);
1211 	remap_and_issue(tc, bio, data_begin);
1212 }
1213 
1214 /*
1215  * A partial copy also needs to zero the uncopied region.
1216  */
1217 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1218 			  struct dm_dev *origin, dm_block_t data_origin,
1219 			  dm_block_t data_dest,
1220 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1221 			  sector_t len)
1222 {
1223 	int r;
1224 	struct pool *pool = tc->pool;
1225 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1226 
1227 	m->tc = tc;
1228 	m->virt_begin = virt_block;
1229 	m->virt_end = virt_block + 1u;
1230 	m->data_block = data_dest;
1231 	m->cell = cell;
1232 
1233 	/*
1234 	 * quiesce action + copy action + an extra reference held for the
1235 	 * duration of this function (we may need to inc later for a
1236 	 * partial zero).
1237 	 */
1238 	atomic_set(&m->prepare_actions, 3);
1239 
1240 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1241 		complete_mapping_preparation(m); /* already quiesced */
1242 
1243 	/*
1244 	 * IO to pool_dev remaps to the pool target's data_dev.
1245 	 *
1246 	 * If the whole block of data is being overwritten, we can issue the
1247 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1248 	 */
1249 	if (io_overwrites_block(pool, bio))
1250 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1251 	else {
1252 		struct dm_io_region from, to;
1253 
1254 		from.bdev = origin->bdev;
1255 		from.sector = data_origin * pool->sectors_per_block;
1256 		from.count = len;
1257 
1258 		to.bdev = tc->pool_dev->bdev;
1259 		to.sector = data_dest * pool->sectors_per_block;
1260 		to.count = len;
1261 
1262 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1263 				   0, copy_complete, m);
1264 		if (r < 0) {
1265 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1266 			copy_complete(1, 1, m);
1267 
1268 			/*
1269 			 * We allow the zero to be issued, to simplify the
1270 			 * error path.  Otherwise we'd need to start
1271 			 * worrying about decrementing the prepare_actions
1272 			 * counter.
1273 			 */
1274 		}
1275 
1276 		/*
1277 		 * Do we need to zero a tail region?
1278 		 */
1279 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1280 			atomic_inc(&m->prepare_actions);
1281 			ll_zero(tc, m,
1282 				data_dest * pool->sectors_per_block + len,
1283 				(data_dest + 1) * pool->sectors_per_block);
1284 		}
1285 	}
1286 
1287 	complete_mapping_preparation(m); /* drop our ref */
1288 }
1289 
1290 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1291 				   dm_block_t data_origin, dm_block_t data_dest,
1292 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1293 {
1294 	schedule_copy(tc, virt_block, tc->pool_dev,
1295 		      data_origin, data_dest, cell, bio,
1296 		      tc->pool->sectors_per_block);
1297 }
1298 
1299 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1300 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1301 			  struct bio *bio)
1302 {
1303 	struct pool *pool = tc->pool;
1304 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1305 
1306 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1307 	m->tc = tc;
1308 	m->virt_begin = virt_block;
1309 	m->virt_end = virt_block + 1u;
1310 	m->data_block = data_block;
1311 	m->cell = cell;
1312 
1313 	/*
1314 	 * If the whole block of data is being overwritten or we are not
1315 	 * zeroing pre-existing data, we can issue the bio immediately.
1316 	 * Otherwise we use kcopyd to zero the data first.
1317 	 */
1318 	if (pool->pf.zero_new_blocks) {
1319 		if (io_overwrites_block(pool, bio))
1320 			remap_and_issue_overwrite(tc, bio, data_block, m);
1321 		else
1322 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1323 				(data_block + 1) * pool->sectors_per_block);
1324 	} else
1325 		process_prepared_mapping(m);
1326 }
1327 
1328 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1329 				   dm_block_t data_dest,
1330 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1331 {
1332 	struct pool *pool = tc->pool;
1333 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1334 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1335 
1336 	if (virt_block_end <= tc->origin_size)
1337 		schedule_copy(tc, virt_block, tc->origin_dev,
1338 			      virt_block, data_dest, cell, bio,
1339 			      pool->sectors_per_block);
1340 
1341 	else if (virt_block_begin < tc->origin_size)
1342 		schedule_copy(tc, virt_block, tc->origin_dev,
1343 			      virt_block, data_dest, cell, bio,
1344 			      tc->origin_size - virt_block_begin);
1345 
1346 	else
1347 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1348 }
1349 
1350 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1351 
1352 static void check_for_space(struct pool *pool)
1353 {
1354 	int r;
1355 	dm_block_t nr_free;
1356 
1357 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1358 		return;
1359 
1360 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1361 	if (r)
1362 		return;
1363 
1364 	if (nr_free)
1365 		set_pool_mode(pool, PM_WRITE);
1366 }
1367 
1368 /*
1369  * A non-zero return indicates read_only or fail_io mode.
1370  * Many callers don't care about the return value.
1371  */
1372 static int commit(struct pool *pool)
1373 {
1374 	int r;
1375 
1376 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1377 		return -EINVAL;
1378 
1379 	r = dm_pool_commit_metadata(pool->pmd);
1380 	if (r)
1381 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1382 	else
1383 		check_for_space(pool);
1384 
1385 	return r;
1386 }
1387 
1388 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1389 {
1390 	unsigned long flags;
1391 
1392 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1393 		DMWARN("%s: reached low water mark for data device: sending event.",
1394 		       dm_device_name(pool->pool_md));
1395 		spin_lock_irqsave(&pool->lock, flags);
1396 		pool->low_water_triggered = true;
1397 		spin_unlock_irqrestore(&pool->lock, flags);
1398 		dm_table_event(pool->ti->table);
1399 	}
1400 }
1401 
1402 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1403 {
1404 	int r;
1405 	dm_block_t free_blocks;
1406 	struct pool *pool = tc->pool;
1407 
1408 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1409 		return -EINVAL;
1410 
1411 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1412 	if (r) {
1413 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1414 		return r;
1415 	}
1416 
1417 	check_low_water_mark(pool, free_blocks);
1418 
1419 	if (!free_blocks) {
1420 		/*
1421 		 * Try to commit to see if that will free up some
1422 		 * more space.
1423 		 */
1424 		r = commit(pool);
1425 		if (r)
1426 			return r;
1427 
1428 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1429 		if (r) {
1430 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1431 			return r;
1432 		}
1433 
1434 		if (!free_blocks) {
1435 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1436 			return -ENOSPC;
1437 		}
1438 	}
1439 
1440 	r = dm_pool_alloc_data_block(pool->pmd, result);
1441 	if (r) {
1442 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1443 		return r;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * If we have run out of space, queue bios until the device is
1451  * resumed, presumably after having been reloaded with more space.
1452  */
1453 static void retry_on_resume(struct bio *bio)
1454 {
1455 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1456 	struct thin_c *tc = h->tc;
1457 	unsigned long flags;
1458 
1459 	spin_lock_irqsave(&tc->lock, flags);
1460 	bio_list_add(&tc->retry_on_resume_list, bio);
1461 	spin_unlock_irqrestore(&tc->lock, flags);
1462 }
1463 
1464 static int should_error_unserviceable_bio(struct pool *pool)
1465 {
1466 	enum pool_mode m = get_pool_mode(pool);
1467 
1468 	switch (m) {
1469 	case PM_WRITE:
1470 		/* Shouldn't get here */
1471 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1472 		return -EIO;
1473 
1474 	case PM_OUT_OF_DATA_SPACE:
1475 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1476 
1477 	case PM_READ_ONLY:
1478 	case PM_FAIL:
1479 		return -EIO;
1480 	default:
1481 		/* Shouldn't get here */
1482 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1483 		return -EIO;
1484 	}
1485 }
1486 
1487 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1488 {
1489 	int error = should_error_unserviceable_bio(pool);
1490 
1491 	if (error)
1492 		bio_endio(bio, error);
1493 	else
1494 		retry_on_resume(bio);
1495 }
1496 
1497 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1498 {
1499 	struct bio *bio;
1500 	struct bio_list bios;
1501 	int error;
1502 
1503 	error = should_error_unserviceable_bio(pool);
1504 	if (error) {
1505 		cell_error_with_code(pool, cell, error);
1506 		return;
1507 	}
1508 
1509 	bio_list_init(&bios);
1510 	cell_release(pool, cell, &bios);
1511 
1512 	while ((bio = bio_list_pop(&bios)))
1513 		retry_on_resume(bio);
1514 }
1515 
1516 static void process_discard_cell_no_passdown(struct thin_c *tc,
1517 					     struct dm_bio_prison_cell *virt_cell)
1518 {
1519 	struct pool *pool = tc->pool;
1520 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1521 
1522 	/*
1523 	 * We don't need to lock the data blocks, since there's no
1524 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1525 	 */
1526 	m->tc = tc;
1527 	m->virt_begin = virt_cell->key.block_begin;
1528 	m->virt_end = virt_cell->key.block_end;
1529 	m->cell = virt_cell;
1530 	m->bio = virt_cell->holder;
1531 
1532 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1533 		pool->process_prepared_discard(m);
1534 }
1535 
1536 /*
1537  * FIXME: DM local hack to defer parent bios's end_io until we
1538  * _know_ all chained sub range discard bios have completed.
1539  * Will go away once late bio splitting lands upstream!
1540  */
1541 static inline void __bio_inc_remaining(struct bio *bio)
1542 {
1543 	bio->bi_flags |= (1 << BIO_CHAIN);
1544 	smp_mb__before_atomic();
1545 	atomic_inc(&bio->__bi_remaining);
1546 }
1547 
1548 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1549 				 struct bio *bio)
1550 {
1551 	struct pool *pool = tc->pool;
1552 
1553 	int r;
1554 	bool maybe_shared;
1555 	struct dm_cell_key data_key;
1556 	struct dm_bio_prison_cell *data_cell;
1557 	struct dm_thin_new_mapping *m;
1558 	dm_block_t virt_begin, virt_end, data_begin;
1559 
1560 	while (begin != end) {
1561 		r = ensure_next_mapping(pool);
1562 		if (r)
1563 			/* we did our best */
1564 			return;
1565 
1566 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1567 					      &data_begin, &maybe_shared);
1568 		if (r)
1569 			/*
1570 			 * Silently fail, letting any mappings we've
1571 			 * created complete.
1572 			 */
1573 			break;
1574 
1575 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1576 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1577 			/* contention, we'll give up with this range */
1578 			begin = virt_end;
1579 			continue;
1580 		}
1581 
1582 		/*
1583 		 * IO may still be going to the destination block.  We must
1584 		 * quiesce before we can do the removal.
1585 		 */
1586 		m = get_next_mapping(pool);
1587 		m->tc = tc;
1588 		m->maybe_shared = maybe_shared;
1589 		m->virt_begin = virt_begin;
1590 		m->virt_end = virt_end;
1591 		m->data_block = data_begin;
1592 		m->cell = data_cell;
1593 		m->bio = bio;
1594 
1595 		/*
1596 		 * The parent bio must not complete before sub discard bios are
1597 		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1598 		 *
1599 		 * This per-mapping bi_remaining increment is paired with
1600 		 * the implicit decrement that occurs via bio_endio() in
1601 		 * process_prepared_discard_{passdown,no_passdown}.
1602 		 */
1603 		__bio_inc_remaining(bio);
1604 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1605 			pool->process_prepared_discard(m);
1606 
1607 		begin = virt_end;
1608 	}
1609 }
1610 
1611 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1612 {
1613 	struct bio *bio = virt_cell->holder;
1614 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1615 
1616 	/*
1617 	 * The virt_cell will only get freed once the origin bio completes.
1618 	 * This means it will remain locked while all the individual
1619 	 * passdown bios are in flight.
1620 	 */
1621 	h->cell = virt_cell;
1622 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1623 
1624 	/*
1625 	 * We complete the bio now, knowing that the bi_remaining field
1626 	 * will prevent completion until the sub range discards have
1627 	 * completed.
