1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 239 struct dm_bio_prison *prison; 240 struct dm_kcopyd_client *copier; 241 242 struct workqueue_struct *wq; 243 struct throttle throttle; 244 struct work_struct worker; 245 struct delayed_work waker; 246 struct delayed_work no_space_timeout; 247 248 unsigned long last_commit_jiffies; 249 unsigned ref_count; 250 251 spinlock_t lock; 252 struct bio_list deferred_flush_bios; 253 struct list_head prepared_mappings; 254 struct list_head prepared_discards; 255 struct list_head active_thins; 256 257 struct dm_deferred_set *shared_read_ds; 258 struct dm_deferred_set *all_io_ds; 259 260 struct dm_thin_new_mapping *next_mapping; 261 mempool_t *mapping_pool; 262 263 process_bio_fn process_bio; 264 process_bio_fn process_discard; 265 266 process_cell_fn process_cell; 267 process_cell_fn process_discard_cell; 268 269 process_mapping_fn process_prepared_mapping; 270 process_mapping_fn process_prepared_discard; 271 272 struct dm_bio_prison_cell **cell_sort_array; 273 }; 274 275 static enum pool_mode get_pool_mode(struct pool *pool); 276 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 277 278 /* 279 * Target context for a pool. 280 */ 281 struct pool_c { 282 struct dm_target *ti; 283 struct pool *pool; 284 struct dm_dev *data_dev; 285 struct dm_dev *metadata_dev; 286 struct dm_target_callbacks callbacks; 287 288 dm_block_t low_water_blocks; 289 struct pool_features requested_pf; /* Features requested during table load */ 290 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 291 }; 292 293 /* 294 * Target context for a thin. 295 */ 296 struct thin_c { 297 struct list_head list; 298 struct dm_dev *pool_dev; 299 struct dm_dev *origin_dev; 300 sector_t origin_size; 301 dm_thin_id dev_id; 302 303 struct pool *pool; 304 struct dm_thin_device *td; 305 struct mapped_device *thin_md; 306 307 bool requeue_mode:1; 308 spinlock_t lock; 309 struct list_head deferred_cells; 310 struct bio_list deferred_bio_list; 311 struct bio_list retry_on_resume_list; 312 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 313 314 /* 315 * Ensures the thin is not destroyed until the worker has finished 316 * iterating the active_thins list. 317 */ 318 atomic_t refcount; 319 struct completion can_destroy; 320 }; 321 322 /*----------------------------------------------------------------*/ 323 324 /** 325 * __blkdev_issue_discard_async - queue a discard with async completion 326 * @bdev: blockdev to issue discard for 327 * @sector: start sector 328 * @nr_sects: number of sectors to discard 329 * @gfp_mask: memory allocation flags (for bio_alloc) 330 * @flags: BLKDEV_IFL_* flags to control behaviour 331 * @parent_bio: parent discard bio that all sub discards get chained to 332 * 333 * Description: 334 * Asynchronously issue a discard request for the sectors in question. 335 */ 336 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector, 337 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags, 338 struct bio *parent_bio) 339 { 340 struct request_queue *q = bdev_get_queue(bdev); 341 int type = REQ_WRITE | REQ_DISCARD; 342 struct bio *bio; 343 344 if (!q || !nr_sects) 345 return -ENXIO; 346 347 if (!blk_queue_discard(q)) 348 return -EOPNOTSUPP; 349 350 if (flags & BLKDEV_DISCARD_SECURE) { 351 if (!blk_queue_secdiscard(q)) 352 return -EOPNOTSUPP; 353 type |= REQ_SECURE; 354 } 355 356 /* 357 * Required bio_put occurs in bio_endio thanks to bio_chain below 358 */ 359 bio = bio_alloc(gfp_mask, 1); 360 if (!bio) 361 return -ENOMEM; 362 363 bio_chain(bio, parent_bio); 364 365 bio->bi_iter.bi_sector = sector; 366 bio->bi_bdev = bdev; 367 bio->bi_iter.bi_size = nr_sects << 9; 368 369 submit_bio(type, bio); 370 371 return 0; 372 } 373 374 static bool block_size_is_power_of_two(struct pool *pool) 375 { 376 return pool->sectors_per_block_shift >= 0; 377 } 378 379 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 380 { 381 return block_size_is_power_of_two(pool) ? 382 (b << pool->sectors_per_block_shift) : 383 (b * pool->sectors_per_block); 384 } 385 386 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e, 387 struct bio *parent_bio) 388 { 389 sector_t s = block_to_sectors(tc->pool, data_b); 390 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 391 392 return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len, 393 GFP_NOWAIT, 0, parent_bio); 394 } 395 396 /*----------------------------------------------------------------*/ 397 398 /* 399 * wake_worker() is used when new work is queued and when pool_resume is 400 * ready to continue deferred IO processing. 401 */ 402 static void wake_worker(struct pool *pool) 403 { 404 queue_work(pool->wq, &pool->worker); 405 } 406 407 /*----------------------------------------------------------------*/ 408 409 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 410 struct dm_bio_prison_cell **cell_result) 411 { 412 int r; 413 struct dm_bio_prison_cell *cell_prealloc; 414 415 /* 416 * Allocate a cell from the prison's mempool. 417 * This might block but it can't fail. 418 */ 419 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 420 421 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 422 if (r) 423 /* 424 * We reused an old cell; we can get rid of 425 * the new one. 426 */ 427 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 428 429 return r; 430 } 431 432 static void cell_release(struct pool *pool, 433 struct dm_bio_prison_cell *cell, 434 struct bio_list *bios) 435 { 436 dm_cell_release(pool->prison, cell, bios); 437 dm_bio_prison_free_cell(pool->prison, cell); 438 } 439 440 static void cell_visit_release(struct pool *pool, 441 void (*fn)(void *, struct dm_bio_prison_cell *), 442 void *context, 443 struct dm_bio_prison_cell *cell) 444 { 445 dm_cell_visit_release(pool->prison, fn, context, cell); 446 dm_bio_prison_free_cell(pool->prison, cell); 447 } 448 449 static void cell_release_no_holder(struct pool *pool, 450 struct dm_bio_prison_cell *cell, 451 struct bio_list *bios) 452 { 453 dm_cell_release_no_holder(pool->prison, cell, bios); 454 dm_bio_prison_free_cell(pool->prison, cell); 455 } 456 457 static void cell_error_with_code(struct pool *pool, 458 struct dm_bio_prison_cell *cell, int error_code) 459 { 460 dm_cell_error(pool->prison, cell, error_code); 461 dm_bio_prison_free_cell(pool->prison, cell); 462 } 463 464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 465 { 466 cell_error_with_code(pool, cell, -EIO); 467 } 468 469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 470 { 471 cell_error_with_code(pool, cell, 0); 472 } 473 474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 475 { 476 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 477 } 478 479 /*----------------------------------------------------------------*/ 480 481 /* 482 * A global list of pools that uses a struct mapped_device as a key. 483 */ 484 static struct dm_thin_pool_table { 485 struct mutex mutex; 486 struct list_head pools; 487 } dm_thin_pool_table; 488 489 static void pool_table_init(void) 490 { 491 mutex_init(&dm_thin_pool_table.mutex); 492 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 493 } 494 495 static void __pool_table_insert(struct pool *pool) 496 { 497 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 498 list_add(&pool->list, &dm_thin_pool_table.pools); 499 } 500 501 static void __pool_table_remove(struct pool *pool) 502 { 503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 504 list_del(&pool->list); 505 } 506 507 static struct pool *__pool_table_lookup(struct mapped_device *md) 508 { 509 struct pool *pool = NULL, *tmp; 510 511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 512 513 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 514 if (tmp->pool_md == md) { 515 pool = tmp; 516 break; 517 } 518 } 519 520 return pool; 521 } 522 523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 524 { 525 struct pool *pool = NULL, *tmp; 526 527 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 528 529 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 530 if (tmp->md_dev == md_dev) { 531 pool = tmp; 532 break; 533 } 534 } 535 536 return pool; 537 } 538 539 /*----------------------------------------------------------------*/ 540 541 struct dm_thin_endio_hook { 542 struct thin_c *tc; 543 struct dm_deferred_entry *shared_read_entry; 544 struct dm_deferred_entry *all_io_entry; 545 struct dm_thin_new_mapping *overwrite_mapping; 546 struct rb_node rb_node; 547 struct dm_bio_prison_cell *cell; 548 }; 549 550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 551 { 552 bio_list_merge(bios, master); 553 bio_list_init(master); 554 } 555 556 static void error_bio_list(struct bio_list *bios, int error) 557 { 558 struct bio *bio; 559 560 while ((bio = bio_list_pop(bios))) { 561 bio->bi_error = error; 562 bio_endio(bio); 563 } 564 } 565 566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 567 { 568 struct bio_list bios; 569 unsigned long flags; 570 571 bio_list_init(&bios); 572 573 spin_lock_irqsave(&tc->lock, flags); 574 __merge_bio_list(&bios, master); 575 spin_unlock_irqrestore(&tc->lock, flags); 576 577 error_bio_list(&bios, error); 578 } 579 580 static void requeue_deferred_cells(struct thin_c *tc) 581 { 582 struct pool *pool = tc->pool; 583 unsigned long flags; 584 struct list_head cells; 585 struct dm_bio_prison_cell *cell, *tmp; 586 587 INIT_LIST_HEAD(&cells); 588 589 spin_lock_irqsave(&tc->lock, flags); 590 list_splice_init(&tc->deferred_cells, &cells); 591 spin_unlock_irqrestore(&tc->lock, flags); 592 593 list_for_each_entry_safe(cell, tmp, &cells, user_list) 594 cell_requeue(pool, cell); 595 } 596 597 static void requeue_io(struct thin_c *tc) 598 { 599 struct bio_list bios; 600 unsigned long flags; 601 602 bio_list_init(&bios); 603 604 spin_lock_irqsave(&tc->lock, flags); 605 __merge_bio_list(&bios, &tc->deferred_bio_list); 606 __merge_bio_list(&bios, &tc->retry_on_resume_list); 607 spin_unlock_irqrestore(&tc->lock, flags); 608 609 error_bio_list(&bios, DM_ENDIO_REQUEUE); 610 requeue_deferred_cells(tc); 611 } 612 613 static void error_retry_list_with_code(struct pool *pool, int error) 614 { 615 struct thin_c *tc; 616 617 rcu_read_lock(); 618 list_for_each_entry_rcu(tc, &pool->active_thins, list) 619 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 620 rcu_read_unlock(); 621 } 622 623 static void error_retry_list(struct pool *pool) 624 { 625 return error_retry_list_with_code(pool, -EIO); 626 } 627 628 /* 629 * This section of code contains the logic for processing a thin device's IO. 630 * Much of the code depends on pool object resources (lists, workqueues, etc) 631 * but most is exclusively called from the thin target rather than the thin-pool 632 * target. 633 */ 634 635 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 636 { 637 struct pool *pool = tc->pool; 638 sector_t block_nr = bio->bi_iter.bi_sector; 639 640 if (block_size_is_power_of_two(pool)) 641 block_nr >>= pool->sectors_per_block_shift; 642 else 643 (void) sector_div(block_nr, pool->sectors_per_block); 644 645 return block_nr; 646 } 647 648 /* 649 * Returns the _complete_ blocks that this bio covers. 650 */ 651 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 652 dm_block_t *begin, dm_block_t *end) 653 { 654 struct pool *pool = tc->pool; 655 sector_t b = bio->bi_iter.bi_sector; 656 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 657 658 b += pool->sectors_per_block - 1ull; /* so we round up */ 659 660 if (block_size_is_power_of_two(pool)) { 661 b >>= pool->sectors_per_block_shift; 662 e >>= pool->sectors_per_block_shift; 663 } else { 664 (void) sector_div(b, pool->sectors_per_block); 665 (void) sector_div(e, pool->sectors_per_block); 666 } 667 668 if (e < b) 669 /* Can happen if the bio is within a single block. */ 670 e = b; 671 672 *begin = b; 673 *end = e; 674 } 675 676 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 677 { 678 struct pool *pool = tc->pool; 679 sector_t bi_sector = bio->bi_iter.bi_sector; 680 681 bio->bi_bdev = tc->pool_dev->bdev; 682 if (block_size_is_power_of_two(pool)) 683 bio->bi_iter.bi_sector = 684 (block << pool->sectors_per_block_shift) | 685 (bi_sector & (pool->sectors_per_block - 1)); 686 else 687 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 688 sector_div(bi_sector, pool->sectors_per_block); 689 } 690 691 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 692 { 693 bio->bi_bdev = tc->origin_dev->bdev; 694 } 695 696 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 697 { 698 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 699 dm_thin_changed_this_transaction(tc->td); 700 } 701 702 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 703 { 704 struct dm_thin_endio_hook *h; 705 706 if (bio->bi_rw & REQ_DISCARD) 707 return; 708 709 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 710 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 711 } 712 713 static void issue(struct thin_c *tc, struct bio *bio) 714 { 715 struct pool *pool = tc->pool; 716 unsigned long flags; 717 718 if (!bio_triggers_commit(tc, bio)) { 719 generic_make_request(bio); 720 return; 721 } 722 723 /* 724 * Complete bio with an error if earlier I/O caused changes to 725 * the metadata that can't be committed e.g, due to I/O errors 726 * on the metadata device. 727 */ 728 if (dm_thin_aborted_changes(tc->td)) { 729 bio_io_error(bio); 730 return; 731 } 732 733 /* 734 * Batch together any bios that trigger commits and then issue a 735 * single commit for them in process_deferred_bios(). 736 */ 737 spin_lock_irqsave(&pool->lock, flags); 738 bio_list_add(&pool->deferred_flush_bios, bio); 739 spin_unlock_irqrestore(&pool->lock, flags); 740 } 741 742 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 743 { 744 remap_to_origin(tc, bio); 745 issue(tc, bio); 746 } 747 748 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 749 dm_block_t block) 750 { 751 remap(tc, bio, block); 752 issue(tc, bio); 753 } 754 755 /*----------------------------------------------------------------*/ 756 757 /* 758 * Bio endio functions. 