xref: /openbmc/linux/drivers/md/dm-thin.c (revision 93d90ad7)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/sort.h>
21 #include <linux/rbtree.h>
22 
23 #define	DM_MSG_PREFIX	"thin"
24 
25 /*
26  * Tunable constants
27  */
28 #define ENDIO_HOOK_POOL_SIZE 1024
29 #define MAPPING_POOL_SIZE 1024
30 #define COMMIT_PERIOD HZ
31 #define NO_SPACE_TIMEOUT_SECS 60
32 
33 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
34 
35 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
36 		"A percentage of time allocated for copy on write");
37 
38 /*
39  * The block size of the device holding pool data must be
40  * between 64KB and 1GB.
41  */
42 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
43 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
44 
45 /*
46  * Device id is restricted to 24 bits.
47  */
48 #define MAX_DEV_ID ((1 << 24) - 1)
49 
50 /*
51  * How do we handle breaking sharing of data blocks?
52  * =================================================
53  *
54  * We use a standard copy-on-write btree to store the mappings for the
55  * devices (note I'm talking about copy-on-write of the metadata here, not
56  * the data).  When you take an internal snapshot you clone the root node
57  * of the origin btree.  After this there is no concept of an origin or a
58  * snapshot.  They are just two device trees that happen to point to the
59  * same data blocks.
60  *
61  * When we get a write in we decide if it's to a shared data block using
62  * some timestamp magic.  If it is, we have to break sharing.
63  *
64  * Let's say we write to a shared block in what was the origin.  The
65  * steps are:
66  *
67  * i) plug io further to this physical block. (see bio_prison code).
68  *
69  * ii) quiesce any read io to that shared data block.  Obviously
70  * including all devices that share this block.  (see dm_deferred_set code)
71  *
72  * iii) copy the data block to a newly allocate block.  This step can be
73  * missed out if the io covers the block. (schedule_copy).
74  *
75  * iv) insert the new mapping into the origin's btree
76  * (process_prepared_mapping).  This act of inserting breaks some
77  * sharing of btree nodes between the two devices.  Breaking sharing only
78  * effects the btree of that specific device.  Btrees for the other
79  * devices that share the block never change.  The btree for the origin
80  * device as it was after the last commit is untouched, ie. we're using
81  * persistent data structures in the functional programming sense.
82  *
83  * v) unplug io to this physical block, including the io that triggered
84  * the breaking of sharing.
85  *
86  * Steps (ii) and (iii) occur in parallel.
87  *
88  * The metadata _doesn't_ need to be committed before the io continues.  We
89  * get away with this because the io is always written to a _new_ block.
90  * If there's a crash, then:
91  *
92  * - The origin mapping will point to the old origin block (the shared
93  * one).  This will contain the data as it was before the io that triggered
94  * the breaking of sharing came in.
95  *
96  * - The snap mapping still points to the old block.  As it would after
97  * the commit.
98  *
99  * The downside of this scheme is the timestamp magic isn't perfect, and
100  * will continue to think that data block in the snapshot device is shared
101  * even after the write to the origin has broken sharing.  I suspect data
102  * blocks will typically be shared by many different devices, so we're
103  * breaking sharing n + 1 times, rather than n, where n is the number of
104  * devices that reference this data block.  At the moment I think the
105  * benefits far, far outweigh the disadvantages.
106  */
107 
108 /*----------------------------------------------------------------*/
109 
110 /*
111  * Key building.
112  */
113 static void build_data_key(struct dm_thin_device *td,
114 			   dm_block_t b, struct dm_cell_key *key)
115 {
116 	key->virtual = 0;
117 	key->dev = dm_thin_dev_id(td);
118 	key->block_begin = b;
119 	key->block_end = b + 1ULL;
120 }
121 
122 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
123 			      struct dm_cell_key *key)
124 {
125 	key->virtual = 1;
126 	key->dev = dm_thin_dev_id(td);
127 	key->block_begin = b;
128 	key->block_end = b + 1ULL;
129 }
130 
131 /*----------------------------------------------------------------*/
132 
133 #define THROTTLE_THRESHOLD (1 * HZ)
134 
135 struct throttle {
136 	struct rw_semaphore lock;
137 	unsigned long threshold;
138 	bool throttle_applied;
139 };
140 
141 static void throttle_init(struct throttle *t)
142 {
143 	init_rwsem(&t->lock);
144 	t->throttle_applied = false;
145 }
146 
147 static void throttle_work_start(struct throttle *t)
148 {
149 	t->threshold = jiffies + THROTTLE_THRESHOLD;
150 }
151 
152 static void throttle_work_update(struct throttle *t)
153 {
154 	if (!t->throttle_applied && jiffies > t->threshold) {
155 		down_write(&t->lock);
156 		t->throttle_applied = true;
157 	}
158 }
159 
160 static void throttle_work_complete(struct throttle *t)
161 {
162 	if (t->throttle_applied) {
163 		t->throttle_applied = false;
164 		up_write(&t->lock);
165 	}
166 }
167 
168 static void throttle_lock(struct throttle *t)
169 {
170 	down_read(&t->lock);
171 }
172 
173 static void throttle_unlock(struct throttle *t)
174 {
175 	up_read(&t->lock);
176 }
177 
178 /*----------------------------------------------------------------*/
179 
180 /*
181  * A pool device ties together a metadata device and a data device.  It
182  * also provides the interface for creating and destroying internal
183  * devices.
184  */
185 struct dm_thin_new_mapping;
186 
187 /*
188  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
189  */
190 enum pool_mode {
191 	PM_WRITE,		/* metadata may be changed */
192 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
193 	PM_READ_ONLY,		/* metadata may not be changed */
194 	PM_FAIL,		/* all I/O fails */
195 };
196 
197 struct pool_features {
198 	enum pool_mode mode;
199 
200 	bool zero_new_blocks:1;
201 	bool discard_enabled:1;
202 	bool discard_passdown:1;
203 	bool error_if_no_space:1;
204 };
205 
206 struct thin_c;
207 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
208 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
209 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
210 
211 #define CELL_SORT_ARRAY_SIZE 8192
212 
213 struct pool {
214 	struct list_head list;
215 	struct dm_target *ti;	/* Only set if a pool target is bound */
216 
217 	struct mapped_device *pool_md;
218 	struct block_device *md_dev;
219 	struct dm_pool_metadata *pmd;
220 
221 	dm_block_t low_water_blocks;
222 	uint32_t sectors_per_block;
223 	int sectors_per_block_shift;
224 
225 	struct pool_features pf;
226 	bool low_water_triggered:1;	/* A dm event has been sent */
227 	bool suspended:1;
228 
229 	struct dm_bio_prison *prison;
230 	struct dm_kcopyd_client *copier;
231 
232 	struct workqueue_struct *wq;
233 	struct throttle throttle;
234 	struct work_struct worker;
235 	struct delayed_work waker;
236 	struct delayed_work no_space_timeout;
237 
238 	unsigned long last_commit_jiffies;
239 	unsigned ref_count;
240 
241 	spinlock_t lock;
242 	struct bio_list deferred_flush_bios;
243 	struct list_head prepared_mappings;
244 	struct list_head prepared_discards;
245 	struct list_head active_thins;
246 
247 	struct dm_deferred_set *shared_read_ds;
248 	struct dm_deferred_set *all_io_ds;
249 
250 	struct dm_thin_new_mapping *next_mapping;
251 	mempool_t *mapping_pool;
252 
253 	process_bio_fn process_bio;
254 	process_bio_fn process_discard;
255 
256 	process_cell_fn process_cell;
257 	process_cell_fn process_discard_cell;
258 
259 	process_mapping_fn process_prepared_mapping;
260 	process_mapping_fn process_prepared_discard;
261 
262 	struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
263 };
264 
265 static enum pool_mode get_pool_mode(struct pool *pool);
266 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
267 
268 /*
269  * Target context for a pool.
270  */
271 struct pool_c {
272 	struct dm_target *ti;
273 	struct pool *pool;
274 	struct dm_dev *data_dev;
275 	struct dm_dev *metadata_dev;
276 	struct dm_target_callbacks callbacks;
277 
278 	dm_block_t low_water_blocks;
279 	struct pool_features requested_pf; /* Features requested during table load */
280 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
281 };
282 
283 /*
284  * Target context for a thin.
285  */
286 struct thin_c {
287 	struct list_head list;
288 	struct dm_dev *pool_dev;
289 	struct dm_dev *origin_dev;
290 	sector_t origin_size;
291 	dm_thin_id dev_id;
292 
293 	struct pool *pool;
294 	struct dm_thin_device *td;
295 	struct mapped_device *thin_md;
296 
297 	bool requeue_mode:1;
298 	spinlock_t lock;
299 	struct list_head deferred_cells;
300 	struct bio_list deferred_bio_list;
301 	struct bio_list retry_on_resume_list;
302 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
303 
304 	/*
305 	 * Ensures the thin is not destroyed until the worker has finished
306 	 * iterating the active_thins list.
307 	 */
308 	atomic_t refcount;
309 	struct completion can_destroy;
310 };
311 
312 /*----------------------------------------------------------------*/
313 
314 /*
315  * wake_worker() is used when new work is queued and when pool_resume is
316  * ready to continue deferred IO processing.
317  */
318 static void wake_worker(struct pool *pool)
319 {
320 	queue_work(pool->wq, &pool->worker);
321 }
322 
323 /*----------------------------------------------------------------*/
324 
325 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
326 		      struct dm_bio_prison_cell **cell_result)
327 {
328 	int r;
329 	struct dm_bio_prison_cell *cell_prealloc;
330 
331 	/*
332 	 * Allocate a cell from the prison's mempool.
333 	 * This might block but it can't fail.
334 	 */
335 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
336 
337 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
338 	if (r)
339 		/*
340 		 * We reused an old cell; we can get rid of
341 		 * the new one.
342 		 */
343 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
344 
345 	return r;
346 }
347 
348 static void cell_release(struct pool *pool,
349 			 struct dm_bio_prison_cell *cell,
350 			 struct bio_list *bios)
351 {
352 	dm_cell_release(pool->prison, cell, bios);
353 	dm_bio_prison_free_cell(pool->prison, cell);
354 }
355 
356 static void cell_visit_release(struct pool *pool,
357 			       void (*fn)(void *, struct dm_bio_prison_cell *),
358 			       void *context,
359 			       struct dm_bio_prison_cell *cell)
360 {
361 	dm_cell_visit_release(pool->prison, fn, context, cell);
362 	dm_bio_prison_free_cell(pool->prison, cell);
363 }
364 
365 static void cell_release_no_holder(struct pool *pool,
366 				   struct dm_bio_prison_cell *cell,
367 				   struct bio_list *bios)
368 {
369 	dm_cell_release_no_holder(pool->prison, cell, bios);
370 	dm_bio_prison_free_cell(pool->prison, cell);
371 }
372 
373 static void cell_error_with_code(struct pool *pool,
374 				 struct dm_bio_prison_cell *cell, int error_code)
375 {
376 	dm_cell_error(pool->prison, cell, error_code);
377 	dm_bio_prison_free_cell(pool->prison, cell);
378 }
379 
380 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
381 {
382 	cell_error_with_code(pool, cell, -EIO);
383 }
384 
385 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
386 {
387 	cell_error_with_code(pool, cell, 0);
388 }
389 
390 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
391 {
392 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
393 }
394 
395 /*----------------------------------------------------------------*/
396 
397 /*
398  * A global list of pools that uses a struct mapped_device as a key.
399  */
400 static struct dm_thin_pool_table {
401 	struct mutex mutex;
402 	struct list_head pools;
403 } dm_thin_pool_table;
404 
405 static void pool_table_init(void)
406 {
407 	mutex_init(&dm_thin_pool_table.mutex);
408 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
409 }
410 
411 static void __pool_table_insert(struct pool *pool)
412 {
413 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
414 	list_add(&pool->list, &dm_thin_pool_table.pools);
415 }
416 
417 static void __pool_table_remove(struct pool *pool)
418 {
419 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
420 	list_del(&pool->list);
421 }
422 
423 static struct pool *__pool_table_lookup(struct mapped_device *md)
424 {
425 	struct pool *pool = NULL, *tmp;
426 
427 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
428 
429 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
430 		if (tmp->pool_md == md) {
431 			pool = tmp;
432 			break;
433 		}
434 	}
435 
436 	return pool;
437 }
438 
439 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
440 {
441 	struct pool *pool = NULL, *tmp;
442 
443 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
444 
445 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
446 		if (tmp->md_dev == md_dev) {
447 			pool = tmp;
448 			break;
449 		}
450 	}
451 
452 	return pool;
453 }
454 
455 /*----------------------------------------------------------------*/
456 
457 struct dm_thin_endio_hook {
458 	struct thin_c *tc;
459 	struct dm_deferred_entry *shared_read_entry;
460 	struct dm_deferred_entry *all_io_entry;
461 	struct dm_thin_new_mapping *overwrite_mapping;
462 	struct rb_node rb_node;
463 };
464 
465 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
466 {
467 	bio_list_merge(bios, master);
468 	bio_list_init(master);
469 }
470 
471 static void error_bio_list(struct bio_list *bios, int error)
472 {
473 	struct bio *bio;
474 
475 	while ((bio = bio_list_pop(bios)))
476 		bio_endio(bio, error);
477 }
478 
479 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
480 {
481 	struct bio_list bios;
482 	unsigned long flags;
483 
484 	bio_list_init(&bios);
485 
486 	spin_lock_irqsave(&tc->lock, flags);
487 	__merge_bio_list(&bios, master);
488 	spin_unlock_irqrestore(&tc->lock, flags);
489 
490 	error_bio_list(&bios, error);
491 }
492 
493 static void requeue_deferred_cells(struct thin_c *tc)
494 {
495 	struct pool *pool = tc->pool;
496 	unsigned long flags;
497 	struct list_head cells;
498 	struct dm_bio_prison_cell *cell, *tmp;
499 
500 	INIT_LIST_HEAD(&cells);
501 
502 	spin_lock_irqsave(&tc->lock, flags);
503 	list_splice_init(&tc->deferred_cells, &cells);
504 	spin_unlock_irqrestore(&tc->lock, flags);
505 
506 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
507 		cell_requeue(pool, cell);
508 }
509 
510 static void requeue_io(struct thin_c *tc)
511 {
512 	struct bio_list bios;
513 	unsigned long flags;
514 
515 	bio_list_init(&bios);
516 
517 	spin_lock_irqsave(&tc->lock, flags);
518 	__merge_bio_list(&bios, &tc->deferred_bio_list);
519 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
520 	spin_unlock_irqrestore(&tc->lock, flags);
521 
522 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
523 	requeue_deferred_cells(tc);
524 }
525 
526 static void error_retry_list(struct pool *pool)
527 {
528 	struct thin_c *tc;
529 
530 	rcu_read_lock();
531 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
532 		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
533 	rcu_read_unlock();
534 }
535 
536 /*
537  * This section of code contains the logic for processing a thin device's IO.
538  * Much of the code depends on pool object resources (lists, workqueues, etc)
539  * but most is exclusively called from the thin target rather than the thin-pool
540  * target.
