1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct workqueue_struct *wq; 244 struct throttle throttle; 245 struct work_struct worker; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head prepared_discards_pt2; 257 struct list_head active_thins; 258 259 struct dm_deferred_set *shared_read_ds; 260 struct dm_deferred_set *all_io_ds; 261 262 struct dm_thin_new_mapping *next_mapping; 263 mempool_t *mapping_pool; 264 265 process_bio_fn process_bio; 266 process_bio_fn process_discard; 267 268 process_cell_fn process_cell; 269 process_cell_fn process_discard_cell; 270 271 process_mapping_fn process_prepared_mapping; 272 process_mapping_fn process_prepared_discard; 273 process_mapping_fn process_prepared_discard_pt2; 274 275 struct dm_bio_prison_cell **cell_sort_array; 276 }; 277 278 static enum pool_mode get_pool_mode(struct pool *pool); 279 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 280 281 /* 282 * Target context for a pool. 283 */ 284 struct pool_c { 285 struct dm_target *ti; 286 struct pool *pool; 287 struct dm_dev *data_dev; 288 struct dm_dev *metadata_dev; 289 struct dm_target_callbacks callbacks; 290 291 dm_block_t low_water_blocks; 292 struct pool_features requested_pf; /* Features requested during table load */ 293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 294 }; 295 296 /* 297 * Target context for a thin. 298 */ 299 struct thin_c { 300 struct list_head list; 301 struct dm_dev *pool_dev; 302 struct dm_dev *origin_dev; 303 sector_t origin_size; 304 dm_thin_id dev_id; 305 306 struct pool *pool; 307 struct dm_thin_device *td; 308 struct mapped_device *thin_md; 309 310 bool requeue_mode:1; 311 spinlock_t lock; 312 struct list_head deferred_cells; 313 struct bio_list deferred_bio_list; 314 struct bio_list retry_on_resume_list; 315 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 316 317 /* 318 * Ensures the thin is not destroyed until the worker has finished 319 * iterating the active_thins list. 320 */ 321 atomic_t refcount; 322 struct completion can_destroy; 323 }; 324 325 /*----------------------------------------------------------------*/ 326 327 static bool block_size_is_power_of_two(struct pool *pool) 328 { 329 return pool->sectors_per_block_shift >= 0; 330 } 331 332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 333 { 334 return block_size_is_power_of_two(pool) ? 335 (b << pool->sectors_per_block_shift) : 336 (b * pool->sectors_per_block); 337 } 338 339 /*----------------------------------------------------------------*/ 340 341 struct discard_op { 342 struct thin_c *tc; 343 struct blk_plug plug; 344 struct bio *parent_bio; 345 struct bio *bio; 346 }; 347 348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 349 { 350 BUG_ON(!parent); 351 352 op->tc = tc; 353 blk_start_plug(&op->plug); 354 op->parent_bio = parent; 355 op->bio = NULL; 356 } 357 358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 359 { 360 struct thin_c *tc = op->tc; 361 sector_t s = block_to_sectors(tc->pool, data_b); 362 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 363 364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 365 GFP_NOWAIT, 0, &op->bio); 366 } 367 368 static void end_discard(struct discard_op *op, int r) 369 { 370 if (op->bio) { 371 /* 372 * Even if one of the calls to issue_discard failed, we 373 * need to wait for the chain to complete. 374 */ 375 bio_chain(op->bio, op->parent_bio); 376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 377 submit_bio(op->bio); 378 } 379 380 blk_finish_plug(&op->plug); 381 382 /* 383 * Even if r is set, there could be sub discards in flight that we 384 * need to wait for. 385 */ 386 if (r && !op->parent_bio->bi_error) 387 op->parent_bio->bi_error = r; 388 bio_endio(op->parent_bio); 389 } 390 391 /*----------------------------------------------------------------*/ 392 393 /* 394 * wake_worker() is used when new work is queued and when pool_resume is 395 * ready to continue deferred IO processing. 396 */ 397 static void wake_worker(struct pool *pool) 398 { 399 queue_work(pool->wq, &pool->worker); 400 } 401 402 /*----------------------------------------------------------------*/ 403 404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 405 struct dm_bio_prison_cell **cell_result) 406 { 407 int r; 408 struct dm_bio_prison_cell *cell_prealloc; 409 410 /* 411 * Allocate a cell from the prison's mempool. 412 * This might block but it can't fail. 413 */ 414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 415 416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 417 if (r) 418 /* 419 * We reused an old cell; we can get rid of 420 * the new one. 421 */ 422 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 423 424 return r; 425 } 426 427 static void cell_release(struct pool *pool, 428 struct dm_bio_prison_cell *cell, 429 struct bio_list *bios) 430 { 431 dm_cell_release(pool->prison, cell, bios); 432 dm_bio_prison_free_cell(pool->prison, cell); 433 } 434 435 static void cell_visit_release(struct pool *pool, 436 void (*fn)(void *, struct dm_bio_prison_cell *), 437 void *context, 438 struct dm_bio_prison_cell *cell) 439 { 440 dm_cell_visit_release(pool->prison, fn, context, cell); 441 dm_bio_prison_free_cell(pool->prison, cell); 442 } 443 444 static void cell_release_no_holder(struct pool *pool, 445 struct dm_bio_prison_cell *cell, 446 struct bio_list *bios) 447 { 448 dm_cell_release_no_holder(pool->prison, cell, bios); 449 dm_bio_prison_free_cell(pool->prison, cell); 450 } 451 452 static void cell_error_with_code(struct pool *pool, 453 struct dm_bio_prison_cell *cell, int error_code) 454 { 455 dm_cell_error(pool->prison, cell, error_code); 456 dm_bio_prison_free_cell(pool->prison, cell); 457 } 458 459 static int get_pool_io_error_code(struct pool *pool) 460 { 461 return pool->out_of_data_space ? -ENOSPC : -EIO; 462 } 463 464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 465 { 466 int error = get_pool_io_error_code(pool); 467 468 cell_error_with_code(pool, cell, error); 469 } 470 471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 472 { 473 cell_error_with_code(pool, cell, 0); 474 } 475 476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 477 { 478 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 479 } 480 481 /*----------------------------------------------------------------*/ 482 483 /* 484 * A global list of pools that uses a struct mapped_device as a key. 485 */ 486 static struct dm_thin_pool_table { 487 struct mutex mutex; 488 struct list_head pools; 489 } dm_thin_pool_table; 490 491 static void pool_table_init(void) 492 { 493 mutex_init(&dm_thin_pool_table.mutex); 494 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 495 } 496 497 static void __pool_table_insert(struct pool *pool) 498 { 499 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 500 list_add(&pool->list, &dm_thin_pool_table.pools); 501 } 502 503 static void __pool_table_remove(struct pool *pool) 504 { 505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 506 list_del(&pool->list); 507 } 508 509 static struct pool *__pool_table_lookup(struct mapped_device *md) 510 { 511 struct pool *pool = NULL, *tmp; 512 513 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 514 515 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 516 if (tmp->pool_md == md) { 517 pool = tmp; 518 break; 519 } 520 } 521 522 return pool; 523 } 524 525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 526 { 527 struct pool *pool = NULL, *tmp; 528 529 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 530 531 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 532 if (tmp->md_dev == md_dev) { 533 pool = tmp; 534 break; 535 } 536 } 537 538 return pool; 539 } 540 541 /*----------------------------------------------------------------*/ 542 543 struct dm_thin_endio_hook { 544 struct thin_c *tc; 545 struct dm_deferred_entry *shared_read_entry; 546 struct dm_deferred_entry *all_io_entry; 547 struct dm_thin_new_mapping *overwrite_mapping; 548 struct rb_node rb_node; 549 struct dm_bio_prison_cell *cell; 550 }; 551 552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 553 { 554 bio_list_merge(bios, master); 555 bio_list_init(master); 556 } 557 558 static void error_bio_list(struct bio_list *bios, int error) 559 { 560 struct bio *bio; 561 562 while ((bio = bio_list_pop(bios))) { 563 bio->bi_error = error; 564 bio_endio(bio); 565 } 566 } 567 568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 569 { 570 struct bio_list bios; 571 unsigned long flags; 572 573 bio_list_init(&bios); 574 575 spin_lock_irqsave(&tc->lock, flags); 576 __merge_bio_list(&bios, master); 577 spin_unlock_irqrestore(&tc->lock, flags); 578 579 error_bio_list(&bios, error); 580 } 581 582 static void requeue_deferred_cells(struct thin_c *tc) 583 { 584 struct pool *pool = tc->pool; 585 unsigned long flags; 586 struct list_head cells; 587 struct dm_bio_prison_cell *cell, *tmp; 588 589 INIT_LIST_HEAD(&cells); 590 591 spin_lock_irqsave(&tc->lock, flags); 592 list_splice_init(&tc->deferred_cells, &cells); 593 spin_unlock_irqrestore(&tc->lock, flags); 594 595 list_for_each_entry_safe(cell, tmp, &cells, user_list) 596 cell_requeue(pool, cell); 597 } 598 599 static void requeue_io(struct thin_c *tc) 600 { 601 struct bio_list bios; 602 unsigned long flags; 603 604 bio_list_init(&bios); 605 606 spin_lock_irqsave(&tc->lock, flags); 607 __merge_bio_list(&bios, &tc->deferred_bio_list); 608 __merge_bio_list(&bios, &tc->retry_on_resume_list); 609 spin_unlock_irqrestore(&tc->lock, flags); 610 611 error_bio_list(&bios, DM_ENDIO_REQUEUE); 612 requeue_deferred_cells(tc); 613 } 614 615 static void error_retry_list_with_code(struct pool *pool, int error) 616 { 617 struct thin_c *tc; 618 619 rcu_read_lock(); 620 list_for_each_entry_rcu(tc, &pool->active_thins, list) 621 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 622 rcu_read_unlock(); 623 } 624 625 static void error_retry_list(struct pool *pool) 626 { 627 int error = get_pool_io_error_code(pool); 628 629 error_retry_list_with_code(pool, error); 630 } 631 632 /* 633 * This section of code contains the logic for processing a thin device's IO. 634 * Much of the code depends on pool object resources (lists, workqueues, etc) 635 * but most is exclusively called from the thin target rather than the thin-pool 636 * target. 637 */ 638 639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 640 { 641 struct pool *pool = tc->pool; 642 sector_t block_nr = bio->bi_iter.bi_sector; 643 644 if (block_size_is_power_of_two(pool)) 645 block_nr >>= pool->sectors_per_block_shift; 646 else 647 (void) sector_div(block_nr, pool->sectors_per_block); 648 649 return block_nr; 650 } 651 652 /* 653 * Returns the _complete_ blocks that this bio covers. 654 */ 655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 656 dm_block_t *begin, dm_block_t *end) 657 { 658 struct pool *pool = tc->pool; 659 sector_t b = bio->bi_iter.bi_sector; 660 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 661 662 b += pool->sectors_per_block - 1ull; /* so we round up */ 663 664 if (block_size_is_power_of_two(pool)) { 665 b >>= pool->sectors_per_block_shift; 666 e >>= pool->sectors_per_block_shift; 667 } else { 668 (void) sector_div(b, pool->sectors_per_block); 669 (void) sector_div(e, pool->sectors_per_block); 670 } 671 672 if (e < b) 673 /* Can happen if the bio is within a single block. */ 674 e = b; 675 676 *begin = b; 677 *end = e; 678 } 679 680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 681 { 682 struct pool *pool = tc->pool; 683 sector_t bi_sector = bio->bi_iter.bi_sector; 684 685 bio->bi_bdev = tc->pool_dev->bdev; 686 if (block_size_is_power_of_two(pool)) 687 bio->bi_iter.bi_sector = 688 (block << pool->sectors_per_block_shift) | 689 (bi_sector & (pool->sectors_per_block - 1)); 690 else 691 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 692 sector_div(bi_sector, pool->sectors_per_block); 693 } 694 695 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 696 { 697 bio->bi_bdev = tc->origin_dev->bdev; 698 } 699 700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 701 { 702 return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) && 703 dm_thin_changed_this_transaction(tc->td); 704 } 705 706 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 707 { 708 struct dm_thin_endio_hook *h; 709 710 if (bio_op(bio) == REQ_OP_DISCARD) 711 return; 712 713 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 714 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 715 } 716 717 static void issue(struct thin_c *tc, struct bio *bio) 718 { 719 struct pool *pool = tc->pool; 720 unsigned long flags; 721 722 if (!bio_triggers_commit(tc, bio)) { 723 generic_make_request(bio); 724 return; 725 } 726 727 /* 728 * Complete bio with an error if earlier I/O caused changes to 729 * the metadata that can't be committed e.g, due to I/O errors 730 * on the metadata device. 731 */ 732 if (dm_thin_aborted_changes(tc->td)) { 733 bio_io_error(bio); 734 return; 735 } 736 737 /* 738 * Batch together any bios that trigger commits and then issue a 739 * single commit for them in process_deferred_bios(). 740 */ 741 spin_lock_irqsave(&pool->lock, flags); 742 bio_list_add(&pool->deferred_flush_bios, bio); 743 spin_unlock_irqrestore(&pool->lock, flags); 744 } 745 746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 747 { 748 remap_to_origin(tc, bio); 749 issue(tc, bio); 750 } 751 752 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 753 dm_block_t block) 754 { 755 remap(tc, bio, block); 756 issue(tc, bio); 757 } 758 759 /*----------------------------------------------------------------*/ 760 761 /* 762 * Bio endio functions. 763 */ 764 struct dm_thin_new_mapping { 765 struct list_head list; 766 767 bool pass_discard:1; 768 bool maybe_shared:1; 769 770 /* 771 * Track quiescing, copying and zeroing preparation actions. When this 772 * counter hits zero the block is prepared and can be inserted into the 773 * btree. 774 */ 775 atomic_t prepare_actions; 776 777 int err; 778 struct thin_c *tc; 779 dm_block_t virt_begin, virt_end; 780 dm_block_t data_block; 781 struct dm_bio_prison_cell *cell; 782 783 /* 784 * If the bio covers the whole area of a block then we can avoid 785 * zeroing or copying. Instead this bio is hooked. The bio will 786 * still be in the cell, so care has to be taken to avoid issuing 787 * the bio twice. 