xref: /openbmc/linux/drivers/md/dm-thin.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25 
26 #define	DM_MSG_PREFIX	"thin"
27 
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35 
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 		"A percentage of time allocated for copy on write");
40 
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52 
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Key building.
115  */
116 enum lock_space {
117 	VIRTUAL,
118 	PHYSICAL
119 };
120 
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 	key->virtual = (ls == VIRTUAL);
125 	key->dev = dm_thin_dev_id(td);
126 	key->block_begin = b;
127 	key->block_end = e;
128 
129 	return dm_cell_key_has_valid_range(key);
130 }
131 
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 			   struct dm_cell_key *key)
134 {
135 	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137 
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 			      struct dm_cell_key *key)
140 {
141 	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143 
144 /*----------------------------------------------------------------*/
145 
146 #define THROTTLE_THRESHOLD (1 * HZ)
147 
148 struct throttle {
149 	struct rw_semaphore lock;
150 	unsigned long threshold;
151 	bool throttle_applied;
152 };
153 
154 static void throttle_init(struct throttle *t)
155 {
156 	init_rwsem(&t->lock);
157 	t->throttle_applied = false;
158 }
159 
160 static void throttle_work_start(struct throttle *t)
161 {
162 	t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164 
165 static void throttle_work_update(struct throttle *t)
166 {
167 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 		down_write(&t->lock);
169 		t->throttle_applied = true;
170 	}
171 }
172 
173 static void throttle_work_complete(struct throttle *t)
174 {
175 	if (t->throttle_applied) {
176 		t->throttle_applied = false;
177 		up_write(&t->lock);
178 	}
179 }
180 
181 static void throttle_lock(struct throttle *t)
182 {
183 	down_read(&t->lock);
184 }
185 
186 static void throttle_unlock(struct throttle *t)
187 {
188 	up_read(&t->lock);
189 }
190 
191 /*----------------------------------------------------------------*/
192 
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199 
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204 	PM_WRITE,		/* metadata may be changed */
205 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
206 
207 	/*
208 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 	 */
210 	PM_OUT_OF_METADATA_SPACE,
211 	PM_READ_ONLY,		/* metadata may not be changed */
212 
213 	PM_FAIL,		/* all I/O fails */
214 };
215 
216 struct pool_features {
217 	enum pool_mode mode;
218 
219 	bool zero_new_blocks:1;
220 	bool discard_enabled:1;
221 	bool discard_passdown:1;
222 	bool error_if_no_space:1;
223 };
224 
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229 
230 #define CELL_SORT_ARRAY_SIZE 8192
231 
232 struct pool {
233 	struct list_head list;
234 	struct dm_target *ti;	/* Only set if a pool target is bound */
235 
236 	struct mapped_device *pool_md;
237 	struct block_device *data_dev;
238 	struct block_device *md_dev;
239 	struct dm_pool_metadata *pmd;
240 
241 	dm_block_t low_water_blocks;
242 	uint32_t sectors_per_block;
243 	int sectors_per_block_shift;
244 
245 	struct pool_features pf;
246 	bool low_water_triggered:1;	/* A dm event has been sent */
247 	bool suspended:1;
248 	bool out_of_data_space:1;
249 
250 	struct dm_bio_prison *prison;
251 	struct dm_kcopyd_client *copier;
252 
253 	struct work_struct worker;
254 	struct workqueue_struct *wq;
255 	struct throttle throttle;
256 	struct delayed_work waker;
257 	struct delayed_work no_space_timeout;
258 
259 	unsigned long last_commit_jiffies;
260 	unsigned int ref_count;
261 
262 	spinlock_t lock;
263 	struct bio_list deferred_flush_bios;
264 	struct bio_list deferred_flush_completions;
265 	struct list_head prepared_mappings;
266 	struct list_head prepared_discards;
267 	struct list_head prepared_discards_pt2;
268 	struct list_head active_thins;
269 
270 	struct dm_deferred_set *shared_read_ds;
271 	struct dm_deferred_set *all_io_ds;
272 
273 	struct dm_thin_new_mapping *next_mapping;
274 
275 	process_bio_fn process_bio;
276 	process_bio_fn process_discard;
277 
278 	process_cell_fn process_cell;
279 	process_cell_fn process_discard_cell;
280 
281 	process_mapping_fn process_prepared_mapping;
282 	process_mapping_fn process_prepared_discard;
283 	process_mapping_fn process_prepared_discard_pt2;
284 
285 	struct dm_bio_prison_cell **cell_sort_array;
286 
287 	mempool_t mapping_pool;
288 };
289 
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 	return pool->pf.mode;
295 }
296 
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 	static const char *descs[] = {
300 		"write",
301 		"out-of-data-space",
302 		"read-only",
303 		"read-only",
304 		"fail"
305 	};
306 	const char *extra_desc = NULL;
307 	enum pool_mode mode = get_pool_mode(pool);
308 
309 	if (mode == PM_OUT_OF_DATA_SPACE) {
310 		if (!pool->pf.error_if_no_space)
311 			extra_desc = " (queue IO)";
312 		else
313 			extra_desc = " (error IO)";
314 	}
315 
316 	dm_table_event(pool->ti->table);
317 	DMINFO("%s: switching pool to %s%s mode",
318 	       dm_device_name(pool->pool_md),
319 	       descs[(int)mode], extra_desc ? : "");
320 }
321 
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326 	struct dm_target *ti;
327 	struct pool *pool;
328 	struct dm_dev *data_dev;
329 	struct dm_dev *metadata_dev;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406 
407 static void end_discard(struct discard_op *op, int r)
408 {
409 	if (op->bio) {
410 		/*
411 		 * Even if one of the calls to issue_discard failed, we
412 		 * need to wait for the chain to complete.
413 		 */
414 		bio_chain(op->bio, op->parent_bio);
415 		op->bio->bi_opf = REQ_OP_DISCARD;
416 		submit_bio(op->bio);
417 	}
418 
419 	blk_finish_plug(&op->plug);
420 
421 	/*
422 	 * Even if r is set, there could be sub discards in flight that we
423 	 * need to wait for.
424 	 */
425 	if (r && !op->parent_bio->bi_status)
426 		op->parent_bio->bi_status = errno_to_blk_status(r);
427 	bio_endio(op->parent_bio);
428 }
429 
430 /*----------------------------------------------------------------*/
431 
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438 	queue_work(pool->wq, &pool->worker);
439 }
440 
441 /*----------------------------------------------------------------*/
442 
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 		      struct dm_bio_prison_cell **cell_result)
445 {
446 	int r;
447 	struct dm_bio_prison_cell *cell_prealloc;
448 
449 	/*
450 	 * Allocate a cell from the prison's mempool.
451 	 * This might block but it can't fail.
452 	 */
453 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 
455 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 	if (r)
457 		/*
458 		 * We reused an old cell; we can get rid of
459 		 * the new one.
460 		 */
461 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 
463 	return r;
464 }
465 
466 static void cell_release(struct pool *pool,
467 			 struct dm_bio_prison_cell *cell,
468 			 struct bio_list *bios)
469 {
470 	dm_cell_release(pool->prison, cell, bios);
471 	dm_bio_prison_free_cell(pool->prison, cell);
472 }
473 
474 static void cell_visit_release(struct pool *pool,
475 			       void (*fn)(void *, struct dm_bio_prison_cell *),
476 			       void *context,
477 			       struct dm_bio_prison_cell *cell)
478 {
479 	dm_cell_visit_release(pool->prison, fn, context, cell);
480 	dm_bio_prison_free_cell(pool->prison, cell);
481 }
482 
483 static void cell_release_no_holder(struct pool *pool,
484 				   struct dm_bio_prison_cell *cell,
485 				   struct bio_list *bios)
486 {
487 	dm_cell_release_no_holder(pool->prison, cell, bios);
488 	dm_bio_prison_free_cell(pool->prison, cell);
489 }
490 
491 static void cell_error_with_code(struct pool *pool,
492 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 {
494 	dm_cell_error(pool->prison, cell, error_code);
495 	dm_bio_prison_free_cell(pool->prison, cell);
496 }
497 
498 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 {
500 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501 }
502 
503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 {
505 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506 }
507 
508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 {
510 	cell_error_with_code(pool, cell, 0);
511 }
512 
513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 {
515 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516 }
517 
518 /*----------------------------------------------------------------*/
519 
520 /*
521  * A global list of pools that uses a struct mapped_device as a key.
522  */
523 static struct dm_thin_pool_table {
524 	struct mutex mutex;
525 	struct list_head pools;
526 } dm_thin_pool_table;
527 
528 static void pool_table_init(void)
529 {
530 	mutex_init(&dm_thin_pool_table.mutex);
531 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532 }
533 
534 static void pool_table_exit(void)
535 {
536 	mutex_destroy(&dm_thin_pool_table.mutex);
537 }
538 
539 static void __pool_table_insert(struct pool *pool)
540 {
541 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 	list_add(&pool->list, &dm_thin_pool_table.pools);
543 }
544 
545 static void __pool_table_remove(struct pool *pool)
546 {
547 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 	list_del(&pool->list);
549 }
550 
551 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 {
553 	struct pool *pool = NULL, *tmp;
554 
555 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 
557 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 		if (tmp->pool_md == md) {
559 			pool = tmp;
560 			break;
561 		}
562 	}
563 
564 	return pool;
565 }
566 
567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 {
569 	struct pool *pool = NULL, *tmp;
570 
571 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572 
573 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 		if (tmp->md_dev == md_dev) {
575 			pool = tmp;
576 			break;
577 		}
578 	}
579 
580 	return pool;
581 }
582 
583 /*----------------------------------------------------------------*/
584 
585 struct dm_thin_endio_hook {
586 	struct thin_c *tc;
587 	struct dm_deferred_entry *shared_read_entry;
588 	struct dm_deferred_entry *all_io_entry;
589 	struct dm_thin_new_mapping *overwrite_mapping;
590 	struct rb_node rb_node;
591 	struct dm_bio_prison_cell *cell;
592 };
593 
594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 {
596 	bio_list_merge(bios, master);
597 	bio_list_init(master);
598 }
599 
600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 {
602 	struct bio *bio;
603 
604 	while ((bio = bio_list_pop(bios))) {
605 		bio->bi_status = error;
606 		bio_endio(bio);
607 	}
608 }
609 
610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 		blk_status_t error)
612 {
613 	struct bio_list bios;
614 
615 	bio_list_init(&bios);
616 
617 	spin_lock_irq(&tc->lock);
618 	__merge_bio_list(&bios, master);
619 	spin_unlock_irq(&tc->lock);
620 
621 	error_bio_list(&bios, error);
622 }
623 
624 static void requeue_deferred_cells(struct thin_c *tc)
625 {
626 	struct pool *pool = tc->pool;
627 	struct list_head cells;
628 	struct dm_bio_prison_cell *cell, *tmp;
629 
630 	INIT_LIST_HEAD(&cells);
631 
632 	spin_lock_irq(&tc->lock);
633 	list_splice_init(&tc->deferred_cells, &cells);
634 	spin_unlock_irq(&tc->lock);
635 
636 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 		cell_requeue(pool, cell);
638 }
639 
640 static void requeue_io(struct thin_c *tc)
641 {
642 	struct bio_list bios;
643 
644 	bio_list_init(&bios);
645 
646 	spin_lock_irq(&tc->lock);
647 	__merge_bio_list(&bios, &tc->deferred_bio_list);
648 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
649 	spin_unlock_irq(&tc->lock);
650 
651 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652 	requeue_deferred_cells(tc);
653 }
654 
655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656 {
657 	struct thin_c *tc;
658 
659 	rcu_read_lock();
660 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
661 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662 	rcu_read_unlock();
663 }
664 
665 static void error_retry_list(struct pool *pool)
666 {
667 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668 }
669 
670 /*
671  * This section of code contains the logic for processing a thin device's IO.
672  * Much of the code depends on pool object resources (lists, workqueues, etc)
673  * but most is exclusively called from the thin target rather than the thin-pool
674  * target.
675  */
676 
677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678 {
679 	struct pool *pool = tc->pool;
680 	sector_t block_nr = bio->bi_iter.bi_sector;
681 
682 	if (block_size_is_power_of_two(pool))
683 		block_nr >>= pool->sectors_per_block_shift;
684 	else
685 		(void) sector_div(block_nr, pool->sectors_per_block);
686 
687 	return block_nr;
688 }
689 
690 /*
691  * Returns the _complete_ blocks that this bio covers.
692  */
693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694 				dm_block_t *begin, dm_block_t *end)
695 {
696 	struct pool *pool = tc->pool;
697 	sector_t b = bio->bi_iter.bi_sector;
698 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699 
700 	b += pool->sectors_per_block - 1ull; /* so we round up */
701 
702 	if (block_size_is_power_of_two(pool)) {
703 		b >>= pool->sectors_per_block_shift;
704 		e >>= pool->sectors_per_block_shift;
705 	} else {
706 		(void) sector_div(b, pool->sectors_per_block);
707 		(void) sector_div(e, pool->sectors_per_block);
708 	}
709 
710 	if (e < b)
711 		/* Can happen if the bio is within a single block. */
712 		e = b;
713 
714 	*begin = b;
715 	*end = e;
716 }
717 
718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 {
720 	struct pool *pool = tc->pool;
721 	sector_t bi_sector = bio->bi_iter.bi_sector;
722 
723 	bio_set_dev(bio, tc->pool_dev->bdev);
724 	if (block_size_is_power_of_two(pool))
725 		bio->bi_iter.bi_sector =
726 			(block << pool->sectors_per_block_shift) |
727 			(bi_sector & (pool->sectors_per_block - 1));
728 	else
729 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730 				 sector_div(bi_sector, pool->sectors_per_block);
731 }
732 
733 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734 {
735 	bio_set_dev(bio, tc->origin_dev->bdev);
736 }
737 
738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739 {
740 	return op_is_flush(bio->bi_opf) &&
741 		dm_thin_changed_this_transaction(tc->td);
742 }
743 
744 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745 {
746 	struct dm_thin_endio_hook *h;
747 
748 	if (bio_op(bio) == REQ_OP_DISCARD)
749 		return;
750 
751 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753 }
754 
755 static void issue(struct thin_c *tc, struct bio *bio)
756 {
757 	struct pool *pool = tc->pool;
758 
759 	if (!bio_triggers_commit(tc, bio)) {
760 		dm_submit_bio_remap(bio, NULL);
761 		return;
762 	}
763 
764 	/*
765 	 * Complete bio with an error if earlier I/O caused changes to
766 	 * the metadata that can't be committed e.g, due to I/O errors
767 	 * on the metadata device.
768 	 */
769 	if (dm_thin_aborted_changes(tc->td)) {
770 		bio_io_error(bio);
771 		return;
772 	}
773 
774 	/*
775 	 * Batch together any bios that trigger commits and then issue a
776 	 * single commit for them in process_deferred_bios().
777 	 */
778 	spin_lock_irq(&pool->lock);
779 	bio_list_add(&pool->deferred_flush_bios, bio);
780 	spin_unlock_irq(&pool->lock);
781 }
782 
783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784 {
785 	remap_to_origin(tc, bio);
786 	issue(tc, bio);
787 }
788 
789 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790 			    dm_block_t block)
791 {
792 	remap(tc, bio, block);
793 	issue(tc, bio);
794 }
795 
796 /*----------------------------------------------------------------*/
797 
798 /*
799  * Bio endio functions.
800  */
801 struct dm_thin_new_mapping {
802 	struct list_head list;
803 
804 	bool pass_discard:1;
805 	bool maybe_shared:1;
806 
807 	/*
808 	 * Track quiescing, copying and zeroing preparation actions.  When this
809 	 * counter hits zero the block is prepared and can be inserted into the
810 	 * btree.