541  */
542 
543 static bool block_size_is_power_of_two(struct pool *pool)
544 {
545 	return pool->sectors_per_block_shift >= 0;
546 }
547 
548 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
549 {
550 	struct pool *pool = tc->pool;
551 	sector_t block_nr = bio->bi_iter.bi_sector;
552 
553 	if (block_size_is_power_of_two(pool))
554 		block_nr >>= pool->sectors_per_block_shift;
555 	else
556 		(void) sector_div(block_nr, pool->sectors_per_block);
557 
558 	return block_nr;
559 }
560 
561 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
562 {
563 	struct pool *pool = tc->pool;
564 	sector_t bi_sector = bio->bi_iter.bi_sector;
565 
566 	bio->bi_bdev = tc->pool_dev->bdev;
567 	if (block_size_is_power_of_two(pool))
568 		bio->bi_iter.bi_sector =
569 			(block << pool->sectors_per_block_shift) |
570 			(bi_sector & (pool->sectors_per_block - 1));
571 	else
572 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
573 				 sector_div(bi_sector, pool->sectors_per_block);
574 }
575 
576 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
577 {
578 	bio->bi_bdev = tc->origin_dev->bdev;
579 }
580 
581 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
582 {
583 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
584 		dm_thin_changed_this_transaction(tc->td);
585 }
586 
587 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
588 {
589 	struct dm_thin_endio_hook *h;
590 
591 	if (bio->bi_rw & REQ_DISCARD)
592 		return;
593 
594 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
595 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
596 }
597 
598 static void issue(struct thin_c *tc, struct bio *bio)
599 {
600 	struct pool *pool = tc->pool;
601 	unsigned long flags;
602 
603 	if (!bio_triggers_commit(tc, bio)) {
604 		generic_make_request(bio);
605 		return;
606 	}
607 
608 	/*
609 	 * Complete bio with an error if earlier I/O caused changes to
610 	 * the metadata that can't be committed e.g, due to I/O errors
611 	 * on the metadata device.
612 	 */
613 	if (dm_thin_aborted_changes(tc->td)) {
614 		bio_io_error(bio);
615 		return;
616 	}
617 
618 	/*
619 	 * Batch together any bios that trigger commits and then issue a
620 	 * single commit for them in process_deferred_bios().
621 	 */
622 	spin_lock_irqsave(&pool->lock, flags);
623 	bio_list_add(&pool->deferred_flush_bios, bio);
624 	spin_unlock_irqrestore(&pool->lock, flags);
625 }
626 
627 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
628 {
629 	remap_to_origin(tc, bio);
630 	issue(tc, bio);
631 }
632 
633 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
634 			    dm_block_t block)
635 {
636 	remap(tc, bio, block);
637 	issue(tc, bio);
638 }
639 
640 /*----------------------------------------------------------------*/
641 
642 /*
643  * Bio endio functions.
644  */
645 struct dm_thin_new_mapping {
646 	struct list_head list;
647 
648 	bool pass_discard:1;
649 	bool definitely_not_shared:1;
650 
651 	/*
652 	 * Track quiescing, copying and zeroing preparation actions.  When this
653 	 * counter hits zero the block is prepared and can be inserted into the
654 	 * btree.
655 	 */
656 	atomic_t prepare_actions;
657 
658 	int err;
659 	struct thin_c *tc;
660 	dm_block_t virt_block;
661 	dm_block_t data_block;
662 	struct dm_bio_prison_cell *cell, *cell2;
663 
664 	/*
665 	 * If the bio covers the whole area of a block then we can avoid
666 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
667 	 * still be in the cell, so care has to be taken to avoid issuing
668 	 * the bio twice.
669 	 */
670 	struct bio *bio;
671 	bio_end_io_t *saved_bi_end_io;
672 };
673 
674 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
675 {
676 	struct pool *pool = m->tc->pool;
677 
678 	if (atomic_dec_and_test(&m->prepare_actions)) {
679 		list_add_tail(&m->list, &pool->prepared_mappings);
680 		wake_worker(pool);
681 	}
682 }
683 
684 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
685 {
686 	unsigned long flags;
687 	struct pool *pool = m->tc->pool;
688 
689 	spin_lock_irqsave(&pool->lock, flags);
690 	__complete_mapping_preparation(m);
691 	spin_unlock_irqrestore(&pool->lock, flags);
692 }
693 
694 static void copy_complete(int read_err, unsigned long write_err, void *context)
695 {
696 	struct dm_thin_new_mapping *m = context;
697 
698 	m->err = read_err || write_err ? -EIO : 0;
699 	complete_mapping_preparation(m);
700 }
701 
702 static void overwrite_endio(struct bio *bio, int err)
703 {
704 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
705 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
706 
707 	m->err = err;
708 	complete_mapping_preparation(m);
709 }
710 
711 /*----------------------------------------------------------------*/
712 
713 /*
714  * Workqueue.
715  */
716 
717 /*
718  * Prepared mapping jobs.
719  */
720 
721 /*
722  * This sends the bios in the cell, except the original holder, back
723  * to the deferred_bios list.
724  */
725 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
726 {
727 	struct pool *pool = tc->pool;
728 	unsigned long flags;
729 
730 	spin_lock_irqsave(&tc->lock, flags);
731 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
732 	spin_unlock_irqrestore(&tc->lock, flags);
733 
734 	wake_worker(pool);
735 }
736 
737 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
738 
739 struct remap_info {
740 	struct thin_c *tc;
741 	struct bio_list defer_bios;
742 	struct bio_list issue_bios;
743 };
744 
745 static void __inc_remap_and_issue_cell(void *context,
746 				       struct dm_bio_prison_cell *cell)
747 {
748 	struct remap_info *info = context;
749 	struct bio *bio;
750 
751 	while ((bio = bio_list_pop(&cell->bios))) {
752 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
753 			bio_list_add(&info->defer_bios, bio);
754 		else {
755 			inc_all_io_entry(info->tc->pool, bio);
756 
757 			/*
758 			 * We can't issue the bios with the bio prison lock
759 			 * held, so we add them to a list to issue on
760 			 * return from this function.
761 			 */
762 			bio_list_add(&info->issue_bios, bio);
763 		}
764 	}
765 }
766 
767 static void inc_remap_and_issue_cell(struct thin_c *tc,
768 				     struct dm_bio_prison_cell *cell,
769 				     dm_block_t block)
770 {
771 	struct bio *bio;
772 	struct remap_info info;
773 
774 	info.tc = tc;
775 	bio_list_init(&info.defer_bios);
776 	bio_list_init(&info.issue_bios);
777 
778 	/*
779 	 * We have to be careful to inc any bios we're about to issue
780 	 * before the cell is released, and avoid a race with new bios
781 	 * being added to the cell.
782 	 */
783 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
784 			   &info, cell);
785 
786 	while ((bio = bio_list_pop(&info.defer_bios)))
787 		thin_defer_bio(tc, bio);
788 
789 	while ((bio = bio_list_pop(&info.issue_bios)))
790 		remap_and_issue(info.tc, bio, block);
791 }
792 
793 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
794 {
795 	if (m->bio) {
796 		m->bio->bi_end_io = m->saved_bi_end_io;
797 		atomic_inc(&m->bio->bi_remaining);
798 	}
799 	cell_error(m->tc->pool, m->cell);
800 	list_del(&m->list);
801 	mempool_free(m, m->tc->pool->mapping_pool);
802 }
803 
804 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
805 {
806 	struct thin_c *tc = m->tc;
807 	struct pool *pool = tc->pool;
808 	struct bio *bio;
809 	int r;
810 
811 	bio = m->bio;
812 	if (bio) {
813 		bio->bi_end_io = m->saved_bi_end_io;
814 		atomic_inc(&bio->bi_remaining);
815 	}
816 
817 	if (m->err) {
818 		cell_error(pool, m->cell);
819 		goto out;
820 	}
821 
822 	/*
823 	 * Commit the prepared block into the mapping btree.
824 	 * Any I/O for this block arriving after this point will get
825 	 * remapped to it directly.
826 	 */
827 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
828 	if (r) {
829 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
830 		cell_error(pool, m->cell);
831 		goto out;
832 	}
833 
834 	/*
835 	 * Release any bios held while the block was being provisioned.
836 	 * If we are processing a write bio that completely covers the block,
837 	 * we already processed it so can ignore it now when processing
838 	 * the bios in the cell.
839 	 */
840 	if (bio) {
841 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
842 		bio_endio(bio, 0);
843 	} else {
844 		inc_all_io_entry(tc->pool, m->cell->holder);
845 		remap_and_issue(tc, m->cell->holder, m->data_block);
846 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
847 	}
848 
849 out:
850 	list_del(&m->list);
851 	mempool_free(m, pool->mapping_pool);
852 }
853 
854 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
855 {
856 	struct thin_c *tc = m->tc;
857 
858 	bio_io_error(m->bio);
859 	cell_defer_no_holder(tc, m->cell);
860 	cell_defer_no_holder(tc, m->cell2);
861 	mempool_free(m, tc->pool->mapping_pool);
862 }
863 
864 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
865 {
866 	struct thin_c *tc = m->tc;
867 
868 	inc_all_io_entry(tc->pool, m->bio);
869 	cell_defer_no_holder(tc, m->cell);
870 	cell_defer_no_holder(tc, m->cell2);
871 
872 	if (m->pass_discard)
873 		if (m->definitely_not_shared)
874 			remap_and_issue(tc, m->bio, m->data_block);
875 		else {
876 			bool used = false;
877 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
878 				bio_endio(m->bio, 0);
879 			else
880 				remap_and_issue(tc, m->bio, m->data_block);
881 		}
882 	else
883 		bio_endio(m->bio, 0);
884 
885 	mempool_free(m, tc->pool->mapping_pool);
886 }
887 
888 static void process_prepared_discard(struct dm_thin_new_mapping *m)
889 {
890 	int r;
891 	struct thin_c *tc = m->tc;
892 
893 	r = dm_thin_remove_block(tc->td, m->virt_block);
894 	if (r)
895 		DMERR_LIMIT("dm_thin_remove_block() failed");
896 
897 	process_prepared_discard_passdown(m);
898 }
899 
900 static void process_prepared(struct pool *pool, struct list_head *head,
901 			     process_mapping_fn *fn)
902 {
903 	unsigned long flags;
904 	struct list_head maps;
905 	struct dm_thin_new_mapping *m, *tmp;
906 
907 	INIT_LIST_HEAD(&maps);
908 	spin_lock_irqsave(&pool->lock, flags);
909 	list_splice_init(head, &maps);
910 	spin_unlock_irqrestore(&pool->lock, flags);
911 
912 	list_for_each_entry_safe(m, tmp, &maps, list)
913 		(*fn)(m);
914 }
915 
916 /*
917  * Deferred bio jobs.
918  */
919 static int io_overlaps_block(struct pool *pool, struct bio *bio)
920 {
921 	return bio->bi_iter.bi_size ==
922 		(pool->sectors_per_block << SECTOR_SHIFT);
923 }
924 
925 static int io_overwrites_block(struct pool *pool, struct bio *bio)
926 {
927 	return (bio_data_dir(bio) == WRITE) &&
928 		io_overlaps_block(pool, bio);
929 }
930 
931 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
932 			       bio_end_io_t *fn)
933 {
934 	*save = bio->bi_end_io;
935 	bio->bi_end_io = fn;
936 }
937 
938 static int ensure_next_mapping(struct pool *pool)
939 {
940 	if (pool->next_mapping)
941 		return 0;
942 
943 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
944 
945 	return pool->next_mapping ? 0 : -ENOMEM;
946 }
947 
948 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
949 {
950 	struct dm_thin_new_mapping *m = pool->next_mapping;
951 
952 	BUG_ON(!pool->next_mapping);
953 
954 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
955 	INIT_LIST_HEAD(&m->list);
956 	m->bio = NULL;
957 
958 	pool->next_mapping = NULL;
959 
960 	return m;
961 }
962 
963 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
964 		    sector_t begin, sector_t end)
965 {
966 	int r;
967 	struct dm_io_region to;
968 
969 	to.bdev = tc->pool_dev->bdev;
970 	to.sector = begin;
971 	to.count = end - begin;
972 
973 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
974 	if (r < 0) {
975 		DMERR_LIMIT("dm_kcopyd_zero() failed");
976 		copy_complete(1, 1, m);
977 	}
978 }
979 
980 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
981 				      dm_block_t data_block,
982 				      struct dm_thin_new_mapping *m)
983 {
984 	struct pool *pool = tc->pool;
985 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986 
987 	h->overwrite_mapping = m;
988 	m->bio = bio;
989 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
990 	inc_all_io_entry(pool, bio);
991 	remap_and_issue(tc, bio, data_block);
992 }
993 
994 /*
995  * A partial copy also needs to zero the uncopied region.
996  */
997 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
998 			  struct dm_dev *origin, dm_block_t data_origin,
999 			  dm_block_t data_dest,
1000 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1001 			  sector_t len)
1002 {
1003 	int r;
1004 	struct pool *pool = tc->pool;
1005 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1006 
1007 	m->tc = tc;
1008 	m->virt_block = virt_block;
1009 	m->data_block = data_dest;
1010 	m->cell = cell;
1011 
1012 	/*
1013 	 * quiesce action + copy action + an extra reference held for the
1014 	 * duration of this function (we may need to inc later for a
1015 	 * partial zero).
1016 	 */
1017 	atomic_set(&m->prepare_actions, 3);
1018 
1019 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1020 		complete_mapping_preparation(m); /* already quiesced */
1021 
1022 	/*
1023 	 * IO to pool_dev remaps to the pool target's data_dev.
1024 	 *
1025 	 * If the whole block of data is being overwritten, we can issue the
1026 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1027 	 */
1028 	if (io_overwrites_block(pool, bio))
1029 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1030 	else {
1031 		struct dm_io_region from, to;
1032 
1033 		from.bdev = origin->bdev;
1034 		from.sector = data_origin * pool->sectors_per_block;
1035 		from.count = len;
1036 
1037 		to.bdev = tc->pool_dev->bdev;
1038 		to.sector = data_dest * pool->sectors_per_block;
1039 		to.count = len;
1040 
1041 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1042 				   0, copy_complete, m);
1043 		if (r < 0) {
1044 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1045 			copy_complete(1, 1, m);
1046 
1047 			/*
1048 			 * We allow the zero to be issued, to simplify the
1049 			 * error path.  Otherwise we'd need to start
1050 			 * worrying about decrementing the prepare_actions
1051 			 * counter.
1052 			 */
1053 		}
1054 
1055 		/*
1056 		 * Do we need to zero a tail region?