788 */ 789 struct bio *bio; 790 bio_end_io_t *saved_bi_end_io; 791 }; 792 793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 794 { 795 struct pool *pool = m->tc->pool; 796 797 if (atomic_dec_and_test(&m->prepare_actions)) { 798 list_add_tail(&m->list, &pool->prepared_mappings); 799 wake_worker(pool); 800 } 801 } 802 803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 804 { 805 unsigned long flags; 806 struct pool *pool = m->tc->pool; 807 808 spin_lock_irqsave(&pool->lock, flags); 809 __complete_mapping_preparation(m); 810 spin_unlock_irqrestore(&pool->lock, flags); 811 } 812 813 static void copy_complete(int read_err, unsigned long write_err, void *context) 814 { 815 struct dm_thin_new_mapping *m = context; 816 817 m->err = read_err || write_err ? -EIO : 0; 818 complete_mapping_preparation(m); 819 } 820 821 static void overwrite_endio(struct bio *bio) 822 { 823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 824 struct dm_thin_new_mapping *m = h->overwrite_mapping; 825 826 bio->bi_end_io = m->saved_bi_end_io; 827 828 m->err = bio->bi_error; 829 complete_mapping_preparation(m); 830 } 831 832 /*----------------------------------------------------------------*/ 833 834 /* 835 * Workqueue. 836 */ 837 838 /* 839 * Prepared mapping jobs. 840 */ 841 842 /* 843 * This sends the bios in the cell, except the original holder, back 844 * to the deferred_bios list. 845 */ 846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 847 { 848 struct pool *pool = tc->pool; 849 unsigned long flags; 850 851 spin_lock_irqsave(&tc->lock, flags); 852 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 853 spin_unlock_irqrestore(&tc->lock, flags); 854 855 wake_worker(pool); 856 } 857 858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 859 860 struct remap_info { 861 struct thin_c *tc; 862 struct bio_list defer_bios; 863 struct bio_list issue_bios; 864 }; 865 866 static void __inc_remap_and_issue_cell(void *context, 867 struct dm_bio_prison_cell *cell) 868 { 869 struct remap_info *info = context; 870 struct bio *bio; 871 872 while ((bio = bio_list_pop(&cell->bios))) { 873 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) || 874 bio_op(bio) == REQ_OP_DISCARD) 875 bio_list_add(&info->defer_bios, bio); 876 else { 877 inc_all_io_entry(info->tc->pool, bio); 878 879 /* 880 * We can't issue the bios with the bio prison lock 881 * held, so we add them to a list to issue on 882 * return from this function. 883 */ 884 bio_list_add(&info->issue_bios, bio); 885 } 886 } 887 } 888 889 static void inc_remap_and_issue_cell(struct thin_c *tc, 890 struct dm_bio_prison_cell *cell, 891 dm_block_t block) 892 { 893 struct bio *bio; 894 struct remap_info info; 895 896 info.tc = tc; 897 bio_list_init(&info.defer_bios); 898 bio_list_init(&info.issue_bios); 899 900 /* 901 * We have to be careful to inc any bios we're about to issue 902 * before the cell is released, and avoid a race with new bios 903 * being added to the cell. 904 */ 905 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 906 &info, cell); 907 908 while ((bio = bio_list_pop(&info.defer_bios))) 909 thin_defer_bio(tc, bio); 910 911 while ((bio = bio_list_pop(&info.issue_bios))) 912 remap_and_issue(info.tc, bio, block); 913 } 914 915 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 916 { 917 cell_error(m->tc->pool, m->cell); 918 list_del(&m->list); 919 mempool_free(m, m->tc->pool->mapping_pool); 920 } 921 922 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 923 { 924 struct thin_c *tc = m->tc; 925 struct pool *pool = tc->pool; 926 struct bio *bio = m->bio; 927 int r; 928 929 if (m->err) { 930 cell_error(pool, m->cell); 931 goto out; 932 } 933 934 /* 935 * Commit the prepared block into the mapping btree. 936 * Any I/O for this block arriving after this point will get 937 * remapped to it directly. 938 */ 939 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 940 if (r) { 941 metadata_operation_failed(pool, "dm_thin_insert_block", r); 942 cell_error(pool, m->cell); 943 goto out; 944 } 945 946 /* 947 * Release any bios held while the block was being provisioned. 948 * If we are processing a write bio that completely covers the block, 949 * we already processed it so can ignore it now when processing 950 * the bios in the cell. 951 */ 952 if (bio) { 953 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 954 bio_endio(bio); 955 } else { 956 inc_all_io_entry(tc->pool, m->cell->holder); 957 remap_and_issue(tc, m->cell->holder, m->data_block); 958 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 959 } 960 961 out: 962 list_del(&m->list); 963 mempool_free(m, pool->mapping_pool); 964 } 965 966 /*----------------------------------------------------------------*/ 967 968 static void free_discard_mapping(struct dm_thin_new_mapping *m) 969 { 970 struct thin_c *tc = m->tc; 971 if (m->cell) 972 cell_defer_no_holder(tc, m->cell); 973 mempool_free(m, tc->pool->mapping_pool); 974 } 975 976 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 977 { 978 bio_io_error(m->bio); 979 free_discard_mapping(m); 980 } 981 982 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 983 { 984 bio_endio(m->bio); 985 free_discard_mapping(m); 986 } 987 988 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 989 { 990 int r; 991 struct thin_c *tc = m->tc; 992 993 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 994 if (r) { 995 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 996 bio_io_error(m->bio); 997 } else 998 bio_endio(m->bio); 999 1000 cell_defer_no_holder(tc, m->cell); 1001 mempool_free(m, tc->pool->mapping_pool); 1002 } 1003 1004 /*----------------------------------------------------------------*/ 1005 1006 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1007 struct bio *discard_parent) 1008 { 1009 /* 1010 * We've already unmapped this range of blocks, but before we 1011 * passdown we have to check that these blocks are now unused. 1012 */ 1013 int r = 0; 1014 bool used = true; 1015 struct thin_c *tc = m->tc; 1016 struct pool *pool = tc->pool; 1017 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1018 struct discard_op op; 1019 1020 begin_discard(&op, tc, discard_parent); 1021 while (b != end) { 1022 /* find start of unmapped run */ 1023 for (; b < end; b++) { 1024 r = dm_pool_block_is_used(pool->pmd, b, &used); 1025 if (r) 1026 goto out; 1027 1028 if (!used) 1029 break; 1030 } 1031 1032 if (b == end) 1033 break; 1034 1035 /* find end of run */ 1036 for (e = b + 1; e != end; e++) { 1037 r = dm_pool_block_is_used(pool->pmd, e, &used); 1038 if (r) 1039 goto out; 1040 1041 if (used) 1042 break; 1043 } 1044 1045 r = issue_discard(&op, b, e); 1046 if (r) 1047 goto out; 1048 1049 b = e; 1050 } 1051 out: 1052 end_discard(&op, r); 1053 } 1054 1055 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1056 { 1057 unsigned long flags; 1058 struct pool *pool = m->tc->pool; 1059 1060 spin_lock_irqsave(&pool->lock, flags); 1061 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1062 spin_unlock_irqrestore(&pool->lock, flags); 1063 wake_worker(pool); 1064 } 1065 1066 static void passdown_endio(struct bio *bio) 1067 { 1068 /* 1069 * It doesn't matter if the passdown discard failed, we still want 1070 * to unmap (we ignore err). 1071 */ 1072 queue_passdown_pt2(bio->bi_private); 1073 } 1074 1075 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1076 { 1077 int r; 1078 struct thin_c *tc = m->tc; 1079 struct pool *pool = tc->pool; 1080 struct bio *discard_parent; 1081 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1082 1083 /* 1084 * Only this thread allocates blocks, so we can be sure that the 1085 * newly unmapped blocks will not be allocated before the end of 1086 * the function. 1087 */ 1088 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1089 if (r) { 1090 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1091 bio_io_error(m->bio); 1092 cell_defer_no_holder(tc, m->cell); 1093 mempool_free(m, pool->mapping_pool); 1094 return; 1095 } 1096 1097 discard_parent = bio_alloc(GFP_NOIO, 1); 1098 if (!discard_parent) { 1099 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1100 dm_device_name(tc->pool->pool_md)); 1101 queue_passdown_pt2(m); 1102 1103 } else { 1104 discard_parent->bi_end_io = passdown_endio; 1105 discard_parent->bi_private = m; 1106 1107 if (m->maybe_shared) 1108 passdown_double_checking_shared_status(m, discard_parent); 1109 else { 1110 struct discard_op op; 1111 1112 begin_discard(&op, tc, discard_parent); 1113 r = issue_discard(&op, m->data_block, data_end); 1114 end_discard(&op, r); 1115 } 1116 } 1117 1118 /* 1119 * Increment the unmapped blocks. This prevents a race between the 1120 * passdown io and reallocation of freed blocks. 1121 */ 1122 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1123 if (r) { 1124 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1125 bio_io_error(m->bio); 1126 cell_defer_no_holder(tc, m->cell); 1127 mempool_free(m, pool->mapping_pool); 1128 return; 1129 } 1130 } 1131 1132 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1133 { 1134 int r; 1135 struct thin_c *tc = m->tc; 1136 struct pool *pool = tc->pool; 1137 1138 /* 1139 * The passdown has completed, so now we can decrement all those 1140 * unmapped blocks. 1141 */ 1142 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1143 m->data_block + (m->virt_end - m->virt_begin)); 1144 if (r) { 1145 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1146 bio_io_error(m->bio); 1147 } else 1148 bio_endio(m->bio); 1149 1150 cell_defer_no_holder(tc, m->cell); 1151 mempool_free(m, pool->mapping_pool); 1152 } 1153 1154 static void process_prepared(struct pool *pool, struct list_head *head, 1155 process_mapping_fn *fn) 1156 { 1157 unsigned long flags; 1158 struct list_head maps; 1159 struct dm_thin_new_mapping *m, *tmp; 1160 1161 INIT_LIST_HEAD(&maps); 1162 spin_lock_irqsave(&pool->lock, flags); 1163 list_splice_init(head, &maps); 1164 spin_unlock_irqrestore(&pool->lock, flags); 1165 1166 list_for_each_entry_safe(m, tmp, &maps, list) 1167 (*fn)(m); 1168 } 1169 1170 /* 1171 * Deferred bio jobs. 1172 */ 1173 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1174 { 1175 return bio->bi_iter.bi_size == 1176 (pool->sectors_per_block << SECTOR_SHIFT); 1177 } 1178 1179 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1180 { 1181 return (bio_data_dir(bio) == WRITE) && 1182 io_overlaps_block(pool, bio); 1183 } 1184 1185 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1186 bio_end_io_t *fn) 1187 { 1188 *save = bio->bi_end_io; 1189 bio->bi_end_io = fn; 1190 } 1191 1192 static int ensure_next_mapping(struct pool *pool) 1193 { 1194 if (pool->next_mapping) 1195 return 0; 1196 1197 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1198 1199 return pool->next_mapping ? 0 : -ENOMEM; 1200 } 1201 1202 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1203 { 1204 struct dm_thin_new_mapping *m = pool->next_mapping; 1205 1206 BUG_ON(!pool->next_mapping); 1207 1208 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1209 INIT_LIST_HEAD(&m->list); 1210 m->bio = NULL; 1211 1212 pool->next_mapping = NULL; 1213 1214 return m; 1215 } 1216 1217 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1218 sector_t begin, sector_t end) 1219 { 1220 int r; 1221 struct dm_io_region to; 1222 1223 to.bdev = tc->pool_dev->bdev; 1224 to.sector = begin; 1225 to.count = end - begin; 1226 1227 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1228 if (r < 0) { 1229 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1230 copy_complete(1, 1, m); 1231 } 1232 } 1233 1234 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1235 dm_block_t data_begin, 1236 struct dm_thin_new_mapping *m) 1237 { 1238 struct pool *pool = tc->pool; 1239 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1240 1241 h->overwrite_mapping = m; 1242 m->bio = bio; 1243 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1244 inc_all_io_entry(pool, bio); 1245 remap_and_issue(tc, bio, data_begin); 1246 } 1247 1248 /* 1249 * A partial copy also needs to zero the uncopied region. 1250 */ 1251 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1252 struct dm_dev *origin, dm_block_t data_origin, 1253 dm_block_t data_dest, 1254 struct dm_bio_prison_cell *cell, struct bio *bio, 1255 sector_t len) 1256 { 1257 int r; 1258 struct pool *pool = tc->pool; 1259 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1260 1261 m->tc = tc; 1262 m->virt_begin = virt_block; 1263 m->virt_end = virt_block + 1u; 1264 m->data_block = data_dest; 1265 m->cell = cell; 1266 1267 /* 1268 * quiesce action + copy action + an extra reference held for the 1269 * duration of this function (we may need to inc later for a 1270 * partial zero). 1271 */ 1272 atomic_set(&m->prepare_actions, 3); 1273 1274 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1275 complete_mapping_preparation(m); /* already quiesced */ 1276 1277 /* 1278 * IO to pool_dev remaps to the pool target's data_dev. 1279 * 1280 * If the whole block of data is being overwritten, we can issue the 1281 * bio immediately. Otherwise we use kcopyd to clone the data first. 1282 */ 1283 if (io_overwrites_block(pool, bio)) 1284 remap_and_issue_overwrite(tc, bio, data_dest, m); 1285 else { 1286 struct dm_io_region from, to; 1287 1288 from.bdev = origin->bdev; 1289 from.sector = data_origin * pool->sectors_per_block; 1290 from.count = len; 1291 1292 to.bdev = tc->pool_dev->bdev; 1293 to.sector = data_dest * pool->sectors_per_block; 1294 to.count = len; 1295 1296 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1297 0, copy_complete, m); 1298 if (r < 0) { 1299 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1300 copy_complete(1, 1, m); 1301 1302 /* 1303 * We allow the zero to be issued, to simplify the 1304 * error path. Otherwise we'd need to start 1305 * worrying about decrementing the prepare_actions 1306 * counter. 1307 */ 1308 } 1309 1310 /* 1311 * Do we need to zero a tail region? 