759 */ 760 struct dm_thin_new_mapping { 761 struct list_head list; 762 763 bool pass_discard:1; 764 bool maybe_shared:1; 765 766 /* 767 * Track quiescing, copying and zeroing preparation actions. When this 768 * counter hits zero the block is prepared and can be inserted into the 769 * btree. 770 */ 771 atomic_t prepare_actions; 772 773 int err; 774 struct thin_c *tc; 775 dm_block_t virt_begin, virt_end; 776 dm_block_t data_block; 777 struct dm_bio_prison_cell *cell; 778 779 /* 780 * If the bio covers the whole area of a block then we can avoid 781 * zeroing or copying. Instead this bio is hooked. The bio will 782 * still be in the cell, so care has to be taken to avoid issuing 783 * the bio twice. 784 */ 785 struct bio *bio; 786 bio_end_io_t *saved_bi_end_io; 787 }; 788 789 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 790 { 791 struct pool *pool = m->tc->pool; 792 793 if (atomic_dec_and_test(&m->prepare_actions)) { 794 list_add_tail(&m->list, &pool->prepared_mappings); 795 wake_worker(pool); 796 } 797 } 798 799 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 800 { 801 unsigned long flags; 802 struct pool *pool = m->tc->pool; 803 804 spin_lock_irqsave(&pool->lock, flags); 805 __complete_mapping_preparation(m); 806 spin_unlock_irqrestore(&pool->lock, flags); 807 } 808 809 static void copy_complete(int read_err, unsigned long write_err, void *context) 810 { 811 struct dm_thin_new_mapping *m = context; 812 813 m->err = read_err || write_err ? -EIO : 0; 814 complete_mapping_preparation(m); 815 } 816 817 static void overwrite_endio(struct bio *bio) 818 { 819 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 820 struct dm_thin_new_mapping *m = h->overwrite_mapping; 821 822 bio->bi_end_io = m->saved_bi_end_io; 823 824 m->err = bio->bi_error; 825 complete_mapping_preparation(m); 826 } 827 828 /*----------------------------------------------------------------*/ 829 830 /* 831 * Workqueue. 832 */ 833 834 /* 835 * Prepared mapping jobs. 836 */ 837 838 /* 839 * This sends the bios in the cell, except the original holder, back 840 * to the deferred_bios list. 841 */ 842 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 843 { 844 struct pool *pool = tc->pool; 845 unsigned long flags; 846 847 spin_lock_irqsave(&tc->lock, flags); 848 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 849 spin_unlock_irqrestore(&tc->lock, flags); 850 851 wake_worker(pool); 852 } 853 854 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 855 856 struct remap_info { 857 struct thin_c *tc; 858 struct bio_list defer_bios; 859 struct bio_list issue_bios; 860 }; 861 862 static void __inc_remap_and_issue_cell(void *context, 863 struct dm_bio_prison_cell *cell) 864 { 865 struct remap_info *info = context; 866 struct bio *bio; 867 868 while ((bio = bio_list_pop(&cell->bios))) { 869 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 870 bio_list_add(&info->defer_bios, bio); 871 else { 872 inc_all_io_entry(info->tc->pool, bio); 873 874 /* 875 * We can't issue the bios with the bio prison lock 876 * held, so we add them to a list to issue on 877 * return from this function. 878 */ 879 bio_list_add(&info->issue_bios, bio); 880 } 881 } 882 } 883 884 static void inc_remap_and_issue_cell(struct thin_c *tc, 885 struct dm_bio_prison_cell *cell, 886 dm_block_t block) 887 { 888 struct bio *bio; 889 struct remap_info info; 890 891 info.tc = tc; 892 bio_list_init(&info.defer_bios); 893 bio_list_init(&info.issue_bios); 894 895 /* 896 * We have to be careful to inc any bios we're about to issue 897 * before the cell is released, and avoid a race with new bios 898 * being added to the cell. 899 */ 900 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 901 &info, cell); 902 903 while ((bio = bio_list_pop(&info.defer_bios))) 904 thin_defer_bio(tc, bio); 905 906 while ((bio = bio_list_pop(&info.issue_bios))) 907 remap_and_issue(info.tc, bio, block); 908 } 909 910 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 911 { 912 cell_error(m->tc->pool, m->cell); 913 list_del(&m->list); 914 mempool_free(m, m->tc->pool->mapping_pool); 915 } 916 917 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 918 { 919 struct thin_c *tc = m->tc; 920 struct pool *pool = tc->pool; 921 struct bio *bio = m->bio; 922 int r; 923 924 if (m->err) { 925 cell_error(pool, m->cell); 926 goto out; 927 } 928 929 /* 930 * Commit the prepared block into the mapping btree. 931 * Any I/O for this block arriving after this point will get 932 * remapped to it directly. 933 */ 934 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 935 if (r) { 936 metadata_operation_failed(pool, "dm_thin_insert_block", r); 937 cell_error(pool, m->cell); 938 goto out; 939 } 940 941 /* 942 * Release any bios held while the block was being provisioned. 943 * If we are processing a write bio that completely covers the block, 944 * we already processed it so can ignore it now when processing 945 * the bios in the cell. 946 */ 947 if (bio) { 948 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 949 bio_endio(bio); 950 } else { 951 inc_all_io_entry(tc->pool, m->cell->holder); 952 remap_and_issue(tc, m->cell->holder, m->data_block); 953 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 954 } 955 956 out: 957 list_del(&m->list); 958 mempool_free(m, pool->mapping_pool); 959 } 960 961 /*----------------------------------------------------------------*/ 962 963 static void free_discard_mapping(struct dm_thin_new_mapping *m) 964 { 965 struct thin_c *tc = m->tc; 966 if (m->cell) 967 cell_defer_no_holder(tc, m->cell); 968 mempool_free(m, tc->pool->mapping_pool); 969 } 970 971 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 972 { 973 bio_io_error(m->bio); 974 free_discard_mapping(m); 975 } 976 977 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 978 { 979 bio_endio(m->bio); 980 free_discard_mapping(m); 981 } 982 983 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 984 { 985 int r; 986 struct thin_c *tc = m->tc; 987 988 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 989 if (r) { 990 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 991 bio_io_error(m->bio); 992 } else 993 bio_endio(m->bio); 994 995 cell_defer_no_holder(tc, m->cell); 996 mempool_free(m, tc->pool->mapping_pool); 997 } 998 999 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m) 1000 { 1001 /* 1002 * We've already unmapped this range of blocks, but before we 1003 * passdown we have to check that these blocks are now unused. 1004 */ 1005 int r; 1006 bool used = true; 1007 struct thin_c *tc = m->tc; 1008 struct pool *pool = tc->pool; 1009 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1010 1011 while (b != end) { 1012 /* find start of unmapped run */ 1013 for (; b < end; b++) { 1014 r = dm_pool_block_is_used(pool->pmd, b, &used); 1015 if (r) 1016 return r; 1017 1018 if (!used) 1019 break; 1020 } 1021 1022 if (b == end) 1023 break; 1024 1025 /* find end of run */ 1026 for (e = b + 1; e != end; e++) { 1027 r = dm_pool_block_is_used(pool->pmd, e, &used); 1028 if (r) 1029 return r; 1030 1031 if (used) 1032 break; 1033 } 1034 1035 r = issue_discard(tc, b, e, m->bio); 1036 if (r) 1037 return r; 1038 1039 b = e; 1040 } 1041 1042 return 0; 1043 } 1044 1045 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 1046 { 1047 int r; 1048 struct thin_c *tc = m->tc; 1049 struct pool *pool = tc->pool; 1050 1051 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1052 if (r) 1053 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1054 1055 else if (m->maybe_shared) 1056 r = passdown_double_checking_shared_status(m); 1057 else 1058 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio); 1059 1060 /* 1061 * Even if r is set, there could be sub discards in flight that we 1062 * need to wait for. 1063 */ 1064 m->bio->bi_error = r; 1065 bio_endio(m->bio); 1066 cell_defer_no_holder(tc, m->cell); 1067 mempool_free(m, pool->mapping_pool); 1068 } 1069 1070 static void process_prepared(struct pool *pool, struct list_head *head, 1071 process_mapping_fn *fn) 1072 { 1073 unsigned long flags; 1074 struct list_head maps; 1075 struct dm_thin_new_mapping *m, *tmp; 1076 1077 INIT_LIST_HEAD(&maps); 1078 spin_lock_irqsave(&pool->lock, flags); 1079 list_splice_init(head, &maps); 1080 spin_unlock_irqrestore(&pool->lock, flags); 1081 1082 list_for_each_entry_safe(m, tmp, &maps, list) 1083 (*fn)(m); 1084 } 1085 1086 /* 1087 * Deferred bio jobs. 1088 */ 1089 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1090 { 1091 return bio->bi_iter.bi_size == 1092 (pool->sectors_per_block << SECTOR_SHIFT); 1093 } 1094 1095 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1096 { 1097 return (bio_data_dir(bio) == WRITE) && 1098 io_overlaps_block(pool, bio); 1099 } 1100 1101 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1102 bio_end_io_t *fn) 1103 { 1104 *save = bio->bi_end_io; 1105 bio->bi_end_io = fn; 1106 } 1107 1108 static int ensure_next_mapping(struct pool *pool) 1109 { 1110 if (pool->next_mapping) 1111 return 0; 1112 1113 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1114 1115 return pool->next_mapping ? 0 : -ENOMEM; 1116 } 1117 1118 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1119 { 1120 struct dm_thin_new_mapping *m = pool->next_mapping; 1121 1122 BUG_ON(!pool->next_mapping); 1123 1124 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1125 INIT_LIST_HEAD(&m->list); 1126 m->bio = NULL; 1127 1128 pool->next_mapping = NULL; 1129 1130 return m; 1131 } 1132 1133 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1134 sector_t begin, sector_t end) 1135 { 1136 int r; 1137 struct dm_io_region to; 1138 1139 to.bdev = tc->pool_dev->bdev; 1140 to.sector = begin; 1141 to.count = end - begin; 1142 1143 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1144 if (r < 0) { 1145 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1146 copy_complete(1, 1, m); 1147 } 1148 } 1149 1150 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1151 dm_block_t data_begin, 1152 struct dm_thin_new_mapping *m) 1153 { 1154 struct pool *pool = tc->pool; 1155 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1156 1157 h->overwrite_mapping = m; 1158 m->bio = bio; 1159 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1160 inc_all_io_entry(pool, bio); 1161 remap_and_issue(tc, bio, data_begin); 1162 } 1163 1164 /* 1165 * A partial copy also needs to zero the uncopied region. 1166 */ 1167 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1168 struct dm_dev *origin, dm_block_t data_origin, 1169 dm_block_t data_dest, 1170 struct dm_bio_prison_cell *cell, struct bio *bio, 1171 sector_t len) 1172 { 1173 int r; 1174 struct pool *pool = tc->pool; 1175 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1176 1177 m->tc = tc; 1178 m->virt_begin = virt_block; 1179 m->virt_end = virt_block + 1u; 1180 m->data_block = data_dest; 1181 m->cell = cell; 1182 1183 /* 1184 * quiesce action + copy action + an extra reference held for the 1185 * duration of this function (we may need to inc later for a 1186 * partial zero). 1187 */ 1188 atomic_set(&m->prepare_actions, 3); 1189 1190 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1191 complete_mapping_preparation(m); /* already quiesced */ 1192 1193 /* 1194 * IO to pool_dev remaps to the pool target's data_dev. 1195 * 1196 * If the whole block of data is being overwritten, we can issue the 1197 * bio immediately. Otherwise we use kcopyd to clone the data first. 1198 */ 1199 if (io_overwrites_block(pool, bio)) 1200 remap_and_issue_overwrite(tc, bio, data_dest, m); 1201 else { 1202 struct dm_io_region from, to; 1203 1204 from.bdev = origin->bdev; 1205 from.sector = data_origin * pool->sectors_per_block; 1206 from.count = len; 1207 1208 to.bdev = tc->pool_dev->bdev; 1209 to.sector = data_dest * pool->sectors_per_block; 1210 to.count = len; 1211 1212 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1213 0, copy_complete, m); 1214 if (r < 0) { 1215 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1216 copy_complete(1, 1, m); 1217 1218 /* 1219 * We allow the zero to be issued, to simplify the 1220 * error path. Otherwise we'd need to start 1221 * worrying about decrementing the prepare_actions 1222 * counter. 1223 */ 1224 } 1225 1226 /* 1227 * Do we need to zero a tail region? 1228 */ 1229 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1230 atomic_inc(&m->prepare_actions); 1231 ll_zero(tc, m, 1232 data_dest * pool->sectors_per_block + len, 1233 (data_dest + 1) * pool->sectors_per_block); 1234 } 1235 } 1236 1237 complete_mapping_preparation(m); /* drop our ref */ 1238 } 1239 1240 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1241 dm_block_t data_origin, dm_block_t data_dest, 1242 struct dm_bio_prison_cell *cell, struct bio *bio) 1243 { 1244 schedule_copy(tc, virt_block, tc->pool_dev, 1245 data_origin, data_dest, cell, bio, 1246 tc->pool->sectors_per_block); 1247 } 1248 1249 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1250 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1251 struct bio *bio) 1252 { 1253 struct pool *pool = tc->pool; 1254 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1255 1256 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1257 m->tc = tc; 1258 m->virt_begin = virt_block; 1259 m->virt_end = virt_block + 1u; 1260 m->data_block = data_block; 1261 m->cell = cell; 1262 1263 /* 1264 * If the whole block of data is being overwritten or we are not 1265 * zeroing pre-existing data, we can issue the bio immediately. 1266 * Otherwise we use kcopyd to zero the data first. 