1057 		 */
1058 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1059 			atomic_inc(&m->prepare_actions);
1060 			ll_zero(tc, m,
1061 				data_dest * pool->sectors_per_block + len,
1062 				(data_dest + 1) * pool->sectors_per_block);
1063 		}
1064 	}
1065 
1066 	complete_mapping_preparation(m); /* drop our ref */
1067 }
1068 
1069 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1070 				   dm_block_t data_origin, dm_block_t data_dest,
1071 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1072 {
1073 	schedule_copy(tc, virt_block, tc->pool_dev,
1074 		      data_origin, data_dest, cell, bio,
1075 		      tc->pool->sectors_per_block);
1076 }
1077 
1078 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1079 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1080 			  struct bio *bio)
1081 {
1082 	struct pool *pool = tc->pool;
1083 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1084 
1085 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1086 	m->tc = tc;
1087 	m->virt_block = virt_block;
1088 	m->data_block = data_block;
1089 	m->cell = cell;
1090 
1091 	/*
1092 	 * If the whole block of data is being overwritten or we are not
1093 	 * zeroing pre-existing data, we can issue the bio immediately.
1094 	 * Otherwise we use kcopyd to zero the data first.
1095 	 */
1096 	if (!pool->pf.zero_new_blocks)
1097 		process_prepared_mapping(m);
1098 
1099 	else if (io_overwrites_block(pool, bio))
1100 		remap_and_issue_overwrite(tc, bio, data_block, m);
1101 
1102 	else
1103 		ll_zero(tc, m,
1104 			data_block * pool->sectors_per_block,
1105 			(data_block + 1) * pool->sectors_per_block);
1106 }
1107 
1108 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1109 				   dm_block_t data_dest,
1110 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1111 {
1112 	struct pool *pool = tc->pool;
1113 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1114 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1115 
1116 	if (virt_block_end <= tc->origin_size)
1117 		schedule_copy(tc, virt_block, tc->origin_dev,
1118 			      virt_block, data_dest, cell, bio,
1119 			      pool->sectors_per_block);
1120 
1121 	else if (virt_block_begin < tc->origin_size)
1122 		schedule_copy(tc, virt_block, tc->origin_dev,
1123 			      virt_block, data_dest, cell, bio,
1124 			      tc->origin_size - virt_block_begin);
1125 
1126 	else
1127 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1128 }
1129 
1130 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1131 
1132 static void check_for_space(struct pool *pool)
1133 {
1134 	int r;
1135 	dm_block_t nr_free;
1136 
1137 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1138 		return;
1139 
1140 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1141 	if (r)
1142 		return;
1143 
1144 	if (nr_free)
1145 		set_pool_mode(pool, PM_WRITE);
1146 }
1147 
1148 /*
1149  * A non-zero return indicates read_only or fail_io mode.
1150  * Many callers don't care about the return value.
1151  */
1152 static int commit(struct pool *pool)
1153 {
1154 	int r;
1155 
1156 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1157 		return -EINVAL;
1158 
1159 	r = dm_pool_commit_metadata(pool->pmd);
1160 	if (r)
1161 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1162 	else
1163 		check_for_space(pool);
1164 
1165 	return r;
1166 }
1167 
1168 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1169 {
1170 	unsigned long flags;
1171 
1172 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1173 		DMWARN("%s: reached low water mark for data device: sending event.",
1174 		       dm_device_name(pool->pool_md));
1175 		spin_lock_irqsave(&pool->lock, flags);
1176 		pool->low_water_triggered = true;
1177 		spin_unlock_irqrestore(&pool->lock, flags);
1178 		dm_table_event(pool->ti->table);
1179 	}
1180 }
1181 
1182 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1183 {
1184 	int r;
1185 	dm_block_t free_blocks;
1186 	struct pool *pool = tc->pool;
1187 
1188 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1189 		return -EINVAL;
1190 
1191 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1192 	if (r) {
1193 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1194 		return r;
1195 	}
1196 
1197 	check_low_water_mark(pool, free_blocks);
1198 
1199 	if (!free_blocks) {
1200 		/*
1201 		 * Try to commit to see if that will free up some
1202 		 * more space.
1203 		 */
1204 		r = commit(pool);
1205 		if (r)
1206 			return r;
1207 
1208 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1209 		if (r) {
1210 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1211 			return r;
1212 		}
1213 
1214 		if (!free_blocks) {
1215 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1216 			return -ENOSPC;
1217 		}
1218 	}
1219 
1220 	r = dm_pool_alloc_data_block(pool->pmd, result);
1221 	if (r) {
1222 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1223 		return r;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /*
1230  * If we have run out of space, queue bios until the device is
1231  * resumed, presumably after having been reloaded with more space.
1232  */
1233 static void retry_on_resume(struct bio *bio)
1234 {
1235 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1236 	struct thin_c *tc = h->tc;
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&tc->lock, flags);
1240 	bio_list_add(&tc->retry_on_resume_list, bio);
1241 	spin_unlock_irqrestore(&tc->lock, flags);
1242 }
1243 
1244 static int should_error_unserviceable_bio(struct pool *pool)
1245 {
1246 	enum pool_mode m = get_pool_mode(pool);
1247 
1248 	switch (m) {
1249 	case PM_WRITE:
1250 		/* Shouldn't get here */
1251 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1252 		return -EIO;
1253 
1254 	case PM_OUT_OF_DATA_SPACE:
1255 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1256 
1257 	case PM_READ_ONLY:
1258 	case PM_FAIL:
1259 		return -EIO;
1260 	default:
1261 		/* Shouldn't get here */
1262 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1263 		return -EIO;
1264 	}
1265 }
1266 
1267 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1268 {
1269 	int error = should_error_unserviceable_bio(pool);
1270 
1271 	if (error)
1272 		bio_endio(bio, error);
1273 	else
1274 		retry_on_resume(bio);
1275 }
1276 
1277 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1278 {
1279 	struct bio *bio;
1280 	struct bio_list bios;
1281 	int error;
1282 
1283 	error = should_error_unserviceable_bio(pool);
1284 	if (error) {
1285 		cell_error_with_code(pool, cell, error);
1286 		return;
1287 	}
1288 
1289 	bio_list_init(&bios);
1290 	cell_release(pool, cell, &bios);
1291 
1292 	while ((bio = bio_list_pop(&bios)))
1293 		retry_on_resume(bio);
1294 }
1295 
1296 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1297 {
1298 	int r;
1299 	struct bio *bio = cell->holder;
1300 	struct pool *pool = tc->pool;
1301 	struct dm_bio_prison_cell *cell2;
1302 	struct dm_cell_key key2;
1303 	dm_block_t block = get_bio_block(tc, bio);
1304 	struct dm_thin_lookup_result lookup_result;
1305 	struct dm_thin_new_mapping *m;
1306 
1307 	if (tc->requeue_mode) {
1308 		cell_requeue(pool, cell);
1309 		return;
1310 	}
1311 
1312 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1313 	switch (r) {
1314 	case 0:
1315 		/*
1316 		 * Check nobody is fiddling with this pool block.  This can
1317 		 * happen if someone's in the process of breaking sharing
1318 		 * on this block.
1319 		 */
1320 		build_data_key(tc->td, lookup_result.block, &key2);
1321 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1322 			cell_defer_no_holder(tc, cell);
1323 			break;
1324 		}
1325 
1326 		if (io_overlaps_block(pool, bio)) {
1327 			/*
1328 			 * IO may still be going to the destination block.  We must
1329 			 * quiesce before we can do the removal.
1330 			 */
1331 			m = get_next_mapping(pool);
1332 			m->tc = tc;
1333 			m->pass_discard = pool->pf.discard_passdown;
1334 			m->definitely_not_shared = !lookup_result.shared;
1335 			m->virt_block = block;
1336 			m->data_block = lookup_result.block;
1337 			m->cell = cell;
1338 			m->cell2 = cell2;
1339 			m->bio = bio;
1340 
1341 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1342 				pool->process_prepared_discard(m);
1343 
1344 		} else {
1345 			inc_all_io_entry(pool, bio);
1346 			cell_defer_no_holder(tc, cell);
1347 			cell_defer_no_holder(tc, cell2);
1348 
1349 			/*
1350 			 * The DM core makes sure that the discard doesn't span
1351 			 * a block boundary.  So we submit the discard of a
1352 			 * partial block appropriately.
1353 			 */
1354 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1355 				remap_and_issue(tc, bio, lookup_result.block);
1356 			else
1357 				bio_endio(bio, 0);
1358 		}
1359 		break;
1360 
1361 	case -ENODATA:
1362 		/*
1363 		 * It isn't provisioned, just forget it.
1364 		 */
1365 		cell_defer_no_holder(tc, cell);
1366 		bio_endio(bio, 0);
1367 		break;
1368 
1369 	default:
1370 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1371 			    __func__, r);
1372 		cell_defer_no_holder(tc, cell);
1373 		bio_io_error(bio);
1374 		break;
1375 	}
1376 }
1377 
1378 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1379 {
1380 	struct dm_bio_prison_cell *cell;
1381 	struct dm_cell_key key;
1382 	dm_block_t block = get_bio_block(tc, bio);
1383 
1384 	build_virtual_key(tc->td, block, &key);
1385 	if (bio_detain(tc->pool, &key, bio, &cell))
1386 		return;
1387 
1388 	process_discard_cell(tc, cell);
1389 }
1390 
1391 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1392 			  struct dm_cell_key *key,
1393 			  struct dm_thin_lookup_result *lookup_result,
1394 			  struct dm_bio_prison_cell *cell)
1395 {
1396 	int r;
1397 	dm_block_t data_block;
1398 	struct pool *pool = tc->pool;
1399 
1400 	r = alloc_data_block(tc, &data_block);
1401 	switch (r) {
1402 	case 0:
1403 		schedule_internal_copy(tc, block, lookup_result->block,
1404 				       data_block, cell, bio);
1405 		break;
1406 
1407 	case -ENOSPC:
1408 		retry_bios_on_resume(pool, cell);
1409 		break;
1410 
1411 	default:
1412 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1413 			    __func__, r);
1414 		cell_error(pool, cell);
1415 		break;
1416 	}
1417 }
1418 
1419 static void __remap_and_issue_shared_cell(void *context,
1420 					  struct dm_bio_prison_cell *cell)
1421 {
1422 	struct remap_info *info = context;
1423 	struct bio *bio;
1424 
1425 	while ((bio = bio_list_pop(&cell->bios))) {
1426 		if ((bio_data_dir(bio) == WRITE) ||
1427 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1428 			bio_list_add(&info->defer_bios, bio);
1429 		else {
1430 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1431 
1432 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1433 			inc_all_io_entry(info->tc->pool, bio);
1434 			bio_list_add(&info->issue_bios, bio);
1435 		}
1436 	}
1437 }
1438 
1439 static void remap_and_issue_shared_cell(struct thin_c *tc,
1440 					struct dm_bio_prison_cell *cell,
1441 					dm_block_t block)
1442 {
1443 	struct bio *bio;
1444 	struct remap_info info;
1445 
1446 	info.tc = tc;
1447 	bio_list_init(&info.defer_bios);
1448 	bio_list_init(&info.issue_bios);
1449 
1450 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1451 			   &info, cell);
1452 
1453 	while ((bio = bio_list_pop(&info.defer_bios)))
1454 		thin_defer_bio(tc, bio);
1455 
1456 	while ((bio = bio_list_pop(&info.issue_bios)))
1457 		remap_and_issue(tc, bio, block);
1458 }
1459 
1460 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1461 			       dm_block_t block,
1462 			       struct dm_thin_lookup_result *lookup_result,
1463 			       struct dm_bio_prison_cell *virt_cell)
1464 {
1465 	struct dm_bio_prison_cell *data_cell;
1466 	struct pool *pool = tc->pool;
1467 	struct dm_cell_key key;
1468 
1469 	/*
1470 	 * If cell is already occupied, then sharing is already in the process
1471 	 * of being broken so we have nothing further to do here.
1472 	 */
1473 	build_data_key(tc->td, lookup_result->block, &key);
1474 	if (bio_detain(pool, &key, bio, &data_cell)) {
1475 		cell_defer_no_holder(tc, virt_cell);
1476 		return;
1477 	}
1478 
1479 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1480 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1481 		cell_defer_no_holder(tc, virt_cell);
1482 	} else {
1483 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1484 
1485 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1486 		inc_all_io_entry(pool, bio);
1487 		remap_and_issue(tc, bio, lookup_result->block);
1488 
1489 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1490 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1491 	}
1492 }
1493 
1494 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1495 			    struct dm_bio_prison_cell *cell)
1496 {
1497 	int r;
1498 	dm_block_t data_block;
1499 	struct pool *pool = tc->pool;
1500 
1501 	/*
1502 	 * Remap empty bios (flushes) immediately, without provisioning.
1503 	 */
1504 	if (!bio->bi_iter.bi_size) {
1505 		inc_all_io_entry(pool, bio);
1506 		cell_defer_no_holder(tc, cell);
1507 
1508 		remap_and_issue(tc, bio, 0);
1509 		return;
1510 	}
1511 
1512 	/*
1513 	 * Fill read bios with zeroes and complete them immediately.
1514 	 */
1515 	if (bio_data_dir(bio) == READ) {
1516 		zero_fill_bio(bio);
1517 		cell_defer_no_holder(tc, cell);
1518 		bio_endio(bio, 0);
1519 		return;
1520 	}
1521 
1522 	r = alloc_data_block(tc, &data_block);
1523 	switch (r) {
1524 	case 0:
1525 		if (tc->origin_dev)
1526 			schedule_external_copy(tc, block, data_block, cell, bio);
1527 		else
1528 			schedule_zero(tc, block, data_block, cell, bio);
1529 		break;
1530 
1531 	case -ENOSPC:
1532 		retry_bios_on_resume(pool, cell);
1533 		break;
1534 
1535 	default:
1536 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1537 			    __func__, r);
1538 		cell_error(pool, cell);
1539 		break;
1540 	}
1541 }
1542 
1543 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1544 {
1545 	int r;
1546 	struct pool *pool = tc->pool;
1547 	struct bio *bio = cell->holder;
1548 	dm_block_t block = get_bio_block(tc, bio);
1549 	struct dm_thin_lookup_result lookup_result;
1550 
1551 	if (tc->requeue_mode) {
1552 		cell_requeue(pool, cell);
1553 		return;
1554 	}
1555 
1556 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1557 	switch (r) {
1558 	case 0:
1559 		if (lookup_result.shared)
1560 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1561 		else {
1562 			inc_all_io_entry(pool, bio);
1563 			remap_and_issue(tc, bio, lookup_result.block);
1564 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1565 		}
1566 		break;
1567 
1568 	case -ENODATA:
1569 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1570 			inc_all_io_entry(pool, bio);
1571 			cell_defer_no_holder(tc, cell);
1572 
1573 			if (bio_end_sector(bio) <= tc->origin_size)
1574 				remap_to_origin_and_issue(tc, bio);
1575 
1576 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1577 				zero_fill_bio(bio);
1578 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1579 				remap_to_origin_and_issue(tc, bio);
1580 
1581 			} else {
1582 				zero_fill_bio(bio);
1583 				bio_endio(bio, 0);
1584 			}
1585 		} else
1586 			provision_block(tc, bio, block, cell);
1587 		break;
1588 
1589 	default:
1590 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1591 			    __func__, r);
1592 		cell_defer_no_holder(tc, cell);
1593 		bio_io_error(bio);
1594 		break;
1595 	}
1596 }
1597 
1598 static void process_bio(struct thin_c *tc, struct bio *bio)
1599 {
1600 	struct pool *pool = tc->pool;
1601 	dm_block_t block = get_bio_block(tc, bio);
1602 	struct dm_bio_prison_cell *cell;
1603 	struct dm_cell_key key;
1604 
1605 	/*
1606 	 * If cell is already occupied, then the block is already
1607 	 * being provisioned so we have nothing further to do here.