1312 */ 1313 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1314 atomic_inc(&m->prepare_actions); 1315 ll_zero(tc, m, 1316 data_dest * pool->sectors_per_block + len, 1317 (data_dest + 1) * pool->sectors_per_block); 1318 } 1319 } 1320 1321 complete_mapping_preparation(m); /* drop our ref */ 1322 } 1323 1324 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1325 dm_block_t data_origin, dm_block_t data_dest, 1326 struct dm_bio_prison_cell *cell, struct bio *bio) 1327 { 1328 schedule_copy(tc, virt_block, tc->pool_dev, 1329 data_origin, data_dest, cell, bio, 1330 tc->pool->sectors_per_block); 1331 } 1332 1333 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1334 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1335 struct bio *bio) 1336 { 1337 struct pool *pool = tc->pool; 1338 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1339 1340 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1341 m->tc = tc; 1342 m->virt_begin = virt_block; 1343 m->virt_end = virt_block + 1u; 1344 m->data_block = data_block; 1345 m->cell = cell; 1346 1347 /* 1348 * If the whole block of data is being overwritten or we are not 1349 * zeroing pre-existing data, we can issue the bio immediately. 1350 * Otherwise we use kcopyd to zero the data first. 1351 */ 1352 if (pool->pf.zero_new_blocks) { 1353 if (io_overwrites_block(pool, bio)) 1354 remap_and_issue_overwrite(tc, bio, data_block, m); 1355 else 1356 ll_zero(tc, m, data_block * pool->sectors_per_block, 1357 (data_block + 1) * pool->sectors_per_block); 1358 } else 1359 process_prepared_mapping(m); 1360 } 1361 1362 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1363 dm_block_t data_dest, 1364 struct dm_bio_prison_cell *cell, struct bio *bio) 1365 { 1366 struct pool *pool = tc->pool; 1367 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1368 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1369 1370 if (virt_block_end <= tc->origin_size) 1371 schedule_copy(tc, virt_block, tc->origin_dev, 1372 virt_block, data_dest, cell, bio, 1373 pool->sectors_per_block); 1374 1375 else if (virt_block_begin < tc->origin_size) 1376 schedule_copy(tc, virt_block, tc->origin_dev, 1377 virt_block, data_dest, cell, bio, 1378 tc->origin_size - virt_block_begin); 1379 1380 else 1381 schedule_zero(tc, virt_block, data_dest, cell, bio); 1382 } 1383 1384 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1385 1386 static void check_for_space(struct pool *pool) 1387 { 1388 int r; 1389 dm_block_t nr_free; 1390 1391 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1392 return; 1393 1394 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1395 if (r) 1396 return; 1397 1398 if (nr_free) 1399 set_pool_mode(pool, PM_WRITE); 1400 } 1401 1402 /* 1403 * A non-zero return indicates read_only or fail_io mode. 1404 * Many callers don't care about the return value. 1405 */ 1406 static int commit(struct pool *pool) 1407 { 1408 int r; 1409 1410 if (get_pool_mode(pool) >= PM_READ_ONLY) 1411 return -EINVAL; 1412 1413 r = dm_pool_commit_metadata(pool->pmd); 1414 if (r) 1415 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1416 else 1417 check_for_space(pool); 1418 1419 return r; 1420 } 1421 1422 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1423 { 1424 unsigned long flags; 1425 1426 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1427 DMWARN("%s: reached low water mark for data device: sending event.", 1428 dm_device_name(pool->pool_md)); 1429 spin_lock_irqsave(&pool->lock, flags); 1430 pool->low_water_triggered = true; 1431 spin_unlock_irqrestore(&pool->lock, flags); 1432 dm_table_event(pool->ti->table); 1433 } 1434 } 1435 1436 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1437 { 1438 int r; 1439 dm_block_t free_blocks; 1440 struct pool *pool = tc->pool; 1441 1442 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1443 return -EINVAL; 1444 1445 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1446 if (r) { 1447 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1448 return r; 1449 } 1450 1451 check_low_water_mark(pool, free_blocks); 1452 1453 if (!free_blocks) { 1454 /* 1455 * Try to commit to see if that will free up some 1456 * more space. 1457 */ 1458 r = commit(pool); 1459 if (r) 1460 return r; 1461 1462 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1463 if (r) { 1464 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1465 return r; 1466 } 1467 1468 if (!free_blocks) { 1469 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1470 return -ENOSPC; 1471 } 1472 } 1473 1474 r = dm_pool_alloc_data_block(pool->pmd, result); 1475 if (r) { 1476 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1477 return r; 1478 } 1479 1480 return 0; 1481 } 1482 1483 /* 1484 * If we have run out of space, queue bios until the device is 1485 * resumed, presumably after having been reloaded with more space. 1486 */ 1487 static void retry_on_resume(struct bio *bio) 1488 { 1489 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1490 struct thin_c *tc = h->tc; 1491 unsigned long flags; 1492 1493 spin_lock_irqsave(&tc->lock, flags); 1494 bio_list_add(&tc->retry_on_resume_list, bio); 1495 spin_unlock_irqrestore(&tc->lock, flags); 1496 } 1497 1498 static int should_error_unserviceable_bio(struct pool *pool) 1499 { 1500 enum pool_mode m = get_pool_mode(pool); 1501 1502 switch (m) { 1503 case PM_WRITE: 1504 /* Shouldn't get here */ 1505 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1506 return -EIO; 1507 1508 case PM_OUT_OF_DATA_SPACE: 1509 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1510 1511 case PM_READ_ONLY: 1512 case PM_FAIL: 1513 return -EIO; 1514 default: 1515 /* Shouldn't get here */ 1516 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1517 return -EIO; 1518 } 1519 } 1520 1521 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1522 { 1523 int error = should_error_unserviceable_bio(pool); 1524 1525 if (error) { 1526 bio->bi_error = error; 1527 bio_endio(bio); 1528 } else 1529 retry_on_resume(bio); 1530 } 1531 1532 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1533 { 1534 struct bio *bio; 1535 struct bio_list bios; 1536 int error; 1537 1538 error = should_error_unserviceable_bio(pool); 1539 if (error) { 1540 cell_error_with_code(pool, cell, error); 1541 return; 1542 } 1543 1544 bio_list_init(&bios); 1545 cell_release(pool, cell, &bios); 1546 1547 while ((bio = bio_list_pop(&bios))) 1548 retry_on_resume(bio); 1549 } 1550 1551 static void process_discard_cell_no_passdown(struct thin_c *tc, 1552 struct dm_bio_prison_cell *virt_cell) 1553 { 1554 struct pool *pool = tc->pool; 1555 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1556 1557 /* 1558 * We don't need to lock the data blocks, since there's no 1559 * passdown. We only lock data blocks for allocation and breaking sharing. 1560 */ 1561 m->tc = tc; 1562 m->virt_begin = virt_cell->key.block_begin; 1563 m->virt_end = virt_cell->key.block_end; 1564 m->cell = virt_cell; 1565 m->bio = virt_cell->holder; 1566 1567 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1568 pool->process_prepared_discard(m); 1569 } 1570 1571 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1572 struct bio *bio) 1573 { 1574 struct pool *pool = tc->pool; 1575 1576 int r; 1577 bool maybe_shared; 1578 struct dm_cell_key data_key; 1579 struct dm_bio_prison_cell *data_cell; 1580 struct dm_thin_new_mapping *m; 1581 dm_block_t virt_begin, virt_end, data_begin; 1582 1583 while (begin != end) { 1584 r = ensure_next_mapping(pool); 1585 if (r) 1586 /* we did our best */ 1587 return; 1588 1589 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1590 &data_begin, &maybe_shared); 1591 if (r) 1592 /* 1593 * Silently fail, letting any mappings we've 1594 * created complete. 1595 */ 1596 break; 1597 1598 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1599 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1600 /* contention, we'll give up with this range */ 1601 begin = virt_end; 1602 continue; 1603 } 1604 1605 /* 1606 * IO may still be going to the destination block. We must 1607 * quiesce before we can do the removal. 1608 */ 1609 m = get_next_mapping(pool); 1610 m->tc = tc; 1611 m->maybe_shared = maybe_shared; 1612 m->virt_begin = virt_begin; 1613 m->virt_end = virt_end; 1614 m->data_block = data_begin; 1615 m->cell = data_cell; 1616 m->bio = bio; 1617 1618 /* 1619 * The parent bio must not complete before sub discard bios are 1620 * chained to it (see end_discard's bio_chain)! 1621 * 1622 * This per-mapping bi_remaining increment is paired with 1623 * the implicit decrement that occurs via bio_endio() in 1624 * end_discard(). 1625 */ 1626 bio_inc_remaining(bio); 1627 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1628 pool->process_prepared_discard(m); 1629 1630 begin = virt_end; 1631 } 1632 } 1633 1634 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1635 { 1636 struct bio *bio = virt_cell->holder; 1637 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1638 1639 /* 1640 * The virt_cell will only get freed once the origin bio completes. 1641 * This means it will remain locked while all the individual 1642 * passdown bios are in flight. 1643 */ 1644 h->cell = virt_cell; 1645 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1646 1647 /* 1648 * We complete the bio now, knowing that the bi_remaining field 1649 * will prevent completion until the sub range discards have 1650 * completed. 1651 */ 1652 bio_endio(bio); 1653 } 1654 1655 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1656 { 1657 dm_block_t begin, end; 1658 struct dm_cell_key virt_key; 1659 struct dm_bio_prison_cell *virt_cell; 1660 1661 get_bio_block_range(tc, bio, &begin, &end); 1662 if (begin == end) { 1663 /* 1664 * The discard covers less than a block. 1665 */ 1666 bio_endio(bio); 1667 return; 1668 } 1669 1670 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1671 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1672 /* 1673 * Potential starvation issue: We're relying on the 1674 * fs/application being well behaved, and not trying to 1675 * send IO to a region at the same time as discarding it. 1676 * If they do this persistently then it's possible this 1677 * cell will never be granted. 1678 */ 1679 return; 1680 1681 tc->pool->process_discard_cell(tc, virt_cell); 1682 } 1683 1684 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1685 struct dm_cell_key *key, 1686 struct dm_thin_lookup_result *lookup_result, 1687 struct dm_bio_prison_cell *cell) 1688 { 1689 int r; 1690 dm_block_t data_block; 1691 struct pool *pool = tc->pool; 1692 1693 r = alloc_data_block(tc, &data_block); 1694 switch (r) { 1695 case 0: 1696 schedule_internal_copy(tc, block, lookup_result->block, 1697 data_block, cell, bio); 1698 break; 1699 1700 case -ENOSPC: 1701 retry_bios_on_resume(pool, cell); 1702 break; 1703 1704 default: 1705 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1706 __func__, r); 1707 cell_error(pool, cell); 1708 break; 1709 } 1710 } 1711 1712 static void __remap_and_issue_shared_cell(void *context, 1713 struct dm_bio_prison_cell *cell) 1714 { 1715 struct remap_info *info = context; 1716 struct bio *bio; 1717 1718 while ((bio = bio_list_pop(&cell->bios))) { 1719 if ((bio_data_dir(bio) == WRITE) || 1720 (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) || 1721 bio_op(bio) == REQ_OP_DISCARD)) 1722 bio_list_add(&info->defer_bios, bio); 1723 else { 1724 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1725 1726 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1727 inc_all_io_entry(info->tc->pool, bio); 1728 bio_list_add(&info->issue_bios, bio); 1729 } 1730 } 1731 } 1732 1733 static void remap_and_issue_shared_cell(struct thin_c *tc, 1734 struct dm_bio_prison_cell *cell, 1735 dm_block_t block) 1736 { 1737 struct bio *bio; 1738 struct remap_info info; 1739 1740 info.tc = tc; 1741 bio_list_init(&info.defer_bios); 1742 bio_list_init(&info.issue_bios); 1743 1744 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1745 &info, cell); 1746 1747 while ((bio = bio_list_pop(&info.defer_bios))) 1748 thin_defer_bio(tc, bio); 1749 1750 while ((bio = bio_list_pop(&info.issue_bios))) 1751 remap_and_issue(tc, bio, block); 1752 } 1753 1754 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1755 dm_block_t block, 1756 struct dm_thin_lookup_result *lookup_result, 1757 struct dm_bio_prison_cell *virt_cell) 1758 { 1759 struct dm_bio_prison_cell *data_cell; 1760 struct pool *pool = tc->pool; 1761 struct dm_cell_key key; 1762 1763 /* 1764 * If cell is already occupied, then sharing is already in the process 1765 * of being broken so we have nothing further to do here. 1766 */ 1767 build_data_key(tc->td, lookup_result->block, &key); 1768 if (bio_detain(pool, &key, bio, &data_cell)) { 1769 cell_defer_no_holder(tc, virt_cell); 1770 return; 1771 } 1772 1773 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1774 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1775 cell_defer_no_holder(tc, virt_cell); 1776 } else { 1777 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1778 1779 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1780 inc_all_io_entry(pool, bio); 1781 remap_and_issue(tc, bio, lookup_result->block); 1782 1783 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1784 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1785 } 1786 } 1787 1788 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1789 struct dm_bio_prison_cell *cell) 1790 { 1791 int r; 1792 dm_block_t data_block; 1793 struct pool *pool = tc->pool; 1794 1795 /* 1796 * Remap empty bios (flushes) immediately, without provisioning. 1797 */ 1798 if (!bio->bi_iter.bi_size) { 1799 inc_all_io_entry(pool, bio); 1800 cell_defer_no_holder(tc, cell); 1801 1802 remap_and_issue(tc, bio, 0); 1803 return; 1804 } 1805 1806 /* 1807 * Fill read bios with zeroes and complete them immediately. 