1628 	 */
1629 	bio_endio(bio, 0);
1630 }
1631 
1632 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1633 {
1634 	dm_block_t begin, end;
1635 	struct dm_cell_key virt_key;
1636 	struct dm_bio_prison_cell *virt_cell;
1637 
1638 	get_bio_block_range(tc, bio, &begin, &end);
1639 	if (begin == end) {
1640 		/*
1641 		 * The discard covers less than a block.
1642 		 */
1643 		bio_endio(bio, 0);
1644 		return;
1645 	}
1646 
1647 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1648 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1649 		/*
1650 		 * Potential starvation issue: We're relying on the
1651 		 * fs/application being well behaved, and not trying to
1652 		 * send IO to a region at the same time as discarding it.
1653 		 * If they do this persistently then it's possible this
1654 		 * cell will never be granted.
1655 		 */
1656 		return;
1657 
1658 	tc->pool->process_discard_cell(tc, virt_cell);
1659 }
1660 
1661 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1662 			  struct dm_cell_key *key,
1663 			  struct dm_thin_lookup_result *lookup_result,
1664 			  struct dm_bio_prison_cell *cell)
1665 {
1666 	int r;
1667 	dm_block_t data_block;
1668 	struct pool *pool = tc->pool;
1669 
1670 	r = alloc_data_block(tc, &data_block);
1671 	switch (r) {
1672 	case 0:
1673 		schedule_internal_copy(tc, block, lookup_result->block,
1674 				       data_block, cell, bio);
1675 		break;
1676 
1677 	case -ENOSPC:
1678 		retry_bios_on_resume(pool, cell);
1679 		break;
1680 
1681 	default:
1682 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1683 			    __func__, r);
1684 		cell_error(pool, cell);
1685 		break;
1686 	}
1687 }
1688 
1689 static void __remap_and_issue_shared_cell(void *context,
1690 					  struct dm_bio_prison_cell *cell)
1691 {
1692 	struct remap_info *info = context;
1693 	struct bio *bio;
1694 
1695 	while ((bio = bio_list_pop(&cell->bios))) {
1696 		if ((bio_data_dir(bio) == WRITE) ||
1697 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1698 			bio_list_add(&info->defer_bios, bio);
1699 		else {
1700 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1701 
1702 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1703 			inc_all_io_entry(info->tc->pool, bio);
1704 			bio_list_add(&info->issue_bios, bio);
1705 		}
1706 	}
1707 }
1708 
1709 static void remap_and_issue_shared_cell(struct thin_c *tc,
1710 					struct dm_bio_prison_cell *cell,
1711 					dm_block_t block)
1712 {
1713 	struct bio *bio;
1714 	struct remap_info info;
1715 
1716 	info.tc = tc;
1717 	bio_list_init(&info.defer_bios);
1718 	bio_list_init(&info.issue_bios);
1719 
1720 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1721 			   &info, cell);
1722 
1723 	while ((bio = bio_list_pop(&info.defer_bios)))
1724 		thin_defer_bio(tc, bio);
1725 
1726 	while ((bio = bio_list_pop(&info.issue_bios)))
1727 		remap_and_issue(tc, bio, block);
1728 }
1729 
1730 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1731 			       dm_block_t block,
1732 			       struct dm_thin_lookup_result *lookup_result,
1733 			       struct dm_bio_prison_cell *virt_cell)
1734 {
1735 	struct dm_bio_prison_cell *data_cell;
1736 	struct pool *pool = tc->pool;
1737 	struct dm_cell_key key;
1738 
1739 	/*
1740 	 * If cell is already occupied, then sharing is already in the process
1741 	 * of being broken so we have nothing further to do here.
1742 	 */
1743 	build_data_key(tc->td, lookup_result->block, &key);
1744 	if (bio_detain(pool, &key, bio, &data_cell)) {
1745 		cell_defer_no_holder(tc, virt_cell);
1746 		return;
1747 	}
1748 
1749 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1750 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1751 		cell_defer_no_holder(tc, virt_cell);
1752 	} else {
1753 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1754 
1755 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1756 		inc_all_io_entry(pool, bio);
1757 		remap_and_issue(tc, bio, lookup_result->block);
1758 
1759 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1760 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1761 	}
1762 }
1763 
1764 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1765 			    struct dm_bio_prison_cell *cell)
1766 {
1767 	int r;
1768 	dm_block_t data_block;
1769 	struct pool *pool = tc->pool;
1770 
1771 	/*
1772 	 * Remap empty bios (flushes) immediately, without provisioning.
1773 	 */
1774 	if (!bio->bi_iter.bi_size) {
1775 		inc_all_io_entry(pool, bio);
1776 		cell_defer_no_holder(tc, cell);
1777 
1778 		remap_and_issue(tc, bio, 0);
1779 		return;
1780 	}
1781 
1782 	/*
1783 	 * Fill read bios with zeroes and complete them immediately.
1784 	 */
1785 	if (bio_data_dir(bio) == READ) {
1786 		zero_fill_bio(bio);
1787 		cell_defer_no_holder(tc, cell);
1788 		bio_endio(bio, 0);
1789 		return;
1790 	}
1791 
1792 	r = alloc_data_block(tc, &data_block);
1793 	switch (r) {
1794 	case 0:
1795 		if (tc->origin_dev)
1796 			schedule_external_copy(tc, block, data_block, cell, bio);
1797 		else
1798 			schedule_zero(tc, block, data_block, cell, bio);
1799 		break;
1800 
1801 	case -ENOSPC:
1802 		retry_bios_on_resume(pool, cell);
1803 		break;
1804 
1805 	default:
1806 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1807 			    __func__, r);
1808 		cell_error(pool, cell);
1809 		break;
1810 	}
1811 }
1812 
1813 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1814 {
1815 	int r;
1816 	struct pool *pool = tc->pool;
1817 	struct bio *bio = cell->holder;
1818 	dm_block_t block = get_bio_block(tc, bio);
1819 	struct dm_thin_lookup_result lookup_result;
1820 
1821 	if (tc->requeue_mode) {
1822 		cell_requeue(pool, cell);
1823 		return;
1824 	}
1825 
1826 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1827 	switch (r) {
1828 	case 0:
1829 		if (lookup_result.shared)
1830 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1831 		else {
1832 			inc_all_io_entry(pool, bio);
1833 			remap_and_issue(tc, bio, lookup_result.block);
1834 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1835 		}
1836 		break;
1837 
1838 	case -ENODATA:
1839 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1840 			inc_all_io_entry(pool, bio);
1841 			cell_defer_no_holder(tc, cell);
1842 
1843 			if (bio_end_sector(bio) <= tc->origin_size)
1844 				remap_to_origin_and_issue(tc, bio);
1845 
1846 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1847 				zero_fill_bio(bio);
1848 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1849 				remap_to_origin_and_issue(tc, bio);
1850 
1851 			} else {
1852 				zero_fill_bio(bio);
1853 				bio_endio(bio, 0);
1854 			}
1855 		} else
1856 			provision_block(tc, bio, block, cell);
1857 		break;
1858 
1859 	default:
1860 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1861 			    __func__, r);
1862 		cell_defer_no_holder(tc, cell);
1863 		bio_io_error(bio);
1864 		break;
1865 	}
1866 }
1867 
1868 static void process_bio(struct thin_c *tc, struct bio *bio)
1869 {
1870 	struct pool *pool = tc->pool;
1871 	dm_block_t block = get_bio_block(tc, bio);
1872 	struct dm_bio_prison_cell *cell;
1873 	struct dm_cell_key key;
1874 
1875 	/*
1876 	 * If cell is already occupied, then the block is already
1877 	 * being provisioned so we have nothing further to do here.
1878 	 */
1879 	build_virtual_key(tc->td, block, &key);
1880 	if (bio_detain(pool, &key, bio, &cell))
1881 		return;
1882 
1883 	process_cell(tc, cell);
1884 }
1885 
1886 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1887 				    struct dm_bio_prison_cell *cell)
1888 {
1889 	int r;
1890 	int rw = bio_data_dir(bio);
1891 	dm_block_t block = get_bio_block(tc, bio);
1892 	struct dm_thin_lookup_result lookup_result;
1893 
1894 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1895 	switch (r) {
1896 	case 0:
1897 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1898 			handle_unserviceable_bio(tc->pool, bio);
1899 			if (cell)
1900 				cell_defer_no_holder(tc, cell);
1901 		} else {
1902 			inc_all_io_entry(tc->pool, bio);
1903 			remap_and_issue(tc, bio, lookup_result.block);
1904 			if (cell)
1905 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1906 		}
1907 		break;
1908 
1909 	case -ENODATA:
1910 		if (cell)
1911 			cell_defer_no_holder(tc, cell);
1912 		if (rw != READ) {
1913 			handle_unserviceable_bio(tc->pool, bio);
1914 			break;
1915 		}
1916 
1917 		if (tc->origin_dev) {
1918 			inc_all_io_entry(tc->pool, bio);
1919 			remap_to_origin_and_issue(tc, bio);
1920 			break;
1921 		}
1922 
1923 		zero_fill_bio(bio);
1924 		bio_endio(bio, 0);
1925 		break;
1926 
1927 	default:
1928 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1929 			    __func__, r);
1930 		if (cell)
1931 			cell_defer_no_holder(tc, cell);
1932 		bio_io_error(bio);
1933 		break;
1934 	}
1935 }
1936 
1937 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1938 {
1939 	__process_bio_read_only(tc, bio, NULL);
1940 }
1941 
1942 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944 	__process_bio_read_only(tc, cell->holder, cell);
1945 }
1946 
1947 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1948 {
1949 	bio_endio(bio, 0);
1950 }
1951 
1952 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1953 {
1954 	bio_io_error(bio);
1955 }
1956 
1957 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1958 {
1959 	cell_success(tc->pool, cell);
1960 }
1961 
1962 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963 {
1964 	cell_error(tc->pool, cell);
1965 }
1966 
1967 /*
1968  * FIXME: should we also commit due to size of transaction, measured in
1969  * metadata blocks?
1970  */
1971 static int need_commit_due_to_time(struct pool *pool)
1972 {
1973 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1974 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1975 }
1976 
1977 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1978 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1979 
1980 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1981 {
1982 	struct rb_node **rbp, *parent;
1983 	struct dm_thin_endio_hook *pbd;
1984 	sector_t bi_sector = bio->bi_iter.bi_sector;
1985 
1986 	rbp = &tc->sort_bio_list.rb_node;
1987 	parent = NULL;
1988 	while (*rbp) {
1989 		parent = *rbp;
1990 		pbd = thin_pbd(parent);
1991 
1992 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1993 			rbp = &(*rbp)->rb_left;
1994 		else
1995 			rbp = &(*rbp)->rb_right;
1996 	}
1997 
1998 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1999 	rb_link_node(&pbd->rb_node, parent, rbp);
2000 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2001 }
2002 
2003 static void __extract_sorted_bios(struct thin_c *tc)
2004 {
2005 	struct rb_node *node;
2006 	struct dm_thin_endio_hook *pbd;
2007 	struct bio *bio;
2008 
2009 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2010 		pbd = thin_pbd(node);
2011 		bio = thin_bio(pbd);
2012 
2013 		bio_list_add(&tc->deferred_bio_list, bio);
2014 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2015 	}
2016 
2017 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2018 }
2019 
2020 static void __sort_thin_deferred_bios(struct thin_c *tc)
2021 {
2022 	struct bio *bio;
2023 	struct bio_list bios;
2024 
2025 	bio_list_init(&bios);
2026 	bio_list_merge(&bios, &tc->deferred_bio_list);
2027 	bio_list_init(&tc->deferred_bio_list);
2028 
2029 	/* Sort deferred_bio_list using rb-tree */
2030 	while ((bio = bio_list_pop(&bios)))
2031 		__thin_bio_rb_add(tc, bio);
2032 
2033 	/*
2034 	 * Transfer the sorted bios in sort_bio_list back to
2035 	 * deferred_bio_list to allow lockless submission of
2036 	 * all bios.