1608 	 */
1609 	build_virtual_key(tc->td, block, &key);
1610 	if (bio_detain(pool, &key, bio, &cell))
1611 		return;
1612 
1613 	process_cell(tc, cell);
1614 }
1615 
1616 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1617 				    struct dm_bio_prison_cell *cell)
1618 {
1619 	int r;
1620 	int rw = bio_data_dir(bio);
1621 	dm_block_t block = get_bio_block(tc, bio);
1622 	struct dm_thin_lookup_result lookup_result;
1623 
1624 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1625 	switch (r) {
1626 	case 0:
1627 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1628 			handle_unserviceable_bio(tc->pool, bio);
1629 			if (cell)
1630 				cell_defer_no_holder(tc, cell);
1631 		} else {
1632 			inc_all_io_entry(tc->pool, bio);
1633 			remap_and_issue(tc, bio, lookup_result.block);
1634 			if (cell)
1635 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1636 		}
1637 		break;
1638 
1639 	case -ENODATA:
1640 		if (cell)
1641 			cell_defer_no_holder(tc, cell);
1642 		if (rw != READ) {
1643 			handle_unserviceable_bio(tc->pool, bio);
1644 			break;
1645 		}
1646 
1647 		if (tc->origin_dev) {
1648 			inc_all_io_entry(tc->pool, bio);
1649 			remap_to_origin_and_issue(tc, bio);
1650 			break;
1651 		}
1652 
1653 		zero_fill_bio(bio);
1654 		bio_endio(bio, 0);
1655 		break;
1656 
1657 	default:
1658 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1659 			    __func__, r);
1660 		if (cell)
1661 			cell_defer_no_holder(tc, cell);
1662 		bio_io_error(bio);
1663 		break;
1664 	}
1665 }
1666 
1667 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1668 {
1669 	__process_bio_read_only(tc, bio, NULL);
1670 }
1671 
1672 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1673 {
1674 	__process_bio_read_only(tc, cell->holder, cell);
1675 }
1676 
1677 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1678 {
1679 	bio_endio(bio, 0);
1680 }
1681 
1682 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1683 {
1684 	bio_io_error(bio);
1685 }
1686 
1687 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1688 {
1689 	cell_success(tc->pool, cell);
1690 }
1691 
1692 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1693 {
1694 	cell_error(tc->pool, cell);
1695 }
1696 
1697 /*
1698  * FIXME: should we also commit due to size of transaction, measured in
1699  * metadata blocks?
1700  */
1701 static int need_commit_due_to_time(struct pool *pool)
1702 {
1703 	return jiffies < pool->last_commit_jiffies ||
1704 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1705 }
1706 
1707 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1708 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1709 
1710 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1711 {
1712 	struct rb_node **rbp, *parent;
1713 	struct dm_thin_endio_hook *pbd;
1714 	sector_t bi_sector = bio->bi_iter.bi_sector;
1715 
1716 	rbp = &tc->sort_bio_list.rb_node;
1717 	parent = NULL;
1718 	while (*rbp) {
1719 		parent = *rbp;
1720 		pbd = thin_pbd(parent);
1721 
1722 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1723 			rbp = &(*rbp)->rb_left;
1724 		else
1725 			rbp = &(*rbp)->rb_right;
1726 	}
1727 
1728 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1729 	rb_link_node(&pbd->rb_node, parent, rbp);
1730 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1731 }
1732 
1733 static void __extract_sorted_bios(struct thin_c *tc)
1734 {
1735 	struct rb_node *node;
1736 	struct dm_thin_endio_hook *pbd;
1737 	struct bio *bio;
1738 
1739 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1740 		pbd = thin_pbd(node);
1741 		bio = thin_bio(pbd);
1742 
1743 		bio_list_add(&tc->deferred_bio_list, bio);
1744 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1745 	}
1746 
1747 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1748 }
1749 
1750 static void __sort_thin_deferred_bios(struct thin_c *tc)
1751 {
1752 	struct bio *bio;
1753 	struct bio_list bios;
1754 
1755 	bio_list_init(&bios);
1756 	bio_list_merge(&bios, &tc->deferred_bio_list);
1757 	bio_list_init(&tc->deferred_bio_list);
1758 
1759 	/* Sort deferred_bio_list using rb-tree */
1760 	while ((bio = bio_list_pop(&bios)))
1761 		__thin_bio_rb_add(tc, bio);
1762 
1763 	/*
1764 	 * Transfer the sorted bios in sort_bio_list back to
1765 	 * deferred_bio_list to allow lockless submission of
1766 	 * all bios.
1767 	 */
1768 	__extract_sorted_bios(tc);
1769 }
1770 
1771 static void process_thin_deferred_bios(struct thin_c *tc)
1772 {
1773 	struct pool *pool = tc->pool;
1774 	unsigned long flags;
1775 	struct bio *bio;
1776 	struct bio_list bios;
1777 	struct blk_plug plug;
1778 	unsigned count = 0;
1779 
1780 	if (tc->requeue_mode) {
1781 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1782 		return;
1783 	}
1784 
1785 	bio_list_init(&bios);
1786 
1787 	spin_lock_irqsave(&tc->lock, flags);
1788 
1789 	if (bio_list_empty(&tc->deferred_bio_list)) {
1790 		spin_unlock_irqrestore(&tc->lock, flags);
1791 		return;
1792 	}
1793 
1794 	__sort_thin_deferred_bios(tc);
1795 
1796 	bio_list_merge(&bios, &tc->deferred_bio_list);
1797 	bio_list_init(&tc->deferred_bio_list);
1798 
1799 	spin_unlock_irqrestore(&tc->lock, flags);
1800 
1801 	blk_start_plug(&plug);
1802 	while ((bio = bio_list_pop(&bios))) {
1803 		/*
1804 		 * If we've got no free new_mapping structs, and processing
1805 		 * this bio might require one, we pause until there are some
1806 		 * prepared mappings to process.
1807 		 */
1808 		if (ensure_next_mapping(pool)) {
1809 			spin_lock_irqsave(&tc->lock, flags);
1810 			bio_list_add(&tc->deferred_bio_list, bio);
1811 			bio_list_merge(&tc->deferred_bio_list, &bios);
1812 			spin_unlock_irqrestore(&tc->lock, flags);
1813 			break;
1814 		}
1815 
1816 		if (bio->bi_rw & REQ_DISCARD)
1817 			pool->process_discard(tc, bio);
1818 		else
1819 			pool->process_bio(tc, bio);
1820 
1821 		if ((count++ & 127) == 0) {
1822 			throttle_work_update(&pool->throttle);
1823 			dm_pool_issue_prefetches(pool->pmd);
1824 		}
1825 	}
1826 	blk_finish_plug(&plug);
1827 }
1828 
1829 static int cmp_cells(const void *lhs, const void *rhs)
1830 {
1831 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1832 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1833 
1834 	BUG_ON(!lhs_cell->holder);
1835 	BUG_ON(!rhs_cell->holder);
1836 
1837 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1838 		return -1;
1839 
1840 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1841 		return 1;
1842 
1843 	return 0;
1844 }
1845 
1846 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1847 {
1848 	unsigned count = 0;
1849 	struct dm_bio_prison_cell *cell, *tmp;
1850 
1851 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
1852 		if (count >= CELL_SORT_ARRAY_SIZE)
1853 			break;
1854 
1855 		pool->cell_sort_array[count++] = cell;
1856 		list_del(&cell->user_list);
1857 	}
1858 
1859 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1860 
1861 	return count;
1862 }
1863 
1864 static void process_thin_deferred_cells(struct thin_c *tc)
1865 {
1866 	struct pool *pool = tc->pool;
1867 	unsigned long flags;
1868 	struct list_head cells;
1869 	struct dm_bio_prison_cell *cell;
1870 	unsigned i, j, count;
1871 
1872 	INIT_LIST_HEAD(&cells);
1873 
1874 	spin_lock_irqsave(&tc->lock, flags);
1875 	list_splice_init(&tc->deferred_cells, &cells);
1876 	spin_unlock_irqrestore(&tc->lock, flags);
1877 
1878 	if (list_empty(&cells))
1879 		return;
1880 
1881 	do {
1882 		count = sort_cells(tc->pool, &cells);
1883 
1884 		for (i = 0; i < count; i++) {
1885 			cell = pool->cell_sort_array[i];
1886 			BUG_ON(!cell->holder);
1887 
1888 			/*
1889 			 * If we've got no free new_mapping structs, and processing
1890 			 * this bio might require one, we pause until there are some
1891 			 * prepared mappings to process.
1892 			 */
1893 			if (ensure_next_mapping(pool)) {
1894 				for (j = i; j < count; j++)
1895 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
1896 
1897 				spin_lock_irqsave(&tc->lock, flags);
1898 				list_splice(&cells, &tc->deferred_cells);
1899 				spin_unlock_irqrestore(&tc->lock, flags);
1900 				return;
1901 			}
1902 
1903 			if (cell->holder->bi_rw & REQ_DISCARD)
1904 				pool->process_discard_cell(tc, cell);
1905 			else
1906 				pool->process_cell(tc, cell);
1907 		}
1908 	} while (!list_empty(&cells));
1909 }
1910 
1911 static void thin_get(struct thin_c *tc);
1912 static void thin_put(struct thin_c *tc);
1913 
1914 /*
1915  * We can't hold rcu_read_lock() around code that can block.  So we
1916  * find a thin with the rcu lock held; bump a refcount; then drop
1917  * the lock.
1918  */
1919 static struct thin_c *get_first_thin(struct pool *pool)
1920 {
1921 	struct thin_c *tc = NULL;
1922 
1923 	rcu_read_lock();
1924 	if (!list_empty(&pool->active_thins)) {
1925 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1926 		thin_get(tc);
1927 	}
1928 	rcu_read_unlock();
1929 
1930 	return tc;
1931 }
1932 
1933 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1934 {
1935 	struct thin_c *old_tc = tc;
1936 
1937 	rcu_read_lock();
1938 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1939 		thin_get(tc);
1940 		thin_put(old_tc);
1941 		rcu_read_unlock();
1942 		return tc;
1943 	}
1944 	thin_put(old_tc);
1945 	rcu_read_unlock();
1946 
1947 	return NULL;
1948 }
1949 
1950 static void process_deferred_bios(struct pool *pool)
1951 {
1952 	unsigned long flags;
1953 	struct bio *bio;
1954 	struct bio_list bios;
1955 	struct thin_c *tc;
1956 
1957 	tc = get_first_thin(pool);
1958 	while (tc) {
1959 		process_thin_deferred_cells(tc);
1960 		process_thin_deferred_bios(tc);
1961 		tc = get_next_thin(pool, tc);
1962 	}
1963 
1964 	/*
1965 	 * If there are any deferred flush bios, we must commit
1966 	 * the metadata before issuing them.
1967 	 */
1968 	bio_list_init(&bios);
1969 	spin_lock_irqsave(&pool->lock, flags);
1970 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1971 	bio_list_init(&pool->deferred_flush_bios);
1972 	spin_unlock_irqrestore(&pool->lock, flags);
1973 
1974 	if (bio_list_empty(&bios) &&
1975 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1976 		return;
1977 
1978 	if (commit(pool)) {
1979 		while ((bio = bio_list_pop(&bios)))
1980 			bio_io_error(bio);
1981 		return;
1982 	}
1983 	pool->last_commit_jiffies = jiffies;
1984 
1985 	while ((bio = bio_list_pop(&bios)))
1986 		generic_make_request(bio);
1987 }
1988 
1989 static void do_worker(struct work_struct *ws)
1990 {
1991 	struct pool *pool = container_of(ws, struct pool, worker);
1992 
1993 	throttle_work_start(&pool->throttle);
1994 	dm_pool_issue_prefetches(pool->pmd);
1995 	throttle_work_update(&pool->throttle);
1996 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1997 	throttle_work_update(&pool->throttle);
1998 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1999 	throttle_work_update(&pool->throttle);
2000 	process_deferred_bios(pool);
2001 	throttle_work_complete(&pool->throttle);
2002 }
2003 
2004 /*
2005  * We want to commit periodically so that not too much
2006  * unwritten data builds up.
2007  */
2008 static void do_waker(struct work_struct *ws)
2009 {
2010 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2011 	wake_worker(pool);
2012 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2013 }
2014 
2015 /*
2016  * We're holding onto IO to allow userland time to react.  After the
2017  * timeout either the pool will have been resized (and thus back in
2018  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2019  */
2020 static void do_no_space_timeout(struct work_struct *ws)
2021 {
2022 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2023 					 no_space_timeout);
2024 
2025 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2026 		set_pool_mode(pool, PM_READ_ONLY);
2027 }
2028 
2029 /*----------------------------------------------------------------*/
2030 
2031 struct pool_work {
2032 	struct work_struct worker;
2033 	struct completion complete;
2034 };
2035 
2036 static struct pool_work *to_pool_work(struct work_struct *ws)
2037 {
2038 	return container_of(ws, struct pool_work, worker);
2039 }
2040 
2041 static void pool_work_complete(struct pool_work *pw)
2042 {
2043 	complete(&pw->complete);
2044 }
2045 
2046 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2047 			   void (*fn)(struct work_struct *))
2048 {
2049 	INIT_WORK_ONSTACK(&pw->worker, fn);
2050 	init_completion(&pw->complete);
2051 	queue_work(pool->wq, &pw->worker);
2052 	wait_for_completion(&pw->complete);
2053 }
2054 
2055 /*----------------------------------------------------------------*/
2056 
2057 struct noflush_work {
2058 	struct pool_work pw;
2059 	struct thin_c *tc;
2060 };
2061 
2062 static struct noflush_work *to_noflush(struct work_struct *ws)
2063 {
2064 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2065 }
2066 
2067 static void do_noflush_start(struct work_struct *ws)
2068 {
2069 	struct noflush_work *w = to_noflush(ws);
2070 	w->tc->requeue_mode = true;
2071 	requeue_io(w->tc);
2072 	pool_work_complete(&w->pw);
2073 }
2074 
2075 static void do_noflush_stop(struct work_struct *ws)
2076 {
2077 	struct noflush_work *w = to_noflush(ws);
2078 	w->tc->requeue_mode = false;
2079 	pool_work_complete(&w->pw);
2080 }
2081 
2082 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2083 {
2084 	struct noflush_work w;
2085 
2086 	w.tc = tc;
2087 	pool_work_wait(&w.pw, tc->pool, fn);
2088 }
2089 
2090 /*----------------------------------------------------------------*/
2091 
2092 static enum pool_mode get_pool_mode(struct pool *pool)
2093 {
2094 	return pool->pf.mode;
2095 }
2096 
2097 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2098 {
2099 	dm_table_event(pool->ti->table);
2100 	DMINFO("%s: switching pool to %s mode",
2101 	       dm_device_name(pool->pool_md), new_mode);
2102 }
2103 
2104 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2105 {
2106 	struct pool_c *pt = pool->ti->private;
2107 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2108 	enum pool_mode old_mode = get_pool_mode(pool);
2109 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2110 
2111 	/*
2112 	 * Never allow the pool to transition to PM_WRITE mode if user
2113 	 * intervention is required to verify metadata and data consistency.