811 	 */
812 	atomic_t prepare_actions;
813 
814 	blk_status_t status;
815 	struct thin_c *tc;
816 	dm_block_t virt_begin, virt_end;
817 	dm_block_t data_block;
818 	struct dm_bio_prison_cell *cell;
819 
820 	/*
821 	 * If the bio covers the whole area of a block then we can avoid
822 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
823 	 * still be in the cell, so care has to be taken to avoid issuing
824 	 * the bio twice.
825 	 */
826 	struct bio *bio;
827 	bio_end_io_t *saved_bi_end_io;
828 };
829 
830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831 {
832 	struct pool *pool = m->tc->pool;
833 
834 	if (atomic_dec_and_test(&m->prepare_actions)) {
835 		list_add_tail(&m->list, &pool->prepared_mappings);
836 		wake_worker(pool);
837 	}
838 }
839 
840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 	unsigned long flags;
843 	struct pool *pool = m->tc->pool;
844 
845 	spin_lock_irqsave(&pool->lock, flags);
846 	__complete_mapping_preparation(m);
847 	spin_unlock_irqrestore(&pool->lock, flags);
848 }
849 
850 static void copy_complete(int read_err, unsigned long write_err, void *context)
851 {
852 	struct dm_thin_new_mapping *m = context;
853 
854 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855 	complete_mapping_preparation(m);
856 }
857 
858 static void overwrite_endio(struct bio *bio)
859 {
860 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
862 
863 	bio->bi_end_io = m->saved_bi_end_io;
864 
865 	m->status = bio->bi_status;
866 	complete_mapping_preparation(m);
867 }
868 
869 /*----------------------------------------------------------------*/
870 
871 /*
872  * Workqueue.
873  */
874 
875 /*
876  * Prepared mapping jobs.
877  */
878 
879 /*
880  * This sends the bios in the cell, except the original holder, back
881  * to the deferred_bios list.
882  */
883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884 {
885 	struct pool *pool = tc->pool;
886 	unsigned long flags;
887 	struct bio_list bios;
888 
889 	bio_list_init(&bios);
890 	cell_release_no_holder(pool, cell, &bios);
891 
892 	if (!bio_list_empty(&bios)) {
893 		spin_lock_irqsave(&tc->lock, flags);
894 		bio_list_merge(&tc->deferred_bio_list, &bios);
895 		spin_unlock_irqrestore(&tc->lock, flags);
896 		wake_worker(pool);
897 	}
898 }
899 
900 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
901 
902 struct remap_info {
903 	struct thin_c *tc;
904 	struct bio_list defer_bios;
905 	struct bio_list issue_bios;
906 };
907 
908 static void __inc_remap_and_issue_cell(void *context,
909 				       struct dm_bio_prison_cell *cell)
910 {
911 	struct remap_info *info = context;
912 	struct bio *bio;
913 
914 	while ((bio = bio_list_pop(&cell->bios))) {
915 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
916 			bio_list_add(&info->defer_bios, bio);
917 		else {
918 			inc_all_io_entry(info->tc->pool, bio);
919 
920 			/*
921 			 * We can't issue the bios with the bio prison lock
922 			 * held, so we add them to a list to issue on
923 			 * return from this function.
924 			 */
925 			bio_list_add(&info->issue_bios, bio);
926 		}
927 	}
928 }
929 
930 static void inc_remap_and_issue_cell(struct thin_c *tc,
931 				     struct dm_bio_prison_cell *cell,
932 				     dm_block_t block)
933 {
934 	struct bio *bio;
935 	struct remap_info info;
936 
937 	info.tc = tc;
938 	bio_list_init(&info.defer_bios);
939 	bio_list_init(&info.issue_bios);
940 
941 	/*
942 	 * We have to be careful to inc any bios we're about to issue
943 	 * before the cell is released, and avoid a race with new bios
944 	 * being added to the cell.
945 	 */
946 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
947 			   &info, cell);
948 
949 	while ((bio = bio_list_pop(&info.defer_bios)))
950 		thin_defer_bio(tc, bio);
951 
952 	while ((bio = bio_list_pop(&info.issue_bios)))
953 		remap_and_issue(info.tc, bio, block);
954 }
955 
956 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
957 {
958 	cell_error(m->tc->pool, m->cell);
959 	list_del(&m->list);
960 	mempool_free(m, &m->tc->pool->mapping_pool);
961 }
962 
963 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
964 {
965 	struct pool *pool = tc->pool;
966 
967 	/*
968 	 * If the bio has the REQ_FUA flag set we must commit the metadata
969 	 * before signaling its completion.
970 	 */
971 	if (!bio_triggers_commit(tc, bio)) {
972 		bio_endio(bio);
973 		return;
974 	}
975 
976 	/*
977 	 * Complete bio with an error if earlier I/O caused changes to the
978 	 * metadata that can't be committed, e.g, due to I/O errors on the
979 	 * metadata device.
980 	 */
981 	if (dm_thin_aborted_changes(tc->td)) {
982 		bio_io_error(bio);
983 		return;
984 	}
985 
986 	/*
987 	 * Batch together any bios that trigger commits and then issue a
988 	 * single commit for them in process_deferred_bios().
989 	 */
990 	spin_lock_irq(&pool->lock);
991 	bio_list_add(&pool->deferred_flush_completions, bio);
992 	spin_unlock_irq(&pool->lock);
993 }
994 
995 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
996 {
997 	struct thin_c *tc = m->tc;
998 	struct pool *pool = tc->pool;
999 	struct bio *bio = m->bio;
1000 	int r;
1001 
1002 	if (m->status) {
1003 		cell_error(pool, m->cell);
1004 		goto out;
1005 	}
1006 
1007 	/*
1008 	 * Commit the prepared block into the mapping btree.
1009 	 * Any I/O for this block arriving after this point will get
1010 	 * remapped to it directly.
1011 	 */
1012 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1013 	if (r) {
1014 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015 		cell_error(pool, m->cell);
1016 		goto out;
1017 	}
1018 
1019 	/*
1020 	 * Release any bios held while the block was being provisioned.
1021 	 * If we are processing a write bio that completely covers the block,
1022 	 * we already processed it so can ignore it now when processing
1023 	 * the bios in the cell.
1024 	 */
1025 	if (bio) {
1026 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027 		complete_overwrite_bio(tc, bio);
1028 	} else {
1029 		inc_all_io_entry(tc->pool, m->cell->holder);
1030 		remap_and_issue(tc, m->cell->holder, m->data_block);
1031 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1032 	}
1033 
1034 out:
1035 	list_del(&m->list);
1036 	mempool_free(m, &pool->mapping_pool);
1037 }
1038 
1039 /*----------------------------------------------------------------*/
1040 
1041 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042 {
1043 	struct thin_c *tc = m->tc;
1044 
1045 	if (m->cell)
1046 		cell_defer_no_holder(tc, m->cell);
1047 	mempool_free(m, &tc->pool->mapping_pool);
1048 }
1049 
1050 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1051 {
1052 	bio_io_error(m->bio);
1053 	free_discard_mapping(m);
1054 }
1055 
1056 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1057 {
1058 	bio_endio(m->bio);
1059 	free_discard_mapping(m);
1060 }
1061 
1062 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1063 {
1064 	int r;
1065 	struct thin_c *tc = m->tc;
1066 
1067 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1068 	if (r) {
1069 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1070 		bio_io_error(m->bio);
1071 	} else
1072 		bio_endio(m->bio);
1073 
1074 	cell_defer_no_holder(tc, m->cell);
1075 	mempool_free(m, &tc->pool->mapping_pool);
1076 }
1077 
1078 /*----------------------------------------------------------------*/
1079 
1080 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1081 						   struct bio *discard_parent)
1082 {
1083 	/*
1084 	 * We've already unmapped this range of blocks, but before we
1085 	 * passdown we have to check that these blocks are now unused.
1086 	 */
1087 	int r = 0;
1088 	bool shared = true;
1089 	struct thin_c *tc = m->tc;
1090 	struct pool *pool = tc->pool;
1091 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1092 	struct discard_op op;
1093 
1094 	begin_discard(&op, tc, discard_parent);
1095 	while (b != end) {
1096 		/* find start of unmapped run */
1097 		for (; b < end; b++) {
1098 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1099 			if (r)
1100 				goto out;
1101 
1102 			if (!shared)
1103 				break;
1104 		}
1105 
1106 		if (b == end)
1107 			break;
1108 
1109 		/* find end of run */
1110 		for (e = b + 1; e != end; e++) {
1111 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1112 			if (r)
1113 				goto out;
1114 
1115 			if (shared)
1116 				break;
1117 		}
1118 
1119 		r = issue_discard(&op, b, e);
1120 		if (r)
1121 			goto out;
1122 
1123 		b = e;
1124 	}
1125 out:
1126 	end_discard(&op, r);
1127 }
1128 
1129 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1130 {
1131 	unsigned long flags;
1132 	struct pool *pool = m->tc->pool;
1133 
1134 	spin_lock_irqsave(&pool->lock, flags);
1135 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1136 	spin_unlock_irqrestore(&pool->lock, flags);
1137 	wake_worker(pool);
1138 }
1139 
1140 static void passdown_endio(struct bio *bio)
1141 {
1142 	/*
1143 	 * It doesn't matter if the passdown discard failed, we still want
1144 	 * to unmap (we ignore err).
1145 	 */
1146 	queue_passdown_pt2(bio->bi_private);
1147 	bio_put(bio);
1148 }
1149 
1150 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1151 {
1152 	int r;
1153 	struct thin_c *tc = m->tc;
1154 	struct pool *pool = tc->pool;
1155 	struct bio *discard_parent;
1156 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1157 
1158 	/*
1159 	 * Only this thread allocates blocks, so we can be sure that the
1160 	 * newly unmapped blocks will not be allocated before the end of
1161 	 * the function.
1162 	 */
1163 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1164 	if (r) {
1165 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1166 		bio_io_error(m->bio);
1167 		cell_defer_no_holder(tc, m->cell);
1168 		mempool_free(m, &pool->mapping_pool);
1169 		return;
1170 	}
1171 
1172 	/*
1173 	 * Increment the unmapped blocks.  This prevents a race between the
1174 	 * passdown io and reallocation of freed blocks.
1175 	 */
1176 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1177 	if (r) {
1178 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1179 		bio_io_error(m->bio);
1180 		cell_defer_no_holder(tc, m->cell);
1181 		mempool_free(m, &pool->mapping_pool);
1182 		return;
1183 	}
1184 
1185 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1186 	discard_parent->bi_end_io = passdown_endio;
1187 	discard_parent->bi_private = m;
1188 	if (m->maybe_shared)
1189 		passdown_double_checking_shared_status(m, discard_parent);
1190 	else {
1191 		struct discard_op op;
1192 
1193 		begin_discard(&op, tc, discard_parent);
1194 		r = issue_discard(&op, m->data_block, data_end);
1195 		end_discard(&op, r);
1196 	}
1197 }
1198 
1199 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1200 {
1201 	int r;
1202 	struct thin_c *tc = m->tc;
1203 	struct pool *pool = tc->pool;
1204 
1205 	/*
1206 	 * The passdown has completed, so now we can decrement all those
1207 	 * unmapped blocks.
1208 	 */
1209 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1210 				   m->data_block + (m->virt_end - m->virt_begin));
1211 	if (r) {
1212 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1213 		bio_io_error(m->bio);
1214 	} else
1215 		bio_endio(m->bio);
1216 
1217 	cell_defer_no_holder(tc, m->cell);
1218 	mempool_free(m, &pool->mapping_pool);
1219 }
1220 
1221 static void process_prepared(struct pool *pool, struct list_head *head,
1222 			     process_mapping_fn *fn)
1223 {
1224 	struct list_head maps;
1225 	struct dm_thin_new_mapping *m, *tmp;
1226 
1227 	INIT_LIST_HEAD(&maps);
1228 	spin_lock_irq(&pool->lock);
1229 	list_splice_init(head, &maps);
1230 	spin_unlock_irq(&pool->lock);
1231 
1232 	list_for_each_entry_safe(m, tmp, &maps, list)
1233 		(*fn)(m);
1234 }
1235 
1236 /*
1237  * Deferred bio jobs.
1238  */
1239 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1240 {
1241 	return bio->bi_iter.bi_size ==
1242 		(pool->sectors_per_block << SECTOR_SHIFT);
1243 }
1244 
1245 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1246 {
1247 	return (bio_data_dir(bio) == WRITE) &&
1248 		io_overlaps_block(pool, bio);
1249 }
1250 
1251 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1252 			       bio_end_io_t *fn)
1253 {
1254 	*save = bio->bi_end_io;
1255 	bio->bi_end_io = fn;
1256 }
1257 
1258 static int ensure_next_mapping(struct pool *pool)
1259 {
1260 	if (pool->next_mapping)
1261 		return 0;
1262 
1263 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1264 
1265 	return pool->next_mapping ? 0 : -ENOMEM;
1266 }
1267 
1268 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1269 {
1270 	struct dm_thin_new_mapping *m = pool->next_mapping;
1271 
1272 	BUG_ON(!pool->next_mapping);
1273 
1274 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1275 	INIT_LIST_HEAD(&m->list);
1276 	m->bio = NULL;
1277 
1278 	pool->next_mapping = NULL;
1279 
1280 	return m;
1281 }
1282 
1283 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1284 		    sector_t begin, sector_t end)
1285 {
1286 	struct dm_io_region to;
1287 
1288 	to.bdev = tc->pool_dev->bdev;
1289 	to.sector = begin;
1290 	to.count = end - begin;
1291 
1292 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1293 }
1294 
1295 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1296 				      dm_block_t data_begin,
1297 				      struct dm_thin_new_mapping *m)
1298 {
1299 	struct pool *pool = tc->pool;
1300 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1301 
1302 	h->overwrite_mapping = m;
1303 	m->bio = bio;
1304 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1305 	inc_all_io_entry(pool, bio);
1306 	remap_and_issue(tc, bio, data_begin);
1307 }
1308 
1309 /*
1310  * A partial copy also needs to zero the uncopied region.
1311  */
1312 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1313 			  struct dm_dev *origin, dm_block_t data_origin,
1314 			  dm_block_t data_dest,
1315 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1316 			  sector_t len)
1317 {
1318 	struct pool *pool = tc->pool;
1319 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1320 
1321 	m->tc = tc;
1322 	m->virt_begin = virt_block;
1323 	m->virt_end = virt_block + 1u;
1324 	m->data_block = data_dest;
1325 	m->cell = cell;
1326 
1327 	/*
1328 	 * quiesce action + copy action + an extra reference held for the
1329 	 * duration of this function (we may need to inc later for a
1330 	 * partial zero).
1331 	 */
1332 	atomic_set(&m->prepare_actions, 3);
1333 
1334 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1335 		complete_mapping_preparation(m); /* already quiesced */
1336 
1337 	/*
1338 	 * IO to pool_dev remaps to the pool target's data_dev.
1339 	 *
1340 	 * If the whole block of data is being overwritten, we can issue the
1341 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1342 	 */
1343 	if (io_overwrites_block(pool, bio))
1344 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1345 	else {
1346 		struct dm_io_region from, to;
1347 
1348 		from.bdev = origin->bdev;
1349 		from.sector = data_origin * pool->sectors_per_block;
1350 		from.count = len;
1351 
1352 		to.bdev = tc->pool_dev->bdev;
1353 		to.sector = data_dest * pool->sectors_per_block;
1354 		to.count = len;
1355 
1356 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1357 			       0, copy_complete, m);
1358 
1359 		/*
1360 		 * Do we need to zero a tail region?