2037 	 */
2038 	__extract_sorted_bios(tc);
2039 }
2040 
2041 static void process_thin_deferred_bios(struct thin_c *tc)
2042 {
2043 	struct pool *pool = tc->pool;
2044 	unsigned long flags;
2045 	struct bio *bio;
2046 	struct bio_list bios;
2047 	struct blk_plug plug;
2048 	unsigned count = 0;
2049 
2050 	if (tc->requeue_mode) {
2051 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2052 		return;
2053 	}
2054 
2055 	bio_list_init(&bios);
2056 
2057 	spin_lock_irqsave(&tc->lock, flags);
2058 
2059 	if (bio_list_empty(&tc->deferred_bio_list)) {
2060 		spin_unlock_irqrestore(&tc->lock, flags);
2061 		return;
2062 	}
2063 
2064 	__sort_thin_deferred_bios(tc);
2065 
2066 	bio_list_merge(&bios, &tc->deferred_bio_list);
2067 	bio_list_init(&tc->deferred_bio_list);
2068 
2069 	spin_unlock_irqrestore(&tc->lock, flags);
2070 
2071 	blk_start_plug(&plug);
2072 	while ((bio = bio_list_pop(&bios))) {
2073 		/*
2074 		 * If we've got no free new_mapping structs, and processing
2075 		 * this bio might require one, we pause until there are some
2076 		 * prepared mappings to process.
2077 		 */
2078 		if (ensure_next_mapping(pool)) {
2079 			spin_lock_irqsave(&tc->lock, flags);
2080 			bio_list_add(&tc->deferred_bio_list, bio);
2081 			bio_list_merge(&tc->deferred_bio_list, &bios);
2082 			spin_unlock_irqrestore(&tc->lock, flags);
2083 			break;
2084 		}
2085 
2086 		if (bio->bi_rw & REQ_DISCARD)
2087 			pool->process_discard(tc, bio);
2088 		else
2089 			pool->process_bio(tc, bio);
2090 
2091 		if ((count++ & 127) == 0) {
2092 			throttle_work_update(&pool->throttle);
2093 			dm_pool_issue_prefetches(pool->pmd);
2094 		}
2095 	}
2096 	blk_finish_plug(&plug);
2097 }
2098 
2099 static int cmp_cells(const void *lhs, const void *rhs)
2100 {
2101 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2102 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2103 
2104 	BUG_ON(!lhs_cell->holder);
2105 	BUG_ON(!rhs_cell->holder);
2106 
2107 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2108 		return -1;
2109 
2110 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2111 		return 1;
2112 
2113 	return 0;
2114 }
2115 
2116 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2117 {
2118 	unsigned count = 0;
2119 	struct dm_bio_prison_cell *cell, *tmp;
2120 
2121 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2122 		if (count >= CELL_SORT_ARRAY_SIZE)
2123 			break;
2124 
2125 		pool->cell_sort_array[count++] = cell;
2126 		list_del(&cell->user_list);
2127 	}
2128 
2129 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2130 
2131 	return count;
2132 }
2133 
2134 static void process_thin_deferred_cells(struct thin_c *tc)
2135 {
2136 	struct pool *pool = tc->pool;
2137 	unsigned long flags;
2138 	struct list_head cells;
2139 	struct dm_bio_prison_cell *cell;
2140 	unsigned i, j, count;
2141 
2142 	INIT_LIST_HEAD(&cells);
2143 
2144 	spin_lock_irqsave(&tc->lock, flags);
2145 	list_splice_init(&tc->deferred_cells, &cells);
2146 	spin_unlock_irqrestore(&tc->lock, flags);
2147 
2148 	if (list_empty(&cells))
2149 		return;
2150 
2151 	do {
2152 		count = sort_cells(tc->pool, &cells);
2153 
2154 		for (i = 0; i < count; i++) {
2155 			cell = pool->cell_sort_array[i];
2156 			BUG_ON(!cell->holder);
2157 
2158 			/*
2159 			 * If we've got no free new_mapping structs, and processing
2160 			 * this bio might require one, we pause until there are some
2161 			 * prepared mappings to process.
2162 			 */
2163 			if (ensure_next_mapping(pool)) {
2164 				for (j = i; j < count; j++)
2165 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2166 
2167 				spin_lock_irqsave(&tc->lock, flags);
2168 				list_splice(&cells, &tc->deferred_cells);
2169 				spin_unlock_irqrestore(&tc->lock, flags);
2170 				return;
2171 			}
2172 
2173 			if (cell->holder->bi_rw & REQ_DISCARD)
2174 				pool->process_discard_cell(tc, cell);
2175 			else
2176 				pool->process_cell(tc, cell);
2177 		}
2178 	} while (!list_empty(&cells));
2179 }
2180 
2181 static void thin_get(struct thin_c *tc);
2182 static void thin_put(struct thin_c *tc);
2183 
2184 /*
2185  * We can't hold rcu_read_lock() around code that can block.  So we
2186  * find a thin with the rcu lock held; bump a refcount; then drop
2187  * the lock.
2188  */
2189 static struct thin_c *get_first_thin(struct pool *pool)
2190 {
2191 	struct thin_c *tc = NULL;
2192 
2193 	rcu_read_lock();
2194 	if (!list_empty(&pool->active_thins)) {
2195 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2196 		thin_get(tc);
2197 	}
2198 	rcu_read_unlock();
2199 
2200 	return tc;
2201 }
2202 
2203 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2204 {
2205 	struct thin_c *old_tc = tc;
2206 
2207 	rcu_read_lock();
2208 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2209 		thin_get(tc);
2210 		thin_put(old_tc);
2211 		rcu_read_unlock();
2212 		return tc;
2213 	}
2214 	thin_put(old_tc);
2215 	rcu_read_unlock();
2216 
2217 	return NULL;
2218 }
2219 
2220 static void process_deferred_bios(struct pool *pool)
2221 {
2222 	unsigned long flags;
2223 	struct bio *bio;
2224 	struct bio_list bios;
2225 	struct thin_c *tc;
2226 
2227 	tc = get_first_thin(pool);
2228 	while (tc) {
2229 		process_thin_deferred_cells(tc);
2230 		process_thin_deferred_bios(tc);
2231 		tc = get_next_thin(pool, tc);
2232 	}
2233 
2234 	/*
2235 	 * If there are any deferred flush bios, we must commit
2236 	 * the metadata before issuing them.
2237 	 */
2238 	bio_list_init(&bios);
2239 	spin_lock_irqsave(&pool->lock, flags);
2240 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2241 	bio_list_init(&pool->deferred_flush_bios);
2242 	spin_unlock_irqrestore(&pool->lock, flags);
2243 
2244 	if (bio_list_empty(&bios) &&
2245 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2246 		return;
2247 
2248 	if (commit(pool)) {
2249 		while ((bio = bio_list_pop(&bios)))
2250 			bio_io_error(bio);
2251 		return;
2252 	}
2253 	pool->last_commit_jiffies = jiffies;
2254 
2255 	while ((bio = bio_list_pop(&bios)))
2256 		generic_make_request(bio);
2257 }
2258 
2259 static void do_worker(struct work_struct *ws)
2260 {
2261 	struct pool *pool = container_of(ws, struct pool, worker);
2262 
2263 	throttle_work_start(&pool->throttle);
2264 	dm_pool_issue_prefetches(pool->pmd);
2265 	throttle_work_update(&pool->throttle);
2266 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2267 	throttle_work_update(&pool->throttle);
2268 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2269 	throttle_work_update(&pool->throttle);
2270 	process_deferred_bios(pool);
2271 	throttle_work_complete(&pool->throttle);
2272 }
2273 
2274 /*
2275  * We want to commit periodically so that not too much
2276  * unwritten data builds up.
2277  */
2278 static void do_waker(struct work_struct *ws)
2279 {
2280 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2281 	wake_worker(pool);
2282 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2283 }
2284 
2285 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2286 
2287 /*
2288  * We're holding onto IO to allow userland time to react.  After the
2289  * timeout either the pool will have been resized (and thus back in
2290  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2291  */
2292 static void do_no_space_timeout(struct work_struct *ws)
2293 {
2294 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2295 					 no_space_timeout);
2296 
2297 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2298 		pool->pf.error_if_no_space = true;
2299 		notify_of_pool_mode_change_to_oods(pool);
2300 		error_retry_list(pool);
2301 	}
2302 }
2303 
2304 /*----------------------------------------------------------------*/
2305 
2306 struct pool_work {
2307 	struct work_struct worker;
2308 	struct completion complete;
2309 };
2310 
2311 static struct pool_work *to_pool_work(struct work_struct *ws)
2312 {
2313 	return container_of(ws, struct pool_work, worker);
2314 }
2315 
2316 static void pool_work_complete(struct pool_work *pw)
2317 {
2318 	complete(&pw->complete);
2319 }
2320 
2321 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2322 			   void (*fn)(struct work_struct *))
2323 {
2324 	INIT_WORK_ONSTACK(&pw->worker, fn);
2325 	init_completion(&pw->complete);
2326 	queue_work(pool->wq, &pw->worker);
2327 	wait_for_completion(&pw->complete);
2328 }
2329 
2330 /*----------------------------------------------------------------*/
2331 
2332 struct noflush_work {
2333 	struct pool_work pw;
2334 	struct thin_c *tc;
2335 };
2336 
2337 static struct noflush_work *to_noflush(struct work_struct *ws)
2338 {
2339 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2340 }
2341 
2342 static void do_noflush_start(struct work_struct *ws)
2343 {
2344 	struct noflush_work *w = to_noflush(ws);
2345 	w->tc->requeue_mode = true;
2346 	requeue_io(w->tc);
2347 	pool_work_complete(&w->pw);
2348 }
2349 
2350 static void do_noflush_stop(struct work_struct *ws)
2351 {
2352 	struct noflush_work *w = to_noflush(ws);
2353 	w->tc->requeue_mode = false;
2354 	pool_work_complete(&w->pw);
2355 }
2356 
2357 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2358 {
2359 	struct noflush_work w;
2360 
2361 	w.tc = tc;
2362 	pool_work_wait(&w.pw, tc->pool, fn);
2363 }
2364 
2365 /*----------------------------------------------------------------*/
2366 
2367 static enum pool_mode get_pool_mode(struct pool *pool)
2368 {
2369 	return pool->pf.mode;
2370 }
2371 
2372 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2373 {
2374 	dm_table_event(pool->ti->table);
2375 	DMINFO("%s: switching pool to %s mode",
2376 	       dm_device_name(pool->pool_md), new_mode);
2377 }
2378 
2379 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2380 {
2381 	if (!pool->pf.error_if_no_space)
2382 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2383 	else
2384 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2385 }
2386 
2387 static bool passdown_enabled(struct pool_c *pt)
2388 {
2389 	return pt->adjusted_pf.discard_passdown;
2390 }
2391 
2392 static void set_discard_callbacks(struct pool *pool)
2393 {
2394 	struct pool_c *pt = pool->ti->private;
2395 
2396 	if (passdown_enabled(pt)) {
2397 		pool->process_discard_cell = process_discard_cell_passdown;
2398 		pool->process_prepared_discard = process_prepared_discard_passdown;
2399 	} else {
2400 		pool->process_discard_cell = process_discard_cell_no_passdown;
2401 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2402 	}
2403 }
2404 
2405 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2406 {
2407 	struct pool_c *pt = pool->ti->private;
2408 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2409 	enum pool_mode old_mode = get_pool_mode(pool);
2410 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2411 
2412 	/*
2413 	 * Never allow the pool to transition to PM_WRITE mode if user
2414 	 * intervention is required to verify metadata and data consistency.
2415 	 */
2416 	if (new_mode == PM_WRITE && needs_check) {
2417 		DMERR("%s: unable to switch pool to write mode until repaired.",
2418 		      dm_device_name(pool->pool_md));
2419 		if (old_mode != new_mode)
2420 			new_mode = old_mode;
2421 		else
2422 			new_mode = PM_READ_ONLY;
2423 	}
2424 	/*
2425 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2426 	 * not going to recover without a thin_repair.	So we never let the
2427 	 * pool move out of the old mode.