2114 	 */
2115 	if (new_mode == PM_WRITE && needs_check) {
2116 		DMERR("%s: unable to switch pool to write mode until repaired.",
2117 		      dm_device_name(pool->pool_md));
2118 		if (old_mode != new_mode)
2119 			new_mode = old_mode;
2120 		else
2121 			new_mode = PM_READ_ONLY;
2122 	}
2123 	/*
2124 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2125 	 * not going to recover without a thin_repair.	So we never let the
2126 	 * pool move out of the old mode.
2127 	 */
2128 	if (old_mode == PM_FAIL)
2129 		new_mode = old_mode;
2130 
2131 	switch (new_mode) {
2132 	case PM_FAIL:
2133 		if (old_mode != new_mode)
2134 			notify_of_pool_mode_change(pool, "failure");
2135 		dm_pool_metadata_read_only(pool->pmd);
2136 		pool->process_bio = process_bio_fail;
2137 		pool->process_discard = process_bio_fail;
2138 		pool->process_cell = process_cell_fail;
2139 		pool->process_discard_cell = process_cell_fail;
2140 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2141 		pool->process_prepared_discard = process_prepared_discard_fail;
2142 
2143 		error_retry_list(pool);
2144 		break;
2145 
2146 	case PM_READ_ONLY:
2147 		if (old_mode != new_mode)
2148 			notify_of_pool_mode_change(pool, "read-only");
2149 		dm_pool_metadata_read_only(pool->pmd);
2150 		pool->process_bio = process_bio_read_only;
2151 		pool->process_discard = process_bio_success;
2152 		pool->process_cell = process_cell_read_only;
2153 		pool->process_discard_cell = process_cell_success;
2154 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2155 		pool->process_prepared_discard = process_prepared_discard_passdown;
2156 
2157 		error_retry_list(pool);
2158 		break;
2159 
2160 	case PM_OUT_OF_DATA_SPACE:
2161 		/*
2162 		 * Ideally we'd never hit this state; the low water mark
2163 		 * would trigger userland to extend the pool before we
2164 		 * completely run out of data space.  However, many small
2165 		 * IOs to unprovisioned space can consume data space at an
2166 		 * alarming rate.  Adjust your low water mark if you're
2167 		 * frequently seeing this mode.
2168 		 */
2169 		if (old_mode != new_mode)
2170 			notify_of_pool_mode_change(pool, "out-of-data-space");
2171 		pool->process_bio = process_bio_read_only;
2172 		pool->process_discard = process_discard_bio;
2173 		pool->process_cell = process_cell_read_only;
2174 		pool->process_discard_cell = process_discard_cell;
2175 		pool->process_prepared_mapping = process_prepared_mapping;
2176 		pool->process_prepared_discard = process_prepared_discard;
2177 
2178 		if (!pool->pf.error_if_no_space && no_space_timeout)
2179 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2180 		break;
2181 
2182 	case PM_WRITE:
2183 		if (old_mode != new_mode)
2184 			notify_of_pool_mode_change(pool, "write");
2185 		dm_pool_metadata_read_write(pool->pmd);
2186 		pool->process_bio = process_bio;
2187 		pool->process_discard = process_discard_bio;
2188 		pool->process_cell = process_cell;
2189 		pool->process_discard_cell = process_discard_cell;
2190 		pool->process_prepared_mapping = process_prepared_mapping;
2191 		pool->process_prepared_discard = process_prepared_discard;
2192 		break;
2193 	}
2194 
2195 	pool->pf.mode = new_mode;
2196 	/*
2197 	 * The pool mode may have changed, sync it so bind_control_target()
2198 	 * doesn't cause an unexpected mode transition on resume.
2199 	 */
2200 	pt->adjusted_pf.mode = new_mode;
2201 }
2202 
2203 static void abort_transaction(struct pool *pool)
2204 {
2205 	const char *dev_name = dm_device_name(pool->pool_md);
2206 
2207 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2208 	if (dm_pool_abort_metadata(pool->pmd)) {
2209 		DMERR("%s: failed to abort metadata transaction", dev_name);
2210 		set_pool_mode(pool, PM_FAIL);
2211 	}
2212 
2213 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2214 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2215 		set_pool_mode(pool, PM_FAIL);
2216 	}
2217 }
2218 
2219 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2220 {
2221 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2222 		    dm_device_name(pool->pool_md), op, r);
2223 
2224 	abort_transaction(pool);
2225 	set_pool_mode(pool, PM_READ_ONLY);
2226 }
2227 
2228 /*----------------------------------------------------------------*/
2229 
2230 /*
2231  * Mapping functions.
2232  */
2233 
2234 /*
2235  * Called only while mapping a thin bio to hand it over to the workqueue.
2236  */
2237 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2238 {
2239 	unsigned long flags;
2240 	struct pool *pool = tc->pool;
2241 
2242 	spin_lock_irqsave(&tc->lock, flags);
2243 	bio_list_add(&tc->deferred_bio_list, bio);
2244 	spin_unlock_irqrestore(&tc->lock, flags);
2245 
2246 	wake_worker(pool);
2247 }
2248 
2249 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2250 {
2251 	struct pool *pool = tc->pool;
2252 
2253 	throttle_lock(&pool->throttle);
2254 	thin_defer_bio(tc, bio);
2255 	throttle_unlock(&pool->throttle);
2256 }
2257 
2258 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2259 {
2260 	unsigned long flags;
2261 	struct pool *pool = tc->pool;
2262 
2263 	throttle_lock(&pool->throttle);
2264 	spin_lock_irqsave(&tc->lock, flags);
2265 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2266 	spin_unlock_irqrestore(&tc->lock, flags);
2267 	throttle_unlock(&pool->throttle);
2268 
2269 	wake_worker(pool);
2270 }
2271 
2272 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2273 {
2274 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2275 
2276 	h->tc = tc;
2277 	h->shared_read_entry = NULL;
2278 	h->all_io_entry = NULL;
2279 	h->overwrite_mapping = NULL;
2280 }
2281 
2282 /*
2283  * Non-blocking function called from the thin target's map function.
2284  */
2285 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2286 {
2287 	int r;
2288 	struct thin_c *tc = ti->private;
2289 	dm_block_t block = get_bio_block(tc, bio);
2290 	struct dm_thin_device *td = tc->td;
2291 	struct dm_thin_lookup_result result;
2292 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2293 	struct dm_cell_key key;
2294 
2295 	thin_hook_bio(tc, bio);
2296 
2297 	if (tc->requeue_mode) {
2298 		bio_endio(bio, DM_ENDIO_REQUEUE);
2299 		return DM_MAPIO_SUBMITTED;
2300 	}
2301 
2302 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2303 		bio_io_error(bio);
2304 		return DM_MAPIO_SUBMITTED;
2305 	}
2306 
2307 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2308 		thin_defer_bio_with_throttle(tc, bio);
2309 		return DM_MAPIO_SUBMITTED;
2310 	}
2311 
2312 	/*
2313 	 * We must hold the virtual cell before doing the lookup, otherwise
2314 	 * there's a race with discard.
2315 	 */
2316 	build_virtual_key(tc->td, block, &key);
2317 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2318 		return DM_MAPIO_SUBMITTED;
2319 
2320 	r = dm_thin_find_block(td, block, 0, &result);
2321 
2322 	/*
2323 	 * Note that we defer readahead too.
2324 	 */
2325 	switch (r) {
2326 	case 0:
2327 		if (unlikely(result.shared)) {
2328 			/*
2329 			 * We have a race condition here between the
2330 			 * result.shared value returned by the lookup and
2331 			 * snapshot creation, which may cause new
2332 			 * sharing.
2333 			 *
2334 			 * To avoid this always quiesce the origin before
2335 			 * taking the snap.  You want to do this anyway to
2336 			 * ensure a consistent application view
2337 			 * (i.e. lockfs).
2338 			 *
2339 			 * More distant ancestors are irrelevant. The
2340 			 * shared flag will be set in their case.
2341 			 */
2342 			thin_defer_cell(tc, virt_cell);
2343 			return DM_MAPIO_SUBMITTED;
2344 		}
2345 
2346 		build_data_key(tc->td, result.block, &key);
2347 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2348 			cell_defer_no_holder(tc, virt_cell);
2349 			return DM_MAPIO_SUBMITTED;
2350 		}
2351 
2352 		inc_all_io_entry(tc->pool, bio);
2353 		cell_defer_no_holder(tc, data_cell);
2354 		cell_defer_no_holder(tc, virt_cell);
2355 
2356 		remap(tc, bio, result.block);
2357 		return DM_MAPIO_REMAPPED;
2358 
2359 	case -ENODATA:
2360 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2361 			/*
2362 			 * This block isn't provisioned, and we have no way
2363 			 * of doing so.
2364 			 */
2365 			handle_unserviceable_bio(tc->pool, bio);
2366 			cell_defer_no_holder(tc, virt_cell);
2367 			return DM_MAPIO_SUBMITTED;
2368 		}
2369 		/* fall through */
2370 
2371 	case -EWOULDBLOCK:
2372 		thin_defer_cell(tc, virt_cell);
2373 		return DM_MAPIO_SUBMITTED;
2374 
2375 	default:
2376 		/*
2377 		 * Must always call bio_io_error on failure.
2378 		 * dm_thin_find_block can fail with -EINVAL if the
2379 		 * pool is switched to fail-io mode.
2380 		 */
2381 		bio_io_error(bio);
2382 		cell_defer_no_holder(tc, virt_cell);
2383 		return DM_MAPIO_SUBMITTED;
2384 	}
2385 }
2386 
2387 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2388 {
2389 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2390 	struct request_queue *q;
2391 
2392 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2393 		return 1;
2394 
2395 	q = bdev_get_queue(pt->data_dev->bdev);
2396 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2397 }
2398 
2399 static void requeue_bios(struct pool *pool)
2400 {
2401 	unsigned long flags;
2402 	struct thin_c *tc;
2403 
2404 	rcu_read_lock();
2405 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2406 		spin_lock_irqsave(&tc->lock, flags);
2407 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2408 		bio_list_init(&tc->retry_on_resume_list);
2409 		spin_unlock_irqrestore(&tc->lock, flags);
2410 	}
2411 	rcu_read_unlock();
2412 }
2413 
2414 /*----------------------------------------------------------------
2415  * Binding of control targets to a pool object
2416  *--------------------------------------------------------------*/
2417 static bool data_dev_supports_discard(struct pool_c *pt)
2418 {
2419 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2420 
2421 	return q && blk_queue_discard(q);
2422 }
2423 
2424 static bool is_factor(sector_t block_size, uint32_t n)
2425 {
2426 	return !sector_div(block_size, n);
2427 }
2428 
2429 /*
2430  * If discard_passdown was enabled verify that the data device
2431  * supports discards.  Disable discard_passdown if not.
2432  */
2433 static void disable_passdown_if_not_supported(struct pool_c *pt)
2434 {
2435 	struct pool *pool = pt->pool;
2436 	struct block_device *data_bdev = pt->data_dev->bdev;
2437 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2438 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2439 	const char *reason = NULL;
2440 	char buf[BDEVNAME_SIZE];
2441 
2442 	if (!pt->adjusted_pf.discard_passdown)
2443 		return;
2444 
2445 	if (!data_dev_supports_discard(pt))
2446 		reason = "discard unsupported";
2447 
2448 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2449 		reason = "max discard sectors smaller than a block";
2450 
2451 	else if (data_limits->discard_granularity > block_size)
2452 		reason = "discard granularity larger than a block";
2453 
2454 	else if (!is_factor(block_size, data_limits->discard_granularity))
2455 		reason = "discard granularity not a factor of block size";
2456 
2457 	if (reason) {
2458 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2459 		pt->adjusted_pf.discard_passdown = false;
2460 	}
2461 }
2462 
2463 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2464 {
2465 	struct pool_c *pt = ti->private;
2466 
2467 	/*
2468 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2469 	 */
2470 	enum pool_mode old_mode = get_pool_mode(pool);
2471 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2472 
2473 	/*
2474 	 * Don't change the pool's mode until set_pool_mode() below.
2475 	 * Otherwise the pool's process_* function pointers may
2476 	 * not match the desired pool mode.
2477 	 */
2478 	pt->adjusted_pf.mode = old_mode;
2479 
2480 	pool->ti = ti;
2481 	pool->pf = pt->adjusted_pf;
2482 	pool->low_water_blocks = pt->low_water_blocks;
2483 
2484 	set_pool_mode(pool, new_mode);
2485 
2486 	return 0;
2487 }
2488 
2489 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2490 {
2491 	if (pool->ti == ti)
2492 		pool->ti = NULL;
2493 }
2494 
2495 /*----------------------------------------------------------------
2496  * Pool creation
2497  *--------------------------------------------------------------*/
2498 /* Initialize pool features. */
2499 static void pool_features_init(struct pool_features *pf)
2500 {
2501 	pf->mode = PM_WRITE;
2502 	pf->zero_new_blocks = true;
2503 	pf->discard_enabled = true;
2504 	pf->discard_passdown = true;
2505 	pf->error_if_no_space = false;
2506 }
2507 
2508 static void __pool_destroy(struct pool *pool)
2509 {
2510 	__pool_table_remove(pool);
2511 
2512 	if (dm_pool_metadata_close(pool->pmd) < 0)
2513 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2514 
2515 	dm_bio_prison_destroy(pool->prison);
2516 	dm_kcopyd_client_destroy(pool->copier);
2517 
2518 	if (pool->wq)
2519 		destroy_workqueue(pool->wq);
2520 
2521 	if (pool->next_mapping)
2522 		mempool_free(pool->next_mapping, pool->mapping_pool);
2523 	mempool_destroy(pool->mapping_pool);
2524 	dm_deferred_set_destroy(pool->shared_read_ds);
2525 	dm_deferred_set_destroy(pool->all_io_ds);
2526 	kfree(pool);
2527 }
2528 
2529 static struct kmem_cache *_new_mapping_cache;
2530 
2531 static struct pool *pool_create(struct mapped_device *pool_md,
2532 				struct block_device *metadata_dev,
2533 				unsigned long block_size,
2534 				int read_only, char **error)
2535 {
2536 	int r;
2537 	void *err_p;
2538 	struct pool *pool;
2539 	struct dm_pool_metadata *pmd;
2540 	bool format_device = read_only ? false : true;
2541 
2542 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2543 	if (IS_ERR(pmd)) {
2544 		*error = "Error creating metadata object";
2545 		return (struct pool *)pmd;
2546 	}
2547 
2548 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2549 	if (!pool) {
2550 		*error = "Error allocating memory for pool";
2551 		err_p = ERR_PTR(-ENOMEM);
2552 		goto bad_pool;
2553 	}
2554 
2555 	pool->pmd = pmd;
2556 	pool->sectors_per_block = block_size;
2557 	if (block_size & (block_size - 1))
2558 		pool->sectors_per_block_shift = -1;
2559 	else
2560 		pool->sectors_per_block_shift = __ffs(block_size);
2561 	pool->low_water_blocks = 0;
2562 	pool_features_init(&pool->pf);
2563 	pool->prison = dm_bio_prison_create();
2564 	if (!pool->prison) {
2565 		*error = "Error creating pool's bio prison";
2566 		err_p = ERR_PTR(-ENOMEM);
2567 		goto bad_prison;
2568 	}
2569 
2570 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2571 	if (IS_ERR(pool->copier)) {
2572 		r = PTR_ERR(pool->copier);
2573 		*error = "Error creating pool's kcopyd client";
2574 		err_p = ERR_PTR(r);
2575 		goto bad_kcopyd_client;
2576 	}
2577 
2578 	/*
2579 	 * Create singlethreaded workqueue that will service all devices
2580 	 * that use this metadata.