1267 */ 1268 if (pool->pf.zero_new_blocks) { 1269 if (io_overwrites_block(pool, bio)) 1270 remap_and_issue_overwrite(tc, bio, data_block, m); 1271 else 1272 ll_zero(tc, m, data_block * pool->sectors_per_block, 1273 (data_block + 1) * pool->sectors_per_block); 1274 } else 1275 process_prepared_mapping(m); 1276 } 1277 1278 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1279 dm_block_t data_dest, 1280 struct dm_bio_prison_cell *cell, struct bio *bio) 1281 { 1282 struct pool *pool = tc->pool; 1283 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1284 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1285 1286 if (virt_block_end <= tc->origin_size) 1287 schedule_copy(tc, virt_block, tc->origin_dev, 1288 virt_block, data_dest, cell, bio, 1289 pool->sectors_per_block); 1290 1291 else if (virt_block_begin < tc->origin_size) 1292 schedule_copy(tc, virt_block, tc->origin_dev, 1293 virt_block, data_dest, cell, bio, 1294 tc->origin_size - virt_block_begin); 1295 1296 else 1297 schedule_zero(tc, virt_block, data_dest, cell, bio); 1298 } 1299 1300 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1301 1302 static void check_for_space(struct pool *pool) 1303 { 1304 int r; 1305 dm_block_t nr_free; 1306 1307 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1308 return; 1309 1310 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1311 if (r) 1312 return; 1313 1314 if (nr_free) 1315 set_pool_mode(pool, PM_WRITE); 1316 } 1317 1318 /* 1319 * A non-zero return indicates read_only or fail_io mode. 1320 * Many callers don't care about the return value. 1321 */ 1322 static int commit(struct pool *pool) 1323 { 1324 int r; 1325 1326 if (get_pool_mode(pool) >= PM_READ_ONLY) 1327 return -EINVAL; 1328 1329 r = dm_pool_commit_metadata(pool->pmd); 1330 if (r) 1331 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1332 else 1333 check_for_space(pool); 1334 1335 return r; 1336 } 1337 1338 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1339 { 1340 unsigned long flags; 1341 1342 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1343 DMWARN("%s: reached low water mark for data device: sending event.", 1344 dm_device_name(pool->pool_md)); 1345 spin_lock_irqsave(&pool->lock, flags); 1346 pool->low_water_triggered = true; 1347 spin_unlock_irqrestore(&pool->lock, flags); 1348 dm_table_event(pool->ti->table); 1349 } 1350 } 1351 1352 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1353 { 1354 int r; 1355 dm_block_t free_blocks; 1356 struct pool *pool = tc->pool; 1357 1358 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1359 return -EINVAL; 1360 1361 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1362 if (r) { 1363 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1364 return r; 1365 } 1366 1367 check_low_water_mark(pool, free_blocks); 1368 1369 if (!free_blocks) { 1370 /* 1371 * Try to commit to see if that will free up some 1372 * more space. 1373 */ 1374 r = commit(pool); 1375 if (r) 1376 return r; 1377 1378 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1379 if (r) { 1380 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1381 return r; 1382 } 1383 1384 if (!free_blocks) { 1385 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1386 return -ENOSPC; 1387 } 1388 } 1389 1390 r = dm_pool_alloc_data_block(pool->pmd, result); 1391 if (r) { 1392 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1393 return r; 1394 } 1395 1396 return 0; 1397 } 1398 1399 /* 1400 * If we have run out of space, queue bios until the device is 1401 * resumed, presumably after having been reloaded with more space. 1402 */ 1403 static void retry_on_resume(struct bio *bio) 1404 { 1405 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1406 struct thin_c *tc = h->tc; 1407 unsigned long flags; 1408 1409 spin_lock_irqsave(&tc->lock, flags); 1410 bio_list_add(&tc->retry_on_resume_list, bio); 1411 spin_unlock_irqrestore(&tc->lock, flags); 1412 } 1413 1414 static int should_error_unserviceable_bio(struct pool *pool) 1415 { 1416 enum pool_mode m = get_pool_mode(pool); 1417 1418 switch (m) { 1419 case PM_WRITE: 1420 /* Shouldn't get here */ 1421 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1422 return -EIO; 1423 1424 case PM_OUT_OF_DATA_SPACE: 1425 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1426 1427 case PM_READ_ONLY: 1428 case PM_FAIL: 1429 return -EIO; 1430 default: 1431 /* Shouldn't get here */ 1432 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1433 return -EIO; 1434 } 1435 } 1436 1437 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1438 { 1439 int error = should_error_unserviceable_bio(pool); 1440 1441 if (error) { 1442 bio->bi_error = error; 1443 bio_endio(bio); 1444 } else 1445 retry_on_resume(bio); 1446 } 1447 1448 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1449 { 1450 struct bio *bio; 1451 struct bio_list bios; 1452 int error; 1453 1454 error = should_error_unserviceable_bio(pool); 1455 if (error) { 1456 cell_error_with_code(pool, cell, error); 1457 return; 1458 } 1459 1460 bio_list_init(&bios); 1461 cell_release(pool, cell, &bios); 1462 1463 while ((bio = bio_list_pop(&bios))) 1464 retry_on_resume(bio); 1465 } 1466 1467 static void process_discard_cell_no_passdown(struct thin_c *tc, 1468 struct dm_bio_prison_cell *virt_cell) 1469 { 1470 struct pool *pool = tc->pool; 1471 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1472 1473 /* 1474 * We don't need to lock the data blocks, since there's no 1475 * passdown. We only lock data blocks for allocation and breaking sharing. 1476 */ 1477 m->tc = tc; 1478 m->virt_begin = virt_cell->key.block_begin; 1479 m->virt_end = virt_cell->key.block_end; 1480 m->cell = virt_cell; 1481 m->bio = virt_cell->holder; 1482 1483 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1484 pool->process_prepared_discard(m); 1485 } 1486 1487 /* 1488 * __bio_inc_remaining() is used to defer parent bios's end_io until 1489 * we _know_ all chained sub range discard bios have completed. 1490 */ 1491 static inline void __bio_inc_remaining(struct bio *bio) 1492 { 1493 bio->bi_flags |= (1 << BIO_CHAIN); 1494 smp_mb__before_atomic(); 1495 atomic_inc(&bio->__bi_remaining); 1496 } 1497 1498 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1499 struct bio *bio) 1500 { 1501 struct pool *pool = tc->pool; 1502 1503 int r; 1504 bool maybe_shared; 1505 struct dm_cell_key data_key; 1506 struct dm_bio_prison_cell *data_cell; 1507 struct dm_thin_new_mapping *m; 1508 dm_block_t virt_begin, virt_end, data_begin; 1509 1510 while (begin != end) { 1511 r = ensure_next_mapping(pool); 1512 if (r) 1513 /* we did our best */ 1514 return; 1515 1516 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1517 &data_begin, &maybe_shared); 1518 if (r) 1519 /* 1520 * Silently fail, letting any mappings we've 1521 * created complete. 1522 */ 1523 break; 1524 1525 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1526 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1527 /* contention, we'll give up with this range */ 1528 begin = virt_end; 1529 continue; 1530 } 1531 1532 /* 1533 * IO may still be going to the destination block. We must 1534 * quiesce before we can do the removal. 1535 */ 1536 m = get_next_mapping(pool); 1537 m->tc = tc; 1538 m->maybe_shared = maybe_shared; 1539 m->virt_begin = virt_begin; 1540 m->virt_end = virt_end; 1541 m->data_block = data_begin; 1542 m->cell = data_cell; 1543 m->bio = bio; 1544 1545 /* 1546 * The parent bio must not complete before sub discard bios are 1547 * chained to it (see __blkdev_issue_discard_async's bio_chain)! 1548 * 1549 * This per-mapping bi_remaining increment is paired with 1550 * the implicit decrement that occurs via bio_endio() in 1551 * process_prepared_discard_{passdown,no_passdown}. 1552 */ 1553 __bio_inc_remaining(bio); 1554 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1555 pool->process_prepared_discard(m); 1556 1557 begin = virt_end; 1558 } 1559 } 1560 1561 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1562 { 1563 struct bio *bio = virt_cell->holder; 1564 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1565 1566 /* 1567 * The virt_cell will only get freed once the origin bio completes. 1568 * This means it will remain locked while all the individual 1569 * passdown bios are in flight. 1570 */ 1571 h->cell = virt_cell; 1572 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1573 1574 /* 1575 * We complete the bio now, knowing that the bi_remaining field 1576 * will prevent completion until the sub range discards have 1577 * completed. 1578 */ 1579 bio_endio(bio); 1580 } 1581 1582 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1583 { 1584 dm_block_t begin, end; 1585 struct dm_cell_key virt_key; 1586 struct dm_bio_prison_cell *virt_cell; 1587 1588 get_bio_block_range(tc, bio, &begin, &end); 1589 if (begin == end) { 1590 /* 1591 * The discard covers less than a block. 1592 */ 1593 bio_endio(bio); 1594 return; 1595 } 1596 1597 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1598 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1599 /* 1600 * Potential starvation issue: We're relying on the 1601 * fs/application being well behaved, and not trying to 1602 * send IO to a region at the same time as discarding it. 1603 * If they do this persistently then it's possible this 1604 * cell will never be granted. 1605 */ 1606 return; 1607 1608 tc->pool->process_discard_cell(tc, virt_cell); 1609 } 1610 1611 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1612 struct dm_cell_key *key, 1613 struct dm_thin_lookup_result *lookup_result, 1614 struct dm_bio_prison_cell *cell) 1615 { 1616 int r; 1617 dm_block_t data_block; 1618 struct pool *pool = tc->pool; 1619 1620 r = alloc_data_block(tc, &data_block); 1621 switch (r) { 1622 case 0: 1623 schedule_internal_copy(tc, block, lookup_result->block, 1624 data_block, cell, bio); 1625 break; 1626 1627 case -ENOSPC: 1628 retry_bios_on_resume(pool, cell); 1629 break; 1630 1631 default: 1632 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1633 __func__, r); 1634 cell_error(pool, cell); 1635 break; 1636 } 1637 } 1638 1639 static void __remap_and_issue_shared_cell(void *context, 1640 struct dm_bio_prison_cell *cell) 1641 { 1642 struct remap_info *info = context; 1643 struct bio *bio; 1644 1645 while ((bio = bio_list_pop(&cell->bios))) { 1646 if ((bio_data_dir(bio) == WRITE) || 1647 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1648 bio_list_add(&info->defer_bios, bio); 1649 else { 1650 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1651 1652 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1653 inc_all_io_entry(info->tc->pool, bio); 1654 bio_list_add(&info->issue_bios, bio); 1655 } 1656 } 1657 } 1658 1659 static void remap_and_issue_shared_cell(struct thin_c *tc, 1660 struct dm_bio_prison_cell *cell, 1661 dm_block_t block) 1662 { 1663 struct bio *bio; 1664 struct remap_info info; 1665 1666 info.tc = tc; 1667 bio_list_init(&info.defer_bios); 1668 bio_list_init(&info.issue_bios); 1669 1670 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1671 &info, cell); 1672 1673 while ((bio = bio_list_pop(&info.defer_bios))) 1674 thin_defer_bio(tc, bio); 1675 1676 while ((bio = bio_list_pop(&info.issue_bios))) 1677 remap_and_issue(tc, bio, block); 1678 } 1679 1680 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1681 dm_block_t block, 1682 struct dm_thin_lookup_result *lookup_result, 1683 struct dm_bio_prison_cell *virt_cell) 1684 { 1685 struct dm_bio_prison_cell *data_cell; 1686 struct pool *pool = tc->pool; 1687 struct dm_cell_key key; 1688 1689 /* 1690 * If cell is already occupied, then sharing is already in the process 1691 * of being broken so we have nothing further to do here. 1692 */ 1693 build_data_key(tc->td, lookup_result->block, &key); 1694 if (bio_detain(pool, &key, bio, &data_cell)) { 1695 cell_defer_no_holder(tc, virt_cell); 1696 return; 1697 } 1698 1699 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1700 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1701 cell_defer_no_holder(tc, virt_cell); 1702 } else { 1703 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1704 1705 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1706 inc_all_io_entry(pool, bio); 1707 remap_and_issue(tc, bio, lookup_result->block); 1708 1709 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1710 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1711 } 1712 } 1713 1714 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1715 struct dm_bio_prison_cell *cell) 1716 { 1717 int r; 1718 dm_block_t data_block; 1719 struct pool *pool = tc->pool; 1720 1721 /* 1722 * Remap empty bios (flushes) immediately, without provisioning. 1723 */ 1724 if (!bio->bi_iter.bi_size) { 1725 inc_all_io_entry(pool, bio); 1726 cell_defer_no_holder(tc, cell); 1727 1728 remap_and_issue(tc, bio, 0); 1729 return; 1730 } 1731 1732 /* 1733 * Fill read bios with zeroes and complete them immediately. 