2428 	 */
2429 	if (old_mode == PM_FAIL)
2430 		new_mode = old_mode;
2431 
2432 	switch (new_mode) {
2433 	case PM_FAIL:
2434 		if (old_mode != new_mode)
2435 			notify_of_pool_mode_change(pool, "failure");
2436 		dm_pool_metadata_read_only(pool->pmd);
2437 		pool->process_bio = process_bio_fail;
2438 		pool->process_discard = process_bio_fail;
2439 		pool->process_cell = process_cell_fail;
2440 		pool->process_discard_cell = process_cell_fail;
2441 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2442 		pool->process_prepared_discard = process_prepared_discard_fail;
2443 
2444 		error_retry_list(pool);
2445 		break;
2446 
2447 	case PM_READ_ONLY:
2448 		if (old_mode != new_mode)
2449 			notify_of_pool_mode_change(pool, "read-only");
2450 		dm_pool_metadata_read_only(pool->pmd);
2451 		pool->process_bio = process_bio_read_only;
2452 		pool->process_discard = process_bio_success;
2453 		pool->process_cell = process_cell_read_only;
2454 		pool->process_discard_cell = process_cell_success;
2455 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2456 		pool->process_prepared_discard = process_prepared_discard_success;
2457 
2458 		error_retry_list(pool);
2459 		break;
2460 
2461 	case PM_OUT_OF_DATA_SPACE:
2462 		/*
2463 		 * Ideally we'd never hit this state; the low water mark
2464 		 * would trigger userland to extend the pool before we
2465 		 * completely run out of data space.  However, many small
2466 		 * IOs to unprovisioned space can consume data space at an
2467 		 * alarming rate.  Adjust your low water mark if you're
2468 		 * frequently seeing this mode.
2469 		 */
2470 		if (old_mode != new_mode)
2471 			notify_of_pool_mode_change_to_oods(pool);
2472 		pool->process_bio = process_bio_read_only;
2473 		pool->process_discard = process_discard_bio;
2474 		pool->process_cell = process_cell_read_only;
2475 		pool->process_prepared_mapping = process_prepared_mapping;
2476 		set_discard_callbacks(pool);
2477 
2478 		if (!pool->pf.error_if_no_space && no_space_timeout)
2479 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2480 		break;
2481 
2482 	case PM_WRITE:
2483 		if (old_mode != new_mode)
2484 			notify_of_pool_mode_change(pool, "write");
2485 		dm_pool_metadata_read_write(pool->pmd);
2486 		pool->process_bio = process_bio;
2487 		pool->process_discard = process_discard_bio;
2488 		pool->process_cell = process_cell;
2489 		pool->process_prepared_mapping = process_prepared_mapping;
2490 		set_discard_callbacks(pool);
2491 		break;
2492 	}
2493 
2494 	pool->pf.mode = new_mode;
2495 	/*
2496 	 * The pool mode may have changed, sync it so bind_control_target()
2497 	 * doesn't cause an unexpected mode transition on resume.
2498 	 */
2499 	pt->adjusted_pf.mode = new_mode;
2500 }
2501 
2502 static void abort_transaction(struct pool *pool)
2503 {
2504 	const char *dev_name = dm_device_name(pool->pool_md);
2505 
2506 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2507 	if (dm_pool_abort_metadata(pool->pmd)) {
2508 		DMERR("%s: failed to abort metadata transaction", dev_name);
2509 		set_pool_mode(pool, PM_FAIL);
2510 	}
2511 
2512 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2513 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2514 		set_pool_mode(pool, PM_FAIL);
2515 	}
2516 }
2517 
2518 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2519 {
2520 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2521 		    dm_device_name(pool->pool_md), op, r);
2522 
2523 	abort_transaction(pool);
2524 	set_pool_mode(pool, PM_READ_ONLY);
2525 }
2526 
2527 /*----------------------------------------------------------------*/
2528 
2529 /*
2530  * Mapping functions.
2531  */
2532 
2533 /*
2534  * Called only while mapping a thin bio to hand it over to the workqueue.
2535  */
2536 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2537 {
2538 	unsigned long flags;
2539 	struct pool *pool = tc->pool;
2540 
2541 	spin_lock_irqsave(&tc->lock, flags);
2542 	bio_list_add(&tc->deferred_bio_list, bio);
2543 	spin_unlock_irqrestore(&tc->lock, flags);
2544 
2545 	wake_worker(pool);
2546 }
2547 
2548 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2549 {
2550 	struct pool *pool = tc->pool;
2551 
2552 	throttle_lock(&pool->throttle);
2553 	thin_defer_bio(tc, bio);
2554 	throttle_unlock(&pool->throttle);
2555 }
2556 
2557 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2558 {
2559 	unsigned long flags;
2560 	struct pool *pool = tc->pool;
2561 
2562 	throttle_lock(&pool->throttle);
2563 	spin_lock_irqsave(&tc->lock, flags);
2564 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2565 	spin_unlock_irqrestore(&tc->lock, flags);
2566 	throttle_unlock(&pool->throttle);
2567 
2568 	wake_worker(pool);
2569 }
2570 
2571 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2572 {
2573 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2574 
2575 	h->tc = tc;
2576 	h->shared_read_entry = NULL;
2577 	h->all_io_entry = NULL;
2578 	h->overwrite_mapping = NULL;
2579 	h->cell = NULL;
2580 }
2581 
2582 /*
2583  * Non-blocking function called from the thin target's map function.
2584  */
2585 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2586 {
2587 	int r;
2588 	struct thin_c *tc = ti->private;
2589 	dm_block_t block = get_bio_block(tc, bio);
2590 	struct dm_thin_device *td = tc->td;
2591 	struct dm_thin_lookup_result result;
2592 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2593 	struct dm_cell_key key;
2594 
2595 	thin_hook_bio(tc, bio);
2596 
2597 	if (tc->requeue_mode) {
2598 		bio_endio(bio, DM_ENDIO_REQUEUE);
2599 		return DM_MAPIO_SUBMITTED;
2600 	}
2601 
2602 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2603 		bio_io_error(bio);
2604 		return DM_MAPIO_SUBMITTED;
2605 	}
2606 
2607 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2608 		thin_defer_bio_with_throttle(tc, bio);
2609 		return DM_MAPIO_SUBMITTED;
2610 	}
2611 
2612 	/*
2613 	 * We must hold the virtual cell before doing the lookup, otherwise
2614 	 * there's a race with discard.
2615 	 */
2616 	build_virtual_key(tc->td, block, &key);
2617 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2618 		return DM_MAPIO_SUBMITTED;
2619 
2620 	r = dm_thin_find_block(td, block, 0, &result);
2621 
2622 	/*
2623 	 * Note that we defer readahead too.
2624 	 */
2625 	switch (r) {
2626 	case 0:
2627 		if (unlikely(result.shared)) {
2628 			/*
2629 			 * We have a race condition here between the
2630 			 * result.shared value returned by the lookup and
2631 			 * snapshot creation, which may cause new
2632 			 * sharing.
2633 			 *
2634 			 * To avoid this always quiesce the origin before
2635 			 * taking the snap.  You want to do this anyway to
2636 			 * ensure a consistent application view
2637 			 * (i.e. lockfs).
2638 			 *
2639 			 * More distant ancestors are irrelevant. The
2640 			 * shared flag will be set in their case.
2641 			 */
2642 			thin_defer_cell(tc, virt_cell);
2643 			return DM_MAPIO_SUBMITTED;
2644 		}
2645 
2646 		build_data_key(tc->td, result.block, &key);
2647 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2648 			cell_defer_no_holder(tc, virt_cell);
2649 			return DM_MAPIO_SUBMITTED;
2650 		}
2651 
2652 		inc_all_io_entry(tc->pool, bio);
2653 		cell_defer_no_holder(tc, data_cell);
2654 		cell_defer_no_holder(tc, virt_cell);
2655 
2656 		remap(tc, bio, result.block);
2657 		return DM_MAPIO_REMAPPED;
2658 
2659 	case -ENODATA:
2660 	case -EWOULDBLOCK:
2661 		thin_defer_cell(tc, virt_cell);
2662 		return DM_MAPIO_SUBMITTED;
2663 
2664 	default:
2665 		/*
2666 		 * Must always call bio_io_error on failure.
2667 		 * dm_thin_find_block can fail with -EINVAL if the
2668 		 * pool is switched to fail-io mode.
2669 		 */
2670 		bio_io_error(bio);
2671 		cell_defer_no_holder(tc, virt_cell);
2672 		return DM_MAPIO_SUBMITTED;
2673 	}
2674 }
2675 
2676 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2677 {
2678 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2679 	struct request_queue *q;
2680 
2681 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2682 		return 1;
2683 
2684 	q = bdev_get_queue(pt->data_dev->bdev);
2685 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2686 }
2687 
2688 static void requeue_bios(struct pool *pool)
2689 {
2690 	unsigned long flags;
2691 	struct thin_c *tc;
2692 
2693 	rcu_read_lock();
2694 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2695 		spin_lock_irqsave(&tc->lock, flags);
2696 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2697 		bio_list_init(&tc->retry_on_resume_list);
2698 		spin_unlock_irqrestore(&tc->lock, flags);
2699 	}
2700 	rcu_read_unlock();
2701 }
2702 
2703 /*----------------------------------------------------------------
2704  * Binding of control targets to a pool object
2705  *--------------------------------------------------------------*/
2706 static bool data_dev_supports_discard(struct pool_c *pt)
2707 {
2708 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2709 
2710 	return q && blk_queue_discard(q);
2711 }
2712 
2713 static bool is_factor(sector_t block_size, uint32_t n)
2714 {
2715 	return !sector_div(block_size, n);
2716 }
2717 
2718 /*
2719  * If discard_passdown was enabled verify that the data device
2720  * supports discards.  Disable discard_passdown if not.
2721  */
2722 static void disable_passdown_if_not_supported(struct pool_c *pt)
2723 {
2724 	struct pool *pool = pt->pool;
2725 	struct block_device *data_bdev = pt->data_dev->bdev;
2726 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2727 	const char *reason = NULL;
2728 	char buf[BDEVNAME_SIZE];
2729 
2730 	if (!pt->adjusted_pf.discard_passdown)
2731 		return;
2732 
2733 	if (!data_dev_supports_discard(pt))
2734 		reason = "discard unsupported";
2735 
2736 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2737 		reason = "max discard sectors smaller than a block";
2738 
2739 	if (reason) {
2740 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2741 		pt->adjusted_pf.discard_passdown = false;
2742 	}
2743 }
2744 
2745 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2746 {
2747 	struct pool_c *pt = ti->private;
2748 
2749 	/*
2750 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2751 	 */
2752 	enum pool_mode old_mode = get_pool_mode(pool);
2753 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2754 
2755 	/*
2756 	 * Don't change the pool's mode until set_pool_mode() below.
2757 	 * Otherwise the pool's process_* function pointers may
2758 	 * not match the desired pool mode.
