1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct work_struct worker; 244 struct workqueue_struct *wq; 245 struct throttle throttle; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head prepared_discards_pt2; 257 struct list_head active_thins; 258 259 struct dm_deferred_set *shared_read_ds; 260 struct dm_deferred_set *all_io_ds; 261 262 struct dm_thin_new_mapping *next_mapping; 263 264 process_bio_fn process_bio; 265 process_bio_fn process_discard; 266 267 process_cell_fn process_cell; 268 process_cell_fn process_discard_cell; 269 270 process_mapping_fn process_prepared_mapping; 271 process_mapping_fn process_prepared_discard; 272 process_mapping_fn process_prepared_discard_pt2; 273 274 struct dm_bio_prison_cell **cell_sort_array; 275 276 mempool_t mapping_pool; 277 }; 278 279 static enum pool_mode get_pool_mode(struct pool *pool); 280 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 281 282 /* 283 * Target context for a pool. 284 */ 285 struct pool_c { 286 struct dm_target *ti; 287 struct pool *pool; 288 struct dm_dev *data_dev; 289 struct dm_dev *metadata_dev; 290 struct dm_target_callbacks callbacks; 291 292 dm_block_t low_water_blocks; 293 struct pool_features requested_pf; /* Features requested during table load */ 294 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 295 }; 296 297 /* 298 * Target context for a thin. 299 */ 300 struct thin_c { 301 struct list_head list; 302 struct dm_dev *pool_dev; 303 struct dm_dev *origin_dev; 304 sector_t origin_size; 305 dm_thin_id dev_id; 306 307 struct pool *pool; 308 struct dm_thin_device *td; 309 struct mapped_device *thin_md; 310 311 bool requeue_mode:1; 312 spinlock_t lock; 313 struct list_head deferred_cells; 314 struct bio_list deferred_bio_list; 315 struct bio_list retry_on_resume_list; 316 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 317 318 /* 319 * Ensures the thin is not destroyed until the worker has finished 320 * iterating the active_thins list. 321 */ 322 atomic_t refcount; 323 struct completion can_destroy; 324 }; 325 326 /*----------------------------------------------------------------*/ 327 328 static bool block_size_is_power_of_two(struct pool *pool) 329 { 330 return pool->sectors_per_block_shift >= 0; 331 } 332 333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 334 { 335 return block_size_is_power_of_two(pool) ? 336 (b << pool->sectors_per_block_shift) : 337 (b * pool->sectors_per_block); 338 } 339 340 /*----------------------------------------------------------------*/ 341 342 struct discard_op { 343 struct thin_c *tc; 344 struct blk_plug plug; 345 struct bio *parent_bio; 346 struct bio *bio; 347 }; 348 349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 350 { 351 BUG_ON(!parent); 352 353 op->tc = tc; 354 blk_start_plug(&op->plug); 355 op->parent_bio = parent; 356 op->bio = NULL; 357 } 358 359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 360 { 361 struct thin_c *tc = op->tc; 362 sector_t s = block_to_sectors(tc->pool, data_b); 363 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 364 365 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 366 GFP_NOWAIT, 0, &op->bio); 367 } 368 369 static void end_discard(struct discard_op *op, int r) 370 { 371 if (op->bio) { 372 /* 373 * Even if one of the calls to issue_discard failed, we 374 * need to wait for the chain to complete. 375 */ 376 bio_chain(op->bio, op->parent_bio); 377 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 378 submit_bio(op->bio); 379 } 380 381 blk_finish_plug(&op->plug); 382 383 /* 384 * Even if r is set, there could be sub discards in flight that we 385 * need to wait for. 386 */ 387 if (r && !op->parent_bio->bi_status) 388 op->parent_bio->bi_status = errno_to_blk_status(r); 389 bio_endio(op->parent_bio); 390 } 391 392 /*----------------------------------------------------------------*/ 393 394 /* 395 * wake_worker() is used when new work is queued and when pool_resume is 396 * ready to continue deferred IO processing. 397 */ 398 static void wake_worker(struct pool *pool) 399 { 400 queue_work(pool->wq, &pool->worker); 401 } 402 403 /*----------------------------------------------------------------*/ 404 405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 406 struct dm_bio_prison_cell **cell_result) 407 { 408 int r; 409 struct dm_bio_prison_cell *cell_prealloc; 410 411 /* 412 * Allocate a cell from the prison's mempool. 413 * This might block but it can't fail. 414 */ 415 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 416 417 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 418 if (r) 419 /* 420 * We reused an old cell; we can get rid of 421 * the new one. 422 */ 423 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 424 425 return r; 426 } 427 428 static void cell_release(struct pool *pool, 429 struct dm_bio_prison_cell *cell, 430 struct bio_list *bios) 431 { 432 dm_cell_release(pool->prison, cell, bios); 433 dm_bio_prison_free_cell(pool->prison, cell); 434 } 435 436 static void cell_visit_release(struct pool *pool, 437 void (*fn)(void *, struct dm_bio_prison_cell *), 438 void *context, 439 struct dm_bio_prison_cell *cell) 440 { 441 dm_cell_visit_release(pool->prison, fn, context, cell); 442 dm_bio_prison_free_cell(pool->prison, cell); 443 } 444 445 static void cell_release_no_holder(struct pool *pool, 446 struct dm_bio_prison_cell *cell, 447 struct bio_list *bios) 448 { 449 dm_cell_release_no_holder(pool->prison, cell, bios); 450 dm_bio_prison_free_cell(pool->prison, cell); 451 } 452 453 static void cell_error_with_code(struct pool *pool, 454 struct dm_bio_prison_cell *cell, blk_status_t error_code) 455 { 456 dm_cell_error(pool->prison, cell, error_code); 457 dm_bio_prison_free_cell(pool->prison, cell); 458 } 459 460 static blk_status_t get_pool_io_error_code(struct pool *pool) 461 { 462 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 463 } 464 465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 466 { 467 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 468 } 469 470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 471 { 472 cell_error_with_code(pool, cell, 0); 473 } 474 475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 476 { 477 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 478 } 479 480 /*----------------------------------------------------------------*/ 481 482 /* 483 * A global list of pools that uses a struct mapped_device as a key. 484 */ 485 static struct dm_thin_pool_table { 486 struct mutex mutex; 487 struct list_head pools; 488 } dm_thin_pool_table; 489 490 static void pool_table_init(void) 491 { 492 mutex_init(&dm_thin_pool_table.mutex); 493 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 494 } 495 496 static void pool_table_exit(void) 497 { 498 mutex_destroy(&dm_thin_pool_table.mutex); 499 } 500 501 static void __pool_table_insert(struct pool *pool) 502 { 503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 504 list_add(&pool->list, &dm_thin_pool_table.pools); 505 } 506 507 static void __pool_table_remove(struct pool *pool) 508 { 509 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 510 list_del(&pool->list); 511 } 512 513 static struct pool *__pool_table_lookup(struct mapped_device *md) 514 { 515 struct pool *pool = NULL, *tmp; 516 517 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 518 519 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 520 if (tmp->pool_md == md) { 521 pool = tmp; 522 break; 523 } 524 } 525 526 return pool; 527 } 528 529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 530 { 531 struct pool *pool = NULL, *tmp; 532 533 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 534 535 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 536 if (tmp->md_dev == md_dev) { 537 pool = tmp; 538 break; 539 } 540 } 541 542 return pool; 543 } 544 545 /*----------------------------------------------------------------*/ 546 547 struct dm_thin_endio_hook { 548 struct thin_c *tc; 549 struct dm_deferred_entry *shared_read_entry; 550 struct dm_deferred_entry *all_io_entry; 551 struct dm_thin_new_mapping *overwrite_mapping; 552 struct rb_node rb_node; 553 struct dm_bio_prison_cell *cell; 554 }; 555 556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 557 { 558 bio_list_merge(bios, master); 559 bio_list_init(master); 560 } 561 562 static void error_bio_list(struct bio_list *bios, blk_status_t error) 563 { 564 struct bio *bio; 565 566 while ((bio = bio_list_pop(bios))) { 567 bio->bi_status = error; 568 bio_endio(bio); 569 } 570 } 571 572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 573 blk_status_t error) 574 { 575 struct bio_list bios; 576 unsigned long flags; 577 578 bio_list_init(&bios); 579 580 spin_lock_irqsave(&tc->lock, flags); 581 __merge_bio_list(&bios, master); 582 spin_unlock_irqrestore(&tc->lock, flags); 583 584 error_bio_list(&bios, error); 585 } 586 587 static void requeue_deferred_cells(struct thin_c *tc) 588 { 589 struct pool *pool = tc->pool; 590 unsigned long flags; 591 struct list_head cells; 592 struct dm_bio_prison_cell *cell, *tmp; 593 594 INIT_LIST_HEAD(&cells); 595 596 spin_lock_irqsave(&tc->lock, flags); 597 list_splice_init(&tc->deferred_cells, &cells); 598 spin_unlock_irqrestore(&tc->lock, flags); 599 600 list_for_each_entry_safe(cell, tmp, &cells, user_list) 601 cell_requeue(pool, cell); 602 } 603 604 static void requeue_io(struct thin_c *tc) 605 { 606 struct bio_list bios; 607 unsigned long flags; 608 609 bio_list_init(&bios); 610 611 spin_lock_irqsave(&tc->lock, flags); 612 __merge_bio_list(&bios, &tc->deferred_bio_list); 613 __merge_bio_list(&bios, &tc->retry_on_resume_list); 614 spin_unlock_irqrestore(&tc->lock, flags); 615 616 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 617 requeue_deferred_cells(tc); 618 } 619 620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 621 { 622 struct thin_c *tc; 623 624 rcu_read_lock(); 625 list_for_each_entry_rcu(tc, &pool->active_thins, list) 626 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 627 rcu_read_unlock(); 628 } 629 630 static void error_retry_list(struct pool *pool) 631 { 632 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 633 } 634 635 /* 636 * This section of code contains the logic for processing a thin device's IO. 637 * Much of the code depends on pool object resources (lists, workqueues, etc) 638 * but most is exclusively called from the thin target rather than the thin-pool 639 * target. 640 */ 641 642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 643 { 644 struct pool *pool = tc->pool; 645 sector_t block_nr = bio->bi_iter.bi_sector; 646 647 if (block_size_is_power_of_two(pool)) 648 block_nr >>= pool->sectors_per_block_shift; 649 else 650 (void) sector_div(block_nr, pool->sectors_per_block); 651 652 return block_nr; 653 } 654 655 /* 656 * Returns the _complete_ blocks that this bio covers. 657 */ 658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 659 dm_block_t *begin, dm_block_t *end) 660 { 661 struct pool *pool = tc->pool; 662 sector_t b = bio->bi_iter.bi_sector; 663 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 664 665 b += pool->sectors_per_block - 1ull; /* so we round up */ 666 667 if (block_size_is_power_of_two(pool)) { 668 b >>= pool->sectors_per_block_shift; 669 e >>= pool->sectors_per_block_shift; 670 } else { 671 (void) sector_div(b, pool->sectors_per_block); 672 (void) sector_div(e, pool->sectors_per_block); 673 } 674 675 if (e < b) 676 /* Can happen if the bio is within a single block. */ 677 e = b; 678 679 *begin = b; 680 *end = e; 681 } 682 683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 684 { 685 struct pool *pool = tc->pool; 686 sector_t bi_sector = bio->bi_iter.bi_sector; 687 688 bio_set_dev(bio, tc->pool_dev->bdev); 689 if (block_size_is_power_of_two(pool)) 690 bio->bi_iter.bi_sector = 691 (block << pool->sectors_per_block_shift) | 692 (bi_sector & (pool->sectors_per_block - 1)); 693 else 694 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 695 sector_div(bi_sector, pool->sectors_per_block); 696 } 697 698 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 699 { 700 bio_set_dev(bio, tc->origin_dev->bdev); 701 } 702 703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 704 { 705 return op_is_flush(bio->bi_opf) && 706 dm_thin_changed_this_transaction(tc->td); 707 } 708 709 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 710 { 711 struct dm_thin_endio_hook *h; 712 713 if (bio_op(bio) == REQ_OP_DISCARD) 714 return; 715 716 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 717 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 718 } 719 720 static void issue(struct thin_c *tc, struct bio *bio) 721 { 722 struct pool *pool = tc->pool; 723 unsigned long flags; 724 725 if (!bio_triggers_commit(tc, bio)) { 726 generic_make_request(bio); 727 return; 728 } 729 730 /* 731 * Complete bio with an error if earlier I/O caused changes to 732 * the metadata that can't be committed e.g, due to I/O errors 733 * on the metadata device. 734 */ 735 if (dm_thin_aborted_changes(tc->td)) { 736 bio_io_error(bio); 737 return; 738 } 739 740 /* 741 * Batch together any bios that trigger commits and then issue a 742 * single commit for them in process_deferred_bios(). 743 */ 744 spin_lock_irqsave(&pool->lock, flags); 745 bio_list_add(&pool->deferred_flush_bios, bio); 746 spin_unlock_irqrestore(&pool->lock, flags); 747 } 748 749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 750 { 751 remap_to_origin(tc, bio); 752 issue(tc, bio); 753 } 754 755 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 756 dm_block_t block) 757 { 758 remap(tc, bio, block); 759 issue(tc, bio); 760 } 761 762 /*----------------------------------------------------------------*/ 763 764 /* 765 * Bio endio functions. 766 */ 767 struct dm_thin_new_mapping { 768 struct list_head list; 769 770 bool pass_discard:1; 771 bool maybe_shared:1; 772 773 /* 774 * Track quiescing, copying and zeroing preparation actions. When this 775 * counter hits zero the block is prepared and can be inserted into the 776 * btree. 777 */ 778 atomic_t prepare_actions; 779 780 blk_status_t status; 781 struct thin_c *tc; 782 dm_block_t virt_begin, virt_end; 783 dm_block_t data_block; 784 struct dm_bio_prison_cell *cell; 785 786 /* 787 * If the bio covers the whole area of a block then we can avoid 788 * zeroing or copying. Instead this bio is hooked. The bio will 789 * still be in the cell, so care has to be taken to avoid issuing 790 * the bio twice. 