1361 		 */
1362 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1363 			atomic_inc(&m->prepare_actions);
1364 			ll_zero(tc, m,
1365 				data_dest * pool->sectors_per_block + len,
1366 				(data_dest + 1) * pool->sectors_per_block);
1367 		}
1368 	}
1369 
1370 	complete_mapping_preparation(m); /* drop our ref */
1371 }
1372 
1373 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1374 				   dm_block_t data_origin, dm_block_t data_dest,
1375 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1376 {
1377 	schedule_copy(tc, virt_block, tc->pool_dev,
1378 		      data_origin, data_dest, cell, bio,
1379 		      tc->pool->sectors_per_block);
1380 }
1381 
1382 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1383 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1384 			  struct bio *bio)
1385 {
1386 	struct pool *pool = tc->pool;
1387 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1388 
1389 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1390 	m->tc = tc;
1391 	m->virt_begin = virt_block;
1392 	m->virt_end = virt_block + 1u;
1393 	m->data_block = data_block;
1394 	m->cell = cell;
1395 
1396 	/*
1397 	 * If the whole block of data is being overwritten or we are not
1398 	 * zeroing pre-existing data, we can issue the bio immediately.
1399 	 * Otherwise we use kcopyd to zero the data first.
1400 	 */
1401 	if (pool->pf.zero_new_blocks) {
1402 		if (io_overwrites_block(pool, bio))
1403 			remap_and_issue_overwrite(tc, bio, data_block, m);
1404 		else
1405 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1406 				(data_block + 1) * pool->sectors_per_block);
1407 	} else
1408 		process_prepared_mapping(m);
1409 }
1410 
1411 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1412 				   dm_block_t data_dest,
1413 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1414 {
1415 	struct pool *pool = tc->pool;
1416 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1417 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1418 
1419 	if (virt_block_end <= tc->origin_size)
1420 		schedule_copy(tc, virt_block, tc->origin_dev,
1421 			      virt_block, data_dest, cell, bio,
1422 			      pool->sectors_per_block);
1423 
1424 	else if (virt_block_begin < tc->origin_size)
1425 		schedule_copy(tc, virt_block, tc->origin_dev,
1426 			      virt_block, data_dest, cell, bio,
1427 			      tc->origin_size - virt_block_begin);
1428 
1429 	else
1430 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1431 }
1432 
1433 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1434 
1435 static void requeue_bios(struct pool *pool);
1436 
1437 static bool is_read_only_pool_mode(enum pool_mode mode)
1438 {
1439 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1440 }
1441 
1442 static bool is_read_only(struct pool *pool)
1443 {
1444 	return is_read_only_pool_mode(get_pool_mode(pool));
1445 }
1446 
1447 static void check_for_metadata_space(struct pool *pool)
1448 {
1449 	int r;
1450 	const char *ooms_reason = NULL;
1451 	dm_block_t nr_free;
1452 
1453 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1454 	if (r)
1455 		ooms_reason = "Could not get free metadata blocks";
1456 	else if (!nr_free)
1457 		ooms_reason = "No free metadata blocks";
1458 
1459 	if (ooms_reason && !is_read_only(pool)) {
1460 		DMERR("%s", ooms_reason);
1461 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1462 	}
1463 }
1464 
1465 static void check_for_data_space(struct pool *pool)
1466 {
1467 	int r;
1468 	dm_block_t nr_free;
1469 
1470 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1471 		return;
1472 
1473 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1474 	if (r)
1475 		return;
1476 
1477 	if (nr_free) {
1478 		set_pool_mode(pool, PM_WRITE);
1479 		requeue_bios(pool);
1480 	}
1481 }
1482 
1483 /*
1484  * A non-zero return indicates read_only or fail_io mode.
1485  * Many callers don't care about the return value.
1486  */
1487 static int commit(struct pool *pool)
1488 {
1489 	int r;
1490 
1491 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1492 		return -EINVAL;
1493 
1494 	r = dm_pool_commit_metadata(pool->pmd);
1495 	if (r)
1496 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1497 	else {
1498 		check_for_metadata_space(pool);
1499 		check_for_data_space(pool);
1500 	}
1501 
1502 	return r;
1503 }
1504 
1505 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1506 {
1507 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1508 		DMWARN("%s: reached low water mark for data device: sending event.",
1509 		       dm_device_name(pool->pool_md));
1510 		spin_lock_irq(&pool->lock);
1511 		pool->low_water_triggered = true;
1512 		spin_unlock_irq(&pool->lock);
1513 		dm_table_event(pool->ti->table);
1514 	}
1515 }
1516 
1517 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1518 {
1519 	int r;
1520 	dm_block_t free_blocks;
1521 	struct pool *pool = tc->pool;
1522 
1523 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1524 		return -EINVAL;
1525 
1526 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1527 	if (r) {
1528 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1529 		return r;
1530 	}
1531 
1532 	check_low_water_mark(pool, free_blocks);
1533 
1534 	if (!free_blocks) {
1535 		/*
1536 		 * Try to commit to see if that will free up some
1537 		 * more space.
1538 		 */
1539 		r = commit(pool);
1540 		if (r)
1541 			return r;
1542 
1543 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1544 		if (r) {
1545 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1546 			return r;
1547 		}
1548 
1549 		if (!free_blocks) {
1550 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1551 			return -ENOSPC;
1552 		}
1553 	}
1554 
1555 	r = dm_pool_alloc_data_block(pool->pmd, result);
1556 	if (r) {
1557 		if (r == -ENOSPC)
1558 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559 		else
1560 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1561 		return r;
1562 	}
1563 
1564 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1565 	if (r) {
1566 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1567 		return r;
1568 	}
1569 
1570 	if (!free_blocks) {
1571 		/* Let's commit before we use up the metadata reserve. */
1572 		r = commit(pool);
1573 		if (r)
1574 			return r;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * If we have run out of space, queue bios until the device is
1582  * resumed, presumably after having been reloaded with more space.
1583  */
1584 static void retry_on_resume(struct bio *bio)
1585 {
1586 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1587 	struct thin_c *tc = h->tc;
1588 
1589 	spin_lock_irq(&tc->lock);
1590 	bio_list_add(&tc->retry_on_resume_list, bio);
1591 	spin_unlock_irq(&tc->lock);
1592 }
1593 
1594 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1595 {
1596 	enum pool_mode m = get_pool_mode(pool);
1597 
1598 	switch (m) {
1599 	case PM_WRITE:
1600 		/* Shouldn't get here */
1601 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1602 		return BLK_STS_IOERR;
1603 
1604 	case PM_OUT_OF_DATA_SPACE:
1605 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1606 
1607 	case PM_OUT_OF_METADATA_SPACE:
1608 	case PM_READ_ONLY:
1609 	case PM_FAIL:
1610 		return BLK_STS_IOERR;
1611 	default:
1612 		/* Shouldn't get here */
1613 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1614 		return BLK_STS_IOERR;
1615 	}
1616 }
1617 
1618 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1619 {
1620 	blk_status_t error = should_error_unserviceable_bio(pool);
1621 
1622 	if (error) {
1623 		bio->bi_status = error;
1624 		bio_endio(bio);
1625 	} else
1626 		retry_on_resume(bio);
1627 }
1628 
1629 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1630 {
1631 	struct bio *bio;
1632 	struct bio_list bios;
1633 	blk_status_t error;
1634 
1635 	error = should_error_unserviceable_bio(pool);
1636 	if (error) {
1637 		cell_error_with_code(pool, cell, error);
1638 		return;
1639 	}
1640 
1641 	bio_list_init(&bios);
1642 	cell_release(pool, cell, &bios);
1643 
1644 	while ((bio = bio_list_pop(&bios)))
1645 		retry_on_resume(bio);
1646 }
1647 
1648 static void process_discard_cell_no_passdown(struct thin_c *tc,
1649 					     struct dm_bio_prison_cell *virt_cell)
1650 {
1651 	struct pool *pool = tc->pool;
1652 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1653 
1654 	/*
1655 	 * We don't need to lock the data blocks, since there's no
1656 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1657 	 */
1658 	m->tc = tc;
1659 	m->virt_begin = virt_cell->key.block_begin;
1660 	m->virt_end = virt_cell->key.block_end;
1661 	m->cell = virt_cell;
1662 	m->bio = virt_cell->holder;
1663 
1664 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1665 		pool->process_prepared_discard(m);
1666 }
1667 
1668 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1669 				 struct bio *bio)
1670 {
1671 	struct pool *pool = tc->pool;
1672 
1673 	int r;
1674 	bool maybe_shared;
1675 	struct dm_cell_key data_key;
1676 	struct dm_bio_prison_cell *data_cell;
1677 	struct dm_thin_new_mapping *m;
1678 	dm_block_t virt_begin, virt_end, data_begin, data_end;
1679 	dm_block_t len, next_boundary;
1680 
1681 	while (begin != end) {
1682 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1683 					      &data_begin, &maybe_shared);
1684 		if (r) {
1685 			/*
1686 			 * Silently fail, letting any mappings we've
1687 			 * created complete.
1688 			 */
1689 			break;
1690 		}
1691 
1692 		data_end = data_begin + (virt_end - virt_begin);
1693 
1694 		/*
1695 		 * Make sure the data region obeys the bio prison restrictions.
1696 		 */
1697 		while (data_begin < data_end) {
1698 			r = ensure_next_mapping(pool);
1699 			if (r)
1700 				return; /* we did our best */
1701 
1702 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1703 				<< BIO_PRISON_MAX_RANGE_SHIFT;
1704 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1705 
1706 			/* This key is certainly within range given the above splitting */
1707 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1708 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1709 				/* contention, we'll give up with this range */
1710 				data_begin += len;
1711 				continue;
1712 			}
1713 
1714 			/*
1715 			 * IO may still be going to the destination block.  We must
1716 			 * quiesce before we can do the removal.
1717 			 */
1718 			m = get_next_mapping(pool);
1719 			m->tc = tc;
1720 			m->maybe_shared = maybe_shared;
1721 			m->virt_begin = virt_begin;
1722 			m->virt_end = virt_begin + len;
1723 			m->data_block = data_begin;
1724 			m->cell = data_cell;
1725 			m->bio = bio;
1726 
1727 			/*
1728 			 * The parent bio must not complete before sub discard bios are
1729 			 * chained to it (see end_discard's bio_chain)!
1730 			 *
1731 			 * This per-mapping bi_remaining increment is paired with
1732 			 * the implicit decrement that occurs via bio_endio() in
1733 			 * end_discard().
1734 			 */
1735 			bio_inc_remaining(bio);
1736 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1737 				pool->process_prepared_discard(m);
1738 
1739 			virt_begin += len;
1740 			data_begin += len;
1741 		}
1742 
1743 		begin = virt_end;
1744 	}
1745 }
1746 
1747 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1748 {
1749 	struct bio *bio = virt_cell->holder;
1750 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1751 
1752 	/*
1753 	 * The virt_cell will only get freed once the origin bio completes.
1754 	 * This means it will remain locked while all the individual
1755 	 * passdown bios are in flight.
1756 	 */
1757 	h->cell = virt_cell;
1758 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1759 
1760 	/*
1761 	 * We complete the bio now, knowing that the bi_remaining field
1762 	 * will prevent completion until the sub range discards have
1763 	 * completed.
1764 	 */
1765 	bio_endio(bio);
1766 }
1767 
1768 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1769 {
1770 	dm_block_t begin, end;
1771 	struct dm_cell_key virt_key;
1772 	struct dm_bio_prison_cell *virt_cell;
1773 
1774 	get_bio_block_range(tc, bio, &begin, &end);
1775 	if (begin == end) {
1776 		/*
1777 		 * The discard covers less than a block.
1778 		 */
1779 		bio_endio(bio);
1780 		return;
1781 	}
1782 
1783 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1784 		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1785 		bio_endio(bio);
1786 		return;
1787 	}
1788 
1789 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1790 		/*
1791 		 * Potential starvation issue: We're relying on the
1792 		 * fs/application being well behaved, and not trying to
1793 		 * send IO to a region at the same time as discarding it.
1794 		 * If they do this persistently then it's possible this
1795 		 * cell will never be granted.
1796 		 */
1797 		return;
1798 	}
1799 
1800 	tc->pool->process_discard_cell(tc, virt_cell);
1801 }
1802 
1803 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1804 			  struct dm_cell_key *key,
1805 			  struct dm_thin_lookup_result *lookup_result,
1806 			  struct dm_bio_prison_cell *cell)
1807 {
1808 	int r;
1809 	dm_block_t data_block;
1810 	struct pool *pool = tc->pool;
1811 
1812 	r = alloc_data_block(tc, &data_block);
1813 	switch (r) {
1814 	case 0:
1815 		schedule_internal_copy(tc, block, lookup_result->block,
1816 				       data_block, cell, bio);
1817 		break;
1818 
1819 	case -ENOSPC:
1820 		retry_bios_on_resume(pool, cell);
1821 		break;
1822 
1823 	default:
1824 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1825 			    __func__, r);
1826 		cell_error(pool, cell);
1827 		break;
1828 	}
1829 }
1830 
1831 static void __remap_and_issue_shared_cell(void *context,
1832 					  struct dm_bio_prison_cell *cell)
1833 {
1834 	struct remap_info *info = context;
1835 	struct bio *bio;
1836 
1837 	while ((bio = bio_list_pop(&cell->bios))) {
1838 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1839 		    bio_op(bio) == REQ_OP_DISCARD)
1840 			bio_list_add(&info->defer_bios, bio);
1841 		else {
1842 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1843 
1844 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1845 			inc_all_io_entry(info->tc->pool, bio);
1846 			bio_list_add(&info->issue_bios, bio);
1847 		}
1848 	}
1849 }
1850 
1851 static void remap_and_issue_shared_cell(struct thin_c *tc,
1852 					struct dm_bio_prison_cell *cell,
1853 					dm_block_t block)
1854 {
1855 	struct bio *bio;
1856 	struct remap_info info;
1857 
1858 	info.tc = tc;
1859 	bio_list_init(&info.defer_bios);
1860 	bio_list_init(&info.issue_bios);
1861 
1862 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1863 			   &info, cell);
1864 
1865 	while ((bio = bio_list_pop(&info.defer_bios)))
1866 		thin_defer_bio(tc, bio);
1867 
1868 	while ((bio = bio_list_pop(&info.issue_bios)))
1869 		remap_and_issue(tc, bio, block);
1870 }
1871 
1872 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1873 			       dm_block_t block,
1874 			       struct dm_thin_lookup_result *lookup_result,
1875 			       struct dm_bio_prison_cell *virt_cell)
1876 {
1877 	struct dm_bio_prison_cell *data_cell;
1878 	struct pool *pool = tc->pool;
1879 	struct dm_cell_key key;
1880 
1881 	/*
1882 	 * If cell is already occupied, then sharing is already in the process
1883 	 * of being broken so we have nothing further to do here.
1884 	 */
1885 	build_data_key(tc->td, lookup_result->block, &key);
1886 	if (bio_detain(pool, &key, bio, &data_cell)) {
1887 		cell_defer_no_holder(tc, virt_cell);
1888 		return;
1889 	}
1890 
1891 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1892 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1893 		cell_defer_no_holder(tc, virt_cell);
1894 	} else {
1895 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1896 
1897 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1898 		inc_all_io_entry(pool, bio);
1899 		remap_and_issue(tc, bio, lookup_result->block);
1900 
1901 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1902 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1903 	}
1904 }
1905 
1906 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1907 			    struct dm_bio_prison_cell *cell)
1908 {
1909 	int r;
1910 	dm_block_t data_block;
1911 	struct pool *pool = tc->pool;
1912 
1913 	/*
1914 	 * Remap empty bios (flushes) immediately, without provisioning.
1915 	 */
1916 	if (!bio->bi_iter.bi_size) {
1917 		inc_all_io_entry(pool, bio);
1918 		cell_defer_no_holder(tc, cell);
1919 
1920 		remap_and_issue(tc, bio, 0);
1921 		return;
1922 	}
1923 
1924 	/*
1925 	 * Fill read bios with zeroes and complete them immediately.