2581 	 */
2582 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2583 	if (!pool->wq) {
2584 		*error = "Error creating pool's workqueue";
2585 		err_p = ERR_PTR(-ENOMEM);
2586 		goto bad_wq;
2587 	}
2588 
2589 	throttle_init(&pool->throttle);
2590 	INIT_WORK(&pool->worker, do_worker);
2591 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2592 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2593 	spin_lock_init(&pool->lock);
2594 	bio_list_init(&pool->deferred_flush_bios);
2595 	INIT_LIST_HEAD(&pool->prepared_mappings);
2596 	INIT_LIST_HEAD(&pool->prepared_discards);
2597 	INIT_LIST_HEAD(&pool->active_thins);
2598 	pool->low_water_triggered = false;
2599 	pool->suspended = true;
2600 
2601 	pool->shared_read_ds = dm_deferred_set_create();
2602 	if (!pool->shared_read_ds) {
2603 		*error = "Error creating pool's shared read deferred set";
2604 		err_p = ERR_PTR(-ENOMEM);
2605 		goto bad_shared_read_ds;
2606 	}
2607 
2608 	pool->all_io_ds = dm_deferred_set_create();
2609 	if (!pool->all_io_ds) {
2610 		*error = "Error creating pool's all io deferred set";
2611 		err_p = ERR_PTR(-ENOMEM);
2612 		goto bad_all_io_ds;
2613 	}
2614 
2615 	pool->next_mapping = NULL;
2616 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2617 						      _new_mapping_cache);
2618 	if (!pool->mapping_pool) {
2619 		*error = "Error creating pool's mapping mempool";
2620 		err_p = ERR_PTR(-ENOMEM);
2621 		goto bad_mapping_pool;
2622 	}
2623 
2624 	pool->ref_count = 1;
2625 	pool->last_commit_jiffies = jiffies;
2626 	pool->pool_md = pool_md;
2627 	pool->md_dev = metadata_dev;
2628 	__pool_table_insert(pool);
2629 
2630 	return pool;
2631 
2632 bad_mapping_pool:
2633 	dm_deferred_set_destroy(pool->all_io_ds);
2634 bad_all_io_ds:
2635 	dm_deferred_set_destroy(pool->shared_read_ds);
2636 bad_shared_read_ds:
2637 	destroy_workqueue(pool->wq);
2638 bad_wq:
2639 	dm_kcopyd_client_destroy(pool->copier);
2640 bad_kcopyd_client:
2641 	dm_bio_prison_destroy(pool->prison);
2642 bad_prison:
2643 	kfree(pool);
2644 bad_pool:
2645 	if (dm_pool_metadata_close(pmd))
2646 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2647 
2648 	return err_p;
2649 }
2650 
2651 static void __pool_inc(struct pool *pool)
2652 {
2653 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2654 	pool->ref_count++;
2655 }
2656 
2657 static void __pool_dec(struct pool *pool)
2658 {
2659 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2660 	BUG_ON(!pool->ref_count);
2661 	if (!--pool->ref_count)
2662 		__pool_destroy(pool);
2663 }
2664 
2665 static struct pool *__pool_find(struct mapped_device *pool_md,
2666 				struct block_device *metadata_dev,
2667 				unsigned long block_size, int read_only,
2668 				char **error, int *created)
2669 {
2670 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2671 
2672 	if (pool) {
2673 		if (pool->pool_md != pool_md) {
2674 			*error = "metadata device already in use by a pool";
2675 			return ERR_PTR(-EBUSY);
2676 		}
2677 		__pool_inc(pool);
2678 
2679 	} else {
2680 		pool = __pool_table_lookup(pool_md);
2681 		if (pool) {
2682 			if (pool->md_dev != metadata_dev) {
2683 				*error = "different pool cannot replace a pool";
2684 				return ERR_PTR(-EINVAL);
2685 			}
2686 			__pool_inc(pool);
2687 
2688 		} else {
2689 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2690 			*created = 1;
2691 		}
2692 	}
2693 
2694 	return pool;
2695 }
2696 
2697 /*----------------------------------------------------------------
2698  * Pool target methods
2699  *--------------------------------------------------------------*/
2700 static void pool_dtr(struct dm_target *ti)
2701 {
2702 	struct pool_c *pt = ti->private;
2703 
2704 	mutex_lock(&dm_thin_pool_table.mutex);
2705 
2706 	unbind_control_target(pt->pool, ti);
2707 	__pool_dec(pt->pool);
2708 	dm_put_device(ti, pt->metadata_dev);
2709 	dm_put_device(ti, pt->data_dev);
2710 	kfree(pt);
2711 
2712 	mutex_unlock(&dm_thin_pool_table.mutex);
2713 }
2714 
2715 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2716 			       struct dm_target *ti)
2717 {
2718 	int r;
2719 	unsigned argc;
2720 	const char *arg_name;
2721 
2722 	static struct dm_arg _args[] = {
2723 		{0, 4, "Invalid number of pool feature arguments"},
2724 	};
2725 
2726 	/*
2727 	 * No feature arguments supplied.
2728 	 */
2729 	if (!as->argc)
2730 		return 0;
2731 
2732 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2733 	if (r)
2734 		return -EINVAL;
2735 
2736 	while (argc && !r) {
2737 		arg_name = dm_shift_arg(as);
2738 		argc--;
2739 
2740 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2741 			pf->zero_new_blocks = false;
2742 
2743 		else if (!strcasecmp(arg_name, "ignore_discard"))
2744 			pf->discard_enabled = false;
2745 
2746 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2747 			pf->discard_passdown = false;
2748 
2749 		else if (!strcasecmp(arg_name, "read_only"))
2750 			pf->mode = PM_READ_ONLY;
2751 
2752 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2753 			pf->error_if_no_space = true;
2754 
2755 		else {
2756 			ti->error = "Unrecognised pool feature requested";
2757 			r = -EINVAL;
2758 			break;
2759 		}
2760 	}
2761 
2762 	return r;
2763 }
2764 
2765 static void metadata_low_callback(void *context)
2766 {
2767 	struct pool *pool = context;
2768 
2769 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2770 	       dm_device_name(pool->pool_md));
2771 
2772 	dm_table_event(pool->ti->table);
2773 }
2774 
2775 static sector_t get_dev_size(struct block_device *bdev)
2776 {
2777 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2778 }
2779 
2780 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2781 {
2782 	sector_t metadata_dev_size = get_dev_size(bdev);
2783 	char buffer[BDEVNAME_SIZE];
2784 
2785 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2786 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2787 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2788 }
2789 
2790 static sector_t get_metadata_dev_size(struct block_device *bdev)
2791 {
2792 	sector_t metadata_dev_size = get_dev_size(bdev);
2793 
2794 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2795 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2796 
2797 	return metadata_dev_size;
2798 }
2799 
2800 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2801 {
2802 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2803 
2804 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2805 
2806 	return metadata_dev_size;
2807 }
2808 
2809 /*
2810  * When a metadata threshold is crossed a dm event is triggered, and
2811  * userland should respond by growing the metadata device.  We could let
2812  * userland set the threshold, like we do with the data threshold, but I'm
2813  * not sure they know enough to do this well.
2814  */
2815 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2816 {
2817 	/*
2818 	 * 4M is ample for all ops with the possible exception of thin
2819 	 * device deletion which is harmless if it fails (just retry the
2820 	 * delete after you've grown the device).
2821 	 */
2822 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2823 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2824 }
2825 
2826 /*
2827  * thin-pool <metadata dev> <data dev>
2828  *	     <data block size (sectors)>
2829  *	     <low water mark (blocks)>
2830  *	     [<#feature args> [<arg>]*]
2831  *
2832  * Optional feature arguments are:
2833  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2834  *	     ignore_discard: disable discard
2835  *	     no_discard_passdown: don't pass discards down to the data device
2836  *	     read_only: Don't allow any changes to be made to the pool metadata.
2837  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2838  */
2839 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2840 {
2841 	int r, pool_created = 0;
2842 	struct pool_c *pt;
2843 	struct pool *pool;
2844 	struct pool_features pf;
2845 	struct dm_arg_set as;
2846 	struct dm_dev *data_dev;
2847 	unsigned long block_size;
2848 	dm_block_t low_water_blocks;
2849 	struct dm_dev *metadata_dev;
2850 	fmode_t metadata_mode;
2851 
2852 	/*
2853 	 * FIXME Remove validation from scope of lock.
2854 	 */
2855 	mutex_lock(&dm_thin_pool_table.mutex);
2856 
2857 	if (argc < 4) {
2858 		ti->error = "Invalid argument count";
2859 		r = -EINVAL;
2860 		goto out_unlock;
2861 	}
2862 
2863 	as.argc = argc;
2864 	as.argv = argv;
2865 
2866 	/*
2867 	 * Set default pool features.
2868 	 */
2869 	pool_features_init(&pf);
2870 
2871 	dm_consume_args(&as, 4);
2872 	r = parse_pool_features(&as, &pf, ti);
2873 	if (r)
2874 		goto out_unlock;
2875 
2876 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2877 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2878 	if (r) {
2879 		ti->error = "Error opening metadata block device";
2880 		goto out_unlock;
2881 	}
2882 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2883 
2884 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2885 	if (r) {
2886 		ti->error = "Error getting data device";
2887 		goto out_metadata;
2888 	}
2889 
2890 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2891 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2892 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2893 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2894 		ti->error = "Invalid block size";
2895 		r = -EINVAL;
2896 		goto out;
2897 	}
2898 
2899 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2900 		ti->error = "Invalid low water mark";
2901 		r = -EINVAL;
2902 		goto out;
2903 	}
2904 
2905 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2906 	if (!pt) {
2907 		r = -ENOMEM;
2908 		goto out;
2909 	}
2910 
2911 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2912 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2913 	if (IS_ERR(pool)) {
2914 		r = PTR_ERR(pool);
2915 		goto out_free_pt;
2916 	}
2917 
2918 	/*
2919 	 * 'pool_created' reflects whether this is the first table load.
2920 	 * Top level discard support is not allowed to be changed after
2921 	 * initial load.  This would require a pool reload to trigger thin
2922 	 * device changes.
2923 	 */
2924 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2925 		ti->error = "Discard support cannot be disabled once enabled";
2926 		r = -EINVAL;
2927 		goto out_flags_changed;
2928 	}
2929 
2930 	pt->pool = pool;
2931 	pt->ti = ti;
2932 	pt->metadata_dev = metadata_dev;
2933 	pt->data_dev = data_dev;
2934 	pt->low_water_blocks = low_water_blocks;
2935 	pt->adjusted_pf = pt->requested_pf = pf;
2936 	ti->num_flush_bios = 1;
2937 
2938 	/*
2939 	 * Only need to enable discards if the pool should pass
2940 	 * them down to the data device.  The thin device's discard
2941 	 * processing will cause mappings to be removed from the btree.
2942 	 */
2943 	ti->discard_zeroes_data_unsupported = true;
2944 	if (pf.discard_enabled && pf.discard_passdown) {
2945 		ti->num_discard_bios = 1;
2946 
2947 		/*
2948 		 * Setting 'discards_supported' circumvents the normal
2949 		 * stacking of discard limits (this keeps the pool and
2950 		 * thin devices' discard limits consistent).
2951 		 */
2952 		ti->discards_supported = true;
2953 	}
2954 	ti->private = pt;
2955 
2956 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2957 						calc_metadata_threshold(pt),
2958 						metadata_low_callback,
2959 						pool);
2960 	if (r)
2961 		goto out_free_pt;
2962 
2963 	pt->callbacks.congested_fn = pool_is_congested;
2964 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2965 
2966 	mutex_unlock(&dm_thin_pool_table.mutex);
2967 
2968 	return 0;
2969 
2970 out_flags_changed:
2971 	__pool_dec(pool);
2972 out_free_pt:
2973 	kfree(pt);
2974 out:
2975 	dm_put_device(ti, data_dev);
2976 out_metadata:
2977 	dm_put_device(ti, metadata_dev);
2978 out_unlock:
2979 	mutex_unlock(&dm_thin_pool_table.mutex);
2980 
2981 	return r;
2982 }
2983 
2984 static int pool_map(struct dm_target *ti, struct bio *bio)
2985 {
2986 	int r;
2987 	struct pool_c *pt = ti->private;
2988 	struct pool *pool = pt->pool;
2989 	unsigned long flags;
2990 
2991 	/*
2992 	 * As this is a singleton target, ti->begin is always zero.
2993 	 */
2994 	spin_lock_irqsave(&pool->lock, flags);
2995 	bio->bi_bdev = pt->data_dev->bdev;
2996 	r = DM_MAPIO_REMAPPED;
2997 	spin_unlock_irqrestore(&pool->lock, flags);
2998 
2999 	return r;
3000 }
3001 
3002 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3003 {
3004 	int r;
3005 	struct pool_c *pt = ti->private;
3006 	struct pool *pool = pt->pool;
3007 	sector_t data_size = ti->len;
3008 	dm_block_t sb_data_size;
3009 
3010 	*need_commit = false;
3011 
3012 	(void) sector_div(data_size, pool->sectors_per_block);
3013 
3014 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3015 	if (r) {
3016 		DMERR("%s: failed to retrieve data device size",
3017 		      dm_device_name(pool->pool_md));
3018 		return r;
3019 	}
3020 
3021 	if (data_size < sb_data_size) {
3022 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3023 		      dm_device_name(pool->pool_md),
3024 		      (unsigned long long)data_size, sb_data_size);
3025 		return -EINVAL;
3026 
3027 	} else if (data_size > sb_data_size) {
3028 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3029 			DMERR("%s: unable to grow the data device until repaired.",
3030 			      dm_device_name(pool->pool_md));
3031 			return 0;
3032 		}
3033 
3034 		if (sb_data_size)
3035 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3036 			       dm_device_name(pool->pool_md),
3037 			       sb_data_size, (unsigned long long)data_size);
3038 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3039 		if (r) {
3040 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3041 			return r;
3042 		}
3043 
3044 		*need_commit = true;
3045 	}
3046 
3047 	return 0;
3048 }
3049 
3050 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3051 {
3052 	int r;
3053 	struct pool_c *pt = ti->private;
3054 	struct pool *pool = pt->pool;
3055 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3056 
3057 	*need_commit = false;
3058 
3059 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3060 
3061 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3062 	if (r) {
3063 		DMERR("%s: failed to retrieve metadata device size",
3064 		      dm_device_name(pool->pool_md));
3065 		return r;
3066 	}
3067 
3068 	if (metadata_dev_size < sb_metadata_dev_size) {
3069 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3070 		      dm_device_name(pool->pool_md),
3071 		      metadata_dev_size, sb_metadata_dev_size);
3072 		return -EINVAL;
3073 
3074 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3075 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3076 			DMERR("%s: unable to grow the metadata device until repaired.",
3077 			      dm_device_name(pool->pool_md));
3078 			return 0;
3079 		}
3080 
3081 		warn_if_metadata_device_too_big(pool->md_dev);
3082 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3083 		       dm_device_name(pool->pool_md),
3084 		       sb_metadata_dev_size, metadata_dev_size);
3085 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3086 		if (r) {
3087 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3088 			return r;
3089 		}
3090 
3091 		*need_commit = true;
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 /*
3098  * Retrieves the number of blocks of the data device from
3099  * the superblock and compares it to the actual device size,
3100  * thus resizing the data device in case it has grown.