791 */ 792 struct bio *bio; 793 bio_end_io_t *saved_bi_end_io; 794 }; 795 796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 797 { 798 struct pool *pool = m->tc->pool; 799 800 if (atomic_dec_and_test(&m->prepare_actions)) { 801 list_add_tail(&m->list, &pool->prepared_mappings); 802 wake_worker(pool); 803 } 804 } 805 806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 807 { 808 unsigned long flags; 809 struct pool *pool = m->tc->pool; 810 811 spin_lock_irqsave(&pool->lock, flags); 812 __complete_mapping_preparation(m); 813 spin_unlock_irqrestore(&pool->lock, flags); 814 } 815 816 static void copy_complete(int read_err, unsigned long write_err, void *context) 817 { 818 struct dm_thin_new_mapping *m = context; 819 820 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 821 complete_mapping_preparation(m); 822 } 823 824 static void overwrite_endio(struct bio *bio) 825 { 826 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 827 struct dm_thin_new_mapping *m = h->overwrite_mapping; 828 829 bio->bi_end_io = m->saved_bi_end_io; 830 831 m->status = bio->bi_status; 832 complete_mapping_preparation(m); 833 } 834 835 /*----------------------------------------------------------------*/ 836 837 /* 838 * Workqueue. 839 */ 840 841 /* 842 * Prepared mapping jobs. 843 */ 844 845 /* 846 * This sends the bios in the cell, except the original holder, back 847 * to the deferred_bios list. 848 */ 849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 850 { 851 struct pool *pool = tc->pool; 852 unsigned long flags; 853 854 spin_lock_irqsave(&tc->lock, flags); 855 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 856 spin_unlock_irqrestore(&tc->lock, flags); 857 858 wake_worker(pool); 859 } 860 861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 862 863 struct remap_info { 864 struct thin_c *tc; 865 struct bio_list defer_bios; 866 struct bio_list issue_bios; 867 }; 868 869 static void __inc_remap_and_issue_cell(void *context, 870 struct dm_bio_prison_cell *cell) 871 { 872 struct remap_info *info = context; 873 struct bio *bio; 874 875 while ((bio = bio_list_pop(&cell->bios))) { 876 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 877 bio_list_add(&info->defer_bios, bio); 878 else { 879 inc_all_io_entry(info->tc->pool, bio); 880 881 /* 882 * We can't issue the bios with the bio prison lock 883 * held, so we add them to a list to issue on 884 * return from this function. 885 */ 886 bio_list_add(&info->issue_bios, bio); 887 } 888 } 889 } 890 891 static void inc_remap_and_issue_cell(struct thin_c *tc, 892 struct dm_bio_prison_cell *cell, 893 dm_block_t block) 894 { 895 struct bio *bio; 896 struct remap_info info; 897 898 info.tc = tc; 899 bio_list_init(&info.defer_bios); 900 bio_list_init(&info.issue_bios); 901 902 /* 903 * We have to be careful to inc any bios we're about to issue 904 * before the cell is released, and avoid a race with new bios 905 * being added to the cell. 906 */ 907 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 908 &info, cell); 909 910 while ((bio = bio_list_pop(&info.defer_bios))) 911 thin_defer_bio(tc, bio); 912 913 while ((bio = bio_list_pop(&info.issue_bios))) 914 remap_and_issue(info.tc, bio, block); 915 } 916 917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 918 { 919 cell_error(m->tc->pool, m->cell); 920 list_del(&m->list); 921 mempool_free(m, &m->tc->pool->mapping_pool); 922 } 923 924 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 925 { 926 struct thin_c *tc = m->tc; 927 struct pool *pool = tc->pool; 928 struct bio *bio = m->bio; 929 int r; 930 931 if (m->status) { 932 cell_error(pool, m->cell); 933 goto out; 934 } 935 936 /* 937 * Commit the prepared block into the mapping btree. 938 * Any I/O for this block arriving after this point will get 939 * remapped to it directly. 940 */ 941 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 942 if (r) { 943 metadata_operation_failed(pool, "dm_thin_insert_block", r); 944 cell_error(pool, m->cell); 945 goto out; 946 } 947 948 /* 949 * Release any bios held while the block was being provisioned. 950 * If we are processing a write bio that completely covers the block, 951 * we already processed it so can ignore it now when processing 952 * the bios in the cell. 953 */ 954 if (bio) { 955 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 956 bio_endio(bio); 957 } else { 958 inc_all_io_entry(tc->pool, m->cell->holder); 959 remap_and_issue(tc, m->cell->holder, m->data_block); 960 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 961 } 962 963 out: 964 list_del(&m->list); 965 mempool_free(m, &pool->mapping_pool); 966 } 967 968 /*----------------------------------------------------------------*/ 969 970 static void free_discard_mapping(struct dm_thin_new_mapping *m) 971 { 972 struct thin_c *tc = m->tc; 973 if (m->cell) 974 cell_defer_no_holder(tc, m->cell); 975 mempool_free(m, &tc->pool->mapping_pool); 976 } 977 978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 979 { 980 bio_io_error(m->bio); 981 free_discard_mapping(m); 982 } 983 984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 985 { 986 bio_endio(m->bio); 987 free_discard_mapping(m); 988 } 989 990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 991 { 992 int r; 993 struct thin_c *tc = m->tc; 994 995 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 996 if (r) { 997 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 998 bio_io_error(m->bio); 999 } else 1000 bio_endio(m->bio); 1001 1002 cell_defer_no_holder(tc, m->cell); 1003 mempool_free(m, &tc->pool->mapping_pool); 1004 } 1005 1006 /*----------------------------------------------------------------*/ 1007 1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1009 struct bio *discard_parent) 1010 { 1011 /* 1012 * We've already unmapped this range of blocks, but before we 1013 * passdown we have to check that these blocks are now unused. 1014 */ 1015 int r = 0; 1016 bool used = true; 1017 struct thin_c *tc = m->tc; 1018 struct pool *pool = tc->pool; 1019 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1020 struct discard_op op; 1021 1022 begin_discard(&op, tc, discard_parent); 1023 while (b != end) { 1024 /* find start of unmapped run */ 1025 for (; b < end; b++) { 1026 r = dm_pool_block_is_used(pool->pmd, b, &used); 1027 if (r) 1028 goto out; 1029 1030 if (!used) 1031 break; 1032 } 1033 1034 if (b == end) 1035 break; 1036 1037 /* find end of run */ 1038 for (e = b + 1; e != end; e++) { 1039 r = dm_pool_block_is_used(pool->pmd, e, &used); 1040 if (r) 1041 goto out; 1042 1043 if (used) 1044 break; 1045 } 1046 1047 r = issue_discard(&op, b, e); 1048 if (r) 1049 goto out; 1050 1051 b = e; 1052 } 1053 out: 1054 end_discard(&op, r); 1055 } 1056 1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1058 { 1059 unsigned long flags; 1060 struct pool *pool = m->tc->pool; 1061 1062 spin_lock_irqsave(&pool->lock, flags); 1063 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1064 spin_unlock_irqrestore(&pool->lock, flags); 1065 wake_worker(pool); 1066 } 1067 1068 static void passdown_endio(struct bio *bio) 1069 { 1070 /* 1071 * It doesn't matter if the passdown discard failed, we still want 1072 * to unmap (we ignore err). 1073 */ 1074 queue_passdown_pt2(bio->bi_private); 1075 bio_put(bio); 1076 } 1077 1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1079 { 1080 int r; 1081 struct thin_c *tc = m->tc; 1082 struct pool *pool = tc->pool; 1083 struct bio *discard_parent; 1084 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1085 1086 /* 1087 * Only this thread allocates blocks, so we can be sure that the 1088 * newly unmapped blocks will not be allocated before the end of 1089 * the function. 1090 */ 1091 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1092 if (r) { 1093 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1094 bio_io_error(m->bio); 1095 cell_defer_no_holder(tc, m->cell); 1096 mempool_free(m, &pool->mapping_pool); 1097 return; 1098 } 1099 1100 /* 1101 * Increment the unmapped blocks. This prevents a race between the 1102 * passdown io and reallocation of freed blocks. 1103 */ 1104 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1105 if (r) { 1106 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1107 bio_io_error(m->bio); 1108 cell_defer_no_holder(tc, m->cell); 1109 mempool_free(m, &pool->mapping_pool); 1110 return; 1111 } 1112 1113 discard_parent = bio_alloc(GFP_NOIO, 1); 1114 if (!discard_parent) { 1115 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1116 dm_device_name(tc->pool->pool_md)); 1117 queue_passdown_pt2(m); 1118 1119 } else { 1120 discard_parent->bi_end_io = passdown_endio; 1121 discard_parent->bi_private = m; 1122 1123 if (m->maybe_shared) 1124 passdown_double_checking_shared_status(m, discard_parent); 1125 else { 1126 struct discard_op op; 1127 1128 begin_discard(&op, tc, discard_parent); 1129 r = issue_discard(&op, m->data_block, data_end); 1130 end_discard(&op, r); 1131 } 1132 } 1133 } 1134 1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1136 { 1137 int r; 1138 struct thin_c *tc = m->tc; 1139 struct pool *pool = tc->pool; 1140 1141 /* 1142 * The passdown has completed, so now we can decrement all those 1143 * unmapped blocks. 1144 */ 1145 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1146 m->data_block + (m->virt_end - m->virt_begin)); 1147 if (r) { 1148 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1149 bio_io_error(m->bio); 1150 } else 1151 bio_endio(m->bio); 1152 1153 cell_defer_no_holder(tc, m->cell); 1154 mempool_free(m, &pool->mapping_pool); 1155 } 1156 1157 static void process_prepared(struct pool *pool, struct list_head *head, 1158 process_mapping_fn *fn) 1159 { 1160 unsigned long flags; 1161 struct list_head maps; 1162 struct dm_thin_new_mapping *m, *tmp; 1163 1164 INIT_LIST_HEAD(&maps); 1165 spin_lock_irqsave(&pool->lock, flags); 1166 list_splice_init(head, &maps); 1167 spin_unlock_irqrestore(&pool->lock, flags); 1168 1169 list_for_each_entry_safe(m, tmp, &maps, list) 1170 (*fn)(m); 1171 } 1172 1173 /* 1174 * Deferred bio jobs. 1175 */ 1176 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1177 { 1178 return bio->bi_iter.bi_size == 1179 (pool->sectors_per_block << SECTOR_SHIFT); 1180 } 1181 1182 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1183 { 1184 return (bio_data_dir(bio) == WRITE) && 1185 io_overlaps_block(pool, bio); 1186 } 1187 1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1189 bio_end_io_t *fn) 1190 { 1191 *save = bio->bi_end_io; 1192 bio->bi_end_io = fn; 1193 } 1194 1195 static int ensure_next_mapping(struct pool *pool) 1196 { 1197 if (pool->next_mapping) 1198 return 0; 1199 1200 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1201 1202 return pool->next_mapping ? 0 : -ENOMEM; 1203 } 1204 1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1206 { 1207 struct dm_thin_new_mapping *m = pool->next_mapping; 1208 1209 BUG_ON(!pool->next_mapping); 1210 1211 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1212 INIT_LIST_HEAD(&m->list); 1213 m->bio = NULL; 1214 1215 pool->next_mapping = NULL; 1216 1217 return m; 1218 } 1219 1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1221 sector_t begin, sector_t end) 1222 { 1223 int r; 1224 struct dm_io_region to; 1225 1226 to.bdev = tc->pool_dev->bdev; 1227 to.sector = begin; 1228 to.count = end - begin; 1229 1230 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1231 if (r < 0) { 1232 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1233 copy_complete(1, 1, m); 1234 } 1235 } 1236 1237 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1238 dm_block_t data_begin, 1239 struct dm_thin_new_mapping *m) 1240 { 1241 struct pool *pool = tc->pool; 1242 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1243 1244 h->overwrite_mapping = m; 1245 m->bio = bio; 1246 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1247 inc_all_io_entry(pool, bio); 1248 remap_and_issue(tc, bio, data_begin); 1249 } 1250 1251 /* 1252 * A partial copy also needs to zero the uncopied region. 1253 */ 1254 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1255 struct dm_dev *origin, dm_block_t data_origin, 1256 dm_block_t data_dest, 1257 struct dm_bio_prison_cell *cell, struct bio *bio, 1258 sector_t len) 1259 { 1260 int r; 1261 struct pool *pool = tc->pool; 1262 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1263 1264 m->tc = tc; 1265 m->virt_begin = virt_block; 1266 m->virt_end = virt_block + 1u; 1267 m->data_block = data_dest; 1268 m->cell = cell; 1269 1270 /* 1271 * quiesce action + copy action + an extra reference held for the 1272 * duration of this function (we may need to inc later for a 1273 * partial zero). 1274 */ 1275 atomic_set(&m->prepare_actions, 3); 1276 1277 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1278 complete_mapping_preparation(m); /* already quiesced */ 1279 1280 /* 1281 * IO to pool_dev remaps to the pool target's data_dev. 1282 * 1283 * If the whole block of data is being overwritten, we can issue the 1284 * bio immediately. Otherwise we use kcopyd to clone the data first. 1285 */ 1286 if (io_overwrites_block(pool, bio)) 1287 remap_and_issue_overwrite(tc, bio, data_dest, m); 1288 else { 1289 struct dm_io_region from, to; 1290 1291 from.bdev = origin->bdev; 1292 from.sector = data_origin * pool->sectors_per_block; 1293 from.count = len; 1294 1295 to.bdev = tc->pool_dev->bdev; 1296 to.sector = data_dest * pool->sectors_per_block; 1297 to.count = len; 1298 1299 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1300 0, copy_complete, m); 1301 if (r < 0) { 1302 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1303 copy_complete(1, 1, m); 1304 1305 /* 1306 * We allow the zero to be issued, to simplify the 1307 * error path. Otherwise we'd need to start 1308 * worrying about decrementing the prepare_actions 1309 * counter. 1310 */ 1311 } 1312 1313 /* 1314 * Do we need to zero a tail region? 