1926 	 */
1927 	if (bio_data_dir(bio) == READ) {
1928 		zero_fill_bio(bio);
1929 		cell_defer_no_holder(tc, cell);
1930 		bio_endio(bio);
1931 		return;
1932 	}
1933 
1934 	r = alloc_data_block(tc, &data_block);
1935 	switch (r) {
1936 	case 0:
1937 		if (tc->origin_dev)
1938 			schedule_external_copy(tc, block, data_block, cell, bio);
1939 		else
1940 			schedule_zero(tc, block, data_block, cell, bio);
1941 		break;
1942 
1943 	case -ENOSPC:
1944 		retry_bios_on_resume(pool, cell);
1945 		break;
1946 
1947 	default:
1948 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1949 			    __func__, r);
1950 		cell_error(pool, cell);
1951 		break;
1952 	}
1953 }
1954 
1955 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1956 {
1957 	int r;
1958 	struct pool *pool = tc->pool;
1959 	struct bio *bio = cell->holder;
1960 	dm_block_t block = get_bio_block(tc, bio);
1961 	struct dm_thin_lookup_result lookup_result;
1962 
1963 	if (tc->requeue_mode) {
1964 		cell_requeue(pool, cell);
1965 		return;
1966 	}
1967 
1968 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1969 	switch (r) {
1970 	case 0:
1971 		if (lookup_result.shared)
1972 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1973 		else {
1974 			inc_all_io_entry(pool, bio);
1975 			remap_and_issue(tc, bio, lookup_result.block);
1976 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1977 		}
1978 		break;
1979 
1980 	case -ENODATA:
1981 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1982 			inc_all_io_entry(pool, bio);
1983 			cell_defer_no_holder(tc, cell);
1984 
1985 			if (bio_end_sector(bio) <= tc->origin_size)
1986 				remap_to_origin_and_issue(tc, bio);
1987 
1988 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1989 				zero_fill_bio(bio);
1990 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1991 				remap_to_origin_and_issue(tc, bio);
1992 
1993 			} else {
1994 				zero_fill_bio(bio);
1995 				bio_endio(bio);
1996 			}
1997 		} else
1998 			provision_block(tc, bio, block, cell);
1999 		break;
2000 
2001 	default:
2002 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2003 			    __func__, r);
2004 		cell_defer_no_holder(tc, cell);
2005 		bio_io_error(bio);
2006 		break;
2007 	}
2008 }
2009 
2010 static void process_bio(struct thin_c *tc, struct bio *bio)
2011 {
2012 	struct pool *pool = tc->pool;
2013 	dm_block_t block = get_bio_block(tc, bio);
2014 	struct dm_bio_prison_cell *cell;
2015 	struct dm_cell_key key;
2016 
2017 	/*
2018 	 * If cell is already occupied, then the block is already
2019 	 * being provisioned so we have nothing further to do here.
2020 	 */
2021 	build_virtual_key(tc->td, block, &key);
2022 	if (bio_detain(pool, &key, bio, &cell))
2023 		return;
2024 
2025 	process_cell(tc, cell);
2026 }
2027 
2028 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2029 				    struct dm_bio_prison_cell *cell)
2030 {
2031 	int r;
2032 	int rw = bio_data_dir(bio);
2033 	dm_block_t block = get_bio_block(tc, bio);
2034 	struct dm_thin_lookup_result lookup_result;
2035 
2036 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2037 	switch (r) {
2038 	case 0:
2039 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2040 			handle_unserviceable_bio(tc->pool, bio);
2041 			if (cell)
2042 				cell_defer_no_holder(tc, cell);
2043 		} else {
2044 			inc_all_io_entry(tc->pool, bio);
2045 			remap_and_issue(tc, bio, lookup_result.block);
2046 			if (cell)
2047 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2048 		}
2049 		break;
2050 
2051 	case -ENODATA:
2052 		if (cell)
2053 			cell_defer_no_holder(tc, cell);
2054 		if (rw != READ) {
2055 			handle_unserviceable_bio(tc->pool, bio);
2056 			break;
2057 		}
2058 
2059 		if (tc->origin_dev) {
2060 			inc_all_io_entry(tc->pool, bio);
2061 			remap_to_origin_and_issue(tc, bio);
2062 			break;
2063 		}
2064 
2065 		zero_fill_bio(bio);
2066 		bio_endio(bio);
2067 		break;
2068 
2069 	default:
2070 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2071 			    __func__, r);
2072 		if (cell)
2073 			cell_defer_no_holder(tc, cell);
2074 		bio_io_error(bio);
2075 		break;
2076 	}
2077 }
2078 
2079 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2080 {
2081 	__process_bio_read_only(tc, bio, NULL);
2082 }
2083 
2084 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2085 {
2086 	__process_bio_read_only(tc, cell->holder, cell);
2087 }
2088 
2089 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2090 {
2091 	bio_endio(bio);
2092 }
2093 
2094 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2095 {
2096 	bio_io_error(bio);
2097 }
2098 
2099 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2100 {
2101 	cell_success(tc->pool, cell);
2102 }
2103 
2104 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2105 {
2106 	cell_error(tc->pool, cell);
2107 }
2108 
2109 /*
2110  * FIXME: should we also commit due to size of transaction, measured in
2111  * metadata blocks?
2112  */
2113 static int need_commit_due_to_time(struct pool *pool)
2114 {
2115 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2116 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2117 }
2118 
2119 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2120 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2121 
2122 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2123 {
2124 	struct rb_node **rbp, *parent;
2125 	struct dm_thin_endio_hook *pbd;
2126 	sector_t bi_sector = bio->bi_iter.bi_sector;
2127 
2128 	rbp = &tc->sort_bio_list.rb_node;
2129 	parent = NULL;
2130 	while (*rbp) {
2131 		parent = *rbp;
2132 		pbd = thin_pbd(parent);
2133 
2134 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2135 			rbp = &(*rbp)->rb_left;
2136 		else
2137 			rbp = &(*rbp)->rb_right;
2138 	}
2139 
2140 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2141 	rb_link_node(&pbd->rb_node, parent, rbp);
2142 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2143 }
2144 
2145 static void __extract_sorted_bios(struct thin_c *tc)
2146 {
2147 	struct rb_node *node;
2148 	struct dm_thin_endio_hook *pbd;
2149 	struct bio *bio;
2150 
2151 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2152 		pbd = thin_pbd(node);
2153 		bio = thin_bio(pbd);
2154 
2155 		bio_list_add(&tc->deferred_bio_list, bio);
2156 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2157 	}
2158 
2159 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2160 }
2161 
2162 static void __sort_thin_deferred_bios(struct thin_c *tc)
2163 {
2164 	struct bio *bio;
2165 	struct bio_list bios;
2166 
2167 	bio_list_init(&bios);
2168 	bio_list_merge(&bios, &tc->deferred_bio_list);
2169 	bio_list_init(&tc->deferred_bio_list);
2170 
2171 	/* Sort deferred_bio_list using rb-tree */
2172 	while ((bio = bio_list_pop(&bios)))
2173 		__thin_bio_rb_add(tc, bio);
2174 
2175 	/*
2176 	 * Transfer the sorted bios in sort_bio_list back to
2177 	 * deferred_bio_list to allow lockless submission of
2178 	 * all bios.
2179 	 */
2180 	__extract_sorted_bios(tc);
2181 }
2182 
2183 static void process_thin_deferred_bios(struct thin_c *tc)
2184 {
2185 	struct pool *pool = tc->pool;
2186 	struct bio *bio;
2187 	struct bio_list bios;
2188 	struct blk_plug plug;
2189 	unsigned int count = 0;
2190 
2191 	if (tc->requeue_mode) {
2192 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2193 				BLK_STS_DM_REQUEUE);
2194 		return;
2195 	}
2196 
2197 	bio_list_init(&bios);
2198 
2199 	spin_lock_irq(&tc->lock);
2200 
2201 	if (bio_list_empty(&tc->deferred_bio_list)) {
2202 		spin_unlock_irq(&tc->lock);
2203 		return;
2204 	}
2205 
2206 	__sort_thin_deferred_bios(tc);
2207 
2208 	bio_list_merge(&bios, &tc->deferred_bio_list);
2209 	bio_list_init(&tc->deferred_bio_list);
2210 
2211 	spin_unlock_irq(&tc->lock);
2212 
2213 	blk_start_plug(&plug);
2214 	while ((bio = bio_list_pop(&bios))) {
2215 		/*
2216 		 * If we've got no free new_mapping structs, and processing
2217 		 * this bio might require one, we pause until there are some
2218 		 * prepared mappings to process.
2219 		 */
2220 		if (ensure_next_mapping(pool)) {
2221 			spin_lock_irq(&tc->lock);
2222 			bio_list_add(&tc->deferred_bio_list, bio);
2223 			bio_list_merge(&tc->deferred_bio_list, &bios);
2224 			spin_unlock_irq(&tc->lock);
2225 			break;
2226 		}
2227 
2228 		if (bio_op(bio) == REQ_OP_DISCARD)
2229 			pool->process_discard(tc, bio);
2230 		else
2231 			pool->process_bio(tc, bio);
2232 
2233 		if ((count++ & 127) == 0) {
2234 			throttle_work_update(&pool->throttle);
2235 			dm_pool_issue_prefetches(pool->pmd);
2236 		}
2237 		cond_resched();
2238 	}
2239 	blk_finish_plug(&plug);
2240 }
2241 
2242 static int cmp_cells(const void *lhs, const void *rhs)
2243 {
2244 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2245 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2246 
2247 	BUG_ON(!lhs_cell->holder);
2248 	BUG_ON(!rhs_cell->holder);
2249 
2250 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2251 		return -1;
2252 
2253 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2254 		return 1;
2255 
2256 	return 0;
2257 }
2258 
2259 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2260 {
2261 	unsigned int count = 0;
2262 	struct dm_bio_prison_cell *cell, *tmp;
2263 
2264 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2265 		if (count >= CELL_SORT_ARRAY_SIZE)
2266 			break;
2267 
2268 		pool->cell_sort_array[count++] = cell;
2269 		list_del(&cell->user_list);
2270 	}
2271 
2272 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2273 
2274 	return count;
2275 }
2276 
2277 static void process_thin_deferred_cells(struct thin_c *tc)
2278 {
2279 	struct pool *pool = tc->pool;
2280 	struct list_head cells;
2281 	struct dm_bio_prison_cell *cell;
2282 	unsigned int i, j, count;
2283 
2284 	INIT_LIST_HEAD(&cells);
2285 
2286 	spin_lock_irq(&tc->lock);
2287 	list_splice_init(&tc->deferred_cells, &cells);
2288 	spin_unlock_irq(&tc->lock);
2289 
2290 	if (list_empty(&cells))
2291 		return;
2292 
2293 	do {
2294 		count = sort_cells(tc->pool, &cells);
2295 
2296 		for (i = 0; i < count; i++) {
2297 			cell = pool->cell_sort_array[i];
2298 			BUG_ON(!cell->holder);
2299 
2300 			/*
2301 			 * If we've got no free new_mapping structs, and processing
2302 			 * this bio might require one, we pause until there are some
2303 			 * prepared mappings to process.
2304 			 */
2305 			if (ensure_next_mapping(pool)) {
2306 				for (j = i; j < count; j++)
2307 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2308 
2309 				spin_lock_irq(&tc->lock);
2310 				list_splice(&cells, &tc->deferred_cells);
2311 				spin_unlock_irq(&tc->lock);
2312 				return;
2313 			}
2314 
2315 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2316 				pool->process_discard_cell(tc, cell);
2317 			else
2318 				pool->process_cell(tc, cell);
2319 		}
2320 		cond_resched();
2321 	} while (!list_empty(&cells));
2322 }
2323 
2324 static void thin_get(struct thin_c *tc);
2325 static void thin_put(struct thin_c *tc);
2326 
2327 /*
2328  * We can't hold rcu_read_lock() around code that can block.  So we
2329  * find a thin with the rcu lock held; bump a refcount; then drop
2330  * the lock.
2331  */
2332 static struct thin_c *get_first_thin(struct pool *pool)
2333 {
2334 	struct thin_c *tc = NULL;
2335 
2336 	rcu_read_lock();
2337 	if (!list_empty(&pool->active_thins)) {
2338 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2339 		thin_get(tc);
2340 	}
2341 	rcu_read_unlock();
2342 
2343 	return tc;
2344 }
2345 
2346 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2347 {
2348 	struct thin_c *old_tc = tc;
2349 
2350 	rcu_read_lock();
2351 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2352 		thin_get(tc);
2353 		thin_put(old_tc);
2354 		rcu_read_unlock();
2355 		return tc;
2356 	}
2357 	thin_put(old_tc);
2358 	rcu_read_unlock();
2359 
2360 	return NULL;
2361 }
2362 
2363 static void process_deferred_bios(struct pool *pool)
2364 {
2365 	struct bio *bio;
2366 	struct bio_list bios, bio_completions;
2367 	struct thin_c *tc;
2368 
2369 	tc = get_first_thin(pool);
2370 	while (tc) {
2371 		process_thin_deferred_cells(tc);
2372 		process_thin_deferred_bios(tc);
2373 		tc = get_next_thin(pool, tc);
2374 	}
2375 
2376 	/*
2377 	 * If there are any deferred flush bios, we must commit the metadata
2378 	 * before issuing them or signaling their completion.
2379 	 */
2380 	bio_list_init(&bios);
2381 	bio_list_init(&bio_completions);
2382 
2383 	spin_lock_irq(&pool->lock);
2384 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2385 	bio_list_init(&pool->deferred_flush_bios);
2386 
2387 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2388 	bio_list_init(&pool->deferred_flush_completions);
2389 	spin_unlock_irq(&pool->lock);
2390 
2391 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2392 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2393 		return;
2394 
2395 	if (commit(pool)) {
2396 		bio_list_merge(&bios, &bio_completions);
2397 
2398 		while ((bio = bio_list_pop(&bios)))
2399 			bio_io_error(bio);
2400 		return;
2401 	}
2402 	pool->last_commit_jiffies = jiffies;
2403 
2404 	while ((bio = bio_list_pop(&bio_completions)))
2405 		bio_endio(bio);
2406 
2407 	while ((bio = bio_list_pop(&bios))) {
2408 		/*
2409 		 * The data device was flushed as part of metadata commit,
2410 		 * so complete redundant flushes immediately.
2411 		 */
2412 		if (bio->bi_opf & REQ_PREFLUSH)
2413 			bio_endio(bio);
2414 		else
2415 			dm_submit_bio_remap(bio, NULL);
2416 	}
2417 }
2418 
2419 static void do_worker(struct work_struct *ws)
2420 {
2421 	struct pool *pool = container_of(ws, struct pool, worker);
2422 
2423 	throttle_work_start(&pool->throttle);
2424 	dm_pool_issue_prefetches(pool->pmd);
2425 	throttle_work_update(&pool->throttle);
2426 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2427 	throttle_work_update(&pool->throttle);
2428 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2429 	throttle_work_update(&pool->throttle);
2430 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2431 	throttle_work_update(&pool->throttle);
2432 	process_deferred_bios(pool);
2433 	throttle_work_complete(&pool->throttle);
2434 }
2435 
2436 /*
2437  * We want to commit periodically so that not too much
2438  * unwritten data builds up.