3101  *
3102  * This both copes with opening preallocated data devices in the ctr
3103  * being followed by a resume
3104  * -and-
3105  * calling the resume method individually after userspace has
3106  * grown the data device in reaction to a table event.
3107  */
3108 static int pool_preresume(struct dm_target *ti)
3109 {
3110 	int r;
3111 	bool need_commit1, need_commit2;
3112 	struct pool_c *pt = ti->private;
3113 	struct pool *pool = pt->pool;
3114 
3115 	/*
3116 	 * Take control of the pool object.
3117 	 */
3118 	r = bind_control_target(pool, ti);
3119 	if (r)
3120 		return r;
3121 
3122 	r = maybe_resize_data_dev(ti, &need_commit1);
3123 	if (r)
3124 		return r;
3125 
3126 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3127 	if (r)
3128 		return r;
3129 
3130 	if (need_commit1 || need_commit2)
3131 		(void) commit(pool);
3132 
3133 	return 0;
3134 }
3135 
3136 static void pool_suspend_active_thins(struct pool *pool)
3137 {
3138 	struct thin_c *tc;
3139 
3140 	/* Suspend all active thin devices */
3141 	tc = get_first_thin(pool);
3142 	while (tc) {
3143 		dm_internal_suspend_noflush(tc->thin_md);
3144 		tc = get_next_thin(pool, tc);
3145 	}
3146 }
3147 
3148 static void pool_resume_active_thins(struct pool *pool)
3149 {
3150 	struct thin_c *tc;
3151 
3152 	/* Resume all active thin devices */
3153 	tc = get_first_thin(pool);
3154 	while (tc) {
3155 		dm_internal_resume(tc->thin_md);
3156 		tc = get_next_thin(pool, tc);
3157 	}
3158 }
3159 
3160 static void pool_resume(struct dm_target *ti)
3161 {
3162 	struct pool_c *pt = ti->private;
3163 	struct pool *pool = pt->pool;
3164 	unsigned long flags;
3165 
3166 	/*
3167 	 * Must requeue active_thins' bios and then resume
3168 	 * active_thins _before_ clearing 'suspend' flag.
3169 	 */
3170 	requeue_bios(pool);
3171 	pool_resume_active_thins(pool);
3172 
3173 	spin_lock_irqsave(&pool->lock, flags);
3174 	pool->low_water_triggered = false;
3175 	pool->suspended = false;
3176 	spin_unlock_irqrestore(&pool->lock, flags);
3177 
3178 	do_waker(&pool->waker.work);
3179 }
3180 
3181 static void pool_presuspend(struct dm_target *ti)
3182 {
3183 	struct pool_c *pt = ti->private;
3184 	struct pool *pool = pt->pool;
3185 	unsigned long flags;
3186 
3187 	spin_lock_irqsave(&pool->lock, flags);
3188 	pool->suspended = true;
3189 	spin_unlock_irqrestore(&pool->lock, flags);
3190 
3191 	pool_suspend_active_thins(pool);
3192 }
3193 
3194 static void pool_presuspend_undo(struct dm_target *ti)
3195 {
3196 	struct pool_c *pt = ti->private;
3197 	struct pool *pool = pt->pool;
3198 	unsigned long flags;
3199 
3200 	pool_resume_active_thins(pool);
3201 
3202 	spin_lock_irqsave(&pool->lock, flags);
3203 	pool->suspended = false;
3204 	spin_unlock_irqrestore(&pool->lock, flags);
3205 }
3206 
3207 static void pool_postsuspend(struct dm_target *ti)
3208 {
3209 	struct pool_c *pt = ti->private;
3210 	struct pool *pool = pt->pool;
3211 
3212 	cancel_delayed_work(&pool->waker);
3213 	cancel_delayed_work(&pool->no_space_timeout);
3214 	flush_workqueue(pool->wq);
3215 	(void) commit(pool);
3216 }
3217 
3218 static int check_arg_count(unsigned argc, unsigned args_required)
3219 {
3220 	if (argc != args_required) {
3221 		DMWARN("Message received with %u arguments instead of %u.",
3222 		       argc, args_required);
3223 		return -EINVAL;
3224 	}
3225 
3226 	return 0;
3227 }
3228 
3229 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3230 {
3231 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3232 	    *dev_id <= MAX_DEV_ID)
3233 		return 0;
3234 
3235 	if (warning)
3236 		DMWARN("Message received with invalid device id: %s", arg);
3237 
3238 	return -EINVAL;
3239 }
3240 
3241 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3242 {
3243 	dm_thin_id dev_id;
3244 	int r;
3245 
3246 	r = check_arg_count(argc, 2);
3247 	if (r)
3248 		return r;
3249 
3250 	r = read_dev_id(argv[1], &dev_id, 1);
3251 	if (r)
3252 		return r;
3253 
3254 	r = dm_pool_create_thin(pool->pmd, dev_id);
3255 	if (r) {
3256 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3257 		       argv[1]);
3258 		return r;
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3265 {
3266 	dm_thin_id dev_id;
3267 	dm_thin_id origin_dev_id;
3268 	int r;
3269 
3270 	r = check_arg_count(argc, 3);
3271 	if (r)
3272 		return r;
3273 
3274 	r = read_dev_id(argv[1], &dev_id, 1);
3275 	if (r)
3276 		return r;
3277 
3278 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3279 	if (r)
3280 		return r;
3281 
3282 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3283 	if (r) {
3284 		DMWARN("Creation of new snapshot %s of device %s failed.",
3285 		       argv[1], argv[2]);
3286 		return r;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3293 {
3294 	dm_thin_id dev_id;
3295 	int r;
3296 
3297 	r = check_arg_count(argc, 2);
3298 	if (r)
3299 		return r;
3300 
3301 	r = read_dev_id(argv[1], &dev_id, 1);
3302 	if (r)
3303 		return r;
3304 
3305 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3306 	if (r)
3307 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3308 
3309 	return r;
3310 }
3311 
3312 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3313 {
3314 	dm_thin_id old_id, new_id;
3315 	int r;
3316 
3317 	r = check_arg_count(argc, 3);
3318 	if (r)
3319 		return r;
3320 
3321 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3322 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3323 		return -EINVAL;
3324 	}
3325 
3326 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3327 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3328 		return -EINVAL;
3329 	}
3330 
3331 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3332 	if (r) {
3333 		DMWARN("Failed to change transaction id from %s to %s.",
3334 		       argv[1], argv[2]);
3335 		return r;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3342 {
3343 	int r;
3344 
3345 	r = check_arg_count(argc, 1);
3346 	if (r)
3347 		return r;
3348 
3349 	(void) commit(pool);
3350 
3351 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3352 	if (r)
3353 		DMWARN("reserve_metadata_snap message failed.");
3354 
3355 	return r;
3356 }
3357 
3358 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3359 {
3360 	int r;
3361 
3362 	r = check_arg_count(argc, 1);
3363 	if (r)
3364 		return r;
3365 
3366 	r = dm_pool_release_metadata_snap(pool->pmd);
3367 	if (r)
3368 		DMWARN("release_metadata_snap message failed.");
3369 
3370 	return r;
3371 }
3372 
3373 /*
3374  * Messages supported:
3375  *   create_thin	<dev_id>
3376  *   create_snap	<dev_id> <origin_id>
3377  *   delete		<dev_id>
3378  *   set_transaction_id <current_trans_id> <new_trans_id>
3379  *   reserve_metadata_snap
3380  *   release_metadata_snap
3381  */
3382 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3383 {
3384 	int r = -EINVAL;
3385 	struct pool_c *pt = ti->private;
3386 	struct pool *pool = pt->pool;
3387 
3388 	if (!strcasecmp(argv[0], "create_thin"))
3389 		r = process_create_thin_mesg(argc, argv, pool);
3390 
3391 	else if (!strcasecmp(argv[0], "create_snap"))
3392 		r = process_create_snap_mesg(argc, argv, pool);
3393 
3394 	else if (!strcasecmp(argv[0], "delete"))
3395 		r = process_delete_mesg(argc, argv, pool);
3396 
3397 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3398 		r = process_set_transaction_id_mesg(argc, argv, pool);
3399 
3400 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3401 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3402 
3403 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3404 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3405 
3406 	else
3407 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3408 
3409 	if (!r)
3410 		(void) commit(pool);
3411 
3412 	return r;
3413 }
3414 
3415 static void emit_flags(struct pool_features *pf, char *result,
3416 		       unsigned sz, unsigned maxlen)
3417 {
3418 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3419 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3420 		pf->error_if_no_space;
3421 	DMEMIT("%u ", count);
3422 
3423 	if (!pf->zero_new_blocks)
3424 		DMEMIT("skip_block_zeroing ");
3425 
3426 	if (!pf->discard_enabled)
3427 		DMEMIT("ignore_discard ");
3428 
3429 	if (!pf->discard_passdown)
3430 		DMEMIT("no_discard_passdown ");
3431 
3432 	if (pf->mode == PM_READ_ONLY)
3433 		DMEMIT("read_only ");
3434 
3435 	if (pf->error_if_no_space)
3436 		DMEMIT("error_if_no_space ");
3437 }
3438 
3439 /*
3440  * Status line is:
3441  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3442  *    <used data sectors>/<total data sectors> <held metadata root>
3443  */
3444 static void pool_status(struct dm_target *ti, status_type_t type,
3445 			unsigned status_flags, char *result, unsigned maxlen)
3446 {
3447 	int r;
3448 	unsigned sz = 0;
3449 	uint64_t transaction_id;
3450 	dm_block_t nr_free_blocks_data;
3451 	dm_block_t nr_free_blocks_metadata;
3452 	dm_block_t nr_blocks_data;
3453 	dm_block_t nr_blocks_metadata;
3454 	dm_block_t held_root;
3455 	char buf[BDEVNAME_SIZE];
3456 	char buf2[BDEVNAME_SIZE];
3457 	struct pool_c *pt = ti->private;
3458 	struct pool *pool = pt->pool;
3459 
3460 	switch (type) {
3461 	case STATUSTYPE_INFO:
3462 		if (get_pool_mode(pool) == PM_FAIL) {
3463 			DMEMIT("Fail");
3464 			break;
3465 		}
3466 
3467 		/* Commit to ensure statistics aren't out-of-date */
3468 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3469 			(void) commit(pool);
3470 
3471 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3472 		if (r) {
3473 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3474 			      dm_device_name(pool->pool_md), r);
3475 			goto err;
3476 		}
3477 
3478 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3479 		if (r) {
3480 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3481 			      dm_device_name(pool->pool_md), r);
3482 			goto err;
3483 		}
3484 
3485 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3486 		if (r) {
3487 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3488 			      dm_device_name(pool->pool_md), r);
3489 			goto err;
3490 		}
3491 
3492 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3493 		if (r) {
3494 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3495 			      dm_device_name(pool->pool_md), r);
3496 			goto err;
3497 		}
3498 
3499 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3500 		if (r) {
3501 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3502 			      dm_device_name(pool->pool_md), r);
3503 			goto err;
3504 		}
3505 
3506 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3507 		if (r) {
3508 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3509 			      dm_device_name(pool->pool_md), r);
3510 			goto err;
3511 		}
3512 
3513 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3514 		       (unsigned long long)transaction_id,
3515 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3516 		       (unsigned long long)nr_blocks_metadata,
3517 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3518 		       (unsigned long long)nr_blocks_data);
3519 
3520 		if (held_root)
3521 			DMEMIT("%llu ", held_root);
3522 		else
3523 			DMEMIT("- ");
3524 
3525 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3526 			DMEMIT("out_of_data_space ");
3527 		else if (pool->pf.mode == PM_READ_ONLY)
3528 			DMEMIT("ro ");
3529 		else
3530 			DMEMIT("rw ");
3531 
3532 		if (!pool->pf.discard_enabled)
3533 			DMEMIT("ignore_discard ");
3534 		else if (pool->pf.discard_passdown)
3535 			DMEMIT("discard_passdown ");
3536 		else
3537 			DMEMIT("no_discard_passdown ");
3538 
3539 		if (pool->pf.error_if_no_space)
3540 			DMEMIT("error_if_no_space ");
3541 		else
3542 			DMEMIT("queue_if_no_space ");
3543 
3544 		break;
3545 
3546 	case STATUSTYPE_TABLE:
3547 		DMEMIT("%s %s %lu %llu ",
3548 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3549 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3550 		       (unsigned long)pool->sectors_per_block,
3551 		       (unsigned long long)pt->low_water_blocks);
3552 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3553 		break;
3554 	}
3555 	return;
3556 
3557 err:
3558 	DMEMIT("Error");
3559 }
3560 
3561 static int pool_iterate_devices(struct dm_target *ti,
3562 				iterate_devices_callout_fn fn, void *data)
3563 {
3564 	struct pool_c *pt = ti->private;
3565 
3566 	return fn(ti, pt->data_dev, 0, ti->len, data);
3567 }
3568 
3569 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3570 		      struct bio_vec *biovec, int max_size)
3571 {
3572 	struct pool_c *pt = ti->private;
3573 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3574 
3575 	if (!q->merge_bvec_fn)
3576 		return max_size;
3577 
3578 	bvm->bi_bdev = pt->data_dev->bdev;
3579 
3580 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3581 }
3582 
3583 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3584 {
3585 	struct pool *pool = pt->pool;
3586 	struct queue_limits *data_limits;
3587 
3588 	limits->max_discard_sectors = pool->sectors_per_block;
3589 
3590 	/*
3591 	 * discard_granularity is just a hint, and not enforced.