1315 */ 1316 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1317 atomic_inc(&m->prepare_actions); 1318 ll_zero(tc, m, 1319 data_dest * pool->sectors_per_block + len, 1320 (data_dest + 1) * pool->sectors_per_block); 1321 } 1322 } 1323 1324 complete_mapping_preparation(m); /* drop our ref */ 1325 } 1326 1327 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1328 dm_block_t data_origin, dm_block_t data_dest, 1329 struct dm_bio_prison_cell *cell, struct bio *bio) 1330 { 1331 schedule_copy(tc, virt_block, tc->pool_dev, 1332 data_origin, data_dest, cell, bio, 1333 tc->pool->sectors_per_block); 1334 } 1335 1336 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1337 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1338 struct bio *bio) 1339 { 1340 struct pool *pool = tc->pool; 1341 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1342 1343 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1344 m->tc = tc; 1345 m->virt_begin = virt_block; 1346 m->virt_end = virt_block + 1u; 1347 m->data_block = data_block; 1348 m->cell = cell; 1349 1350 /* 1351 * If the whole block of data is being overwritten or we are not 1352 * zeroing pre-existing data, we can issue the bio immediately. 1353 * Otherwise we use kcopyd to zero the data first. 1354 */ 1355 if (pool->pf.zero_new_blocks) { 1356 if (io_overwrites_block(pool, bio)) 1357 remap_and_issue_overwrite(tc, bio, data_block, m); 1358 else 1359 ll_zero(tc, m, data_block * pool->sectors_per_block, 1360 (data_block + 1) * pool->sectors_per_block); 1361 } else 1362 process_prepared_mapping(m); 1363 } 1364 1365 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1366 dm_block_t data_dest, 1367 struct dm_bio_prison_cell *cell, struct bio *bio) 1368 { 1369 struct pool *pool = tc->pool; 1370 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1371 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1372 1373 if (virt_block_end <= tc->origin_size) 1374 schedule_copy(tc, virt_block, tc->origin_dev, 1375 virt_block, data_dest, cell, bio, 1376 pool->sectors_per_block); 1377 1378 else if (virt_block_begin < tc->origin_size) 1379 schedule_copy(tc, virt_block, tc->origin_dev, 1380 virt_block, data_dest, cell, bio, 1381 tc->origin_size - virt_block_begin); 1382 1383 else 1384 schedule_zero(tc, virt_block, data_dest, cell, bio); 1385 } 1386 1387 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1388 1389 static void requeue_bios(struct pool *pool); 1390 1391 static void check_for_space(struct pool *pool) 1392 { 1393 int r; 1394 dm_block_t nr_free; 1395 1396 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1397 return; 1398 1399 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1400 if (r) 1401 return; 1402 1403 if (nr_free) { 1404 set_pool_mode(pool, PM_WRITE); 1405 requeue_bios(pool); 1406 } 1407 } 1408 1409 /* 1410 * A non-zero return indicates read_only or fail_io mode. 1411 * Many callers don't care about the return value. 1412 */ 1413 static int commit(struct pool *pool) 1414 { 1415 int r; 1416 1417 if (get_pool_mode(pool) >= PM_READ_ONLY) 1418 return -EINVAL; 1419 1420 r = dm_pool_commit_metadata(pool->pmd); 1421 if (r) 1422 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1423 else 1424 check_for_space(pool); 1425 1426 return r; 1427 } 1428 1429 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1430 { 1431 unsigned long flags; 1432 1433 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1434 DMWARN("%s: reached low water mark for data device: sending event.", 1435 dm_device_name(pool->pool_md)); 1436 spin_lock_irqsave(&pool->lock, flags); 1437 pool->low_water_triggered = true; 1438 spin_unlock_irqrestore(&pool->lock, flags); 1439 dm_table_event(pool->ti->table); 1440 } 1441 } 1442 1443 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1444 { 1445 int r; 1446 dm_block_t free_blocks; 1447 struct pool *pool = tc->pool; 1448 1449 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1450 return -EINVAL; 1451 1452 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1453 if (r) { 1454 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1455 return r; 1456 } 1457 1458 check_low_water_mark(pool, free_blocks); 1459 1460 if (!free_blocks) { 1461 /* 1462 * Try to commit to see if that will free up some 1463 * more space. 1464 */ 1465 r = commit(pool); 1466 if (r) 1467 return r; 1468 1469 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1470 if (r) { 1471 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1472 return r; 1473 } 1474 1475 if (!free_blocks) { 1476 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1477 return -ENOSPC; 1478 } 1479 } 1480 1481 r = dm_pool_alloc_data_block(pool->pmd, result); 1482 if (r) { 1483 if (r == -ENOSPC) 1484 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1485 else 1486 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1487 return r; 1488 } 1489 1490 return 0; 1491 } 1492 1493 /* 1494 * If we have run out of space, queue bios until the device is 1495 * resumed, presumably after having been reloaded with more space. 1496 */ 1497 static void retry_on_resume(struct bio *bio) 1498 { 1499 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1500 struct thin_c *tc = h->tc; 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&tc->lock, flags); 1504 bio_list_add(&tc->retry_on_resume_list, bio); 1505 spin_unlock_irqrestore(&tc->lock, flags); 1506 } 1507 1508 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1509 { 1510 enum pool_mode m = get_pool_mode(pool); 1511 1512 switch (m) { 1513 case PM_WRITE: 1514 /* Shouldn't get here */ 1515 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1516 return BLK_STS_IOERR; 1517 1518 case PM_OUT_OF_DATA_SPACE: 1519 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1520 1521 case PM_READ_ONLY: 1522 case PM_FAIL: 1523 return BLK_STS_IOERR; 1524 default: 1525 /* Shouldn't get here */ 1526 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1527 return BLK_STS_IOERR; 1528 } 1529 } 1530 1531 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1532 { 1533 blk_status_t error = should_error_unserviceable_bio(pool); 1534 1535 if (error) { 1536 bio->bi_status = error; 1537 bio_endio(bio); 1538 } else 1539 retry_on_resume(bio); 1540 } 1541 1542 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1543 { 1544 struct bio *bio; 1545 struct bio_list bios; 1546 blk_status_t error; 1547 1548 error = should_error_unserviceable_bio(pool); 1549 if (error) { 1550 cell_error_with_code(pool, cell, error); 1551 return; 1552 } 1553 1554 bio_list_init(&bios); 1555 cell_release(pool, cell, &bios); 1556 1557 while ((bio = bio_list_pop(&bios))) 1558 retry_on_resume(bio); 1559 } 1560 1561 static void process_discard_cell_no_passdown(struct thin_c *tc, 1562 struct dm_bio_prison_cell *virt_cell) 1563 { 1564 struct pool *pool = tc->pool; 1565 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1566 1567 /* 1568 * We don't need to lock the data blocks, since there's no 1569 * passdown. We only lock data blocks for allocation and breaking sharing. 1570 */ 1571 m->tc = tc; 1572 m->virt_begin = virt_cell->key.block_begin; 1573 m->virt_end = virt_cell->key.block_end; 1574 m->cell = virt_cell; 1575 m->bio = virt_cell->holder; 1576 1577 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1578 pool->process_prepared_discard(m); 1579 } 1580 1581 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1582 struct bio *bio) 1583 { 1584 struct pool *pool = tc->pool; 1585 1586 int r; 1587 bool maybe_shared; 1588 struct dm_cell_key data_key; 1589 struct dm_bio_prison_cell *data_cell; 1590 struct dm_thin_new_mapping *m; 1591 dm_block_t virt_begin, virt_end, data_begin; 1592 1593 while (begin != end) { 1594 r = ensure_next_mapping(pool); 1595 if (r) 1596 /* we did our best */ 1597 return; 1598 1599 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1600 &data_begin, &maybe_shared); 1601 if (r) 1602 /* 1603 * Silently fail, letting any mappings we've 1604 * created complete. 1605 */ 1606 break; 1607 1608 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1609 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1610 /* contention, we'll give up with this range */ 1611 begin = virt_end; 1612 continue; 1613 } 1614 1615 /* 1616 * IO may still be going to the destination block. We must 1617 * quiesce before we can do the removal. 1618 */ 1619 m = get_next_mapping(pool); 1620 m->tc = tc; 1621 m->maybe_shared = maybe_shared; 1622 m->virt_begin = virt_begin; 1623 m->virt_end = virt_end; 1624 m->data_block = data_begin; 1625 m->cell = data_cell; 1626 m->bio = bio; 1627 1628 /* 1629 * The parent bio must not complete before sub discard bios are 1630 * chained to it (see end_discard's bio_chain)! 1631 * 1632 * This per-mapping bi_remaining increment is paired with 1633 * the implicit decrement that occurs via bio_endio() in 1634 * end_discard(). 1635 */ 1636 bio_inc_remaining(bio); 1637 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1638 pool->process_prepared_discard(m); 1639 1640 begin = virt_end; 1641 } 1642 } 1643 1644 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1645 { 1646 struct bio *bio = virt_cell->holder; 1647 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1648 1649 /* 1650 * The virt_cell will only get freed once the origin bio completes. 1651 * This means it will remain locked while all the individual 1652 * passdown bios are in flight. 1653 */ 1654 h->cell = virt_cell; 1655 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1656 1657 /* 1658 * We complete the bio now, knowing that the bi_remaining field 1659 * will prevent completion until the sub range discards have 1660 * completed. 1661 */ 1662 bio_endio(bio); 1663 } 1664 1665 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1666 { 1667 dm_block_t begin, end; 1668 struct dm_cell_key virt_key; 1669 struct dm_bio_prison_cell *virt_cell; 1670 1671 get_bio_block_range(tc, bio, &begin, &end); 1672 if (begin == end) { 1673 /* 1674 * The discard covers less than a block. 1675 */ 1676 bio_endio(bio); 1677 return; 1678 } 1679 1680 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1681 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1682 /* 1683 * Potential starvation issue: We're relying on the 1684 * fs/application being well behaved, and not trying to 1685 * send IO to a region at the same time as discarding it. 1686 * If they do this persistently then it's possible this 1687 * cell will never be granted. 1688 */ 1689 return; 1690 1691 tc->pool->process_discard_cell(tc, virt_cell); 1692 } 1693 1694 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1695 struct dm_cell_key *key, 1696 struct dm_thin_lookup_result *lookup_result, 1697 struct dm_bio_prison_cell *cell) 1698 { 1699 int r; 1700 dm_block_t data_block; 1701 struct pool *pool = tc->pool; 1702 1703 r = alloc_data_block(tc, &data_block); 1704 switch (r) { 1705 case 0: 1706 schedule_internal_copy(tc, block, lookup_result->block, 1707 data_block, cell, bio); 1708 break; 1709 1710 case -ENOSPC: 1711 retry_bios_on_resume(pool, cell); 1712 break; 1713 1714 default: 1715 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1716 __func__, r); 1717 cell_error(pool, cell); 1718 break; 1719 } 1720 } 1721 1722 static void __remap_and_issue_shared_cell(void *context, 1723 struct dm_bio_prison_cell *cell) 1724 { 1725 struct remap_info *info = context; 1726 struct bio *bio; 1727 1728 while ((bio = bio_list_pop(&cell->bios))) { 1729 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1730 bio_op(bio) == REQ_OP_DISCARD) 1731 bio_list_add(&info->defer_bios, bio); 1732 else { 1733 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1734 1735 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1736 inc_all_io_entry(info->tc->pool, bio); 1737 bio_list_add(&info->issue_bios, bio); 1738 } 1739 } 1740 } 1741 1742 static void remap_and_issue_shared_cell(struct thin_c *tc, 1743 struct dm_bio_prison_cell *cell, 1744 dm_block_t block) 1745 { 1746 struct bio *bio; 1747 struct remap_info info; 1748 1749 info.tc = tc; 1750 bio_list_init(&info.defer_bios); 1751 bio_list_init(&info.issue_bios); 1752 1753 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1754 &info, cell); 1755 1756 while ((bio = bio_list_pop(&info.defer_bios))) 1757 thin_defer_bio(tc, bio); 1758 1759 while ((bio = bio_list_pop(&info.issue_bios))) 1760 remap_and_issue(tc, bio, block); 1761 } 1762 1763 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1764 dm_block_t block, 1765 struct dm_thin_lookup_result *lookup_result, 1766 struct dm_bio_prison_cell *virt_cell) 1767 { 1768 struct dm_bio_prison_cell *data_cell; 1769 struct pool *pool = tc->pool; 1770 struct dm_cell_key key; 1771 1772 /* 1773 * If cell is already occupied, then sharing is already in the process 1774 * of being broken so we have nothing further to do here. 1775 */ 1776 build_data_key(tc->td, lookup_result->block, &key); 1777 if (bio_detain(pool, &key, bio, &data_cell)) { 1778 cell_defer_no_holder(tc, virt_cell); 1779 return; 1780 } 1781 1782 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1783 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1784 cell_defer_no_holder(tc, virt_cell); 1785 } else { 1786 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1787 1788 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1789 inc_all_io_entry(pool, bio); 1790 remap_and_issue(tc, bio, lookup_result->block); 1791 1792 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1793 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1794 } 1795 } 1796 1797 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1798 struct dm_bio_prison_cell *cell) 1799 { 1800 int r; 1801 dm_block_t data_block; 1802 struct pool *pool = tc->pool; 1803 1804 /* 1805 * Remap empty bios (flushes) immediately, without provisioning. 1806 */ 1807 if (!bio->bi_iter.bi_size) { 1808 inc_all_io_entry(pool, bio); 1809 cell_defer_no_holder(tc, cell); 1810 1811 remap_and_issue(tc, bio, 0); 1812 return; 1813 } 1814 1815 /* 1816 * Fill read bios with zeroes and complete them immediately. 