2439  */
2440 static void do_waker(struct work_struct *ws)
2441 {
2442 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2443 
2444 	wake_worker(pool);
2445 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2446 }
2447 
2448 /*
2449  * We're holding onto IO to allow userland time to react.  After the
2450  * timeout either the pool will have been resized (and thus back in
2451  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2452  */
2453 static void do_no_space_timeout(struct work_struct *ws)
2454 {
2455 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2456 					 no_space_timeout);
2457 
2458 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2459 		pool->pf.error_if_no_space = true;
2460 		notify_of_pool_mode_change(pool);
2461 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2462 	}
2463 }
2464 
2465 /*----------------------------------------------------------------*/
2466 
2467 struct pool_work {
2468 	struct work_struct worker;
2469 	struct completion complete;
2470 };
2471 
2472 static struct pool_work *to_pool_work(struct work_struct *ws)
2473 {
2474 	return container_of(ws, struct pool_work, worker);
2475 }
2476 
2477 static void pool_work_complete(struct pool_work *pw)
2478 {
2479 	complete(&pw->complete);
2480 }
2481 
2482 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2483 			   void (*fn)(struct work_struct *))
2484 {
2485 	INIT_WORK_ONSTACK(&pw->worker, fn);
2486 	init_completion(&pw->complete);
2487 	queue_work(pool->wq, &pw->worker);
2488 	wait_for_completion(&pw->complete);
2489 	destroy_work_on_stack(&pw->worker);
2490 }
2491 
2492 /*----------------------------------------------------------------*/
2493 
2494 struct noflush_work {
2495 	struct pool_work pw;
2496 	struct thin_c *tc;
2497 };
2498 
2499 static struct noflush_work *to_noflush(struct work_struct *ws)
2500 {
2501 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2502 }
2503 
2504 static void do_noflush_start(struct work_struct *ws)
2505 {
2506 	struct noflush_work *w = to_noflush(ws);
2507 
2508 	w->tc->requeue_mode = true;
2509 	requeue_io(w->tc);
2510 	pool_work_complete(&w->pw);
2511 }
2512 
2513 static void do_noflush_stop(struct work_struct *ws)
2514 {
2515 	struct noflush_work *w = to_noflush(ws);
2516 
2517 	w->tc->requeue_mode = false;
2518 	pool_work_complete(&w->pw);
2519 }
2520 
2521 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2522 {
2523 	struct noflush_work w;
2524 
2525 	w.tc = tc;
2526 	pool_work_wait(&w.pw, tc->pool, fn);
2527 }
2528 
2529 /*----------------------------------------------------------------*/
2530 
2531 static void set_discard_callbacks(struct pool *pool)
2532 {
2533 	struct pool_c *pt = pool->ti->private;
2534 
2535 	if (pt->adjusted_pf.discard_passdown) {
2536 		pool->process_discard_cell = process_discard_cell_passdown;
2537 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2538 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2539 	} else {
2540 		pool->process_discard_cell = process_discard_cell_no_passdown;
2541 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2542 	}
2543 }
2544 
2545 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2546 {
2547 	struct pool_c *pt = pool->ti->private;
2548 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2549 	enum pool_mode old_mode = get_pool_mode(pool);
2550 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2551 
2552 	/*
2553 	 * Never allow the pool to transition to PM_WRITE mode if user
2554 	 * intervention is required to verify metadata and data consistency.
2555 	 */
2556 	if (new_mode == PM_WRITE && needs_check) {
2557 		DMERR("%s: unable to switch pool to write mode until repaired.",
2558 		      dm_device_name(pool->pool_md));
2559 		if (old_mode != new_mode)
2560 			new_mode = old_mode;
2561 		else
2562 			new_mode = PM_READ_ONLY;
2563 	}
2564 	/*
2565 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2566 	 * not going to recover without a thin_repair.	So we never let the
2567 	 * pool move out of the old mode.
2568 	 */
2569 	if (old_mode == PM_FAIL)
2570 		new_mode = old_mode;
2571 
2572 	switch (new_mode) {
2573 	case PM_FAIL:
2574 		dm_pool_metadata_read_only(pool->pmd);
2575 		pool->process_bio = process_bio_fail;
2576 		pool->process_discard = process_bio_fail;
2577 		pool->process_cell = process_cell_fail;
2578 		pool->process_discard_cell = process_cell_fail;
2579 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2580 		pool->process_prepared_discard = process_prepared_discard_fail;
2581 
2582 		error_retry_list(pool);
2583 		break;
2584 
2585 	case PM_OUT_OF_METADATA_SPACE:
2586 	case PM_READ_ONLY:
2587 		dm_pool_metadata_read_only(pool->pmd);
2588 		pool->process_bio = process_bio_read_only;
2589 		pool->process_discard = process_bio_success;
2590 		pool->process_cell = process_cell_read_only;
2591 		pool->process_discard_cell = process_cell_success;
2592 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2593 		pool->process_prepared_discard = process_prepared_discard_success;
2594 
2595 		error_retry_list(pool);
2596 		break;
2597 
2598 	case PM_OUT_OF_DATA_SPACE:
2599 		/*
2600 		 * Ideally we'd never hit this state; the low water mark
2601 		 * would trigger userland to extend the pool before we
2602 		 * completely run out of data space.  However, many small
2603 		 * IOs to unprovisioned space can consume data space at an
2604 		 * alarming rate.  Adjust your low water mark if you're
2605 		 * frequently seeing this mode.
2606 		 */
2607 		pool->out_of_data_space = true;
2608 		pool->process_bio = process_bio_read_only;
2609 		pool->process_discard = process_discard_bio;
2610 		pool->process_cell = process_cell_read_only;
2611 		pool->process_prepared_mapping = process_prepared_mapping;
2612 		set_discard_callbacks(pool);
2613 
2614 		if (!pool->pf.error_if_no_space && no_space_timeout)
2615 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2616 		break;
2617 
2618 	case PM_WRITE:
2619 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2620 			cancel_delayed_work_sync(&pool->no_space_timeout);
2621 		pool->out_of_data_space = false;
2622 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2623 		dm_pool_metadata_read_write(pool->pmd);
2624 		pool->process_bio = process_bio;
2625 		pool->process_discard = process_discard_bio;
2626 		pool->process_cell = process_cell;
2627 		pool->process_prepared_mapping = process_prepared_mapping;
2628 		set_discard_callbacks(pool);
2629 		break;
2630 	}
2631 
2632 	pool->pf.mode = new_mode;
2633 	/*
2634 	 * The pool mode may have changed, sync it so bind_control_target()
2635 	 * doesn't cause an unexpected mode transition on resume.
2636 	 */
2637 	pt->adjusted_pf.mode = new_mode;
2638 
2639 	if (old_mode != new_mode)
2640 		notify_of_pool_mode_change(pool);
2641 }
2642 
2643 static void abort_transaction(struct pool *pool)
2644 {
2645 	const char *dev_name = dm_device_name(pool->pool_md);
2646 
2647 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2648 	if (dm_pool_abort_metadata(pool->pmd)) {
2649 		DMERR("%s: failed to abort metadata transaction", dev_name);
2650 		set_pool_mode(pool, PM_FAIL);
2651 	}
2652 
2653 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2654 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2655 		set_pool_mode(pool, PM_FAIL);
2656 	}
2657 }
2658 
2659 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2660 {
2661 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2662 		    dm_device_name(pool->pool_md), op, r);
2663 
2664 	abort_transaction(pool);
2665 	set_pool_mode(pool, PM_READ_ONLY);
2666 }
2667 
2668 /*----------------------------------------------------------------*/
2669 
2670 /*
2671  * Mapping functions.
2672  */
2673 
2674 /*
2675  * Called only while mapping a thin bio to hand it over to the workqueue.
2676  */
2677 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2678 {
2679 	struct pool *pool = tc->pool;
2680 
2681 	spin_lock_irq(&tc->lock);
2682 	bio_list_add(&tc->deferred_bio_list, bio);
2683 	spin_unlock_irq(&tc->lock);
2684 
2685 	wake_worker(pool);
2686 }
2687 
2688 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2689 {
2690 	struct pool *pool = tc->pool;
2691 
2692 	throttle_lock(&pool->throttle);
2693 	thin_defer_bio(tc, bio);
2694 	throttle_unlock(&pool->throttle);
2695 }
2696 
2697 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2698 {
2699 	struct pool *pool = tc->pool;
2700 
2701 	throttle_lock(&pool->throttle);
2702 	spin_lock_irq(&tc->lock);
2703 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2704 	spin_unlock_irq(&tc->lock);
2705 	throttle_unlock(&pool->throttle);
2706 
2707 	wake_worker(pool);
2708 }
2709 
2710 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2711 {
2712 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2713 
2714 	h->tc = tc;
2715 	h->shared_read_entry = NULL;
2716 	h->all_io_entry = NULL;
2717 	h->overwrite_mapping = NULL;
2718 	h->cell = NULL;
2719 }
2720 
2721 /*
2722  * Non-blocking function called from the thin target's map function.
2723  */
2724 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2725 {
2726 	int r;
2727 	struct thin_c *tc = ti->private;
2728 	dm_block_t block = get_bio_block(tc, bio);
2729 	struct dm_thin_device *td = tc->td;
2730 	struct dm_thin_lookup_result result;
2731 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2732 	struct dm_cell_key key;
2733 
2734 	thin_hook_bio(tc, bio);
2735 
2736 	if (tc->requeue_mode) {
2737 		bio->bi_status = BLK_STS_DM_REQUEUE;
2738 		bio_endio(bio);
2739 		return DM_MAPIO_SUBMITTED;
2740 	}
2741 
2742 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2743 		bio_io_error(bio);
2744 		return DM_MAPIO_SUBMITTED;
2745 	}
2746 
2747 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2748 		thin_defer_bio_with_throttle(tc, bio);
2749 		return DM_MAPIO_SUBMITTED;
2750 	}
2751 
2752 	/*
2753 	 * We must hold the virtual cell before doing the lookup, otherwise
2754 	 * there's a race with discard.
2755 	 */
2756 	build_virtual_key(tc->td, block, &key);
2757 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2758 		return DM_MAPIO_SUBMITTED;
2759 
2760 	r = dm_thin_find_block(td, block, 0, &result);
2761 
2762 	/*
2763 	 * Note that we defer readahead too.
2764 	 */
2765 	switch (r) {
2766 	case 0:
2767 		if (unlikely(result.shared)) {
2768 			/*
2769 			 * We have a race condition here between the
2770 			 * result.shared value returned by the lookup and
2771 			 * snapshot creation, which may cause new
2772 			 * sharing.
2773 			 *
2774 			 * To avoid this always quiesce the origin before
2775 			 * taking the snap.  You want to do this anyway to
2776 			 * ensure a consistent application view
2777 			 * (i.e. lockfs).
2778 			 *
2779 			 * More distant ancestors are irrelevant. The
2780 			 * shared flag will be set in their case.
2781 			 */
2782 			thin_defer_cell(tc, virt_cell);
2783 			return DM_MAPIO_SUBMITTED;
2784 		}
2785 
2786 		build_data_key(tc->td, result.block, &key);
2787 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2788 			cell_defer_no_holder(tc, virt_cell);
2789 			return DM_MAPIO_SUBMITTED;
2790 		}
2791 
2792 		inc_all_io_entry(tc->pool, bio);
2793 		cell_defer_no_holder(tc, data_cell);
2794 		cell_defer_no_holder(tc, virt_cell);
2795 
2796 		remap(tc, bio, result.block);
2797 		return DM_MAPIO_REMAPPED;
2798 
2799 	case -ENODATA:
2800 	case -EWOULDBLOCK:
2801 		thin_defer_cell(tc, virt_cell);
2802 		return DM_MAPIO_SUBMITTED;
2803 
2804 	default:
2805 		/*
2806 		 * Must always call bio_io_error on failure.
2807 		 * dm_thin_find_block can fail with -EINVAL if the
2808 		 * pool is switched to fail-io mode.
2809 		 */
2810 		bio_io_error(bio);
2811 		cell_defer_no_holder(tc, virt_cell);
2812 		return DM_MAPIO_SUBMITTED;
2813 	}
2814 }
2815 
2816 static void requeue_bios(struct pool *pool)
2817 {
2818 	struct thin_c *tc;
2819 
2820 	rcu_read_lock();
2821 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2822 		spin_lock_irq(&tc->lock);
2823 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2824 		bio_list_init(&tc->retry_on_resume_list);
2825 		spin_unlock_irq(&tc->lock);
2826 	}
2827 	rcu_read_unlock();
2828 }
2829 
2830 /*
2831  *--------------------------------------------------------------
2832  * Binding of control targets to a pool object
2833  *--------------------------------------------------------------
2834  */
2835 static bool is_factor(sector_t block_size, uint32_t n)
2836 {
2837 	return !sector_div(block_size, n);
2838 }
2839 
2840 /*
2841  * If discard_passdown was enabled verify that the data device
2842  * supports discards.  Disable discard_passdown if not.
2843  */
2844 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2845 {
2846 	struct pool *pool = pt->pool;
2847 	struct block_device *data_bdev = pt->data_dev->bdev;
2848 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2849 	const char *reason = NULL;
2850 
2851 	if (!pt->adjusted_pf.discard_passdown)
2852 		return;
2853 
2854 	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2855 		reason = "discard unsupported";
2856 
2857 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2858 		reason = "max discard sectors smaller than a block";
2859 
2860 	if (reason) {
2861 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2862 		pt->adjusted_pf.discard_passdown = false;
2863 	}
2864 }
2865 
2866 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2867 {
2868 	struct pool_c *pt = ti->private;
2869 
2870 	/*
2871 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2872 	 */
2873 	enum pool_mode old_mode = get_pool_mode(pool);
2874 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2875 
2876 	/*
2877 	 * Don't change the pool's mode until set_pool_mode() below.
2878 	 * Otherwise the pool's process_* function pointers may
2879 	 * not match the desired pool mode.
2880 	 */
2881 	pt->adjusted_pf.mode = old_mode;
2882 
2883 	pool->ti = ti;
2884 	pool->pf = pt->adjusted_pf;
2885 	pool->low_water_blocks = pt->low_water_blocks;
2886 
2887 	set_pool_mode(pool, new_mode);
2888 
2889 	return 0;
2890 }
2891 
2892 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2893 {
2894 	if (pool->ti == ti)
2895 		pool->ti = NULL;
2896 }
2897 
2898 /*
2899  *--------------------------------------------------------------
2900  * Pool creation
2901  *--------------------------------------------------------------
2902  */
2903 /* Initialize pool features. */
2904 static void pool_features_init(struct pool_features *pf)
2905 {
2906 	pf->mode = PM_WRITE;
2907 	pf->zero_new_blocks = true;
2908 	pf->discard_enabled = true;
2909 	pf->discard_passdown = true;
2910 	pf->error_if_no_space = false;
2911 }
2912 
2913 static void __pool_destroy(struct pool *pool)
2914 {
2915 	__pool_table_remove(pool);
2916 
2917 	vfree(pool->cell_sort_array);
2918 	if (dm_pool_metadata_close(pool->pmd) < 0)
2919 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2920 
2921 	dm_bio_prison_destroy(pool->prison);
2922 	dm_kcopyd_client_destroy(pool->copier);
2923 
2924 	cancel_delayed_work_sync(&pool->waker);
2925 	cancel_delayed_work_sync(&pool->no_space_timeout);
2926 	if (pool->wq)
2927 		destroy_workqueue(pool->wq);
2928 
2929 	if (pool->next_mapping)
2930 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2931 	mempool_exit(&pool->mapping_pool);
2932 	dm_deferred_set_destroy(pool->shared_read_ds);
2933 	dm_deferred_set_destroy(pool->all_io_ds);
2934 	kfree(pool);
2935 }
2936 
2937 static struct kmem_cache *_new_mapping_cache;
2938 
2939 static struct pool *pool_create(struct mapped_device *pool_md,
2940 				struct block_device *metadata_dev,
2941 				struct block_device *data_dev,
2942 				unsigned long block_size,
2943 				int read_only, char **error)
2944 {
2945 	int r;
2946 	void *err_p;
2947 	struct pool *pool;
2948 	struct dm_pool_metadata *pmd;
2949 	bool format_device = read_only ? false : true;
2950 
2951 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2952 	if (IS_ERR(pmd)) {
2953 		*error = "Error creating metadata object";
2954 		return (struct pool *)pmd;
2955 	}
2956 
2957 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2958 	if (!pool) {
2959 		*error = "Error allocating memory for pool";
2960 		err_p = ERR_PTR(-ENOMEM);
2961 		goto bad_pool;
2962 	}
2963 
2964 	pool->pmd = pmd;
2965 	pool->sectors_per_block = block_size;
2966 	if (block_size & (block_size - 1))
2967 		pool->sectors_per_block_shift = -1;
2968 	else
2969 		pool->sectors_per_block_shift = __ffs(block_size);
2970 	pool->low_water_blocks = 0;
2971 	pool_features_init(&pool->pf);
2972 	pool->prison = dm_bio_prison_create();
2973 	if (!pool->prison) {
2974 		*error = "Error creating pool's bio prison";
2975 		err_p = ERR_PTR(-ENOMEM);
2976 		goto bad_prison;
2977 	}
2978 
2979 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2980 	if (IS_ERR(pool->copier)) {
2981 		r = PTR_ERR(pool->copier);
2982 		*error = "Error creating pool's kcopyd client";
2983 		err_p = ERR_PTR(r);
2984 		goto bad_kcopyd_client;
2985 	}
2986 
2987 	/*
2988 	 * Create singlethreaded workqueue that will service all devices
2989 	 * that use this metadata.