1734 */ 1735 if (bio_data_dir(bio) == READ) { 1736 zero_fill_bio(bio); 1737 cell_defer_no_holder(tc, cell); 1738 bio_endio(bio); 1739 return; 1740 } 1741 1742 r = alloc_data_block(tc, &data_block); 1743 switch (r) { 1744 case 0: 1745 if (tc->origin_dev) 1746 schedule_external_copy(tc, block, data_block, cell, bio); 1747 else 1748 schedule_zero(tc, block, data_block, cell, bio); 1749 break; 1750 1751 case -ENOSPC: 1752 retry_bios_on_resume(pool, cell); 1753 break; 1754 1755 default: 1756 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1757 __func__, r); 1758 cell_error(pool, cell); 1759 break; 1760 } 1761 } 1762 1763 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1764 { 1765 int r; 1766 struct pool *pool = tc->pool; 1767 struct bio *bio = cell->holder; 1768 dm_block_t block = get_bio_block(tc, bio); 1769 struct dm_thin_lookup_result lookup_result; 1770 1771 if (tc->requeue_mode) { 1772 cell_requeue(pool, cell); 1773 return; 1774 } 1775 1776 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1777 switch (r) { 1778 case 0: 1779 if (lookup_result.shared) 1780 process_shared_bio(tc, bio, block, &lookup_result, cell); 1781 else { 1782 inc_all_io_entry(pool, bio); 1783 remap_and_issue(tc, bio, lookup_result.block); 1784 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1785 } 1786 break; 1787 1788 case -ENODATA: 1789 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1790 inc_all_io_entry(pool, bio); 1791 cell_defer_no_holder(tc, cell); 1792 1793 if (bio_end_sector(bio) <= tc->origin_size) 1794 remap_to_origin_and_issue(tc, bio); 1795 1796 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1797 zero_fill_bio(bio); 1798 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1799 remap_to_origin_and_issue(tc, bio); 1800 1801 } else { 1802 zero_fill_bio(bio); 1803 bio_endio(bio); 1804 } 1805 } else 1806 provision_block(tc, bio, block, cell); 1807 break; 1808 1809 default: 1810 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1811 __func__, r); 1812 cell_defer_no_holder(tc, cell); 1813 bio_io_error(bio); 1814 break; 1815 } 1816 } 1817 1818 static void process_bio(struct thin_c *tc, struct bio *bio) 1819 { 1820 struct pool *pool = tc->pool; 1821 dm_block_t block = get_bio_block(tc, bio); 1822 struct dm_bio_prison_cell *cell; 1823 struct dm_cell_key key; 1824 1825 /* 1826 * If cell is already occupied, then the block is already 1827 * being provisioned so we have nothing further to do here. 1828 */ 1829 build_virtual_key(tc->td, block, &key); 1830 if (bio_detain(pool, &key, bio, &cell)) 1831 return; 1832 1833 process_cell(tc, cell); 1834 } 1835 1836 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1837 struct dm_bio_prison_cell *cell) 1838 { 1839 int r; 1840 int rw = bio_data_dir(bio); 1841 dm_block_t block = get_bio_block(tc, bio); 1842 struct dm_thin_lookup_result lookup_result; 1843 1844 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1845 switch (r) { 1846 case 0: 1847 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1848 handle_unserviceable_bio(tc->pool, bio); 1849 if (cell) 1850 cell_defer_no_holder(tc, cell); 1851 } else { 1852 inc_all_io_entry(tc->pool, bio); 1853 remap_and_issue(tc, bio, lookup_result.block); 1854 if (cell) 1855 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1856 } 1857 break; 1858 1859 case -ENODATA: 1860 if (cell) 1861 cell_defer_no_holder(tc, cell); 1862 if (rw != READ) { 1863 handle_unserviceable_bio(tc->pool, bio); 1864 break; 1865 } 1866 1867 if (tc->origin_dev) { 1868 inc_all_io_entry(tc->pool, bio); 1869 remap_to_origin_and_issue(tc, bio); 1870 break; 1871 } 1872 1873 zero_fill_bio(bio); 1874 bio_endio(bio); 1875 break; 1876 1877 default: 1878 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1879 __func__, r); 1880 if (cell) 1881 cell_defer_no_holder(tc, cell); 1882 bio_io_error(bio); 1883 break; 1884 } 1885 } 1886 1887 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1888 { 1889 __process_bio_read_only(tc, bio, NULL); 1890 } 1891 1892 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1893 { 1894 __process_bio_read_only(tc, cell->holder, cell); 1895 } 1896 1897 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1898 { 1899 bio_endio(bio); 1900 } 1901 1902 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1903 { 1904 bio_io_error(bio); 1905 } 1906 1907 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1908 { 1909 cell_success(tc->pool, cell); 1910 } 1911 1912 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1913 { 1914 cell_error(tc->pool, cell); 1915 } 1916 1917 /* 1918 * FIXME: should we also commit due to size of transaction, measured in 1919 * metadata blocks? 1920 */ 1921 static int need_commit_due_to_time(struct pool *pool) 1922 { 1923 return !time_in_range(jiffies, pool->last_commit_jiffies, 1924 pool->last_commit_jiffies + COMMIT_PERIOD); 1925 } 1926 1927 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1928 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1929 1930 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1931 { 1932 struct rb_node **rbp, *parent; 1933 struct dm_thin_endio_hook *pbd; 1934 sector_t bi_sector = bio->bi_iter.bi_sector; 1935 1936 rbp = &tc->sort_bio_list.rb_node; 1937 parent = NULL; 1938 while (*rbp) { 1939 parent = *rbp; 1940 pbd = thin_pbd(parent); 1941 1942 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1943 rbp = &(*rbp)->rb_left; 1944 else 1945 rbp = &(*rbp)->rb_right; 1946 } 1947 1948 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1949 rb_link_node(&pbd->rb_node, parent, rbp); 1950 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1951 } 1952 1953 static void __extract_sorted_bios(struct thin_c *tc) 1954 { 1955 struct rb_node *node; 1956 struct dm_thin_endio_hook *pbd; 1957 struct bio *bio; 1958 1959 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1960 pbd = thin_pbd(node); 1961 bio = thin_bio(pbd); 1962 1963 bio_list_add(&tc->deferred_bio_list, bio); 1964 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1965 } 1966 1967 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1968 } 1969 1970 static void __sort_thin_deferred_bios(struct thin_c *tc) 1971 { 1972 struct bio *bio; 1973 struct bio_list bios; 1974 1975 bio_list_init(&bios); 1976 bio_list_merge(&bios, &tc->deferred_bio_list); 1977 bio_list_init(&tc->deferred_bio_list); 1978 1979 /* Sort deferred_bio_list using rb-tree */ 1980 while ((bio = bio_list_pop(&bios))) 1981 __thin_bio_rb_add(tc, bio); 1982 1983 /* 1984 * Transfer the sorted bios in sort_bio_list back to 1985 * deferred_bio_list to allow lockless submission of 1986 * all bios. 1987 */ 1988 __extract_sorted_bios(tc); 1989 } 1990 1991 static void process_thin_deferred_bios(struct thin_c *tc) 1992 { 1993 struct pool *pool = tc->pool; 1994 unsigned long flags; 1995 struct bio *bio; 1996 struct bio_list bios; 1997 struct blk_plug plug; 1998 unsigned count = 0; 1999 2000 if (tc->requeue_mode) { 2001 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 2002 return; 2003 } 2004 2005 bio_list_init(&bios); 2006 2007 spin_lock_irqsave(&tc->lock, flags); 2008 2009 if (bio_list_empty(&tc->deferred_bio_list)) { 2010 spin_unlock_irqrestore(&tc->lock, flags); 2011 return; 2012 } 2013 2014 __sort_thin_deferred_bios(tc); 2015 2016 bio_list_merge(&bios, &tc->deferred_bio_list); 2017 bio_list_init(&tc->deferred_bio_list); 2018 2019 spin_unlock_irqrestore(&tc->lock, flags); 2020 2021 blk_start_plug(&plug); 2022 while ((bio = bio_list_pop(&bios))) { 2023 /* 2024 * If we've got no free new_mapping structs, and processing 2025 * this bio might require one, we pause until there are some 2026 * prepared mappings to process. 2027 */ 2028 if (ensure_next_mapping(pool)) { 2029 spin_lock_irqsave(&tc->lock, flags); 2030 bio_list_add(&tc->deferred_bio_list, bio); 2031 bio_list_merge(&tc->deferred_bio_list, &bios); 2032 spin_unlock_irqrestore(&tc->lock, flags); 2033 break; 2034 } 2035 2036 if (bio->bi_rw & REQ_DISCARD) 2037 pool->process_discard(tc, bio); 2038 else 2039 pool->process_bio(tc, bio); 2040 2041 if ((count++ & 127) == 0) { 2042 throttle_work_update(&pool->throttle); 2043 dm_pool_issue_prefetches(pool->pmd); 2044 } 2045 } 2046 blk_finish_plug(&plug); 2047 } 2048 2049 static int cmp_cells(const void *lhs, const void *rhs) 2050 { 2051 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2052 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2053 2054 BUG_ON(!lhs_cell->holder); 2055 BUG_ON(!rhs_cell->holder); 2056 2057 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2058 return -1; 2059 2060 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2061 return 1; 2062 2063 return 0; 2064 } 2065 2066 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2067 { 2068 unsigned count = 0; 2069 struct dm_bio_prison_cell *cell, *tmp; 2070 2071 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2072 if (count >= CELL_SORT_ARRAY_SIZE) 2073 break; 2074 2075 pool->cell_sort_array[count++] = cell; 2076 list_del(&cell->user_list); 2077 } 2078 2079 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2080 2081 return count; 2082 } 2083 2084 static void process_thin_deferred_cells(struct thin_c *tc) 2085 { 2086 struct pool *pool = tc->pool; 2087 unsigned long flags; 2088 struct list_head cells; 2089 struct dm_bio_prison_cell *cell; 2090 unsigned i, j, count; 2091 2092 INIT_LIST_HEAD(&cells); 2093 2094 spin_lock_irqsave(&tc->lock, flags); 2095 list_splice_init(&tc->deferred_cells, &cells); 2096 spin_unlock_irqrestore(&tc->lock, flags); 2097 2098 if (list_empty(&cells)) 2099 return; 2100 2101 do { 2102 count = sort_cells(tc->pool, &cells); 2103 2104 for (i = 0; i < count; i++) { 2105 cell = pool->cell_sort_array[i]; 2106 BUG_ON(!cell->holder); 2107 2108 /* 2109 * If we've got no free new_mapping structs, and processing 2110 * this bio might require one, we pause until there are some 2111 * prepared mappings to process. 2112 */ 2113 if (ensure_next_mapping(pool)) { 2114 for (j = i; j < count; j++) 2115 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2116 2117 spin_lock_irqsave(&tc->lock, flags); 2118 list_splice(&cells, &tc->deferred_cells); 2119 spin_unlock_irqrestore(&tc->lock, flags); 2120 return; 2121 } 2122 2123 if (cell->holder->bi_rw & REQ_DISCARD) 2124 pool->process_discard_cell(tc, cell); 2125 else 2126 pool->process_cell(tc, cell); 2127 } 2128 } while (!list_empty(&cells)); 2129 } 2130 2131 static void thin_get(struct thin_c *tc); 2132 static void thin_put(struct thin_c *tc); 2133 2134 /* 2135 * We can't hold rcu_read_lock() around code that can block. So we 2136 * find a thin with the rcu lock held; bump a refcount; then drop 2137 * the lock. 2138 */ 2139 static struct thin_c *get_first_thin(struct pool *pool) 2140 { 2141 struct thin_c *tc = NULL; 2142 2143 rcu_read_lock(); 2144 if (!list_empty(&pool->active_thins)) { 2145 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2146 thin_get(tc); 2147 } 2148 rcu_read_unlock(); 2149 2150 return tc; 2151 } 2152 2153 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2154 { 2155 struct thin_c *old_tc = tc; 2156 2157 rcu_read_lock(); 2158 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2159 thin_get(tc); 2160 thin_put(old_tc); 2161 rcu_read_unlock(); 2162 return tc; 2163 } 2164 thin_put(old_tc); 2165 rcu_read_unlock(); 2166 2167 return NULL; 2168 } 2169 2170 static void process_deferred_bios(struct pool *pool) 2171 { 2172 unsigned long flags; 2173 struct bio *bio; 2174 struct bio_list bios; 2175 struct thin_c *tc; 2176 2177 tc = get_first_thin(pool); 2178 while (tc) { 2179 process_thin_deferred_cells(tc); 2180 process_thin_deferred_bios(tc); 2181 tc = get_next_thin(pool, tc); 2182 } 2183 2184 /* 2185 * If there are any deferred flush bios, we must commit 2186 * the metadata before issuing them. 2187 */ 2188 bio_list_init(&bios); 2189 spin_lock_irqsave(&pool->lock, flags); 2190 bio_list_merge(&bios, &pool->deferred_flush_bios); 2191 bio_list_init(&pool->deferred_flush_bios); 2192 spin_unlock_irqrestore(&pool->lock, flags); 2193 2194 if (bio_list_empty(&bios) && 2195 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2196 return; 2197 2198 if (commit(pool)) { 2199 while ((bio = bio_list_pop(&bios))) 2200 bio_io_error(bio); 2201 return; 2202 } 2203 pool->last_commit_jiffies = jiffies; 2204 2205 while ((bio = bio_list_pop(&bios))) 2206 generic_make_request(bio); 2207 } 2208 2209 static void do_worker(struct work_struct *ws) 2210 { 2211 struct pool *pool = container_of(ws, struct pool, worker); 2212 2213 throttle_work_start(&pool->throttle); 2214 dm_pool_issue_prefetches(pool->pmd); 2215 throttle_work_update(&pool->throttle); 2216 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2217 throttle_work_update(&pool->throttle); 2218 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2219 throttle_work_update(&pool->throttle); 2220 process_deferred_bios(pool); 2221 throttle_work_complete(&pool->throttle); 2222 } 2223 2224 /* 2225 * We want to commit periodically so that not too much 2226 * unwritten data builds up. 2227 */ 2228 static void do_waker(struct work_struct *ws) 2229 { 2230 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2231 wake_worker(pool); 2232 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2233 } 2234 2235 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2236 2237 /* 2238 * We're holding onto IO to allow userland time to react. After the 2239 * timeout either the pool will have been resized (and thus back in 2240 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2241 */ 2242 static void do_no_space_timeout(struct work_struct *ws) 2243 { 2244 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2245 no_space_timeout); 2246 2247 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2248 pool->pf.error_if_no_space = true; 2249 notify_of_pool_mode_change_to_oods(pool); 2250 error_retry_list_with_code(pool, -ENOSPC); 2251 } 2252 } 2253 2254 /*----------------------------------------------------------------*/ 2255 2256 struct pool_work { 2257 struct work_struct worker; 2258 struct completion complete; 2259 }; 2260 2261 static struct pool_work *to_pool_work(struct work_struct *ws) 2262 { 2263 return container_of(ws, struct pool_work, worker); 2264 } 2265 2266 static void pool_work_complete(struct pool_work *pw) 2267 { 2268 complete(&pw->complete); 2269 } 2270 2271 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2272 void (*fn)(struct work_struct *)) 2273 { 2274 INIT_WORK_ONSTACK(&pw->worker, fn); 2275 init_completion(&pw->complete); 2276 queue_work(pool->wq, &pw->worker); 2277 wait_for_completion(&pw->complete); 2278 } 2279 2280 /*----------------------------------------------------------------*/ 2281 2282 struct noflush_work { 2283 struct pool_work pw; 2284 struct thin_c *tc; 2285 }; 2286 2287 static struct noflush_work *to_noflush(struct work_struct *ws) 2288 { 2289 return container_of(to_pool_work(ws), struct noflush_work, pw); 2290 } 2291 2292 static void do_noflush_start(struct work_struct *ws) 2293 { 2294 struct noflush_work *w = to_noflush(ws); 2295 w->tc->requeue_mode = true; 2296 requeue_io(w->tc); 2297 pool_work_complete(&w->pw); 2298 } 2299 2300 static void do_noflush_stop(struct work_struct *ws) 2301 { 2302 struct noflush_work *w = to_noflush(ws); 2303 w->tc->requeue_mode = false; 2304 pool_work_complete(&w->pw); 2305 } 2306 2307 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2308 { 2309 struct noflush_work w; 2310 2311 w.tc = tc; 2312 pool_work_wait(&w.pw, tc->pool, fn); 2313 } 2314 2315 /*----------------------------------------------------------------*/ 2316 2317 static enum pool_mode get_pool_mode(struct pool *pool) 2318 { 2319 return pool->pf.mode; 2320 } 2321 2322 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2323 { 2324 dm_table_event(pool->ti->table); 2325 DMINFO("%s: switching pool to %s mode", 2326 dm_device_name(pool->pool_md), new_mode); 2327 } 2328 2329 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2330 { 2331 if (!pool->pf.error_if_no_space) 2332 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2333 else 2334 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2335 } 2336 2337 static bool passdown_enabled(struct pool_c *pt) 2338 { 2339 return pt->adjusted_pf.discard_passdown; 2340 } 2341 2342 static void set_discard_callbacks(struct pool *pool) 2343 { 2344 struct pool_c *pt = pool->ti->private; 2345 2346 if (passdown_enabled(pt)) { 2347 pool->process_discard_cell = process_discard_cell_passdown; 2348 pool->process_prepared_discard = process_prepared_discard_passdown; 2349 } else { 2350 pool->process_discard_cell = process_discard_cell_no_passdown; 2351 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2352 } 2353 } 2354 2355 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2356 { 2357 struct pool_c *pt = pool->ti->private; 2358 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2359 enum pool_mode old_mode = get_pool_mode(pool); 2360 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2361 2362 /* 2363 * Never allow the pool to transition to PM_WRITE mode if user 2364 * intervention is required to verify metadata and data consistency. 