1817 */ 1818 if (bio_data_dir(bio) == READ) { 1819 zero_fill_bio(bio); 1820 cell_defer_no_holder(tc, cell); 1821 bio_endio(bio); 1822 return; 1823 } 1824 1825 r = alloc_data_block(tc, &data_block); 1826 switch (r) { 1827 case 0: 1828 if (tc->origin_dev) 1829 schedule_external_copy(tc, block, data_block, cell, bio); 1830 else 1831 schedule_zero(tc, block, data_block, cell, bio); 1832 break; 1833 1834 case -ENOSPC: 1835 retry_bios_on_resume(pool, cell); 1836 break; 1837 1838 default: 1839 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1840 __func__, r); 1841 cell_error(pool, cell); 1842 break; 1843 } 1844 } 1845 1846 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1847 { 1848 int r; 1849 struct pool *pool = tc->pool; 1850 struct bio *bio = cell->holder; 1851 dm_block_t block = get_bio_block(tc, bio); 1852 struct dm_thin_lookup_result lookup_result; 1853 1854 if (tc->requeue_mode) { 1855 cell_requeue(pool, cell); 1856 return; 1857 } 1858 1859 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1860 switch (r) { 1861 case 0: 1862 if (lookup_result.shared) 1863 process_shared_bio(tc, bio, block, &lookup_result, cell); 1864 else { 1865 inc_all_io_entry(pool, bio); 1866 remap_and_issue(tc, bio, lookup_result.block); 1867 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1868 } 1869 break; 1870 1871 case -ENODATA: 1872 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1873 inc_all_io_entry(pool, bio); 1874 cell_defer_no_holder(tc, cell); 1875 1876 if (bio_end_sector(bio) <= tc->origin_size) 1877 remap_to_origin_and_issue(tc, bio); 1878 1879 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1880 zero_fill_bio(bio); 1881 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1882 remap_to_origin_and_issue(tc, bio); 1883 1884 } else { 1885 zero_fill_bio(bio); 1886 bio_endio(bio); 1887 } 1888 } else 1889 provision_block(tc, bio, block, cell); 1890 break; 1891 1892 default: 1893 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1894 __func__, r); 1895 cell_defer_no_holder(tc, cell); 1896 bio_io_error(bio); 1897 break; 1898 } 1899 } 1900 1901 static void process_bio(struct thin_c *tc, struct bio *bio) 1902 { 1903 struct pool *pool = tc->pool; 1904 dm_block_t block = get_bio_block(tc, bio); 1905 struct dm_bio_prison_cell *cell; 1906 struct dm_cell_key key; 1907 1908 /* 1909 * If cell is already occupied, then the block is already 1910 * being provisioned so we have nothing further to do here. 1911 */ 1912 build_virtual_key(tc->td, block, &key); 1913 if (bio_detain(pool, &key, bio, &cell)) 1914 return; 1915 1916 process_cell(tc, cell); 1917 } 1918 1919 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1920 struct dm_bio_prison_cell *cell) 1921 { 1922 int r; 1923 int rw = bio_data_dir(bio); 1924 dm_block_t block = get_bio_block(tc, bio); 1925 struct dm_thin_lookup_result lookup_result; 1926 1927 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1928 switch (r) { 1929 case 0: 1930 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1931 handle_unserviceable_bio(tc->pool, bio); 1932 if (cell) 1933 cell_defer_no_holder(tc, cell); 1934 } else { 1935 inc_all_io_entry(tc->pool, bio); 1936 remap_and_issue(tc, bio, lookup_result.block); 1937 if (cell) 1938 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1939 } 1940 break; 1941 1942 case -ENODATA: 1943 if (cell) 1944 cell_defer_no_holder(tc, cell); 1945 if (rw != READ) { 1946 handle_unserviceable_bio(tc->pool, bio); 1947 break; 1948 } 1949 1950 if (tc->origin_dev) { 1951 inc_all_io_entry(tc->pool, bio); 1952 remap_to_origin_and_issue(tc, bio); 1953 break; 1954 } 1955 1956 zero_fill_bio(bio); 1957 bio_endio(bio); 1958 break; 1959 1960 default: 1961 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1962 __func__, r); 1963 if (cell) 1964 cell_defer_no_holder(tc, cell); 1965 bio_io_error(bio); 1966 break; 1967 } 1968 } 1969 1970 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1971 { 1972 __process_bio_read_only(tc, bio, NULL); 1973 } 1974 1975 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1976 { 1977 __process_bio_read_only(tc, cell->holder, cell); 1978 } 1979 1980 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1981 { 1982 bio_endio(bio); 1983 } 1984 1985 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1986 { 1987 bio_io_error(bio); 1988 } 1989 1990 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1991 { 1992 cell_success(tc->pool, cell); 1993 } 1994 1995 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1996 { 1997 cell_error(tc->pool, cell); 1998 } 1999 2000 /* 2001 * FIXME: should we also commit due to size of transaction, measured in 2002 * metadata blocks? 2003 */ 2004 static int need_commit_due_to_time(struct pool *pool) 2005 { 2006 return !time_in_range(jiffies, pool->last_commit_jiffies, 2007 pool->last_commit_jiffies + COMMIT_PERIOD); 2008 } 2009 2010 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2011 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2012 2013 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2014 { 2015 struct rb_node **rbp, *parent; 2016 struct dm_thin_endio_hook *pbd; 2017 sector_t bi_sector = bio->bi_iter.bi_sector; 2018 2019 rbp = &tc->sort_bio_list.rb_node; 2020 parent = NULL; 2021 while (*rbp) { 2022 parent = *rbp; 2023 pbd = thin_pbd(parent); 2024 2025 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2026 rbp = &(*rbp)->rb_left; 2027 else 2028 rbp = &(*rbp)->rb_right; 2029 } 2030 2031 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2032 rb_link_node(&pbd->rb_node, parent, rbp); 2033 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2034 } 2035 2036 static void __extract_sorted_bios(struct thin_c *tc) 2037 { 2038 struct rb_node *node; 2039 struct dm_thin_endio_hook *pbd; 2040 struct bio *bio; 2041 2042 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2043 pbd = thin_pbd(node); 2044 bio = thin_bio(pbd); 2045 2046 bio_list_add(&tc->deferred_bio_list, bio); 2047 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2048 } 2049 2050 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2051 } 2052 2053 static void __sort_thin_deferred_bios(struct thin_c *tc) 2054 { 2055 struct bio *bio; 2056 struct bio_list bios; 2057 2058 bio_list_init(&bios); 2059 bio_list_merge(&bios, &tc->deferred_bio_list); 2060 bio_list_init(&tc->deferred_bio_list); 2061 2062 /* Sort deferred_bio_list using rb-tree */ 2063 while ((bio = bio_list_pop(&bios))) 2064 __thin_bio_rb_add(tc, bio); 2065 2066 /* 2067 * Transfer the sorted bios in sort_bio_list back to 2068 * deferred_bio_list to allow lockless submission of 2069 * all bios. 2070 */ 2071 __extract_sorted_bios(tc); 2072 } 2073 2074 static void process_thin_deferred_bios(struct thin_c *tc) 2075 { 2076 struct pool *pool = tc->pool; 2077 unsigned long flags; 2078 struct bio *bio; 2079 struct bio_list bios; 2080 struct blk_plug plug; 2081 unsigned count = 0; 2082 2083 if (tc->requeue_mode) { 2084 error_thin_bio_list(tc, &tc->deferred_bio_list, 2085 BLK_STS_DM_REQUEUE); 2086 return; 2087 } 2088 2089 bio_list_init(&bios); 2090 2091 spin_lock_irqsave(&tc->lock, flags); 2092 2093 if (bio_list_empty(&tc->deferred_bio_list)) { 2094 spin_unlock_irqrestore(&tc->lock, flags); 2095 return; 2096 } 2097 2098 __sort_thin_deferred_bios(tc); 2099 2100 bio_list_merge(&bios, &tc->deferred_bio_list); 2101 bio_list_init(&tc->deferred_bio_list); 2102 2103 spin_unlock_irqrestore(&tc->lock, flags); 2104 2105 blk_start_plug(&plug); 2106 while ((bio = bio_list_pop(&bios))) { 2107 /* 2108 * If we've got no free new_mapping structs, and processing 2109 * this bio might require one, we pause until there are some 2110 * prepared mappings to process. 2111 */ 2112 if (ensure_next_mapping(pool)) { 2113 spin_lock_irqsave(&tc->lock, flags); 2114 bio_list_add(&tc->deferred_bio_list, bio); 2115 bio_list_merge(&tc->deferred_bio_list, &bios); 2116 spin_unlock_irqrestore(&tc->lock, flags); 2117 break; 2118 } 2119 2120 if (bio_op(bio) == REQ_OP_DISCARD) 2121 pool->process_discard(tc, bio); 2122 else 2123 pool->process_bio(tc, bio); 2124 2125 if ((count++ & 127) == 0) { 2126 throttle_work_update(&pool->throttle); 2127 dm_pool_issue_prefetches(pool->pmd); 2128 } 2129 } 2130 blk_finish_plug(&plug); 2131 } 2132 2133 static int cmp_cells(const void *lhs, const void *rhs) 2134 { 2135 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2136 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2137 2138 BUG_ON(!lhs_cell->holder); 2139 BUG_ON(!rhs_cell->holder); 2140 2141 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2142 return -1; 2143 2144 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2145 return 1; 2146 2147 return 0; 2148 } 2149 2150 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2151 { 2152 unsigned count = 0; 2153 struct dm_bio_prison_cell *cell, *tmp; 2154 2155 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2156 if (count >= CELL_SORT_ARRAY_SIZE) 2157 break; 2158 2159 pool->cell_sort_array[count++] = cell; 2160 list_del(&cell->user_list); 2161 } 2162 2163 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2164 2165 return count; 2166 } 2167 2168 static void process_thin_deferred_cells(struct thin_c *tc) 2169 { 2170 struct pool *pool = tc->pool; 2171 unsigned long flags; 2172 struct list_head cells; 2173 struct dm_bio_prison_cell *cell; 2174 unsigned i, j, count; 2175 2176 INIT_LIST_HEAD(&cells); 2177 2178 spin_lock_irqsave(&tc->lock, flags); 2179 list_splice_init(&tc->deferred_cells, &cells); 2180 spin_unlock_irqrestore(&tc->lock, flags); 2181 2182 if (list_empty(&cells)) 2183 return; 2184 2185 do { 2186 count = sort_cells(tc->pool, &cells); 2187 2188 for (i = 0; i < count; i++) { 2189 cell = pool->cell_sort_array[i]; 2190 BUG_ON(!cell->holder); 2191 2192 /* 2193 * If we've got no free new_mapping structs, and processing 2194 * this bio might require one, we pause until there are some 2195 * prepared mappings to process. 2196 */ 2197 if (ensure_next_mapping(pool)) { 2198 for (j = i; j < count; j++) 2199 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2200 2201 spin_lock_irqsave(&tc->lock, flags); 2202 list_splice(&cells, &tc->deferred_cells); 2203 spin_unlock_irqrestore(&tc->lock, flags); 2204 return; 2205 } 2206 2207 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2208 pool->process_discard_cell(tc, cell); 2209 else 2210 pool->process_cell(tc, cell); 2211 } 2212 } while (!list_empty(&cells)); 2213 } 2214 2215 static void thin_get(struct thin_c *tc); 2216 static void thin_put(struct thin_c *tc); 2217 2218 /* 2219 * We can't hold rcu_read_lock() around code that can block. So we 2220 * find a thin with the rcu lock held; bump a refcount; then drop 2221 * the lock. 2222 */ 2223 static struct thin_c *get_first_thin(struct pool *pool) 2224 { 2225 struct thin_c *tc = NULL; 2226 2227 rcu_read_lock(); 2228 if (!list_empty(&pool->active_thins)) { 2229 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2230 thin_get(tc); 2231 } 2232 rcu_read_unlock(); 2233 2234 return tc; 2235 } 2236 2237 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2238 { 2239 struct thin_c *old_tc = tc; 2240 2241 rcu_read_lock(); 2242 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2243 thin_get(tc); 2244 thin_put(old_tc); 2245 rcu_read_unlock(); 2246 return tc; 2247 } 2248 thin_put(old_tc); 2249 rcu_read_unlock(); 2250 2251 return NULL; 2252 } 2253 2254 static void process_deferred_bios(struct pool *pool) 2255 { 2256 unsigned long flags; 2257 struct bio *bio; 2258 struct bio_list bios; 2259 struct thin_c *tc; 2260 2261 tc = get_first_thin(pool); 2262 while (tc) { 2263 process_thin_deferred_cells(tc); 2264 process_thin_deferred_bios(tc); 2265 tc = get_next_thin(pool, tc); 2266 } 2267 2268 /* 2269 * If there are any deferred flush bios, we must commit 2270 * the metadata before issuing them. 2271 */ 2272 bio_list_init(&bios); 2273 spin_lock_irqsave(&pool->lock, flags); 2274 bio_list_merge(&bios, &pool->deferred_flush_bios); 2275 bio_list_init(&pool->deferred_flush_bios); 2276 spin_unlock_irqrestore(&pool->lock, flags); 2277 2278 if (bio_list_empty(&bios) && 2279 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2280 return; 2281 2282 if (commit(pool)) { 2283 while ((bio = bio_list_pop(&bios))) 2284 bio_io_error(bio); 2285 return; 2286 } 2287 pool->last_commit_jiffies = jiffies; 2288 2289 while ((bio = bio_list_pop(&bios))) 2290 generic_make_request(bio); 2291 } 2292 2293 static void do_worker(struct work_struct *ws) 2294 { 2295 struct pool *pool = container_of(ws, struct pool, worker); 2296 2297 throttle_work_start(&pool->throttle); 2298 dm_pool_issue_prefetches(pool->pmd); 2299 throttle_work_update(&pool->throttle); 2300 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2301 throttle_work_update(&pool->throttle); 2302 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2303 throttle_work_update(&pool->throttle); 2304 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2305 throttle_work_update(&pool->throttle); 2306 process_deferred_bios(pool); 2307 throttle_work_complete(&pool->throttle); 2308 } 2309 2310 /* 2311 * We want to commit periodically so that not too much 2312 * unwritten data builds up. 2313 */ 2314 static void do_waker(struct work_struct *ws) 2315 { 2316 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2317 wake_worker(pool); 2318 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2319 } 2320 2321 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2322 2323 /* 2324 * We're holding onto IO to allow userland time to react. After the 2325 * timeout either the pool will have been resized (and thus back in 2326 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2327 */ 2328 static void do_no_space_timeout(struct work_struct *ws) 2329 { 2330 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2331 no_space_timeout); 2332 2333 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2334 pool->pf.error_if_no_space = true; 2335 notify_of_pool_mode_change_to_oods(pool); 2336 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2337 } 2338 } 2339 2340 /*----------------------------------------------------------------*/ 2341 2342 struct pool_work { 2343 struct work_struct worker; 2344 struct completion complete; 2345 }; 2346 2347 static struct pool_work *to_pool_work(struct work_struct *ws) 2348 { 2349 return container_of(ws, struct pool_work, worker); 2350 } 2351 2352 static void pool_work_complete(struct pool_work *pw) 2353 { 2354 complete(&pw->complete); 2355 } 2356 2357 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2358 void (*fn)(struct work_struct *)) 2359 { 2360 INIT_WORK_ONSTACK(&pw->worker, fn); 2361 init_completion(&pw->complete); 2362 queue_work(pool->wq, &pw->worker); 2363 wait_for_completion(&pw->complete); 2364 } 2365 2366 /*----------------------------------------------------------------*/ 2367 2368 struct noflush_work { 2369 struct pool_work pw; 2370 struct thin_c *tc; 2371 }; 2372 2373 static struct noflush_work *to_noflush(struct work_struct *ws) 2374 { 2375 return container_of(to_pool_work(ws), struct noflush_work, pw); 2376 } 2377 2378 static void do_noflush_start(struct work_struct *ws) 2379 { 2380 struct noflush_work *w = to_noflush(ws); 2381 w->tc->requeue_mode = true; 2382 requeue_io(w->tc); 2383 pool_work_complete(&w->pw); 2384 } 2385 2386 static void do_noflush_stop(struct work_struct *ws) 2387 { 2388 struct noflush_work *w = to_noflush(ws); 2389 w->tc->requeue_mode = false; 2390 pool_work_complete(&w->pw); 2391 } 2392 2393 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2394 { 2395 struct noflush_work w; 2396 2397 w.tc = tc; 2398 pool_work_wait(&w.pw, tc->pool, fn); 2399 } 2400 2401 /*----------------------------------------------------------------*/ 2402 2403 static enum pool_mode get_pool_mode(struct pool *pool) 2404 { 2405 return pool->pf.mode; 2406 } 2407 2408 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2409 { 2410 dm_table_event(pool->ti->table); 2411 DMINFO("%s: switching pool to %s mode", 2412 dm_device_name(pool->pool_md), new_mode); 2413 } 2414 2415 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2416 { 2417 if (!pool->pf.error_if_no_space) 2418 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2419 else 2420 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2421 } 2422 2423 static bool passdown_enabled(struct pool_c *pt) 2424 { 2425 return pt->adjusted_pf.discard_passdown; 2426 } 2427 2428 static void set_discard_callbacks(struct pool *pool) 2429 { 2430 struct pool_c *pt = pool->ti->private; 2431 2432 if (passdown_enabled(pt)) { 2433 pool->process_discard_cell = process_discard_cell_passdown; 2434 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2435 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2436 } else { 2437 pool->process_discard_cell = process_discard_cell_no_passdown; 2438 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2439 } 2440 } 2441 2442 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2443 { 2444 struct pool_c *pt = pool->ti->private; 2445 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2446 enum pool_mode old_mode = get_pool_mode(pool); 2447 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2448 2449 /* 2450 * Never allow the pool to transition to PM_WRITE mode if user 2451 * intervention is required to verify metadata and data consistency. 2452 */ 2453 if (new_mode == PM_WRITE && needs_check) { 2454 DMERR("%s: unable to switch pool to write mode until repaired.", 2455 dm_device_name(pool->pool_md)); 2456 if (old_mode != new_mode) 2457 new_mode = old_mode; 2458 else 2459 new_mode = PM_READ_ONLY; 2460 } 2461 /* 2462 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2463 * not going to recover without a thin_repair. So we never let the 2464 * pool move out of the old mode. 2465 */ 2466 if (old_mode == PM_FAIL) 2467 new_mode = old_mode; 2468 2469 switch (new_mode) { 2470 case PM_FAIL: 2471 if (old_mode != new_mode) 2472 notify_of_pool_mode_change(pool, "failure"); 2473 dm_pool_metadata_read_only(pool->pmd); 2474 pool->process_bio = process_bio_fail; 2475 pool->process_discard = process_bio_fail; 2476 pool->process_cell = process_cell_fail; 2477 pool->process_discard_cell = process_cell_fail; 2478 pool->process_prepared_mapping = process_prepared_mapping_fail; 2479 pool->process_prepared_discard = process_prepared_discard_fail; 2480 2481 error_retry_list(pool); 2482 break; 2483 2484 case PM_READ_ONLY: 2485 if (old_mode != new_mode) 2486 notify_of_pool_mode_change(pool, "read-only"); 2487 dm_pool_metadata_read_only(pool->pmd); 2488 pool->process_bio = process_bio_read_only; 2489 pool->process_discard = process_bio_success; 2490 pool->process_cell = process_cell_read_only; 2491 pool->process_discard_cell = process_cell_success; 2492 pool->process_prepared_mapping = process_prepared_mapping_fail; 2493 pool->process_prepared_discard = process_prepared_discard_success; 2494 2495 error_retry_list(pool); 2496 break; 2497 2498 case PM_OUT_OF_DATA_SPACE: 2499 /* 2500 * Ideally we'd never hit this state; the low water mark 2501 * would trigger userland to extend the pool before we 2502 * completely run out of data space. However, many small 2503 * IOs to unprovisioned space can consume data space at an 2504 * alarming rate. Adjust your low water mark if you're 2505 * frequently seeing this mode. 2506 */ 2507 if (old_mode != new_mode) 2508 notify_of_pool_mode_change_to_oods(pool); 2509 pool->out_of_data_space = true; 2510 pool->process_bio = process_bio_read_only; 2511 pool->process_discard = process_discard_bio; 2512 pool->process_cell = process_cell_read_only; 2513 pool->process_prepared_mapping = process_prepared_mapping; 2514 set_discard_callbacks(pool); 2515 2516 if (!pool->pf.error_if_no_space && no_space_timeout) 2517 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2518 break; 2519 2520 case PM_WRITE: 2521 if (old_mode != new_mode) 2522 notify_of_pool_mode_change(pool, "write"); 2523 pool->out_of_data_space = false; 2524 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2525 dm_pool_metadata_read_write(pool->pmd); 2526 pool->process_bio = process_bio; 2527 pool->process_discard = process_discard_bio; 2528 pool->process_cell = process_cell; 2529 pool->process_prepared_mapping = process_prepared_mapping; 2530 set_discard_callbacks(pool); 2531 break; 2532 } 2533 2534 pool->pf.mode = new_mode; 2535 /* 2536 * The pool mode may have changed, sync it so bind_control_target() 2537 * doesn't cause an unexpected mode transition on resume. 2538 */ 2539 pt->adjusted_pf.mode = new_mode; 2540 } 2541 2542 static void abort_transaction(struct pool *pool) 2543 { 2544 const char *dev_name = dm_device_name(pool->pool_md); 2545 2546 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2547 if (dm_pool_abort_metadata(pool->pmd)) { 2548 DMERR("%s: failed to abort metadata transaction", dev_name); 2549 set_pool_mode(pool, PM_FAIL); 2550 } 2551 2552 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2553 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2554 set_pool_mode(pool, PM_FAIL); 2555 } 2556 } 2557 2558 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2559 { 2560 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2561 dm_device_name(pool->pool_md), op, r); 2562 2563 abort_transaction(pool); 2564 set_pool_mode(pool, PM_READ_ONLY); 2565 } 2566 2567 /*----------------------------------------------------------------*/ 2568 2569 /* 2570 * Mapping functions. 2571 */ 2572 2573 /* 2574 * Called only while mapping a thin bio to hand it over to the workqueue. 2575 */ 2576 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2577 { 2578 unsigned long flags; 2579 struct pool *pool = tc->pool; 2580 2581 spin_lock_irqsave(&tc->lock, flags); 2582 bio_list_add(&tc->deferred_bio_list, bio); 2583 spin_unlock_irqrestore(&tc->lock, flags); 2584 2585 wake_worker(pool); 2586 } 2587 2588 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2589 { 2590 struct pool *pool = tc->pool; 2591 2592 throttle_lock(&pool->throttle); 2593 thin_defer_bio(tc, bio); 2594 throttle_unlock(&pool->throttle); 2595 } 2596 2597 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2598 { 2599 unsigned long flags; 2600 struct pool *pool = tc->pool; 2601 2602 throttle_lock(&pool->throttle); 2603 spin_lock_irqsave(&tc->lock, flags); 2604 list_add_tail(&cell->user_list, &tc->deferred_cells); 2605 spin_unlock_irqrestore(&tc->lock, flags); 2606 throttle_unlock(&pool->throttle); 2607 2608 wake_worker(pool); 2609 } 2610 2611 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2612 { 2613 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2614 2615 h->tc = tc; 2616 h->shared_read_entry = NULL; 2617 h->all_io_entry = NULL; 2618 h->overwrite_mapping = NULL; 2619 h->cell = NULL; 2620 } 2621 2622 /* 2623 * Non-blocking function called from the thin target's map function. 2624 */ 2625 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2626 { 2627 int r; 2628 struct thin_c *tc = ti->private; 2629 dm_block_t block = get_bio_block(tc, bio); 2630 struct dm_thin_device *td = tc->td; 2631 struct dm_thin_lookup_result result; 2632 struct dm_bio_prison_cell *virt_cell, *data_cell; 2633 struct dm_cell_key key; 2634 2635 thin_hook_bio(tc, bio); 2636 2637 if (tc->requeue_mode) { 2638 bio->bi_status = BLK_STS_DM_REQUEUE; 2639 bio_endio(bio); 2640 return DM_MAPIO_SUBMITTED; 2641 } 2642 2643 if (get_pool_mode(tc->pool) == PM_FAIL) { 2644 bio_io_error(bio); 2645 return DM_MAPIO_SUBMITTED; 2646 } 2647 2648 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2649 thin_defer_bio_with_throttle(tc, bio); 2650 return DM_MAPIO_SUBMITTED; 2651 } 2652 2653 /* 2654 * We must hold the virtual cell before doing the lookup, otherwise 2655 * there's a race with discard. 2656 */ 2657 build_virtual_key(tc->td, block, &key); 2658 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2659 return DM_MAPIO_SUBMITTED; 2660 2661 r = dm_thin_find_block(td, block, 0, &result); 2662 2663 /* 2664 * Note that we defer readahead too. 2665 */ 2666 switch (r) { 2667 case 0: 2668 if (unlikely(result.shared)) { 2669 /* 2670 * We have a race condition here between the 2671 * result.shared value returned by the lookup and 2672 * snapshot creation, which may cause new 2673 * sharing. 2674 * 2675 * To avoid this always quiesce the origin before 2676 * taking the snap. You want to do this anyway to 2677 * ensure a consistent application view 2678 * (i.e. lockfs). 2679 * 2680 * More distant ancestors are irrelevant. The 2681 * shared flag will be set in their case. 2682 */ 2683 thin_defer_cell(tc, virt_cell); 2684 return DM_MAPIO_SUBMITTED; 2685 } 2686 2687 build_data_key(tc->td, result.block, &key); 2688 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2689 cell_defer_no_holder(tc, virt_cell); 2690 return DM_MAPIO_SUBMITTED; 2691 } 2692 2693 inc_all_io_entry(tc->pool, bio); 2694 cell_defer_no_holder(tc, data_cell); 2695 cell_defer_no_holder(tc, virt_cell); 2696 2697 remap(tc, bio, result.block); 2698 return DM_MAPIO_REMAPPED; 2699 2700 case -ENODATA: 2701 case -EWOULDBLOCK: 2702 thin_defer_cell(tc, virt_cell); 2703 return DM_MAPIO_SUBMITTED; 2704 2705 default: 2706 /* 2707 * Must always call bio_io_error on failure. 2708 * dm_thin_find_block can fail with -EINVAL if the 2709 * pool is switched to fail-io mode. 2710 */ 2711 bio_io_error(bio); 2712 cell_defer_no_holder(tc, virt_cell); 2713 return DM_MAPIO_SUBMITTED; 2714 } 2715 } 2716 2717 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2718 { 2719 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2720 struct request_queue *q; 2721 2722 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2723 return 1; 2724 2725 q = bdev_get_queue(pt->data_dev->bdev); 2726 return bdi_congested(q->backing_dev_info, bdi_bits); 2727 } 2728 2729 static void requeue_bios(struct pool *pool) 2730 { 2731 unsigned long flags; 2732 struct thin_c *tc; 2733 2734 rcu_read_lock(); 2735 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2736 spin_lock_irqsave(&tc->lock, flags); 2737 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2738 bio_list_init(&tc->retry_on_resume_list); 2739 spin_unlock_irqrestore(&tc->lock, flags); 2740 } 2741 rcu_read_unlock(); 2742 } 2743 2744 /*---------------------------------------------------------------- 2745 * Binding of control targets to a pool object 2746 *--------------------------------------------------------------*/ 2747 static bool data_dev_supports_discard(struct pool_c *pt) 2748 { 2749 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2750 2751 return q && blk_queue_discard(q); 2752 } 2753 2754 static bool is_factor(sector_t block_size, uint32_t n) 2755 { 2756 return !sector_div(block_size, n); 2757 } 2758 2759 /* 2760 * If discard_passdown was enabled verify that the data device 2761 * supports discards. Disable discard_passdown if not. 2762 */ 2763 static void disable_passdown_if_not_supported(struct pool_c *pt) 2764 { 2765 struct pool *pool = pt->pool; 2766 struct block_device *data_bdev = pt->data_dev->bdev; 2767 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2768 const char *reason = NULL; 2769 char buf[BDEVNAME_SIZE]; 2770 2771 if (!pt->adjusted_pf.discard_passdown) 2772 return; 2773 2774 if (!data_dev_supports_discard(pt)) 2775 reason = "discard unsupported"; 2776 2777 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2778 reason = "max discard sectors smaller than a block"; 2779 2780 if (reason) { 2781 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2782 pt->adjusted_pf.discard_passdown = false; 2783 } 2784 } 2785 2786 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2787 { 2788 struct pool_c *pt = ti->private; 2789 2790 /* 2791 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2792 */ 2793 enum pool_mode old_mode = get_pool_mode(pool); 2794 enum pool_mode new_mode = pt->adjusted_pf.mode; 2795 2796 /* 2797 * Don't change the pool's mode until set_pool_mode() below. 2798 * Otherwise the pool's process_* function pointers may 2799 * not match the desired pool mode. 2800 */ 2801 pt->adjusted_pf.mode = old_mode; 2802 2803 pool->ti = ti; 2804 pool->pf = pt->adjusted_pf; 2805 pool->low_water_blocks = pt->low_water_blocks; 2806 2807 set_pool_mode(pool, new_mode); 2808 2809 return 0; 2810 } 2811 2812 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2813 { 2814 if (pool->ti == ti) 2815 pool->ti = NULL; 2816 } 2817 2818 /*---------------------------------------------------------------- 2819 * Pool creation 2820 *--------------------------------------------------------------*/ 2821 /* Initialize pool features. */ 2822 static void pool_features_init(struct pool_features *pf) 2823 { 2824 pf->mode = PM_WRITE; 2825 pf->zero_new_blocks = true; 2826 pf->discard_enabled = true; 2827 pf->discard_passdown = true; 2828 pf->error_if_no_space = false; 2829 } 2830 2831 static void __pool_destroy(struct pool *pool) 2832 { 2833 __pool_table_remove(pool); 2834 2835 vfree(pool->cell_sort_array); 2836 if (dm_pool_metadata_close(pool->pmd) < 0) 2837 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2838 2839 dm_bio_prison_destroy(pool->prison); 2840 dm_kcopyd_client_destroy(pool->copier); 2841 2842 if (pool->wq) 2843 destroy_workqueue(pool->wq); 2844 2845 if (pool->next_mapping) 2846 mempool_free(pool->next_mapping, &pool->mapping_pool); 2847 mempool_exit(&pool->mapping_pool); 2848 dm_deferred_set_destroy(pool->shared_read_ds); 2849 dm_deferred_set_destroy(pool->all_io_ds); 2850 kfree(pool); 2851 } 2852 2853 static struct kmem_cache *_new_mapping_cache; 2854 2855 static struct pool *pool_create(struct mapped_device *pool_md, 2856 struct block_device *metadata_dev, 2857 unsigned long block_size, 2858 int read_only, char **error) 2859 { 2860 int r; 2861 void *err_p; 2862 struct pool *pool; 2863 struct dm_pool_metadata *pmd; 2864 bool format_device = read_only ? false : true; 2865 2866 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2867 if (IS_ERR(pmd)) { 2868 *error = "Error creating metadata object"; 2869 return (struct pool *)pmd; 2870 } 2871 2872 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2873 if (!pool) { 2874 *error = "Error allocating memory for pool"; 2875 err_p = ERR_PTR(-ENOMEM); 2876 goto bad_pool; 2877 } 2878 2879 pool->pmd = pmd; 2880 pool->sectors_per_block = block_size; 2881 if (block_size & (block_size - 1)) 2882 pool->sectors_per_block_shift = -1; 2883 else 2884 pool->sectors_per_block_shift = __ffs(block_size); 2885 pool->low_water_blocks = 0; 2886 pool_features_init(&pool->pf); 2887 pool->prison = dm_bio_prison_create(); 2888 if (!pool->prison) { 2889 *error = "Error creating pool's bio prison"; 2890 err_p = ERR_PTR(-ENOMEM); 2891 goto bad_prison; 2892 } 2893 2894 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2895 if (IS_ERR(pool->copier)) { 2896 r = PTR_ERR(pool->copier); 2897 *error = "Error creating pool's kcopyd client"; 2898 err_p = ERR_PTR(r); 2899 goto bad_kcopyd_client; 2900 } 2901 2902 /* 2903 * Create singlethreaded workqueue that will service all devices 2904 * that use this metadata. 