2759 	 */
2760 	pt->adjusted_pf.mode = old_mode;
2761 
2762 	pool->ti = ti;
2763 	pool->pf = pt->adjusted_pf;
2764 	pool->low_water_blocks = pt->low_water_blocks;
2765 
2766 	set_pool_mode(pool, new_mode);
2767 
2768 	return 0;
2769 }
2770 
2771 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2772 {
2773 	if (pool->ti == ti)
2774 		pool->ti = NULL;
2775 }
2776 
2777 /*----------------------------------------------------------------
2778  * Pool creation
2779  *--------------------------------------------------------------*/
2780 /* Initialize pool features. */
2781 static void pool_features_init(struct pool_features *pf)
2782 {
2783 	pf->mode = PM_WRITE;
2784 	pf->zero_new_blocks = true;
2785 	pf->discard_enabled = true;
2786 	pf->discard_passdown = true;
2787 	pf->error_if_no_space = false;
2788 }
2789 
2790 static void __pool_destroy(struct pool *pool)
2791 {
2792 	__pool_table_remove(pool);
2793 
2794 	vfree(pool->cell_sort_array);
2795 	if (dm_pool_metadata_close(pool->pmd) < 0)
2796 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2797 
2798 	dm_bio_prison_destroy(pool->prison);
2799 	dm_kcopyd_client_destroy(pool->copier);
2800 
2801 	if (pool->wq)
2802 		destroy_workqueue(pool->wq);
2803 
2804 	if (pool->next_mapping)
2805 		mempool_free(pool->next_mapping, pool->mapping_pool);
2806 	mempool_destroy(pool->mapping_pool);
2807 	dm_deferred_set_destroy(pool->shared_read_ds);
2808 	dm_deferred_set_destroy(pool->all_io_ds);
2809 	kfree(pool);
2810 }
2811 
2812 static struct kmem_cache *_new_mapping_cache;
2813 
2814 static struct pool *pool_create(struct mapped_device *pool_md,
2815 				struct block_device *metadata_dev,
2816 				unsigned long block_size,
2817 				int read_only, char **error)
2818 {
2819 	int r;
2820 	void *err_p;
2821 	struct pool *pool;
2822 	struct dm_pool_metadata *pmd;
2823 	bool format_device = read_only ? false : true;
2824 
2825 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2826 	if (IS_ERR(pmd)) {
2827 		*error = "Error creating metadata object";
2828 		return (struct pool *)pmd;
2829 	}
2830 
2831 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2832 	if (!pool) {
2833 		*error = "Error allocating memory for pool";
2834 		err_p = ERR_PTR(-ENOMEM);
2835 		goto bad_pool;
2836 	}
2837 
2838 	pool->pmd = pmd;
2839 	pool->sectors_per_block = block_size;
2840 	if (block_size & (block_size - 1))
2841 		pool->sectors_per_block_shift = -1;
2842 	else
2843 		pool->sectors_per_block_shift = __ffs(block_size);
2844 	pool->low_water_blocks = 0;
2845 	pool_features_init(&pool->pf);
2846 	pool->prison = dm_bio_prison_create();
2847 	if (!pool->prison) {
2848 		*error = "Error creating pool's bio prison";
2849 		err_p = ERR_PTR(-ENOMEM);
2850 		goto bad_prison;
2851 	}
2852 
2853 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2854 	if (IS_ERR(pool->copier)) {
2855 		r = PTR_ERR(pool->copier);
2856 		*error = "Error creating pool's kcopyd client";
2857 		err_p = ERR_PTR(r);
2858 		goto bad_kcopyd_client;
2859 	}
2860 
2861 	/*
2862 	 * Create singlethreaded workqueue that will service all devices
2863 	 * that use this metadata.
2864 	 */
2865 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2866 	if (!pool->wq) {
2867 		*error = "Error creating pool's workqueue";
2868 		err_p = ERR_PTR(-ENOMEM);
2869 		goto bad_wq;
2870 	}
2871 
2872 	throttle_init(&pool->throttle);
2873 	INIT_WORK(&pool->worker, do_worker);
2874 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2875 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2876 	spin_lock_init(&pool->lock);
2877 	bio_list_init(&pool->deferred_flush_bios);
2878 	INIT_LIST_HEAD(&pool->prepared_mappings);
2879 	INIT_LIST_HEAD(&pool->prepared_discards);
2880 	INIT_LIST_HEAD(&pool->active_thins);
2881 	pool->low_water_triggered = false;
2882 	pool->suspended = true;
2883 
2884 	pool->shared_read_ds = dm_deferred_set_create();
2885 	if (!pool->shared_read_ds) {
2886 		*error = "Error creating pool's shared read deferred set";
2887 		err_p = ERR_PTR(-ENOMEM);
2888 		goto bad_shared_read_ds;
2889 	}
2890 
2891 	pool->all_io_ds = dm_deferred_set_create();
2892 	if (!pool->all_io_ds) {
2893 		*error = "Error creating pool's all io deferred set";
2894 		err_p = ERR_PTR(-ENOMEM);
2895 		goto bad_all_io_ds;
2896 	}
2897 
2898 	pool->next_mapping = NULL;
2899 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2900 						      _new_mapping_cache);
2901 	if (!pool->mapping_pool) {
2902 		*error = "Error creating pool's mapping mempool";
2903 		err_p = ERR_PTR(-ENOMEM);
2904 		goto bad_mapping_pool;
2905 	}
2906 
2907 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2908 	if (!pool->cell_sort_array) {
2909 		*error = "Error allocating cell sort array";
2910 		err_p = ERR_PTR(-ENOMEM);
2911 		goto bad_sort_array;
2912 	}
2913 
2914 	pool->ref_count = 1;
2915 	pool->last_commit_jiffies = jiffies;
2916 	pool->pool_md = pool_md;
2917 	pool->md_dev = metadata_dev;
2918 	__pool_table_insert(pool);
2919 
2920 	return pool;
2921 
2922 bad_sort_array:
2923 	mempool_destroy(pool->mapping_pool);
2924 bad_mapping_pool:
2925 	dm_deferred_set_destroy(pool->all_io_ds);
2926 bad_all_io_ds:
2927 	dm_deferred_set_destroy(pool->shared_read_ds);
2928 bad_shared_read_ds:
2929 	destroy_workqueue(pool->wq);
2930 bad_wq:
2931 	dm_kcopyd_client_destroy(pool->copier);
2932 bad_kcopyd_client:
2933 	dm_bio_prison_destroy(pool->prison);
2934 bad_prison:
2935 	kfree(pool);
2936 bad_pool:
2937 	if (dm_pool_metadata_close(pmd))
2938 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2939 
2940 	return err_p;
2941 }
2942 
2943 static void __pool_inc(struct pool *pool)
2944 {
2945 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2946 	pool->ref_count++;
2947 }
2948 
2949 static void __pool_dec(struct pool *pool)
2950 {
2951 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2952 	BUG_ON(!pool->ref_count);
2953 	if (!--pool->ref_count)
2954 		__pool_destroy(pool);
2955 }
2956 
2957 static struct pool *__pool_find(struct mapped_device *pool_md,
2958 				struct block_device *metadata_dev,
2959 				unsigned long block_size, int read_only,
2960 				char **error, int *created)
2961 {
2962 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2963 
2964 	if (pool) {
2965 		if (pool->pool_md != pool_md) {
2966 			*error = "metadata device already in use by a pool";
2967 			return ERR_PTR(-EBUSY);
2968 		}
2969 		__pool_inc(pool);
2970 
2971 	} else {
2972 		pool = __pool_table_lookup(pool_md);
2973 		if (pool) {
2974 			if (pool->md_dev != metadata_dev) {
2975 				*error = "different pool cannot replace a pool";
2976 				return ERR_PTR(-EINVAL);
2977 			}
2978 			__pool_inc(pool);
2979 
2980 		} else {
2981 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2982 			*created = 1;
2983 		}
2984 	}
2985 
2986 	return pool;
2987 }
2988 
2989 /*----------------------------------------------------------------
2990  * Pool target methods
2991  *--------------------------------------------------------------*/
2992 static void pool_dtr(struct dm_target *ti)
2993 {
2994 	struct pool_c *pt = ti->private;
2995 
2996 	mutex_lock(&dm_thin_pool_table.mutex);
2997 
2998 	unbind_control_target(pt->pool, ti);
2999 	__pool_dec(pt->pool);
3000 	dm_put_device(ti, pt->metadata_dev);
3001 	dm_put_device(ti, pt->data_dev);
3002 	kfree(pt);
3003 
3004 	mutex_unlock(&dm_thin_pool_table.mutex);
3005 }
3006 
3007 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3008 			       struct dm_target *ti)
3009 {
3010 	int r;
3011 	unsigned argc;
3012 	const char *arg_name;
3013 
3014 	static struct dm_arg _args[] = {
3015 		{0, 4, "Invalid number of pool feature arguments"},
3016 	};
3017 
3018 	/*
3019 	 * No feature arguments supplied.
3020 	 */
3021 	if (!as->argc)
3022 		return 0;
3023 
3024 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3025 	if (r)
3026 		return -EINVAL;
3027 
3028 	while (argc && !r) {
3029 		arg_name = dm_shift_arg(as);
3030 		argc--;
3031 
3032 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3033 			pf->zero_new_blocks = false;
3034 
3035 		else if (!strcasecmp(arg_name, "ignore_discard"))
3036 			pf->discard_enabled = false;
3037 
3038 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3039 			pf->discard_passdown = false;
3040 
3041 		else if (!strcasecmp(arg_name, "read_only"))
3042 			pf->mode = PM_READ_ONLY;
3043 
3044 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3045 			pf->error_if_no_space = true;
3046 
3047 		else {
3048 			ti->error = "Unrecognised pool feature requested";
3049 			r = -EINVAL;
3050 			break;
3051 		}
3052 	}
3053 
3054 	return r;
3055 }
3056 
3057 static void metadata_low_callback(void *context)
3058 {
3059 	struct pool *pool = context;
3060 
3061 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3062 	       dm_device_name(pool->pool_md));
3063 
3064 	dm_table_event(pool->ti->table);
3065 }
3066 
3067 static sector_t get_dev_size(struct block_device *bdev)
3068 {
3069 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3070 }
3071 
3072 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3073 {
3074 	sector_t metadata_dev_size = get_dev_size(bdev);
3075 	char buffer[BDEVNAME_SIZE];
3076 
3077 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3078 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3079 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3080 }
3081 
3082 static sector_t get_metadata_dev_size(struct block_device *bdev)
3083 {
3084 	sector_t metadata_dev_size = get_dev_size(bdev);
3085 
3086 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3087 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3088 
3089 	return metadata_dev_size;
3090 }
3091 
3092 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3093 {
3094 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3095 
3096 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3097 
3098 	return metadata_dev_size;
3099 }
3100 
3101 /*
3102  * When a metadata threshold is crossed a dm event is triggered, and
3103  * userland should respond by growing the metadata device.  We could let
3104  * userland set the threshold, like we do with the data threshold, but I'm
3105  * not sure they know enough to do this well.
3106  */
3107 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3108 {
3109 	/*
3110 	 * 4M is ample for all ops with the possible exception of thin
3111 	 * device deletion which is harmless if it fails (just retry the
3112 	 * delete after you've grown the device).
3113 	 */
3114 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3115 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3116 }
3117 
3118 /*
3119  * thin-pool <metadata dev> <data dev>
3120  *	     <data block size (sectors)>
3121  *	     <low water mark (blocks)>
3122  *	     [<#feature args> [<arg>]*]
3123  *
3124  * Optional feature arguments are:
3125  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3126  *	     ignore_discard: disable discard
3127  *	     no_discard_passdown: don't pass discards down to the data device
3128  *	     read_only: Don't allow any changes to be made to the pool metadata.
3129  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3130  */
3131 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3132 {
3133 	int r, pool_created = 0;
3134 	struct pool_c *pt;
3135 	struct pool *pool;
3136 	struct pool_features pf;
3137 	struct dm_arg_set as;
3138 	struct dm_dev *data_dev;
3139 	unsigned long block_size;
3140 	dm_block_t low_water_blocks;
3141 	struct dm_dev *metadata_dev;
3142 	fmode_t metadata_mode;
3143 
3144 	/*
3145 	 * FIXME Remove validation from scope of lock.
3146 	 */
3147 	mutex_lock(&dm_thin_pool_table.mutex);
3148 
3149 	if (argc < 4) {
3150 		ti->error = "Invalid argument count";
3151 		r = -EINVAL;
3152 		goto out_unlock;
3153 	}
3154 
3155 	as.argc = argc;
3156 	as.argv = argv;
3157 
3158 	/*
3159 	 * Set default pool features.