1808 */ 1809 if (bio_data_dir(bio) == READ) { 1810 zero_fill_bio(bio); 1811 cell_defer_no_holder(tc, cell); 1812 bio_endio(bio); 1813 return; 1814 } 1815 1816 r = alloc_data_block(tc, &data_block); 1817 switch (r) { 1818 case 0: 1819 if (tc->origin_dev) 1820 schedule_external_copy(tc, block, data_block, cell, bio); 1821 else 1822 schedule_zero(tc, block, data_block, cell, bio); 1823 break; 1824 1825 case -ENOSPC: 1826 retry_bios_on_resume(pool, cell); 1827 break; 1828 1829 default: 1830 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1831 __func__, r); 1832 cell_error(pool, cell); 1833 break; 1834 } 1835 } 1836 1837 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1838 { 1839 int r; 1840 struct pool *pool = tc->pool; 1841 struct bio *bio = cell->holder; 1842 dm_block_t block = get_bio_block(tc, bio); 1843 struct dm_thin_lookup_result lookup_result; 1844 1845 if (tc->requeue_mode) { 1846 cell_requeue(pool, cell); 1847 return; 1848 } 1849 1850 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1851 switch (r) { 1852 case 0: 1853 if (lookup_result.shared) 1854 process_shared_bio(tc, bio, block, &lookup_result, cell); 1855 else { 1856 inc_all_io_entry(pool, bio); 1857 remap_and_issue(tc, bio, lookup_result.block); 1858 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1859 } 1860 break; 1861 1862 case -ENODATA: 1863 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1864 inc_all_io_entry(pool, bio); 1865 cell_defer_no_holder(tc, cell); 1866 1867 if (bio_end_sector(bio) <= tc->origin_size) 1868 remap_to_origin_and_issue(tc, bio); 1869 1870 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1871 zero_fill_bio(bio); 1872 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1873 remap_to_origin_and_issue(tc, bio); 1874 1875 } else { 1876 zero_fill_bio(bio); 1877 bio_endio(bio); 1878 } 1879 } else 1880 provision_block(tc, bio, block, cell); 1881 break; 1882 1883 default: 1884 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1885 __func__, r); 1886 cell_defer_no_holder(tc, cell); 1887 bio_io_error(bio); 1888 break; 1889 } 1890 } 1891 1892 static void process_bio(struct thin_c *tc, struct bio *bio) 1893 { 1894 struct pool *pool = tc->pool; 1895 dm_block_t block = get_bio_block(tc, bio); 1896 struct dm_bio_prison_cell *cell; 1897 struct dm_cell_key key; 1898 1899 /* 1900 * If cell is already occupied, then the block is already 1901 * being provisioned so we have nothing further to do here. 1902 */ 1903 build_virtual_key(tc->td, block, &key); 1904 if (bio_detain(pool, &key, bio, &cell)) 1905 return; 1906 1907 process_cell(tc, cell); 1908 } 1909 1910 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1911 struct dm_bio_prison_cell *cell) 1912 { 1913 int r; 1914 int rw = bio_data_dir(bio); 1915 dm_block_t block = get_bio_block(tc, bio); 1916 struct dm_thin_lookup_result lookup_result; 1917 1918 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1919 switch (r) { 1920 case 0: 1921 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1922 handle_unserviceable_bio(tc->pool, bio); 1923 if (cell) 1924 cell_defer_no_holder(tc, cell); 1925 } else { 1926 inc_all_io_entry(tc->pool, bio); 1927 remap_and_issue(tc, bio, lookup_result.block); 1928 if (cell) 1929 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1930 } 1931 break; 1932 1933 case -ENODATA: 1934 if (cell) 1935 cell_defer_no_holder(tc, cell); 1936 if (rw != READ) { 1937 handle_unserviceable_bio(tc->pool, bio); 1938 break; 1939 } 1940 1941 if (tc->origin_dev) { 1942 inc_all_io_entry(tc->pool, bio); 1943 remap_to_origin_and_issue(tc, bio); 1944 break; 1945 } 1946 1947 zero_fill_bio(bio); 1948 bio_endio(bio); 1949 break; 1950 1951 default: 1952 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1953 __func__, r); 1954 if (cell) 1955 cell_defer_no_holder(tc, cell); 1956 bio_io_error(bio); 1957 break; 1958 } 1959 } 1960 1961 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1962 { 1963 __process_bio_read_only(tc, bio, NULL); 1964 } 1965 1966 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1967 { 1968 __process_bio_read_only(tc, cell->holder, cell); 1969 } 1970 1971 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1972 { 1973 bio_endio(bio); 1974 } 1975 1976 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1977 { 1978 bio_io_error(bio); 1979 } 1980 1981 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1982 { 1983 cell_success(tc->pool, cell); 1984 } 1985 1986 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1987 { 1988 cell_error(tc->pool, cell); 1989 } 1990 1991 /* 1992 * FIXME: should we also commit due to size of transaction, measured in 1993 * metadata blocks? 1994 */ 1995 static int need_commit_due_to_time(struct pool *pool) 1996 { 1997 return !time_in_range(jiffies, pool->last_commit_jiffies, 1998 pool->last_commit_jiffies + COMMIT_PERIOD); 1999 } 2000 2001 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2002 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2003 2004 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2005 { 2006 struct rb_node **rbp, *parent; 2007 struct dm_thin_endio_hook *pbd; 2008 sector_t bi_sector = bio->bi_iter.bi_sector; 2009 2010 rbp = &tc->sort_bio_list.rb_node; 2011 parent = NULL; 2012 while (*rbp) { 2013 parent = *rbp; 2014 pbd = thin_pbd(parent); 2015 2016 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2017 rbp = &(*rbp)->rb_left; 2018 else 2019 rbp = &(*rbp)->rb_right; 2020 } 2021 2022 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2023 rb_link_node(&pbd->rb_node, parent, rbp); 2024 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2025 } 2026 2027 static void __extract_sorted_bios(struct thin_c *tc) 2028 { 2029 struct rb_node *node; 2030 struct dm_thin_endio_hook *pbd; 2031 struct bio *bio; 2032 2033 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2034 pbd = thin_pbd(node); 2035 bio = thin_bio(pbd); 2036 2037 bio_list_add(&tc->deferred_bio_list, bio); 2038 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2039 } 2040 2041 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2042 } 2043 2044 static void __sort_thin_deferred_bios(struct thin_c *tc) 2045 { 2046 struct bio *bio; 2047 struct bio_list bios; 2048 2049 bio_list_init(&bios); 2050 bio_list_merge(&bios, &tc->deferred_bio_list); 2051 bio_list_init(&tc->deferred_bio_list); 2052 2053 /* Sort deferred_bio_list using rb-tree */ 2054 while ((bio = bio_list_pop(&bios))) 2055 __thin_bio_rb_add(tc, bio); 2056 2057 /* 2058 * Transfer the sorted bios in sort_bio_list back to 2059 * deferred_bio_list to allow lockless submission of 2060 * all bios. 2061 */ 2062 __extract_sorted_bios(tc); 2063 } 2064 2065 static void process_thin_deferred_bios(struct thin_c *tc) 2066 { 2067 struct pool *pool = tc->pool; 2068 unsigned long flags; 2069 struct bio *bio; 2070 struct bio_list bios; 2071 struct blk_plug plug; 2072 unsigned count = 0; 2073 2074 if (tc->requeue_mode) { 2075 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 2076 return; 2077 } 2078 2079 bio_list_init(&bios); 2080 2081 spin_lock_irqsave(&tc->lock, flags); 2082 2083 if (bio_list_empty(&tc->deferred_bio_list)) { 2084 spin_unlock_irqrestore(&tc->lock, flags); 2085 return; 2086 } 2087 2088 __sort_thin_deferred_bios(tc); 2089 2090 bio_list_merge(&bios, &tc->deferred_bio_list); 2091 bio_list_init(&tc->deferred_bio_list); 2092 2093 spin_unlock_irqrestore(&tc->lock, flags); 2094 2095 blk_start_plug(&plug); 2096 while ((bio = bio_list_pop(&bios))) { 2097 /* 2098 * If we've got no free new_mapping structs, and processing 2099 * this bio might require one, we pause until there are some 2100 * prepared mappings to process. 2101 */ 2102 if (ensure_next_mapping(pool)) { 2103 spin_lock_irqsave(&tc->lock, flags); 2104 bio_list_add(&tc->deferred_bio_list, bio); 2105 bio_list_merge(&tc->deferred_bio_list, &bios); 2106 spin_unlock_irqrestore(&tc->lock, flags); 2107 break; 2108 } 2109 2110 if (bio_op(bio) == REQ_OP_DISCARD) 2111 pool->process_discard(tc, bio); 2112 else 2113 pool->process_bio(tc, bio); 2114 2115 if ((count++ & 127) == 0) { 2116 throttle_work_update(&pool->throttle); 2117 dm_pool_issue_prefetches(pool->pmd); 2118 } 2119 } 2120 blk_finish_plug(&plug); 2121 } 2122 2123 static int cmp_cells(const void *lhs, const void *rhs) 2124 { 2125 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2126 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2127 2128 BUG_ON(!lhs_cell->holder); 2129 BUG_ON(!rhs_cell->holder); 2130 2131 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2132 return -1; 2133 2134 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2135 return 1; 2136 2137 return 0; 2138 } 2139 2140 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2141 { 2142 unsigned count = 0; 2143 struct dm_bio_prison_cell *cell, *tmp; 2144 2145 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2146 if (count >= CELL_SORT_ARRAY_SIZE) 2147 break; 2148 2149 pool->cell_sort_array[count++] = cell; 2150 list_del(&cell->user_list); 2151 } 2152 2153 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2154 2155 return count; 2156 } 2157 2158 static void process_thin_deferred_cells(struct thin_c *tc) 2159 { 2160 struct pool *pool = tc->pool; 2161 unsigned long flags; 2162 struct list_head cells; 2163 struct dm_bio_prison_cell *cell; 2164 unsigned i, j, count; 2165 2166 INIT_LIST_HEAD(&cells); 2167 2168 spin_lock_irqsave(&tc->lock, flags); 2169 list_splice_init(&tc->deferred_cells, &cells); 2170 spin_unlock_irqrestore(&tc->lock, flags); 2171 2172 if (list_empty(&cells)) 2173 return; 2174 2175 do { 2176 count = sort_cells(tc->pool, &cells); 2177 2178 for (i = 0; i < count; i++) { 2179 cell = pool->cell_sort_array[i]; 2180 BUG_ON(!cell->holder); 2181 2182 /* 2183 * If we've got no free new_mapping structs, and processing 2184 * this bio might require one, we pause until there are some 2185 * prepared mappings to process. 2186 */ 2187 if (ensure_next_mapping(pool)) { 2188 for (j = i; j < count; j++) 2189 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2190 2191 spin_lock_irqsave(&tc->lock, flags); 2192 list_splice(&cells, &tc->deferred_cells); 2193 spin_unlock_irqrestore(&tc->lock, flags); 2194 return; 2195 } 2196 2197 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2198 pool->process_discard_cell(tc, cell); 2199 else 2200 pool->process_cell(tc, cell); 2201 } 2202 } while (!list_empty(&cells)); 2203 } 2204 2205 static void thin_get(struct thin_c *tc); 2206 static void thin_put(struct thin_c *tc); 2207 2208 /* 2209 * We can't hold rcu_read_lock() around code that can block. So we 2210 * find a thin with the rcu lock held; bump a refcount; then drop 2211 * the lock. 2212 */ 2213 static struct thin_c *get_first_thin(struct pool *pool) 2214 { 2215 struct thin_c *tc = NULL; 2216 2217 rcu_read_lock(); 2218 if (!list_empty(&pool->active_thins)) { 2219 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2220 thin_get(tc); 2221 } 2222 rcu_read_unlock(); 2223 2224 return tc; 2225 } 2226 2227 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2228 { 2229 struct thin_c *old_tc = tc; 2230 2231 rcu_read_lock(); 2232 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2233 thin_get(tc); 2234 thin_put(old_tc); 2235 rcu_read_unlock(); 2236 return tc; 2237 } 2238 thin_put(old_tc); 2239 rcu_read_unlock(); 2240 2241 return NULL; 2242 } 2243 2244 static void process_deferred_bios(struct pool *pool) 2245 { 2246 unsigned long flags; 2247 struct bio *bio; 2248 struct bio_list bios; 2249 struct thin_c *tc; 2250 2251 tc = get_first_thin(pool); 2252 while (tc) { 2253 process_thin_deferred_cells(tc); 2254 process_thin_deferred_bios(tc); 2255 tc = get_next_thin(pool, tc); 2256 } 2257 2258 /* 2259 * If there are any deferred flush bios, we must commit 2260 * the metadata before issuing them. 2261 */ 2262 bio_list_init(&bios); 2263 spin_lock_irqsave(&pool->lock, flags); 2264 bio_list_merge(&bios, &pool->deferred_flush_bios); 2265 bio_list_init(&pool->deferred_flush_bios); 2266 spin_unlock_irqrestore(&pool->lock, flags); 2267 2268 if (bio_list_empty(&bios) && 2269 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2270 return; 2271 2272 if (commit(pool)) { 2273 while ((bio = bio_list_pop(&bios))) 2274 bio_io_error(bio); 2275 return; 2276 } 2277 pool->last_commit_jiffies = jiffies; 2278 2279 while ((bio = bio_list_pop(&bios))) 2280 generic_make_request(bio); 2281 } 2282 2283 static void do_worker(struct work_struct *ws) 2284 { 2285 struct pool *pool = container_of(ws, struct pool, worker); 2286 2287 throttle_work_start(&pool->throttle); 2288 dm_pool_issue_prefetches(pool->pmd); 2289 throttle_work_update(&pool->throttle); 2290 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2291 throttle_work_update(&pool->throttle); 2292 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2293 throttle_work_update(&pool->throttle); 2294 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2295 throttle_work_update(&pool->throttle); 2296 process_deferred_bios(pool); 2297 throttle_work_complete(&pool->throttle); 2298 } 2299 2300 /* 2301 * We want to commit periodically so that not too much 2302 * unwritten data builds up. 2303 */ 2304 static void do_waker(struct work_struct *ws) 2305 { 2306 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2307 wake_worker(pool); 2308 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2309 } 2310 2311 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2312 2313 /* 2314 * We're holding onto IO to allow userland time to react. After the 2315 * timeout either the pool will have been resized (and thus back in 2316 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2317 */ 2318 static void do_no_space_timeout(struct work_struct *ws) 2319 { 2320 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2321 no_space_timeout); 2322 2323 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2324 pool->pf.error_if_no_space = true; 2325 notify_of_pool_mode_change_to_oods(pool); 2326 error_retry_list_with_code(pool, -ENOSPC); 2327 } 2328 } 2329 2330 /*----------------------------------------------------------------*/ 2331 2332 struct pool_work { 2333 struct work_struct worker; 2334 struct completion complete; 2335 }; 2336 2337 static struct pool_work *to_pool_work(struct work_struct *ws) 2338 { 2339 return container_of(ws, struct pool_work, worker); 2340 } 2341 2342 static void pool_work_complete(struct pool_work *pw) 2343 { 2344 complete(&pw->complete); 2345 } 2346 2347 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2348 void (*fn)(struct work_struct *)) 2349 { 2350 INIT_WORK_ONSTACK(&pw->worker, fn); 2351 init_completion(&pw->complete); 2352 queue_work(pool->wq, &pw->worker); 2353 wait_for_completion(&pw->complete); 2354 } 2355 2356 /*----------------------------------------------------------------*/ 2357 2358 struct noflush_work { 2359 struct pool_work pw; 2360 struct thin_c *tc; 2361 }; 2362 2363 static struct noflush_work *to_noflush(struct work_struct *ws) 2364 { 2365 return container_of(to_pool_work(ws), struct noflush_work, pw); 2366 } 2367 2368 static void do_noflush_start(struct work_struct *ws) 2369 { 2370 struct noflush_work *w = to_noflush(ws); 2371 w->tc->requeue_mode = true; 2372 requeue_io(w->tc); 2373 pool_work_complete(&w->pw); 2374 } 2375 2376 static void do_noflush_stop(struct work_struct *ws) 2377 { 2378 struct noflush_work *w = to_noflush(ws); 2379 w->tc->requeue_mode = false; 2380 pool_work_complete(&w->pw); 2381 } 2382 2383 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2384 { 2385 struct noflush_work w; 2386 2387 w.tc = tc; 2388 pool_work_wait(&w.pw, tc->pool, fn); 2389 } 2390 2391 /*----------------------------------------------------------------*/ 2392 2393 static enum pool_mode get_pool_mode(struct pool *pool) 2394 { 2395 return pool->pf.mode; 2396 } 2397 2398 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2399 { 2400 dm_table_event(pool->ti->table); 2401 DMINFO("%s: switching pool to %s mode", 2402 dm_device_name(pool->pool_md), new_mode); 2403 } 2404 2405 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2406 { 2407 if (!pool->pf.error_if_no_space) 2408 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2409 else 2410 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2411 } 2412 2413 static bool passdown_enabled(struct pool_c *pt) 2414 { 2415 return pt->adjusted_pf.discard_passdown; 2416 } 2417 2418 static void set_discard_callbacks(struct pool *pool) 2419 { 2420 struct pool_c *pt = pool->ti->private; 2421 2422 if (passdown_enabled(pt)) { 2423 pool->process_discard_cell = process_discard_cell_passdown; 2424 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2425 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2426 } else { 2427 pool->process_discard_cell = process_discard_cell_no_passdown; 2428 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2429 } 2430 } 2431 2432 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2433 { 2434 struct pool_c *pt = pool->ti->private; 2435 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2436 enum pool_mode old_mode = get_pool_mode(pool); 2437 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2438 2439 /* 2440 * Never allow the pool to transition to PM_WRITE mode if user 2441 * intervention is required to verify metadata and data consistency. 