2905 */ 2906 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2907 if (!pool->wq) { 2908 *error = "Error creating pool's workqueue"; 2909 err_p = ERR_PTR(-ENOMEM); 2910 goto bad_wq; 2911 } 2912 2913 throttle_init(&pool->throttle); 2914 INIT_WORK(&pool->worker, do_worker); 2915 INIT_DELAYED_WORK(&pool->waker, do_waker); 2916 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2917 spin_lock_init(&pool->lock); 2918 bio_list_init(&pool->deferred_flush_bios); 2919 INIT_LIST_HEAD(&pool->prepared_mappings); 2920 INIT_LIST_HEAD(&pool->prepared_discards); 2921 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2922 INIT_LIST_HEAD(&pool->active_thins); 2923 pool->low_water_triggered = false; 2924 pool->suspended = true; 2925 pool->out_of_data_space = false; 2926 2927 pool->shared_read_ds = dm_deferred_set_create(); 2928 if (!pool->shared_read_ds) { 2929 *error = "Error creating pool's shared read deferred set"; 2930 err_p = ERR_PTR(-ENOMEM); 2931 goto bad_shared_read_ds; 2932 } 2933 2934 pool->all_io_ds = dm_deferred_set_create(); 2935 if (!pool->all_io_ds) { 2936 *error = "Error creating pool's all io deferred set"; 2937 err_p = ERR_PTR(-ENOMEM); 2938 goto bad_all_io_ds; 2939 } 2940 2941 pool->next_mapping = NULL; 2942 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 2943 _new_mapping_cache); 2944 if (r) { 2945 *error = "Error creating pool's mapping mempool"; 2946 err_p = ERR_PTR(r); 2947 goto bad_mapping_pool; 2948 } 2949 2950 pool->cell_sort_array = 2951 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 2952 sizeof(*pool->cell_sort_array))); 2953 if (!pool->cell_sort_array) { 2954 *error = "Error allocating cell sort array"; 2955 err_p = ERR_PTR(-ENOMEM); 2956 goto bad_sort_array; 2957 } 2958 2959 pool->ref_count = 1; 2960 pool->last_commit_jiffies = jiffies; 2961 pool->pool_md = pool_md; 2962 pool->md_dev = metadata_dev; 2963 __pool_table_insert(pool); 2964 2965 return pool; 2966 2967 bad_sort_array: 2968 mempool_exit(&pool->mapping_pool); 2969 bad_mapping_pool: 2970 dm_deferred_set_destroy(pool->all_io_ds); 2971 bad_all_io_ds: 2972 dm_deferred_set_destroy(pool->shared_read_ds); 2973 bad_shared_read_ds: 2974 destroy_workqueue(pool->wq); 2975 bad_wq: 2976 dm_kcopyd_client_destroy(pool->copier); 2977 bad_kcopyd_client: 2978 dm_bio_prison_destroy(pool->prison); 2979 bad_prison: 2980 kfree(pool); 2981 bad_pool: 2982 if (dm_pool_metadata_close(pmd)) 2983 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2984 2985 return err_p; 2986 } 2987 2988 static void __pool_inc(struct pool *pool) 2989 { 2990 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2991 pool->ref_count++; 2992 } 2993 2994 static void __pool_dec(struct pool *pool) 2995 { 2996 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2997 BUG_ON(!pool->ref_count); 2998 if (!--pool->ref_count) 2999 __pool_destroy(pool); 3000 } 3001 3002 static struct pool *__pool_find(struct mapped_device *pool_md, 3003 struct block_device *metadata_dev, 3004 unsigned long block_size, int read_only, 3005 char **error, int *created) 3006 { 3007 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3008 3009 if (pool) { 3010 if (pool->pool_md != pool_md) { 3011 *error = "metadata device already in use by a pool"; 3012 return ERR_PTR(-EBUSY); 3013 } 3014 __pool_inc(pool); 3015 3016 } else { 3017 pool = __pool_table_lookup(pool_md); 3018 if (pool) { 3019 if (pool->md_dev != metadata_dev) { 3020 *error = "different pool cannot replace a pool"; 3021 return ERR_PTR(-EINVAL); 3022 } 3023 __pool_inc(pool); 3024 3025 } else { 3026 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3027 *created = 1; 3028 } 3029 } 3030 3031 return pool; 3032 } 3033 3034 /*---------------------------------------------------------------- 3035 * Pool target methods 3036 *--------------------------------------------------------------*/ 3037 static void pool_dtr(struct dm_target *ti) 3038 { 3039 struct pool_c *pt = ti->private; 3040 3041 mutex_lock(&dm_thin_pool_table.mutex); 3042 3043 unbind_control_target(pt->pool, ti); 3044 __pool_dec(pt->pool); 3045 dm_put_device(ti, pt->metadata_dev); 3046 dm_put_device(ti, pt->data_dev); 3047 kfree(pt); 3048 3049 mutex_unlock(&dm_thin_pool_table.mutex); 3050 } 3051 3052 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3053 struct dm_target *ti) 3054 { 3055 int r; 3056 unsigned argc; 3057 const char *arg_name; 3058 3059 static const struct dm_arg _args[] = { 3060 {0, 4, "Invalid number of pool feature arguments"}, 3061 }; 3062 3063 /* 3064 * No feature arguments supplied. 3065 */ 3066 if (!as->argc) 3067 return 0; 3068 3069 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3070 if (r) 3071 return -EINVAL; 3072 3073 while (argc && !r) { 3074 arg_name = dm_shift_arg(as); 3075 argc--; 3076 3077 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3078 pf->zero_new_blocks = false; 3079 3080 else if (!strcasecmp(arg_name, "ignore_discard")) 3081 pf->discard_enabled = false; 3082 3083 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3084 pf->discard_passdown = false; 3085 3086 else if (!strcasecmp(arg_name, "read_only")) 3087 pf->mode = PM_READ_ONLY; 3088 3089 else if (!strcasecmp(arg_name, "error_if_no_space")) 3090 pf->error_if_no_space = true; 3091 3092 else { 3093 ti->error = "Unrecognised pool feature requested"; 3094 r = -EINVAL; 3095 break; 3096 } 3097 } 3098 3099 return r; 3100 } 3101 3102 static void metadata_low_callback(void *context) 3103 { 3104 struct pool *pool = context; 3105 3106 DMWARN("%s: reached low water mark for metadata device: sending event.", 3107 dm_device_name(pool->pool_md)); 3108 3109 dm_table_event(pool->ti->table); 3110 } 3111 3112 static sector_t get_dev_size(struct block_device *bdev) 3113 { 3114 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3115 } 3116 3117 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3118 { 3119 sector_t metadata_dev_size = get_dev_size(bdev); 3120 char buffer[BDEVNAME_SIZE]; 3121 3122 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3123 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3124 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3125 } 3126 3127 static sector_t get_metadata_dev_size(struct block_device *bdev) 3128 { 3129 sector_t metadata_dev_size = get_dev_size(bdev); 3130 3131 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3132 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3133 3134 return metadata_dev_size; 3135 } 3136 3137 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3138 { 3139 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3140 3141 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3142 3143 return metadata_dev_size; 3144 } 3145 3146 /* 3147 * When a metadata threshold is crossed a dm event is triggered, and 3148 * userland should respond by growing the metadata device. We could let 3149 * userland set the threshold, like we do with the data threshold, but I'm 3150 * not sure they know enough to do this well. 3151 */ 3152 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3153 { 3154 /* 3155 * 4M is ample for all ops with the possible exception of thin 3156 * device deletion which is harmless if it fails (just retry the 3157 * delete after you've grown the device). 3158 */ 3159 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3160 return min((dm_block_t)1024ULL /* 4M */, quarter); 3161 } 3162 3163 /* 3164 * thin-pool <metadata dev> <data dev> 3165 * <data block size (sectors)> 3166 * <low water mark (blocks)> 3167 * [<#feature args> [<arg>]*] 3168 * 3169 * Optional feature arguments are: 3170 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3171 * ignore_discard: disable discard 3172 * no_discard_passdown: don't pass discards down to the data device 3173 * read_only: Don't allow any changes to be made to the pool metadata. 3174 * error_if_no_space: error IOs, instead of queueing, if no space. 3175 */ 3176 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3177 { 3178 int r, pool_created = 0; 3179 struct pool_c *pt; 3180 struct pool *pool; 3181 struct pool_features pf; 3182 struct dm_arg_set as; 3183 struct dm_dev *data_dev; 3184 unsigned long block_size; 3185 dm_block_t low_water_blocks; 3186 struct dm_dev *metadata_dev; 3187 fmode_t metadata_mode; 3188 3189 /* 3190 * FIXME Remove validation from scope of lock. 3191 */ 3192 mutex_lock(&dm_thin_pool_table.mutex); 3193 3194 if (argc < 4) { 3195 ti->error = "Invalid argument count"; 3196 r = -EINVAL; 3197 goto out_unlock; 3198 } 3199 3200 as.argc = argc; 3201 as.argv = argv; 3202 3203 /* 3204 * Set default pool features. 3205 */ 3206 pool_features_init(&pf); 3207 3208 dm_consume_args(&as, 4); 3209 r = parse_pool_features(&as, &pf, ti); 3210 if (r) 3211 goto out_unlock; 3212 3213 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3214 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3215 if (r) { 3216 ti->error = "Error opening metadata block device"; 3217 goto out_unlock; 3218 } 3219 warn_if_metadata_device_too_big(metadata_dev->bdev); 3220 3221 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3222 if (r) { 3223 ti->error = "Error getting data device"; 3224 goto out_metadata; 3225 } 3226 3227 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3228 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3229 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3230 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3231 ti->error = "Invalid block size"; 3232 r = -EINVAL; 3233 goto out; 3234 } 3235 3236 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3237 ti->error = "Invalid low water mark"; 3238 r = -EINVAL; 3239 goto out; 3240 } 3241 3242 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3243 if (!pt) { 3244 r = -ENOMEM; 3245 goto out; 3246 } 3247 3248 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3249 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3250 if (IS_ERR(pool)) { 3251 r = PTR_ERR(pool); 3252 goto out_free_pt; 3253 } 3254 3255 /* 3256 * 'pool_created' reflects whether this is the first table load. 3257 * Top level discard support is not allowed to be changed after 3258 * initial load. This would require a pool reload to trigger thin 3259 * device changes. 3260 */ 3261 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3262 ti->error = "Discard support cannot be disabled once enabled"; 3263 r = -EINVAL; 3264 goto out_flags_changed; 3265 } 3266 3267 pt->pool = pool; 3268 pt->ti = ti; 3269 pt->metadata_dev = metadata_dev; 3270 pt->data_dev = data_dev; 3271 pt->low_water_blocks = low_water_blocks; 3272 pt->adjusted_pf = pt->requested_pf = pf; 3273 ti->num_flush_bios = 1; 3274 3275 /* 3276 * Only need to enable discards if the pool should pass 3277 * them down to the data device. The thin device's discard 3278 * processing will cause mappings to be removed from the btree. 3279 */ 3280 if (pf.discard_enabled && pf.discard_passdown) { 3281 ti->num_discard_bios = 1; 3282 3283 /* 3284 * Setting 'discards_supported' circumvents the normal 3285 * stacking of discard limits (this keeps the pool and 3286 * thin devices' discard limits consistent). 