2365 */ 2366 if (new_mode == PM_WRITE && needs_check) { 2367 DMERR("%s: unable to switch pool to write mode until repaired.", 2368 dm_device_name(pool->pool_md)); 2369 if (old_mode != new_mode) 2370 new_mode = old_mode; 2371 else 2372 new_mode = PM_READ_ONLY; 2373 } 2374 /* 2375 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2376 * not going to recover without a thin_repair. So we never let the 2377 * pool move out of the old mode. 2378 */ 2379 if (old_mode == PM_FAIL) 2380 new_mode = old_mode; 2381 2382 switch (new_mode) { 2383 case PM_FAIL: 2384 if (old_mode != new_mode) 2385 notify_of_pool_mode_change(pool, "failure"); 2386 dm_pool_metadata_read_only(pool->pmd); 2387 pool->process_bio = process_bio_fail; 2388 pool->process_discard = process_bio_fail; 2389 pool->process_cell = process_cell_fail; 2390 pool->process_discard_cell = process_cell_fail; 2391 pool->process_prepared_mapping = process_prepared_mapping_fail; 2392 pool->process_prepared_discard = process_prepared_discard_fail; 2393 2394 error_retry_list(pool); 2395 break; 2396 2397 case PM_READ_ONLY: 2398 if (old_mode != new_mode) 2399 notify_of_pool_mode_change(pool, "read-only"); 2400 dm_pool_metadata_read_only(pool->pmd); 2401 pool->process_bio = process_bio_read_only; 2402 pool->process_discard = process_bio_success; 2403 pool->process_cell = process_cell_read_only; 2404 pool->process_discard_cell = process_cell_success; 2405 pool->process_prepared_mapping = process_prepared_mapping_fail; 2406 pool->process_prepared_discard = process_prepared_discard_success; 2407 2408 error_retry_list(pool); 2409 break; 2410 2411 case PM_OUT_OF_DATA_SPACE: 2412 /* 2413 * Ideally we'd never hit this state; the low water mark 2414 * would trigger userland to extend the pool before we 2415 * completely run out of data space. However, many small 2416 * IOs to unprovisioned space can consume data space at an 2417 * alarming rate. Adjust your low water mark if you're 2418 * frequently seeing this mode. 2419 */ 2420 if (old_mode != new_mode) 2421 notify_of_pool_mode_change_to_oods(pool); 2422 pool->process_bio = process_bio_read_only; 2423 pool->process_discard = process_discard_bio; 2424 pool->process_cell = process_cell_read_only; 2425 pool->process_prepared_mapping = process_prepared_mapping; 2426 set_discard_callbacks(pool); 2427 2428 if (!pool->pf.error_if_no_space && no_space_timeout) 2429 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2430 break; 2431 2432 case PM_WRITE: 2433 if (old_mode != new_mode) 2434 notify_of_pool_mode_change(pool, "write"); 2435 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2436 dm_pool_metadata_read_write(pool->pmd); 2437 pool->process_bio = process_bio; 2438 pool->process_discard = process_discard_bio; 2439 pool->process_cell = process_cell; 2440 pool->process_prepared_mapping = process_prepared_mapping; 2441 set_discard_callbacks(pool); 2442 break; 2443 } 2444 2445 pool->pf.mode = new_mode; 2446 /* 2447 * The pool mode may have changed, sync it so bind_control_target() 2448 * doesn't cause an unexpected mode transition on resume. 2449 */ 2450 pt->adjusted_pf.mode = new_mode; 2451 } 2452 2453 static void abort_transaction(struct pool *pool) 2454 { 2455 const char *dev_name = dm_device_name(pool->pool_md); 2456 2457 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2458 if (dm_pool_abort_metadata(pool->pmd)) { 2459 DMERR("%s: failed to abort metadata transaction", dev_name); 2460 set_pool_mode(pool, PM_FAIL); 2461 } 2462 2463 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2464 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2465 set_pool_mode(pool, PM_FAIL); 2466 } 2467 } 2468 2469 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2470 { 2471 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2472 dm_device_name(pool->pool_md), op, r); 2473 2474 abort_transaction(pool); 2475 set_pool_mode(pool, PM_READ_ONLY); 2476 } 2477 2478 /*----------------------------------------------------------------*/ 2479 2480 /* 2481 * Mapping functions. 2482 */ 2483 2484 /* 2485 * Called only while mapping a thin bio to hand it over to the workqueue. 2486 */ 2487 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2488 { 2489 unsigned long flags; 2490 struct pool *pool = tc->pool; 2491 2492 spin_lock_irqsave(&tc->lock, flags); 2493 bio_list_add(&tc->deferred_bio_list, bio); 2494 spin_unlock_irqrestore(&tc->lock, flags); 2495 2496 wake_worker(pool); 2497 } 2498 2499 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2500 { 2501 struct pool *pool = tc->pool; 2502 2503 throttle_lock(&pool->throttle); 2504 thin_defer_bio(tc, bio); 2505 throttle_unlock(&pool->throttle); 2506 } 2507 2508 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2509 { 2510 unsigned long flags; 2511 struct pool *pool = tc->pool; 2512 2513 throttle_lock(&pool->throttle); 2514 spin_lock_irqsave(&tc->lock, flags); 2515 list_add_tail(&cell->user_list, &tc->deferred_cells); 2516 spin_unlock_irqrestore(&tc->lock, flags); 2517 throttle_unlock(&pool->throttle); 2518 2519 wake_worker(pool); 2520 } 2521 2522 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2523 { 2524 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2525 2526 h->tc = tc; 2527 h->shared_read_entry = NULL; 2528 h->all_io_entry = NULL; 2529 h->overwrite_mapping = NULL; 2530 h->cell = NULL; 2531 } 2532 2533 /* 2534 * Non-blocking function called from the thin target's map function. 2535 */ 2536 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2537 { 2538 int r; 2539 struct thin_c *tc = ti->private; 2540 dm_block_t block = get_bio_block(tc, bio); 2541 struct dm_thin_device *td = tc->td; 2542 struct dm_thin_lookup_result result; 2543 struct dm_bio_prison_cell *virt_cell, *data_cell; 2544 struct dm_cell_key key; 2545 2546 thin_hook_bio(tc, bio); 2547 2548 if (tc->requeue_mode) { 2549 bio->bi_error = DM_ENDIO_REQUEUE; 2550 bio_endio(bio); 2551 return DM_MAPIO_SUBMITTED; 2552 } 2553 2554 if (get_pool_mode(tc->pool) == PM_FAIL) { 2555 bio_io_error(bio); 2556 return DM_MAPIO_SUBMITTED; 2557 } 2558 2559 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2560 thin_defer_bio_with_throttle(tc, bio); 2561 return DM_MAPIO_SUBMITTED; 2562 } 2563 2564 /* 2565 * We must hold the virtual cell before doing the lookup, otherwise 2566 * there's a race with discard. 2567 */ 2568 build_virtual_key(tc->td, block, &key); 2569 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2570 return DM_MAPIO_SUBMITTED; 2571 2572 r = dm_thin_find_block(td, block, 0, &result); 2573 2574 /* 2575 * Note that we defer readahead too. 2576 */ 2577 switch (r) { 2578 case 0: 2579 if (unlikely(result.shared)) { 2580 /* 2581 * We have a race condition here between the 2582 * result.shared value returned by the lookup and 2583 * snapshot creation, which may cause new 2584 * sharing. 2585 * 2586 * To avoid this always quiesce the origin before 2587 * taking the snap. You want to do this anyway to 2588 * ensure a consistent application view 2589 * (i.e. lockfs). 2590 * 2591 * More distant ancestors are irrelevant. The 2592 * shared flag will be set in their case. 2593 */ 2594 thin_defer_cell(tc, virt_cell); 2595 return DM_MAPIO_SUBMITTED; 2596 } 2597 2598 build_data_key(tc->td, result.block, &key); 2599 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2600 cell_defer_no_holder(tc, virt_cell); 2601 return DM_MAPIO_SUBMITTED; 2602 } 2603 2604 inc_all_io_entry(tc->pool, bio); 2605 cell_defer_no_holder(tc, data_cell); 2606 cell_defer_no_holder(tc, virt_cell); 2607 2608 remap(tc, bio, result.block); 2609 return DM_MAPIO_REMAPPED; 2610 2611 case -ENODATA: 2612 case -EWOULDBLOCK: 2613 thin_defer_cell(tc, virt_cell); 2614 return DM_MAPIO_SUBMITTED; 2615 2616 default: 2617 /* 2618 * Must always call bio_io_error on failure. 2619 * dm_thin_find_block can fail with -EINVAL if the 2620 * pool is switched to fail-io mode. 2621 */ 2622 bio_io_error(bio); 2623 cell_defer_no_holder(tc, virt_cell); 2624 return DM_MAPIO_SUBMITTED; 2625 } 2626 } 2627 2628 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2629 { 2630 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2631 struct request_queue *q; 2632 2633 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2634 return 1; 2635 2636 q = bdev_get_queue(pt->data_dev->bdev); 2637 return bdi_congested(&q->backing_dev_info, bdi_bits); 2638 } 2639 2640 static void requeue_bios(struct pool *pool) 2641 { 2642 unsigned long flags; 2643 struct thin_c *tc; 2644 2645 rcu_read_lock(); 2646 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2647 spin_lock_irqsave(&tc->lock, flags); 2648 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2649 bio_list_init(&tc->retry_on_resume_list); 2650 spin_unlock_irqrestore(&tc->lock, flags); 2651 } 2652 rcu_read_unlock(); 2653 } 2654 2655 /*---------------------------------------------------------------- 2656 * Binding of control targets to a pool object 2657 *--------------------------------------------------------------*/ 2658 static bool data_dev_supports_discard(struct pool_c *pt) 2659 { 2660 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2661 2662 return q && blk_queue_discard(q); 2663 } 2664 2665 static bool is_factor(sector_t block_size, uint32_t n) 2666 { 2667 return !sector_div(block_size, n); 2668 } 2669 2670 /* 2671 * If discard_passdown was enabled verify that the data device 2672 * supports discards. Disable discard_passdown if not. 2673 */ 2674 static void disable_passdown_if_not_supported(struct pool_c *pt) 2675 { 2676 struct pool *pool = pt->pool; 2677 struct block_device *data_bdev = pt->data_dev->bdev; 2678 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2679 const char *reason = NULL; 2680 char buf[BDEVNAME_SIZE]; 2681 2682 if (!pt->adjusted_pf.discard_passdown) 2683 return; 2684 2685 if (!data_dev_supports_discard(pt)) 2686 reason = "discard unsupported"; 2687 2688 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2689 reason = "max discard sectors smaller than a block"; 2690 2691 if (reason) { 2692 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2693 pt->adjusted_pf.discard_passdown = false; 2694 } 2695 } 2696 2697 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2698 { 2699 struct pool_c *pt = ti->private; 2700 2701 /* 2702 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2703 */ 2704 enum pool_mode old_mode = get_pool_mode(pool); 2705 enum pool_mode new_mode = pt->adjusted_pf.mode; 2706 2707 /* 2708 * Don't change the pool's mode until set_pool_mode() below. 2709 * Otherwise the pool's process_* function pointers may 2710 * not match the desired pool mode. 2711 */ 2712 pt->adjusted_pf.mode = old_mode; 2713 2714 pool->ti = ti; 2715 pool->pf = pt->adjusted_pf; 2716 pool->low_water_blocks = pt->low_water_blocks; 2717 2718 set_pool_mode(pool, new_mode); 2719 2720 return 0; 2721 } 2722 2723 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2724 { 2725 if (pool->ti == ti) 2726 pool->ti = NULL; 2727 } 2728 2729 /*---------------------------------------------------------------- 2730 * Pool creation 2731 *--------------------------------------------------------------*/ 2732 /* Initialize pool features. */ 2733 static void pool_features_init(struct pool_features *pf) 2734 { 2735 pf->mode = PM_WRITE; 2736 pf->zero_new_blocks = true; 2737 pf->discard_enabled = true; 2738 pf->discard_passdown = true; 2739 pf->error_if_no_space = false; 2740 } 2741 2742 static void __pool_destroy(struct pool *pool) 2743 { 2744 __pool_table_remove(pool); 2745 2746 vfree(pool->cell_sort_array); 2747 if (dm_pool_metadata_close(pool->pmd) < 0) 2748 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2749 2750 dm_bio_prison_destroy(pool->prison); 2751 dm_kcopyd_client_destroy(pool->copier); 2752 2753 if (pool->wq) 2754 destroy_workqueue(pool->wq); 2755 2756 if (pool->next_mapping) 2757 mempool_free(pool->next_mapping, pool->mapping_pool); 2758 mempool_destroy(pool->mapping_pool); 2759 dm_deferred_set_destroy(pool->shared_read_ds); 2760 dm_deferred_set_destroy(pool->all_io_ds); 2761 kfree(pool); 2762 } 2763 2764 static struct kmem_cache *_new_mapping_cache; 2765 2766 static struct pool *pool_create(struct mapped_device *pool_md, 2767 struct block_device *metadata_dev, 2768 unsigned long block_size, 2769 int read_only, char **error) 2770 { 2771 int r; 2772 void *err_p; 2773 struct pool *pool; 2774 struct dm_pool_metadata *pmd; 2775 bool format_device = read_only ? false : true; 2776 2777 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2778 if (IS_ERR(pmd)) { 2779 *error = "Error creating metadata object"; 2780 return (struct pool *)pmd; 2781 } 2782 2783 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2784 if (!pool) { 2785 *error = "Error allocating memory for pool"; 2786 err_p = ERR_PTR(-ENOMEM); 2787 goto bad_pool; 2788 } 2789 2790 pool->pmd = pmd; 2791 pool->sectors_per_block = block_size; 2792 if (block_size & (block_size - 1)) 2793 pool->sectors_per_block_shift = -1; 2794 else 2795 pool->sectors_per_block_shift = __ffs(block_size); 2796 pool->low_water_blocks = 0; 2797 pool_features_init(&pool->pf); 2798 pool->prison = dm_bio_prison_create(); 2799 if (!pool->prison) { 2800 *error = "Error creating pool's bio prison"; 2801 err_p = ERR_PTR(-ENOMEM); 2802 goto bad_prison; 2803 } 2804 2805 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2806 if (IS_ERR(pool->copier)) { 2807 r = PTR_ERR(pool->copier); 2808 *error = "Error creating pool's kcopyd client"; 2809 err_p = ERR_PTR(r); 2810 goto bad_kcopyd_client; 2811 } 2812 2813 /* 2814 * Create singlethreaded workqueue that will service all devices 2815 * that use this metadata. 