3592 	 */
3593 	if (pt->adjusted_pf.discard_passdown) {
3594 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3595 		limits->discard_granularity = max(data_limits->discard_granularity,
3596 						  pool->sectors_per_block << SECTOR_SHIFT);
3597 	} else
3598 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3599 }
3600 
3601 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3602 {
3603 	struct pool_c *pt = ti->private;
3604 	struct pool *pool = pt->pool;
3605 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3606 
3607 	/*
3608 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3609 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3610 	 * This is especially beneficial when the pool's data device is a RAID
3611 	 * device that has a full stripe width that matches pool->sectors_per_block
3612 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3613 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3614 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3615 	 */
3616 	if (limits->max_sectors < pool->sectors_per_block) {
3617 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3618 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3619 				limits->max_sectors--;
3620 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3621 		}
3622 	}
3623 
3624 	/*
3625 	 * If the system-determined stacked limits are compatible with the
3626 	 * pool's blocksize (io_opt is a factor) do not override them.
3627 	 */
3628 	if (io_opt_sectors < pool->sectors_per_block ||
3629 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3630 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3631 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3632 		else
3633 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3634 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3635 	}
3636 
3637 	/*
3638 	 * pt->adjusted_pf is a staging area for the actual features to use.
3639 	 * They get transferred to the live pool in bind_control_target()
3640 	 * called from pool_preresume().
3641 	 */
3642 	if (!pt->adjusted_pf.discard_enabled) {
3643 		/*
3644 		 * Must explicitly disallow stacking discard limits otherwise the
3645 		 * block layer will stack them if pool's data device has support.
3646 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3647 		 * user to see that, so make sure to set all discard limits to 0.
3648 		 */
3649 		limits->discard_granularity = 0;
3650 		return;
3651 	}
3652 
3653 	disable_passdown_if_not_supported(pt);
3654 
3655 	set_discard_limits(pt, limits);
3656 }
3657 
3658 static struct target_type pool_target = {
3659 	.name = "thin-pool",
3660 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3661 		    DM_TARGET_IMMUTABLE,
3662 	.version = {1, 14, 0},
3663 	.module = THIS_MODULE,
3664 	.ctr = pool_ctr,
3665 	.dtr = pool_dtr,
3666 	.map = pool_map,
3667 	.presuspend = pool_presuspend,
3668 	.presuspend_undo = pool_presuspend_undo,
3669 	.postsuspend = pool_postsuspend,
3670 	.preresume = pool_preresume,
3671 	.resume = pool_resume,
3672 	.message = pool_message,
3673 	.status = pool_status,
3674 	.merge = pool_merge,
3675 	.iterate_devices = pool_iterate_devices,
3676 	.io_hints = pool_io_hints,
3677 };
3678 
3679 /*----------------------------------------------------------------
3680  * Thin target methods
3681  *--------------------------------------------------------------*/
3682 static void thin_get(struct thin_c *tc)
3683 {
3684 	atomic_inc(&tc->refcount);
3685 }
3686 
3687 static void thin_put(struct thin_c *tc)
3688 {
3689 	if (atomic_dec_and_test(&tc->refcount))
3690 		complete(&tc->can_destroy);
3691 }
3692 
3693 static void thin_dtr(struct dm_target *ti)
3694 {
3695 	struct thin_c *tc = ti->private;
3696 	unsigned long flags;
3697 
3698 	spin_lock_irqsave(&tc->pool->lock, flags);
3699 	list_del_rcu(&tc->list);
3700 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3701 	synchronize_rcu();
3702 
3703 	thin_put(tc);
3704 	wait_for_completion(&tc->can_destroy);
3705 
3706 	mutex_lock(&dm_thin_pool_table.mutex);
3707 
3708 	__pool_dec(tc->pool);
3709 	dm_pool_close_thin_device(tc->td);
3710 	dm_put_device(ti, tc->pool_dev);
3711 	if (tc->origin_dev)
3712 		dm_put_device(ti, tc->origin_dev);
3713 	kfree(tc);
3714 
3715 	mutex_unlock(&dm_thin_pool_table.mutex);
3716 }
3717 
3718 /*
3719  * Thin target parameters:
3720  *
3721  * <pool_dev> <dev_id> [origin_dev]
3722  *
3723  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3724  * dev_id: the internal device identifier
3725  * origin_dev: a device external to the pool that should act as the origin
3726  *
3727  * If the pool device has discards disabled, they get disabled for the thin
3728  * device as well.
3729  */
3730 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3731 {
3732 	int r;
3733 	struct thin_c *tc;
3734 	struct dm_dev *pool_dev, *origin_dev;
3735 	struct mapped_device *pool_md;
3736 	unsigned long flags;
3737 
3738 	mutex_lock(&dm_thin_pool_table.mutex);
3739 
3740 	if (argc != 2 && argc != 3) {
3741 		ti->error = "Invalid argument count";
3742 		r = -EINVAL;
3743 		goto out_unlock;
3744 	}
3745 
3746 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3747 	if (!tc) {
3748 		ti->error = "Out of memory";
3749 		r = -ENOMEM;
3750 		goto out_unlock;
3751 	}
3752 	tc->thin_md = dm_table_get_md(ti->table);
3753 	spin_lock_init(&tc->lock);
3754 	INIT_LIST_HEAD(&tc->deferred_cells);
3755 	bio_list_init(&tc->deferred_bio_list);
3756 	bio_list_init(&tc->retry_on_resume_list);
3757 	tc->sort_bio_list = RB_ROOT;
3758 
3759 	if (argc == 3) {
3760 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3761 		if (r) {
3762 			ti->error = "Error opening origin device";
3763 			goto bad_origin_dev;
3764 		}
3765 		tc->origin_dev = origin_dev;
3766 	}
3767 
3768 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3769 	if (r) {
3770 		ti->error = "Error opening pool device";
3771 		goto bad_pool_dev;
3772 	}
3773 	tc->pool_dev = pool_dev;
3774 
3775 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3776 		ti->error = "Invalid device id";
3777 		r = -EINVAL;
3778 		goto bad_common;
3779 	}
3780 
3781 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3782 	if (!pool_md) {
3783 		ti->error = "Couldn't get pool mapped device";
3784 		r = -EINVAL;
3785 		goto bad_common;
3786 	}
3787 
3788 	tc->pool = __pool_table_lookup(pool_md);
3789 	if (!tc->pool) {
3790 		ti->error = "Couldn't find pool object";
3791 		r = -EINVAL;
3792 		goto bad_pool_lookup;
3793 	}
3794 	__pool_inc(tc->pool);
3795 
3796 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3797 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3798 		r = -EINVAL;
3799 		goto bad_pool;
3800 	}
3801 
3802 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3803 	if (r) {
3804 		ti->error = "Couldn't open thin internal device";
3805 		goto bad_pool;
3806 	}
3807 
3808 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3809 	if (r)
3810 		goto bad;
3811 
3812 	ti->num_flush_bios = 1;
3813 	ti->flush_supported = true;
3814 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3815 
3816 	/* In case the pool supports discards, pass them on. */
3817 	ti->discard_zeroes_data_unsupported = true;
3818 	if (tc->pool->pf.discard_enabled) {
3819 		ti->discards_supported = true;
3820 		ti->num_discard_bios = 1;
3821 		/* Discard bios must be split on a block boundary */
3822 		ti->split_discard_bios = true;
3823 	}
3824 
3825 	mutex_unlock(&dm_thin_pool_table.mutex);
3826 
3827 	spin_lock_irqsave(&tc->pool->lock, flags);
3828 	if (tc->pool->suspended) {
3829 		spin_unlock_irqrestore(&tc->pool->lock, flags);
3830 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3831 		ti->error = "Unable to activate thin device while pool is suspended";
3832 		r = -EINVAL;
3833 		goto bad;
3834 	}
3835 	atomic_set(&tc->refcount, 1);
3836 	init_completion(&tc->can_destroy);
3837 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3838 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3839 	/*
3840 	 * This synchronize_rcu() call is needed here otherwise we risk a
3841 	 * wake_worker() call finding no bios to process (because the newly
3842 	 * added tc isn't yet visible).  So this reduces latency since we
3843 	 * aren't then dependent on the periodic commit to wake_worker().
3844 	 */
3845 	synchronize_rcu();
3846 
3847 	dm_put(pool_md);
3848 
3849 	return 0;
3850 
3851 bad:
3852 	dm_pool_close_thin_device(tc->td);
3853 bad_pool:
3854 	__pool_dec(tc->pool);
3855 bad_pool_lookup:
3856 	dm_put(pool_md);
3857 bad_common:
3858 	dm_put_device(ti, tc->pool_dev);
3859 bad_pool_dev:
3860 	if (tc->origin_dev)
3861 		dm_put_device(ti, tc->origin_dev);
3862 bad_origin_dev:
3863 	kfree(tc);
3864 out_unlock:
3865 	mutex_unlock(&dm_thin_pool_table.mutex);
3866 
3867 	return r;
3868 }
3869 
3870 static int thin_map(struct dm_target *ti, struct bio *bio)
3871 {
3872 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3873 
3874 	return thin_bio_map(ti, bio);
3875 }
3876 
3877 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3878 {
3879 	unsigned long flags;
3880 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3881 	struct list_head work;
3882 	struct dm_thin_new_mapping *m, *tmp;
3883 	struct pool *pool = h->tc->pool;
3884 
3885 	if (h->shared_read_entry) {
3886 		INIT_LIST_HEAD(&work);
3887 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3888 
3889 		spin_lock_irqsave(&pool->lock, flags);
3890 		list_for_each_entry_safe(m, tmp, &work, list) {
3891 			list_del(&m->list);
3892 			__complete_mapping_preparation(m);
3893 		}
3894 		spin_unlock_irqrestore(&pool->lock, flags);
3895 	}
3896 
3897 	if (h->all_io_entry) {
3898 		INIT_LIST_HEAD(&work);
3899 		dm_deferred_entry_dec(h->all_io_entry, &work);
3900 		if (!list_empty(&work)) {
3901 			spin_lock_irqsave(&pool->lock, flags);
3902 			list_for_each_entry_safe(m, tmp, &work, list)
3903 				list_add_tail(&m->list, &pool->prepared_discards);
3904 			spin_unlock_irqrestore(&pool->lock, flags);
3905 			wake_worker(pool);
3906 		}
3907 	}
3908 
3909 	return 0;
3910 }
3911 
3912 static void thin_presuspend(struct dm_target *ti)
3913 {
3914 	struct thin_c *tc = ti->private;
3915 
3916 	if (dm_noflush_suspending(ti))
3917 		noflush_work(tc, do_noflush_start);
3918 }
3919 
3920 static void thin_postsuspend(struct dm_target *ti)
3921 {
3922 	struct thin_c *tc = ti->private;
3923 
3924 	/*
3925 	 * The dm_noflush_suspending flag has been cleared by now, so
3926 	 * unfortunately we must always run this.
3927 	 */
3928 	noflush_work(tc, do_noflush_stop);
3929 }
3930 
3931 static int thin_preresume(struct dm_target *ti)
3932 {
3933 	struct thin_c *tc = ti->private;
3934 
3935 	if (tc->origin_dev)
3936 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3937 
3938 	return 0;
3939 }
3940 
3941 /*
3942  * <nr mapped sectors> <highest mapped sector>
3943  */
3944 static void thin_status(struct dm_target *ti, status_type_t type,
3945 			unsigned status_flags, char *result, unsigned maxlen)
3946 {
3947 	int r;
3948 	ssize_t sz = 0;
3949 	dm_block_t mapped, highest;
3950 	char buf[BDEVNAME_SIZE];
3951 	struct thin_c *tc = ti->private;
3952 
3953 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3954 		DMEMIT("Fail");
3955 		return;
3956 	}
3957 
3958 	if (!tc->td)
3959 		DMEMIT("-");
3960 	else {
3961 		switch (type) {
3962 		case STATUSTYPE_INFO:
3963 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3964 			if (r) {
3965 				DMERR("dm_thin_get_mapped_count returned %d", r);
3966 				goto err;
3967 			}
3968 
3969 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3970 			if (r < 0) {
3971 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3972 				goto err;
3973 			}
3974 
3975 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3976 			if (r)
3977 				DMEMIT("%llu", ((highest + 1) *
3978 						tc->pool->sectors_per_block) - 1);
3979 			else
3980 				DMEMIT("-");
3981 			break;
3982 
3983 		case STATUSTYPE_TABLE:
3984 			DMEMIT("%s %lu",
3985 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3986 			       (unsigned long) tc->dev_id);
3987 			if (tc->origin_dev)
3988 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3989 			break;
3990 		}
3991 	}
3992 
3993 	return;
3994 
3995 err:
3996 	DMEMIT("Error");
3997 }
3998 
3999 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4000 		      struct bio_vec *biovec, int max_size)
4001 {
4002 	struct thin_c *tc = ti->private;
4003 	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4004 
4005 	if (!q->merge_bvec_fn)
4006 		return max_size;
4007 
4008 	bvm->bi_bdev = tc->pool_dev->bdev;
4009 	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4010 
4011 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4012 }
4013 
4014 static int thin_iterate_devices(struct dm_target *ti,
4015 				iterate_devices_callout_fn fn, void *data)
4016 {
4017 	sector_t blocks;
4018 	struct thin_c *tc = ti->private;
4019 	struct pool *pool = tc->pool;
4020 
4021 	/*
4022 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4023 	 * we follow a more convoluted path through to the pool's target.
4024 	 */
4025 	if (!pool->ti)
4026 		return 0;	/* nothing is bound */
4027 
4028 	blocks = pool->ti->len;
4029 	(void) sector_div(blocks, pool->sectors_per_block);
4030 	if (blocks)
4031 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4032 
4033 	return 0;
4034 }
4035 
4036 static struct target_type thin_target = {
4037 	.name = "thin",
4038 	.version = {1, 14, 0},
4039 	.module	= THIS_MODULE,
4040 	.ctr = thin_ctr,
4041 	.dtr = thin_dtr,
4042 	.map = thin_map,
4043 	.end_io = thin_endio,
4044 	.preresume = thin_preresume,
4045 	.presuspend = thin_presuspend,
4046 	.postsuspend = thin_postsuspend,
4047 	.status = thin_status,
4048 	.merge = thin_merge,
4049 	.iterate_devices = thin_iterate_devices,
4050 };
4051 
4052 /*----------------------------------------------------------------*/
4053 
4054 static int __init dm_thin_init(void)
4055 {
4056 	int r;
4057 
4058 	pool_table_init();
4059 
4060 	r = dm_register_target(&thin_target);
4061 	if (r)
4062 		return r;
4063 
4064 	r = dm_register_target(&pool_target);
4065 	if (r)
4066 		goto bad_pool_target;
4067 
4068 	r = -ENOMEM;
4069 
4070 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4071 	if (!_new_mapping_cache)
4072 		goto bad_new_mapping_cache;
4073 
4074 	return 0;
4075 
4076 bad_new_mapping_cache:
4077 	dm_unregister_target(&pool_target);
4078 bad_pool_target:
4079 	dm_unregister_target(&thin_target);
4080 
4081 	return r;
4082 }
4083 
4084 static void dm_thin_exit(void)
4085 {
4086 	dm_unregister_target(&thin_target);
4087 	dm_unregister_target(&pool_target);
4088 
4089 	kmem_cache_destroy(_new_mapping_cache);
4090 }
4091 
4092 module_init(dm_thin_init);
4093 module_exit(dm_thin_exit);
4094 
4095 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4096 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4097 
4098 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4099 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4100 MODULE_LICENSE("GPL");
4101