3287 */ 3288 ti->discards_supported = true; 3289 } 3290 ti->private = pt; 3291 3292 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3293 calc_metadata_threshold(pt), 3294 metadata_low_callback, 3295 pool); 3296 if (r) 3297 goto out_flags_changed; 3298 3299 pt->callbacks.congested_fn = pool_is_congested; 3300 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3301 3302 mutex_unlock(&dm_thin_pool_table.mutex); 3303 3304 return 0; 3305 3306 out_flags_changed: 3307 __pool_dec(pool); 3308 out_free_pt: 3309 kfree(pt); 3310 out: 3311 dm_put_device(ti, data_dev); 3312 out_metadata: 3313 dm_put_device(ti, metadata_dev); 3314 out_unlock: 3315 mutex_unlock(&dm_thin_pool_table.mutex); 3316 3317 return r; 3318 } 3319 3320 static int pool_map(struct dm_target *ti, struct bio *bio) 3321 { 3322 int r; 3323 struct pool_c *pt = ti->private; 3324 struct pool *pool = pt->pool; 3325 unsigned long flags; 3326 3327 /* 3328 * As this is a singleton target, ti->begin is always zero. 3329 */ 3330 spin_lock_irqsave(&pool->lock, flags); 3331 bio_set_dev(bio, pt->data_dev->bdev); 3332 r = DM_MAPIO_REMAPPED; 3333 spin_unlock_irqrestore(&pool->lock, flags); 3334 3335 return r; 3336 } 3337 3338 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3339 { 3340 int r; 3341 struct pool_c *pt = ti->private; 3342 struct pool *pool = pt->pool; 3343 sector_t data_size = ti->len; 3344 dm_block_t sb_data_size; 3345 3346 *need_commit = false; 3347 3348 (void) sector_div(data_size, pool->sectors_per_block); 3349 3350 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3351 if (r) { 3352 DMERR("%s: failed to retrieve data device size", 3353 dm_device_name(pool->pool_md)); 3354 return r; 3355 } 3356 3357 if (data_size < sb_data_size) { 3358 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3359 dm_device_name(pool->pool_md), 3360 (unsigned long long)data_size, sb_data_size); 3361 return -EINVAL; 3362 3363 } else if (data_size > sb_data_size) { 3364 if (dm_pool_metadata_needs_check(pool->pmd)) { 3365 DMERR("%s: unable to grow the data device until repaired.", 3366 dm_device_name(pool->pool_md)); 3367 return 0; 3368 } 3369 3370 if (sb_data_size) 3371 DMINFO("%s: growing the data device from %llu to %llu blocks", 3372 dm_device_name(pool->pool_md), 3373 sb_data_size, (unsigned long long)data_size); 3374 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3375 if (r) { 3376 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3377 return r; 3378 } 3379 3380 *need_commit = true; 3381 } 3382 3383 return 0; 3384 } 3385 3386 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3387 { 3388 int r; 3389 struct pool_c *pt = ti->private; 3390 struct pool *pool = pt->pool; 3391 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3392 3393 *need_commit = false; 3394 3395 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3396 3397 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3398 if (r) { 3399 DMERR("%s: failed to retrieve metadata device size", 3400 dm_device_name(pool->pool_md)); 3401 return r; 3402 } 3403 3404 if (metadata_dev_size < sb_metadata_dev_size) { 3405 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3406 dm_device_name(pool->pool_md), 3407 metadata_dev_size, sb_metadata_dev_size); 3408 return -EINVAL; 3409 3410 } else if (metadata_dev_size > sb_metadata_dev_size) { 3411 if (dm_pool_metadata_needs_check(pool->pmd)) { 3412 DMERR("%s: unable to grow the metadata device until repaired.", 3413 dm_device_name(pool->pool_md)); 3414 return 0; 3415 } 3416 3417 warn_if_metadata_device_too_big(pool->md_dev); 3418 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3419 dm_device_name(pool->pool_md), 3420 sb_metadata_dev_size, metadata_dev_size); 3421 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3422 if (r) { 3423 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3424 return r; 3425 } 3426 3427 *need_commit = true; 3428 } 3429 3430 return 0; 3431 } 3432 3433 /* 3434 * Retrieves the number of blocks of the data device from 3435 * the superblock and compares it to the actual device size, 3436 * thus resizing the data device in case it has grown. 3437 * 3438 * This both copes with opening preallocated data devices in the ctr 3439 * being followed by a resume 3440 * -and- 3441 * calling the resume method individually after userspace has 3442 * grown the data device in reaction to a table event. 3443 */ 3444 static int pool_preresume(struct dm_target *ti) 3445 { 3446 int r; 3447 bool need_commit1, need_commit2; 3448 struct pool_c *pt = ti->private; 3449 struct pool *pool = pt->pool; 3450 3451 /* 3452 * Take control of the pool object. 3453 */ 3454 r = bind_control_target(pool, ti); 3455 if (r) 3456 return r; 3457 3458 r = maybe_resize_data_dev(ti, &need_commit1); 3459 if (r) 3460 return r; 3461 3462 r = maybe_resize_metadata_dev(ti, &need_commit2); 3463 if (r) 3464 return r; 3465 3466 if (need_commit1 || need_commit2) 3467 (void) commit(pool); 3468 3469 return 0; 3470 } 3471 3472 static void pool_suspend_active_thins(struct pool *pool) 3473 { 3474 struct thin_c *tc; 3475 3476 /* Suspend all active thin devices */ 3477 tc = get_first_thin(pool); 3478 while (tc) { 3479 dm_internal_suspend_noflush(tc->thin_md); 3480 tc = get_next_thin(pool, tc); 3481 } 3482 } 3483 3484 static void pool_resume_active_thins(struct pool *pool) 3485 { 3486 struct thin_c *tc; 3487 3488 /* Resume all active thin devices */ 3489 tc = get_first_thin(pool); 3490 while (tc) { 3491 dm_internal_resume(tc->thin_md); 3492 tc = get_next_thin(pool, tc); 3493 } 3494 } 3495 3496 static void pool_resume(struct dm_target *ti) 3497 { 3498 struct pool_c *pt = ti->private; 3499 struct pool *pool = pt->pool; 3500 unsigned long flags; 3501 3502 /* 3503 * Must requeue active_thins' bios and then resume 3504 * active_thins _before_ clearing 'suspend' flag. 3505 */ 3506 requeue_bios(pool); 3507 pool_resume_active_thins(pool); 3508 3509 spin_lock_irqsave(&pool->lock, flags); 3510 pool->low_water_triggered = false; 3511 pool->suspended = false; 3512 spin_unlock_irqrestore(&pool->lock, flags); 3513 3514 do_waker(&pool->waker.work); 3515 } 3516 3517 static void pool_presuspend(struct dm_target *ti) 3518 { 3519 struct pool_c *pt = ti->private; 3520 struct pool *pool = pt->pool; 3521 unsigned long flags; 3522 3523 spin_lock_irqsave(&pool->lock, flags); 3524 pool->suspended = true; 3525 spin_unlock_irqrestore(&pool->lock, flags); 3526 3527 pool_suspend_active_thins(pool); 3528 } 3529 3530 static void pool_presuspend_undo(struct dm_target *ti) 3531 { 3532 struct pool_c *pt = ti->private; 3533 struct pool *pool = pt->pool; 3534 unsigned long flags; 3535 3536 pool_resume_active_thins(pool); 3537 3538 spin_lock_irqsave(&pool->lock, flags); 3539 pool->suspended = false; 3540 spin_unlock_irqrestore(&pool->lock, flags); 3541 } 3542 3543 static void pool_postsuspend(struct dm_target *ti) 3544 { 3545 struct pool_c *pt = ti->private; 3546 struct pool *pool = pt->pool; 3547 3548 cancel_delayed_work_sync(&pool->waker); 3549 cancel_delayed_work_sync(&pool->no_space_timeout); 3550 flush_workqueue(pool->wq); 3551 (void) commit(pool); 3552 } 3553 3554 static int check_arg_count(unsigned argc, unsigned args_required) 3555 { 3556 if (argc != args_required) { 3557 DMWARN("Message received with %u arguments instead of %u.", 3558 argc, args_required); 3559 return -EINVAL; 3560 } 3561 3562 return 0; 3563 } 3564 3565 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3566 { 3567 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3568 *dev_id <= MAX_DEV_ID) 3569 return 0; 3570 3571 if (warning) 3572 DMWARN("Message received with invalid device id: %s", arg); 3573 3574 return -EINVAL; 3575 } 3576 3577 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3578 { 3579 dm_thin_id dev_id; 3580 int r; 3581 3582 r = check_arg_count(argc, 2); 3583 if (r) 3584 return r; 3585 3586 r = read_dev_id(argv[1], &dev_id, 1); 3587 if (r) 3588 return r; 3589 3590 r = dm_pool_create_thin(pool->pmd, dev_id); 3591 if (r) { 3592 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3593 argv[1]); 3594 return r; 3595 } 3596 3597 return 0; 3598 } 3599 3600 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3601 { 3602 dm_thin_id dev_id; 3603 dm_thin_id origin_dev_id; 3604 int r; 3605 3606 r = check_arg_count(argc, 3); 3607 if (r) 3608 return r; 3609 3610 r = read_dev_id(argv[1], &dev_id, 1); 3611 if (r) 3612 return r; 3613 3614 r = read_dev_id(argv[2], &origin_dev_id, 1); 3615 if (r) 3616 return r; 3617 3618 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3619 if (r) { 3620 DMWARN("Creation of new snapshot %s of device %s failed.", 3621 argv[1], argv[2]); 3622 return r; 3623 } 3624 3625 return 0; 3626 } 3627 3628 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3629 { 3630 dm_thin_id dev_id; 3631 int r; 3632 3633 r = check_arg_count(argc, 2); 3634 if (r) 3635 return r; 3636 3637 r = read_dev_id(argv[1], &dev_id, 1); 3638 if (r) 3639 return r; 3640 3641 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3642 if (r) 3643 DMWARN("Deletion of thin device %s failed.", argv[1]); 3644 3645 return r; 3646 } 3647 3648 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3649 { 3650 dm_thin_id old_id, new_id; 3651 int r; 3652 3653 r = check_arg_count(argc, 3); 3654 if (r) 3655 return r; 3656 3657 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3658 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3659 return -EINVAL; 3660 } 3661 3662 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3663 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3664 return -EINVAL; 3665 } 3666 3667 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3668 if (r) { 3669 DMWARN("Failed to change transaction id from %s to %s.", 3670 argv[1], argv[2]); 3671 return r; 3672 } 3673 3674 return 0; 3675 } 3676 3677 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3678 { 3679 int r; 3680 3681 r = check_arg_count(argc, 1); 3682 if (r) 3683 return r; 3684 3685 (void) commit(pool); 3686 3687 r = dm_pool_reserve_metadata_snap(pool->pmd); 3688 if (r) 3689 DMWARN("reserve_metadata_snap message failed."); 3690 3691 return r; 3692 } 3693 3694 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3695 { 3696 int r; 3697 3698 r = check_arg_count(argc, 1); 3699 if (r) 3700 return r; 3701 3702 r = dm_pool_release_metadata_snap(pool->pmd); 3703 if (r) 3704 DMWARN("release_metadata_snap message failed."); 3705 3706 return r; 3707 } 3708 3709 /* 3710 * Messages supported: 3711 * create_thin <dev_id> 3712 * create_snap <dev_id> <origin_id> 3713 * delete <dev_id> 3714 * set_transaction_id <current_trans_id> <new_trans_id> 3715 * reserve_metadata_snap 3716 * release_metadata_snap 3717 */ 3718 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3719 char *result, unsigned maxlen) 3720 { 3721 int r = -EINVAL; 3722 struct pool_c *pt = ti->private; 3723 struct pool *pool = pt->pool; 3724 3725 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3726 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3727 dm_device_name(pool->pool_md)); 3728 return -EOPNOTSUPP; 3729 } 3730 3731 if (!strcasecmp(argv[0], "create_thin")) 3732 r = process_create_thin_mesg(argc, argv, pool); 3733 3734 else if (!strcasecmp(argv[0], "create_snap")) 3735 r = process_create_snap_mesg(argc, argv, pool); 3736 3737 else if (!strcasecmp(argv[0], "delete")) 3738 r = process_delete_mesg(argc, argv, pool); 3739 3740 else if (!strcasecmp(argv[0], "set_transaction_id")) 3741 r = process_set_transaction_id_mesg(argc, argv, pool); 3742 3743 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3744 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3745 3746 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3747 r = process_release_metadata_snap_mesg(argc, argv, pool); 3748 3749 else 3750 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3751 3752 if (!r) 3753 (void) commit(pool); 3754 3755 return r; 3756 } 3757 3758 static void emit_flags(struct pool_features *pf, char *result, 3759 unsigned sz, unsigned maxlen) 3760 { 3761 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3762 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3763 pf->error_if_no_space; 3764 DMEMIT("%u ", count); 3765 3766 if (!pf->zero_new_blocks) 3767 DMEMIT("skip_block_zeroing "); 3768 3769 if (!pf->discard_enabled) 3770 DMEMIT("ignore_discard "); 3771 3772 if (!pf->discard_passdown) 3773 DMEMIT("no_discard_passdown "); 3774 3775 if (pf->mode == PM_READ_ONLY) 3776 DMEMIT("read_only "); 3777 3778 if (pf->error_if_no_space) 3779 DMEMIT("error_if_no_space "); 3780 } 3781 3782 /* 3783 * Status line is: 3784 * <transaction id> <used metadata sectors>/<total metadata sectors> 3785 * <used data sectors>/<total data sectors> <held metadata root> 3786 * <pool mode> <discard config> <no space config> <needs_check> 3787 */ 3788 static void pool_status(struct dm_target *ti, status_type_t type, 3789 unsigned status_flags, char *result, unsigned maxlen) 3790 { 3791 int r; 3792 unsigned sz = 0; 3793 uint64_t transaction_id; 3794 dm_block_t nr_free_blocks_data; 3795 dm_block_t nr_free_blocks_metadata; 3796 dm_block_t nr_blocks_data; 3797 dm_block_t nr_blocks_metadata; 3798 dm_block_t held_root; 3799 char buf[BDEVNAME_SIZE]; 3800 char buf2[BDEVNAME_SIZE]; 3801 struct pool_c *pt = ti->private; 3802 struct pool *pool = pt->pool; 3803 3804 switch (type) { 3805 case STATUSTYPE_INFO: 3806 if (get_pool_mode(pool) == PM_FAIL) { 3807 DMEMIT("Fail"); 3808 break; 3809 } 3810 3811 /* Commit to ensure statistics aren't out-of-date */ 3812 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3813 (void) commit(pool); 3814 3815 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3816 if (r) { 3817 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3818 dm_device_name(pool->pool_md), r); 3819 goto err; 3820 } 3821 3822 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3823 if (r) { 3824 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3825 dm_device_name(pool->pool_md), r); 3826 goto err; 3827 } 3828 3829 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3830 if (r) { 3831 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3832 dm_device_name(pool->pool_md), r); 3833 goto err; 3834 } 3835 3836 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3837 if (r) { 3838 DMERR("%s: dm_pool_get_free_block_count returned %d", 3839 dm_device_name(pool->pool_md), r); 3840 goto err; 3841 } 3842 3843 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3844 if (r) { 3845 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3846 dm_device_name(pool->pool_md), r); 3847 goto err; 3848 } 3849 3850 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3851 if (r) { 3852 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3853 dm_device_name(pool->pool_md), r); 3854 goto err; 3855 } 3856 3857 DMEMIT("%llu %llu/%llu %llu/%llu ", 3858 (unsigned long long)transaction_id, 3859 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3860 (unsigned long long)nr_blocks_metadata, 3861 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3862 (unsigned long long)nr_blocks_data); 3863 3864 if (held_root) 3865 DMEMIT("%llu ", held_root); 3866 else 3867 DMEMIT("- "); 3868 3869 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3870 DMEMIT("out_of_data_space "); 3871 else if (pool->pf.mode == PM_READ_ONLY) 3872 DMEMIT("ro "); 3873 else 3874 DMEMIT("rw "); 3875 3876 if (!pool->pf.discard_enabled) 3877 DMEMIT("ignore_discard "); 3878 else if (pool->pf.discard_passdown) 3879 DMEMIT("discard_passdown "); 3880 else 3881 DMEMIT("no_discard_passdown "); 3882 3883 if (pool->pf.error_if_no_space) 3884 DMEMIT("error_if_no_space "); 3885 else 3886 DMEMIT("queue_if_no_space "); 3887 3888 if (dm_pool_metadata_needs_check(pool->pmd)) 3889 DMEMIT("needs_check "); 3890 else 3891 DMEMIT("- "); 3892 3893 break; 3894 3895 case STATUSTYPE_TABLE: 3896 DMEMIT("%s %s %lu %llu ", 3897 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3898 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3899 (unsigned long)pool->sectors_per_block, 3900 (unsigned long long)pt->low_water_blocks); 3901 emit_flags(&pt->requested_pf, result, sz, maxlen); 3902 break; 3903 } 3904 return; 3905 3906 err: 3907 DMEMIT("Error"); 3908 } 3909 3910 static int pool_iterate_devices(struct dm_target *ti, 3911 iterate_devices_callout_fn fn, void *data) 3912 { 3913 struct pool_c *pt = ti->private; 3914 3915 return fn(ti, pt->data_dev, 0, ti->len, data); 3916 } 3917 3918 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3919 { 3920 struct pool_c *pt = ti->private; 3921 struct pool *pool = pt->pool; 3922 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3923 3924 /* 3925 * If max_sectors is smaller than pool->sectors_per_block adjust it 3926 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3927 * This is especially beneficial when the pool's data device is a RAID 3928 * device that has a full stripe width that matches pool->sectors_per_block 3929 * -- because even though partial RAID stripe-sized IOs will be issued to a 3930 * single RAID stripe; when aggregated they will end on a full RAID stripe 3931 * boundary.. which avoids additional partial RAID stripe writes cascading 3932 */ 3933 if (limits->max_sectors < pool->sectors_per_block) { 3934 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3935 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3936 limits->max_sectors--; 3937 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3938 } 3939 } 3940 3941 /* 3942 * If the system-determined stacked limits are compatible with the 3943 * pool's blocksize (io_opt is a factor) do not override them. 3944 */ 3945 if (io_opt_sectors < pool->sectors_per_block || 3946 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3947 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3948 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3949 else 3950 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3951 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3952 } 3953 3954 /* 3955 * pt->adjusted_pf is a staging area for the actual features to use. 3956 * They get transferred to the live pool in bind_control_target() 3957 * called from pool_preresume(). 