2990 	 */
2991 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2992 	if (!pool->wq) {
2993 		*error = "Error creating pool's workqueue";
2994 		err_p = ERR_PTR(-ENOMEM);
2995 		goto bad_wq;
2996 	}
2997 
2998 	throttle_init(&pool->throttle);
2999 	INIT_WORK(&pool->worker, do_worker);
3000 	INIT_DELAYED_WORK(&pool->waker, do_waker);
3001 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3002 	spin_lock_init(&pool->lock);
3003 	bio_list_init(&pool->deferred_flush_bios);
3004 	bio_list_init(&pool->deferred_flush_completions);
3005 	INIT_LIST_HEAD(&pool->prepared_mappings);
3006 	INIT_LIST_HEAD(&pool->prepared_discards);
3007 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3008 	INIT_LIST_HEAD(&pool->active_thins);
3009 	pool->low_water_triggered = false;
3010 	pool->suspended = true;
3011 	pool->out_of_data_space = false;
3012 
3013 	pool->shared_read_ds = dm_deferred_set_create();
3014 	if (!pool->shared_read_ds) {
3015 		*error = "Error creating pool's shared read deferred set";
3016 		err_p = ERR_PTR(-ENOMEM);
3017 		goto bad_shared_read_ds;
3018 	}
3019 
3020 	pool->all_io_ds = dm_deferred_set_create();
3021 	if (!pool->all_io_ds) {
3022 		*error = "Error creating pool's all io deferred set";
3023 		err_p = ERR_PTR(-ENOMEM);
3024 		goto bad_all_io_ds;
3025 	}
3026 
3027 	pool->next_mapping = NULL;
3028 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3029 				   _new_mapping_cache);
3030 	if (r) {
3031 		*error = "Error creating pool's mapping mempool";
3032 		err_p = ERR_PTR(r);
3033 		goto bad_mapping_pool;
3034 	}
3035 
3036 	pool->cell_sort_array =
3037 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3038 				   sizeof(*pool->cell_sort_array)));
3039 	if (!pool->cell_sort_array) {
3040 		*error = "Error allocating cell sort array";
3041 		err_p = ERR_PTR(-ENOMEM);
3042 		goto bad_sort_array;
3043 	}
3044 
3045 	pool->ref_count = 1;
3046 	pool->last_commit_jiffies = jiffies;
3047 	pool->pool_md = pool_md;
3048 	pool->md_dev = metadata_dev;
3049 	pool->data_dev = data_dev;
3050 	__pool_table_insert(pool);
3051 
3052 	return pool;
3053 
3054 bad_sort_array:
3055 	mempool_exit(&pool->mapping_pool);
3056 bad_mapping_pool:
3057 	dm_deferred_set_destroy(pool->all_io_ds);
3058 bad_all_io_ds:
3059 	dm_deferred_set_destroy(pool->shared_read_ds);
3060 bad_shared_read_ds:
3061 	destroy_workqueue(pool->wq);
3062 bad_wq:
3063 	dm_kcopyd_client_destroy(pool->copier);
3064 bad_kcopyd_client:
3065 	dm_bio_prison_destroy(pool->prison);
3066 bad_prison:
3067 	kfree(pool);
3068 bad_pool:
3069 	if (dm_pool_metadata_close(pmd))
3070 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3071 
3072 	return err_p;
3073 }
3074 
3075 static void __pool_inc(struct pool *pool)
3076 {
3077 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3078 	pool->ref_count++;
3079 }
3080 
3081 static void __pool_dec(struct pool *pool)
3082 {
3083 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3084 	BUG_ON(!pool->ref_count);
3085 	if (!--pool->ref_count)
3086 		__pool_destroy(pool);
3087 }
3088 
3089 static struct pool *__pool_find(struct mapped_device *pool_md,
3090 				struct block_device *metadata_dev,
3091 				struct block_device *data_dev,
3092 				unsigned long block_size, int read_only,
3093 				char **error, int *created)
3094 {
3095 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3096 
3097 	if (pool) {
3098 		if (pool->pool_md != pool_md) {
3099 			*error = "metadata device already in use by a pool";
3100 			return ERR_PTR(-EBUSY);
3101 		}
3102 		if (pool->data_dev != data_dev) {
3103 			*error = "data device already in use by a pool";
3104 			return ERR_PTR(-EBUSY);
3105 		}
3106 		__pool_inc(pool);
3107 
3108 	} else {
3109 		pool = __pool_table_lookup(pool_md);
3110 		if (pool) {
3111 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3112 				*error = "different pool cannot replace a pool";
3113 				return ERR_PTR(-EINVAL);
3114 			}
3115 			__pool_inc(pool);
3116 
3117 		} else {
3118 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3119 			*created = 1;
3120 		}
3121 	}
3122 
3123 	return pool;
3124 }
3125 
3126 /*
3127  *--------------------------------------------------------------
3128  * Pool target methods
3129  *--------------------------------------------------------------
3130  */
3131 static void pool_dtr(struct dm_target *ti)
3132 {
3133 	struct pool_c *pt = ti->private;
3134 
3135 	mutex_lock(&dm_thin_pool_table.mutex);
3136 
3137 	unbind_control_target(pt->pool, ti);
3138 	__pool_dec(pt->pool);
3139 	dm_put_device(ti, pt->metadata_dev);
3140 	dm_put_device(ti, pt->data_dev);
3141 	kfree(pt);
3142 
3143 	mutex_unlock(&dm_thin_pool_table.mutex);
3144 }
3145 
3146 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3147 			       struct dm_target *ti)
3148 {
3149 	int r;
3150 	unsigned int argc;
3151 	const char *arg_name;
3152 
3153 	static const struct dm_arg _args[] = {
3154 		{0, 4, "Invalid number of pool feature arguments"},
3155 	};
3156 
3157 	/*
3158 	 * No feature arguments supplied.
3159 	 */
3160 	if (!as->argc)
3161 		return 0;
3162 
3163 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3164 	if (r)
3165 		return -EINVAL;
3166 
3167 	while (argc && !r) {
3168 		arg_name = dm_shift_arg(as);
3169 		argc--;
3170 
3171 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3172 			pf->zero_new_blocks = false;
3173 
3174 		else if (!strcasecmp(arg_name, "ignore_discard"))
3175 			pf->discard_enabled = false;
3176 
3177 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3178 			pf->discard_passdown = false;
3179 
3180 		else if (!strcasecmp(arg_name, "read_only"))
3181 			pf->mode = PM_READ_ONLY;
3182 
3183 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3184 			pf->error_if_no_space = true;
3185 
3186 		else {
3187 			ti->error = "Unrecognised pool feature requested";
3188 			r = -EINVAL;
3189 			break;
3190 		}
3191 	}
3192 
3193 	return r;
3194 }
3195 
3196 static void metadata_low_callback(void *context)
3197 {
3198 	struct pool *pool = context;
3199 
3200 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3201 	       dm_device_name(pool->pool_md));
3202 
3203 	dm_table_event(pool->ti->table);
3204 }
3205 
3206 /*
3207  * We need to flush the data device **before** committing the metadata.
3208  *
3209  * This ensures that the data blocks of any newly inserted mappings are
3210  * properly written to non-volatile storage and won't be lost in case of a
3211  * crash.
3212  *
3213  * Failure to do so can result in data corruption in the case of internal or
3214  * external snapshots and in the case of newly provisioned blocks, when block
3215  * zeroing is enabled.
3216  */
3217 static int metadata_pre_commit_callback(void *context)
3218 {
3219 	struct pool *pool = context;
3220 
3221 	return blkdev_issue_flush(pool->data_dev);
3222 }
3223 
3224 static sector_t get_dev_size(struct block_device *bdev)
3225 {
3226 	return bdev_nr_sectors(bdev);
3227 }
3228 
3229 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3230 {
3231 	sector_t metadata_dev_size = get_dev_size(bdev);
3232 
3233 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3234 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3235 		       bdev, THIN_METADATA_MAX_SECTORS);
3236 }
3237 
3238 static sector_t get_metadata_dev_size(struct block_device *bdev)
3239 {
3240 	sector_t metadata_dev_size = get_dev_size(bdev);
3241 
3242 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3243 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3244 
3245 	return metadata_dev_size;
3246 }
3247 
3248 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3249 {
3250 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3251 
3252 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3253 
3254 	return metadata_dev_size;
3255 }
3256 
3257 /*
3258  * When a metadata threshold is crossed a dm event is triggered, and
3259  * userland should respond by growing the metadata device.  We could let
3260  * userland set the threshold, like we do with the data threshold, but I'm
3261  * not sure they know enough to do this well.
3262  */
3263 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3264 {
3265 	/*
3266 	 * 4M is ample for all ops with the possible exception of thin
3267 	 * device deletion which is harmless if it fails (just retry the
3268 	 * delete after you've grown the device).
3269 	 */
3270 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3271 
3272 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3273 }
3274 
3275 /*
3276  * thin-pool <metadata dev> <data dev>
3277  *	     <data block size (sectors)>
3278  *	     <low water mark (blocks)>
3279  *	     [<#feature args> [<arg>]*]
3280  *
3281  * Optional feature arguments are:
3282  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3283  *	     ignore_discard: disable discard
3284  *	     no_discard_passdown: don't pass discards down to the data device
3285  *	     read_only: Don't allow any changes to be made to the pool metadata.
3286  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3287  */
3288 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3289 {
3290 	int r, pool_created = 0;
3291 	struct pool_c *pt;
3292 	struct pool *pool;
3293 	struct pool_features pf;
3294 	struct dm_arg_set as;
3295 	struct dm_dev *data_dev;
3296 	unsigned long block_size;
3297 	dm_block_t low_water_blocks;
3298 	struct dm_dev *metadata_dev;
3299 	blk_mode_t metadata_mode;
3300 
3301 	/*
3302 	 * FIXME Remove validation from scope of lock.
3303 	 */
3304 	mutex_lock(&dm_thin_pool_table.mutex);
3305 
3306 	if (argc < 4) {
3307 		ti->error = "Invalid argument count";
3308 		r = -EINVAL;
3309 		goto out_unlock;
3310 	}
3311 
3312 	as.argc = argc;
3313 	as.argv = argv;
3314 
3315 	/* make sure metadata and data are different devices */
3316 	if (!strcmp(argv[0], argv[1])) {
3317 		ti->error = "Error setting metadata or data device";
3318 		r = -EINVAL;
3319 		goto out_unlock;
3320 	}
3321 
3322 	/*
3323 	 * Set default pool features.
3324 	 */
3325 	pool_features_init(&pf);
3326 
3327 	dm_consume_args(&as, 4);
3328 	r = parse_pool_features(&as, &pf, ti);
3329 	if (r)
3330 		goto out_unlock;
3331 
3332 	metadata_mode = BLK_OPEN_READ |
3333 		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3334 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3335 	if (r) {
3336 		ti->error = "Error opening metadata block device";
3337 		goto out_unlock;
3338 	}
3339 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3340 
3341 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3342 	if (r) {
3343 		ti->error = "Error getting data device";
3344 		goto out_metadata;
3345 	}
3346 
3347 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3348 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3349 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3350 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3351 		ti->error = "Invalid block size";
3352 		r = -EINVAL;
3353 		goto out;
3354 	}
3355 
3356 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3357 		ti->error = "Invalid low water mark";
3358 		r = -EINVAL;
3359 		goto out;
3360 	}
3361 
3362 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3363 	if (!pt) {
3364 		r = -ENOMEM;
3365 		goto out;
3366 	}
3367 
3368 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3369 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3370 	if (IS_ERR(pool)) {
3371 		r = PTR_ERR(pool);
3372 		goto out_free_pt;
3373 	}
3374 
3375 	/*
3376 	 * 'pool_created' reflects whether this is the first table load.
3377 	 * Top level discard support is not allowed to be changed after
3378 	 * initial load.  This would require a pool reload to trigger thin
3379 	 * device changes.
3380 	 */
3381 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3382 		ti->error = "Discard support cannot be disabled once enabled";
3383 		r = -EINVAL;
3384 		goto out_flags_changed;
3385 	}
3386 
3387 	pt->pool = pool;
3388 	pt->ti = ti;
3389 	pt->metadata_dev = metadata_dev;
3390 	pt->data_dev = data_dev;
3391 	pt->low_water_blocks = low_water_blocks;
3392 	pt->adjusted_pf = pt->requested_pf = pf;
3393 	ti->num_flush_bios = 1;
3394 	ti->limit_swap_bios = true;
3395 
3396 	/*
3397 	 * Only need to enable discards if the pool should pass
3398 	 * them down to the data device.  The thin device's discard
3399 	 * processing will cause mappings to be removed from the btree.
3400 	 */
3401 	if (pf.discard_enabled && pf.discard_passdown) {
3402 		ti->num_discard_bios = 1;
3403 		/*
3404 		 * Setting 'discards_supported' circumvents the normal
3405 		 * stacking of discard limits (this keeps the pool and
3406 		 * thin devices' discard limits consistent).
3407 		 */
3408 		ti->discards_supported = true;
3409 		ti->max_discard_granularity = true;
3410 	}
3411 	ti->private = pt;
3412 
3413 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3414 						calc_metadata_threshold(pt),
3415 						metadata_low_callback,
3416 						pool);
3417 	if (r) {
3418 		ti->error = "Error registering metadata threshold";
3419 		goto out_flags_changed;
3420 	}
3421 
3422 	dm_pool_register_pre_commit_callback(pool->pmd,
3423 					     metadata_pre_commit_callback, pool);
3424 
3425 	mutex_unlock(&dm_thin_pool_table.mutex);
3426 
3427 	return 0;
3428 
3429 out_flags_changed:
3430 	__pool_dec(pool);
3431 out_free_pt:
3432 	kfree(pt);
3433 out:
3434 	dm_put_device(ti, data_dev);
3435 out_metadata:
3436 	dm_put_device(ti, metadata_dev);
3437 out_unlock:
3438 	mutex_unlock(&dm_thin_pool_table.mutex);
3439 
3440 	return r;
3441 }
3442 
3443 static int pool_map(struct dm_target *ti, struct bio *bio)
3444 {
3445 	struct pool_c *pt = ti->private;
3446 	struct pool *pool = pt->pool;
3447 
3448 	/*
3449 	 * As this is a singleton target, ti->begin is always zero.