3160 	 */
3161 	pool_features_init(&pf);
3162 
3163 	dm_consume_args(&as, 4);
3164 	r = parse_pool_features(&as, &pf, ti);
3165 	if (r)
3166 		goto out_unlock;
3167 
3168 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3169 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3170 	if (r) {
3171 		ti->error = "Error opening metadata block device";
3172 		goto out_unlock;
3173 	}
3174 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3175 
3176 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3177 	if (r) {
3178 		ti->error = "Error getting data device";
3179 		goto out_metadata;
3180 	}
3181 
3182 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3183 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3184 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3185 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3186 		ti->error = "Invalid block size";
3187 		r = -EINVAL;
3188 		goto out;
3189 	}
3190 
3191 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3192 		ti->error = "Invalid low water mark";
3193 		r = -EINVAL;
3194 		goto out;
3195 	}
3196 
3197 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3198 	if (!pt) {
3199 		r = -ENOMEM;
3200 		goto out;
3201 	}
3202 
3203 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3204 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3205 	if (IS_ERR(pool)) {
3206 		r = PTR_ERR(pool);
3207 		goto out_free_pt;
3208 	}
3209 
3210 	/*
3211 	 * 'pool_created' reflects whether this is the first table load.
3212 	 * Top level discard support is not allowed to be changed after
3213 	 * initial load.  This would require a pool reload to trigger thin
3214 	 * device changes.
3215 	 */
3216 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3217 		ti->error = "Discard support cannot be disabled once enabled";
3218 		r = -EINVAL;
3219 		goto out_flags_changed;
3220 	}
3221 
3222 	pt->pool = pool;
3223 	pt->ti = ti;
3224 	pt->metadata_dev = metadata_dev;
3225 	pt->data_dev = data_dev;
3226 	pt->low_water_blocks = low_water_blocks;
3227 	pt->adjusted_pf = pt->requested_pf = pf;
3228 	ti->num_flush_bios = 1;
3229 
3230 	/*
3231 	 * Only need to enable discards if the pool should pass
3232 	 * them down to the data device.  The thin device's discard
3233 	 * processing will cause mappings to be removed from the btree.
3234 	 */
3235 	ti->discard_zeroes_data_unsupported = true;
3236 	if (pf.discard_enabled && pf.discard_passdown) {
3237 		ti->num_discard_bios = 1;
3238 
3239 		/*
3240 		 * Setting 'discards_supported' circumvents the normal
3241 		 * stacking of discard limits (this keeps the pool and
3242 		 * thin devices' discard limits consistent).
3243 		 */
3244 		ti->discards_supported = true;
3245 	}
3246 	ti->private = pt;
3247 
3248 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3249 						calc_metadata_threshold(pt),
3250 						metadata_low_callback,
3251 						pool);
3252 	if (r)
3253 		goto out_free_pt;
3254 
3255 	pt->callbacks.congested_fn = pool_is_congested;
3256 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3257 
3258 	mutex_unlock(&dm_thin_pool_table.mutex);
3259 
3260 	return 0;
3261 
3262 out_flags_changed:
3263 	__pool_dec(pool);
3264 out_free_pt:
3265 	kfree(pt);
3266 out:
3267 	dm_put_device(ti, data_dev);
3268 out_metadata:
3269 	dm_put_device(ti, metadata_dev);
3270 out_unlock:
3271 	mutex_unlock(&dm_thin_pool_table.mutex);
3272 
3273 	return r;
3274 }
3275 
3276 static int pool_map(struct dm_target *ti, struct bio *bio)
3277 {
3278 	int r;
3279 	struct pool_c *pt = ti->private;
3280 	struct pool *pool = pt->pool;
3281 	unsigned long flags;
3282 
3283 	/*
3284 	 * As this is a singleton target, ti->begin is always zero.
3285 	 */
3286 	spin_lock_irqsave(&pool->lock, flags);
3287 	bio->bi_bdev = pt->data_dev->bdev;
3288 	r = DM_MAPIO_REMAPPED;
3289 	spin_unlock_irqrestore(&pool->lock, flags);
3290 
3291 	return r;
3292 }
3293 
3294 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3295 {
3296 	int r;
3297 	struct pool_c *pt = ti->private;
3298 	struct pool *pool = pt->pool;
3299 	sector_t data_size = ti->len;
3300 	dm_block_t sb_data_size;
3301 
3302 	*need_commit = false;
3303 
3304 	(void) sector_div(data_size, pool->sectors_per_block);
3305 
3306 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3307 	if (r) {
3308 		DMERR("%s: failed to retrieve data device size",
3309 		      dm_device_name(pool->pool_md));
3310 		return r;
3311 	}
3312 
3313 	if (data_size < sb_data_size) {
3314 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3315 		      dm_device_name(pool->pool_md),
3316 		      (unsigned long long)data_size, sb_data_size);
3317 		return -EINVAL;
3318 
3319 	} else if (data_size > sb_data_size) {
3320 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3321 			DMERR("%s: unable to grow the data device until repaired.",
3322 			      dm_device_name(pool->pool_md));
3323 			return 0;
3324 		}
3325 
3326 		if (sb_data_size)
3327 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3328 			       dm_device_name(pool->pool_md),
3329 			       sb_data_size, (unsigned long long)data_size);
3330 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3331 		if (r) {
3332 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3333 			return r;
3334 		}
3335 
3336 		*need_commit = true;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3343 {
3344 	int r;
3345 	struct pool_c *pt = ti->private;
3346 	struct pool *pool = pt->pool;
3347 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3348 
3349 	*need_commit = false;
3350 
3351 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3352 
3353 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3354 	if (r) {
3355 		DMERR("%s: failed to retrieve metadata device size",
3356 		      dm_device_name(pool->pool_md));
3357 		return r;
3358 	}
3359 
3360 	if (metadata_dev_size < sb_metadata_dev_size) {
3361 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3362 		      dm_device_name(pool->pool_md),
3363 		      metadata_dev_size, sb_metadata_dev_size);
3364 		return -EINVAL;
3365 
3366 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3367 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3368 			DMERR("%s: unable to grow the metadata device until repaired.",
3369 			      dm_device_name(pool->pool_md));
3370 			return 0;
3371 		}
3372 
3373 		warn_if_metadata_device_too_big(pool->md_dev);
3374 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3375 		       dm_device_name(pool->pool_md),
3376 		       sb_metadata_dev_size, metadata_dev_size);
3377 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3378 		if (r) {
3379 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3380 			return r;
3381 		}
3382 
3383 		*need_commit = true;
3384 	}
3385 
3386 	return 0;
3387 }
3388 
3389 /*
3390  * Retrieves the number of blocks of the data device from
3391  * the superblock and compares it to the actual device size,
3392  * thus resizing the data device in case it has grown.
3393  *
3394  * This both copes with opening preallocated data devices in the ctr
3395  * being followed by a resume
3396  * -and-
3397  * calling the resume method individually after userspace has
3398  * grown the data device in reaction to a table event.
3399  */
3400 static int pool_preresume(struct dm_target *ti)
3401 {
3402 	int r;
3403 	bool need_commit1, need_commit2;
3404 	struct pool_c *pt = ti->private;
3405 	struct pool *pool = pt->pool;
3406 
3407 	/*
3408 	 * Take control of the pool object.
3409 	 */
3410 	r = bind_control_target(pool, ti);
3411 	if (r)
3412 		return r;
3413 
3414 	r = maybe_resize_data_dev(ti, &need_commit1);
3415 	if (r)
3416 		return r;
3417 
3418 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3419 	if (r)
3420 		return r;
3421 
3422 	if (need_commit1 || need_commit2)
3423 		(void) commit(pool);
3424 
3425 	return 0;
3426 }
3427 
3428 static void pool_suspend_active_thins(struct pool *pool)
3429 {
3430 	struct thin_c *tc;
3431 
3432 	/* Suspend all active thin devices */
3433 	tc = get_first_thin(pool);
3434 	while (tc) {
3435 		dm_internal_suspend_noflush(tc->thin_md);
3436 		tc = get_next_thin(pool, tc);
3437 	}
3438 }
3439 
3440 static void pool_resume_active_thins(struct pool *pool)
3441 {
3442 	struct thin_c *tc;
3443 
3444 	/* Resume all active thin devices */
3445 	tc = get_first_thin(pool);
3446 	while (tc) {
3447 		dm_internal_resume(tc->thin_md);
3448 		tc = get_next_thin(pool, tc);
3449 	}
3450 }
3451 
3452 static void pool_resume(struct dm_target *ti)
3453 {
3454 	struct pool_c *pt = ti->private;
3455 	struct pool *pool = pt->pool;
3456 	unsigned long flags;
3457 
3458 	/*
3459 	 * Must requeue active_thins' bios and then resume
3460 	 * active_thins _before_ clearing 'suspend' flag.