2442 */ 2443 if (new_mode == PM_WRITE && needs_check) { 2444 DMERR("%s: unable to switch pool to write mode until repaired.", 2445 dm_device_name(pool->pool_md)); 2446 if (old_mode != new_mode) 2447 new_mode = old_mode; 2448 else 2449 new_mode = PM_READ_ONLY; 2450 } 2451 /* 2452 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2453 * not going to recover without a thin_repair. So we never let the 2454 * pool move out of the old mode. 2455 */ 2456 if (old_mode == PM_FAIL) 2457 new_mode = old_mode; 2458 2459 switch (new_mode) { 2460 case PM_FAIL: 2461 if (old_mode != new_mode) 2462 notify_of_pool_mode_change(pool, "failure"); 2463 dm_pool_metadata_read_only(pool->pmd); 2464 pool->process_bio = process_bio_fail; 2465 pool->process_discard = process_bio_fail; 2466 pool->process_cell = process_cell_fail; 2467 pool->process_discard_cell = process_cell_fail; 2468 pool->process_prepared_mapping = process_prepared_mapping_fail; 2469 pool->process_prepared_discard = process_prepared_discard_fail; 2470 2471 error_retry_list(pool); 2472 break; 2473 2474 case PM_READ_ONLY: 2475 if (old_mode != new_mode) 2476 notify_of_pool_mode_change(pool, "read-only"); 2477 dm_pool_metadata_read_only(pool->pmd); 2478 pool->process_bio = process_bio_read_only; 2479 pool->process_discard = process_bio_success; 2480 pool->process_cell = process_cell_read_only; 2481 pool->process_discard_cell = process_cell_success; 2482 pool->process_prepared_mapping = process_prepared_mapping_fail; 2483 pool->process_prepared_discard = process_prepared_discard_success; 2484 2485 error_retry_list(pool); 2486 break; 2487 2488 case PM_OUT_OF_DATA_SPACE: 2489 /* 2490 * Ideally we'd never hit this state; the low water mark 2491 * would trigger userland to extend the pool before we 2492 * completely run out of data space. However, many small 2493 * IOs to unprovisioned space can consume data space at an 2494 * alarming rate. Adjust your low water mark if you're 2495 * frequently seeing this mode. 2496 */ 2497 if (old_mode != new_mode) 2498 notify_of_pool_mode_change_to_oods(pool); 2499 pool->out_of_data_space = true; 2500 pool->process_bio = process_bio_read_only; 2501 pool->process_discard = process_discard_bio; 2502 pool->process_cell = process_cell_read_only; 2503 pool->process_prepared_mapping = process_prepared_mapping; 2504 set_discard_callbacks(pool); 2505 2506 if (!pool->pf.error_if_no_space && no_space_timeout) 2507 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2508 break; 2509 2510 case PM_WRITE: 2511 if (old_mode != new_mode) 2512 notify_of_pool_mode_change(pool, "write"); 2513 pool->out_of_data_space = false; 2514 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2515 dm_pool_metadata_read_write(pool->pmd); 2516 pool->process_bio = process_bio; 2517 pool->process_discard = process_discard_bio; 2518 pool->process_cell = process_cell; 2519 pool->process_prepared_mapping = process_prepared_mapping; 2520 set_discard_callbacks(pool); 2521 break; 2522 } 2523 2524 pool->pf.mode = new_mode; 2525 /* 2526 * The pool mode may have changed, sync it so bind_control_target() 2527 * doesn't cause an unexpected mode transition on resume. 2528 */ 2529 pt->adjusted_pf.mode = new_mode; 2530 } 2531 2532 static void abort_transaction(struct pool *pool) 2533 { 2534 const char *dev_name = dm_device_name(pool->pool_md); 2535 2536 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2537 if (dm_pool_abort_metadata(pool->pmd)) { 2538 DMERR("%s: failed to abort metadata transaction", dev_name); 2539 set_pool_mode(pool, PM_FAIL); 2540 } 2541 2542 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2543 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2544 set_pool_mode(pool, PM_FAIL); 2545 } 2546 } 2547 2548 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2549 { 2550 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2551 dm_device_name(pool->pool_md), op, r); 2552 2553 abort_transaction(pool); 2554 set_pool_mode(pool, PM_READ_ONLY); 2555 } 2556 2557 /*----------------------------------------------------------------*/ 2558 2559 /* 2560 * Mapping functions. 2561 */ 2562 2563 /* 2564 * Called only while mapping a thin bio to hand it over to the workqueue. 2565 */ 2566 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2567 { 2568 unsigned long flags; 2569 struct pool *pool = tc->pool; 2570 2571 spin_lock_irqsave(&tc->lock, flags); 2572 bio_list_add(&tc->deferred_bio_list, bio); 2573 spin_unlock_irqrestore(&tc->lock, flags); 2574 2575 wake_worker(pool); 2576 } 2577 2578 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2579 { 2580 struct pool *pool = tc->pool; 2581 2582 throttle_lock(&pool->throttle); 2583 thin_defer_bio(tc, bio); 2584 throttle_unlock(&pool->throttle); 2585 } 2586 2587 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2588 { 2589 unsigned long flags; 2590 struct pool *pool = tc->pool; 2591 2592 throttle_lock(&pool->throttle); 2593 spin_lock_irqsave(&tc->lock, flags); 2594 list_add_tail(&cell->user_list, &tc->deferred_cells); 2595 spin_unlock_irqrestore(&tc->lock, flags); 2596 throttle_unlock(&pool->throttle); 2597 2598 wake_worker(pool); 2599 } 2600 2601 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2602 { 2603 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2604 2605 h->tc = tc; 2606 h->shared_read_entry = NULL; 2607 h->all_io_entry = NULL; 2608 h->overwrite_mapping = NULL; 2609 h->cell = NULL; 2610 } 2611 2612 /* 2613 * Non-blocking function called from the thin target's map function. 2614 */ 2615 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2616 { 2617 int r; 2618 struct thin_c *tc = ti->private; 2619 dm_block_t block = get_bio_block(tc, bio); 2620 struct dm_thin_device *td = tc->td; 2621 struct dm_thin_lookup_result result; 2622 struct dm_bio_prison_cell *virt_cell, *data_cell; 2623 struct dm_cell_key key; 2624 2625 thin_hook_bio(tc, bio); 2626 2627 if (tc->requeue_mode) { 2628 bio->bi_error = DM_ENDIO_REQUEUE; 2629 bio_endio(bio); 2630 return DM_MAPIO_SUBMITTED; 2631 } 2632 2633 if (get_pool_mode(tc->pool) == PM_FAIL) { 2634 bio_io_error(bio); 2635 return DM_MAPIO_SUBMITTED; 2636 } 2637 2638 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) || 2639 bio_op(bio) == REQ_OP_DISCARD) { 2640 thin_defer_bio_with_throttle(tc, bio); 2641 return DM_MAPIO_SUBMITTED; 2642 } 2643 2644 /* 2645 * We must hold the virtual cell before doing the lookup, otherwise 2646 * there's a race with discard. 2647 */ 2648 build_virtual_key(tc->td, block, &key); 2649 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2650 return DM_MAPIO_SUBMITTED; 2651 2652 r = dm_thin_find_block(td, block, 0, &result); 2653 2654 /* 2655 * Note that we defer readahead too. 2656 */ 2657 switch (r) { 2658 case 0: 2659 if (unlikely(result.shared)) { 2660 /* 2661 * We have a race condition here between the 2662 * result.shared value returned by the lookup and 2663 * snapshot creation, which may cause new 2664 * sharing. 2665 * 2666 * To avoid this always quiesce the origin before 2667 * taking the snap. You want to do this anyway to 2668 * ensure a consistent application view 2669 * (i.e. lockfs). 2670 * 2671 * More distant ancestors are irrelevant. The 2672 * shared flag will be set in their case. 2673 */ 2674 thin_defer_cell(tc, virt_cell); 2675 return DM_MAPIO_SUBMITTED; 2676 } 2677 2678 build_data_key(tc->td, result.block, &key); 2679 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2680 cell_defer_no_holder(tc, virt_cell); 2681 return DM_MAPIO_SUBMITTED; 2682 } 2683 2684 inc_all_io_entry(tc->pool, bio); 2685 cell_defer_no_holder(tc, data_cell); 2686 cell_defer_no_holder(tc, virt_cell); 2687 2688 remap(tc, bio, result.block); 2689 return DM_MAPIO_REMAPPED; 2690 2691 case -ENODATA: 2692 case -EWOULDBLOCK: 2693 thin_defer_cell(tc, virt_cell); 2694 return DM_MAPIO_SUBMITTED; 2695 2696 default: 2697 /* 2698 * Must always call bio_io_error on failure. 2699 * dm_thin_find_block can fail with -EINVAL if the 2700 * pool is switched to fail-io mode. 2701 */ 2702 bio_io_error(bio); 2703 cell_defer_no_holder(tc, virt_cell); 2704 return DM_MAPIO_SUBMITTED; 2705 } 2706 } 2707 2708 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2709 { 2710 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2711 struct request_queue *q; 2712 2713 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2714 return 1; 2715 2716 q = bdev_get_queue(pt->data_dev->bdev); 2717 return bdi_congested(&q->backing_dev_info, bdi_bits); 2718 } 2719 2720 static void requeue_bios(struct pool *pool) 2721 { 2722 unsigned long flags; 2723 struct thin_c *tc; 2724 2725 rcu_read_lock(); 2726 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2727 spin_lock_irqsave(&tc->lock, flags); 2728 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2729 bio_list_init(&tc->retry_on_resume_list); 2730 spin_unlock_irqrestore(&tc->lock, flags); 2731 } 2732 rcu_read_unlock(); 2733 } 2734 2735 /*---------------------------------------------------------------- 2736 * Binding of control targets to a pool object 2737 *--------------------------------------------------------------*/ 2738 static bool data_dev_supports_discard(struct pool_c *pt) 2739 { 2740 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2741 2742 return q && blk_queue_discard(q); 2743 } 2744 2745 static bool is_factor(sector_t block_size, uint32_t n) 2746 { 2747 return !sector_div(block_size, n); 2748 } 2749 2750 /* 2751 * If discard_passdown was enabled verify that the data device 2752 * supports discards. Disable discard_passdown if not. 2753 */ 2754 static void disable_passdown_if_not_supported(struct pool_c *pt) 2755 { 2756 struct pool *pool = pt->pool; 2757 struct block_device *data_bdev = pt->data_dev->bdev; 2758 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2759 const char *reason = NULL; 2760 char buf[BDEVNAME_SIZE]; 2761 2762 if (!pt->adjusted_pf.discard_passdown) 2763 return; 2764 2765 if (!data_dev_supports_discard(pt)) 2766 reason = "discard unsupported"; 2767 2768 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2769 reason = "max discard sectors smaller than a block"; 2770 2771 if (reason) { 2772 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2773 pt->adjusted_pf.discard_passdown = false; 2774 } 2775 } 2776 2777 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2778 { 2779 struct pool_c *pt = ti->private; 2780 2781 /* 2782 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2783 */ 2784 enum pool_mode old_mode = get_pool_mode(pool); 2785 enum pool_mode new_mode = pt->adjusted_pf.mode; 2786 2787 /* 2788 * Don't change the pool's mode until set_pool_mode() below. 2789 * Otherwise the pool's process_* function pointers may 2790 * not match the desired pool mode. 2791 */ 2792 pt->adjusted_pf.mode = old_mode; 2793 2794 pool->ti = ti; 2795 pool->pf = pt->adjusted_pf; 2796 pool->low_water_blocks = pt->low_water_blocks; 2797 2798 set_pool_mode(pool, new_mode); 2799 2800 return 0; 2801 } 2802 2803 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2804 { 2805 if (pool->ti == ti) 2806 pool->ti = NULL; 2807 } 2808 2809 /*---------------------------------------------------------------- 2810 * Pool creation 2811 *--------------------------------------------------------------*/ 2812 /* Initialize pool features. */ 2813 static void pool_features_init(struct pool_features *pf) 2814 { 2815 pf->mode = PM_WRITE; 2816 pf->zero_new_blocks = true; 2817 pf->discard_enabled = true; 2818 pf->discard_passdown = true; 2819 pf->error_if_no_space = false; 2820 } 2821 2822 static void __pool_destroy(struct pool *pool) 2823 { 2824 __pool_table_remove(pool); 2825 2826 vfree(pool->cell_sort_array); 2827 if (dm_pool_metadata_close(pool->pmd) < 0) 2828 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2829 2830 dm_bio_prison_destroy(pool->prison); 2831 dm_kcopyd_client_destroy(pool->copier); 2832 2833 if (pool->wq) 2834 destroy_workqueue(pool->wq); 2835 2836 if (pool->next_mapping) 2837 mempool_free(pool->next_mapping, pool->mapping_pool); 2838 mempool_destroy(pool->mapping_pool); 2839 dm_deferred_set_destroy(pool->shared_read_ds); 2840 dm_deferred_set_destroy(pool->all_io_ds); 2841 kfree(pool); 2842 } 2843 2844 static struct kmem_cache *_new_mapping_cache; 2845 2846 static struct pool *pool_create(struct mapped_device *pool_md, 2847 struct block_device *metadata_dev, 2848 unsigned long block_size, 2849 int read_only, char **error) 2850 { 2851 int r; 2852 void *err_p; 2853 struct pool *pool; 2854 struct dm_pool_metadata *pmd; 2855 bool format_device = read_only ? false : true; 2856 2857 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2858 if (IS_ERR(pmd)) { 2859 *error = "Error creating metadata object"; 2860 return (struct pool *)pmd; 2861 } 2862 2863 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2864 if (!pool) { 2865 *error = "Error allocating memory for pool"; 2866 err_p = ERR_PTR(-ENOMEM); 2867 goto bad_pool; 2868 } 2869 2870 pool->pmd = pmd; 2871 pool->sectors_per_block = block_size; 2872 if (block_size & (block_size - 1)) 2873 pool->sectors_per_block_shift = -1; 2874 else 2875 pool->sectors_per_block_shift = __ffs(block_size); 2876 pool->low_water_blocks = 0; 2877 pool_features_init(&pool->pf); 2878 pool->prison = dm_bio_prison_create(); 2879 if (!pool->prison) { 2880 *error = "Error creating pool's bio prison"; 2881 err_p = ERR_PTR(-ENOMEM); 2882 goto bad_prison; 2883 } 2884 2885 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2886 if (IS_ERR(pool->copier)) { 2887 r = PTR_ERR(pool->copier); 2888 *error = "Error creating pool's kcopyd client"; 2889 err_p = ERR_PTR(r); 2890 goto bad_kcopyd_client; 2891 } 2892 2893 /* 2894 * Create singlethreaded workqueue that will service all devices 2895 * that use this metadata. 