3958 */ 3959 if (!pt->adjusted_pf.discard_enabled) { 3960 /* 3961 * Must explicitly disallow stacking discard limits otherwise the 3962 * block layer will stack them if pool's data device has support. 3963 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3964 * user to see that, so make sure to set all discard limits to 0. 3965 */ 3966 limits->discard_granularity = 0; 3967 return; 3968 } 3969 3970 disable_passdown_if_not_supported(pt); 3971 3972 /* 3973 * The pool uses the same discard limits as the underlying data 3974 * device. DM core has already set this up. 3975 */ 3976 } 3977 3978 static struct target_type pool_target = { 3979 .name = "thin-pool", 3980 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3981 DM_TARGET_IMMUTABLE, 3982 .version = {1, 19, 0}, 3983 .module = THIS_MODULE, 3984 .ctr = pool_ctr, 3985 .dtr = pool_dtr, 3986 .map = pool_map, 3987 .presuspend = pool_presuspend, 3988 .presuspend_undo = pool_presuspend_undo, 3989 .postsuspend = pool_postsuspend, 3990 .preresume = pool_preresume, 3991 .resume = pool_resume, 3992 .message = pool_message, 3993 .status = pool_status, 3994 .iterate_devices = pool_iterate_devices, 3995 .io_hints = pool_io_hints, 3996 }; 3997 3998 /*---------------------------------------------------------------- 3999 * Thin target methods 4000 *--------------------------------------------------------------*/ 4001 static void thin_get(struct thin_c *tc) 4002 { 4003 atomic_inc(&tc->refcount); 4004 } 4005 4006 static void thin_put(struct thin_c *tc) 4007 { 4008 if (atomic_dec_and_test(&tc->refcount)) 4009 complete(&tc->can_destroy); 4010 } 4011 4012 static void thin_dtr(struct dm_target *ti) 4013 { 4014 struct thin_c *tc = ti->private; 4015 unsigned long flags; 4016 4017 spin_lock_irqsave(&tc->pool->lock, flags); 4018 list_del_rcu(&tc->list); 4019 spin_unlock_irqrestore(&tc->pool->lock, flags); 4020 synchronize_rcu(); 4021 4022 thin_put(tc); 4023 wait_for_completion(&tc->can_destroy); 4024 4025 mutex_lock(&dm_thin_pool_table.mutex); 4026 4027 __pool_dec(tc->pool); 4028 dm_pool_close_thin_device(tc->td); 4029 dm_put_device(ti, tc->pool_dev); 4030 if (tc->origin_dev) 4031 dm_put_device(ti, tc->origin_dev); 4032 kfree(tc); 4033 4034 mutex_unlock(&dm_thin_pool_table.mutex); 4035 } 4036 4037 /* 4038 * Thin target parameters: 4039 * 4040 * <pool_dev> <dev_id> [origin_dev] 4041 * 4042 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4043 * dev_id: the internal device identifier 4044 * origin_dev: a device external to the pool that should act as the origin 4045 * 4046 * If the pool device has discards disabled, they get disabled for the thin 4047 * device as well. 4048 */ 4049 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4050 { 4051 int r; 4052 struct thin_c *tc; 4053 struct dm_dev *pool_dev, *origin_dev; 4054 struct mapped_device *pool_md; 4055 unsigned long flags; 4056 4057 mutex_lock(&dm_thin_pool_table.mutex); 4058 4059 if (argc != 2 && argc != 3) { 4060 ti->error = "Invalid argument count"; 4061 r = -EINVAL; 4062 goto out_unlock; 4063 } 4064 4065 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4066 if (!tc) { 4067 ti->error = "Out of memory"; 4068 r = -ENOMEM; 4069 goto out_unlock; 4070 } 4071 tc->thin_md = dm_table_get_md(ti->table); 4072 spin_lock_init(&tc->lock); 4073 INIT_LIST_HEAD(&tc->deferred_cells); 4074 bio_list_init(&tc->deferred_bio_list); 4075 bio_list_init(&tc->retry_on_resume_list); 4076 tc->sort_bio_list = RB_ROOT; 4077 4078 if (argc == 3) { 4079 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4080 if (r) { 4081 ti->error = "Error opening origin device"; 4082 goto bad_origin_dev; 4083 } 4084 tc->origin_dev = origin_dev; 4085 } 4086 4087 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4088 if (r) { 4089 ti->error = "Error opening pool device"; 4090 goto bad_pool_dev; 4091 } 4092 tc->pool_dev = pool_dev; 4093 4094 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4095 ti->error = "Invalid device id"; 4096 r = -EINVAL; 4097 goto bad_common; 4098 } 4099 4100 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4101 if (!pool_md) { 4102 ti->error = "Couldn't get pool mapped device"; 4103 r = -EINVAL; 4104 goto bad_common; 4105 } 4106 4107 tc->pool = __pool_table_lookup(pool_md); 4108 if (!tc->pool) { 4109 ti->error = "Couldn't find pool object"; 4110 r = -EINVAL; 4111 goto bad_pool_lookup; 4112 } 4113 __pool_inc(tc->pool); 4114 4115 if (get_pool_mode(tc->pool) == PM_FAIL) { 4116 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4117 r = -EINVAL; 4118 goto bad_pool; 4119 } 4120 4121 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4122 if (r) { 4123 ti->error = "Couldn't open thin internal device"; 4124 goto bad_pool; 4125 } 4126 4127 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4128 if (r) 4129 goto bad; 4130 4131 ti->num_flush_bios = 1; 4132 ti->flush_supported = true; 4133 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4134 4135 /* In case the pool supports discards, pass them on. */ 4136 if (tc->pool->pf.discard_enabled) { 4137 ti->discards_supported = true; 4138 ti->num_discard_bios = 1; 4139 ti->split_discard_bios = false; 4140 } 4141 4142 mutex_unlock(&dm_thin_pool_table.mutex); 4143 4144 spin_lock_irqsave(&tc->pool->lock, flags); 4145 if (tc->pool->suspended) { 4146 spin_unlock_irqrestore(&tc->pool->lock, flags); 4147 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4148 ti->error = "Unable to activate thin device while pool is suspended"; 4149 r = -EINVAL; 4150 goto bad; 4151 } 4152 atomic_set(&tc->refcount, 1); 4153 init_completion(&tc->can_destroy); 4154 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4155 spin_unlock_irqrestore(&tc->pool->lock, flags); 4156 /* 4157 * This synchronize_rcu() call is needed here otherwise we risk a 4158 * wake_worker() call finding no bios to process (because the newly 4159 * added tc isn't yet visible). So this reduces latency since we 4160 * aren't then dependent on the periodic commit to wake_worker(). 4161 */ 4162 synchronize_rcu(); 4163 4164 dm_put(pool_md); 4165 4166 return 0; 4167 4168 bad: 4169 dm_pool_close_thin_device(tc->td); 4170 bad_pool: 4171 __pool_dec(tc->pool); 4172 bad_pool_lookup: 4173 dm_put(pool_md); 4174 bad_common: 4175 dm_put_device(ti, tc->pool_dev); 4176 bad_pool_dev: 4177 if (tc->origin_dev) 4178 dm_put_device(ti, tc->origin_dev); 4179 bad_origin_dev: 4180 kfree(tc); 4181 out_unlock: 4182 mutex_unlock(&dm_thin_pool_table.mutex); 4183 4184 return r; 4185 } 4186 4187 static int thin_map(struct dm_target *ti, struct bio *bio) 4188 { 4189 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4190 4191 return thin_bio_map(ti, bio); 4192 } 4193 4194 static int thin_endio(struct dm_target *ti, struct bio *bio, 4195 blk_status_t *err) 4196 { 4197 unsigned long flags; 4198 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4199 struct list_head work; 4200 struct dm_thin_new_mapping *m, *tmp; 4201 struct pool *pool = h->tc->pool; 4202 4203 if (h->shared_read_entry) { 4204 INIT_LIST_HEAD(&work); 4205 dm_deferred_entry_dec(h->shared_read_entry, &work); 4206 4207 spin_lock_irqsave(&pool->lock, flags); 4208 list_for_each_entry_safe(m, tmp, &work, list) { 4209 list_del(&m->list); 4210 __complete_mapping_preparation(m); 4211 } 4212 spin_unlock_irqrestore(&pool->lock, flags); 4213 } 4214 4215 if (h->all_io_entry) { 4216 INIT_LIST_HEAD(&work); 4217 dm_deferred_entry_dec(h->all_io_entry, &work); 4218 if (!list_empty(&work)) { 4219 spin_lock_irqsave(&pool->lock, flags); 4220 list_for_each_entry_safe(m, tmp, &work, list) 4221 list_add_tail(&m->list, &pool->prepared_discards); 4222 spin_unlock_irqrestore(&pool->lock, flags); 4223 wake_worker(pool); 4224 } 4225 } 4226 4227 if (h->cell) 4228 cell_defer_no_holder(h->tc, h->cell); 4229 4230 return DM_ENDIO_DONE; 4231 } 4232 4233 static void thin_presuspend(struct dm_target *ti) 4234 { 4235 struct thin_c *tc = ti->private; 4236 4237 if (dm_noflush_suspending(ti)) 4238 noflush_work(tc, do_noflush_start); 4239 } 4240 4241 static void thin_postsuspend(struct dm_target *ti) 4242 { 4243 struct thin_c *tc = ti->private; 4244 4245 /* 4246 * The dm_noflush_suspending flag has been cleared by now, so 4247 * unfortunately we must always run this. 4248 */ 4249 noflush_work(tc, do_noflush_stop); 4250 } 4251 4252 static int thin_preresume(struct dm_target *ti) 4253 { 4254 struct thin_c *tc = ti->private; 4255 4256 if (tc->origin_dev) 4257 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4258 4259 return 0; 4260 } 4261 4262 /* 4263 * <nr mapped sectors> <highest mapped sector> 4264 */ 4265 static void thin_status(struct dm_target *ti, status_type_t type, 4266 unsigned status_flags, char *result, unsigned maxlen) 4267 { 4268 int r; 4269 ssize_t sz = 0; 4270 dm_block_t mapped, highest; 4271 char buf[BDEVNAME_SIZE]; 4272 struct thin_c *tc = ti->private; 4273 4274 if (get_pool_mode(tc->pool) == PM_FAIL) { 4275 DMEMIT("Fail"); 4276 return; 4277 } 4278 4279 if (!tc->td) 4280 DMEMIT("-"); 4281 else { 4282 switch (type) { 4283 case STATUSTYPE_INFO: 4284 r = dm_thin_get_mapped_count(tc->td, &mapped); 4285 if (r) { 4286 DMERR("dm_thin_get_mapped_count returned %d", r); 4287 goto err; 4288 } 4289 4290 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4291 if (r < 0) { 4292 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4293 goto err; 4294 } 4295 4296 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4297 if (r) 4298 DMEMIT("%llu", ((highest + 1) * 4299 tc->pool->sectors_per_block) - 1); 4300 else 4301 DMEMIT("-"); 4302 break; 4303 4304 case STATUSTYPE_TABLE: 4305 DMEMIT("%s %lu", 4306 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4307 (unsigned long) tc->dev_id); 4308 if (tc->origin_dev) 4309 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4310 break; 4311 } 4312 } 4313 4314 return; 4315 4316 err: 4317 DMEMIT("Error"); 4318 } 4319 4320 static int thin_iterate_devices(struct dm_target *ti, 4321 iterate_devices_callout_fn fn, void *data) 4322 { 4323 sector_t blocks; 4324 struct thin_c *tc = ti->private; 4325 struct pool *pool = tc->pool; 4326 4327 /* 4328 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4329 * we follow a more convoluted path through to the pool's target. 4330 */ 4331 if (!pool->ti) 4332 return 0; /* nothing is bound */ 4333 4334 blocks = pool->ti->len; 4335 (void) sector_div(blocks, pool->sectors_per_block); 4336 if (blocks) 4337 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4338 4339 return 0; 4340 } 4341 4342 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4343 { 4344 struct thin_c *tc = ti->private; 4345 struct pool *pool = tc->pool; 4346 4347 if (!pool->pf.discard_enabled) 4348 return; 4349 4350 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4351 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4352 } 4353 4354 static struct target_type thin_target = { 4355 .name = "thin", 4356 .version = {1, 19, 0}, 4357 .module = THIS_MODULE, 4358 .ctr = thin_ctr, 4359 .dtr = thin_dtr, 4360 .map = thin_map, 4361 .end_io = thin_endio, 4362 .preresume = thin_preresume, 4363 .presuspend = thin_presuspend, 4364 .postsuspend = thin_postsuspend, 4365 .status = thin_status, 4366 .iterate_devices = thin_iterate_devices, 4367 .io_hints = thin_io_hints, 4368 }; 4369 4370 /*----------------------------------------------------------------*/ 4371 4372 static int __init dm_thin_init(void) 4373 { 4374 int r = -ENOMEM; 4375 4376 pool_table_init(); 4377 4378 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4379 if (!_new_mapping_cache) 4380 return r; 4381 4382 r = dm_register_target(&thin_target); 4383 if (r) 4384 goto bad_new_mapping_cache; 4385 4386 r = dm_register_target(&pool_target); 4387 if (r) 4388 goto bad_thin_target; 4389 4390 return 0; 4391 4392 bad_thin_target: 4393 dm_unregister_target(&thin_target); 4394 bad_new_mapping_cache: 4395 kmem_cache_destroy(_new_mapping_cache); 4396 4397 return r; 4398 } 4399 4400 static void dm_thin_exit(void) 4401 { 4402 dm_unregister_target(&thin_target); 4403 dm_unregister_target(&pool_target); 4404 4405 kmem_cache_destroy(_new_mapping_cache); 4406 4407 pool_table_exit(); 4408 } 4409 4410 module_init(dm_thin_init); 4411 module_exit(dm_thin_exit); 4412 4413 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4414 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4415 4416 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4417 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4418 MODULE_LICENSE("GPL"); 4419