3450 	 */
3451 	spin_lock_irq(&pool->lock);
3452 	bio_set_dev(bio, pt->data_dev->bdev);
3453 	spin_unlock_irq(&pool->lock);
3454 
3455 	return DM_MAPIO_REMAPPED;
3456 }
3457 
3458 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3459 {
3460 	int r;
3461 	struct pool_c *pt = ti->private;
3462 	struct pool *pool = pt->pool;
3463 	sector_t data_size = ti->len;
3464 	dm_block_t sb_data_size;
3465 
3466 	*need_commit = false;
3467 
3468 	(void) sector_div(data_size, pool->sectors_per_block);
3469 
3470 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3471 	if (r) {
3472 		DMERR("%s: failed to retrieve data device size",
3473 		      dm_device_name(pool->pool_md));
3474 		return r;
3475 	}
3476 
3477 	if (data_size < sb_data_size) {
3478 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3479 		      dm_device_name(pool->pool_md),
3480 		      (unsigned long long)data_size, sb_data_size);
3481 		return -EINVAL;
3482 
3483 	} else if (data_size > sb_data_size) {
3484 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3485 			DMERR("%s: unable to grow the data device until repaired.",
3486 			      dm_device_name(pool->pool_md));
3487 			return 0;
3488 		}
3489 
3490 		if (sb_data_size)
3491 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3492 			       dm_device_name(pool->pool_md),
3493 			       sb_data_size, (unsigned long long)data_size);
3494 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3495 		if (r) {
3496 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3497 			return r;
3498 		}
3499 
3500 		*need_commit = true;
3501 	}
3502 
3503 	return 0;
3504 }
3505 
3506 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3507 {
3508 	int r;
3509 	struct pool_c *pt = ti->private;
3510 	struct pool *pool = pt->pool;
3511 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3512 
3513 	*need_commit = false;
3514 
3515 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3516 
3517 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3518 	if (r) {
3519 		DMERR("%s: failed to retrieve metadata device size",
3520 		      dm_device_name(pool->pool_md));
3521 		return r;
3522 	}
3523 
3524 	if (metadata_dev_size < sb_metadata_dev_size) {
3525 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3526 		      dm_device_name(pool->pool_md),
3527 		      metadata_dev_size, sb_metadata_dev_size);
3528 		return -EINVAL;
3529 
3530 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3531 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3532 			DMERR("%s: unable to grow the metadata device until repaired.",
3533 			      dm_device_name(pool->pool_md));
3534 			return 0;
3535 		}
3536 
3537 		warn_if_metadata_device_too_big(pool->md_dev);
3538 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3539 		       dm_device_name(pool->pool_md),
3540 		       sb_metadata_dev_size, metadata_dev_size);
3541 
3542 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3543 			set_pool_mode(pool, PM_WRITE);
3544 
3545 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3546 		if (r) {
3547 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3548 			return r;
3549 		}
3550 
3551 		*need_commit = true;
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 /*
3558  * Retrieves the number of blocks of the data device from
3559  * the superblock and compares it to the actual device size,
3560  * thus resizing the data device in case it has grown.
3561  *
3562  * This both copes with opening preallocated data devices in the ctr
3563  * being followed by a resume
3564  * -and-
3565  * calling the resume method individually after userspace has
3566  * grown the data device in reaction to a table event.
3567  */
3568 static int pool_preresume(struct dm_target *ti)
3569 {
3570 	int r;
3571 	bool need_commit1, need_commit2;
3572 	struct pool_c *pt = ti->private;
3573 	struct pool *pool = pt->pool;
3574 
3575 	/*
3576 	 * Take control of the pool object.
3577 	 */
3578 	r = bind_control_target(pool, ti);
3579 	if (r)
3580 		goto out;
3581 
3582 	r = maybe_resize_data_dev(ti, &need_commit1);
3583 	if (r)
3584 		goto out;
3585 
3586 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3587 	if (r)
3588 		goto out;
3589 
3590 	if (need_commit1 || need_commit2)
3591 		(void) commit(pool);
3592 out:
3593 	/*
3594 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3595 	 * bio is in deferred list. Therefore need to return 0
3596 	 * to allow pool_resume() to flush IO.
3597 	 */
3598 	if (r && get_pool_mode(pool) == PM_FAIL)
3599 		r = 0;
3600 
3601 	return r;
3602 }
3603 
3604 static void pool_suspend_active_thins(struct pool *pool)
3605 {
3606 	struct thin_c *tc;
3607 
3608 	/* Suspend all active thin devices */
3609 	tc = get_first_thin(pool);
3610 	while (tc) {
3611 		dm_internal_suspend_noflush(tc->thin_md);
3612 		tc = get_next_thin(pool, tc);
3613 	}
3614 }
3615 
3616 static void pool_resume_active_thins(struct pool *pool)
3617 {
3618 	struct thin_c *tc;
3619 
3620 	/* Resume all active thin devices */
3621 	tc = get_first_thin(pool);
3622 	while (tc) {
3623 		dm_internal_resume(tc->thin_md);
3624 		tc = get_next_thin(pool, tc);
3625 	}
3626 }
3627 
3628 static void pool_resume(struct dm_target *ti)
3629 {
3630 	struct pool_c *pt = ti->private;
3631 	struct pool *pool = pt->pool;
3632 
3633 	/*
3634 	 * Must requeue active_thins' bios and then resume
3635 	 * active_thins _before_ clearing 'suspend' flag.
3636 	 */
3637 	requeue_bios(pool);
3638 	pool_resume_active_thins(pool);
3639 
3640 	spin_lock_irq(&pool->lock);
3641 	pool->low_water_triggered = false;
3642 	pool->suspended = false;
3643 	spin_unlock_irq(&pool->lock);
3644 
3645 	do_waker(&pool->waker.work);
3646 }
3647 
3648 static void pool_presuspend(struct dm_target *ti)
3649 {
3650 	struct pool_c *pt = ti->private;
3651 	struct pool *pool = pt->pool;
3652 
3653 	spin_lock_irq(&pool->lock);
3654 	pool->suspended = true;
3655 	spin_unlock_irq(&pool->lock);
3656 
3657 	pool_suspend_active_thins(pool);
3658 }
3659 
3660 static void pool_presuspend_undo(struct dm_target *ti)
3661 {
3662 	struct pool_c *pt = ti->private;
3663 	struct pool *pool = pt->pool;
3664 
3665 	pool_resume_active_thins(pool);
3666 
3667 	spin_lock_irq(&pool->lock);
3668 	pool->suspended = false;
3669 	spin_unlock_irq(&pool->lock);
3670 }
3671 
3672 static void pool_postsuspend(struct dm_target *ti)
3673 {
3674 	struct pool_c *pt = ti->private;
3675 	struct pool *pool = pt->pool;
3676 
3677 	cancel_delayed_work_sync(&pool->waker);
3678 	cancel_delayed_work_sync(&pool->no_space_timeout);
3679 	flush_workqueue(pool->wq);
3680 	(void) commit(pool);
3681 }
3682 
3683 static int check_arg_count(unsigned int argc, unsigned int args_required)
3684 {
3685 	if (argc != args_required) {
3686 		DMWARN("Message received with %u arguments instead of %u.",
3687 		       argc, args_required);
3688 		return -EINVAL;
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3695 {
3696 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3697 	    *dev_id <= MAX_DEV_ID)
3698 		return 0;
3699 
3700 	if (warning)
3701 		DMWARN("Message received with invalid device id: %s", arg);
3702 
3703 	return -EINVAL;
3704 }
3705 
3706 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3707 {
3708 	dm_thin_id dev_id;
3709 	int r;
3710 
3711 	r = check_arg_count(argc, 2);
3712 	if (r)
3713 		return r;
3714 
3715 	r = read_dev_id(argv[1], &dev_id, 1);
3716 	if (r)
3717 		return r;
3718 
3719 	r = dm_pool_create_thin(pool->pmd, dev_id);
3720 	if (r) {
3721 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3722 		       argv[1]);
3723 		return r;
3724 	}
3725 
3726 	return 0;
3727 }
3728 
3729 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3730 {
3731 	dm_thin_id dev_id;
3732 	dm_thin_id origin_dev_id;
3733 	int r;
3734 
3735 	r = check_arg_count(argc, 3);
3736 	if (r)
3737 		return r;
3738 
3739 	r = read_dev_id(argv[1], &dev_id, 1);
3740 	if (r)
3741 		return r;
3742 
3743 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3744 	if (r)
3745 		return r;
3746 
3747 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3748 	if (r) {
3749 		DMWARN("Creation of new snapshot %s of device %s failed.",
3750 		       argv[1], argv[2]);
3751 		return r;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3758 {
3759 	dm_thin_id dev_id;
3760 	int r;
3761 
3762 	r = check_arg_count(argc, 2);
3763 	if (r)
3764 		return r;
3765 
3766 	r = read_dev_id(argv[1], &dev_id, 1);
3767 	if (r)
3768 		return r;
3769 
3770 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3771 	if (r)
3772 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3773 
3774 	return r;
3775 }
3776 
3777 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3778 {
3779 	dm_thin_id old_id, new_id;
3780 	int r;
3781 
3782 	r = check_arg_count(argc, 3);
3783 	if (r)
3784 		return r;
3785 
3786 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3787 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3788 		return -EINVAL;
3789 	}
3790 
3791 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3792 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3793 		return -EINVAL;
3794 	}
3795 
3796 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3797 	if (r) {
3798 		DMWARN("Failed to change transaction id from %s to %s.",
3799 		       argv[1], argv[2]);
3800 		return r;
3801 	}
3802 
3803 	return 0;
3804 }
3805 
3806 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3807 {
3808 	int r;
3809 
3810 	r = check_arg_count(argc, 1);
3811 	if (r)
3812 		return r;
3813 
3814 	(void) commit(pool);
3815 
3816 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3817 	if (r)
3818 		DMWARN("reserve_metadata_snap message failed.");
3819 
3820 	return r;
3821 }
3822 
3823 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3824 {
3825 	int r;
3826 
3827 	r = check_arg_count(argc, 1);
3828 	if (r)
3829 		return r;
3830 
3831 	r = dm_pool_release_metadata_snap(pool->pmd);
3832 	if (r)
3833 		DMWARN("release_metadata_snap message failed.");
3834 
3835 	return r;
3836 }
3837 
3838 /*
3839  * Messages supported:
3840  *   create_thin	<dev_id>
3841  *   create_snap	<dev_id> <origin_id>
3842  *   delete		<dev_id>
3843  *   set_transaction_id <current_trans_id> <new_trans_id>
3844  *   reserve_metadata_snap
3845  *   release_metadata_snap
3846  */
3847 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3848 			char *result, unsigned int maxlen)
3849 {
3850 	int r = -EINVAL;
3851 	struct pool_c *pt = ti->private;
3852 	struct pool *pool = pt->pool;
3853 
3854 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3855 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3856 		      dm_device_name(pool->pool_md));
3857 		return -EOPNOTSUPP;
3858 	}
3859 
3860 	if (!strcasecmp(argv[0], "create_thin"))
3861 		r = process_create_thin_mesg(argc, argv, pool);
3862 
3863 	else if (!strcasecmp(argv[0], "create_snap"))
3864 		r = process_create_snap_mesg(argc, argv, pool);
3865 
3866 	else if (!strcasecmp(argv[0], "delete"))
3867 		r = process_delete_mesg(argc, argv, pool);
3868 
3869 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3870 		r = process_set_transaction_id_mesg(argc, argv, pool);
3871 
3872 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3873 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3874 
3875 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3876 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3877 
3878 	else
3879 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3880 
3881 	if (!r)
3882 		(void) commit(pool);
3883 
3884 	return r;
3885 }
3886 
3887 static void emit_flags(struct pool_features *pf, char *result,
3888 		       unsigned int sz, unsigned int maxlen)
3889 {
3890 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3891 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3892 		pf->error_if_no_space;
3893 	DMEMIT("%u ", count);
3894 
3895 	if (!pf->zero_new_blocks)
3896 		DMEMIT("skip_block_zeroing ");
3897 
3898 	if (!pf->discard_enabled)
3899 		DMEMIT("ignore_discard ");
3900 
3901 	if (!pf->discard_passdown)
3902 		DMEMIT("no_discard_passdown ");
3903 
3904 	if (pf->mode == PM_READ_ONLY)
3905 		DMEMIT("read_only ");
3906 
3907 	if (pf->error_if_no_space)
3908 		DMEMIT("error_if_no_space ");
3909 }
3910 
3911 /*
3912  * Status line is:
3913  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3914  *    <used data sectors>/<total data sectors> <held metadata root>
3915  *    <pool mode> <discard config> <no space config> <needs_check>
3916  */
3917 static void pool_status(struct dm_target *ti, status_type_t type,
3918 			unsigned int status_flags, char *result, unsigned int maxlen)
3919 {
3920 	int r;
3921 	unsigned int sz = 0;
3922 	uint64_t transaction_id;
3923 	dm_block_t nr_free_blocks_data;
3924 	dm_block_t nr_free_blocks_metadata;
3925 	dm_block_t nr_blocks_data;
3926 	dm_block_t nr_blocks_metadata;
3927 	dm_block_t held_root;
3928 	enum pool_mode mode;
3929 	char buf[BDEVNAME_SIZE];
3930 	char buf2[BDEVNAME_SIZE];
3931 	struct pool_c *pt = ti->private;
3932 	struct pool *pool = pt->pool;
3933 
3934 	switch (type) {
3935 	case STATUSTYPE_INFO:
3936 		if (get_pool_mode(pool) == PM_FAIL) {
3937 			DMEMIT("Fail");
3938 			break;
3939 		}
3940 
3941 		/* Commit to ensure statistics aren't out-of-date */
3942 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3943 			(void) commit(pool);
3944 
3945 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3946 		if (r) {
3947 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3948 			      dm_device_name(pool->pool_md), r);
3949 			goto err;
3950 		}
3951 
3952 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3953 		if (r) {
3954 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3955 			      dm_device_name(pool->pool_md), r);
3956 			goto err;
3957 		}
3958 
3959 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3960 		if (r) {
3961 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3962 			      dm_device_name(pool->pool_md), r);
3963 			goto err;
3964 		}
3965 
3966 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3967 		if (r) {
3968 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3969 			      dm_device_name(pool->pool_md), r);
3970 			goto err;
3971 		}
3972 
3973 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3974 		if (r) {
3975 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3976 			      dm_device_name(pool->pool_md), r);
3977 			goto err;
3978 		}
3979 
3980 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3981 		if (r) {
3982 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3983 			      dm_device_name(pool->pool_md), r);
3984 			goto err;
3985 		}
3986 
3987 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3988 		       (unsigned long long)transaction_id,
3989 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3990 		       (unsigned long long)nr_blocks_metadata,
3991 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3992 		       (unsigned long long)nr_blocks_data);
3993 
3994 		if (held_root)
3995 			DMEMIT("%llu ", held_root);
3996 		else
3997 			DMEMIT("- ");
3998 
3999 		mode = get_pool_mode(pool);
4000 		if (mode == PM_OUT_OF_DATA_SPACE)
4001 			DMEMIT("out_of_data_space ");
4002 		else if (is_read_only_pool_mode(mode))
4003 			DMEMIT("ro ");
4004 		else
4005 			DMEMIT("rw ");
4006 
4007 		if (!pool->pf.discard_enabled)
4008 			DMEMIT("ignore_discard ");
4009 		else if (pool->pf.discard_passdown)
4010 			DMEMIT("discard_passdown ");
4011 		else
4012 			DMEMIT("no_discard_passdown ");
4013 
4014 		if (pool->pf.error_if_no_space)
4015 			DMEMIT("error_if_no_space ");
4016 		else
4017 			DMEMIT("queue_if_no_space ");
4018 
4019 		if (dm_pool_metadata_needs_check(pool->pmd))
4020 			DMEMIT("needs_check ");
4021 		else
4022 			DMEMIT("- ");
4023 
4024 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4025 
4026 		break;
4027 
4028 	case STATUSTYPE_TABLE:
4029 		DMEMIT("%s %s %lu %llu ",
4030 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4031 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4032 		       (unsigned long)pool->sectors_per_block,
4033 		       (unsigned long long)pt->low_water_blocks);
4034 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4035 		break;
4036 
4037 	case STATUSTYPE_IMA:
4038 		*result = '\0';
4039 		break;
4040 	}
4041 	return;
4042 
4043 err:
4044 	DMEMIT("Error");
4045 }
4046 
4047 static int pool_iterate_devices(struct dm_target *ti,
4048 				iterate_devices_callout_fn fn, void *data)
4049 {
4050 	struct pool_c *pt = ti->private;
4051 
4052 	return fn(ti, pt->data_dev, 0, ti->len, data);
4053 }
4054 
4055 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4056 {
4057 	struct pool_c *pt = ti->private;
4058 	struct pool *pool = pt->pool;
4059 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4060 
4061 	/*
4062 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4063 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4064 	 * This is especially beneficial when the pool's data device is a RAID
4065 	 * device that has a full stripe width that matches pool->sectors_per_block
4066 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4067 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4068 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4069 	 */
4070 	if (limits->max_sectors < pool->sectors_per_block) {
4071 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4072 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4073 				limits->max_sectors--;
4074 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4075 		}
4076 	}
4077 
4078 	/*
4079 	 * If the system-determined stacked limits are compatible with the
4080 	 * pool's blocksize (io_opt is a factor) do not override them.