2816 */ 2817 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2818 if (!pool->wq) { 2819 *error = "Error creating pool's workqueue"; 2820 err_p = ERR_PTR(-ENOMEM); 2821 goto bad_wq; 2822 } 2823 2824 throttle_init(&pool->throttle); 2825 INIT_WORK(&pool->worker, do_worker); 2826 INIT_DELAYED_WORK(&pool->waker, do_waker); 2827 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2828 spin_lock_init(&pool->lock); 2829 bio_list_init(&pool->deferred_flush_bios); 2830 INIT_LIST_HEAD(&pool->prepared_mappings); 2831 INIT_LIST_HEAD(&pool->prepared_discards); 2832 INIT_LIST_HEAD(&pool->active_thins); 2833 pool->low_water_triggered = false; 2834 pool->suspended = true; 2835 2836 pool->shared_read_ds = dm_deferred_set_create(); 2837 if (!pool->shared_read_ds) { 2838 *error = "Error creating pool's shared read deferred set"; 2839 err_p = ERR_PTR(-ENOMEM); 2840 goto bad_shared_read_ds; 2841 } 2842 2843 pool->all_io_ds = dm_deferred_set_create(); 2844 if (!pool->all_io_ds) { 2845 *error = "Error creating pool's all io deferred set"; 2846 err_p = ERR_PTR(-ENOMEM); 2847 goto bad_all_io_ds; 2848 } 2849 2850 pool->next_mapping = NULL; 2851 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2852 _new_mapping_cache); 2853 if (!pool->mapping_pool) { 2854 *error = "Error creating pool's mapping mempool"; 2855 err_p = ERR_PTR(-ENOMEM); 2856 goto bad_mapping_pool; 2857 } 2858 2859 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2860 if (!pool->cell_sort_array) { 2861 *error = "Error allocating cell sort array"; 2862 err_p = ERR_PTR(-ENOMEM); 2863 goto bad_sort_array; 2864 } 2865 2866 pool->ref_count = 1; 2867 pool->last_commit_jiffies = jiffies; 2868 pool->pool_md = pool_md; 2869 pool->md_dev = metadata_dev; 2870 __pool_table_insert(pool); 2871 2872 return pool; 2873 2874 bad_sort_array: 2875 mempool_destroy(pool->mapping_pool); 2876 bad_mapping_pool: 2877 dm_deferred_set_destroy(pool->all_io_ds); 2878 bad_all_io_ds: 2879 dm_deferred_set_destroy(pool->shared_read_ds); 2880 bad_shared_read_ds: 2881 destroy_workqueue(pool->wq); 2882 bad_wq: 2883 dm_kcopyd_client_destroy(pool->copier); 2884 bad_kcopyd_client: 2885 dm_bio_prison_destroy(pool->prison); 2886 bad_prison: 2887 kfree(pool); 2888 bad_pool: 2889 if (dm_pool_metadata_close(pmd)) 2890 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2891 2892 return err_p; 2893 } 2894 2895 static void __pool_inc(struct pool *pool) 2896 { 2897 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2898 pool->ref_count++; 2899 } 2900 2901 static void __pool_dec(struct pool *pool) 2902 { 2903 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2904 BUG_ON(!pool->ref_count); 2905 if (!--pool->ref_count) 2906 __pool_destroy(pool); 2907 } 2908 2909 static struct pool *__pool_find(struct mapped_device *pool_md, 2910 struct block_device *metadata_dev, 2911 unsigned long block_size, int read_only, 2912 char **error, int *created) 2913 { 2914 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2915 2916 if (pool) { 2917 if (pool->pool_md != pool_md) { 2918 *error = "metadata device already in use by a pool"; 2919 return ERR_PTR(-EBUSY); 2920 } 2921 __pool_inc(pool); 2922 2923 } else { 2924 pool = __pool_table_lookup(pool_md); 2925 if (pool) { 2926 if (pool->md_dev != metadata_dev) { 2927 *error = "different pool cannot replace a pool"; 2928 return ERR_PTR(-EINVAL); 2929 } 2930 __pool_inc(pool); 2931 2932 } else { 2933 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2934 *created = 1; 2935 } 2936 } 2937 2938 return pool; 2939 } 2940 2941 /*---------------------------------------------------------------- 2942 * Pool target methods 2943 *--------------------------------------------------------------*/ 2944 static void pool_dtr(struct dm_target *ti) 2945 { 2946 struct pool_c *pt = ti->private; 2947 2948 mutex_lock(&dm_thin_pool_table.mutex); 2949 2950 unbind_control_target(pt->pool, ti); 2951 __pool_dec(pt->pool); 2952 dm_put_device(ti, pt->metadata_dev); 2953 dm_put_device(ti, pt->data_dev); 2954 kfree(pt); 2955 2956 mutex_unlock(&dm_thin_pool_table.mutex); 2957 } 2958 2959 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2960 struct dm_target *ti) 2961 { 2962 int r; 2963 unsigned argc; 2964 const char *arg_name; 2965 2966 static struct dm_arg _args[] = { 2967 {0, 4, "Invalid number of pool feature arguments"}, 2968 }; 2969 2970 /* 2971 * No feature arguments supplied. 2972 */ 2973 if (!as->argc) 2974 return 0; 2975 2976 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2977 if (r) 2978 return -EINVAL; 2979 2980 while (argc && !r) { 2981 arg_name = dm_shift_arg(as); 2982 argc--; 2983 2984 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2985 pf->zero_new_blocks = false; 2986 2987 else if (!strcasecmp(arg_name, "ignore_discard")) 2988 pf->discard_enabled = false; 2989 2990 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2991 pf->discard_passdown = false; 2992 2993 else if (!strcasecmp(arg_name, "read_only")) 2994 pf->mode = PM_READ_ONLY; 2995 2996 else if (!strcasecmp(arg_name, "error_if_no_space")) 2997 pf->error_if_no_space = true; 2998 2999 else { 3000 ti->error = "Unrecognised pool feature requested"; 3001 r = -EINVAL; 3002 break; 3003 } 3004 } 3005 3006 return r; 3007 } 3008 3009 static void metadata_low_callback(void *context) 3010 { 3011 struct pool *pool = context; 3012 3013 DMWARN("%s: reached low water mark for metadata device: sending event.", 3014 dm_device_name(pool->pool_md)); 3015 3016 dm_table_event(pool->ti->table); 3017 } 3018 3019 static sector_t get_dev_size(struct block_device *bdev) 3020 { 3021 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3022 } 3023 3024 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3025 { 3026 sector_t metadata_dev_size = get_dev_size(bdev); 3027 char buffer[BDEVNAME_SIZE]; 3028 3029 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3030 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3031 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3032 } 3033 3034 static sector_t get_metadata_dev_size(struct block_device *bdev) 3035 { 3036 sector_t metadata_dev_size = get_dev_size(bdev); 3037 3038 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3039 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3040 3041 return metadata_dev_size; 3042 } 3043 3044 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3045 { 3046 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3047 3048 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3049 3050 return metadata_dev_size; 3051 } 3052 3053 /* 3054 * When a metadata threshold is crossed a dm event is triggered, and 3055 * userland should respond by growing the metadata device. We could let 3056 * userland set the threshold, like we do with the data threshold, but I'm 3057 * not sure they know enough to do this well. 3058 */ 3059 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3060 { 3061 /* 3062 * 4M is ample for all ops with the possible exception of thin 3063 * device deletion which is harmless if it fails (just retry the 3064 * delete after you've grown the device). 3065 */ 3066 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3067 return min((dm_block_t)1024ULL /* 4M */, quarter); 3068 } 3069 3070 /* 3071 * thin-pool <metadata dev> <data dev> 3072 * <data block size (sectors)> 3073 * <low water mark (blocks)> 3074 * [<#feature args> [<arg>]*] 3075 * 3076 * Optional feature arguments are: 3077 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3078 * ignore_discard: disable discard 3079 * no_discard_passdown: don't pass discards down to the data device 3080 * read_only: Don't allow any changes to be made to the pool metadata. 3081 * error_if_no_space: error IOs, instead of queueing, if no space. 3082 */ 3083 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3084 { 3085 int r, pool_created = 0; 3086 struct pool_c *pt; 3087 struct pool *pool; 3088 struct pool_features pf; 3089 struct dm_arg_set as; 3090 struct dm_dev *data_dev; 3091 unsigned long block_size; 3092 dm_block_t low_water_blocks; 3093 struct dm_dev *metadata_dev; 3094 fmode_t metadata_mode; 3095 3096 /* 3097 * FIXME Remove validation from scope of lock. 3098 */ 3099 mutex_lock(&dm_thin_pool_table.mutex); 3100 3101 if (argc < 4) { 3102 ti->error = "Invalid argument count"; 3103 r = -EINVAL; 3104 goto out_unlock; 3105 } 3106 3107 as.argc = argc; 3108 as.argv = argv; 3109 3110 /* 3111 * Set default pool features. 3112 */ 3113 pool_features_init(&pf); 3114 3115 dm_consume_args(&as, 4); 3116 r = parse_pool_features(&as, &pf, ti); 3117 if (r) 3118 goto out_unlock; 3119 3120 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3121 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3122 if (r) { 3123 ti->error = "Error opening metadata block device"; 3124 goto out_unlock; 3125 } 3126 warn_if_metadata_device_too_big(metadata_dev->bdev); 3127 3128 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3129 if (r) { 3130 ti->error = "Error getting data device"; 3131 goto out_metadata; 3132 } 3133 3134 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3135 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3136 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3137 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3138 ti->error = "Invalid block size"; 3139 r = -EINVAL; 3140 goto out; 3141 } 3142 3143 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3144 ti->error = "Invalid low water mark"; 3145 r = -EINVAL; 3146 goto out; 3147 } 3148 3149 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3150 if (!pt) { 3151 r = -ENOMEM; 3152 goto out; 3153 } 3154 3155 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3156 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3157 if (IS_ERR(pool)) { 3158 r = PTR_ERR(pool); 3159 goto out_free_pt; 3160 } 3161 3162 /* 3163 * 'pool_created' reflects whether this is the first table load. 3164 * Top level discard support is not allowed to be changed after 3165 * initial load. This would require a pool reload to trigger thin 3166 * device changes. 3167 */ 3168 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3169 ti->error = "Discard support cannot be disabled once enabled"; 3170 r = -EINVAL; 3171 goto out_flags_changed; 3172 } 3173 3174 pt->pool = pool; 3175 pt->ti = ti; 3176 pt->metadata_dev = metadata_dev; 3177 pt->data_dev = data_dev; 3178 pt->low_water_blocks = low_water_blocks; 3179 pt->adjusted_pf = pt->requested_pf = pf; 3180 ti->num_flush_bios = 1; 3181 3182 /* 3183 * Only need to enable discards if the pool should pass 3184 * them down to the data device. The thin device's discard 3185 * processing will cause mappings to be removed from the btree. 3186 */ 3187 ti->discard_zeroes_data_unsupported = true; 3188 if (pf.discard_enabled && pf.discard_passdown) { 3189 ti->num_discard_bios = 1; 3190 3191 /* 3192 * Setting 'discards_supported' circumvents the normal 3193 * stacking of discard limits (this keeps the pool and 3194 * thin devices' discard limits consistent). 3195 */ 3196 ti->discards_supported = true; 3197 } 3198 ti->private = pt; 3199 3200 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3201 calc_metadata_threshold(pt), 3202 metadata_low_callback, 3203 pool); 3204 if (r) 3205 goto out_flags_changed; 3206 3207 pt->callbacks.congested_fn = pool_is_congested; 3208 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3209 3210 mutex_unlock(&dm_thin_pool_table.mutex); 3211 3212 return 0; 3213 3214 out_flags_changed: 3215 __pool_dec(pool); 3216 out_free_pt: 3217 kfree(pt); 3218 out: 3219 dm_put_device(ti, data_dev); 3220 out_metadata: 3221 dm_put_device(ti, metadata_dev); 3222 out_unlock: 3223 mutex_unlock(&dm_thin_pool_table.mutex); 3224 3225 return r; 3226 } 3227 3228 static int pool_map(struct dm_target *ti, struct bio *bio) 3229 { 3230 int r; 3231 struct pool_c *pt = ti->private; 3232 struct pool *pool = pt->pool; 3233 unsigned long flags; 3234 3235 /* 3236 * As this is a singleton target, ti->begin is always zero. 3237 */ 3238 spin_lock_irqsave(&pool->lock, flags); 3239 bio->bi_bdev = pt->data_dev->bdev; 3240 r = DM_MAPIO_REMAPPED; 3241 spin_unlock_irqrestore(&pool->lock, flags); 3242 3243 return r; 3244 } 3245 3246 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3247 { 3248 int r; 3249 struct pool_c *pt = ti->private; 3250 struct pool *pool = pt->pool; 3251 sector_t data_size = ti->len; 3252 dm_block_t sb_data_size; 3253 3254 *need_commit = false; 3255 3256 (void) sector_div(data_size, pool->sectors_per_block); 3257 3258 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3259 if (r) { 3260 DMERR("%s: failed to retrieve data device size", 3261 dm_device_name(pool->pool_md)); 3262 return r; 3263 } 3264 3265 if (data_size < sb_data_size) { 3266 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3267 dm_device_name(pool->pool_md), 3268 (unsigned long long)data_size, sb_data_size); 3269 return -EINVAL; 3270 3271 } else if (data_size > sb_data_size) { 3272 if (dm_pool_metadata_needs_check(pool->pmd)) { 3273 DMERR("%s: unable to grow the data device until repaired.", 3274 dm_device_name(pool->pool_md)); 3275 return 0; 3276 } 3277 3278 if (sb_data_size) 3279 DMINFO("%s: growing the data device from %llu to %llu blocks", 3280 dm_device_name(pool->pool_md), 3281 sb_data_size, (unsigned long long)data_size); 3282 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3283 if (r) { 3284 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3285 return r; 3286 } 3287 3288 *need_commit = true; 3289 } 3290 3291 return 0; 3292 } 3293 3294 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3295 { 3296 int r; 3297 struct pool_c *pt = ti->private; 3298 struct pool *pool = pt->pool; 3299 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3300 3301 *need_commit = false; 3302 3303 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3304 3305 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3306 if (r) { 3307 DMERR("%s: failed to retrieve metadata device size", 3308 dm_device_name(pool->pool_md)); 3309 return r; 3310 } 3311 3312 if (metadata_dev_size < sb_metadata_dev_size) { 3313 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3314 dm_device_name(pool->pool_md), 3315 metadata_dev_size, sb_metadata_dev_size); 3316 return -EINVAL; 3317 3318 } else if (metadata_dev_size > sb_metadata_dev_size) { 3319 if (dm_pool_metadata_needs_check(pool->pmd)) { 3320 DMERR("%s: unable to grow the metadata device until repaired.", 3321 dm_device_name(pool->pool_md)); 3322 return 0; 3323 } 3324 3325 warn_if_metadata_device_too_big(pool->md_dev); 3326 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3327 dm_device_name(pool->pool_md), 3328 sb_metadata_dev_size, metadata_dev_size); 3329 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3330 if (r) { 3331 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3332 return r; 3333 } 3334 3335 *need_commit = true; 3336 } 3337 3338 return 0; 3339 } 3340 3341 /* 3342 * Retrieves the number of blocks of the data device from 3343 * the superblock and compares it to the actual device size, 3344 * thus resizing the data device in case it has grown. 