2896 */ 2897 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2898 if (!pool->wq) { 2899 *error = "Error creating pool's workqueue"; 2900 err_p = ERR_PTR(-ENOMEM); 2901 goto bad_wq; 2902 } 2903 2904 throttle_init(&pool->throttle); 2905 INIT_WORK(&pool->worker, do_worker); 2906 INIT_DELAYED_WORK(&pool->waker, do_waker); 2907 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2908 spin_lock_init(&pool->lock); 2909 bio_list_init(&pool->deferred_flush_bios); 2910 INIT_LIST_HEAD(&pool->prepared_mappings); 2911 INIT_LIST_HEAD(&pool->prepared_discards); 2912 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2913 INIT_LIST_HEAD(&pool->active_thins); 2914 pool->low_water_triggered = false; 2915 pool->suspended = true; 2916 pool->out_of_data_space = false; 2917 2918 pool->shared_read_ds = dm_deferred_set_create(); 2919 if (!pool->shared_read_ds) { 2920 *error = "Error creating pool's shared read deferred set"; 2921 err_p = ERR_PTR(-ENOMEM); 2922 goto bad_shared_read_ds; 2923 } 2924 2925 pool->all_io_ds = dm_deferred_set_create(); 2926 if (!pool->all_io_ds) { 2927 *error = "Error creating pool's all io deferred set"; 2928 err_p = ERR_PTR(-ENOMEM); 2929 goto bad_all_io_ds; 2930 } 2931 2932 pool->next_mapping = NULL; 2933 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2934 _new_mapping_cache); 2935 if (!pool->mapping_pool) { 2936 *error = "Error creating pool's mapping mempool"; 2937 err_p = ERR_PTR(-ENOMEM); 2938 goto bad_mapping_pool; 2939 } 2940 2941 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2942 if (!pool->cell_sort_array) { 2943 *error = "Error allocating cell sort array"; 2944 err_p = ERR_PTR(-ENOMEM); 2945 goto bad_sort_array; 2946 } 2947 2948 pool->ref_count = 1; 2949 pool->last_commit_jiffies = jiffies; 2950 pool->pool_md = pool_md; 2951 pool->md_dev = metadata_dev; 2952 __pool_table_insert(pool); 2953 2954 return pool; 2955 2956 bad_sort_array: 2957 mempool_destroy(pool->mapping_pool); 2958 bad_mapping_pool: 2959 dm_deferred_set_destroy(pool->all_io_ds); 2960 bad_all_io_ds: 2961 dm_deferred_set_destroy(pool->shared_read_ds); 2962 bad_shared_read_ds: 2963 destroy_workqueue(pool->wq); 2964 bad_wq: 2965 dm_kcopyd_client_destroy(pool->copier); 2966 bad_kcopyd_client: 2967 dm_bio_prison_destroy(pool->prison); 2968 bad_prison: 2969 kfree(pool); 2970 bad_pool: 2971 if (dm_pool_metadata_close(pmd)) 2972 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2973 2974 return err_p; 2975 } 2976 2977 static void __pool_inc(struct pool *pool) 2978 { 2979 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2980 pool->ref_count++; 2981 } 2982 2983 static void __pool_dec(struct pool *pool) 2984 { 2985 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2986 BUG_ON(!pool->ref_count); 2987 if (!--pool->ref_count) 2988 __pool_destroy(pool); 2989 } 2990 2991 static struct pool *__pool_find(struct mapped_device *pool_md, 2992 struct block_device *metadata_dev, 2993 unsigned long block_size, int read_only, 2994 char **error, int *created) 2995 { 2996 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2997 2998 if (pool) { 2999 if (pool->pool_md != pool_md) { 3000 *error = "metadata device already in use by a pool"; 3001 return ERR_PTR(-EBUSY); 3002 } 3003 __pool_inc(pool); 3004 3005 } else { 3006 pool = __pool_table_lookup(pool_md); 3007 if (pool) { 3008 if (pool->md_dev != metadata_dev) { 3009 *error = "different pool cannot replace a pool"; 3010 return ERR_PTR(-EINVAL); 3011 } 3012 __pool_inc(pool); 3013 3014 } else { 3015 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3016 *created = 1; 3017 } 3018 } 3019 3020 return pool; 3021 } 3022 3023 /*---------------------------------------------------------------- 3024 * Pool target methods 3025 *--------------------------------------------------------------*/ 3026 static void pool_dtr(struct dm_target *ti) 3027 { 3028 struct pool_c *pt = ti->private; 3029 3030 mutex_lock(&dm_thin_pool_table.mutex); 3031 3032 unbind_control_target(pt->pool, ti); 3033 __pool_dec(pt->pool); 3034 dm_put_device(ti, pt->metadata_dev); 3035 dm_put_device(ti, pt->data_dev); 3036 kfree(pt); 3037 3038 mutex_unlock(&dm_thin_pool_table.mutex); 3039 } 3040 3041 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3042 struct dm_target *ti) 3043 { 3044 int r; 3045 unsigned argc; 3046 const char *arg_name; 3047 3048 static struct dm_arg _args[] = { 3049 {0, 4, "Invalid number of pool feature arguments"}, 3050 }; 3051 3052 /* 3053 * No feature arguments supplied. 3054 */ 3055 if (!as->argc) 3056 return 0; 3057 3058 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3059 if (r) 3060 return -EINVAL; 3061 3062 while (argc && !r) { 3063 arg_name = dm_shift_arg(as); 3064 argc--; 3065 3066 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3067 pf->zero_new_blocks = false; 3068 3069 else if (!strcasecmp(arg_name, "ignore_discard")) 3070 pf->discard_enabled = false; 3071 3072 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3073 pf->discard_passdown = false; 3074 3075 else if (!strcasecmp(arg_name, "read_only")) 3076 pf->mode = PM_READ_ONLY; 3077 3078 else if (!strcasecmp(arg_name, "error_if_no_space")) 3079 pf->error_if_no_space = true; 3080 3081 else { 3082 ti->error = "Unrecognised pool feature requested"; 3083 r = -EINVAL; 3084 break; 3085 } 3086 } 3087 3088 return r; 3089 } 3090 3091 static void metadata_low_callback(void *context) 3092 { 3093 struct pool *pool = context; 3094 3095 DMWARN("%s: reached low water mark for metadata device: sending event.", 3096 dm_device_name(pool->pool_md)); 3097 3098 dm_table_event(pool->ti->table); 3099 } 3100 3101 static sector_t get_dev_size(struct block_device *bdev) 3102 { 3103 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3104 } 3105 3106 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3107 { 3108 sector_t metadata_dev_size = get_dev_size(bdev); 3109 char buffer[BDEVNAME_SIZE]; 3110 3111 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3112 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3113 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3114 } 3115 3116 static sector_t get_metadata_dev_size(struct block_device *bdev) 3117 { 3118 sector_t metadata_dev_size = get_dev_size(bdev); 3119 3120 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3121 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3122 3123 return metadata_dev_size; 3124 } 3125 3126 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3127 { 3128 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3129 3130 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3131 3132 return metadata_dev_size; 3133 } 3134 3135 /* 3136 * When a metadata threshold is crossed a dm event is triggered, and 3137 * userland should respond by growing the metadata device. We could let 3138 * userland set the threshold, like we do with the data threshold, but I'm 3139 * not sure they know enough to do this well. 3140 */ 3141 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3142 { 3143 /* 3144 * 4M is ample for all ops with the possible exception of thin 3145 * device deletion which is harmless if it fails (just retry the 3146 * delete after you've grown the device). 3147 */ 3148 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3149 return min((dm_block_t)1024ULL /* 4M */, quarter); 3150 } 3151 3152 /* 3153 * thin-pool <metadata dev> <data dev> 3154 * <data block size (sectors)> 3155 * <low water mark (blocks)> 3156 * [<#feature args> [<arg>]*] 3157 * 3158 * Optional feature arguments are: 3159 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3160 * ignore_discard: disable discard 3161 * no_discard_passdown: don't pass discards down to the data device 3162 * read_only: Don't allow any changes to be made to the pool metadata. 3163 * error_if_no_space: error IOs, instead of queueing, if no space. 3164 */ 3165 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3166 { 3167 int r, pool_created = 0; 3168 struct pool_c *pt; 3169 struct pool *pool; 3170 struct pool_features pf; 3171 struct dm_arg_set as; 3172 struct dm_dev *data_dev; 3173 unsigned long block_size; 3174 dm_block_t low_water_blocks; 3175 struct dm_dev *metadata_dev; 3176 fmode_t metadata_mode; 3177 3178 /* 3179 * FIXME Remove validation from scope of lock. 3180 */ 3181 mutex_lock(&dm_thin_pool_table.mutex); 3182 3183 if (argc < 4) { 3184 ti->error = "Invalid argument count"; 3185 r = -EINVAL; 3186 goto out_unlock; 3187 } 3188 3189 as.argc = argc; 3190 as.argv = argv; 3191 3192 /* 3193 * Set default pool features. 3194 */ 3195 pool_features_init(&pf); 3196 3197 dm_consume_args(&as, 4); 3198 r = parse_pool_features(&as, &pf, ti); 3199 if (r) 3200 goto out_unlock; 3201 3202 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3203 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3204 if (r) { 3205 ti->error = "Error opening metadata block device"; 3206 goto out_unlock; 3207 } 3208 warn_if_metadata_device_too_big(metadata_dev->bdev); 3209 3210 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3211 if (r) { 3212 ti->error = "Error getting data device"; 3213 goto out_metadata; 3214 } 3215 3216 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3217 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3218 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3219 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3220 ti->error = "Invalid block size"; 3221 r = -EINVAL; 3222 goto out; 3223 } 3224 3225 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3226 ti->error = "Invalid low water mark"; 3227 r = -EINVAL; 3228 goto out; 3229 } 3230 3231 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3232 if (!pt) { 3233 r = -ENOMEM; 3234 goto out; 3235 } 3236 3237 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3238 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3239 if (IS_ERR(pool)) { 3240 r = PTR_ERR(pool); 3241 goto out_free_pt; 3242 } 3243 3244 /* 3245 * 'pool_created' reflects whether this is the first table load. 3246 * Top level discard support is not allowed to be changed after 3247 * initial load. This would require a pool reload to trigger thin 3248 * device changes. 3249 */ 3250 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3251 ti->error = "Discard support cannot be disabled once enabled"; 3252 r = -EINVAL; 3253 goto out_flags_changed; 3254 } 3255 3256 pt->pool = pool; 3257 pt->ti = ti; 3258 pt->metadata_dev = metadata_dev; 3259 pt->data_dev = data_dev; 3260 pt->low_water_blocks = low_water_blocks; 3261 pt->adjusted_pf = pt->requested_pf = pf; 3262 ti->num_flush_bios = 1; 3263 3264 /* 3265 * Only need to enable discards if the pool should pass 3266 * them down to the data device. The thin device's discard 3267 * processing will cause mappings to be removed from the btree. 3268 */ 3269 ti->discard_zeroes_data_unsupported = true; 3270 if (pf.discard_enabled && pf.discard_passdown) { 3271 ti->num_discard_bios = 1; 3272 3273 /* 3274 * Setting 'discards_supported' circumvents the normal 3275 * stacking of discard limits (this keeps the pool and 3276 * thin devices' discard limits consistent). 