3461 	 */
3462 	requeue_bios(pool);
3463 	pool_resume_active_thins(pool);
3464 
3465 	spin_lock_irqsave(&pool->lock, flags);
3466 	pool->low_water_triggered = false;
3467 	pool->suspended = false;
3468 	spin_unlock_irqrestore(&pool->lock, flags);
3469 
3470 	do_waker(&pool->waker.work);
3471 }
3472 
3473 static void pool_presuspend(struct dm_target *ti)
3474 {
3475 	struct pool_c *pt = ti->private;
3476 	struct pool *pool = pt->pool;
3477 	unsigned long flags;
3478 
3479 	spin_lock_irqsave(&pool->lock, flags);
3480 	pool->suspended = true;
3481 	spin_unlock_irqrestore(&pool->lock, flags);
3482 
3483 	pool_suspend_active_thins(pool);
3484 }
3485 
3486 static void pool_presuspend_undo(struct dm_target *ti)
3487 {
3488 	struct pool_c *pt = ti->private;
3489 	struct pool *pool = pt->pool;
3490 	unsigned long flags;
3491 
3492 	pool_resume_active_thins(pool);
3493 
3494 	spin_lock_irqsave(&pool->lock, flags);
3495 	pool->suspended = false;
3496 	spin_unlock_irqrestore(&pool->lock, flags);
3497 }
3498 
3499 static void pool_postsuspend(struct dm_target *ti)
3500 {
3501 	struct pool_c *pt = ti->private;
3502 	struct pool *pool = pt->pool;
3503 
3504 	cancel_delayed_work(&pool->waker);
3505 	cancel_delayed_work(&pool->no_space_timeout);
3506 	flush_workqueue(pool->wq);
3507 	(void) commit(pool);
3508 }
3509 
3510 static int check_arg_count(unsigned argc, unsigned args_required)
3511 {
3512 	if (argc != args_required) {
3513 		DMWARN("Message received with %u arguments instead of %u.",
3514 		       argc, args_required);
3515 		return -EINVAL;
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3522 {
3523 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3524 	    *dev_id <= MAX_DEV_ID)
3525 		return 0;
3526 
3527 	if (warning)
3528 		DMWARN("Message received with invalid device id: %s", arg);
3529 
3530 	return -EINVAL;
3531 }
3532 
3533 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3534 {
3535 	dm_thin_id dev_id;
3536 	int r;
3537 
3538 	r = check_arg_count(argc, 2);
3539 	if (r)
3540 		return r;
3541 
3542 	r = read_dev_id(argv[1], &dev_id, 1);
3543 	if (r)
3544 		return r;
3545 
3546 	r = dm_pool_create_thin(pool->pmd, dev_id);
3547 	if (r) {
3548 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3549 		       argv[1]);
3550 		return r;
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3557 {
3558 	dm_thin_id dev_id;
3559 	dm_thin_id origin_dev_id;
3560 	int r;
3561 
3562 	r = check_arg_count(argc, 3);
3563 	if (r)
3564 		return r;
3565 
3566 	r = read_dev_id(argv[1], &dev_id, 1);
3567 	if (r)
3568 		return r;
3569 
3570 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3571 	if (r)
3572 		return r;
3573 
3574 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3575 	if (r) {
3576 		DMWARN("Creation of new snapshot %s of device %s failed.",
3577 		       argv[1], argv[2]);
3578 		return r;
3579 	}
3580 
3581 	return 0;
3582 }
3583 
3584 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3585 {
3586 	dm_thin_id dev_id;
3587 	int r;
3588 
3589 	r = check_arg_count(argc, 2);
3590 	if (r)
3591 		return r;
3592 
3593 	r = read_dev_id(argv[1], &dev_id, 1);
3594 	if (r)
3595 		return r;
3596 
3597 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3598 	if (r)
3599 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3600 
3601 	return r;
3602 }
3603 
3604 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3605 {
3606 	dm_thin_id old_id, new_id;
3607 	int r;
3608 
3609 	r = check_arg_count(argc, 3);
3610 	if (r)
3611 		return r;
3612 
3613 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3614 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3615 		return -EINVAL;
3616 	}
3617 
3618 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3619 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3620 		return -EINVAL;
3621 	}
3622 
3623 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3624 	if (r) {
3625 		DMWARN("Failed to change transaction id from %s to %s.",
3626 		       argv[1], argv[2]);
3627 		return r;
3628 	}
3629 
3630 	return 0;
3631 }
3632 
3633 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3634 {
3635 	int r;
3636 
3637 	r = check_arg_count(argc, 1);
3638 	if (r)
3639 		return r;
3640 
3641 	(void) commit(pool);
3642 
3643 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3644 	if (r)
3645 		DMWARN("reserve_metadata_snap message failed.");
3646 
3647 	return r;
3648 }
3649 
3650 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3651 {
3652 	int r;
3653 
3654 	r = check_arg_count(argc, 1);
3655 	if (r)
3656 		return r;
3657 
3658 	r = dm_pool_release_metadata_snap(pool->pmd);
3659 	if (r)
3660 		DMWARN("release_metadata_snap message failed.");
3661 
3662 	return r;
3663 }
3664 
3665 /*
3666  * Messages supported:
3667  *   create_thin	<dev_id>
3668  *   create_snap	<dev_id> <origin_id>
3669  *   delete		<dev_id>
3670  *   set_transaction_id <current_trans_id> <new_trans_id>
3671  *   reserve_metadata_snap
3672  *   release_metadata_snap
3673  */
3674 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3675 {
3676 	int r = -EINVAL;
3677 	struct pool_c *pt = ti->private;
3678 	struct pool *pool = pt->pool;
3679 
3680 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3681 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3682 		      dm_device_name(pool->pool_md));
3683 		return -EOPNOTSUPP;
3684 	}
3685 
3686 	if (!strcasecmp(argv[0], "create_thin"))
3687 		r = process_create_thin_mesg(argc, argv, pool);
3688 
3689 	else if (!strcasecmp(argv[0], "create_snap"))
3690 		r = process_create_snap_mesg(argc, argv, pool);
3691 
3692 	else if (!strcasecmp(argv[0], "delete"))
3693 		r = process_delete_mesg(argc, argv, pool);
3694 
3695 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3696 		r = process_set_transaction_id_mesg(argc, argv, pool);
3697 
3698 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3699 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3700 
3701 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3702 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3703 
3704 	else
3705 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3706 
3707 	if (!r)
3708 		(void) commit(pool);
3709 
3710 	return r;
3711 }
3712 
3713 static void emit_flags(struct pool_features *pf, char *result,
3714 		       unsigned sz, unsigned maxlen)
3715 {
3716 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3717 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3718 		pf->error_if_no_space;
3719 	DMEMIT("%u ", count);
3720 
3721 	if (!pf->zero_new_blocks)
3722 		DMEMIT("skip_block_zeroing ");
3723 
3724 	if (!pf->discard_enabled)
3725 		DMEMIT("ignore_discard ");
3726 
3727 	if (!pf->discard_passdown)
3728 		DMEMIT("no_discard_passdown ");
3729 
3730 	if (pf->mode == PM_READ_ONLY)
3731 		DMEMIT("read_only ");
3732 
3733 	if (pf->error_if_no_space)
3734 		DMEMIT("error_if_no_space ");
3735 }
3736 
3737 /*
3738  * Status line is:
3739  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3740  *    <used data sectors>/<total data sectors> <held metadata root>
3741  *    <pool mode> <discard config> <no space config> <needs_check>
3742  */
3743 static void pool_status(struct dm_target *ti, status_type_t type,
3744 			unsigned status_flags, char *result, unsigned maxlen)
3745 {
3746 	int r;
3747 	unsigned sz = 0;
3748 	uint64_t transaction_id;
3749 	dm_block_t nr_free_blocks_data;
3750 	dm_block_t nr_free_blocks_metadata;
3751 	dm_block_t nr_blocks_data;
3752 	dm_block_t nr_blocks_metadata;
3753 	dm_block_t held_root;
3754 	char buf[BDEVNAME_SIZE];
3755 	char buf2[BDEVNAME_SIZE];
3756 	struct pool_c *pt = ti->private;
3757 	struct pool *pool = pt->pool;
3758 
3759 	switch (type) {
3760 	case STATUSTYPE_INFO:
3761 		if (get_pool_mode(pool) == PM_FAIL) {
3762 			DMEMIT("Fail");
3763 			break;
3764 		}
3765 
3766 		/* Commit to ensure statistics aren't out-of-date */
3767 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3768 			(void) commit(pool);
3769 
3770 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3771 		if (r) {
3772 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3773 			      dm_device_name(pool->pool_md), r);
3774 			goto err;
3775 		}
3776 
3777 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3778 		if (r) {
3779 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3780 			      dm_device_name(pool->pool_md), r);
3781 			goto err;
3782 		}
3783 
3784 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3785 		if (r) {
3786 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3787 			      dm_device_name(pool->pool_md), r);
3788 			goto err;
3789 		}
3790 
3791 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3792 		if (r) {
3793 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3794 			      dm_device_name(pool->pool_md), r);
3795 			goto err;
3796 		}
3797 
3798 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3799 		if (r) {
3800 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3801 			      dm_device_name(pool->pool_md), r);
3802 			goto err;
3803 		}
3804 
3805 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3806 		if (r) {
3807 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3808 			      dm_device_name(pool->pool_md), r);
3809 			goto err;
3810 		}
3811 
3812 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3813 		       (unsigned long long)transaction_id,
3814 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3815 		       (unsigned long long)nr_blocks_metadata,
3816 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3817 		       (unsigned long long)nr_blocks_data);
3818 
3819 		if (held_root)
3820 			DMEMIT("%llu ", held_root);
3821 		else
3822 			DMEMIT("- ");
3823 
3824 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3825 			DMEMIT("out_of_data_space ");
3826 		else if (pool->pf.mode == PM_READ_ONLY)
3827 			DMEMIT("ro ");
3828 		else
3829 			DMEMIT("rw ");
3830 
3831 		if (!pool->pf.discard_enabled)
3832 			DMEMIT("ignore_discard ");
3833 		else if (pool->pf.discard_passdown)
3834 			DMEMIT("discard_passdown ");
3835 		else
3836 			DMEMIT("no_discard_passdown ");
3837 
3838 		if (pool->pf.error_if_no_space)
3839 			DMEMIT("error_if_no_space ");
3840 		else
3841 			DMEMIT("queue_if_no_space ");
3842 
3843 		if (dm_pool_metadata_needs_check(pool->pmd))
3844 			DMEMIT("needs_check ");
3845 		else
3846 			DMEMIT("- ");
3847 
3848 		break;
3849 
3850 	case STATUSTYPE_TABLE:
3851 		DMEMIT("%s %s %lu %llu ",
3852 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3853 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3854 		       (unsigned long)pool->sectors_per_block,
3855 		       (unsigned long long)pt->low_water_blocks);
3856 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3857 		break;
3858 	}
3859 	return;
3860 
3861 err:
3862 	DMEMIT("Error");
3863 }
3864 
3865 static int pool_iterate_devices(struct dm_target *ti,
3866 				iterate_devices_callout_fn fn, void *data)
3867 {
3868 	struct pool_c *pt = ti->private;
3869 
3870 	return fn(ti, pt->data_dev, 0, ti->len, data);
3871 }
3872 
3873 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3874 		      struct bio_vec *biovec, int max_size)
3875 {
3876 	struct pool_c *pt = ti->private;
3877 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3878 
3879 	if (!q->merge_bvec_fn)
3880 		return max_size;
3881 
3882 	bvm->bi_bdev = pt->data_dev->bdev;
3883 
3884 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3885 }
3886 
3887 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3888 {
3889 	struct pool_c *pt = ti->private;
3890 	struct pool *pool = pt->pool;
3891 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3892 
3893 	/*
3894 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3895 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3896 	 * This is especially beneficial when the pool's data device is a RAID
3897 	 * device that has a full stripe width that matches pool->sectors_per_block
3898 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3899 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3900 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3901 	 */
3902 	if (limits->max_sectors < pool->sectors_per_block) {
3903 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3904 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3905 				limits->max_sectors--;
3906 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3907 		}
3908 	}
3909 
3910 	/*
3911 	 * If the system-determined stacked limits are compatible with the
3912 	 * pool's blocksize (io_opt is a factor) do not override them.
3913 	 */
3914 	if (io_opt_sectors < pool->sectors_per_block ||
3915 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3916 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3917 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3918 		else
3919 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3920 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3921 	}
3922 
3923 	/*
3924 	 * pt->adjusted_pf is a staging area for the actual features to use.
3925 	 * They get transferred to the live pool in bind_control_target()
3926 	 * called from pool_preresume().
3927 	 */
3928 	if (!pt->adjusted_pf.discard_enabled) {
3929 		/*
3930 		 * Must explicitly disallow stacking discard limits otherwise the
3931 		 * block layer will stack them if pool's data device has support.
3932 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3933 		 * user to see that, so make sure to set all discard limits to 0.
3934 		 */
3935 		limits->discard_granularity = 0;
3936 		return;
3937 	}
3938 
3939 	disable_passdown_if_not_supported(pt);
3940 
3941 	/*
3942 	 * The pool uses the same discard limits as the underlying data
3943 	 * device.  DM core has already set this up.
3944 	 */
3945 }
3946 
3947 static struct target_type pool_target = {
3948 	.name = "thin-pool",
3949 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3950 		    DM_TARGET_IMMUTABLE,
3951 	.version = {1, 16, 0},
3952 	.module = THIS_MODULE,
3953 	.ctr = pool_ctr,
3954 	.dtr = pool_dtr,
3955 	.map = pool_map,
3956 	.presuspend = pool_presuspend,
3957 	.presuspend_undo = pool_presuspend_undo,
3958 	.postsuspend = pool_postsuspend,
3959 	.preresume = pool_preresume,
3960 	.resume = pool_resume,
3961 	.message = pool_message,
3962 	.status = pool_status,
3963 	.merge = pool_merge,
3964 	.iterate_devices = pool_iterate_devices,
3965 	.io_hints = pool_io_hints,
3966 };
3967 
3968 /*----------------------------------------------------------------
3969  * Thin target methods
3970  *--------------------------------------------------------------*/
3971 static void thin_get(struct thin_c *tc)
3972 {
3973 	atomic_inc(&tc->refcount);
3974 }
3975 
3976 static void thin_put(struct thin_c *tc)
3977 {
3978 	if (atomic_dec_and_test(&tc->refcount))
3979 		complete(&tc->can_destroy);
3980 }
3981 
3982 static void thin_dtr(struct dm_target *ti)
3983 {
3984 	struct thin_c *tc = ti->private;
3985 	unsigned long flags;
3986 
3987 	spin_lock_irqsave(&tc->pool->lock, flags);
3988 	list_del_rcu(&tc->list);
3989 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3990 	synchronize_rcu();
3991 
3992 	thin_put(tc);
3993 	wait_for_completion(&tc->can_destroy);
3994 
3995 	mutex_lock(&dm_thin_pool_table.mutex);
3996 
3997 	__pool_dec(tc->pool);
3998 	dm_pool_close_thin_device(tc->td);
3999 	dm_put_device(ti, tc->pool_dev);
4000 	if (tc->origin_dev)
4001 		dm_put_device(ti, tc->origin_dev);
4002 	kfree(tc);
4003 
4004 	mutex_unlock(&dm_thin_pool_table.mutex);
4005 }
4006 
4007 /*
4008  * Thin target parameters:
4009  *
4010  * <pool_dev> <dev_id> [origin_dev]
4011  *
4012  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4013  * dev_id: the internal device identifier
4014  * origin_dev: a device external to the pool that should act as the origin
4015  *
4016  * If the pool device has discards disabled, they get disabled for the thin
4017  * device as well.