3345 * 3346 * This both copes with opening preallocated data devices in the ctr 3347 * being followed by a resume 3348 * -and- 3349 * calling the resume method individually after userspace has 3350 * grown the data device in reaction to a table event. 3351 */ 3352 static int pool_preresume(struct dm_target *ti) 3353 { 3354 int r; 3355 bool need_commit1, need_commit2; 3356 struct pool_c *pt = ti->private; 3357 struct pool *pool = pt->pool; 3358 3359 /* 3360 * Take control of the pool object. 3361 */ 3362 r = bind_control_target(pool, ti); 3363 if (r) 3364 return r; 3365 3366 r = maybe_resize_data_dev(ti, &need_commit1); 3367 if (r) 3368 return r; 3369 3370 r = maybe_resize_metadata_dev(ti, &need_commit2); 3371 if (r) 3372 return r; 3373 3374 if (need_commit1 || need_commit2) 3375 (void) commit(pool); 3376 3377 return 0; 3378 } 3379 3380 static void pool_suspend_active_thins(struct pool *pool) 3381 { 3382 struct thin_c *tc; 3383 3384 /* Suspend all active thin devices */ 3385 tc = get_first_thin(pool); 3386 while (tc) { 3387 dm_internal_suspend_noflush(tc->thin_md); 3388 tc = get_next_thin(pool, tc); 3389 } 3390 } 3391 3392 static void pool_resume_active_thins(struct pool *pool) 3393 { 3394 struct thin_c *tc; 3395 3396 /* Resume all active thin devices */ 3397 tc = get_first_thin(pool); 3398 while (tc) { 3399 dm_internal_resume(tc->thin_md); 3400 tc = get_next_thin(pool, tc); 3401 } 3402 } 3403 3404 static void pool_resume(struct dm_target *ti) 3405 { 3406 struct pool_c *pt = ti->private; 3407 struct pool *pool = pt->pool; 3408 unsigned long flags; 3409 3410 /* 3411 * Must requeue active_thins' bios and then resume 3412 * active_thins _before_ clearing 'suspend' flag. 3413 */ 3414 requeue_bios(pool); 3415 pool_resume_active_thins(pool); 3416 3417 spin_lock_irqsave(&pool->lock, flags); 3418 pool->low_water_triggered = false; 3419 pool->suspended = false; 3420 spin_unlock_irqrestore(&pool->lock, flags); 3421 3422 do_waker(&pool->waker.work); 3423 } 3424 3425 static void pool_presuspend(struct dm_target *ti) 3426 { 3427 struct pool_c *pt = ti->private; 3428 struct pool *pool = pt->pool; 3429 unsigned long flags; 3430 3431 spin_lock_irqsave(&pool->lock, flags); 3432 pool->suspended = true; 3433 spin_unlock_irqrestore(&pool->lock, flags); 3434 3435 pool_suspend_active_thins(pool); 3436 } 3437 3438 static void pool_presuspend_undo(struct dm_target *ti) 3439 { 3440 struct pool_c *pt = ti->private; 3441 struct pool *pool = pt->pool; 3442 unsigned long flags; 3443 3444 pool_resume_active_thins(pool); 3445 3446 spin_lock_irqsave(&pool->lock, flags); 3447 pool->suspended = false; 3448 spin_unlock_irqrestore(&pool->lock, flags); 3449 } 3450 3451 static void pool_postsuspend(struct dm_target *ti) 3452 { 3453 struct pool_c *pt = ti->private; 3454 struct pool *pool = pt->pool; 3455 3456 cancel_delayed_work_sync(&pool->waker); 3457 cancel_delayed_work_sync(&pool->no_space_timeout); 3458 flush_workqueue(pool->wq); 3459 (void) commit(pool); 3460 } 3461 3462 static int check_arg_count(unsigned argc, unsigned args_required) 3463 { 3464 if (argc != args_required) { 3465 DMWARN("Message received with %u arguments instead of %u.", 3466 argc, args_required); 3467 return -EINVAL; 3468 } 3469 3470 return 0; 3471 } 3472 3473 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3474 { 3475 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3476 *dev_id <= MAX_DEV_ID) 3477 return 0; 3478 3479 if (warning) 3480 DMWARN("Message received with invalid device id: %s", arg); 3481 3482 return -EINVAL; 3483 } 3484 3485 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3486 { 3487 dm_thin_id dev_id; 3488 int r; 3489 3490 r = check_arg_count(argc, 2); 3491 if (r) 3492 return r; 3493 3494 r = read_dev_id(argv[1], &dev_id, 1); 3495 if (r) 3496 return r; 3497 3498 r = dm_pool_create_thin(pool->pmd, dev_id); 3499 if (r) { 3500 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3501 argv[1]); 3502 return r; 3503 } 3504 3505 return 0; 3506 } 3507 3508 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3509 { 3510 dm_thin_id dev_id; 3511 dm_thin_id origin_dev_id; 3512 int r; 3513 3514 r = check_arg_count(argc, 3); 3515 if (r) 3516 return r; 3517 3518 r = read_dev_id(argv[1], &dev_id, 1); 3519 if (r) 3520 return r; 3521 3522 r = read_dev_id(argv[2], &origin_dev_id, 1); 3523 if (r) 3524 return r; 3525 3526 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3527 if (r) { 3528 DMWARN("Creation of new snapshot %s of device %s failed.", 3529 argv[1], argv[2]); 3530 return r; 3531 } 3532 3533 return 0; 3534 } 3535 3536 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3537 { 3538 dm_thin_id dev_id; 3539 int r; 3540 3541 r = check_arg_count(argc, 2); 3542 if (r) 3543 return r; 3544 3545 r = read_dev_id(argv[1], &dev_id, 1); 3546 if (r) 3547 return r; 3548 3549 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3550 if (r) 3551 DMWARN("Deletion of thin device %s failed.", argv[1]); 3552 3553 return r; 3554 } 3555 3556 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3557 { 3558 dm_thin_id old_id, new_id; 3559 int r; 3560 3561 r = check_arg_count(argc, 3); 3562 if (r) 3563 return r; 3564 3565 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3566 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3567 return -EINVAL; 3568 } 3569 3570 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3571 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3572 return -EINVAL; 3573 } 3574 3575 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3576 if (r) { 3577 DMWARN("Failed to change transaction id from %s to %s.", 3578 argv[1], argv[2]); 3579 return r; 3580 } 3581 3582 return 0; 3583 } 3584 3585 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3586 { 3587 int r; 3588 3589 r = check_arg_count(argc, 1); 3590 if (r) 3591 return r; 3592 3593 (void) commit(pool); 3594 3595 r = dm_pool_reserve_metadata_snap(pool->pmd); 3596 if (r) 3597 DMWARN("reserve_metadata_snap message failed."); 3598 3599 return r; 3600 } 3601 3602 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3603 { 3604 int r; 3605 3606 r = check_arg_count(argc, 1); 3607 if (r) 3608 return r; 3609 3610 r = dm_pool_release_metadata_snap(pool->pmd); 3611 if (r) 3612 DMWARN("release_metadata_snap message failed."); 3613 3614 return r; 3615 } 3616 3617 /* 3618 * Messages supported: 3619 * create_thin <dev_id> 3620 * create_snap <dev_id> <origin_id> 3621 * delete <dev_id> 3622 * set_transaction_id <current_trans_id> <new_trans_id> 3623 * reserve_metadata_snap 3624 * release_metadata_snap 3625 */ 3626 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3627 { 3628 int r = -EINVAL; 3629 struct pool_c *pt = ti->private; 3630 struct pool *pool = pt->pool; 3631 3632 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3633 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3634 dm_device_name(pool->pool_md)); 3635 return -EOPNOTSUPP; 3636 } 3637 3638 if (!strcasecmp(argv[0], "create_thin")) 3639 r = process_create_thin_mesg(argc, argv, pool); 3640 3641 else if (!strcasecmp(argv[0], "create_snap")) 3642 r = process_create_snap_mesg(argc, argv, pool); 3643 3644 else if (!strcasecmp(argv[0], "delete")) 3645 r = process_delete_mesg(argc, argv, pool); 3646 3647 else if (!strcasecmp(argv[0], "set_transaction_id")) 3648 r = process_set_transaction_id_mesg(argc, argv, pool); 3649 3650 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3651 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3652 3653 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3654 r = process_release_metadata_snap_mesg(argc, argv, pool); 3655 3656 else 3657 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3658 3659 if (!r) 3660 (void) commit(pool); 3661 3662 return r; 3663 } 3664 3665 static void emit_flags(struct pool_features *pf, char *result, 3666 unsigned sz, unsigned maxlen) 3667 { 3668 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3669 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3670 pf->error_if_no_space; 3671 DMEMIT("%u ", count); 3672 3673 if (!pf->zero_new_blocks) 3674 DMEMIT("skip_block_zeroing "); 3675 3676 if (!pf->discard_enabled) 3677 DMEMIT("ignore_discard "); 3678 3679 if (!pf->discard_passdown) 3680 DMEMIT("no_discard_passdown "); 3681 3682 if (pf->mode == PM_READ_ONLY) 3683 DMEMIT("read_only "); 3684 3685 if (pf->error_if_no_space) 3686 DMEMIT("error_if_no_space "); 3687 } 3688 3689 /* 3690 * Status line is: 3691 * <transaction id> <used metadata sectors>/<total metadata sectors> 3692 * <used data sectors>/<total data sectors> <held metadata root> 3693 * <pool mode> <discard config> <no space config> <needs_check> 3694 */ 3695 static void pool_status(struct dm_target *ti, status_type_t type, 3696 unsigned status_flags, char *result, unsigned maxlen) 3697 { 3698 int r; 3699 unsigned sz = 0; 3700 uint64_t transaction_id; 3701 dm_block_t nr_free_blocks_data; 3702 dm_block_t nr_free_blocks_metadata; 3703 dm_block_t nr_blocks_data; 3704 dm_block_t nr_blocks_metadata; 3705 dm_block_t held_root; 3706 char buf[BDEVNAME_SIZE]; 3707 char buf2[BDEVNAME_SIZE]; 3708 struct pool_c *pt = ti->private; 3709 struct pool *pool = pt->pool; 3710 3711 switch (type) { 3712 case STATUSTYPE_INFO: 3713 if (get_pool_mode(pool) == PM_FAIL) { 3714 DMEMIT("Fail"); 3715 break; 3716 } 3717 3718 /* Commit to ensure statistics aren't out-of-date */ 3719 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3720 (void) commit(pool); 3721 3722 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3723 if (r) { 3724 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3725 dm_device_name(pool->pool_md), r); 3726 goto err; 3727 } 3728 3729 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3730 if (r) { 3731 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3732 dm_device_name(pool->pool_md), r); 3733 goto err; 3734 } 3735 3736 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3737 if (r) { 3738 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3739 dm_device_name(pool->pool_md), r); 3740 goto err; 3741 } 3742 3743 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3744 if (r) { 3745 DMERR("%s: dm_pool_get_free_block_count returned %d", 3746 dm_device_name(pool->pool_md), r); 3747 goto err; 3748 } 3749 3750 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3751 if (r) { 3752 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3753 dm_device_name(pool->pool_md), r); 3754 goto err; 3755 } 3756 3757 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3758 if (r) { 3759 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3760 dm_device_name(pool->pool_md), r); 3761 goto err; 3762 } 3763 3764 DMEMIT("%llu %llu/%llu %llu/%llu ", 3765 (unsigned long long)transaction_id, 3766 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3767 (unsigned long long)nr_blocks_metadata, 3768 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3769 (unsigned long long)nr_blocks_data); 3770 3771 if (held_root) 3772 DMEMIT("%llu ", held_root); 3773 else 3774 DMEMIT("- "); 3775 3776 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3777 DMEMIT("out_of_data_space "); 3778 else if (pool->pf.mode == PM_READ_ONLY) 3779 DMEMIT("ro "); 3780 else 3781 DMEMIT("rw "); 3782 3783 if (!pool->pf.discard_enabled) 3784 DMEMIT("ignore_discard "); 3785 else if (pool->pf.discard_passdown) 3786 DMEMIT("discard_passdown "); 3787 else 3788 DMEMIT("no_discard_passdown "); 3789 3790 if (pool->pf.error_if_no_space) 3791 DMEMIT("error_if_no_space "); 3792 else 3793 DMEMIT("queue_if_no_space "); 3794 3795 if (dm_pool_metadata_needs_check(pool->pmd)) 3796 DMEMIT("needs_check "); 3797 else 3798 DMEMIT("- "); 3799 3800 break; 3801 3802 case STATUSTYPE_TABLE: 3803 DMEMIT("%s %s %lu %llu ", 3804 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3805 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3806 (unsigned long)pool->sectors_per_block, 3807 (unsigned long long)pt->low_water_blocks); 3808 emit_flags(&pt->requested_pf, result, sz, maxlen); 3809 break; 3810 } 3811 return; 3812 3813 err: 3814 DMEMIT("Error"); 3815 } 3816 3817 static int pool_iterate_devices(struct dm_target *ti, 3818 iterate_devices_callout_fn fn, void *data) 3819 { 3820 struct pool_c *pt = ti->private; 3821 3822 return fn(ti, pt->data_dev, 0, ti->len, data); 3823 } 3824 3825 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3826 { 3827 struct pool_c *pt = ti->private; 3828 struct pool *pool = pt->pool; 3829 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3830 3831 /* 3832 * If max_sectors is smaller than pool->sectors_per_block adjust it 3833 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3834 * This is especially beneficial when the pool's data device is a RAID 3835 * device that has a full stripe width that matches pool->sectors_per_block 3836 * -- because even though partial RAID stripe-sized IOs will be issued to a 3837 * single RAID stripe; when aggregated they will end on a full RAID stripe 3838 * boundary.. which avoids additional partial RAID stripe writes cascading 3839 */ 3840 if (limits->max_sectors < pool->sectors_per_block) { 3841 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3842 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3843 limits->max_sectors--; 3844 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3845 } 3846 } 3847 3848 /* 3849 * If the system-determined stacked limits are compatible with the 3850 * pool's blocksize (io_opt is a factor) do not override them. 3851 */ 3852 if (io_opt_sectors < pool->sectors_per_block || 3853 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3854 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3855 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3856 else 3857 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3858 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3859 } 3860 3861 /* 3862 * pt->adjusted_pf is a staging area for the actual features to use. 3863 * They get transferred to the live pool in bind_control_target() 3864 * called from pool_preresume(). 