3277 */ 3278 ti->discards_supported = true; 3279 } 3280 ti->private = pt; 3281 3282 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3283 calc_metadata_threshold(pt), 3284 metadata_low_callback, 3285 pool); 3286 if (r) 3287 goto out_flags_changed; 3288 3289 pt->callbacks.congested_fn = pool_is_congested; 3290 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3291 3292 mutex_unlock(&dm_thin_pool_table.mutex); 3293 3294 return 0; 3295 3296 out_flags_changed: 3297 __pool_dec(pool); 3298 out_free_pt: 3299 kfree(pt); 3300 out: 3301 dm_put_device(ti, data_dev); 3302 out_metadata: 3303 dm_put_device(ti, metadata_dev); 3304 out_unlock: 3305 mutex_unlock(&dm_thin_pool_table.mutex); 3306 3307 return r; 3308 } 3309 3310 static int pool_map(struct dm_target *ti, struct bio *bio) 3311 { 3312 int r; 3313 struct pool_c *pt = ti->private; 3314 struct pool *pool = pt->pool; 3315 unsigned long flags; 3316 3317 /* 3318 * As this is a singleton target, ti->begin is always zero. 3319 */ 3320 spin_lock_irqsave(&pool->lock, flags); 3321 bio->bi_bdev = pt->data_dev->bdev; 3322 r = DM_MAPIO_REMAPPED; 3323 spin_unlock_irqrestore(&pool->lock, flags); 3324 3325 return r; 3326 } 3327 3328 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3329 { 3330 int r; 3331 struct pool_c *pt = ti->private; 3332 struct pool *pool = pt->pool; 3333 sector_t data_size = ti->len; 3334 dm_block_t sb_data_size; 3335 3336 *need_commit = false; 3337 3338 (void) sector_div(data_size, pool->sectors_per_block); 3339 3340 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3341 if (r) { 3342 DMERR("%s: failed to retrieve data device size", 3343 dm_device_name(pool->pool_md)); 3344 return r; 3345 } 3346 3347 if (data_size < sb_data_size) { 3348 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3349 dm_device_name(pool->pool_md), 3350 (unsigned long long)data_size, sb_data_size); 3351 return -EINVAL; 3352 3353 } else if (data_size > sb_data_size) { 3354 if (dm_pool_metadata_needs_check(pool->pmd)) { 3355 DMERR("%s: unable to grow the data device until repaired.", 3356 dm_device_name(pool->pool_md)); 3357 return 0; 3358 } 3359 3360 if (sb_data_size) 3361 DMINFO("%s: growing the data device from %llu to %llu blocks", 3362 dm_device_name(pool->pool_md), 3363 sb_data_size, (unsigned long long)data_size); 3364 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3365 if (r) { 3366 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3367 return r; 3368 } 3369 3370 *need_commit = true; 3371 } 3372 3373 return 0; 3374 } 3375 3376 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3377 { 3378 int r; 3379 struct pool_c *pt = ti->private; 3380 struct pool *pool = pt->pool; 3381 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3382 3383 *need_commit = false; 3384 3385 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3386 3387 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3388 if (r) { 3389 DMERR("%s: failed to retrieve metadata device size", 3390 dm_device_name(pool->pool_md)); 3391 return r; 3392 } 3393 3394 if (metadata_dev_size < sb_metadata_dev_size) { 3395 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3396 dm_device_name(pool->pool_md), 3397 metadata_dev_size, sb_metadata_dev_size); 3398 return -EINVAL; 3399 3400 } else if (metadata_dev_size > sb_metadata_dev_size) { 3401 if (dm_pool_metadata_needs_check(pool->pmd)) { 3402 DMERR("%s: unable to grow the metadata device until repaired.", 3403 dm_device_name(pool->pool_md)); 3404 return 0; 3405 } 3406 3407 warn_if_metadata_device_too_big(pool->md_dev); 3408 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3409 dm_device_name(pool->pool_md), 3410 sb_metadata_dev_size, metadata_dev_size); 3411 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3412 if (r) { 3413 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3414 return r; 3415 } 3416 3417 *need_commit = true; 3418 } 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * Retrieves the number of blocks of the data device from 3425 * the superblock and compares it to the actual device size, 3426 * thus resizing the data device in case it has grown. 3427 * 3428 * This both copes with opening preallocated data devices in the ctr 3429 * being followed by a resume 3430 * -and- 3431 * calling the resume method individually after userspace has 3432 * grown the data device in reaction to a table event. 3433 */ 3434 static int pool_preresume(struct dm_target *ti) 3435 { 3436 int r; 3437 bool need_commit1, need_commit2; 3438 struct pool_c *pt = ti->private; 3439 struct pool *pool = pt->pool; 3440 3441 /* 3442 * Take control of the pool object. 3443 */ 3444 r = bind_control_target(pool, ti); 3445 if (r) 3446 return r; 3447 3448 r = maybe_resize_data_dev(ti, &need_commit1); 3449 if (r) 3450 return r; 3451 3452 r = maybe_resize_metadata_dev(ti, &need_commit2); 3453 if (r) 3454 return r; 3455 3456 if (need_commit1 || need_commit2) 3457 (void) commit(pool); 3458 3459 return 0; 3460 } 3461 3462 static void pool_suspend_active_thins(struct pool *pool) 3463 { 3464 struct thin_c *tc; 3465 3466 /* Suspend all active thin devices */ 3467 tc = get_first_thin(pool); 3468 while (tc) { 3469 dm_internal_suspend_noflush(tc->thin_md); 3470 tc = get_next_thin(pool, tc); 3471 } 3472 } 3473 3474 static void pool_resume_active_thins(struct pool *pool) 3475 { 3476 struct thin_c *tc; 3477 3478 /* Resume all active thin devices */ 3479 tc = get_first_thin(pool); 3480 while (tc) { 3481 dm_internal_resume(tc->thin_md); 3482 tc = get_next_thin(pool, tc); 3483 } 3484 } 3485 3486 static void pool_resume(struct dm_target *ti) 3487 { 3488 struct pool_c *pt = ti->private; 3489 struct pool *pool = pt->pool; 3490 unsigned long flags; 3491 3492 /* 3493 * Must requeue active_thins' bios and then resume 3494 * active_thins _before_ clearing 'suspend' flag. 3495 */ 3496 requeue_bios(pool); 3497 pool_resume_active_thins(pool); 3498 3499 spin_lock_irqsave(&pool->lock, flags); 3500 pool->low_water_triggered = false; 3501 pool->suspended = false; 3502 spin_unlock_irqrestore(&pool->lock, flags); 3503 3504 do_waker(&pool->waker.work); 3505 } 3506 3507 static void pool_presuspend(struct dm_target *ti) 3508 { 3509 struct pool_c *pt = ti->private; 3510 struct pool *pool = pt->pool; 3511 unsigned long flags; 3512 3513 spin_lock_irqsave(&pool->lock, flags); 3514 pool->suspended = true; 3515 spin_unlock_irqrestore(&pool->lock, flags); 3516 3517 pool_suspend_active_thins(pool); 3518 } 3519 3520 static void pool_presuspend_undo(struct dm_target *ti) 3521 { 3522 struct pool_c *pt = ti->private; 3523 struct pool *pool = pt->pool; 3524 unsigned long flags; 3525 3526 pool_resume_active_thins(pool); 3527 3528 spin_lock_irqsave(&pool->lock, flags); 3529 pool->suspended = false; 3530 spin_unlock_irqrestore(&pool->lock, flags); 3531 } 3532 3533 static void pool_postsuspend(struct dm_target *ti) 3534 { 3535 struct pool_c *pt = ti->private; 3536 struct pool *pool = pt->pool; 3537 3538 cancel_delayed_work_sync(&pool->waker); 3539 cancel_delayed_work_sync(&pool->no_space_timeout); 3540 flush_workqueue(pool->wq); 3541 (void) commit(pool); 3542 } 3543 3544 static int check_arg_count(unsigned argc, unsigned args_required) 3545 { 3546 if (argc != args_required) { 3547 DMWARN("Message received with %u arguments instead of %u.", 3548 argc, args_required); 3549 return -EINVAL; 3550 } 3551 3552 return 0; 3553 } 3554 3555 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3556 { 3557 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3558 *dev_id <= MAX_DEV_ID) 3559 return 0; 3560 3561 if (warning) 3562 DMWARN("Message received with invalid device id: %s", arg); 3563 3564 return -EINVAL; 3565 } 3566 3567 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3568 { 3569 dm_thin_id dev_id; 3570 int r; 3571 3572 r = check_arg_count(argc, 2); 3573 if (r) 3574 return r; 3575 3576 r = read_dev_id(argv[1], &dev_id, 1); 3577 if (r) 3578 return r; 3579 3580 r = dm_pool_create_thin(pool->pmd, dev_id); 3581 if (r) { 3582 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3583 argv[1]); 3584 return r; 3585 } 3586 3587 return 0; 3588 } 3589 3590 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3591 { 3592 dm_thin_id dev_id; 3593 dm_thin_id origin_dev_id; 3594 int r; 3595 3596 r = check_arg_count(argc, 3); 3597 if (r) 3598 return r; 3599 3600 r = read_dev_id(argv[1], &dev_id, 1); 3601 if (r) 3602 return r; 3603 3604 r = read_dev_id(argv[2], &origin_dev_id, 1); 3605 if (r) 3606 return r; 3607 3608 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3609 if (r) { 3610 DMWARN("Creation of new snapshot %s of device %s failed.", 3611 argv[1], argv[2]); 3612 return r; 3613 } 3614 3615 return 0; 3616 } 3617 3618 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3619 { 3620 dm_thin_id dev_id; 3621 int r; 3622 3623 r = check_arg_count(argc, 2); 3624 if (r) 3625 return r; 3626 3627 r = read_dev_id(argv[1], &dev_id, 1); 3628 if (r) 3629 return r; 3630 3631 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3632 if (r) 3633 DMWARN("Deletion of thin device %s failed.", argv[1]); 3634 3635 return r; 3636 } 3637 3638 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3639 { 3640 dm_thin_id old_id, new_id; 3641 int r; 3642 3643 r = check_arg_count(argc, 3); 3644 if (r) 3645 return r; 3646 3647 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3648 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3649 return -EINVAL; 3650 } 3651 3652 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3653 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3654 return -EINVAL; 3655 } 3656 3657 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3658 if (r) { 3659 DMWARN("Failed to change transaction id from %s to %s.", 3660 argv[1], argv[2]); 3661 return r; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3668 { 3669 int r; 3670 3671 r = check_arg_count(argc, 1); 3672 if (r) 3673 return r; 3674 3675 (void) commit(pool); 3676 3677 r = dm_pool_reserve_metadata_snap(pool->pmd); 3678 if (r) 3679 DMWARN("reserve_metadata_snap message failed."); 3680 3681 return r; 3682 } 3683 3684 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3685 { 3686 int r; 3687 3688 r = check_arg_count(argc, 1); 3689 if (r) 3690 return r; 3691 3692 r = dm_pool_release_metadata_snap(pool->pmd); 3693 if (r) 3694 DMWARN("release_metadata_snap message failed."); 3695 3696 return r; 3697 } 3698 3699 /* 3700 * Messages supported: 3701 * create_thin <dev_id> 3702 * create_snap <dev_id> <origin_id> 3703 * delete <dev_id> 3704 * set_transaction_id <current_trans_id> <new_trans_id> 3705 * reserve_metadata_snap 3706 * release_metadata_snap 3707 */ 3708 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3709 { 3710 int r = -EINVAL; 3711 struct pool_c *pt = ti->private; 3712 struct pool *pool = pt->pool; 3713 3714 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3715 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3716 dm_device_name(pool->pool_md)); 3717 return -EOPNOTSUPP; 3718 } 3719 3720 if (!strcasecmp(argv[0], "create_thin")) 3721 r = process_create_thin_mesg(argc, argv, pool); 3722 3723 else if (!strcasecmp(argv[0], "create_snap")) 3724 r = process_create_snap_mesg(argc, argv, pool); 3725 3726 else if (!strcasecmp(argv[0], "delete")) 3727 r = process_delete_mesg(argc, argv, pool); 3728 3729 else if (!strcasecmp(argv[0], "set_transaction_id")) 3730 r = process_set_transaction_id_mesg(argc, argv, pool); 3731 3732 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3733 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3734 3735 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3736 r = process_release_metadata_snap_mesg(argc, argv, pool); 3737 3738 else 3739 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3740 3741 if (!r) 3742 (void) commit(pool); 3743 3744 return r; 3745 } 3746 3747 static void emit_flags(struct pool_features *pf, char *result, 3748 unsigned sz, unsigned maxlen) 3749 { 3750 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3751 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3752 pf->error_if_no_space; 3753 DMEMIT("%u ", count); 3754 3755 if (!pf->zero_new_blocks) 3756 DMEMIT("skip_block_zeroing "); 3757 3758 if (!pf->discard_enabled) 3759 DMEMIT("ignore_discard "); 3760 3761 if (!pf->discard_passdown) 3762 DMEMIT("no_discard_passdown "); 3763 3764 if (pf->mode == PM_READ_ONLY) 3765 DMEMIT("read_only "); 3766 3767 if (pf->error_if_no_space) 3768 DMEMIT("error_if_no_space "); 3769 } 3770 3771 /* 3772 * Status line is: 3773 * <transaction id> <used metadata sectors>/<total metadata sectors> 3774 * <used data sectors>/<total data sectors> <held metadata root> 3775 * <pool mode> <discard config> <no space config> <needs_check> 3776 */ 3777 static void pool_status(struct dm_target *ti, status_type_t type, 3778 unsigned status_flags, char *result, unsigned maxlen) 3779 { 3780 int r; 3781 unsigned sz = 0; 3782 uint64_t transaction_id; 3783 dm_block_t nr_free_blocks_data; 3784 dm_block_t nr_free_blocks_metadata; 3785 dm_block_t nr_blocks_data; 3786 dm_block_t nr_blocks_metadata; 3787 dm_block_t held_root; 3788 char buf[BDEVNAME_SIZE]; 3789 char buf2[BDEVNAME_SIZE]; 3790 struct pool_c *pt = ti->private; 3791 struct pool *pool = pt->pool; 3792 3793 switch (type) { 3794 case STATUSTYPE_INFO: 3795 if (get_pool_mode(pool) == PM_FAIL) { 3796 DMEMIT("Fail"); 3797 break; 3798 } 3799 3800 /* Commit to ensure statistics aren't out-of-date */ 3801 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3802 (void) commit(pool); 3803 3804 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3805 if (r) { 3806 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3807 dm_device_name(pool->pool_md), r); 3808 goto err; 3809 } 3810 3811 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3812 if (r) { 3813 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3814 dm_device_name(pool->pool_md), r); 3815 goto err; 3816 } 3817 3818 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3819 if (r) { 3820 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3821 dm_device_name(pool->pool_md), r); 3822 goto err; 3823 } 3824 3825 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3826 if (r) { 3827 DMERR("%s: dm_pool_get_free_block_count returned %d", 3828 dm_device_name(pool->pool_md), r); 3829 goto err; 3830 } 3831 3832 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3833 if (r) { 3834 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3835 dm_device_name(pool->pool_md), r); 3836 goto err; 3837 } 3838 3839 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3840 if (r) { 3841 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3842 dm_device_name(pool->pool_md), r); 3843 goto err; 3844 } 3845 3846 DMEMIT("%llu %llu/%llu %llu/%llu ", 3847 (unsigned long long)transaction_id, 3848 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3849 (unsigned long long)nr_blocks_metadata, 3850 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3851 (unsigned long long)nr_blocks_data); 3852 3853 if (held_root) 3854 DMEMIT("%llu ", held_root); 3855 else 3856 DMEMIT("- "); 3857 3858 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3859 DMEMIT("out_of_data_space "); 3860 else if (pool->pf.mode == PM_READ_ONLY) 3861 DMEMIT("ro "); 3862 else 3863 DMEMIT("rw "); 3864 3865 if (!pool->pf.discard_enabled) 3866 DMEMIT("ignore_discard "); 3867 else if (pool->pf.discard_passdown) 3868 DMEMIT("discard_passdown "); 3869 else 3870 DMEMIT("no_discard_passdown "); 3871 3872 if (pool->pf.error_if_no_space) 3873 DMEMIT("error_if_no_space "); 3874 else 3875 DMEMIT("queue_if_no_space "); 3876 3877 if (dm_pool_metadata_needs_check(pool->pmd)) 3878 DMEMIT("needs_check "); 3879 else 3880 DMEMIT("- "); 3881 3882 break; 3883 3884 case STATUSTYPE_TABLE: 3885 DMEMIT("%s %s %lu %llu ", 3886 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3887 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3888 (unsigned long)pool->sectors_per_block, 3889 (unsigned long long)pt->low_water_blocks); 3890 emit_flags(&pt->requested_pf, result, sz, maxlen); 3891 break; 3892 } 3893 return; 3894 3895 err: 3896 DMEMIT("Error"); 3897 } 3898 3899 static int pool_iterate_devices(struct dm_target *ti, 3900 iterate_devices_callout_fn fn, void *data) 3901 { 3902 struct pool_c *pt = ti->private; 3903 3904 return fn(ti, pt->data_dev, 0, ti->len, data); 3905 } 3906 3907 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3908 { 3909 struct pool_c *pt = ti->private; 3910 struct pool *pool = pt->pool; 3911 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3912 3913 /* 3914 * If max_sectors is smaller than pool->sectors_per_block adjust it 3915 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3916 * This is especially beneficial when the pool's data device is a RAID 3917 * device that has a full stripe width that matches pool->sectors_per_block 3918 * -- because even though partial RAID stripe-sized IOs will be issued to a 3919 * single RAID stripe; when aggregated they will end on a full RAID stripe 3920 * boundary.. which avoids additional partial RAID stripe writes cascading 3921 */ 3922 if (limits->max_sectors < pool->sectors_per_block) { 3923 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3924 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3925 limits->max_sectors--; 3926 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3927 } 3928 } 3929 3930 /* 3931 * If the system-determined stacked limits are compatible with the 3932 * pool's blocksize (io_opt is a factor) do not override them. 3933 */ 3934 if (io_opt_sectors < pool->sectors_per_block || 3935 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3936 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3937 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3938 else 3939 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3940 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3941 } 3942 3943 /* 3944 * pt->adjusted_pf is a staging area for the actual features to use. 3945 * They get transferred to the live pool in bind_control_target() 3946 * called from pool_preresume(). 