4018  */
4019 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4020 {
4021 	int r;
4022 	struct thin_c *tc;
4023 	struct dm_dev *pool_dev, *origin_dev;
4024 	struct mapped_device *pool_md;
4025 	unsigned long flags;
4026 
4027 	mutex_lock(&dm_thin_pool_table.mutex);
4028 
4029 	if (argc != 2 && argc != 3) {
4030 		ti->error = "Invalid argument count";
4031 		r = -EINVAL;
4032 		goto out_unlock;
4033 	}
4034 
4035 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4036 	if (!tc) {
4037 		ti->error = "Out of memory";
4038 		r = -ENOMEM;
4039 		goto out_unlock;
4040 	}
4041 	tc->thin_md = dm_table_get_md(ti->table);
4042 	spin_lock_init(&tc->lock);
4043 	INIT_LIST_HEAD(&tc->deferred_cells);
4044 	bio_list_init(&tc->deferred_bio_list);
4045 	bio_list_init(&tc->retry_on_resume_list);
4046 	tc->sort_bio_list = RB_ROOT;
4047 
4048 	if (argc == 3) {
4049 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4050 		if (r) {
4051 			ti->error = "Error opening origin device";
4052 			goto bad_origin_dev;
4053 		}
4054 		tc->origin_dev = origin_dev;
4055 	}
4056 
4057 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4058 	if (r) {
4059 		ti->error = "Error opening pool device";
4060 		goto bad_pool_dev;
4061 	}
4062 	tc->pool_dev = pool_dev;
4063 
4064 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4065 		ti->error = "Invalid device id";
4066 		r = -EINVAL;
4067 		goto bad_common;
4068 	}
4069 
4070 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4071 	if (!pool_md) {
4072 		ti->error = "Couldn't get pool mapped device";
4073 		r = -EINVAL;
4074 		goto bad_common;
4075 	}
4076 
4077 	tc->pool = __pool_table_lookup(pool_md);
4078 	if (!tc->pool) {
4079 		ti->error = "Couldn't find pool object";
4080 		r = -EINVAL;
4081 		goto bad_pool_lookup;
4082 	}
4083 	__pool_inc(tc->pool);
4084 
4085 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4086 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4087 		r = -EINVAL;
4088 		goto bad_pool;
4089 	}
4090 
4091 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4092 	if (r) {
4093 		ti->error = "Couldn't open thin internal device";
4094 		goto bad_pool;
4095 	}
4096 
4097 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4098 	if (r)
4099 		goto bad;
4100 
4101 	ti->num_flush_bios = 1;
4102 	ti->flush_supported = true;
4103 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4104 
4105 	/* In case the pool supports discards, pass them on. */
4106 	ti->discard_zeroes_data_unsupported = true;
4107 	if (tc->pool->pf.discard_enabled) {
4108 		ti->discards_supported = true;
4109 		ti->num_discard_bios = 1;
4110 		ti->split_discard_bios = false;
4111 	}
4112 
4113 	mutex_unlock(&dm_thin_pool_table.mutex);
4114 
4115 	spin_lock_irqsave(&tc->pool->lock, flags);
4116 	if (tc->pool->suspended) {
4117 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4118 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4119 		ti->error = "Unable to activate thin device while pool is suspended";
4120 		r = -EINVAL;
4121 		goto bad;
4122 	}
4123 	atomic_set(&tc->refcount, 1);
4124 	init_completion(&tc->can_destroy);
4125 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4126 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4127 	/*
4128 	 * This synchronize_rcu() call is needed here otherwise we risk a
4129 	 * wake_worker() call finding no bios to process (because the newly
4130 	 * added tc isn't yet visible).  So this reduces latency since we
4131 	 * aren't then dependent on the periodic commit to wake_worker().
4132 	 */
4133 	synchronize_rcu();
4134 
4135 	dm_put(pool_md);
4136 
4137 	return 0;
4138 
4139 bad:
4140 	dm_pool_close_thin_device(tc->td);
4141 bad_pool:
4142 	__pool_dec(tc->pool);
4143 bad_pool_lookup:
4144 	dm_put(pool_md);
4145 bad_common:
4146 	dm_put_device(ti, tc->pool_dev);
4147 bad_pool_dev:
4148 	if (tc->origin_dev)
4149 		dm_put_device(ti, tc->origin_dev);
4150 bad_origin_dev:
4151 	kfree(tc);
4152 out_unlock:
4153 	mutex_unlock(&dm_thin_pool_table.mutex);
4154 
4155 	return r;
4156 }
4157 
4158 static int thin_map(struct dm_target *ti, struct bio *bio)
4159 {
4160 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4161 
4162 	return thin_bio_map(ti, bio);
4163 }
4164 
4165 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4166 {
4167 	unsigned long flags;
4168 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4169 	struct list_head work;
4170 	struct dm_thin_new_mapping *m, *tmp;
4171 	struct pool *pool = h->tc->pool;
4172 
4173 	if (h->shared_read_entry) {
4174 		INIT_LIST_HEAD(&work);
4175 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4176 
4177 		spin_lock_irqsave(&pool->lock, flags);
4178 		list_for_each_entry_safe(m, tmp, &work, list) {
4179 			list_del(&m->list);
4180 			__complete_mapping_preparation(m);
4181 		}
4182 		spin_unlock_irqrestore(&pool->lock, flags);
4183 	}
4184 
4185 	if (h->all_io_entry) {
4186 		INIT_LIST_HEAD(&work);
4187 		dm_deferred_entry_dec(h->all_io_entry, &work);
4188 		if (!list_empty(&work)) {
4189 			spin_lock_irqsave(&pool->lock, flags);
4190 			list_for_each_entry_safe(m, tmp, &work, list)
4191 				list_add_tail(&m->list, &pool->prepared_discards);
4192 			spin_unlock_irqrestore(&pool->lock, flags);
4193 			wake_worker(pool);
4194 		}
4195 	}
4196 
4197 	if (h->cell)
4198 		cell_defer_no_holder(h->tc, h->cell);
4199 
4200 	return 0;
4201 }
4202 
4203 static void thin_presuspend(struct dm_target *ti)
4204 {
4205 	struct thin_c *tc = ti->private;
4206 
4207 	if (dm_noflush_suspending(ti))
4208 		noflush_work(tc, do_noflush_start);
4209 }
4210 
4211 static void thin_postsuspend(struct dm_target *ti)
4212 {
4213 	struct thin_c *tc = ti->private;
4214 
4215 	/*
4216 	 * The dm_noflush_suspending flag has been cleared by now, so
4217 	 * unfortunately we must always run this.
4218 	 */
4219 	noflush_work(tc, do_noflush_stop);
4220 }
4221 
4222 static int thin_preresume(struct dm_target *ti)
4223 {
4224 	struct thin_c *tc = ti->private;
4225 
4226 	if (tc->origin_dev)
4227 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4228 
4229 	return 0;
4230 }
4231 
4232 /*
4233  * <nr mapped sectors> <highest mapped sector>
4234  */
4235 static void thin_status(struct dm_target *ti, status_type_t type,
4236 			unsigned status_flags, char *result, unsigned maxlen)
4237 {
4238 	int r;
4239 	ssize_t sz = 0;
4240 	dm_block_t mapped, highest;
4241 	char buf[BDEVNAME_SIZE];
4242 	struct thin_c *tc = ti->private;
4243 
4244 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4245 		DMEMIT("Fail");
4246 		return;
4247 	}
4248 
4249 	if (!tc->td)
4250 		DMEMIT("-");
4251 	else {
4252 		switch (type) {
4253 		case STATUSTYPE_INFO:
4254 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4255 			if (r) {
4256 				DMERR("dm_thin_get_mapped_count returned %d", r);
4257 				goto err;
4258 			}
4259 
4260 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4261 			if (r < 0) {
4262 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4263 				goto err;
4264 			}
4265 
4266 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4267 			if (r)
4268 				DMEMIT("%llu", ((highest + 1) *
4269 						tc->pool->sectors_per_block) - 1);
4270 			else
4271 				DMEMIT("-");
4272 			break;
4273 
4274 		case STATUSTYPE_TABLE:
4275 			DMEMIT("%s %lu",
4276 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4277 			       (unsigned long) tc->dev_id);
4278 			if (tc->origin_dev)
4279 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4280 			break;
4281 		}
4282 	}
4283 
4284 	return;
4285 
4286 err:
4287 	DMEMIT("Error");
4288 }
4289 
4290 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4291 		      struct bio_vec *biovec, int max_size)
4292 {
4293 	struct thin_c *tc = ti->private;
4294 	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4295 
4296 	if (!q->merge_bvec_fn)
4297 		return max_size;
4298 
4299 	bvm->bi_bdev = tc->pool_dev->bdev;
4300 	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4301 
4302 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4303 }
4304 
4305 static int thin_iterate_devices(struct dm_target *ti,
4306 				iterate_devices_callout_fn fn, void *data)
4307 {
4308 	sector_t blocks;
4309 	struct thin_c *tc = ti->private;
4310 	struct pool *pool = tc->pool;
4311 
4312 	/*
4313 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4314 	 * we follow a more convoluted path through to the pool's target.
4315 	 */
4316 	if (!pool->ti)
4317 		return 0;	/* nothing is bound */
4318 
4319 	blocks = pool->ti->len;
4320 	(void) sector_div(blocks, pool->sectors_per_block);
4321 	if (blocks)
4322 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4323 
4324 	return 0;
4325 }
4326 
4327 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4328 {
4329 	struct thin_c *tc = ti->private;
4330 	struct pool *pool = tc->pool;
4331 
4332 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4333 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4334 }
4335 
4336 static struct target_type thin_target = {
4337 	.name = "thin",
4338 	.version = {1, 16, 0},
4339 	.module	= THIS_MODULE,
4340 	.ctr = thin_ctr,
4341 	.dtr = thin_dtr,
4342 	.map = thin_map,
4343 	.end_io = thin_endio,
4344 	.preresume = thin_preresume,
4345 	.presuspend = thin_presuspend,
4346 	.postsuspend = thin_postsuspend,
4347 	.status = thin_status,
4348 	.merge = thin_merge,
4349 	.iterate_devices = thin_iterate_devices,
4350 	.io_hints = thin_io_hints,
4351 };
4352 
4353 /*----------------------------------------------------------------*/
4354 
4355 static int __init dm_thin_init(void)
4356 {
4357 	int r;
4358 
4359 	pool_table_init();
4360 
4361 	r = dm_register_target(&thin_target);
4362 	if (r)
4363 		return r;
4364 
4365 	r = dm_register_target(&pool_target);
4366 	if (r)
4367 		goto bad_pool_target;
4368 
4369 	r = -ENOMEM;
4370 
4371 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4372 	if (!_new_mapping_cache)
4373 		goto bad_new_mapping_cache;
4374 
4375 	return 0;
4376 
4377 bad_new_mapping_cache:
4378 	dm_unregister_target(&pool_target);
4379 bad_pool_target:
4380 	dm_unregister_target(&thin_target);
4381 
4382 	return r;
4383 }
4384 
4385 static void dm_thin_exit(void)
4386 {
4387 	dm_unregister_target(&thin_target);
4388 	dm_unregister_target(&pool_target);
4389 
4390 	kmem_cache_destroy(_new_mapping_cache);
4391 }
4392 
4393 module_init(dm_thin_init);
4394 module_exit(dm_thin_exit);
4395 
4396 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4397 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4398 
4399 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4400 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4401 MODULE_LICENSE("GPL");
4402