3865 */ 3866 if (!pt->adjusted_pf.discard_enabled) { 3867 /* 3868 * Must explicitly disallow stacking discard limits otherwise the 3869 * block layer will stack them if pool's data device has support. 3870 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3871 * user to see that, so make sure to set all discard limits to 0. 3872 */ 3873 limits->discard_granularity = 0; 3874 return; 3875 } 3876 3877 disable_passdown_if_not_supported(pt); 3878 3879 /* 3880 * The pool uses the same discard limits as the underlying data 3881 * device. DM core has already set this up. 3882 */ 3883 } 3884 3885 static struct target_type pool_target = { 3886 .name = "thin-pool", 3887 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3888 DM_TARGET_IMMUTABLE, 3889 .version = {1, 17, 0}, 3890 .module = THIS_MODULE, 3891 .ctr = pool_ctr, 3892 .dtr = pool_dtr, 3893 .map = pool_map, 3894 .presuspend = pool_presuspend, 3895 .presuspend_undo = pool_presuspend_undo, 3896 .postsuspend = pool_postsuspend, 3897 .preresume = pool_preresume, 3898 .resume = pool_resume, 3899 .message = pool_message, 3900 .status = pool_status, 3901 .iterate_devices = pool_iterate_devices, 3902 .io_hints = pool_io_hints, 3903 }; 3904 3905 /*---------------------------------------------------------------- 3906 * Thin target methods 3907 *--------------------------------------------------------------*/ 3908 static void thin_get(struct thin_c *tc) 3909 { 3910 atomic_inc(&tc->refcount); 3911 } 3912 3913 static void thin_put(struct thin_c *tc) 3914 { 3915 if (atomic_dec_and_test(&tc->refcount)) 3916 complete(&tc->can_destroy); 3917 } 3918 3919 static void thin_dtr(struct dm_target *ti) 3920 { 3921 struct thin_c *tc = ti->private; 3922 unsigned long flags; 3923 3924 spin_lock_irqsave(&tc->pool->lock, flags); 3925 list_del_rcu(&tc->list); 3926 spin_unlock_irqrestore(&tc->pool->lock, flags); 3927 synchronize_rcu(); 3928 3929 thin_put(tc); 3930 wait_for_completion(&tc->can_destroy); 3931 3932 mutex_lock(&dm_thin_pool_table.mutex); 3933 3934 __pool_dec(tc->pool); 3935 dm_pool_close_thin_device(tc->td); 3936 dm_put_device(ti, tc->pool_dev); 3937 if (tc->origin_dev) 3938 dm_put_device(ti, tc->origin_dev); 3939 kfree(tc); 3940 3941 mutex_unlock(&dm_thin_pool_table.mutex); 3942 } 3943 3944 /* 3945 * Thin target parameters: 3946 * 3947 * <pool_dev> <dev_id> [origin_dev] 3948 * 3949 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3950 * dev_id: the internal device identifier 3951 * origin_dev: a device external to the pool that should act as the origin 3952 * 3953 * If the pool device has discards disabled, they get disabled for the thin 3954 * device as well. 3955 */ 3956 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3957 { 3958 int r; 3959 struct thin_c *tc; 3960 struct dm_dev *pool_dev, *origin_dev; 3961 struct mapped_device *pool_md; 3962 unsigned long flags; 3963 3964 mutex_lock(&dm_thin_pool_table.mutex); 3965 3966 if (argc != 2 && argc != 3) { 3967 ti->error = "Invalid argument count"; 3968 r = -EINVAL; 3969 goto out_unlock; 3970 } 3971 3972 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3973 if (!tc) { 3974 ti->error = "Out of memory"; 3975 r = -ENOMEM; 3976 goto out_unlock; 3977 } 3978 tc->thin_md = dm_table_get_md(ti->table); 3979 spin_lock_init(&tc->lock); 3980 INIT_LIST_HEAD(&tc->deferred_cells); 3981 bio_list_init(&tc->deferred_bio_list); 3982 bio_list_init(&tc->retry_on_resume_list); 3983 tc->sort_bio_list = RB_ROOT; 3984 3985 if (argc == 3) { 3986 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3987 if (r) { 3988 ti->error = "Error opening origin device"; 3989 goto bad_origin_dev; 3990 } 3991 tc->origin_dev = origin_dev; 3992 } 3993 3994 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3995 if (r) { 3996 ti->error = "Error opening pool device"; 3997 goto bad_pool_dev; 3998 } 3999 tc->pool_dev = pool_dev; 4000 4001 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4002 ti->error = "Invalid device id"; 4003 r = -EINVAL; 4004 goto bad_common; 4005 } 4006 4007 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4008 if (!pool_md) { 4009 ti->error = "Couldn't get pool mapped device"; 4010 r = -EINVAL; 4011 goto bad_common; 4012 } 4013 4014 tc->pool = __pool_table_lookup(pool_md); 4015 if (!tc->pool) { 4016 ti->error = "Couldn't find pool object"; 4017 r = -EINVAL; 4018 goto bad_pool_lookup; 4019 } 4020 __pool_inc(tc->pool); 4021 4022 if (get_pool_mode(tc->pool) == PM_FAIL) { 4023 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4024 r = -EINVAL; 4025 goto bad_pool; 4026 } 4027 4028 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4029 if (r) { 4030 ti->error = "Couldn't open thin internal device"; 4031 goto bad_pool; 4032 } 4033 4034 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4035 if (r) 4036 goto bad; 4037 4038 ti->num_flush_bios = 1; 4039 ti->flush_supported = true; 4040 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 4041 4042 /* In case the pool supports discards, pass them on. */ 4043 ti->discard_zeroes_data_unsupported = true; 4044 if (tc->pool->pf.discard_enabled) { 4045 ti->discards_supported = true; 4046 ti->num_discard_bios = 1; 4047 ti->split_discard_bios = false; 4048 } 4049 4050 mutex_unlock(&dm_thin_pool_table.mutex); 4051 4052 spin_lock_irqsave(&tc->pool->lock, flags); 4053 if (tc->pool->suspended) { 4054 spin_unlock_irqrestore(&tc->pool->lock, flags); 4055 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4056 ti->error = "Unable to activate thin device while pool is suspended"; 4057 r = -EINVAL; 4058 goto bad; 4059 } 4060 atomic_set(&tc->refcount, 1); 4061 init_completion(&tc->can_destroy); 4062 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4063 spin_unlock_irqrestore(&tc->pool->lock, flags); 4064 /* 4065 * This synchronize_rcu() call is needed here otherwise we risk a 4066 * wake_worker() call finding no bios to process (because the newly 4067 * added tc isn't yet visible). So this reduces latency since we 4068 * aren't then dependent on the periodic commit to wake_worker(). 4069 */ 4070 synchronize_rcu(); 4071 4072 dm_put(pool_md); 4073 4074 return 0; 4075 4076 bad: 4077 dm_pool_close_thin_device(tc->td); 4078 bad_pool: 4079 __pool_dec(tc->pool); 4080 bad_pool_lookup: 4081 dm_put(pool_md); 4082 bad_common: 4083 dm_put_device(ti, tc->pool_dev); 4084 bad_pool_dev: 4085 if (tc->origin_dev) 4086 dm_put_device(ti, tc->origin_dev); 4087 bad_origin_dev: 4088 kfree(tc); 4089 out_unlock: 4090 mutex_unlock(&dm_thin_pool_table.mutex); 4091 4092 return r; 4093 } 4094 4095 static int thin_map(struct dm_target *ti, struct bio *bio) 4096 { 4097 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4098 4099 return thin_bio_map(ti, bio); 4100 } 4101 4102 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 4103 { 4104 unsigned long flags; 4105 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4106 struct list_head work; 4107 struct dm_thin_new_mapping *m, *tmp; 4108 struct pool *pool = h->tc->pool; 4109 4110 if (h->shared_read_entry) { 4111 INIT_LIST_HEAD(&work); 4112 dm_deferred_entry_dec(h->shared_read_entry, &work); 4113 4114 spin_lock_irqsave(&pool->lock, flags); 4115 list_for_each_entry_safe(m, tmp, &work, list) { 4116 list_del(&m->list); 4117 __complete_mapping_preparation(m); 4118 } 4119 spin_unlock_irqrestore(&pool->lock, flags); 4120 } 4121 4122 if (h->all_io_entry) { 4123 INIT_LIST_HEAD(&work); 4124 dm_deferred_entry_dec(h->all_io_entry, &work); 4125 if (!list_empty(&work)) { 4126 spin_lock_irqsave(&pool->lock, flags); 4127 list_for_each_entry_safe(m, tmp, &work, list) 4128 list_add_tail(&m->list, &pool->prepared_discards); 4129 spin_unlock_irqrestore(&pool->lock, flags); 4130 wake_worker(pool); 4131 } 4132 } 4133 4134 if (h->cell) 4135 cell_defer_no_holder(h->tc, h->cell); 4136 4137 return 0; 4138 } 4139 4140 static void thin_presuspend(struct dm_target *ti) 4141 { 4142 struct thin_c *tc = ti->private; 4143 4144 if (dm_noflush_suspending(ti)) 4145 noflush_work(tc, do_noflush_start); 4146 } 4147 4148 static void thin_postsuspend(struct dm_target *ti) 4149 { 4150 struct thin_c *tc = ti->private; 4151 4152 /* 4153 * The dm_noflush_suspending flag has been cleared by now, so 4154 * unfortunately we must always run this. 4155 */ 4156 noflush_work(tc, do_noflush_stop); 4157 } 4158 4159 static int thin_preresume(struct dm_target *ti) 4160 { 4161 struct thin_c *tc = ti->private; 4162 4163 if (tc->origin_dev) 4164 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4165 4166 return 0; 4167 } 4168 4169 /* 4170 * <nr mapped sectors> <highest mapped sector> 4171 */ 4172 static void thin_status(struct dm_target *ti, status_type_t type, 4173 unsigned status_flags, char *result, unsigned maxlen) 4174 { 4175 int r; 4176 ssize_t sz = 0; 4177 dm_block_t mapped, highest; 4178 char buf[BDEVNAME_SIZE]; 4179 struct thin_c *tc = ti->private; 4180 4181 if (get_pool_mode(tc->pool) == PM_FAIL) { 4182 DMEMIT("Fail"); 4183 return; 4184 } 4185 4186 if (!tc->td) 4187 DMEMIT("-"); 4188 else { 4189 switch (type) { 4190 case STATUSTYPE_INFO: 4191 r = dm_thin_get_mapped_count(tc->td, &mapped); 4192 if (r) { 4193 DMERR("dm_thin_get_mapped_count returned %d", r); 4194 goto err; 4195 } 4196 4197 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4198 if (r < 0) { 4199 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4200 goto err; 4201 } 4202 4203 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4204 if (r) 4205 DMEMIT("%llu", ((highest + 1) * 4206 tc->pool->sectors_per_block) - 1); 4207 else 4208 DMEMIT("-"); 4209 break; 4210 4211 case STATUSTYPE_TABLE: 4212 DMEMIT("%s %lu", 4213 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4214 (unsigned long) tc->dev_id); 4215 if (tc->origin_dev) 4216 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4217 break; 4218 } 4219 } 4220 4221 return; 4222 4223 err: 4224 DMEMIT("Error"); 4225 } 4226 4227 static int thin_iterate_devices(struct dm_target *ti, 4228 iterate_devices_callout_fn fn, void *data) 4229 { 4230 sector_t blocks; 4231 struct thin_c *tc = ti->private; 4232 struct pool *pool = tc->pool; 4233 4234 /* 4235 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4236 * we follow a more convoluted path through to the pool's target. 4237 */ 4238 if (!pool->ti) 4239 return 0; /* nothing is bound */ 4240 4241 blocks = pool->ti->len; 4242 (void) sector_div(blocks, pool->sectors_per_block); 4243 if (blocks) 4244 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4245 4246 return 0; 4247 } 4248 4249 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4250 { 4251 struct thin_c *tc = ti->private; 4252 struct pool *pool = tc->pool; 4253 4254 if (!pool->pf.discard_enabled) 4255 return; 4256 4257 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4258 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4259 } 4260 4261 static struct target_type thin_target = { 4262 .name = "thin", 4263 .version = {1, 17, 0}, 4264 .module = THIS_MODULE, 4265 .ctr = thin_ctr, 4266 .dtr = thin_dtr, 4267 .map = thin_map, 4268 .end_io = thin_endio, 4269 .preresume = thin_preresume, 4270 .presuspend = thin_presuspend, 4271 .postsuspend = thin_postsuspend, 4272 .status = thin_status, 4273 .iterate_devices = thin_iterate_devices, 4274 .io_hints = thin_io_hints, 4275 }; 4276 4277 /*----------------------------------------------------------------*/ 4278 4279 static int __init dm_thin_init(void) 4280 { 4281 int r; 4282 4283 pool_table_init(); 4284 4285 r = dm_register_target(&thin_target); 4286 if (r) 4287 return r; 4288 4289 r = dm_register_target(&pool_target); 4290 if (r) 4291 goto bad_pool_target; 4292 4293 r = -ENOMEM; 4294 4295 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4296 if (!_new_mapping_cache) 4297 goto bad_new_mapping_cache; 4298 4299 return 0; 4300 4301 bad_new_mapping_cache: 4302 dm_unregister_target(&pool_target); 4303 bad_pool_target: 4304 dm_unregister_target(&thin_target); 4305 4306 return r; 4307 } 4308 4309 static void dm_thin_exit(void) 4310 { 4311 dm_unregister_target(&thin_target); 4312 dm_unregister_target(&pool_target); 4313 4314 kmem_cache_destroy(_new_mapping_cache); 4315 } 4316 4317 module_init(dm_thin_init); 4318 module_exit(dm_thin_exit); 4319 4320 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4321 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4322 4323 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4324 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4325 MODULE_LICENSE("GPL"); 4326