3947 */ 3948 if (!pt->adjusted_pf.discard_enabled) { 3949 /* 3950 * Must explicitly disallow stacking discard limits otherwise the 3951 * block layer will stack them if pool's data device has support. 3952 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3953 * user to see that, so make sure to set all discard limits to 0. 3954 */ 3955 limits->discard_granularity = 0; 3956 return; 3957 } 3958 3959 disable_passdown_if_not_supported(pt); 3960 3961 /* 3962 * The pool uses the same discard limits as the underlying data 3963 * device. DM core has already set this up. 3964 */ 3965 } 3966 3967 static struct target_type pool_target = { 3968 .name = "thin-pool", 3969 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3970 DM_TARGET_IMMUTABLE, 3971 .version = {1, 19, 0}, 3972 .module = THIS_MODULE, 3973 .ctr = pool_ctr, 3974 .dtr = pool_dtr, 3975 .map = pool_map, 3976 .presuspend = pool_presuspend, 3977 .presuspend_undo = pool_presuspend_undo, 3978 .postsuspend = pool_postsuspend, 3979 .preresume = pool_preresume, 3980 .resume = pool_resume, 3981 .message = pool_message, 3982 .status = pool_status, 3983 .iterate_devices = pool_iterate_devices, 3984 .io_hints = pool_io_hints, 3985 }; 3986 3987 /*---------------------------------------------------------------- 3988 * Thin target methods 3989 *--------------------------------------------------------------*/ 3990 static void thin_get(struct thin_c *tc) 3991 { 3992 atomic_inc(&tc->refcount); 3993 } 3994 3995 static void thin_put(struct thin_c *tc) 3996 { 3997 if (atomic_dec_and_test(&tc->refcount)) 3998 complete(&tc->can_destroy); 3999 } 4000 4001 static void thin_dtr(struct dm_target *ti) 4002 { 4003 struct thin_c *tc = ti->private; 4004 unsigned long flags; 4005 4006 spin_lock_irqsave(&tc->pool->lock, flags); 4007 list_del_rcu(&tc->list); 4008 spin_unlock_irqrestore(&tc->pool->lock, flags); 4009 synchronize_rcu(); 4010 4011 thin_put(tc); 4012 wait_for_completion(&tc->can_destroy); 4013 4014 mutex_lock(&dm_thin_pool_table.mutex); 4015 4016 __pool_dec(tc->pool); 4017 dm_pool_close_thin_device(tc->td); 4018 dm_put_device(ti, tc->pool_dev); 4019 if (tc->origin_dev) 4020 dm_put_device(ti, tc->origin_dev); 4021 kfree(tc); 4022 4023 mutex_unlock(&dm_thin_pool_table.mutex); 4024 } 4025 4026 /* 4027 * Thin target parameters: 4028 * 4029 * <pool_dev> <dev_id> [origin_dev] 4030 * 4031 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4032 * dev_id: the internal device identifier 4033 * origin_dev: a device external to the pool that should act as the origin 4034 * 4035 * If the pool device has discards disabled, they get disabled for the thin 4036 * device as well. 4037 */ 4038 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4039 { 4040 int r; 4041 struct thin_c *tc; 4042 struct dm_dev *pool_dev, *origin_dev; 4043 struct mapped_device *pool_md; 4044 unsigned long flags; 4045 4046 mutex_lock(&dm_thin_pool_table.mutex); 4047 4048 if (argc != 2 && argc != 3) { 4049 ti->error = "Invalid argument count"; 4050 r = -EINVAL; 4051 goto out_unlock; 4052 } 4053 4054 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4055 if (!tc) { 4056 ti->error = "Out of memory"; 4057 r = -ENOMEM; 4058 goto out_unlock; 4059 } 4060 tc->thin_md = dm_table_get_md(ti->table); 4061 spin_lock_init(&tc->lock); 4062 INIT_LIST_HEAD(&tc->deferred_cells); 4063 bio_list_init(&tc->deferred_bio_list); 4064 bio_list_init(&tc->retry_on_resume_list); 4065 tc->sort_bio_list = RB_ROOT; 4066 4067 if (argc == 3) { 4068 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4069 if (r) { 4070 ti->error = "Error opening origin device"; 4071 goto bad_origin_dev; 4072 } 4073 tc->origin_dev = origin_dev; 4074 } 4075 4076 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4077 if (r) { 4078 ti->error = "Error opening pool device"; 4079 goto bad_pool_dev; 4080 } 4081 tc->pool_dev = pool_dev; 4082 4083 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4084 ti->error = "Invalid device id"; 4085 r = -EINVAL; 4086 goto bad_common; 4087 } 4088 4089 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4090 if (!pool_md) { 4091 ti->error = "Couldn't get pool mapped device"; 4092 r = -EINVAL; 4093 goto bad_common; 4094 } 4095 4096 tc->pool = __pool_table_lookup(pool_md); 4097 if (!tc->pool) { 4098 ti->error = "Couldn't find pool object"; 4099 r = -EINVAL; 4100 goto bad_pool_lookup; 4101 } 4102 __pool_inc(tc->pool); 4103 4104 if (get_pool_mode(tc->pool) == PM_FAIL) { 4105 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4106 r = -EINVAL; 4107 goto bad_pool; 4108 } 4109 4110 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4111 if (r) { 4112 ti->error = "Couldn't open thin internal device"; 4113 goto bad_pool; 4114 } 4115 4116 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4117 if (r) 4118 goto bad; 4119 4120 ti->num_flush_bios = 1; 4121 ti->flush_supported = true; 4122 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4123 4124 /* In case the pool supports discards, pass them on. */ 4125 ti->discard_zeroes_data_unsupported = true; 4126 if (tc->pool->pf.discard_enabled) { 4127 ti->discards_supported = true; 4128 ti->num_discard_bios = 1; 4129 ti->split_discard_bios = false; 4130 } 4131 4132 mutex_unlock(&dm_thin_pool_table.mutex); 4133 4134 spin_lock_irqsave(&tc->pool->lock, flags); 4135 if (tc->pool->suspended) { 4136 spin_unlock_irqrestore(&tc->pool->lock, flags); 4137 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4138 ti->error = "Unable to activate thin device while pool is suspended"; 4139 r = -EINVAL; 4140 goto bad; 4141 } 4142 atomic_set(&tc->refcount, 1); 4143 init_completion(&tc->can_destroy); 4144 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4145 spin_unlock_irqrestore(&tc->pool->lock, flags); 4146 /* 4147 * This synchronize_rcu() call is needed here otherwise we risk a 4148 * wake_worker() call finding no bios to process (because the newly 4149 * added tc isn't yet visible). So this reduces latency since we 4150 * aren't then dependent on the periodic commit to wake_worker(). 4151 */ 4152 synchronize_rcu(); 4153 4154 dm_put(pool_md); 4155 4156 return 0; 4157 4158 bad: 4159 dm_pool_close_thin_device(tc->td); 4160 bad_pool: 4161 __pool_dec(tc->pool); 4162 bad_pool_lookup: 4163 dm_put(pool_md); 4164 bad_common: 4165 dm_put_device(ti, tc->pool_dev); 4166 bad_pool_dev: 4167 if (tc->origin_dev) 4168 dm_put_device(ti, tc->origin_dev); 4169 bad_origin_dev: 4170 kfree(tc); 4171 out_unlock: 4172 mutex_unlock(&dm_thin_pool_table.mutex); 4173 4174 return r; 4175 } 4176 4177 static int thin_map(struct dm_target *ti, struct bio *bio) 4178 { 4179 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4180 4181 return thin_bio_map(ti, bio); 4182 } 4183 4184 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 4185 { 4186 unsigned long flags; 4187 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4188 struct list_head work; 4189 struct dm_thin_new_mapping *m, *tmp; 4190 struct pool *pool = h->tc->pool; 4191 4192 if (h->shared_read_entry) { 4193 INIT_LIST_HEAD(&work); 4194 dm_deferred_entry_dec(h->shared_read_entry, &work); 4195 4196 spin_lock_irqsave(&pool->lock, flags); 4197 list_for_each_entry_safe(m, tmp, &work, list) { 4198 list_del(&m->list); 4199 __complete_mapping_preparation(m); 4200 } 4201 spin_unlock_irqrestore(&pool->lock, flags); 4202 } 4203 4204 if (h->all_io_entry) { 4205 INIT_LIST_HEAD(&work); 4206 dm_deferred_entry_dec(h->all_io_entry, &work); 4207 if (!list_empty(&work)) { 4208 spin_lock_irqsave(&pool->lock, flags); 4209 list_for_each_entry_safe(m, tmp, &work, list) 4210 list_add_tail(&m->list, &pool->prepared_discards); 4211 spin_unlock_irqrestore(&pool->lock, flags); 4212 wake_worker(pool); 4213 } 4214 } 4215 4216 if (h->cell) 4217 cell_defer_no_holder(h->tc, h->cell); 4218 4219 return 0; 4220 } 4221 4222 static void thin_presuspend(struct dm_target *ti) 4223 { 4224 struct thin_c *tc = ti->private; 4225 4226 if (dm_noflush_suspending(ti)) 4227 noflush_work(tc, do_noflush_start); 4228 } 4229 4230 static void thin_postsuspend(struct dm_target *ti) 4231 { 4232 struct thin_c *tc = ti->private; 4233 4234 /* 4235 * The dm_noflush_suspending flag has been cleared by now, so 4236 * unfortunately we must always run this. 4237 */ 4238 noflush_work(tc, do_noflush_stop); 4239 } 4240 4241 static int thin_preresume(struct dm_target *ti) 4242 { 4243 struct thin_c *tc = ti->private; 4244 4245 if (tc->origin_dev) 4246 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4247 4248 return 0; 4249 } 4250 4251 /* 4252 * <nr mapped sectors> <highest mapped sector> 4253 */ 4254 static void thin_status(struct dm_target *ti, status_type_t type, 4255 unsigned status_flags, char *result, unsigned maxlen) 4256 { 4257 int r; 4258 ssize_t sz = 0; 4259 dm_block_t mapped, highest; 4260 char buf[BDEVNAME_SIZE]; 4261 struct thin_c *tc = ti->private; 4262 4263 if (get_pool_mode(tc->pool) == PM_FAIL) { 4264 DMEMIT("Fail"); 4265 return; 4266 } 4267 4268 if (!tc->td) 4269 DMEMIT("-"); 4270 else { 4271 switch (type) { 4272 case STATUSTYPE_INFO: 4273 r = dm_thin_get_mapped_count(tc->td, &mapped); 4274 if (r) { 4275 DMERR("dm_thin_get_mapped_count returned %d", r); 4276 goto err; 4277 } 4278 4279 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4280 if (r < 0) { 4281 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4282 goto err; 4283 } 4284 4285 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4286 if (r) 4287 DMEMIT("%llu", ((highest + 1) * 4288 tc->pool->sectors_per_block) - 1); 4289 else 4290 DMEMIT("-"); 4291 break; 4292 4293 case STATUSTYPE_TABLE: 4294 DMEMIT("%s %lu", 4295 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4296 (unsigned long) tc->dev_id); 4297 if (tc->origin_dev) 4298 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4299 break; 4300 } 4301 } 4302 4303 return; 4304 4305 err: 4306 DMEMIT("Error"); 4307 } 4308 4309 static int thin_iterate_devices(struct dm_target *ti, 4310 iterate_devices_callout_fn fn, void *data) 4311 { 4312 sector_t blocks; 4313 struct thin_c *tc = ti->private; 4314 struct pool *pool = tc->pool; 4315 4316 /* 4317 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4318 * we follow a more convoluted path through to the pool's target. 4319 */ 4320 if (!pool->ti) 4321 return 0; /* nothing is bound */ 4322 4323 blocks = pool->ti->len; 4324 (void) sector_div(blocks, pool->sectors_per_block); 4325 if (blocks) 4326 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4327 4328 return 0; 4329 } 4330 4331 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4332 { 4333 struct thin_c *tc = ti->private; 4334 struct pool *pool = tc->pool; 4335 4336 if (!pool->pf.discard_enabled) 4337 return; 4338 4339 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4340 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4341 } 4342 4343 static struct target_type thin_target = { 4344 .name = "thin", 4345 .version = {1, 19, 0}, 4346 .module = THIS_MODULE, 4347 .ctr = thin_ctr, 4348 .dtr = thin_dtr, 4349 .map = thin_map, 4350 .end_io = thin_endio, 4351 .preresume = thin_preresume, 4352 .presuspend = thin_presuspend, 4353 .postsuspend = thin_postsuspend, 4354 .status = thin_status, 4355 .iterate_devices = thin_iterate_devices, 4356 .io_hints = thin_io_hints, 4357 }; 4358 4359 /*----------------------------------------------------------------*/ 4360 4361 static int __init dm_thin_init(void) 4362 { 4363 int r; 4364 4365 pool_table_init(); 4366 4367 r = dm_register_target(&thin_target); 4368 if (r) 4369 return r; 4370 4371 r = dm_register_target(&pool_target); 4372 if (r) 4373 goto bad_pool_target; 4374 4375 r = -ENOMEM; 4376 4377 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4378 if (!_new_mapping_cache) 4379 goto bad_new_mapping_cache; 4380 4381 return 0; 4382 4383 bad_new_mapping_cache: 4384 dm_unregister_target(&pool_target); 4385 bad_pool_target: 4386 dm_unregister_target(&thin_target); 4387 4388 return r; 4389 } 4390 4391 static void dm_thin_exit(void) 4392 { 4393 dm_unregister_target(&thin_target); 4394 dm_unregister_target(&pool_target); 4395 4396 kmem_cache_destroy(_new_mapping_cache); 4397 } 4398 4399 module_init(dm_thin_init); 4400 module_exit(dm_thin_exit); 4401 4402 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4403 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4404 4405 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4407 MODULE_LICENSE("GPL"); 4408