4081 	 */
4082 	if (io_opt_sectors < pool->sectors_per_block ||
4083 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4084 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4085 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4086 		else
4087 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4088 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4089 	}
4090 
4091 	/*
4092 	 * pt->adjusted_pf is a staging area for the actual features to use.
4093 	 * They get transferred to the live pool in bind_control_target()
4094 	 * called from pool_preresume().
4095 	 */
4096 
4097 	if (pt->adjusted_pf.discard_enabled) {
4098 		disable_discard_passdown_if_not_supported(pt);
4099 		if (!pt->adjusted_pf.discard_passdown)
4100 			limits->max_discard_sectors = 0;
4101 		/*
4102 		 * The pool uses the same discard limits as the underlying data
4103 		 * device.  DM core has already set this up.
4104 		 */
4105 	} else {
4106 		/*
4107 		 * Must explicitly disallow stacking discard limits otherwise the
4108 		 * block layer will stack them if pool's data device has support.
4109 		 */
4110 		limits->discard_granularity = 0;
4111 	}
4112 }
4113 
4114 static struct target_type pool_target = {
4115 	.name = "thin-pool",
4116 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4117 		    DM_TARGET_IMMUTABLE,
4118 	.version = {1, 23, 0},
4119 	.module = THIS_MODULE,
4120 	.ctr = pool_ctr,
4121 	.dtr = pool_dtr,
4122 	.map = pool_map,
4123 	.presuspend = pool_presuspend,
4124 	.presuspend_undo = pool_presuspend_undo,
4125 	.postsuspend = pool_postsuspend,
4126 	.preresume = pool_preresume,
4127 	.resume = pool_resume,
4128 	.message = pool_message,
4129 	.status = pool_status,
4130 	.iterate_devices = pool_iterate_devices,
4131 	.io_hints = pool_io_hints,
4132 };
4133 
4134 /*
4135  *--------------------------------------------------------------
4136  * Thin target methods
4137  *--------------------------------------------------------------
4138  */
4139 static void thin_get(struct thin_c *tc)
4140 {
4141 	refcount_inc(&tc->refcount);
4142 }
4143 
4144 static void thin_put(struct thin_c *tc)
4145 {
4146 	if (refcount_dec_and_test(&tc->refcount))
4147 		complete(&tc->can_destroy);
4148 }
4149 
4150 static void thin_dtr(struct dm_target *ti)
4151 {
4152 	struct thin_c *tc = ti->private;
4153 
4154 	spin_lock_irq(&tc->pool->lock);
4155 	list_del_rcu(&tc->list);
4156 	spin_unlock_irq(&tc->pool->lock);
4157 	synchronize_rcu();
4158 
4159 	thin_put(tc);
4160 	wait_for_completion(&tc->can_destroy);
4161 
4162 	mutex_lock(&dm_thin_pool_table.mutex);
4163 
4164 	__pool_dec(tc->pool);
4165 	dm_pool_close_thin_device(tc->td);
4166 	dm_put_device(ti, tc->pool_dev);
4167 	if (tc->origin_dev)
4168 		dm_put_device(ti, tc->origin_dev);
4169 	kfree(tc);
4170 
4171 	mutex_unlock(&dm_thin_pool_table.mutex);
4172 }
4173 
4174 /*
4175  * Thin target parameters:
4176  *
4177  * <pool_dev> <dev_id> [origin_dev]
4178  *
4179  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4180  * dev_id: the internal device identifier
4181  * origin_dev: a device external to the pool that should act as the origin
4182  *
4183  * If the pool device has discards disabled, they get disabled for the thin
4184  * device as well.
4185  */
4186 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4187 {
4188 	int r;
4189 	struct thin_c *tc;
4190 	struct dm_dev *pool_dev, *origin_dev;
4191 	struct mapped_device *pool_md;
4192 
4193 	mutex_lock(&dm_thin_pool_table.mutex);
4194 
4195 	if (argc != 2 && argc != 3) {
4196 		ti->error = "Invalid argument count";
4197 		r = -EINVAL;
4198 		goto out_unlock;
4199 	}
4200 
4201 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4202 	if (!tc) {
4203 		ti->error = "Out of memory";
4204 		r = -ENOMEM;
4205 		goto out_unlock;
4206 	}
4207 	tc->thin_md = dm_table_get_md(ti->table);
4208 	spin_lock_init(&tc->lock);
4209 	INIT_LIST_HEAD(&tc->deferred_cells);
4210 	bio_list_init(&tc->deferred_bio_list);
4211 	bio_list_init(&tc->retry_on_resume_list);
4212 	tc->sort_bio_list = RB_ROOT;
4213 
4214 	if (argc == 3) {
4215 		if (!strcmp(argv[0], argv[2])) {
4216 			ti->error = "Error setting origin device";
4217 			r = -EINVAL;
4218 			goto bad_origin_dev;
4219 		}
4220 
4221 		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4222 		if (r) {
4223 			ti->error = "Error opening origin device";
4224 			goto bad_origin_dev;
4225 		}
4226 		tc->origin_dev = origin_dev;
4227 	}
4228 
4229 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4230 	if (r) {
4231 		ti->error = "Error opening pool device";
4232 		goto bad_pool_dev;
4233 	}
4234 	tc->pool_dev = pool_dev;
4235 
4236 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4237 		ti->error = "Invalid device id";
4238 		r = -EINVAL;
4239 		goto bad_common;
4240 	}
4241 
4242 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4243 	if (!pool_md) {
4244 		ti->error = "Couldn't get pool mapped device";
4245 		r = -EINVAL;
4246 		goto bad_common;
4247 	}
4248 
4249 	tc->pool = __pool_table_lookup(pool_md);
4250 	if (!tc->pool) {
4251 		ti->error = "Couldn't find pool object";
4252 		r = -EINVAL;
4253 		goto bad_pool_lookup;
4254 	}
4255 	__pool_inc(tc->pool);
4256 
4257 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4258 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4259 		r = -EINVAL;
4260 		goto bad_pool;
4261 	}
4262 
4263 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4264 	if (r) {
4265 		ti->error = "Couldn't open thin internal device";
4266 		goto bad_pool;
4267 	}
4268 
4269 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4270 	if (r)
4271 		goto bad;
4272 
4273 	ti->num_flush_bios = 1;
4274 	ti->limit_swap_bios = true;
4275 	ti->flush_supported = true;
4276 	ti->accounts_remapped_io = true;
4277 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4278 
4279 	/* In case the pool supports discards, pass them on. */
4280 	if (tc->pool->pf.discard_enabled) {
4281 		ti->discards_supported = true;
4282 		ti->num_discard_bios = 1;
4283 		ti->max_discard_granularity = true;
4284 	}
4285 
4286 	mutex_unlock(&dm_thin_pool_table.mutex);
4287 
4288 	spin_lock_irq(&tc->pool->lock);
4289 	if (tc->pool->suspended) {
4290 		spin_unlock_irq(&tc->pool->lock);
4291 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4292 		ti->error = "Unable to activate thin device while pool is suspended";
4293 		r = -EINVAL;
4294 		goto bad;
4295 	}
4296 	refcount_set(&tc->refcount, 1);
4297 	init_completion(&tc->can_destroy);
4298 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4299 	spin_unlock_irq(&tc->pool->lock);
4300 	/*
4301 	 * This synchronize_rcu() call is needed here otherwise we risk a
4302 	 * wake_worker() call finding no bios to process (because the newly
4303 	 * added tc isn't yet visible).  So this reduces latency since we
4304 	 * aren't then dependent on the periodic commit to wake_worker().
4305 	 */
4306 	synchronize_rcu();
4307 
4308 	dm_put(pool_md);
4309 
4310 	return 0;
4311 
4312 bad:
4313 	dm_pool_close_thin_device(tc->td);
4314 bad_pool:
4315 	__pool_dec(tc->pool);
4316 bad_pool_lookup:
4317 	dm_put(pool_md);
4318 bad_common:
4319 	dm_put_device(ti, tc->pool_dev);
4320 bad_pool_dev:
4321 	if (tc->origin_dev)
4322 		dm_put_device(ti, tc->origin_dev);
4323 bad_origin_dev:
4324 	kfree(tc);
4325 out_unlock:
4326 	mutex_unlock(&dm_thin_pool_table.mutex);
4327 
4328 	return r;
4329 }
4330 
4331 static int thin_map(struct dm_target *ti, struct bio *bio)
4332 {
4333 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4334 
4335 	return thin_bio_map(ti, bio);
4336 }
4337 
4338 static int thin_endio(struct dm_target *ti, struct bio *bio,
4339 		blk_status_t *err)
4340 {
4341 	unsigned long flags;
4342 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4343 	struct list_head work;
4344 	struct dm_thin_new_mapping *m, *tmp;
4345 	struct pool *pool = h->tc->pool;
4346 
4347 	if (h->shared_read_entry) {
4348 		INIT_LIST_HEAD(&work);
4349 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4350 
4351 		spin_lock_irqsave(&pool->lock, flags);
4352 		list_for_each_entry_safe(m, tmp, &work, list) {
4353 			list_del(&m->list);
4354 			__complete_mapping_preparation(m);
4355 		}
4356 		spin_unlock_irqrestore(&pool->lock, flags);
4357 	}
4358 
4359 	if (h->all_io_entry) {
4360 		INIT_LIST_HEAD(&work);
4361 		dm_deferred_entry_dec(h->all_io_entry, &work);
4362 		if (!list_empty(&work)) {
4363 			spin_lock_irqsave(&pool->lock, flags);
4364 			list_for_each_entry_safe(m, tmp, &work, list)
4365 				list_add_tail(&m->list, &pool->prepared_discards);
4366 			spin_unlock_irqrestore(&pool->lock, flags);
4367 			wake_worker(pool);
4368 		}
4369 	}
4370 
4371 	if (h->cell)
4372 		cell_defer_no_holder(h->tc, h->cell);
4373 
4374 	return DM_ENDIO_DONE;
4375 }
4376 
4377 static void thin_presuspend(struct dm_target *ti)
4378 {
4379 	struct thin_c *tc = ti->private;
4380 
4381 	if (dm_noflush_suspending(ti))
4382 		noflush_work(tc, do_noflush_start);
4383 }
4384 
4385 static void thin_postsuspend(struct dm_target *ti)
4386 {
4387 	struct thin_c *tc = ti->private;
4388 
4389 	/*
4390 	 * The dm_noflush_suspending flag has been cleared by now, so
4391 	 * unfortunately we must always run this.
4392 	 */
4393 	noflush_work(tc, do_noflush_stop);
4394 }
4395 
4396 static int thin_preresume(struct dm_target *ti)
4397 {
4398 	struct thin_c *tc = ti->private;
4399 
4400 	if (tc->origin_dev)
4401 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4402 
4403 	return 0;
4404 }
4405 
4406 /*
4407  * <nr mapped sectors> <highest mapped sector>
4408  */
4409 static void thin_status(struct dm_target *ti, status_type_t type,
4410 			unsigned int status_flags, char *result, unsigned int maxlen)
4411 {
4412 	int r;
4413 	ssize_t sz = 0;
4414 	dm_block_t mapped, highest;
4415 	char buf[BDEVNAME_SIZE];
4416 	struct thin_c *tc = ti->private;
4417 
4418 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4419 		DMEMIT("Fail");
4420 		return;
4421 	}
4422 
4423 	if (!tc->td)
4424 		DMEMIT("-");
4425 	else {
4426 		switch (type) {
4427 		case STATUSTYPE_INFO:
4428 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4429 			if (r) {
4430 				DMERR("dm_thin_get_mapped_count returned %d", r);
4431 				goto err;
4432 			}
4433 
4434 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4435 			if (r < 0) {
4436 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4437 				goto err;
4438 			}
4439 
4440 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4441 			if (r)
4442 				DMEMIT("%llu", ((highest + 1) *
4443 						tc->pool->sectors_per_block) - 1);
4444 			else
4445 				DMEMIT("-");
4446 			break;
4447 
4448 		case STATUSTYPE_TABLE:
4449 			DMEMIT("%s %lu",
4450 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4451 			       (unsigned long) tc->dev_id);
4452 			if (tc->origin_dev)
4453 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4454 			break;
4455 
4456 		case STATUSTYPE_IMA:
4457 			*result = '\0';
4458 			break;
4459 		}
4460 	}
4461 
4462 	return;
4463 
4464 err:
4465 	DMEMIT("Error");
4466 }
4467 
4468 static int thin_iterate_devices(struct dm_target *ti,
4469 				iterate_devices_callout_fn fn, void *data)
4470 {
4471 	sector_t blocks;
4472 	struct thin_c *tc = ti->private;
4473 	struct pool *pool = tc->pool;
4474 
4475 	/*
4476 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4477 	 * we follow a more convoluted path through to the pool's target.
4478 	 */
4479 	if (!pool->ti)
4480 		return 0;	/* nothing is bound */
4481 
4482 	blocks = pool->ti->len;
4483 	(void) sector_div(blocks, pool->sectors_per_block);
4484 	if (blocks)
4485 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4486 
4487 	return 0;
4488 }
4489 
4490 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4491 {
4492 	struct thin_c *tc = ti->private;
4493 	struct pool *pool = tc->pool;
4494 
4495 	if (pool->pf.discard_enabled) {
4496 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4497 		limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4498 	}
4499 }
4500 
4501 static struct target_type thin_target = {
4502 	.name = "thin",
4503 	.version = {1, 23, 0},
4504 	.module	= THIS_MODULE,
4505 	.ctr = thin_ctr,
4506 	.dtr = thin_dtr,
4507 	.map = thin_map,
4508 	.end_io = thin_endio,
4509 	.preresume = thin_preresume,
4510 	.presuspend = thin_presuspend,
4511 	.postsuspend = thin_postsuspend,
4512 	.status = thin_status,
4513 	.iterate_devices = thin_iterate_devices,
4514 	.io_hints = thin_io_hints,
4515 };
4516 
4517 /*----------------------------------------------------------------*/
4518 
4519 static int __init dm_thin_init(void)
4520 {
4521 	int r = -ENOMEM;
4522 
4523 	pool_table_init();
4524 
4525 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4526 	if (!_new_mapping_cache)
4527 		return r;
4528 
4529 	r = dm_register_target(&thin_target);
4530 	if (r)
4531 		goto bad_new_mapping_cache;
4532 
4533 	r = dm_register_target(&pool_target);
4534 	if (r)
4535 		goto bad_thin_target;
4536 
4537 	return 0;
4538 
4539 bad_thin_target:
4540 	dm_unregister_target(&thin_target);
4541 bad_new_mapping_cache:
4542 	kmem_cache_destroy(_new_mapping_cache);
4543 
4544 	return r;
4545 }
4546 
4547 static void dm_thin_exit(void)
4548 {
4549 	dm_unregister_target(&thin_target);
4550 	dm_unregister_target(&pool_target);
4551 
4552 	kmem_cache_destroy(_new_mapping_cache);
4553 
4554 	pool_table_exit();
4555 }
4556 
4557 module_init(dm_thin_init);
4558 module_exit(dm_thin_exit);
4559 
4560 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4561 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4562 
4563 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4564 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4565 MODULE_LICENSE("GPL");
4566